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Genome-wide association studies in pharmacogenomics:
successes and lessons
Alison A. Motsinger-Reifa, Eric Jorgensonb,c, Mary V. Rellingd,
Deanna L. Kroetzc, Richard Weinshilboumf, Nancy J. Coxg and Dan M. Rodene

Objective As genotyping technology has progressed,

genome-wide association studies (GWAS) have matured

into efficient and effective tools for mapping genes

underlying human phenotypes.

Methods Recent studies have shown the utility of the

GWAS approach for examining pharmacogenomic traits,

including drug metabolism, efficacy, and toxicity.

Results Application of GWAS to pharmacogenomic

outcomes presents unique challenges and opportunities.

Conclusion In the current review, we discuss the potential

promises and potential caveats of this approach

specifically as it relates to pharmacogenomic studies.

Concerns with study design, power and sample size,

and analysis are reviewed. We further examine the features

of successful pharmacogenomic GWAS, and describe

consortia efforts that are likely to expand the reach

of pharmacogenomic GWAS in the future.
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Introduction
Since 2005, genome-wide association studies (GWAS) have

matured into a powerful tool to identify single nucleotide

polymorphisms (SNPs) that can be reproducibly associ-

ated with a variety of human phenotypes. Currently, over

300 papers have reported significant associations of com-

mon variants with a range of phenotypes and diseases [1].

These successes have provided numerous insights into

the relationship among genetic variants, biological path-

ways, and human traits, and shown how proper study

design and analysis can lead to the success of GWAS.

A key lesson from this first generation of GWAS is that no

single approach will be appropriate for all phenotypes [2].

The genetics of drug–response outcomes, broadly referred

to here as pharmacogenetic/pharmacogenomic outcomes,

are a particular category of phenotypes that present unique

challenges and opportunities in gene discovery [3]. In

this study, we discuss the advantages and limitations of

GWAS as applied to pharmacogenomic outcomes. Some

of these challenges are variations on general concerns for

disease gene identification, whereas others are unique to

pharmacogenomic outcomes.

Like studies of disease phenotypes, the success of any

pharmacogenomic GWAS will depend on the effect size

and allele frequency of genetic variants that influence the

trait, the sample size available to detect those variants, the

population under study (treatment protocol, dosage, patient

features including self-reported race/ethnicity, etc.), and

study design (observational study or randomized controlled

trial). Unlike most disease phenotypes, pharmacogenomic

outcomes often have clear, clinically defined phenotypes

and well-understood mechanisms that may underlie varia-

tion in drug response, including known systems of transport

and metabolism, and sites of drug action. In addition, larger

genetic effects may exist for pharmacogenomic traits than

for disease phenotypes, providing greater statistical power

for genetic association studies.

An important potential limitation for pharmacogenomic

GWAS is the sample size. GWAS for traits like height or

QT or complex diseases like diabetes need and benefit

from large numbers, and currently mega–meta-analyses

are identifying and validating associated loci. Such large

sample sets are generally not possible for pharmacoge-

nomic outcomes as they usually include by definition

both a disease (often with low prevalence) and a well-

curated drug response phenotype (which further reduces

the available study population).

In this study, we discuss key issues for GWAS, including

the strengths and limitations of this approach. We then

elucidate issues of heightened importance in GWAS of

pharmacogenomic traits. We discuss appropriate study

designs and analysis strategies, and describe lessons from
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successful pharmacogenomic GWAS. We end with a dis-

cussion of ongoing efforts to develop consortia for the

purpose of obtaining large sample sizes for drug response

outcomes.

Promises
There are clear, well-understood advantages to a genome-

wide association approach to phenotype association dis-

covery. GWAS are conventionally intended as an unbiased

scan of the genome, interrogating the majority of common

genetic variation for disease association. In contrast to a

candidate gene approach, whether narrow or broad in scope,

GWAS allow the identification of totally novel suscept-

ibility factors that promise to provide us with better bio-

logical understanding of phenotypes [4]. There are many

candidate mechanisms that drive variability in drug res-

ponses: metabolism, transport, targets, target partners,

immunologic pathways (e.g. for allergic reactions), etc.

that have directed many successful candidate gene studies

[5]. However, they cannot identify genes outside the

current knowledge of those mechanisms. GWAS allow

such novel discovery.

