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Introduction
NERSC recently undertook a project to access and analyze Secure Shell (SSH) related 
data.  This includes authentication data such as user names and key fingerprints, 
interactive session data such as keystrokes and responses, and information about non-
interactive sessions such as commands executed and files transferred.  Historically, this 
data has been inaccessible with traditional network monitoring techniques, but with a 
modification to the SSH daemon, this data can be passed directly to intrusion detection 
systems for analysis.  The instrumented version of SSH is now running on all NERSC 
production systems.  This paper describes the project, details about how SSH was 
instrumented, and the initial results of putting this in production.

Motivation
In the past few years, access methods have changed from clear text protocols like telnet 
and rlogin to encrypted protocols like SSH.  As a result, intrusion detection systems have 
lost access to most of the data associated with interactive login sessions.  Records show 
that the most common security threats to high performance computing and mass storage 
facilities, like NERSC, occur over the encrypted SSH channel.  This is why the NERSC 
Security team has been searching for a way to regain access to this data for analysis by 
intrusion detection systems.

Because science users need to login and execute arbitrary commands on NERSC systems, 
the center grants several thousand researchers "shell" access.  Unfortunately, this kind of 
access results in significant security risk.

The most common threat to NERSC comes in the form of compromised authentication 
credentials.  This occurs when an attacker discovers a user’s account name and password 
or public/private key pair and uses this information to gain unauthorized access to 
NERSC resources.  The attacker will then attempt to escalate their privileges, steal 
authentication credentials from other users of the system, and jump to other systems.  
These attacks are extremely hard to detect because all of this activity is done with 
legitimate login credentials and under the cover of SSH encryption.

An effective response to this threat model must include the ability to monitor and analyze 
login sessions to differentiate attack behavior from normal user behavior.  In the past, 
intrusion detection systems typically accomplished this by monitoring network traffic.  
The keystrokes and response data associated with login sessions could then be analyzed 
in various ways to determine the likelihood that a system and/or account had been 
compromised.

Unfortunately, the widespread adoption of SSH has made the analysis of login session 
activity by monitoring network traffic impossible because SSH encrypts all data before 
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it's transmitted over a network.  This is not to say that the use of SSH and similar 
encrypted protocols should be discouraged.  On the contrary, NERSC requires the use of 
SSH as it helps to prevent compromises in the first place.  However, there is a clear need 
for intrusion detection systems to regain access to login session data.

Therefore, with this project, NERSC chose to modify the SSH daemon itself.  Since the 
daemon manages unencrypted session data, it makes an obvious place to gain access to 
that data and pass it along to intrusion detection systems.

Design Constraints and Decisions
Before a modified version of SSH could be put into production on NERSC systems, a 
number of design requirements had to be met.  These requirements guided the decisions 
that were made throughout the design process.  We had three fundamental requirements:

Avoid the introduction of new bugs or compromised security:  A critical requirement 
was that we were able to demonstrate with high confidence that our modified version of 
SSH was just as stable and secure as the OpenSSH code base we started with.

The “user experience” must be unchanged:  We worked very hard to ensure that the 
newly modified version of SSH did not affect the way users interacted with NERSC 
systems.  At NERSC, login messages notify users of this security monitoring.  However, 
the user is not required to run a special version of the SSH client nor have we removed or 
changed any existing capabilities of OpenSSH.

Ensure minimal impact on system resources:  Like most computational facilities, 
NERSC system resources including CPU time, memory, and network bandwidth are at a 
premium.  This is why any additional demands made by an instrumented SSH must be 
insignificant compared to an unmodified SSH.

With this in mind, the following design choices were made:

OpenSSH Code Base: There are several implementations of the SSH protocol.  We 
decided to use OpenSSH as a starting point for this project because it was already in use 
on most NERSC systems and is a very popular, open source standard.  This minimized 
any disruption to the user experience and built on the already high level of security 
provided by OpenSSH.

