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Abstract

Background

Lead, a toxic metal, affects cognitive development at the lowest measurable concentrations

found in children, but little is known about its direct impact on brain development. Recently,

we reported widespread decreases in cortical surface area and volume with increased risks

of lead exposure, primarily in children of low-income families.

Methods and findings

We examined associations of neighborhood-level risk of lead exposure with cognitive test

performance and subcortical brain volumes. We also examined whether subcortical struc-

ture mediated associations between lead risk and cognitive performance. Our analyses

employed a cross-sectional analysis of baseline data from the observational Adolescent

Brain Cognitive Development (ABCD) Study. The multi-center ABCD Study used school-

based enrollment to recruit a demographically diverse cohort of almost 11,900 9- and 10-

year-old children from an initial 22 study sites. The analyzed sample included data from

8,524 typically developing child participants and their parents or caregivers. The primary

outcomes and measures were subcortical brain structure, cognitive performance using the

National Institutes of Health Toolbox, and geocoded risk of lead exposure.

Children who lived in neighborhoods with greater risks of environmental lead exposure

exhibited smaller volumes of the mid-anterior (partial correlation coefficient [rp] = -0.040),

central (rp = -0.038), and mid-posterior corpus callosum (rp = -0.035). Smaller volumes of

these three callosal regions were associated with poorer performance on cognitive tests

measuring language and processing speed. The association of lead exposure risk with cog-

nitive performance was partially mediated through callosal volume, particularly the mid-pos-

terior corpus callosum. In contrast, neighborhood-level indicators of disadvantage were not

associated with smaller volumes of these brain structures.
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Conclusions

Environmental factors related to the risk of lead exposure may be associated with certain

aspects of cognitive functioning via diminished subcortical brain structure, including the

anterior splenium (i.e., mid-posterior corpus callosum).

Introduction

Elevated blood-lead concentrations during childhood, which are more common among low-

income children [1], are associated with intellectual deficits and behavioral problems [2–13].

While it has been estimated that 40% of the world’s children have elevated blood-lead levels,

90% of these children live in low- and middle-income countries [14]. Lead-based paint and

leaded gasoline reflect primary transnational sources of exposure, but there may be many

more sources of lead exposure in developing countries, such as lead-glazed ceramics, lead min-

ing and smelting, flour mills, lead-battery recycling plants, and lead-containing medicines and

cosmetics [15,16]. The annual cost of childhood lead exposure in these low- and middle-

income countries is nearly $1 trillion [17].

Lead undoubtedly has effects on brain development [18], but most studies investigating its

effects on brain structure and function involve heavily exposed children and adults [19–24].

We recently reported that greater risk of lead exposure [25,26]–based on age of housing and

poverty levels in participants’ residential neighborhoods [1,27]–was negatively associated with

cognition and whole-brain cortical structure in 9- and 10-year-old children of low-income

families [28]. Cortical vertex maps showed that reductions in total cortical surface area and

volume were associated with increasing lead risk in children of low- but not high-income

families.

Lead exposure is also associated with subcortical brain morphology. Occupational lead

exposure is inversely associated with posterior corpus callosum and periventricular white mat-

ter volumes [19], and childhood lead exposure is associated with altered white-matter connec-

tivity in young adults’ corpus callosum and corona radiata [21]. Given different

spatiotemporal trajectories of white- and gray-matter development [29,30], the low-socioeco-

nomic-status (SES)-specific inverse associations that we observed between lead risk and corti-

cal gray matter [28] may be differentially manifested within subcortical brain regions. If the

cognitive effects of lead exposure are mediated by effects on brain structures that mature at dif-

ferent rates and times during development (e.g., in-utero, infancy, childhood, adolescence)

[18], then identifying such regional biomarkers and their associations with neighborhood-

level risk of exposure may increase our understanding of the temporally-dependent impact on

developmental outcomes.

No studies have investigated associations between children’s low-level lead exposure and

subcortical brain structure. We employed neighborhood-level risk scores, which are validated

proxies for census-tract-level prevalence of elevated blood-lead levels and mean blood-lead lev-

els [28,31], to evaluate associations between brain structure and lead risk at high and low levels

of exposure. We analyzed Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study1)

data to determine relationships between lead-exposure risk, subcortical volumes, and perfor-

mance on NIH Toolbox1 cognitive tests [32,33]. Our goal was to explore (1) associations

between subcortical brain regions and lead-exposure risk, (2) whether family income moder-

ated these associations, (3) subcortical volumes’ associations with cognitive performance, and

(4) whether the volumes of those subcortical regions mediated relationships between lead risk

and cognition.
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Methods

Participants

ABCD is a 10-year longitudinal study involving 21 U.S. study sites [34]. Using school-based

enrollment [35], the consortium enrolled nearly 11,900 9- and 10-year-old children from an

initial 22 sites. The ABCD Study’s data collection sites all used the same protocol for recruit-

ment, testing, and neuroimaging [36]. ABCD demographics correspond well with the Ameri-

can Community Survey (ACS) [37]. Our data came from the July 2019 ABCD 2.0.1 data

release [38], which included baseline data for 11,875 children. Currently, there are no blood-

lead data for ABCD participants.