GWAS have distinct advantages as compared with more

traditional linkage-based approaches [6]. There are three

key general advantages of GWAS approaches for gene

identification, each of which are exaggerated for pharma-

cogenomic outcomes:

(1) Case–control cohorts are generally less expensive and

easier to collect than extended pedigrees or nuclear

families. This is especially true in drug–response

studies where it is rare for multiple family members

to have well-characterized responses to drug chal-

lenges; that is, formal linkage analysis has not been

feasible for drug response phenotypes. GWAS do not

require the ascertainment of pharmacogenomic

interventions in related individuals.

(2) Association studies have higher statistical power to

detect small-to-modest genetic effects as compared

with linkage studies [6]. For pharmacogenomic studies,

especially for rare toxicities where sample sizes are

limited, this advantage in power may be the difference

between success and failure in gene mapping.

(3) As linkage disequilibrium (LD) typically stretches

over tens of kilobases as opposed to several mega-

bases [6], association signals are more finely localized

than linkage signals, which should lead to more rapid

identification of causal variants by rapidly narrowing

down the regions for follow-up in functional studies –

critical for novel mechanistic insights – and, thus, to

more rapid translation of findings.

There are additional advantages to GWAS that are more

specific to pharmacogenomic outcomes. First, GWAS

provide context for understanding the relative impor-

tance of genetic contributors to pharmacogenomic traits

that may otherwise be unavailable. The genetic component

of human phenotypes can be assessed by estimating heri-

tability (the proportion of variation in a trait because of

genetic factors) through methods such as variance compo-

nents analysis, segregation analysis, etc. Each of these me-

thods requires family data, which, as noted above, is usually

difficult to collect for pharmacogenomic outcomes [7].

Another specific application of GWAS in pharmacoge-

nomics is the ability to rule out – with prespecified confi-

dence intervals – contributions by unidentified genes to a

drug response phenotype. As pharmacogenomic GWAS can

directly investigate the role of genetic variation on clinical

outcomes, the findings from pharmacogenomic GWAS can

be more rapidly translated to clinical practice. As translation

to the bedside is one of the goals of pharmacogenomic gene

mapping [8], it is important to ensure that any unantici-

pated important genetic contribution to variability in a drug

response is not missed [9]. Of equal importance is the

identification of novel mechanisms, both for drug response

and/or adverse drug reactions. So, having identified variants

in gene X or Y as contributors to a variable drug response,

it is key to ensure that there is no other important genetic

contributor before mounting a trial. Understanding the

influence of genetic variants in drug response can limit

unanticipated variability in a drug treatment [9]. The role

of GWAS in this process is evident in the evaluation of the

genetic component of warfarin dosing [9]. The strong

association of variants in VKORC1 and CYP2C9 for stable

warfarin dosing was well established [10–12], but before

the National Heart, Lung and Blood Institute in the US

would mount a large clinical trial it was important to

determine whether there were other genetic variants that

also had large effects on stable warfarin dosing. GWAS

[13,14] have now ruled out large contributions by other

loci, thereby allowing clinical trials to proceed [15].

Similarly, a GWAS for clopidogrel effect on ADP-induced

platelet aggregation identified only one associated locus,

at CYP2C9/19, laying the groundwork for design of clinical

trials [16]. As genotyping platforms with increased SNP

density become available, the coverage of genetic variation

in the human genome will become more complete, provid-

ing greater confidence that clinically important genetic

effects on pharmacogenomic traits will not be missed.

Thus, while many variants in drug metabolism genes have

been shown to confer large clinical effects that have often

been identified without GWAS (e.g. by well informed

candidate gene studies), even GWAS with ‘negative’

results add this crucial additional information [17].

Considerations
Common disease common variant hypothesis

Despite the advantage of GWAS studies discussed above,

there are important caveats that must be remembered

in their design and application. Although many of these

caveats are true of GWAS in general, the impact of these

concerns may be different in pharmacogenomic studies

than in general trait mapping.
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A key assumption in GWAS is what is known as the com-