In addition, OpenSSH is a widely deployed and well-maintained implementation of SSH.  
A large community of developers support the code and it has been well tested on many 
different architectures and is under constant scrutiny for bugs and vulnerabilities.  By 
adding the instrumentation to this code base, the instrumented version of SSH can be 
easily and quickly deployed on most systems without change.  This reduces the amount 
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of code that must be tested and maintained, which in turn, reduces the likelihood of 
introducing new bugs or compromising the inherent security of SSH.

By starting with the OpenSSH code base, we were able to include the high performance 
networking code developed at the Pittsburgh Supercomputing Center.  This enhancement 
to OpenSSH improves performance over long haul networks for NERSC users. This 
means that researchers can move large data sets over wide-area networks more quickly.

As a result of this design decision and in support of the open software and OpenSSH 
communities, any changes made to the OpenSSH code base must be releasable under the 
same licensing.  Thus, no libraries or other software elements could be introduced that 
would restrict the release of the instrumented version of OpenSSH.

Minimize changes to the code base: As part of a regiment of good coding practices, we 
chose to minimize changes to existing code as much as possible.  We sought to take 
advantage of existing code and capabilities whenever it was possible.  This reduced the 
amount of code we needed to support, reduced the likelihood of new bugs or 
vulnerabilities being introduced.  In addition, this helped ensure that the user experience 
would remain unchanged.  Rather than re-creating existing capabilities, we chose to rely 
on existing capabilities that were well tested, supported, and understood.

An example of this practice is our use of stunnel to transport data from a monitored 
system to an analysis system.  Stunnel is a well-established and widely used utility for 
creating secure SSL-encrypted network communication channels that can be easily 
incorporated with other utilities.  Rather than trying to recreate that capability and support  
it for our purposes, we simply pass data from the SSH daemon to a local stunnel instance 
which securely transports it to an stunnel listener on our analysis system.

Decoupled analysis: We tried to decouple the analysis of the SSH data from the SSH 
daemons and clients as much as possible.  The normal functioning of SSH is not, 
dependent on the analysis subsystem.  This has a number of significant advantages.

Analysis of this data can be somewhat demanding of system resources on large-scale 
systems, especially if that system that supports many users simultaneously.  By 
offloading this processing to an entirely separate system, we minimized impact on user 
resources.   Decoupling also allowed us to minimize the impact on our users should any 
part of the analysis fail.  The SSH daemon can continue to function properly and 
gracefully recover should the system performing the collection and analysis of the data 
go completely off-line.

Decoupling also allows us to aggregate data from many systems onto a single system 
dedicated to managing and analyzing this data.  This allows for a much more 
sophisticated analysis with a broader view of activity.  Because this data is not stored on 
the system being monitored, it’s far more difficult for an attacker to modify the data in an 
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attempt to “cover their tracks.”  The data can be stored on a system with far more 
restrictive access and security policies.  This helps reduce the possibility of the 
instrumented version of SSH being subverted by an attacker.

Finally, offloading the analysis to a separate system allows for a fairly simple way to 
scale the capability.  Multiple analysis systems can be deployed, each one performing 
analysis for a subset of the systems being monitored.  Building on the communication 
capabilities built into the Bro intrusion detection system, noteworthy events can still be 
aggregated and correlated across multiple analysis systems.

Thorough Review and Testing: A critical system such as SSH cannot be placed into 
production without considerable review and testing.  To ensure that all the necessary 
functionality and design criteria were met, we conducted formal design and code reviews.  
Knowledgeable reviewers were recruited within NERSC as well as outside of NERSC.  
By keeping the code open source, we are also encouraging critical analysis from the 
larger community of developers familiar with SSH.  In addition, extensive testing is 
performed on each version of the code before it is put into production on NERSC 
systems.

System Architecture
A fundamental goal of this project is simply to provide a robust and secure 
communication conduit between SSH and a remote intrusion detection system.  The 
architecture of the system can be divided into two parts.  The “server side” includes the 
modified OpenSSH daemon(s) running on the systems to be monitored.  The “analysis 
side” includes the intrusion detection system(s) as well as log maintenance running on a 
separate system.  At NERSC, we use the Bro intrusion detection system which is easily 
modified to analyze SSH sessions.  The conduit connecting the server and analysis sides 
is stunnel which is a widely available, general purpose, SSL implementation.  No changes 
were needed to stunnel for this project.  Only a very simple stunnel configuration file is 
provided as part of the distribution.  Figure 1 shows the overall architecture.
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Figure 1: Overall Architecture

Server Side Subsystem

The server side subsystem is perhaps the most significant part of this system.  This is 
where the majority of new code resides and where a mistake is most likely to impact 
users.  For this reason, we spent a lot of time carefully crafting and testing this part of the 
system.  