Centralized IRB approval was obtained from the University of California, San Diego. Study

sites obtained approval from their local IRBs. Parents provided written informed consent; chil-

dren provided written assent. Data collection and analysis complied with all ethical

regulations.

Lead risk and area deprivation index (ADI)

We used a high-resolution nationwide map (https://www.vox.com/a/lead-exposure-risk-map)

to obtain geocoded lead-risk scores for participants’ census tracts [25,26]. These scores reflect

national deciles of a weighted sum of two validated correlates of lead exposure (https://github.

com/voxmedia/data-projects/blob/master/vox-lead-exposure-risk/calculate-lead-risk.py): the

ages of homes (weight = 0.58) and poverty (0.42) rates [1,27], both derived from ACS data.

Lead-risk scores were previously shown to be highly associated with childhood lead exposure

in children [28,31]. For instance, we previously showed that these lead-risk scores were posi-

tively associated with both the rate of elevated blood-lead levels across 13 states and 2 cities at

the census-tract level and the geometric mean of census-tract-level blood-lead levels in the

state of Maryland [28]. ABCD site-by-site lead-risk-score distributions have been published

previously [28]. Briefly, for some sites, the lead-risk scores were uniformly distributed, while

other sites showed modalities at either lower, intermediate, and/or higher lead-risk scores,

thereby reflecting geographic differences in risk of exposure [39].

ADI is a composite metric of neighborhood deprivation (e.g., low education, poor plumb-

ing) [40,41] and, like lead-exposure risk, incorporates poverty rates. Unlike lead-exposure risk,

ADI does not include data related to age of housing. Census-tract-level ADI was computed

based on coefficient values of past research [40] and discretized into national percentiles. The

R code for computing and merging ADI (and its national percentile) with ABCD data is avail-

able: https://github.com/ABCD-STUDY/geocoding/blob/master/Gen_data_proc.R.

ABCD data

We analyzed uncorrected baseline performance on seven NIH Toolbox tests [32] and baseline

structural brain measures (volumes of 21 subcortical regions) [42]. Data collection procedures

are described in detail elsewhere [32,42,43].

NIH Toolbox tests show good convergent validity compared with gold standards of cogni-

tive testing [44]: (1) the Picture Vocabulary Test (a measure of language; Version 2.0, Ages 3

+), (2) the Flanker Inhibitory Control and Attention Test (attention, executive function; Ver-

sion 2.0, Ages 8–11), (3) the List Sorting Working Memory Test (working memory; Version

2.0, Ages 7+), (4) the Dimensional Change Card Sort Test (executive function; Version 2.0,

Ages 8–11), (5) the Pattern Comparison Processing Speed Test (processing speed; Version 2.0,

Ages 7+), (6) the Picture Sequence Memory Test (episodic memory; Version 2.0, Form A,

Ages 8+), and (7) the Oral Reading Recognition Test (language; Version 2.0, Ages 3+). Briefly,
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the NIH Toolbox was administered on an iPad (~25–30 min to complete), with all task’s

instructions being read by the examiner, except for the Pattern Comparison Processing Speed

Test (i.e., presented by an audio recording). All tasks were administered with the iPad in an

upright position (~45˚ degree angle), with some tasks incorporating a home-base “button” in

front of the iPad for the participants on which the participants would place their index finger

between the task’s trials (Flanker Inhibitory Control and Attention Test, Dimensional Change

Card Sort Test).

We obtained measures of subcortical brain structure using FreeSurfer v5.3.0 on acquired

T1w MRI volumes; ABCD neuroimaging data collection and processing procedures have been

described [45]. Depending on the study site, Siemens, Philips, and GE scanners were used,

with T1 acquisition times (min:s) being 7:12, 5:38, and 6:09, respectively. Accordingly, a ran-

dom effect of scanner serial number was included in analyses (as described below). All neuro-

imaging parameters are available: https://abcdstudy.org/images/Protocol_Imaging_Sequences.

pdf. Structural magnetic resonance imaging (MRI) T1 images were acquired first, followed by

functional MRI and diffusion MRI images (data not shown). T1w images were corrected for

gradient nonlinearity distortions per scanner-manufacturer guidelines, with further details

comprehensively described previously [45]. ABCD data are publicly available on the NIMH

Data Archive (https://data-archive.nimh.nih.gov/abcd).

Statistical analyses

Analyses included 8,524 children with complete data for the variables of interest (Table 1 in S1

Appendix). Participants’ data were excluded if the primary residential address was invalid

(remaining n = 11,175) or unable to be geocoded into a 1–10 lead-risk score (remaining

n = 11,169), a valid household/family income was not provided (remaining n = 10,234), there

were missing data for sex, age, parental education, race, ethnicity, NIH toolbox test or compos-

ite scores, or structural imaging measures (remaining n = 9,519), if the ADI score was missing

or invalid (weighted sum = 0) (remaining n = 9,331), or if the neuroimaging data did not pass

all quality-control measures or there were neuroanatomical variants (incidental findings)

judged to be of possible clinical significance (final n = 8,524) [46].