mon disease/common variant hypothesis [18]. The com-

mon disease/common variant hypothesis proposes that

most of the genetic risk for common, complex diseases is

attributable to relatively common [minor allele frequency

(MAF) > 0.05] polymorphisms [18]. The alternative to

the common disease/common variant hypothesis is that

multiple rare variants cause disease at high prevalence

in the population through a variety of mechanisms. Such

variants can represent genetic heterogeneity of variants

in a single gene, or multiple rare variants within genes in

the same pathway that have cumulative effects. These two

hypotheses have important implications – common variants

are thought to impart subtle effects on gene function, often

through changes to gene regulation. Rare variants may have

larger effects on gene function, such as nonsynonymous

variants that alter the amino acid sequence of the result-

ing protein, and as a result lead to large changes in disease

risk or trait values. As a result, it is likely that both common

and rare variants will contribute to common phenotypes,

but the relative proportions will influence the appropriate

methods for discovering associated variants. The GWAS

approach is well powered to detect common variants with

modest effects. GWAS is less effective in testing rare

variation, a problem that is confounded by the DNA micro-

arrays used in these studies, which have been designed to

capture common variation. Even ‘next generation’ GWAS

that will reliably interrogate (directly or indirectly) all

variation with MAF greater than 0.005 may be insufficient

to identify enough of the contributory variation to allow

us to understand biology whether most of that variation

has MAF less than 0.005, as the sample sizes required to

achieve sufficient statistical power for such effects may

be prohibitive. As ‘next generation’ sequencing becomes

more accessible, and whole-genome sequencing becomes

more affordable, more rare variant analysis will be possible

in pharmacogenomics.

Sources of bias

An important concern in GWAS studies for pharmaco-

genomics is of the potential for bias in the selection

of genetic variants [2]. Although large number of variants

with low MAF are included in the densest GWAS

platforms, GWAS have little power, given sample sizes

available, to detect significant associations with low MAF

SNPs. In addition, it is widely recognized that genotype

quality is not as high for rare variants as it is for more

common variants. Consequently, a common approach is to

not assess the significance of associations with rare vari-

ants (MAF < 0.01). This further compounds the limited

statistical power to detect associations with less common

genetic variants. Moreover, SNPs included on high-

throughput platforms must pass stringent tests for ease

of genotyping, which leads regions with gene duplications

(and pseudogenes) to be poorly represented on high-

throughput genotyping products, and many of these –

such as CYPs or the HLA locus – are precisely the genes

of greatest interest for pharmacogenomic studies. The

human cytochrome P-450 family of genes that encode

enzymes active in xenobiotic metabolism have been

associated with a large number of pharmacogenomic

outcomes [19]. They are known to be highly polymorphic,

with a wide range of allele frequencies across populations,

and contain complex structural variation with unique

haplotypic structure and copy number variations [20].

The coverage of these types of variation is limited on

current GWAS genotyping platforms [21].

Study design

Experimental design is a crucial component of any

successful GWAS, and pharmacogenomic studies have

different advantages and limitations than traditional disease

studies. The importance of proper definition and collection

of phenotype data has become increasingly appreciated

in the context of GWAS [17]. An important advantage

in pharmacogenomic studies is that multiple response

phenotypes are often collected within the same study,

such as efficacy and adverse events, allowing a broader

dissection of trait genetics in a single study.

However, because all pharmacogenomic outcomes are

responses to the environmental exposure of the drug and

because these drugs are given in response to a disease

condition, there may be complex interactions between

disease and drug response relevant in phenotype defini-

tion. Precise definitions are essential for both the disease

and drug response phenotypes, which are often discrete

diagnoses from these complex relationships. For example,

in some, but not all cases, rare adverse drug reactions may

represent a ‘tail’ of response distributions and where to

define that cut-off within the distribution can be a

challenge. The SEARCH Collaborative Group showed a

successful approach to address this issue by combining

patients with both definite and incipient statin-induced

myopathy into a single case definition [22]. In other

cases, a rare adverse reaction is an unexpected outcome

often unrelated to the desired mechanism of action [17].

One efficient use of resources to collect pharmacogenomic

phenotypes is to collect samples within the context of

clinical trials, which streamlines the collection procedures.

The use of clinical trial data for GWAS is not only an

efficient use of resources, but has the advantage that

similarly treated ‘controls’ for the phenotype of interest

are built into the trials. However, because some trials are

not designed for GWAS mapping, the study designs used

for collection may not be ideal for pharmacogenomic

analysis (e.g. multiple drugs used in treatment arms, etc.)

[23]. Obviously, this ‘challenge’ is inherent to the treat-

ment of diseases like cancer or end-stage congestive heart

failure in which it would be unethical to fail to treat

patients with the current standard of care for this illness.

If pharmacogenomic efforts are substudies of clinical

trials, sample sizes may decrease, which reduces the power
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of the pharmacogenomic component. As meeting recruit-

ment targets is a primary goal in most clinical trials, geno-

mic and pharmacogenomic efforts are often included

only as substudies to which patients may or may not

consent; as a result, the power and generalizability of

genomic studies is compromised. Genetic studies added

as an afterthought may be viewed as creating a barrier to

recruitment and thus may not be a priority for sponsors.

