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Genome-wide association studies in pharmacogenomics:

successes and lessons

Alison A. Motsinger-Reif®, Eric Jorgenson®®°, Mary V. Relling®,
Deanna L. Kroetz®, Richard Weinshilboum', Nancy J. Cox® and Dan M. Roden®

Objective As genotyping technology has progressed,
genome-wide association studies (GWAS) have matured
into efficient and effective tools for mapping genes
underlying human phenotypes.

Methods Recent studies have shown the utility of the
GWAS approach for examining pharmacogenomic traits,
including drug metabolism, efficacy, and toxicity.

Results Application of GWAS to pharmacogenomic
outcomes presents unique challenges and opportunities.

Conclusion In the current review, we discuss the potential
promises and potential caveats of this approach
specifically as it relates to pharmacogenomic studies.
Concerns with study design, power and sample size,

and analysis are reviewed. We further examine the features
of successful pharmacogenomic GWAS, and describe
consortia efforts that are likely to expand the reach

of pharmacogenomic GWAS in the future.

Introduction

Since 2005, genome-wide association studies (GWAS) have
matured into a powerful tool to identify single nucleotide
polymorphisms (SNPs) that can be reproducibly associ-
ated with a variety of human phenotypes. Currently, over
300 papers have reported significant associations of com-
mon variants with a range of phenotypes and diseases [1].
These successes have provided numerous insights into
the relationship among genetic variants, biological path-
ways, and human traits, and shown how proper study
design and analysis can lead to the success of GWAS.
A key lesson from this first generation of GWAS is that no
single approach will be appropriate for all phenotypes [2].

The genetics of drug-response outcomes, broadly referred
to here as pharmacogenetic/pharmacogenomic outcomes,
are a particular category of phenotypes that present unique
challenges and opportunities in gene discovery [3]. In
this study, we discuss the advantages and limitations of
GWAS as applied to pharmacogenomic outcomes. Some
of these challenges are variations on general concerns for
disease gene identification, whereas others are unique to
pharmacogenomic outcomes.

Like studies of disease phenotypes, the success of any
pharmacogenomic GWAS will depend on the effect size
and allele frequency of genetic variants that influence the
trait, the sample size available to detect those variants, the
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population under study (treatment protocol, dosage, patient
features including self-reported race/ethnicity, etc.), and
study design (observational study or randomized controlled
trial). Unlike most disease phenotypes, pharmacogenomic
outcomes often have clear, clinically defined phenotypes
and well-understood mechanisms that may underlie varia-
tion in drug response, including known systems of transport
and metabolism, and sites of drug action. In addition, larger
genetic effects may exist for pharmacogenomic traits than
for disease phenotypes, providing greater statistical power
for genetic association studies.

An important potential limitation for pharmacogenomic
GWAS is the sample size. GWAS for traits like height or
QT or complex diseases like diabetes need and benefit
from large numbers, and currently mega—meta-analyses
are identifying and validating associated loci. Such large
sample sets are generally not possible for pharmacoge-
nomic outcomes as they usually include by definition
both a disease (often with low prevalence) and a well-
curated drug response phenotype (which further reduces
the available study population).

In this study, we discuss key issues for GWAS, including
the strengths and limitations of this approach. We then
elucidate issues of heightened importance in GWAS of
pharmacogenomic traits. We discuss appropriate study
designs and analysis strategies, and describe lessons from
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successful pharmacogenomic GWAS. We end with a dis-
cussion of ongoing efforts to develop consortia for the
purpose of obtaining large sample sizes for drug response
outcomes.

Promises

There are clear, well-understood advantages to a genome-
wide association approach to phenotype association dis-
covery. GWAS are conventionally intended as an unbiased
scan of the genome, interrogating the majority of common
genetic variation for disease association. In contrast to a
candidate gene approach, whether narrow or broad in scope,
GWAS allow the identification of totally novel suscept-
ibility factors that promise to provide us with better bio-
logical understanding of phenotypes [4]. There are many
candidate mechanisms that drive variability in drug res-
ponses: metabolism, transport, targets, target partners,
immunologic pathways (e.g. for allergic reactions), etc.
that have directed many successful candidate gene studies
[5]. However, they cannot identify genes outside the
current knowledge of those mechanisms. GWAS allow
such novel discovery.