We employed linear mixed-effects models to determine lead-risk associations and family

income × lead-risk interactions on 21 subcortical volumes. We averaged bilateral data across

both hemispheres (Table 1 in S1 Appendix). In accordance with previous research analyzing

associations between brain structure and socioeconomic and/or environmental conditions

[28,47,48], we controlled for children’s age, sex, race, ethnicity, maximum parental education,

and family income. Analyses of subcortical data also controlled for intracranial volume (ICV),

which was inversely associated with both lead risk, Spearman’s rho (ρ) = -0.11, p< .001, and

ADI, ρ = -0.11, p< .001. Random-effects structures included random intercepts for MRI serial

number (i.e., some study sites have multiple machines) and family identification number (i.e.,

many ABCD participants were siblings). We used the Benjamini-Hochberg false-discovery-

rate (FDR) algorithm to correct for multiple comparisons [49].

Lead risk, age (in months), and ICV were continuous factors. Maximum parental education

was a continuous factor with seven levels (1 =�6th grade; 2 = 7th-9th grade; 3 = 10th-12th grade,

no diploma; 4 = high-school graduate, GED or equivalent; 5 = Some college with no degree,

Associate’s degree; 6 = bachelor’s degree; 7 = master’s degree, professional degree, or doctor-

ate). Children’s race and ethnicity were categorical factors derived from parent reports on the

child. Race had 6 levels: “White”, “Black”, “Asian”, “American Indian or Alaska Native”,

“Native Hawaiian or Other Pacific Islander”, or “Other” (e.g., multiracial). Ethnicity had two

levels: “Hispanic” or “Not Hispanic”. As within ABCD’s Data Exploration and Analysis Portal
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(deap.nimhda.org), family income was a categorical factor with 3 levels, per parents’ reported

household income (Low Income:�$50K; Middle Income: $50K-$100K; High Income:

�$100K). Categorical factors were effects-coded to facilitate interpretation of main effects

given higher-level interactions [50]. Continuous factors were centered (i.e., a constant was sub-

tracted) to make parameter estimates more interpretable [50].

To evaluate whether lead-risk associations could be explained by general neighborhood disad-

vantage, we conducted sensitivity analyses in which ADI replaced lead risk in the models. The

ADI national percentile was converted into deciles and centered to match the lead-risk analyses.

To further verify lead-risk associations with subcortical volume, we replaced lead risk with age of

housing (i.e., the factor included in computing lead risk but not ADI). These data, which gener-

ally reflect census-tract-level housing-age-based estimates of the proportion of homes with lead-

based paint hazards [27], were maintained on their original scale (range = 0.05–64.54), Box-Cox

transformed to correct for positive skewness, and mean-centered for analysis.

Because our research has shown that cortical structure mediates associations between envi-

ronmental factors (family income) and cognition [47], we examined whether subcortical struc-

ture mediated associations between lead risk and cognitive performance. Subcortical volume

was mean-centered when estimating indirect associations. Analyses employed linear mixed-

effects models, with children’s sex, age, parental education, race, ethnicity, and family income

as covariates. Here, the criterion was cognitive test score, so the random-effects structure

included random intercepts for study site (rather than MRI serial number) and family identifi-

cation number. Accordingly, because these analyses ultimately tested whether the association

between lead risk and cognitive test score was mediated by subcortical volume, in which the

criterion was cognitive test score and not subcortical volume, ICV was not included as a covar-

iate in these analyses of cognitive performance. The presence of statistically significant indirect

associations (i.e., products of unstandardized regression coefficients: lead-risk!brain-struc-

ture, brain-structure!cognition, controlling for lead risk) was evaluated via construction of

bias-corrected percentile bootstrapping 95% confidence intervals (CI; 10,000 bootstrapped

samples) [51], irrespective of the statistical significance of the corresponding total effect [52].

To minimize issues of multicollinearity of multiple mediators (i.e., collinear relationships

between subcortical volumes of different regions) [53], only subcortical volumes associated

with cognitive test performance were tested as mediators.

We conducted analyses using MATLAB’s Statistics and Machine Learning Toolbox 11.7

(R2020a; MathWorks). Model output and model-fit characteristics are provided in Tables

2–116 in the S1 Appendix. Statistical reporting in the main text is in the form of t-tests except

when involving categorical factors (e.g., family income), in which results are in the form of F
tests computed using MATLAB’s anova function (i.e., the combined statistical significance of

all coefficients of the corresponding factor). Effect sizes of continuous factors are represented

by partial correlation coefficients (rp), which control for all model covariates and are calculated

using the corresponding t-statistic and degrees of freedom [54]. The 95% CIs of the effect sizes

were derived from the sample variance of the partial correlation [55].

