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Abstract

Previous research has suggested that human perception of
mathematical expressions is based on syntactic structure.
Here, we extend our understanding of how humans perceive
algebraic equations in two ways. First, we examined the hy-
pothesis that the internal representation used by experienced
mathematicians is based on the phrasal structure of the parse
tree. This was tested using a memory recognition task, and the
results supported the hypothesis. Second, we explored how
much experience with mathematics is necessary before such
representations become established. Participants were young
students with very little experience with algebra. Surprisingly,
the students appeared to encode equations in a manner similar
to experienced mathematicians.

Introduction
Mathematical notation and natural language share many com-
mon features. Both have a well-defined syntax and seman-
tics, and both allow for the expression of abstract information.
However, an important difference is that the layout of math-
ematical notation is two dimensional in nature, with equa-
tions relying on both vertical and horizontal adjacency rela-
tionships between the symbols to provide the meaning. It is
natural then to ask how humans comprehend mathematical
expressions.

The present paper extends our understanding of how hu-
mans perceive mathematical expressions in two ways. First
we explore the nature of the internal representation used to
encode equations. Specifically, we examine whether the in-
formation recovered from equations has a parse tree structure
similar to that used to represent sentences of natural language.
Second, we explore how much experience with mathematics
is necessary before such representations become established.

For many years now, phrase structure grammars have been
used to understand the way that humans parse natural lan-
guage sentences (for example, see Akmajian, Demers and
Harnish, 1984). This allows the constituent structure of a
natural language sentence to be represented diagrammatically
by a parse tree, containing various phrases such as noun and
verb phrases. Although phrase structure grammars can only

be applied to sequential languages, variations of such gram-
mars have been proposed in an attempt to enable computers
to understand mathematical notation (for example, see An-
derson, 1977). Analogously to natural language, parse trees
for equations can be created based on mathematical syntax.
An example parse tree is given in Figure 1.

Figure 1: Parse Tree for

Our previous work on the comprehension of mathemat-
ical expressions (Jansen, Marriott and Yelland, 1999) has
shown that in a memory recognition task, experienced users
of mathematics can more readily identify those parts of a
previously seen equation that are syntactically well-formed
(that is, which have a coherent mathematical meaning, such
as in the above example), than those that are not well-



formed (for example, which is also part of the equa-
tion, but does not convey any coherent mathematical meaning
on its own). This result provides support for the notion that
the internal representation used by mathematicians is based
on mathematical syntax. This accords with results by John-
son (1968, 1970) which show that in the context of natural
language, chunking of sentences is also guided by syntax.
The work of Ranney (1987) also shows that even after only
brief exposure, the structure of algebra expressions provide
information about the category of the symbols in that expres-
sion (whether they are variables, numbers, operators, etc.).
This indicates that the parsing of such expressions is based
on structural content.

Experiment 1

It is clear that mathematical syntax plays an important role
in encoding equations, however it does not necessarily follow
that a parse tree structure underlies the internal representa-
tion. The first experiment explores this idea with respect to
moderately complex algebra expressions. Our hypothesis is
that the internal representation used by experienced mathe-
maticians is based on the phrasal structure of the parse tree.
To test this hypothesis, we have set up a recognition task to
see if participants can more readily recognize sub-expressions
of an equation that form a phrasal node on the parse tree (for
example, in the previous example) as opposed to sub-
expressions that are also syntactically valid, but do not form a
phrasal node on the parse tree (such as ). If our hypothe-
sis is correct, we would expect to see a recognition advantage
for the phrasal sub-expressions.

Method

Participants Twenty-four participants successfully com-
pleted the experiment. All were staff members, graduate or
undergraduate students from the Computer Science depart-
ment, all competent mathematicians who were experienced
with algebra. All participants were volunteers between the
ages of 18 and 35 years, with normal or corrected-to-normal
vision. Data from an additional 8 participants were not in-
cluded due to excessive error rates. 1

Materials and Design Seventy-five equations were con-
structed, all consisting of between twelve and fourteen char-
acters. The equations contained at most one fraction and the
variable names were and , since these are most commonly
used. For each equation, sub-expressions of three types were
constructed.

a) A phrasal sub-expression, which is a syntactically well-
formed component of its equation, which conveys the
same meaning on its own that it conveyed in the equation.
It is a phrasal node in the equation’s parse tree.

1Data from participants with an overall error rate of over 30%, or
making in excess of 50% errors for any given sub-expression type,
were excluded from the final analysis.

b) A non-phrasal sub-expression, which is also a well-
formed component of its equation, but does not convey the
same meaning on its own that it conveyed in the equation.
It is not a phrasal node in the equation’s parse tree.

c) An incorrect sub-expression, which was not part of the
original equation. It is also a well-formed expression.
These act as fillers.