OpenSSH operates by running a “master daemon” that listens for new TCP connections 
and forks a separate copy of itself to handle each new connection.  These individual 
connection or “session” daemons then handle authentication, communication, and 
command execution for the user.  Once a user is authenticated, an interactive shell is 
executed and the daemon manages the standard input, output, and error data streams for 
the user.

Each SSH session supports multiple data streams or “channels” by multiplexing them 
over a single TCP connection.  In the example of an interactive command shell, at least 
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three channels (standard input, standard output, and standard error) are multiplexed over 
the single TCP connection.

Our goal was to modify the daemon such that it would also forward copies of the data 
from each channel to our intrusion detection system while meeting our design constraints 
of minimizing the impact on the user as well as the system being monitored.  To achieve 
this, we built, on existing infrastructure as much as possible.  We used the existing buffer 
management capability in OpenSSH to implement separate buffers for each 
communication channel and used stunnel as our network transport mechanism.  So 
ultimately, a target system looks as in figure 2.

Figure 2: Server Side Architecture

Buffering

OpenSSH already provides very robust and efficient buffer management.  We took 
advantage of this by calling for an additional buffer for each data stream and periodically 
flush each of these buffers to the listening stunnel as in figure 3.  In general, these buffers 
are flushed upon receiving a new-line character.  However, there are configurable limits 
on how much data will be copied to the stunnel.
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Figure 3: An SSH Connection

Some of the channels created in an SSH session are associated with a terminal or “tty 
device.”  These are typically the input, output, and error channels of an interactive login 
and tend to be of great interest for intrusion detection.  Other channels that do not have an 
associated tty device are typically used for transporting files or “tunneling” other 
protocols like X windows or HTTP.  However, sometimes these non-tty channels are used 
interactively.  In fact, we’ve found that hackers will frequently do this to avoid certain 
kinds of logging.  Because these two different types of channels (tty vs. non-tty) are used 
differently, we manage their buffers differently.

For buffers that have an associated tty device, two configurable limits are defined.  First 
there is a line length limit (typically 1024 bytes).  If this limit is reached before a new-
line is seen, the buffer stops collecting new bytes, though count is still kept of how much 
data is ignored.  The second limit is on the number of lines from the server without input 
from the client (typically 15).  In other words, if 15 lines of text are sent from the server 
to the client without any input from the client, buffering is stopped until input is seen 
from the client again.  This helps avoid clogging up the IDS with copious output from 
commands like “make world”.
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Channels that do not have associated tty devices are treated somewhat differently.  
Buffers are still flushed on new-lines and there is still a maximum line size (typically 
1024).  However, after a total of 1024 bytes have been seen, the ratio of non-printing 
characters to printing characters is computed.  At a configurable threshold that ratio 
determines if the channel is believed to be carrying binary or readable data.  If it appears 
to be binary data, then buffering is turned off to avoid slowing down large data transfers.  
If it looks like readable data, collection continues to a configurable maximum (typically 
0.5 Megabytes).  Table 1 is a list of limits for both types of channels.

tty? Limit Typical Value

yes max line length 1024 bytes

yes max server lines without client data 20 lines

no max line length 1024 bytes

no max data buffered if itʼs mostly printable text 0.5 MB

no max data buffered if itʼs mostly non-printing text 1024 bytes
Table 1

Data Transport

A second issue is getting the data from the SSH daemon onto a security system for 
archive and analysis.  This must be an entirely non-blocking process to ensure that the 
user experience is unaffected by downstream failures.  To do this, we chose to use stunnel 
which is readily available on all of our systems.  This means the data from each channel 
across multiple sessions and multiple hosts is multiplexed through stunnel onto the 
analysis system.  Then, each channel must be reassembled on the analysis system and 
attributed to the appropriate host, session, and user.