Results

Sample characteristics

Children included in our analyses did not appreciably differ in key sociodemographic indica-

tors compared with the entire ABCD cohort (Table 1). Lead-risk scores were bimodally dis-

tributed: 40.5% of participants lived in neighborhoods with low lead-risk scores (lead risk� 3;

n = 3,450); 32.3%, intermediate lead-risk scores (4� lead risk� 7; n = 2,749); and 27.3%, high

lead-risk scores (lead risk� 8; n = 2,325) (Fig 1A in S1 Appendix). Participants also tended to
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live in less-deprived neighborhoods (i.e.,�5th decile; Fig 1B in S1 Appendix). On average,

based on housing age, ~20.5% of houses in participants’ neighborhoods were estimated to con-

tain lead-based paint hazards (Fig 1C in S1 Appendix) [26,27]. There were positive associa-

tions between ADI and both lead risk, ρ = 0.36, p< .001, and housing age (i.e., estimated

percentage of homes in the census tract with lead-based paint hazards based on housing age),

ρ = 0.13, p< .001.

Lead risk and subcortical brain structure

Of 21 subcortical regions (Fig 1) [56], lead-exposure risk was associated with smaller volumes

(mm3) of the posterior (rp = -0.022 [-0.033, -0.011]), mid-posterior (rp = -0.035 [-0.046,

-0.024]), central (rp = -0.038 [-0.048, -0.027]), and mid-anterior corpus callosum (rp = -0.040

[-0.051, -0.030]) (Figs 2 and 3). The mid-anterior, central, and mid-posterior corpus callosal

associations passed FDR correction (q< .05) [49]. Anterior corpus callosum volume was not

associated with lead risk (rp = -0.004 [-0.015, 0.007]). No other main effects of lead risk were

significant, Ps� .074 (uncorrected) (Tables 2–22 in S1 Appendix).

For posterior, mid-posterior, central, and mid-anterior corpus callosal volumes, there were

no main effects of family income, F(2, 8508)s� 1.10, ps� .334 (Tables 13–16 in S1 Appendix),

Family Income × Lead Risk interactions (Fig 3), F(2, 8508)s� 0.98, ps� .376, or Sex × Lead

Risk interactions, F(1, 8509)s� 0.32, ps� .570 (Tables 23–26 in S1 Appendix).

Accounting for neighborhood disadvantage

Correcting for FDR, ADI was inversely associated with subcortical gray-matter (rp = -0.037

[-0.048, -0.026]), cerebellar cortical (rp = -0.032 [-0.043, -0.021]), accumbens area (rp = -0.029

Table 1. Demographics for the Adolescent Brain Cognitive Development (ABCD) study.

Release 2.0.1 (%) Sample with Complete Data Used in This Study (%)

Sex

Male 6,188 (52.1%) 4,469 (52.4%)

Female 5,681 (47.8%) 4,055 (47.6%)

Missing/Undefined 6 (0.1%) 0 (0%)

Income Bracket

<$50K (Low) 3,222 (27.1%) 2,415 (28.3%)

$50-100K (Mid) 3,070 (25.9%) 2,482 (29.1%)

>$100K (High) 4,565 (38.4%) 3,627 (42.6%)

Missing/Undefined 1,018 (8.6%) 0 (0%)

Race

American Indian/Alaska Native 62 (0.5%) 42 (0.5%)

Asian 276 (2.3%) 188 (2.2%)

Black 1,867 (15.7%) 1,168 (13.7%)

Native Hawaiian/Pacific Islander 16 (0.1%) 10 (0.1%)

Other 1,958 (16.5%) 1,364 (16.0%)

White 7,523 (63.4%) 5,752 (67.5%)

Missing/Undefined 173 (1.5%) 0 (0%)

Ethnicity

Hispanic 2,409 (20.3%) 1,640 (19.2%)

Not Hispanic 9,308 (78.4%) 6,884 (80.8%)

Missing/Undefined 158 (1.3%) 0 (0%)

Total 11,875 8,524

https://doi.org/10.1371/journal.pone.0258469.t001
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[-0.040, -0.019]), and amygdalar volumes (rp = -0.029 [-0.040, -0.018]) (Figs 1 and 2). In con-

trast, corpus callosal subregion volumes did not covary with ADI, ps� .231 (Tables 27–47 in

S1 Appendix). To confirm these dissociations between ADI and lead risk, we reanalyzed these

data with the housing-age metric as the predictor of interest. As in the lead-risk analyses, age

of housing (i.e., housing-age-based estimates of the proportion of homes with lead-paint haz-

ards) in children’s neighborhoods was inversely associated with posterior (rp = -0.026 [-0.037,

-0.015]), mid-posterior (rp = -0.029 [-0.040, -0.019]), central (rp = -0.036 [-0.047, -0.025]), and

mid-anterior corpus callosal volumes (rp = -0.034 [-0.045, -0.023]) (Tables 48–68 in S1 Appen-

dix), with the latter three passing FDR correction. Further, when ADI and lead risk (and their

interactions with family income) were included in the same model, the FDR-corrected

Fig 1. Associations of risk of lead exposure and area deprivation index with subcortical volume. Subcortical

regions are sorted vertically by p-value (uncorrected) for risk of lead exposure. For each predictor (risk of lead

exposure, area deprivation index), the shade of each cell reflects the strength of the association, with redder colors

reflecting more positive associations and bluer colors reflecting more negative associations, in accordance with Fig 2.

