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Figure 1. Requirement Categories Identified by the Researchers as the Main Pillars of a Useful

Materials Research Platform: Data and Knowledge Assets, Automation of Science on the

Platform, and Integrative Approaches
the state-of-the-art for automation in 
modeling and simulation, a similar but 
more ‘‘productized’’ automated capa-
bility with web-based user interfaces is 
envisioned to assist researchers to run 
on-demand simulations complemen-

tary to experiments, or train or use on-
demand machine-learning models 
without deep knowledge in any partic-
ular method. Automation of scale 
bridging, which would entail at a mini-

mum designing workflows for codes 
beyond density functional theory (DFT) 
and multi-scale application programing 
interfaces (APIs) for linking the codes, 
emerged as a game-changing capa-
bility to bridge the gap between the 
computer-design or laboratory and de-
vice level properties. The design of 
integrative approaches on the platform 
that leverage diverse datasets, phys-
ical, empirical, computational, or statis-
tical models and experiments would

require a modularized software frame-

work, cost estimation functions, uncer-

tainty quantification and fidelity assess-

ments of new data points, and

subsequently, discovery ‘‘engines’’ like

optimal experiment design (OED),

active-learning, or optimization can

be built for diverse material-device

domains.

Materials science of the future is ex-

pected to be interwoven with data,

automation, machine learning, and

other emerging information technolo-

gies. Many aspects of these paradigms

are being actively reviewed, debated,

and discussed by the materials commu-

nity.2–4 In this article, we focus on the

requirements for a useful, general,

next-generation materials research

platform that would combine and
expand on these data-driven para-

digms to enable discovery and innova-
tion. A number of academic and indus-
try teams are actively engaged in efforts 
relevant for this vision (see Web Re-
sources).2,5–8 We expect that the entire 
materials community will benefit from 
the distilled summary of ideas about 
the requirements of the envisioned 
future system that we present in this 
article. The following sections expand 
the concepts underlying the platform 
related themes of data and knowledge 
assets, automation of science, and 
integrative approaches for materials 
research.
The Core of the Platform: Data and 
Knowledge Assets

A research platform inherits, generates, 
stores, and serves data and knowledge 
as part of its mission. Such a platform’s 
utility for the scientist, therefore, is tied 
with how these key bits of information 
are assimilated and managed; how 
their quality, reliability, and integrity 
are judged; how their exchange and 
dissemination are enabled; and ulti-
mately, whether the informatics aspect 
of the platform is meeting the needs 
of the scientist and helping them 
innovate.

Data Management

The requirements regarding data man-

agement are a subset of the now well-
accepted FAIR principles: findable, 
accessible, interoperable, reusable.1 

As a basic requirement, the platform 
should contain standardized datasets. 
Standardization of all data imported 
to, created on, and disseminated by 
the platform would entail adoption 
of established ingestion procedures, 
data formats, capturing of metadata 
(e.g., experimental conditions), prove-
nance and instrument logs, for instance 
to differentiate human versus machine 
generated data. In addition, the plat-
form should deliver not only  well-known
computational databases, but also 
diverse, large, high-quality experi-

mental datasets, where inclusion of



 

 

‘‘dark data’’ (i.e., data that is considered 
a ‘‘negative’’ result and not publishable) 
is essential. Inclusion of all data is key to 
removing human bias from datasets. 
Interaction with the data system needs 
to be easy and intuitive, programmati-

cally or via a web-based user interface 
(UI) that allows easy or automated up-
load, instant visualization, search, and 
sharing and is connected to the other 
components of the platform. Impor-

tance of a simple yet powerful UI for 
all components of the platform 
constantly came up throughout the dis-
cussions: we will not repeat that 
requirement, and it should be assumed 
by default to be a core component for 
every module hereafter.

Collaboration and Knowledge 
Exchange

Data sharing is a core component of 
today’s data-driven research. The stor-
age and sharing of analytical tools, 
machine-learning models, workflows 
and other knowledge (overall, knowl-
edge assets) as well as experimental 
resources (for instance, see section 
labeled ‘‘Automation of Experiments’’) 
via the platform would enable a 
more complete, collaborative research 
experience. The system is envisioned 
to enable citations for all such share-
ables and provide utilization logs, al-
lowing the apportioning of separate 
credit to datasets, models, and scienti-
fic results.5 Furthermore, the platform 
may allow rapid user feedback and 
community review, which will motivate 
developers to maintain quality compo-

nents on the platform (e.g., clearly 
licensed, well-documented, and main-

tained code repositories). Given the 
diversity of the materials research 
community, the platform is expected 
to balance certain users’ and institu-
tions’ desire for privacy while incentiv-
izing the sharing of methods, data, 
and scientific results. As such, some 
interactions may be open collabora-
tions or crowdsourcing, others might 
require the platform to act as a 
marketplace or exchange, while still
others can have a training or educa-
tional component.