Each of the sub-expressions contained between four and six
characters (the average for phrasal sub-expressions was 4.78;
for non-phrasal, 4.54; for incorrect, 4.60). See Table 1 for
examples of equations and sub-expressions used. As the ex-
amples show, a variety of sub-expressions were used, some
of which were bracketed, but most of which were not.

In order to present all three sub-expression types for each
equation, but ensuring that participants were presented with
each equation only once to avoid practice effects, three coun-
terbalanced versions of the experiment were constructed. For
each version, there were twenty-five instances of each type of
sub-expression. Two additional equations were constructed
as practice items. The same practice items were used in each
version. Eight participants completed each version, each re-
ceiving the items in a different pseudo-random order.

Procedure Participants were seated comfortably in an iso-
lated booth. Items were displayed as black text on a white
background on a 17” monitor at a resolution of 1024x768,
controlled by an IBM compatible computer running a pur-
pose designed computer program. The average width of the
equations in pixels was 187 (range 91–244) with an average
height of 45 (range 26–59). The average width of the sub-
expressions in pixels was 74 (range 25–111) with an average
height of 23 (range 16–52).

Participants were given a statement of instructions before
the experiment began. Practice items preceded the experi-
mental items, and the participants took approximately fifteen
minutes to complete the task. Progress was self-paced, with
participants pressing the space bar to initiate the presentation
of each trial.

Each item was presented in the centre of the monitor in
the following sequence. First, a simple algebra equation was
shown to the participant for 2500ms. The equation then dis-
appeared and the screen remained blank for 1000ms. Then
the sub-expression was shown, remaining on the screen until
a response was made. The participant was required to decide
whether the sub-expression was in that equation, responding
via a timed selective button press. They pressed the green
button, (the ‘/’ key on the right side of the keyboard), to indi-
cate that the sub-expression was part of the original equation,
and the red button, (the ‘Z’ key on the left of the keyboard),
to indicate that the sub-expression was not part of the original
equation. Participants were instructed to respond as quickly
as possible, while taking care not to make too many errors.

The response time recorded was the time between the on-
set of the sub-expression and the participant’s response. Af-
ter the response, the participant received feedback. If the re-



Table 1: Example equations and sub-expressions used in examining phrasal properties.

Equation Sub-Expression

Phrasal Non-Phrasal Incorrect

sponse was correct then the word “CORRECT” appeared on
the screen. Otherwise, the word “INCORRECT” appeared
on the screen. In both cases, the participant’s response time
in milliseconds also appeared on the screen.

Data Treatment Two measures were employed to reduce
the unwanted effects of outlying data points. Absolute upper
and lower cut-offs were applied to response latencies, such
that any response longer than 2500ms or shorter than 500ms
was excluded from the response time data analysis and desig-
nated as an error. Secondly, standard deviation cut-offs were
applied, so that any response time lying more than two stan-
dard deviations above or below a participant’s overall mean
response time was truncated to the value of the cut-off point.

It was necessary to exclude two items from the final anal-
ysis due to error rates in excess of 75%. One further item
also had to be removed in order to balance the number of
items in each version of the experiment. As a result, the fi-
nal analyses were over twenty-four items per condition, not
the original twenty-five. Response time and error data were
analysed by a series of analyses of variance (ANOVAs), over
both participant and item data. Where both the subject-based
and item-based analyses were significant they were combined
in the minF’ statistic to ensure the generalisability of results
over both these domains (Clark, 1973).

Results and Discussion

The mean correct response time (in milliseconds) and error
rate for the three sub-expression types are summarised in Ta-
ble 2, along with the corresponding standard deviations (in
parentheses). Planned comparisons of the data were con-
ducted using two-way ANOVAs (versions sub-expression),
carried out separately over subject and item data.

As expected, the participants performed significantly bet-
ter for phrasal sub-expressions than for non-phrasal sub-
expressions. This superior performance was seen in
the response times with a 196ms recognition advantage
(minF’(1, 66) = 33.06, .01). This advantage held for error
rates also (minF’(1, 69) = 8.83, .01). This indicates that
the equations are perceived in a way that allows for faster and
more accurate recognition of phrasal sub-expressions than
non-phrasal sub-expressions.

Table 2: Mean correct response times (ms) and error rates (%)
as a function of sub-expression type for Experiment 1.