GWAS have distinct advantages as compared with more
traditional linkage-based approaches [6]. There are three
key general advantages of GWAS approaches for gene
identification, each of which are exaggerated for pharma-
cogenomic outcomes:

(1) Case—control cohorts are generally less expensive and
easier to collect than extended pedigrees or nuclear
families. This is especially true in drug-response
studies where it is rare for multiple family members
to have well-characterized responses to drug chal-
lenges; that is, formal linkage analysis has not been
feasible for drug response phenotypes. GWAS do not
require the ascertainment of pharmacogenomic
interventions in related individuals.

(2) Association studies have higher statistical power to
detect small-to-modest genetic effects as compared
with linkage studies [6]. For pharmacogenomic studies,
especially for rare toxicities where sample sizes are
limited, this advantage in power may be the difference
between success and failure in gene mapping.

(3) As linkage disequilibrium (LD) typically stretches
over tens of kilobases as opposed to several mega-
bases [6], association signals are more finely localized
than linkage signals, which should lead to more rapid
identification of causal variants by rapidly narrowing
down the regions for follow-up in functional studies —
critical for novel mechanistic insights — and, thus, to
more rapid translation of findings.

There are additional advantages to GWAS that are more
specific to pharmacogenomic outcomes. First, GWAS
provide context for understanding the relative impor-
tance of genetic contributors to pharmacogenomic traits
that may otherwise be unavailable. The genetic component

of human phenotypes can be assessed by estimating heri-
tability (the proportion of variation in a trait because of
genetic factors) through methods such as variance compo-
nents analysis, segregation analysis, etc. Each of these me-
thods requires family data, which, as noted above, is usually
difficult to collect for pharmacogenomic outcomes [7].

Another specific application of GWAS in pharmacoge-
nomics is the ability to rule out — with prespecified confi-
dence intervals — contributions by unidentified genes to a
drug response phenotype. As pharmacogenomic GWAS can
directly investigate the role of genetic variation on clinical
outcomes, the findings from pharmacogenomic GWAS can
be more rapidly translated to clinical practice. As translation
to the bedside is one of the goals of pharmacogenomic gene
mapping [8], it is important to ensure that any unantici-
pated important genetic contribution to variability in a drug
response is not missed [9]. Of equal importance is the
identification of novel mechanisms, both for drug response
and/or adverse drug reactions. So, having identified variants
in gene X or Y as contributors to a variable drug response,
it is key to ensure that there is no other important genetic
contributor before mounting a trial. Understanding the
influence of genetic variants in drug response can limit
unanticipated variability in a drug treatment [9]. The role
of GWAS in this process is evident in the evaluation of the
genetic component of warfarin dosing [9]. The strong
association of variants in VKORC! and CYP2C9 for stable
warfarin dosing was well established [10-12], but before
the National Heart, Lung and Blood Institute in the US
would mount a large clinical trial it was important to
determine whether there were other genetic variants that
also had large effects on stable warfarin dosing. GWAS
[13,14] have now ruled out large contributions by other
loci, thereby allowing clinical trials to proceed [15].
Similarly, a GWAS for clopidogrel effect on ADP-induced
platelet aggregation identified only one associated locus,
at CYP2C9/19, laying the groundwork for design of clinical
trials [16]. As genotyping platforms with increased SNP
density become available, the coverage of genetic variation
in the human genome will become more complete, provid-
ing greater confidence that clinically important genetic
effects on pharmacogenomic traits will not be missed.
Thus, while many variants in drug metabolism genes have
been shown to confer large clinical effects that have often
been identified without GWAS (e.g. by well informed
candidate gene studies), even GWAS with ‘negative’
results add this crucial additional information [17].

Considerations

Common disease common variant hypothesis

Despite the advantage of GWAS studies discussed above,
there are important caveats that must be remembered
in their design and application. Although many of these
caveats are true of GWAS in general, the impact of these
concerns may be different in pharmacogenomic studies
than in general trait mapping.
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A key assumption in GWAS is what is known as the com-
mon disease/common variant hypothesis [18]. The com-
mon disease/common variant hypothesis proposes that
most of the genetic risk for common, complex diseases is
attributable to relatively common [minor allele frequency
(MAF) > 0.05] polymorphisms [18]. The alternative to
the common disease/common variant hypothesis is that
multiple rare variants cause disease at high prevalence
in the population through a variety of mechanisms. Such
variants can represent genetic heterogeneity of variants
in a single gene, or multiple rare variants within genes in
the same pathway that have cumulative effects. These two
hypotheses have important implications — common variants
are thought to impart subtle effects on gene function, often
through changes to gene regulation. Rare variants may have
larger effects on gene function, such as nonsynonymous
variants that alter the amino acid sequence of the result-
ing protein, and as a result lead to large changes in disease
risk or trait values. As a result, it is likely that both common
and rare variants will contribute to common phenotypes,
but the relative proportions will influence the appropriate
methods for discovering associated variants. The GWAS
approach is well powered to detect common variants with
modest effects. GWAS is less effective in testing rare
variation, a problem that is confounded by the DNA micro-
arrays used in these studies, which have been designed to
capture common variation. Even ‘next generation’” GWAS
that will reliably interrogate (directly or indirectly) all
variation with MAF greater than 0.005 may be insufficient
to identify enough of the contributory variation to allow
us to understand biology whether most of that variation
has MAF less than 0.005, as the sample sizes required to
achieve sufficient statistical power for such effects may
be prohibitive. As ‘next generation’ sequencing becomes
more accessible, and whole-genome sequencing becomes
more affordable, more rare variant analysis will be possible
in pharmacogenomics.