Analyses controlled for age, sex, parental education, race, ethnicity, family income, intracranial volume, and the

interaction between family income and either lead risk or ADI. t(8508) = t-statistic, 8508 degrees of freedom. b =

unstandardized regression coefficient (i.e., change in mm3 regional volume with decile of lead risk or area deprivation

index).

https://doi.org/10.1371/journal.pone.0258469.g001

PLOS ONE Risk of lead exposure, subcortical brain volume, and cognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0258469 October 14, 2021 7 / 21

https://doi.org/10.1371/journal.pone.0258469.g001
https://doi.org/10.1371/journal.pone.0258469


associations between lead risk and mid-anterior (rp = -0.036 [-0.047, -0.025]), central (rp =

-0.034 [-0.045, -0.023]), and mid-posterior corpus callosal volumes (rp = -0.030 [-0.040,

-0.019]) were maintained (q< .05), as were the FDR-corrected associations between ADI and

subcortical gray-matter (rp = -0.034 [-0.045, -0.023]), amygdalar (rp = -0.033 [-0.043, -0.022]),

and cerebellar cortical volumes (rp = -0.031 [-0.042, -0.020]) (q< .05) (Tables 117–137 in S1

Appendix). These sensitivity analyses suggest that lead-exposure risk, not income or ADI, was

associated with diminished callosal subregion volumes.

Fig 2. Regional associations between subcortical volume and risk of lead exposure (top) or area deprivation index

(ADI) (bottom). For lead risk, these associations, correcting for false-discovery rate (FDR), were significant for mid-

posterior, central, and mid-anterior corpus callosum. For ADI, subcortical gray matter, cerebellum cortex, accumbens

area (not shown in this image), and amygdala. Regions are color-coded in correspondence to the effect size (i.e., partial

correlation coefficient) of lead risk (top) and ADI (bottom), controlling for age, sex, parental education, race, ethnicity,

family income, intracranial volume, and the interaction between family income and either lead risk or ADI. Regions

with bolded outlines passed FDR correction. Blue-shaded regions indicate inverse associations between lead risk (or

ADI) and volume (e.g., greater lead risk, lesser volume), while red-shaded regions indicate positive correlations (e.g.,

greater lead risk, greater volume). These images were generated in MATLAB using data from the ggseg toolbox in R

[57]. 3v = 3rd ventricle; 4v = 4th ventricle; Am = amygdala; Bs = brain stem; C = caudate; CCa = anterior corpus

callosum; CCc = central corpus callosum; CCma = mid-anterior corpus callosum; CCmp = mid-posterior corpus

callosum; CCp = posterior corpus callosum; CeCo = cerebellum cortex; CeWm = cerebellum white matter;

H = hippocampus; Lv = lateral ventricle; Pa = pallidum; P = putamen; Th = thalamus; V = ventral diencephalon.

https://doi.org/10.1371/journal.pone.0258469.g002
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Corpus callosum volume and cognition

Next, we analyzed how mid-posterior, central, and mid-anterior corpus callosal volumes were

associated with NIH Toolbox performance (Tables 69–103 in S1 Appendix). Mid-posterior

corpus callosal volume was positively associated with performance on the Dimensional

Change Card Sort Test (rp = 0.042 [0.031, 0.053]), the Flanker Inhibitory Control and Atten-

tion Test (rp = 0.038 [0.027, 0.049]), the Pattern Comparison Processing Speed Test (rp = 0.035

[0.024, 0.046]), the Oral Reading Recognition Test (rp = 0.034 [0.024, 0.045]), and the Picture

Vocabulary Test (rp = 0.056 [0.045, 0.067]). Central corpus callosal volume was positively asso-

ciated with Dimensional Change Card Sort Test (rp = 0.027 [0.017, 0.038]) and Picture Vocab-

ulary Test performance (rp = 0.033 [0.022, 0.044]). Pattern Comparison Processing Speed Test

performance was also positively associated with mid-anterior corpus callosal volume (rp =

0.022 [0.011, 0.033]). Secondary analyses showed that anterior corpus callosal volume was pos-

itively associated with performance on the Dimensional Change Card Sort Test (rp = 0.022

[0.012, 0.033]) and Picture Vocabulary Test (rp = 0.031 [0.020, 0.042]), and posterior (like

Fig 3. Posterior, mid-posterior, central, and mid-anterior corpus callosal volume significantly decreased with

increasing risk of environmental lead exposure. These inverse associations were not significantly different between

children from low-, mid-, and high-income families. Error bars represent ±1 between-subjects standard error of the

observed means. The solid lines represent means of the marginal fitted values of the model; the shaded area

surrounding the solid lines represent ±1 between-subjects standard error of those means. Age, sex, parental education,

race, ethnicity, and intracranial volume were included as covariates in this analysis.

https://doi.org/10.1371/journal.pone.0258469.g003
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mid-posterior) corpus callosal volume was positively associated with performance on the

Dimensional Change Card Sort Test (rp = 0.045 [0.034, 0.056]), the Flanker Inhibitory Control

and Attention Test (rp = 0.029 [0.019, 0.040]), the Pattern Comparison Processing Speed Test

(rp = 0.032 [0.022, 0.043]), the Oral Reading Recognition Test (rp = 0.035 [0.024, 0.046]), and

the Picture Vocabulary Test (rp = 0.058 [0.047, 0.069]).