Sub-Expression RT(ms) %Error

Phrasal 1153 (178) 14.8 (8.7)

Non-Phrasal 1349 (205) 25.2 (11.2)

Incorrect 1382 (246) 20.3 (9.5)

There was also a significant response time advantage
for phrasal sub-expressions over incorrect sub-expressions
(minF’(1, 57) = 35.97, .01). However, there was no
corresponding overall advantage for error rates, despite the
fact that the item-based analysis was significant ( (1, 21) =
4.21, = .053, (1, 69) = 5.46, .05). There was no
significant difference between non-phrasal and incorrect sub-
expressions for either response times or error rates.

The results of Experiment 1 provide support for our hy-
pothesis that the internal representation used by experienced
mathematicians is based on the phrasal structure of a parse
tree. This comes from the logic of the experiment. Encoding
of the equations significantly favours recognition of phrasal
sub-expressions, indicating that knowledge of the constituent
structure that underlies a parse tree is relied upon in the en-
coding process.

This outcome and those of previous work (Jansen et al.,
1999) indicate that experienced mathematicians use an inter-
nal representation based on mathematical syntax and a parse
tree structure. One interesting issue is just how much expe-
rience with mathematics is necessary before such represen-
tations become established. This is the focus of our second
experiment.

Experiment 2
Our hypothesis here is that considerable experience is neces-
sary before humans can parse an equation based on its math-
ematical syntax. To test this hypothesis, recognition tasks
were designed to examine the influence of both syntactic
well-formedness and phrasal properties in identifying sub-



Table 3: Example equations and sub-expressions used in examining well-formedness.

Equation Sub-Expression

Well-Formed Non-Well-Formed Incorrect

expressions of equations. The participants in these experi-
ments were students in their first year of high school (Year 7).
This year level was chosen because it is one year before al-
gebra becomes a major component of their mathematics syl-
labus (in Australia). The students had been introduced to the
notion of a variable, but had not been introduced to the ex-
ponent notation and had dealt only with very simple expres-
sions.

Due to the complex nature of the equations (at least by
Year 7 standards), we expect to see no significant perfor-
mance advantages for one type of sub-expression over an-
other, indicating that the internal representations of the stu-
dents are not based on mathematical syntax or parse tree
structures. However if any advantages are present, this would
indicate a predisposition towards encoding equations into
syntactically based constituent chunks, even with very little
experience.

Method

Participants Eighteen participants successfully completed
these experiments. All were Year 7 students, aged 12 to 13
years, with only limited knowledge of algebra. All partici-
pants were volunteers with normal or corrected-to-normal vi-
sion.

Materials and Design Experiment 2 consisted of two parts.
Part A looked at syntactic well-formedness, the design of
the experiment being similar to the experiment described in
Jansen et al. (1999) which was conducted with competent
adult mathematicians. Sixty equations were used, and sub-
expressions of three types were generated for each.

a) A well-formed sub-expression, which is a component of
its equation, and conveys the same meaning on its own that
it conveys in the equation.

b) A non-well-formed sub-expression, which is also a com-
ponent of its equation, but does not convey any coherent
mathematical meaning on its own.

c) An incorrect sub-expression, which was not part of the
original equation. It can be either well-formed or non-
well-formed. These act as fillers.

See Table 3 for examples. The equations consisted of be-
tween twelve and fourteen characters, and each of the sub-
expressions contained between four and six characters (the
average for well-formed sub-expressions was 4.77; for non-
well-formed, 4.50; for incorrect, 4.66). Only the variable
names and were used, with at most one fraction being
present in any equation.

Part B of Experiment 2 again examined phrasal proper-
ties, and was based on Experiment 1. Sixty equations were
constructed, along with three sub-expressions per equation
(phrasal, non-phrasal and incorrect). The properties of the
equations and sub-expressions are the same as described in
Experiment 1, with the sub-expressions again containing be-
tween four and six characters (the average for phrasal sub-
expressions was 4.79; for non-phrasal, 4.50; for incorrect,
4.60). Table 1 contains examples of these. The equations
used in part A and part B of this experiment were all differ-
ent.

For each part of the experiment, three counterbalanced ver-
sions were created allowing the presentation of all three sub-
expression types for each equation, but ensuring that partic-
ipants were presented with each equation only once to avoid
practice effects. For each version, there were twenty in-
stances of each type of sub-expression. Two additional equa-
tions were constructed as practice items. The same practice
items were used in each version. The items of each version
were presented in a different pseudo-random order for each
participant.