Sources of bias

An important concern in GWAS studies for pharmaco-
genomics is of the potential for bias in the selection
of genetic variants [2]. Although large number of variants
with low MAF are included in the densest GWAS
platforms, GWAS have little power, given sample sizes
available, to detect significant associations with low MAF
SNPs. In addition, it is widely recognized that genotype
quality is not as high for rare variants as it is for more
common variants. Consequently, a common approach is to
not assess the significance of associations with rare vari-
ants (MAF < 0.01). This further compounds the limited
statistical power to detect associations with less common
genetic variants. Moreover, SNPs included on high-
throughput platforms must pass stringent tests for ease
of genotyping, which leads regions with gene duplications
(and pseudogenes) to be poorly represented on high-
throughput genotyping products, and many of these —
such as CYPs or the HLA locus — are precisely the genes
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of greatest interest for pharmacogenomic studies. The
human cytochrome P-450 family of genes that encode
enzymes active in xenobiotic metabolism have been
associated with a large number of pharmacogenomic
outcomes [19]. They are known to be highly polymorphic,
with a wide range of allele frequencies across populations,
and contain complex structural variation with unique
haplotypic structure and copy number variations [20].
The coverage of these types of variation is limited on
current GWAS genotyping platforms [21].

Study design

Experimental design is a crucial component of any
successful GWAS, and pharmacogenomic studies have
different advantages and limitations than traditional disease
studies. The importance of proper definition and collection
of phenotype data has become increasingly appreciated
in the context of GWAS [17]. An important advantage
in pharmacogenomic studies is that multiple response
phenotypes are often collected within the same study,
such as efficacy and adverse events, allowing a broader
dissection of trait genetics in a single study.

However, because all pharmacogenomic outcomes are
responses to the environmental exposure of the drug and
because these drugs are given in response to a disease
condition, there may be complex interactions between
disease and drug response relevant in phenotype defini-
tion. Precise definitions are essential for both the disease
and drug response phenotypes, which are often discrete
diagnoses from these complex relationships. For example,
in some, but not all cases, rare adverse drug reactions may
represent a ‘tail’ of response distributions and where to
define that cut-off within the distribution can be a
challenge. The SEARCH Collaborative Group showed a
successful approach to address this issue by combining
patients with both definite and incipient statin-induced
myopathy into a single case definition [22]. In other
cases, a rare adverse reaction is an unexpected outcome
often unrelated to the desired mechanism of action [17].

One efficient use of resources to collect pharmacogenomic
phenotypes is to collect samples within the context of
clinical trials, which streamlines the collection procedures.
The use of clinical trial data for GWAS is not only an
efficient use of resources, but has the advantage that
similarly treated ‘controls’ for the phenotype of interest
are built into the trials. However, because some trials are
not designed for GWAS mapping, the study designs used
for collection may not be ideal for pharmacogenomic
analysis (e.g. multiple drugs used in treatment arms, etc.)
[23]. Obviously, this ‘challenge’ is inherent to the treat-
ment of diseases like cancer or end-stage congestive heart
failure in which it would be unethical to fail to treat
patients with the current standard of care for this illness.
If pharmacogenomic efforts are substudies of clinical
trials, sample sizes may decrease, which reduces the power
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of the pharmacogenomic component. As meeting recruit-
ment targets is a primary goal in most clinical trials, geno-
mic and pharmacogenomic efforts are often included
only as substudies to which patients may or may not
consent; as a result, the power and generalizability of
genomic studies is compromised. Genetic studies added
as an afterthought may be viewed as creating a barrier to
recruitment and thus may not be a priority for sponsors.
Collecting drug response phenotypes in health care
systems with electronic medical records is another
method of accruing patients that is now being explored.