Collecting drug response phenotypes in health care

systems with electronic medical records is another

method of accruing patients that is now being explored.

Sample size limitations are a challenge in any GWAS, but

are amplified in many pharmacogenomic studies. Parti-

cularly when studying rare drug reactions or adverse

events, it is by definition not feasible to recruit thousands

of patients with rare outcomes. This is a particular limi-

tation in pharmacogenomic GWAS, as the replication of

association results in independent populations has become

the ‘gold standard’ for validation of results [24]. If the

collection of a reasonable sample size for a discovery cohort

is at the edge of practicality, this makes the collection of

a well-powered replication cohort often impossible. Con-

sortia efforts (discussed below) have been motivated by

this limitation, to combine samples from across the world

to increase power and potentially identify replication

cohorts to maximize power and provide validation to associ-

ated signals. However, even the establishment of net-

works of investigators cannot necessarily overcome these

limitations, and the field must look for creative approaches

of validation/replication possibly involving functional stu-

dies or examination of related intermediate phenotypes.

There are unique ‘challenges’ associated with validation/

replication for pharmacogenomics. Clinical trials are ex-

pensive, and every study is unique as they are designed to

represent an advance over earlier studies to answer novel

therapeutic questions. Therefore, in pharmacogenomics

greater emphasis may have to be placed on functional

validation of GWAS ‘signals’ and on biological plausibility.

In addition, one must recognize that the larger the sample

size, the more likely that features, which confound the

genotype/phenotype relationship will be undocumented

or uncontrolled; thus diluting the ‘purity’ of the pheno-

type and potentially reducing the power [25].

Besides sample size, there are other practical limitations

in study design for pharmacogenomic studies. As men-

tioned earlier, family-based designs are generally imprac-

tical with drug response outcomes, which mean the field

relies heavily on cohort or case–control studies for GWAS

[5]. Although the number of cases may be limited by

event frequency as discussed above, finding and selecting

appropriate controls presents additional challenges. Al-

though GWAS of common diseases have taken advantage

of the use of shared controls across studies, this is not often

possible in pharmacogenomic studies, as typically controls

must also be exposed to the drug of interest (though this

may not be necessary in all cases). Other matching

criteria must also be considered, such as disease inter-

actions, population admixture, and additional environ-

mental and clinical exposures.

Analysis
As GWAS have become more prevalent, methodologies for

the analysis and interpretation of results have coevolved.

Many tools have been developed and evaluated in the con-

text of GWAS, and have resulted in the many successes

seen to date. However, there are still many challenges in the

analysis strategies used for GWAS in general, and particular

challenges for pharmacogenomics, as discussed below.

Standard analytical approaches

The majority of earlier GWAS have relied on the use of

traditional statistical methodologies for analysis, and several

tools have become widely used in the field. Software

packages such as PLINK [26] have become very popular

in implementing logistic regression (for case–control or

cohort studies), linear regression (for quantitative traits),

and family-based association tests for GWAS studies.

After various types of corrections for multiple testing

(Bonferroni, permutation approaches, etc), results of

these analyses are typically prioritized with replication

strategies. For single samples, the union of significant

results from several analytical approaches (committee-

based approaches) or measures of reliability from internal

model validation is often used to prioritize robust signals.

When more than one sample is available, multistage repli-

cation strategies are often employed to discover, prior-

itize, and validate signals. Finally, when multiple samples

are available, meta-analysis is often used to obtain more

comprehensive measure of association signals [27]. Chal-

lenges in sample collection (discussed above) can limit

the use of such multistage replication and meta-analysis

strategies in pharmacogenomics. One alternative approach

for replication, or at least prioritization, of association

signals in pharmacogenetic studies is to use nonclinical

GWAS of large collections of human tissue, cell lines, and

genetic model organisms [28].

Detecting complex predictive models

Such traditional approaches have been very powerful for

identifying strong single-locus associations (low-hanging

fruit) for a wide range of phenotypes in both common dis-

eases and pharmacogenomic outcomes (reviewed below),

and are typically applied in a way that fits within the

‘unbiased’ intentions of GWAS. Despite the successes of

these approaches, their limitations for detecting and

prioritizing more complex models have become a hot

topic in the literature [29].