A single stunnel process runs on each target system and they each connect with a single 
stunnel process on the analysis system.  The SSH daemon communicates with the local 
stunnel process via a local TCP port and is entirely non-blocking.  Whenever a write to 
the local TCP port fails, an error is logged, and an attempt is made to reestablish 
communication with the local stunnel process.  If that also fails, the data is discarded and 
the SSH daemon simple continues normally.  This ensures that each SSH daemon will 
both gracefully fail and gracefully recover from any problems with the stunnel process.

To facilitate reassembly of these data streams, each message is tagged with a unique 
identifier.  These identifiers are a combination of the hostname, the port number that the 
master daemon is listening on, a random number assigned to the session daemon, and the 
channel number.  The hostname allows multiple hosts to report to a single analysis 
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system.  The port number allows for multiple SSH daemons on a single host, listening on 
different ports.  The random session number identifies individual sessions and avoids 
problems with changing process identifiers (PIDs).  Finally, each channel within a session 
is assigned a unique identifier by SSH.

In addition to the data from each channel, a number of other SSH events are sent through 
the same mechanism.  For example, SSH daemon start and stop events, authorization 
events, session start and stop events, and sftp events are also logged.  Each SSH master 
daemon also sends regular “heartbeat” events.  Appendix B is a partial list of events.

Analysis Side Subsystem

Figure 4: Analysis Side Architecture

The analysis side subsystem consists of the receiving stunnel process, a simple script to 
dump the received data into a flat log file, an existing tool that monitors the log file and 
generates Bro events, and Bro itself. Other analysis tools or intrusion detection systems 
could be easily employed since the data to be analyzed is in a fairly simple format.

At NERSC all monitored systems are connected to a single analysis subsystem. However, 
should the need arise, the monitored systems can be split among several analysis 
subsystems. This provides the ability to scale the system as needed. With most NERSC 
systems being monitored one analysis subsystem is easily handling all of NERSC.

Bro requires little change to take advantage of this capability.  It already has a set of 
signatures for analyzing telnet/rlogin sessions.  However, as experience is gained working 
with this new data, enhancements are being made to Bro to improve its ability to detect 
illegitimate and malicious activity while reducing the frequency of false positives.  
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Because of the independence designed into the two sides of the system (server side and 
analysis side), active development on the analysis side has no impact to SSH running on 
NERSC systems.  So research can and does continue in new ways of analyzing this data. 

Passwords and Sensitive Data
Perhaps the most controversial aspect of this project is the potential for exposure of 
sensitive data including passwords.  We are very sensitive to this and have taken every 
precaution to protect the integrity OpenSSH and our users data. One area of concern is 
with passwords, as it is trivial for this instrumentation to capture passwords as they are 
typed.  This is true both for the passwords used to login to our systems as well as any 
passwords entered after login.  For example, if a user logs in to one of our systems and 
from there logs into another system, whatever credentials they used will be captured.  
Because some organizations want to avoid capturing that data, we have included an 
option that attempts to do just that.

While we did try to avoid putting too much analysis into the SSH daemon itself, this 
particular bit of data scrubbing seemed most effectively placed in the daemon.  With this 
option turned on, if the word "Password:" or "Passphrase:" is detected on an output 
channel associated with a tty, immediately followed by something on the input channel 
associated with the same tty, then the string on the input channel is probably a password 
and will be discarded.

This of course, is not “fool proof.”  There are applications and systems with different 
password prompts.  However, the intent is to catch and ignore the majority of passwords 
and, for that, this heuristic is fairly effective.  

Lessons Learned
The instrumented version of SSH has been running on production systems at NERSC for 
several months and we’ve been testing a second version that corrects some problems we 
discovered with the first version.  Among the features added were capturing key 
fingerprints and improved handling of channels not associated with tty devices.