Sample size limitations are a challenge in any GWAS, but
are amplified in many pharmacogenomic studies. Parti-
cularly when studying rare drug reactions or adverse
events, it is by definition not feasible to recruit thousands
of patients with rare outcomes. This is a particular limi-
tation in pharmacogenomic GWAS, as the replication of
association results in independent populations has become
the ‘gold standard’ for validation of results [24]. If the
collection of a reasonable sample size for a discovery cohort
is at the edge of practicality, this makes the collection of
a well-powered replication cohort often impossible. Con-
sortia efforts (discussed below) have been motivated by
this limitation, to combine samples from across the world
to increase power and potentially identify replication
cohorts to maximize power and provide validation to associ-
ated signals. However, even the establishment of net-
works of investigators cannot necessarily overcome these
limitations, and the field must look for creative approaches
of validation/replication possibly involving functional stu-
dies or examination of related intermediate phenotypes.

There are unique ‘challenges’ associated with validation/
replication for pharmacogenomics. Clinical trials are ex-
pensive, and every study is unique as they are designed to
represent an advance over earlier studies to answer novel
therapeutic questions. Therefore, in pharmacogenomics
greater emphasis may have to be placed on functional
validation of GWAS ‘signals’ and on biological plausibility.
In addition, one must recognize that the larger the sample
size, the more likely that features, which confound the
genotype/phenotype relationship will be undocumented
or uncontrolled; thus diluting the ‘purity’ of the pheno-
type and potentially reducing the power [25].

Besides sample size, there are other practical limitations
in study design for pharmacogenomic studies. As men-
tioned earlier, family-based designs are generally imprac-
tical with drug response outcomes, which mean the field
relies heavily on cohort or case—control studies for GWAS
[5]. Although the number of cases may be limited by
event frequency as discussed above, finding and selecting
appropriate controls presents additional challenges. Al-
though GWAS of common diseases have taken advantage
of the use of shared controls across studies, this is not often
possible in pharmacogenomic studies, as typically controls

must also be exposed to the drug of interest (though this
may not be necessary in all cases). Other matching
criteria must also be considered, such as disease inter-
actions, population admixture, and additional environ-
mental and clinical exposures.

Analysis

As GWAS have become more prevalent, methodologies for
the analysis and interpretation of results have coevolved.
Many tools have been developed and evaluated in the con-
text of GWAS, and have resulted in the many successes
seen to date. However, there are still many challenges in the
analysis strategies used for GWAS in general, and particular
challenges for pharmacogenomics, as discussed below.

Standard analytical approaches

The majority of earlier GWAS have relied on the use of
traditional statistical methodologies for analysis, and several
tools have become widely used in the field. Software
packages such as PLINK [26] have become very popular
in implementing logistic regression (for case—control or
cohort studies), linear regression (for quantitative traits),
and family-based association tests for GWAS studies.

After various types of corrections for multiple testing
(Bonferroni, permutation approaches, etc), results of
these analyses are typically prioritized with replication
strategies. For single samples, the union of significant
results from several analytical approaches (committee-
based approaches) or measures of reliability from internal
model validation is often used to prioritize robust signals.
When more than one sample is available, multistage repli-
cation strategies are often employed to discover, prior-
itize, and validate signals. Finally, when multiple samples
are available, meta-analysis is often used to obtain more
comprehensive measure of association signals [27]. Chal-
lenges in sample collection (discussed above) can limit
the use of such multistage replication and meta-analysis
strategies in pharmacogenomics. One alternative approach
for replication, or at least prioritization, of association
signals in pharmacogenetic studies is to use nonclinical
GWAS of large collections of human tissue, cell lines, and
genetic model organisms [28].

Detecting complex predictive models

Such traditional approaches have been very powerful for
identifying strong single-locus associations (low-hanging
fruit) for a wide range of phenotypes in both common dis-
eases and pharmacogenomic outcomes (reviewed below),
and are typically applied in a way that fits within the
‘unbiased’ intentions of GWAS. Despite the successes of
these approaches, their limitations for detecting and
prioritizing more complex models have become a hot
topic in the literature [29].