Baselines

Baselines help gauge where a new sci-
entific finding stands but are often lack-
ing.  The data system on the platform

can host curated baseline materials 
and device components with pertinent 
properties and operating conditions 
so that new material discoveries can 
be compared to the relevant state of 
the art. The same is true for analytical 
methods and tools, which would 
require having standardized, bench-

mark datasets (e.g., curated DFT data-
sets) and baseline models trained on 
them.

Data Integrity Tools
Integrity of data is critical and can be 
enabled in part by standardization and 
ingestion procedures. More advanced 
systems, which are often not part of ex-
isting scientific workflows (experiments 
in particular), such as data validation 
and anomaly detection, can reinforce 
data integrity. Such capabilities, if they 
operate on the fly, can increase the

value of the data and can make the plat-
form attractive for research groups that 
produce live data streams. Since dis-
coveries, especially of high-perfor-

mance materials, may appear as out-
liers, it is critical to not only detect but 
also verify, via reproducibility studies, 
all apparent outliers.

Intelligent Search
Reusability and discoverability of data 
on the platform are expected by 
default. A feature that emerged as 
part of multiple themes is an ‘‘intelli-
gent search’’ system for materials 
research. The system is envisioned to 
operate beyond chemical formula or 
material labels, and can search over 
properties, models (e.g., machine-

learning models), methods (e.g., 
synthesis recipes, characterization 
methods), tools, and other metadata.9 

A search capability that is based on 
data itself (e.g., similarity match with a
user supplied XPS spectrum) would be 
a game changer. More context aware, 
interactive search capability beyond 
simple keywords should be imple-

mented (e.g., ‘‘find alternatives to sol-
gel synthesis of Cr2O3’’). In general, 
the system could recommend new 
research directions, including mate-

rials, techniques, keywords, collabora-
tors, or publications. Specialized 
recommender systems, as described 
above for materials, keywords, collabo-
rators, publications, or simulation tools 
came up in distinct groups.

Intelligent Visualization
A powerful, scientifically focused visu-
alization technology can be consid-

ered a distinguishing feature of a 
next-generation platform. A useful 
capability would include standard, 
automated exploratory data analysis 
and visualization for data on the plat-
form. Visualizations should extend 
beyond current workflows (e.g., plot-
ting experimental or computational 
data, and data derived from those) 
to visualization of high-dimensional 
parameter spaces (e.g., embeddings 
in machine-learning models), visual-

izing relationships between codes, 
models, and simulations (e.g., see 
Scale bridging) or mapping data prov-
enance and property relationships, 
where graph- or network-based repre-
sentations may be useful.
Automation of Science on the 
Platform

Generation of high-quality, large-vol-
ume, and consistent data streams 
is often enabled by automation of 
manual tasks, making processes less 
prone to human error and increasing 
throughput. Automation of experi-

ments and simulations are two funda-
mental paradigms that were consid-
ered, where both converged to a 
desired on-demand capability on 
the platform. Automation of other 
components, such as machine learning 
and scale bridging independently 
emerged.
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Automation of Experiments 

Automation of experiments is ex-pected 
to provide critical functional-ities for 
materials discovery such as reduction of 
human bias and enabling rapid access to
multiple material design axes such as 
composition, reproducibility, or 
processing. As a basic functionality, the 
platform is ex-pected to be integrated 
with a distrib-uted system of 
experimental facilities to connect to their
data streams and to enable experiment 
requests.6 The platform should provide 
capabilities for creation, execution, and 
modera-tion of workflows that span one 
or more experimental facilities and also 
should recommend such workflows for 
specific applications, experimental cost 
estimates, and fidelity. The plat-form can
provide ‘‘on-demand experi-ments’’, a 
marketplace for experiments or a 
collaborative closed-network, where a 
user can, for example, request 
a synthesis of 
a target material or 
characterization of a sample at the 
participating facilities or labs. 
Importance of automation of low-
throughput, repetitive experiments with 
the aid of robotics was also 
highlighted.

Automation of Simulations

Computer simulations are, by their na-
ture, more amenable to automation than
experiments. Automation of DFT formed

the seed for the present era of data-
driven materials science by providing 
large, reliable material data-sets.7 Thus, 
the stories related to auto-mation of 
simulation focused on capa-bilities 
beyond automation of DFT itself, such as
molecular dynamics (MD), coarse-
graining methods, phase field, and 
beyond to predict macro-scopic and 
device level properties. In addition, in 
analogy with on-demand experiments, a
paradigm of ‘‘on-de-mand simulations’’ 
emerged, where the platform can 
provide an easy to use interface for users
(simple enough to be useful to non-
specialists) to request new simulations 

complemen-
tary to their ongoing experiments. A 
recommender system for types of simu-

lations, parameters, and ready-to-use 
license arrangements would add value. 
As mentioned before, the platform 
should display relevant benchmarks 
for simulation tools (e.g., accuracy, per-
formance, cost) and document use 
cases.