Neurostructurally-mediated associations between lead risk and cognition

We then examined whether mid-posterior, central, and mid-anterior callosal volumes medi-

ated lead-risk relationships with cognitive performance (Tables 104–116 in S1 Appendix). Our

results were consistent with mid-posterior corpus callosal volume mediating associations

between lead risk and five cognitive tests (i.e., one test of executive functioning, two of lan-

guage functioning, one of processing speed, and one of attention/inhibitory control) (Fig 4).

Mediation was not present for central or mid-anterior corpus callosal volumes.

Discussion

Higher neighborhood-level risks of childhood lead exposure were associated with smaller

mid-anterior, central, and mid-posterior corpus callosal volumes (i.e., the genu, truncus/body,

and anterior splenium, respectively); to a lesser extent, lead-exposure risk was associated with

smaller posterior corpus callosal volumes (i.e., posterior splenium) [56,58,59]. These associa-

tions were absent for ADI, but present for housing age. Thus, the lead-risk associations were

likely attributable to factors associated with elevated lead-exposure risk (e.g., residual lead

paint in older homes) [1,27]. Because ABCD enrolled 9- to 10-year-old participants at baseline,

we cannot know whether these associations existed prior to baseline (i.e., pre- vs. postnatal

insults) or disentangle them from other unmeasured confounding factors. However, the rela-

tionships between lead risk and callosal volume in mid-anterior to posterior, but not anterior,

callosal regions are consistent with research showing earlier development of anterior than pos-

terior corpus callosum, with the latter continuing to grow through adolescence (i.e., anterior-

to-posterior maturation) [60–63]. While we recently reported the strongest inverse associa-

tions between lead-exposure risk and cortical structure in children of low-income families

[28], the nonspecific inverse associations in callosal structure observed here suggest differential

socioeconomic and environmental modulation of cortical and subcortical developmental tra-

jectories, which is consistent with known spatially and temporally variable structural brain

maturation [30,64].

Previous research on lead’s impact on corpus callosal structure has been inconsistent. Stew-

art and colleagues [19] reported inverse correlations between bone-lead levels and posterior

corpus callosal volume in occupationally exposed lead workers. Brubaker et al. [21] reported

increased white matter integrity in the callosal genu, body, and splenium in adults exposed to

lead during childhood, but Hsieh et al. [65] found nonsignificant differences in corpus callosal

white-matter integrity in lead-exposed workers. Lasky et al. [66] reported no significant differ-

ences in callosal volume in lead-exposed (pre- or postnatal) versus non-lead-exposed rhesus

monkeys, while Rai et al. [67] suggested that exposure to metal mixtures (arsenic, cadmium,

and lead) in developing rats may thin the corpus callosum. There are no endogenous lead-

exposure data yet in ABCD, but our study suggests that lead-exposure risk and its related envi-

ronmental factors may be associated with corpus callosal morphology.

Exposures to other neurotoxicants are similarly associated with callosal morphology [68–

72]. Prenatal alcohol exposure was most consistently associated with smaller areas of more

posterior callosal regions in 8- to 22-year-olds [68,69], and prenatal particulate matter air pol-

lution exposure, especially during the 3rd trimester, was most strongly associated with smaller
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volumes of the callosal body in 8- to 12-year-olds (mid-anterior + central + mid-posterior)

[70]. Posterior corpus callosal size was 3.1% (7.9%) smaller in 12- to 18-year-old males

(females) prenatally exposed to cigarette smoking [71], and splenial (posterior corpus callosal)

size in 4.5-year-olds was 1.4% smaller given high versus low levels of prenatal polychlorinated-

Fig 4. Mediational analyses showing indirect associations of lead risk on cognitive performance through mid-

posterior corpus callosal (CC) volume. The title of each row [e.g., “Executive Function (Card Sorting)”] refers to the

construct and task used to assess that construct. The shading of the callosal regions, the mediator boxes (e.g., Mid-

Posterior CC, Central CC), and histograms reflect the strength of the indirect association (per the color bar in the

lower left corner). Callosal regions in dark gray were not incorporated as mediators in the corresponding analysis.

Total effects of lead risk are represented by c, direct effects of lead risk are represented by c’, and a and b values refer to

the associations of lead risk on callosal volume and callosal volume on cognitive performance, respectively. The

subscript of the a and b values refer to the callosal subregion (i.e., C = central, MA = mid-anterior, MP = mid-

posterior). All a, b, c, and c’ values are unstandardized regression coefficients. Thick arrows designate significant

associations. Thin arrows designate non-significant associations. The presence of the statistical significance of indirect

associations was determined by construction of bias-corrected percentile bootstrapping 95% confidence intervals (i.e.,

10,000 bootstrapped samples), irrespective of the statistical significance of the corresponding total effect. The

distributions of these bootstrapped indirect associations are shown, along with the original-sample indirect

associations and corresponding confidence intervals. Bolded font indicates statistically significant indirect associations.