Recording SSH key fingerprints is very useful in several ways.  Periodically, we, at 
NERSC, are given lists of key fingerprints that are either known to have been 
compromised and/or are known to have been used by attackers.  It becomes a trivial 
matter to monitor for their use on our systems with this feature.  In addition, observing 
the fact that a user has begun using a new key to access our systems is worth noting in 
Bro and possibly worth further investigation if there are any other signs of a 
compromised account.  Finally, whenever we suspect that an account has been 
compromised, we require that the user destroy their old key(s) and generate a new one.  
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Looking at the finger prints of the keys they’re using gives us a simple verification that 
the user has done this correctly.

Something we had not anticipated was the widespread use by attackers of “ssh 
user@host sh -i”.  This gives the attacker an interactive shell while bypassing 
some system logging, such as the history file.    In our original version, it also bypassed 
our logging.  We’ve fixed that as described earlier.  While the use of a command like this 
is suspicious, it’s not proof of an attack in and of itself.  By capturing the keystrokes from 
the session that follows, our intrusion detection system is able to make a much more 
definitive assessment.

Results
Even without the improvements described above, our use of the instrumented SSH has 
been very helpful in detecting attacks as well as forensic analysis.  A number of 
compromises would have surely gone completely undetected without the ability to look 
inside of SSH sessions.  Many of the signatures used by Bro to detect hacker activity 
doesn’t show up in any other logs.

Another powerful tool has turned out to be the forensic analysis of compromises.  By 
examining what attackers do on our systems we’re able to improve our intrusion 
detection system to be more sensitive to attacks with fewer false positives.

Appendix A shows an example of an attack that would likely not have been detected by 
any other means.  Furthermore, we learned a great deal about how the attackers in this 
case operated since we were able to monitor communication between attackers.
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Appendix A: An Example
This is an incident that took place in early March of 2009.  The logs have been sanitized 
and reduced to show the interesting aspects of the attack.  In this case, attackers were able 
to gain access to one of our user accounts.  With that, they logged into one of our 
production systems and attempted to gain privileged access as well as a foothold across 
several systems within a cluster.  Fortunately, they were detected, and did not gain 
privileged access on any of our systems.

Figure 5 is a partial listing of the accounting records associated with this attack.  Of note 
here is the absence of anything that would indicate an attack.  The commands issued by 
these attackers didn’t deviate significantly from what we would expect of the legitimate 
user of this account.  Based on the accounting logs and other logs from the systems under 
attack, nothing out of the ordinary would have been detected.

ACCOUNTING RECORDS FROM:  Wed Mar  4 19:05:01 PST 2009
COMMAND                      START    END          REAL      CPU        MEAN
NAME       USER     TTYNAME  TIME     TIME       (SECS)   (SECS)     SIZE(K)
mkscrdir   ---      pts/4   20:07:03 20:07:03     0.22     0.00        0.00 
sed        ---      pts/4   20:07:03 20:07:03     0.00     0.00        0.00 
awk        ---      pts/4   20:07:03 20:07:03     0.00     0.00        0.00 
modulecmd  ---      pts/4   20:07:03 20:07:03     0.28     0.00        0.00 
modulecmd  ---      pts/4   20:07:08 20:07:08     0.00     0.00        0.00 
bash       ---      pts/4   20:07:08 20:07:08     0.02     0.00        0.00 
w64        ---      pts/4   20:07:12 20:07:12     0.00     0.00        0.00 
Uname      ---      pts/4   20:07:13 20:07:13     0.00     0.00        0.00 
df         ---      pts/4   20:07:18 20:07:18     0.00     0.00        0.00 
Ls         ---      pts/4   20:07:21 20:07:21     0.02     0.00        0.00 
gcc        ---      pts/4   20:07:24 20:07:24     0.00     0.00        0.00 
Bash       ---      pts/4   20:07:33 20:07:33     0.00     0.00        0.00 
pico       ---      pts/4   20:07:35 20:08:28    53.94     0.14      175.00 
Xlcentry   ---      pts/4   20:08:31 20:08:31     0.03     0.03     4408.00 
cc         ---      pts/4   20:08:31 20:08:31     0.05     0.00        0.00 
make       ---      pts/4   20:08:31 20:08:31     0.05     0.00        0.00 
bash       ---      pts/4   20:08:47 20:08:47     0.00     0.00        0.00 
pico       ---      pts/4   20:08:51 20:09:11    20.89     0.00      804.00 
…
csh        ---      ?       20:07:03 20:13:20   377.12     0.00     3248.00 