Automation of Machine Learning
An easy-to-use machine-learning and 
analytics module on the  platform

backed by a powerful UI that requires 
no deep expertise, developed as a 
common feature desired among multi-

ple discussion groups. To create the 
necessary input for training predictive 
models, automated featurization of ma-

terials (or other entities) should be a 
part of this module. In addition, for 
more advanced practitioners and 
more complex predictive problems, 
a comprehensive machine-learning 
arsenal can be provided: e.g., for image 
processing, spectroscopy, natural lan-
guage processing (NLP), deep learning, 
machine learning for rare events, fail-
ures, stochastic events, time-series, 
material-processing relationships, 
microstructure-property relationships, 
physically informed machine-learning 
models, noisy  data, and  generati

and evolutionary models. The UI should 
display convenient visual information, 
such as performance metrics and 
feature importance in models, and the 
system should alert the user when there 
are concerns about the data  integrity or
quality (bias, anomalies, etc., see sec-
tion ‘‘Data Integrity Tools’’). In addition, 
unsupervised methods that identify 
relationships in the data and/or cap-
ture low dimensional representations 
should be available.

Automation of Scale Bridging
Scale bridging is required for a more 
complete assessment of device-level 
properties of material systems. Often, 
a small change in material properties 
used as part of a device requires re-
design or re-evaluation of many other
 

components of the same device. Incor-
poration of new materials in devices has 
traditionally been a long, slow, and 
costly process. Today, scale bridging 
is still a major roadblock in materials 
research and is mostly performed on 
an ad hoc basis. The need for auto-
mated scale bridging was strongly 
emphasized and also acknowledged 
as a major scientific challenge. As the 
most basic functionality, a visual rela-
tionship between simulation tech-

niques that can operate at multiple 
scales has the potential to guide the 
users toward a hand-crafted scale-

bridging study. It was noted that the 
data transfer between different scales 
is not sequential or one-directional, 
and there can often be data transferred 
from all scales to the others (e.g., DFT 
to device level, DFT to MD, MD to de-
vice level, DFT to finite element, and 
so on), and the transfer can be bi-direc-
tional (e.g., device design informs 
phase-field or phase field informs de-
vice design).

For effective scale bridging, one should 
parameterize and automate simulations 
beyond DFT and describe the ‘‘con-
tracts’’ and dependencies between in-
puts and outputs of such simulations. 
Such contracts can be framed as 
‘‘scale-bridging APIs’’, where input 
property requirements for methods 
are documented and codified, to 
enable programmatic integration be-
tween simulation software that oper-
ates at different length and timescales. 
As mentioned above, a graph or 
network of data transfers and depen-
dencies of simulation tools can be 
constructed.

Integrative Approaches on the 
Platform

The research envisioned to be enabled 
on the platform requires blending or 
integration of many components, tools, 
and/or datasets. Several such para-

digms emerged from the user stories 
that are centered on integration, where 
the ability to be automated and



modularized was an expected quality

for all relevant tools. Data fusion, where

multiple datasets are combined to

enrich the existing data, and to create

new datasets, is the most basic

example. Scale bridging is a funda-

mental integration challenge high-

lighted in the previous section.

An emerging paradigm for discovery

of materials and processes is the

application of cyclic, active-learning,

optimization, or OED based feed-

back-loop systems, where the science

(and the underlying decision making)

itself is partially automated.4 The

materials research platform should

provide modular, plug-and-play, auto-

matable closed-loop capability to

enable this form of research. This

capability needs to be easy to inte-

grate with both experimental and

computational data streams. In addi-

tion to the software and analytical

infrastructure required for the process,

cost-estimating functions for experi-

mental and simulation processes

emerged as a key feature to have on

the platform.

Uncertainty quantification is essential

for automated, closed-loop research

systems. Experts highlighted the

importance of having uncertainty esti-

mates or confidence intervals available

on all experimental and computational

measurements, parameters, and out-

puts. How uncertainty propagates as

data are being transformed (e.g., in

machine learning or scale bridging),

and how that affects the reliability of

resulting predictions also remains an

open question. Experts mentioned

the potential benefit from incorpora-

tion of information-theoretic ap-

proaches into the system (e.g., infor-

mation gain), as well as availability of

classification tables for fidelities and

costs of acquiring experimental or

computational data points or those

from surrogate models (machine-

learning models, empirical models,

etc.). Ultimately, multi-fidelity optimi-
zation where uncertainties, fidelities,

and cost are taken into account

offer a viable, general pathway for

integration of computational and

experimental data generation pipe-

lines to solve complex scientific prob-

lems. These features should have a

presence on the platform as modular

systems.
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