Age, sex, parental education, race, ethnicity, and family income were included as covariates in analyses. Card

Sorting = Dimensional Change Card Sort Task. Picture Vocabulary = Picture Vocabulary Test. Oral Reading = Oral

Reading Recognition Test. Pattern Comparison = Pattern Comparison Processing Speed Test. Flanker = Flanker

Inhibitory Control and Attention Test.

https://doi.org/10.1371/journal.pone.0258469.g004
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biphenyl exposure [72]. Here, we found a 5.2% mean decrease in mid-posterior, central, and

mid-anterior corpus callosal volume in individuals living in census tracts with the highest ver-

sus lowest lead-risk score.

Lead’s well-established effects on cognition and potential associations with corpus callosal

structure are complemented by relationships between corpus callosal structure, cognition, and

intelligence [73]. In our sample, anterior callosal regions were weakly associated with cognitive

function whereas posterior regions were more strongly associated with cognitive performance.

The association between mid-posterior callosal structure and processing speed (i.e., the Pattern

Comparison Processing Speed Test) corroborates research on callosal volume and processing

speed in occupationally lead-exposed and non-exposed adult men [18]. Our reported associa-

tions between mid-posterior callosal volume and performances on the Picture Vocabulary

Test and the Oral Reading Recognition Test are also consistent with research suggesting that

posterior callosal regions are critical for interhemispheric transfer between temporal-parietal-

occipital cortical regions involved in language processing [74–77].

The lead-risk metric was primarily a function of the estimated neighborhood-level preva-

lence of lead-based paint given the age of houses in that neighborhood [25,26]. Even though

lead-based house paint and leaded gasoline (for on-road vehicles) were banned in the US in

1978 [78] and 1996 [79], children remain at risk for ingesting lead via (1) drinking water pro-

vided through lead service lines (i.e., lead-containing plumbing) [80], (2) lead-contaminated

dust and soil given the prior use of lead-based paint in older buildings [27], and (3) lead-con-

taminated topsoil from past leaded-gasoline vehicle emissions [81]. Indeed, while average

blood lead levels have substantially declined over the past several decades, a 2021 study esti-

mated that nearly 400,000 1-to-11-year-olds in 2011–2016 had blood-lead levels exceeding the

CDC’s reference level of 5 μg/dL [82]. Here, about one in five houses in our participants’

neighborhoods were estimated to contain lead-based paint hazards, which is consistent with

national surveys showing that 25% of United States housing stock contains one or more lead

hazards [27]. Of 14 risk factors known to impair neurodevelopment (e.g., medical conditions,

low SES), lead exposure was reported as 2nd only to preterm birth in its impact on total reduc-

tion in IQ [83]. Lead-associated decrements in IQ have been suggested to contribute to annual

costs of approximately $977 billion in low- and middle-income countries [17], many of which

do not have regulations as to limits of the concentration of lead in paint [84]. Accordingly,

reducing risks of lead exposure (and addressing related environmental factors) will have eco-

nomic and health benefits that facilitate prosperity in the United States and worldwide.

Lead risk and housing age were distinctly associated with callosal morphology. In contrast,

ADI, a metric of neighborhood socioeconomic disadvantage [40,41], was inversely associated

with subcortical gray-matter, cerebellar cortical, accumbens area, and amygdalar volumes, but

not callosal morphology. Despite research on the effects of neighborhood SES on child devel-

opment (e.g. ADI) [85] and family-specific SES measures on children’s brain structure [86–

88], less is known about how neighborhood-level metrics of disadvantage influence neurocog-

nitive development [87,89]. Our results are consistent with previous reports showing (1)

smaller cortical and subcortical volumes in 8- to 21-year-olds living in low-SES neighborhoods

[90] and (2) greater age-related increases in right amygdalar volume in adolescents living in

more disadvantaged neighborhoods (potentially due to the groups’ lower baseline amygdalar

volumes) [91]. Given associations between amygdalar volume and depressive symptoms [92],

it will be critical to evaluate longitudinal trajectories of mental health and brain development

in ABCD and whether neighborhood characteristics increase risk or promote resilience to

developmental insults such as lead neurotoxicity.
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Limitations and future directions

In the current report, the primary residential addresses of 9- to 10-year-old children were used

to derive community-based risk estimates of lead exposure, which our past research has shown

are valid proxies of exposure [28]. Peak lead exposure during childhood occurs in toddlers

(i.e., 2- to 3-years-old) from the confluence of hand-to-mouth ingestion of lead-contaminated

floor dust, soil, water, and paint chips [93], but older children are also vulnerable to lead toxic-

ity [28,94,95]. For example, IQ in older children has been shown to be better predicted by con-

current than past blood-lead levels [94,96], and, even at low levels of exposure, IQ was shown

to be associated with concurrent blood-lead levels in 7- to 14-year-olds [97,98]. Ultimately, the

age of greatest vulnerability to lead neurotoxicity is unclear [95], but recent evidence has sug-

gested that exposure to other neurotoxicants (i.e., air pollution) is also associated with brain

structure in 9- to 10-year-olds [99].