Figure 5: Excerpt from Accounting Logs

Figure 6 shows a partial listing of the alerts we received from our intrusion detection 
system (Bro).  The first resulted from a shell command (“unset HISTFILE”) which is 
very rarely issued by legitimate users.  Because this is a shell command, it doesn’t show 
up in any accounting or other log files.  The next three alerts resulted from the attacker 
opening the source code of a known hacker tool in an editor.  Various telltale strings were 
detected during editing session.  Again, non of this would show up in any log files.  These 
are all examples of leveraging what we learned from the “clear text era” when we could 
capture telnet and rlogin sessions by simply monitoring the network.  Now, we use more 
sophisticated means to capture the data.  But, we’re looking for the same things.
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Mar  4 19:55:44 SSHD_Hostile #5068 0 53183_host_22 6529
	 user @ 0.0.0.0 -> 0.0.0.0:22/tcp
	 command: unset HISTFILE
Mar  4 20:10:23 SSHD_Hostile #5068 0 53183_host_22 6529
	 user @ 0.0.0.0 -> 0.0.0.0:22/tcp
	 command: shellcode=( # by intropy <at> caughq.org
Mar  4 20:10:23 SSHD_Hostile #5068 0 53183_host_22 6529
	 user @ 0.0.0.0 -> 0.0.0.0:22/tcp
	 command: "x40x82xffxfd" # bnel <shellcode>
Mar  4 20:10:23 SSHD_Hostile #5068 0 53183_host_22 6529
	 user @ 0.0.0.0 -> 0.0.0.0:22/tcp
	 command: execve("/usr/bin/passwd",],{"EGG":egg+shellcode,"LC_TIME":bof})

Figure 6: Bro Alerts

Figure 7 shows an excerpt from one of the attackers’ login session where they 
downloaded and attempted to compile a new hacker tool.  We were able to capture the 
source code of this tool.  Fortunately, the tool wouldn’t compile, nor would it have 
worked if they had figured out how to get it to compile.  We’re now able to monitor for 
this tool and generate alerts if it’s downloaded or used again.

1236230278.781065 #5449 0 77772_host_22 73661 data_server user@host:/tmp/.tmp> 
rcp lp@0.0.0.0:forker.c .

user@host:/tmp/.tmp> gcc -o f forker.c
forker.c: In function 'main':
forker.c:19: warning: incompatible implicit declaration of built-in function 

'exit'
forker.c:27: warning: incompatible implicit declaration of built-in function 

'exit'
forker.c:39: warning: incompatible implicit declaration of built-in function 

'exit'

Figure 7: A New Tool is Downloaded

A very interesting aspect of this attack was that it was carried out by two attackers that 
were logged in at the same time.  They were apparently using a feature of the GNU 
Screen utility that allows two people to share a single login session and communicate 
with one another.  We were able to capture that communication.  Figure 8 shows one of 
the attackers generating a new SSH key pair and attempting to automate the process of 
populating the known_hosts file with the other systems in the cluster.  Following that is a 
rather humorous discussion between the attackers about the proper way to do that without 
getting caught.  Of course, their discussion moot since they hadn’t anticipated our use of 
an instrumented SSH.
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user@host:~/.ssh> ssh-keygen -t dsa
Generating public/private dsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_dsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/id_dsa.
Your public key has been saved in /home/user/.ssh/id_dsa.pub.
The key fingerprint is:
a9:e1:69:8b:b3:c0:78:da:8e:dc:c9:7e:52:c3:76:6e user@host
user@host:~/.ssh> ls
id_dsa id_dsa.pub known_hosts
user@host:~/.ssh> cat id_dsa.pub > authorized_keys
user@host:~/.ssh> rm -rf id_dsa.pub
user@host:~/.ssh> ssh -oHashKnownHosts= =yes 192.168.0.1
...
user@host:/tmp> what are you trying to do get ride of t pressing yes?
user@host:/tmp> clearly
user@host:/tmp> lol set known_hosts to dev null n00b
user@host:/tmp> that is such a hack and completely improper
user@host:/tmp> and a good way to lose a box if you forget to remove it
user@host:/tmp> nononosec phrack.org done? wn? its in issue 64