As many successful GWAS have been published, the sum

of the genetic contributions of associated variants in many

common traits is far below the estimated heritability of the
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traits. These gaps in explained heritability are potentially

clarified by several potential etiologies. Low power to

detect low-effect sizes, the presence of rare variants

contributing to phenotypes, unmeasured nucleotide or

structural variation, complex methylation/epigenetic me-

chanisms, and gene–gene/gene–environment interactions

are all hypothesized to contribute to the unexplained

trait variation [29]. In response to these limitations, new

analytical approaches are evolving to detect complex

genetic risk models discussed below. These limitations

are leading to refinement of methods for GWAS analysis,

and these may be especially appropriate for pharmacoge-

nomic studies.

Expert knowledge driven analysis

Although this ‘unbiased’ intent of GWAS is to detect

potential new genetic associations that might not have

been considered as candidate genes, there has been a

recent appreciation for the fact that these simple analytical

approaches ignore the large amount of expert knowledge

available for a particular outcome. In response, there has

recently been rapid development in the use of network

and pathway analysis for analysis of GWAS data [30–33].

Literature searches (automated or hand curated), databases

of earlier results, etc. are being exploited to improve the

power of GWAS. As it is much known about the mechanism

and metabolism of many of the drugs evaluated in pharm-

acogenomic studies, there is very well-directed guidance

for such knowledge-driven analysis. The Pharmacogeno-

mics Knowledge Base [34] is an important resource and

data repository that summarizes and curates drug response/

gene relationships through gene variant annotation, hand-

curated literature review, and important pharmacogenomic

genes and pathways. An example of the potential of

pathway-based analysis is discussed below.

Successes in pharmacogenomics
Arguably the most important demonstrations of the

utility and challenges of GWAS in pharmacogenomics

are the empirical results of successful studies. A brief

description of the outcomes evaluated in pharmaco-

genomic GWAS and the strongest signals identified is

listed in Table 1. Details of each study can be found in

the references provided.

The potential and drawbacks of an agnostic, unbiased

approach for genetic association studies in pharmacoge-

netics are illustrated by a GWAS of the activity of a

well-known polymorphic drug metabolizing enzyme,

thiopurine methyltransferase (TPMT) in lymphoblastoid

cell lines from the HapMap project [63]. The goal of the

experiment was to assess whether the TPMT polymorph-

ism could be ‘rediscovered’ in this fashion [62]. Although

common polymorphisms in TPMT were well tagged, and

TPMT polymorphisms were associated with TPMT

activity, the GWAS indicated that 96 genes were ranked

higher than was TPMT itself. The extent to which these

higher ranked genes are false versus true positives is not

yet clear, but indicate the difficulty of using GWAS

approaches even for putatively monogenic traits.

An example of a GWAS for drug pharmacokinetics is pro-

vided by an analysis of methotrexate clearance determined

in over 3000 courses of the drug given to 434 children with

leukemia [36]. Many candidate gene studies have earlier

been conducted to identify genetic variation associated

with methotrexate pharmacokinetic variability with limited

success. Using GWAS, the SLCO1B1 gene was represented

by multiple polymorphisms in several LD blocks, a finding

that was replicated in an independent cohort of patients,

suggesting that there are multiple mechanisms by which

alteration of OATP1B1 (encoded by SLCO1B1) could

affect methotrexate pharmacokinetics. Although metho-

trexate had been shown to be an OATP1B1 substrate, it

was a rather weak one [64,65], and so the gene had not

risen to the top of candidate gene lists. This finding has

implications for both toxicity to methotrexate and to

possible drug interactions with widely used OATP1B1

substrates, such as statins.

The utility of pathway-based analysis is shown by

Hartford et al. [60], who performed a GWAS examining

etoposide-induced leukemia with myeloid/lymphoid or

mixed-lineage leukemia. They prioritized variant associ-

ations based on expression results, to identify alterations

in three biological pathways: adhesion, Wnt signaling, and

regulation of actin. Results in an independent validation

cohort confirmed the alterations in the adhesion pathway.

None of the alterations identified were significantly

based on traditional association analysis, showing the

potential of more complex modeling to identify pathway-

level associations.

Although most of the published studies identified vari-

ants at a genome-wide significance level, many of them

found strong potential signals that did not stand up to

traditional analyses [45,46,66]. These negative results

may represent true negative results, but it is highly likely

that many of these studies were limited by many of the

challenges discussed above (power, coverage, etc).