Participants did both parts of the experiment in the one sit-
ting, one after the other. Due to the tasks in part A and part
B being so similar, the order in which they were done was
balanced over all of the participants. Thus half of the partic-
ipants did part A before part B, with the other half doing the
experiment in the reverse order.

Procedure The experiments were carried out in a quiet
room, with groups of four or five students at a time. Each
participant was seated in front of an IBM compatible com-
puter with a 14” monitor, running at a resolution of 800x600.
All items were black text on a white background, presented
by a purpose designed computer program.

For part A, the average width of the equations in pixels was



178 (range 135–219) with an average height of 47 (range 26–
61). The average width of the sub-expressions in pixels was
72 (range 39–179) with an average height of 26 (range 18–
51). For part B, the average width of the equations in pixels
was 187 (range 97–244) with an average height of 46 (range
26–59). The average width of the sub-expressions in pixels
was 72 (range 25–111) with an average height of 24 (range
16–52).

The procedure for each part was very similar to that used
for Experiment 1. There was no difference in the display tim-
ing of the stimuli or the response mechanism. However, since
the students were not expected to perform very well in the
task, they may lose confidence in performance if continually
reminded of errors. Consequently, no feedback was given.
Otherwise, the experimental procedure was the same. Par-
ticipants were also given a brief rest period between the two
parts and took approximately 25 minutes to complete the en-
tire experiment.

Data Treatment To reduce the unwanted effects of outly-
ing data points, absolute upper and lower cut-offs were ap-
plied to response latencies, such that any response longer
than 4000ms or shorter than 500ms was designated as an er-
ror. The maximum cutoff time here is longer for the Year 7
students than for the experienced mathematicians in previous
experiments.

As expected the participants did not perform well in this
task, with the accuracy achieved for many sub-expression
types being no better than chance. Given that many stu-
dents were clearly guessing when presented with these sub-
expressions, an analysis of response time data would be
meaningless. Analysis was therefore only conducted on error
rate data, by a series of analyses of variance (ANOVAs) over
both participant and item data. Where these were significant,
the were combined in the statistic. No participants
data was excluded from the analysis.

Results and Discussion

The error rate for the three sub-expression types in part A
(which examined well-formedness) is summarised in Table 4,
along with the corresponding standard deviations (in paren-
theses). Planned comparisons of the data were conducted us-
ing two-way ANOVAs (versions sub-expression), carried
out separately over subject and item data.

Table 4: Error rates (%) as a function of sub-expression type
for Experiment 2A.

Sub-Expression %Error

Well-Formed 36.1 (21.5)

Non-Well-Formed 51.7 (14.9)

Incorrect 50.6 (19.9)

The results of interest are the performance differences
between well-formed and non-well-formed sub-expressions.
Participants performed significantly better in recognizing
well-formed sub-expressions than their non-well-formed
counterparts with an advantage of 15.6% ( (1, 37) =
7.50, .01). In fact, since in each trial participants had a
50–50 chance of success, it is clear that for both non-well-
formed and incorrect sub-expressions, participants were do-
ing no better than random guessing. It is only for well-formed
sub-expressions that they were performing better than chance.

Table 5 summarises the error rate data for the three sub-
expression types in part B of the experiment (which exam-
ined phrasal properties), along with the corresponding stan-
dard deviations (in parentheses).

Table 5: Error rates (%) as a function of sub-expression type
for Experiment 2B.

Sub-Expression %Error

Phrasal 34.1 (15.4)

Non-Phrasal 53.6 (16.5)

Incorrect 49.4 (22.9)

The results show a significant 19.4% error rate advantage
for phrasal sub-expressions over non-phrasal sub-expressions
( (1, 59) = 12.07, .01). As in part A, the incor-
rect and also the non-phrasal results indicate that participants
are doing no better than chance in responding to these sub-
expression types. However, performance was clearly above
chance for phrasal sub-expressions.

Given the limited mathematical experience of the Year 7
students, these results are unexpected. The fact that the over-
all accuracy of the Year 7 students is far lower than for com-
petent adult mathematicians, indicates that the development
of their internal representation still has a long way to go.
However, superior performance in recognizing syntactically
well-formed and phrasal sub-expressions provides support for
the notion that mathematical syntax plays an important role
in the way that these students encode equations. This result
therefore does not support our hypothesis that considerable
experience is necessary before students can parse an equation
based on its mathematical syntax.