Figure 8:  Attackers Discuss Evading Detection
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Appendix B: Partial Event List

Event Name Example of Event

sshd_exit sshd_exit string=15065_127.0.0.1_22 
addr=127.0.0.1 port=22

sshd_restart sshd_restart string=15065_127.0.0.1_22 
time=1191884518.290978 addr=127.0.0.1 
port=22

sshd_start sshd_start time=1191884494.121733 
string=15065_127.0.0.1_22 
addr=127.0.0.1 port=22

ssh_remote_do_exec ssh_remote_do_exec time=1191792262.11193 
string=6823_127.0.0.1_22 count=6828 
string=/home/scottc/development/
instrumentedSSHD/TEST/sftp-server 

ssh_remote_do_exec time=1191885521.640921 
string=15172_127.0.0.1_22 count=15251 
string=scp -t /tmp/t.c.2

auth_fail auth_fail time=1192226229.309228 
string=7079_127.0.0.1_2222 
string=scottc string=publickey 
address=127.0.0.1 port=34475 
address=127.0.0.1 port=2222 count=7081

auth_ok auth_ok time=1192226229.309228 
string=7079_127.0.0.1_2222 
string=scottc string=publickey 
address=127.0.0.1 port=34475 
address=127.0.0.1 port=2222 count=7081

invalid_user nvalid_user time=1192168424.338979 
string=21612_127.0.0.1_2222 
string=four count=21732

channel_exit channel_exit time=1191738571.917689 
string=7710_127.0.0.1_22 ch=0 status=0

data_client data_client time=1191700436.559975 
string=5852_127.0.0.1_22 count=5854 
ch=0 line=ls

data_server data_server time=1192168686.518089 
string=21612_127.0.0.1_2222 
count=21818 ch=0 
line=analyofChatSystems.ps foo.doc
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Event Name Example of Event

data_server_sum data_server_sum time=1191701255.308138 
string=5852_127.0.0.1_22 count=5874 
ch=0 31736 additional bytes not logged

new_channel_session new_channel_session 
time=1191734989.401384 
string=7404_127.0.0.1_22 count=0 
string=subsystem count=7424

new_session new_session time=1191735487.33513 
string=7710_127.0.0.1_22 type=SSH2 
count=7713

sftp_process_close sftp_process_close time=1191886155.155476 
string=15357_127.0.0.1_22 int=9 int=0

sftp_process_do_stat sftp_process_do_stat 
time=1191886153.768947 
string=15357_127.0.0.1_22 string=/
home/scottc

sftp_process_fsetstat -

sftp_process_fstat -

sftp_process_init sftp_process_init time=1191886143.344560 
string=15357_127.0.0.1_22 
string=scottc addr=127.0.0.1

sftp_process_mkdir sftp_process_mkdir time=1191792377.270115 
string=6829_127.0.0.1_22 string=/home/
scottc/test

sftp_process_opendir sftp_process_opendir 
time=1191886153.784007 
string=15357_127.0.0.1_22 string=/
home/scottc

sftp_process_open sftp_process_open time=1191886167.559053 
string=15357_127.0.0.1_22 string=/
home/scottc/nessus.tar.gz

sftp_process_readdir sftp_process_readdir 
time=1191886154.696938 
string=15357_127.0.0.1_22 string=/
home/scottc

sftp_process_readlink -
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Event Name Example of Event

sftp_process_realpat
h

sftp_process_realpath 
time=1191886143.406256 
string=15357_127.0.0.1_22 string=.

sftp_process_remove -

sftp_process_rename -

sftp_process_rmdir -

sftp_process_setstat -

sftp_process_symlink -

sftp_process_unknow
n

-
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