Network efforts
To address many of the limitations discussed above, parti-

cularly in regards to limited sample sizes and lack of

traditional replication cohorts, researchers are successfully

combining resources and establishing worldwide collabora-

tions to support large-scale GWAS. Given the complexities

of drug response phenotypes, this approach seems especi-

ally appealing in the application of GWAS to pharmaco-

genomics. By combining cohorts from around the globe,

pharmacogenomic studies will have higher power to detect

and validate response-determining variants.

The SEARCH Collaborative Group [22] shows the success

of such a collaboration. The SEARCH Collaborative Group

examined a rare outcome of statin therapy – myopathy,
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defined as markedly elevated creatinine kinase. In its

most extreme form, this can result in the potentially fatal

adverse effect of rhabdomyolysis, but these cases are

exceedingly rare. The SEARCH Collaborative Group also

found that myopathy was rare (approximately 0.1%) with

low-dose simvastatin, so they focused their efforts on 98

cases identified in 6031 patients receiving high doses

(80 mg/day) of the drug. A GWAS that studied 85 of these

cases and 90 controls identified rs4363657, in perfect LD

with a known functional nonsynonymous SNP in SLCO1B1
at genome-wide significance. The 5-year incidence of

myopathy was 18% in individuals homozygous for the risk

allele (2.1% of the study group), 3% in heterozygotes, and

0.6% in those with no risk allele. The result was repli-

cated in a separate cohort of patients receiving a lower

dose of 40 mg/day (relative risk 2.6 per C allele).

The success of this study illustrates several important

points in the study design of pharmacogenomic GWAS.

First, large collaborative samples can provide a valuable

resource for collecting a critical mass of patients with a rare

phenotype. Second, rare phenotypes are sampled from the

extreme tail of drug response distributions. As a result,

genetic variants that influence these traits may have larger

genetic effect sizes, and therefore be detectable with small

sample sizes, than more common outcomes. Third, similar

outcomes can sometimes be combined into a single case

group. Here, in the initial association phase, definite and

incipient myopathy patients were considered together.

Fourth, replication of an association should take place in a

similar population. In this study, the replication cohort was

treated with a lower dose, 40 mg of simvastatin daily as

compared with 80 mg in the initial group. We note that

selecting cases from lower dose regimen for a follow-up

study may be preferable to the converse (i.e. higher doses

in the follow-up cohort), as those cases have a more ex-

treme phenotype (by developing toxicity at a lower dose).

This can limit the dilution of the association signal in the

confirmatory study.

Several additional pharmacogenomics consortia have

been established to evaluate a number of drug response

outcomes, including the International Severe Irinotecan

Neutropenia Consortium (http://www.pharmgkb.org/views/
project.jsp?pId = 69), and the International Tamoxifen

Pharmacogenomics Consortium (http://www.pharmgkb.org/
views/project.jsp?pId = 63). These groups have pooled data

from around the world to investigate genetic predictors of

drug response with high power and comparison across

global populations. Although the initial study of these

consortia has typically been focused on candidate/known

genetic effects, they are moving towards GWAS. For

example, the International Warfarin Pharmacogenetics Con-

sortia (http://www.pharmgkb.org/views/project.jsp?pId = 56) origi-

nally combined data for over 4000 individuals from 24

international sites, to develop and test warfarin dosing

algorithms [67], and are currently using the cohort data

for a GWAS (through the International Warfarin Pharma-

cogenetics Consortia–GWAS consortium) to identify and

confirm earlier findings, and potentially discover novel

variants that explain potential trait variation across

multiple populations. Such collaborations are extremely

important for rare events, such as adverse events. The

International Serious Adverse Events Consortium (www.
saeconsortium.org) represents one important effort in

pharmacogenomics for adverse events, pulling together

commercial, academic, and industry partners to collect

data for well-powered GWAS.

These combined datasets represent exciting resources

for pharmacogenomics GWAS, but are not without chal-

lenges. Concerns with consistent data collection, storage,

data-ownership issues, etc. can be concerns in these

collaborative efforts.

Conclusion

GWAS have proven to be an exciting tool for gene map-

ping in common human traits, and are showing their

potential in pharmacogenomic outcomes as well. As

pharmacogenomic GWAS mature, there is an increased

appreciation for issues that are specifically related to

these unique phenotypes. Practical considerations, re-

lated to study design and available sample sizes highlight

the need for creative methods of replication, beyond the

traditional replication cohorts that are used for common

disease genetics, and the necessity of combining samples

across consortia. The complex physiology of drug res-

ponse outcomes highlights the need for analytical methods

that incorporate this complexity, using the wealth of in-

formation available about drug mechanisms and pathways.
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