Despite the significance of these results, it is not clear
whether the students represent a heterogeneous or a homo-
geneous population with respect to their performances in this
task. Therefore, a further analysis of the error rate data from
this experiment was conducted. For part A of the experiment,
a three-way split was carried out based on the difference in
accuracy in recognizing well-formed and non-well-formed
sub-expressions. The results of participants in each version
were divided into three groups. The top group contained
participants with the greatest performance advantage in rec-
ognizing well-formed sub-expressions over non-well-formed



sub-expressions. The bottom group contained those with the
least advantage, or possibly even a disadvantage in recogniz-
ing well-formed sub-expressions over their non-well-formed
counterparts. The remaining participants formed a middle
group, but the results of this group were not of interest. Since
there were six participants per version, each group contained
the results of two participants from each version. ANOVAs
were then conducted to compare the performance of the top
and bottom group.

As expected, an even greater performance advantage of
32.5% in identifying well-formed over non-well-formed sub-
expressions was found in the top group ( (1, 30) =
19.55, .01). However, the performance of the bot-
tom group revealed a slight disadvantage of 1.7% in rec-
ognizing well-formed sub-expressions over their non-well-
formed counterparts. This result was not statistically signifi-
cant ( for analysis by both subject and item).

A similar analysis was conducted for part B of the exper-
iment, with the three way split based on the accuracy dif-
ference between recognizing phrasal and non-phrasal sub-
expressions. The top and bottom groups reflect the partici-
pants with the greatest and least performance advantage re-
spectively, in recognizing phrasal sub-expressions over non-
phrasal sub-expressions. The top group again had a signifi-
cant performance advantage of 32.7% in identifying phrasal
over non-phrasal sub-expressions ( (1, 60) = 20.17,

.01). For the bottom group however, the advantage was
only 5.8% which was not statistically significant ( for
analysis by both subject and item).

This result indicates that within the population sample for
Experiment 2, there are two distinct groups, one of students
who encode equations based on mathematical syntax, and one
of those who appear not to. One possible explanation for this
result is that some students have more previous experience
with algebra and mathematics than others. However, another
possibility is that some students might have a stronger predis-
position for using knowledge of mathematical syntax to guide
construction of internal representations. Certainly more re-
search will be needed before the cause of this result can be
resolved.

Conclusions

Previous research has suggested that adults competent in
mathematics encode equations into constituents that have
syntactically well-formed structure (Jansen et al., 1999). We
have extended upon these results by providing support for
the hypothesis that the internal representation used by mathe-
maticians is based on the constituent structure of a parse tree.
Evidence has also been presented which indicates that this en-
coding mechanism is present in young students. This result is
surprising given that the students have very little experience
in dealing with complex algebraic expressions.

The future direction of this research is to further investigate
the encoding mechanisms and internal representations used to
process equations, and in particular to examine how the rep-

resentations of equations are used in mathematical problem
solving. Also, the positive result with the Year 7 students
leads to the question of just how little mathematical experi-
ence is necessary before mathematical syntax begins to play
a role in encoding equations. Whether or not the students
are establishing representations based on mathematical syn-
tax, or their performance reflects a more general encoding
mechanism for such complex stimuli, can only be resolved
by conducting similar experiments with children who have
no experience with algebraic equations.

Acknowledgements
The authors wish to thank the staff and students at the Prahran
Campus of Wesley College in Victoria, Australia, for their
helpful co-operation and assistance in conducting the experi-
ments involving the Year 7 students.

References
Akmajian, A., Demers, R.A., & Harnish, R.M. (1984). Lin-

guistics: An Introduction to Language and Communication
(2nd ed.). Massachusetts: MIT Press.

Anderson, R.H. (1977). Two-dimensional mathematical no-
tation. In K.S. Fu (Ed.), Syntactic Pattern Recognition Ap-
plications. New York: Springer-Verlag.

Clark, H.H. (1973). The language-as-fixed-effect fallacy: A
critique of language statistics in psychological research.
Journal of Verbal Learning and Verbal Behavior, 12, 335–
359.

Jansen, A.R., Marriott, K., & Yelland, G.W. (1999). Perceiv-
ing structure in mathematical expressions. In M. Hahn &
S.C. Stoness (Eds.), Proceedings of the twenty first annual
conference of the cognitive science society. Lawrence Erl-
baum Associates.

Johnson, N.F. (1968). The influence of grammatical units on
learning. Journal of Verbal Learning and Verbal Behavior,
7, 236–240.

Johnson, N.F. (1970). Chunking and organization in the pro-
cess of recall. In G.H. Bower (Ed.), The Psychology of
Learning and Motivation, (Vol. 4). New York: Academic
Press.

Ranney, M. (1987). The role of structural context in percep-
tion: Syntax in the recognition of algebraic expressions.
Memory and Cognition, 15(1), 29–41.