As many successful GWAS have been published, the sum
of the genetic contributions of associated variants in many
common traits is far below the estimated heritability of the
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traits. These gaps in explained heritability are potentially
clarified by several potential etiologies. Low power to
detect low-effect sizes, the presence of rare variants
contributing to phenotypes, unmeasured nucleotide or
structural variation, complex methylation/epigenetic me-
chanisms, and gene—gene/gene—environment interactions
are all hypothesized to contribute to the unexplained
trait variation [29]. In response to these limitations, new
analytical approaches are evolving to detect complex
genetic risk models discussed below. These limitations
are leading to refinement of methods for GWAS analysis,
and these may be especially appropriate for pharmacoge-
nomic studies.

Expert knowledge driven analysis

Although this ‘unbiased’ intent of GWAS is to detect
potential new genetic associations that might not have
been considered as candidate genes, there has been a
recent appreciation for the fact that these simple analytical
approaches ignore the large amount of expert knowledge
available for a particular outcome. In response, there has
recently been rapid development in the use of network
and pathway analysis for analysis of GWAS data [30-33].
Literature searches (automated or hand curated), databases
of earlier results, etc. are being exploited to improve the
power of GWAS. As it is much known about the mechanism
and metabolism of many of the drugs evaluated in pharm-
acogenomic studies, there is very well-directed guidance
for such knowledge-driven analysis. The Pharmacogeno-
mics Knowledge Base [34] is an important resource and
data repository that summarizes and curates drug response/
gene relationships through gene variant annotation, hand-
curated literature review, and important pharmacogenomic
genes and pathways. An example of the potential of
pathway-based analysis is discussed below.

Successes in pharmacogenomics

Arguably the most important demonstrations of the
utility and challenges of GWAS in pharmacogenomics
are the empirical results of successful studies. A brief
description of the outcomes evaluated in pharmaco-
genomic GWAS and the strongest signals identified is
listed in Table 1. Details of each study can be found in
the references provided.

The potential and drawbacks of an agnostic, unbiased
approach for genetic association studies in pharmacoge-
netics are illustrated by a GWAS of the activity of a
well-known polymorphic drug metabolizing enzyme,
thiopurine methyltransferase (TPMT) in lymphoblastoid
cell lines from the HapMap project [63]. The goal of the
experiment was to assess whether the TPMT polymorph-
ism could be ‘rediscovered’ in this fashion [62]. Although
common polymorphisms in TPMT were well tagged, and
TPMT polymorphisms were associated with TPMT
activity, the GWAS indicated that 96 genes were ranked
higher than was TPMT itself. The extent to which these
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higher ranked genes are false versus true positives is not
yet clear, but indicate the difficulty of using GWAS
approaches even for putatively monogenic traits.

An example of a GWAS for drug pharmacokinetics is pro-
vided by an analysis of methotrexate clearance determined
in over 3000 courses of the drug given to 434 children with
leukemia [36]. Many candidate gene studies have earlier
been conducted to identify genetic variation associated
with methotrexate pharmacokinetic variability with limited
success. Using GWAS, the SL.COIBI gene was represented
by multiple polymorphisms in several LD blocks, a finding
that was replicated in an independent cohort of patients,
suggesting that there are multiple mechanisms by which
alteration of OATP1B1 (encoded by SLCOIBI) could
affect methotrexate pharmacokinetics. Although metho-
trexate had been shown to be an OATP1B1 substrate, it
was a rather weak one [64,65], and so the gene had not
risen to the top of candidate gene lists. This finding has
implications for both toxicity to methotrexate and to
possible drug interactions with widely used OATP1B1
substrates, such as statins.

The utility of pathway-based analysis is shown by
Hartford ez 4/. [60], who performed a GWAS examining
etoposide-induced leukemia with myeloid/lymphoid or
mixed-lineage leukemia. They prioritized variant associ-
ations based on expression results, to identify alterations
in three biological pathways: adhesion, Wnt signaling, and
regulation of actin. Results in an independent validation
cohort confirmed the alterations in the adhesion pathway.
None of the alterations identified were significantly
based on traditional association analysis, showing the
potential of more complex modeling to identify pathway-
level associations.

Although most of the published studies identified vari-
ants at a genome-wide significance level, many of them
found strong potential signals that did not stand up to
traditional analyses [45,46,66]. These negative results
may represent true negative results, but it is highly likely
that many of these studies were limited by many of the
challenges discussed above (power, coverage, etc).