As we cannot physically manipulate lead exposure in ABCD participants, the longitudinal

design of the ABCD Study and its diverse cohort offer opportunities to evaluate how develop-

mental trajectories of brain and cognitive development are associated with differential risks of

lead exposure. The ABCD Study does not yet have endogenous lead-exposure data in its par-

ticipants, but it has been actively collecting address histories for its participants since birth,

which, when completed, will facilitate understanding of the critical developmental periods of

lead neurotoxicity vulnerability. Similarly, even though ABCD’s data collection sites are pri-

marily in metropolitan areas, the recruitment areas of these 21 sites represent at least 20% of

the 9-to-10-year-old US population [35]. Further, while the potential for reverse causation is

inherent to cross-sectional studies, thereby limiting causal inference, it is unlikely that poor

cognitive performance elicits altered brain structure, or that altered brain structure induces

risk factors of lead exposure here, thus supporting the temporal ordering within our cross-sec-

tional mediational analyses (lead risk! brain structure! cognitive performance) [100].

While ADI and lead risk were strongly correlated, over 85% of the variance in lead risk was

not accounted for by ADI, reflecting a possible necessity to analyze multiple factors of environ-

mental health disparities in future research [101]. Specifically, our analyses showed dissocia-

tions between the subcortical regions associated with lead risk and ADI, and the associations

between lead risk and corpus callosal volumes were maintained when including ADI in

another set of models. Thus, our results suggest that subcortical brain structure (i.e., corpus

callosal volume) in adolescents may be uniquely associated with factors related to increased

risk of lead exposure (i.e., age of housing, with older homes more likely to contain lead-based

paint hazards) [27].

Even though the ADI and lead-risk data reflect community- rather than individual-level

estimates, past research has argued that using community-level data to evaluate environmental

risks may ultimately prevent exposure to the hazards before the individual is actually exposed

to them (i.e., screening communities/homes before occupancy) [1,102]. Indeed, individual

screening questionnaires of potential lead exposure may not accurately identify the children

with elevated blood lead levels [103]. Therefore, while community-level risk estimates inher-

ently over- and underestimate risks of specific individuals in that community, future incorpo-

ration of such geocoded data in cognitive neuroscience research may considerably advance

understanding of the environmental contextualization of an individual’s neurocognitive and

brain development, especially given the more common practice of collecting data pertaining to

the individual (e.g., SES).

As individuals are rarely exposed to isolated chemicals (but to mixtures of chemicals) [104],

the incorporation of multiple data sources reflecting “mixtures” of environmental health dis-

parities may also offer substantial insight into the collective and synergistic factors to target in
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environmental remediation interventions. Simply, the risk of lead exposure does not exist in a

vacuum but is associated with past and current practices that have differentially subjected chil-

dren to such risks. For example, the burden of lead-exposure’s effects is typically greatest in

children in the lowest SES families [105–108], a glaring example of environmental injustice

[105,109]. Similarly, Black and Hispanic children tend to have greater mean blood lead levels

than white children [5,110–112] and are more likely than white children to live in homes or

regions with greater risks of lead exposure [113–115]. Further, lead-poisoning rates (and, thus,

children’s blood-lead levels) are associated with multiple community-level factors [39], includ-

ing value and age of houses, poverty rates, population density, and percentage of the popula-

tion who are Black or Hispanic [1,116], signifying racial residential segregation as a potential

explanatory mechanism for lead exposure disparities [117]. While the data in the current man-

uscript may reflect differences in lead exposure, these differences would then ultimately be due

to disparate conditions that initially elicited such differences, thereby focusing any potential

intervention efforts on the originating disparities. Indeed, recent research has shown that soil-

lead concentrations tended to be elevated in samples taken from historically redlined neigh-

borhoods compared to those in “best” and “desirable” neighborhoods, per zone designations

by the 1930’s Home Owners’ Loan Corporation [118]. Ultimately, because we do not currently

have endogenous lead-exposure data in our participants, the results related to risk of lead

exposure may be alternatively explained (at least partially) by these other systemic and envi-

ronmental factors. Accordingly, upon collection of bodily lead data and additional geocoded

data in ABCD, our future research will involve analyses of both chemical and “environmental-

disparity mixtures” to both study developmental trajectories more comprehensively and evalu-

ate the relative strengths of the associations between adolescent development and other

sources of disparity (e.g., air pollution, residential segregation).

Conclusion

Lead-induced cognitive deficits are likely governed by how lead exposure influences brain

structure [18], and our results, consistent with callosal mediation of lead-risk associations with

cognition, offer the testable hypothesis in future studies that “dose” of lead exposure mediates

cognitive functioning through changes in mid-posterior corpus callosal structure. ABCD is

measuring lead concentrations in shed deciduous (baby) teeth [119–121], but those data will

not be available for several years. ABCD is also exploring the collection and analysis of blood

lead levels to gauge how well they are correlated with neighborhood-level lead-risk estimates.

ABCD is also working to incorporate electronic health records as part of its dataset, which

may also help elucidate these relationships via past lead screening results. Until then, this

study, which uses neighborhood-level lead-exposure risk, provides potential evidence that cog-

nitive deficits from low-level lead toxicity (and its related environmental factors) may operate

by diminishing subcortical brain structure [28].
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