Network efforts

"To address many of the limitations discussed above, parti-
cularly in regards to limited sample sizes and lack of
traditional replication cohorts, researchers are successfully
combining resources and establishing worldwide collabora-
tions to support large-scale GWAS. Given the complexities
of drug response phenotypes, this approach seems especi-
ally appealing in the application of GWAS to pharmaco-
genomics. By combining cohorts from around the globe,
pharmacogenomic studies will have higher power to detect
and validate response-determining variants.

The SEARCH Collaborative Group [22] shows the success
of such a collaboration. The SEARCH Collaborative Group
examined a rare outcome of statin therapy — myopathy,
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defined as markedly elevated creatinine kinase. In its
most extreme form, this can result in the potentially fatal
adverse effect of rhabdomyolysis, but these cases are
exceedingly rare. The SEARCH Collaborative Group also
found that myopathy was rare (approximately 0.1%) with
low-dose simvastatin, so they focused their efforts on 98
cases identified in 6031 patients receiving high doses
(80 mg/day) of the drug. A GWAS that studied 85 of these
cases and 90 controls identified rs4363657, in perfect LD
with a known functional nonsynonymous SNP in SL.CO/B/
at genome-wide significance. The 5-year incidence of
myopathy was 18% in individuals homozygous for the risk
allele (2.1% of the study group), 3% in heterozygotes, and
0.6% in those with no risk allele. The result was repli-
cated in a separate cohort of patients receiving a lower
dose of 40 mg/day (relative risk 2.6 per C allele).

The success of this study illustrates several important
points in the study design of pharmacogenomic GWAS.
First, large collaborative samples can provide a valuable
resource for collecting a critical mass of patients with a rare
phenotype. Second, rare phenotypes are sampled from the
extreme tail of drug response distributions. As a result,
genetic variants that influence these traits may have larger
genetic effect sizes, and therefore be detectable with small
sample sizes, than more common outcomes. Third, similar
outcomes can sometimes be combined into a single case
group. Here, in the initial association phase, definite and
incipient myopathy patients were considered together.
Fourth, replication of an association should take place in a
similar population. In this study, the replication cohort was
treated with a lower dose, 40 mg of simvastatin daily as
compared with 80 mg in the initial group. We note that
selecting cases from lower dose regimen for a follow-up
study may be preferable to the converse (i.e. higher doses
in the follow-up cohort), as those cases have a more ex-
treme phenotype (by developing toxicity at a lower dose).
This can limit the dilution of the association signal in the
confirmatory study.

Several additional pharmacogenomics consortia have
been established to evaluate a number of drug response
outcomes, including the International Severe Irinotecan
Neutropenia Consortium  (Z2p:/fwww.pharmghkb.orglviews/
projectjspepld = 69), and the International Tamoxifen
Pharmacogenomics Consortium (4z2p.//www.pharmgkb.org/
views/projectjsp2pld = 63). These groups have pooled data
from around the world to investigate genetic predictors of
drug response with high power and comparison across
global populations. Although the initial study of these
consortia has typically been focused on candidate/known
genetic effects, they are moving towards GWAS. For
example, the International Warfarin Pharmacogenetics Con-
sortia (Attp:/fwww.pharmghkb.orglviews/project jsp 2pld = 56) origi-
nally combined data for over 4000 individuals from 24
international sites, to develop and test warfarin dosing
algorithms [67], and are currently using the cohort data
for a GWAS (through the International Warfarin Pharma-

cogenetics Consortia—GWAS consortium) to identify and
confirm earlier findings, and potentially discover novel
variants that explain potential trait variation across
multiple populations. Such collaborations are extremely
important for rare events, such as adverse events. The
International Serious Adverse Events Consortium (www.
saeconsortium.org) represents one important effort in
pharmacogenomics for adverse events, pulling together
commercial, academic, and industry partners to collect
data for well-powered GWAS.

These combined datasets represent exciting resources
for pharmacogenomics GWAS, but are not without chal-
lenges. Concerns with consistent data collection, storage,
data-ownership issues, etc. can be concerns in these
collaborative efforts.

Conclusion

GWAS have proven to be an exciting tool for gene map-
ping in common human traits, and are showing their
potential in pharmacogenomic outcomes as well. As
pharmacogenomic GWAS mature, there is an increased
appreciation for issues that are specifically related to
these unique phenotypes. Practical considerations, re-
lated to study design and available sample sizes highlight
the need for creative methods of replication, beyond the
traditional replication cohorts that are used for common
disease genetics, and the necessity of combining samples
across consortia. The complex physiology of drug res-
ponse outcomes highlights the need for analytical methods
that incorporate this complexity, using the wealth of in-
formation available about drug mechanisms and pathways.
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