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Abstract

High-dimensional and causal inference

by

Simon James Sweeney Walter

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bin Yu, Co-chair

Professor Jasjeet Sekhon, Co-chair

High-dimensional and causal inference are topics at the forefront of statistical re-
search. This thesis is a unified treatment of three contributions to these literatures.
The first two contributions are to the theoretical statistical literature; the third puts
the techniques of causal inference into practice in policy evaluation.

In Chapter 2, we suggest a broadly applicable remedy for the failure of Efron’s
bootstrap in high dimensions is to modify the bootstrap so that data vectors are
broken into blocks and the blocks are resampled independently of one another. Cross-
validation can be used effectively to choose the optimal block length. We show both
theoretically and in numerical studies that this method restores consistency and has
superior predictive performance when used in combination with Breiman’s bagging
procedure. This chapter is joint work with Peter Hall and Hugh Miller.

In Chapter 3, we investigate regression adjustment for the modified outcome (RAMO).
An equivalent procedure is given in Rubin and van der Laan [2007] and then in
Luedtke and van der Laan [2016]; philosophically similar ideas appear to originate
in Miller [1976]. We establish new guarantees when the procedure is applied in de-
signed experiments (where the propensity score is known a priori) and confirm that
the procedure is doubly robust. RAMO can be implemented in only a few lines of
code and it can be immediately combined with existing regression models, including
random forests and deep neural networks, used in classical prediction problems. This
chapter is joint work with Bin Yu and Jasjeet Sekhon.
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In Chapter 4, we investigate the specific deterrent effect of traffic citations. In
Queensland, Australia many speeding and red-light running offenses are detected by
traffic cameras and drivers are notified of the citation, not at the time they commit
the offense, but when the citation notice is delivered by mail about two weeks later.
We use a regression discontinuity design to assess whether the chance of crashing
or recidivism changes at the moment of notification. We analyzed a population of
nearly 3 million drivers who committed camera-detected offenses. We conclude that
there is not a significant change in the incidence of crashes but there is a marked
decrease in recidivism of about 25%. This chapter is joint work with David Studdert
and Jeremy Goldhaber-Fiebert.
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Chapter 1

Introduction and overview

This chapter provides an accessible overview of this thesis. We will eschew technical
details and emphasize ease of understanding and interpretability wherever possible.

1.1 A bootstrap for high dimensional classification
problems
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Figure 1.1: Proportion of voters by polling booth favouring the Labor party compared
to the Coalition on a two party preferrred basis in Victoria, Australia.

The first of our theoretical contributions is an extension of a technique called the
bootstrap. We will use an example to describe the bootstrap. Figure 1.1 records
the voting results for a state government election in Victoria, Australia. Each point
records the two party preferred vote share at a polling booth; the color of the point
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records the direction of the vote: the deeper red a point is, the more strongly the
corresponding polling booth favored the center-left Labor party, the deeper blue, the
more strongly the booth favored the center-right Liberal-National Coalition.

We have a procedure for converting these points into a smoothed two party pre-
ferred voting surface that describes geographic variation in voting preferences and
we are interested in assessing the uncertainty of the voting surface constructed. The
simplest way of doing this is to draw samples from the population and see how the
surface varies across samples. We can simulate this by dividing the data into four
sets and constructing an estimate for each set.

Figure 1.2: Independent replicates of the two party preferred surface in Victoria

Although this works, it is, in practice, an extremely conservative estimate of
the uncertainty of the surface estimated with the full dataset because it relies on
datasets one quarter the size. The bootstrap is a refinement of this intuition; rather
than drawing from the population we (re)sample, with replacement, from the original
sample and construct estimates for each resample. This is illustrated in Figure 1.3.

1.1.1 The block bootstrap

The bootstrap is versatile, but in some settings, it requires customization. For ex-
ample, we do not get good results if we apply the bootstrap to a time series. If we
apply the bootstrap assuming the observations of a time series are independent, we
do not capture the time-dependent structure of the observations, nor should we treat
the time series as a single observation because then the bootstrap replicates will not
vary and the bootstrap distribution of a statistics will be a poor estimate of the true
distribution.
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Figure 1.3: Bootstrap replicates of the 2PP surface in Victoria
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Figure 1.4: Annual rainfall in London 1813–1912

The solution is to divide the time series into contiguous blocks and then stitch
together resampled versions of the blocks. This procedure only works if the time
series is strongly stationary (meaning we can shift it back or forwards in time and it
still has the same distribution). There are many procedures for constructing blocks.
To illustrate a selection of procedure we use the example dataset in Figure 1.4,
which shows the annual rainfall in London between 1813 and 1912. The fixed block
bootstrap defines disjoint blocks so that each observation is part of one and only one
block. Notice that this discards the information about the dependence structure at
block transitions.



CHAPTER 1. INTRODUCTION AND OVERVIEW 4

20

25

30

35

1820 1840 1860 1880 1900
Year

R
ai

nf
al

l i
n 

in
ch

es

1.1.2 Moving block bootstrap

Amore data conservative approach is available in the moving block bootstrap. Blocks
are defined as every contiguous segment of the time series of an appropriate length.
Notice that the first and last values of the time series are only part of one block and
are therefore less likely to be includuded in a bootstrap replicate.
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1.1.3 Circular block bootstrap

The circular block bootstrap addresses this asymmetry by wrapping the time series
around a circle. This way every value is a member of the same number of blocks,
even the first and last values.
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A selection of blocks identified by the circular are shown in the Figure below, in
reality the blocks are defined uniformly over the circle.
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1.1.4 Comparison of block bootstrap variants

Examples of bootstrap replicates constructed using each of these procedures are
shown here:
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1.1.5 The asynchronous bootstrap

Our proposal for the asynchronous bootstrap asks: can the strategy of dividing a
sequence of variables into blocks and resampling the blocks be used without assuming
the variables have identical distributions and relationships to their neighbours? The
answer is, yes, at least in classification problems. To describe our algorithm, we will
represent the covariate matrix X and a categorical outcome Y as coloured arrays:
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Our task is to estimate the distribution of Y |X and we adopt the convention that
components of X that depend strongly on one another are similar colors.

Step 1: Divide

First we divide X using the values of Y :
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−→

Step 2: Sort

Next we sort the components of X within each division so that highly dependent
columns are near each other:

−→

In this hypothetical data set the ordering of the components is the same for each
value of Y , but this need not be the case in general.

−→

Step 3: Resample

Now we produce replicates of X and Y by resampling blocks:
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−→

Fixed

Circular

Stationary

As for the block bootstrap, a variety of methods can be used to allocate blocks.
Notice that here replicate components are always drawn from the corresponding
component of X . It is this alteration that permits us to relax the assumption of
stationarity.

Step 4: Aggregate

Finally we compute the statistic for each replicate data set and aggregate the results.

{Gk(X ,Y )}k∈1,...B =

{
G


 ,

G


 , . . . , G



}

The method of aggregation depends on the motivation a practitioner has in using
the bootstrap.

1.1.6 References

The notion of explaining the standard bootstrap with a statistical map in a non-
technical setting is borrowed from Diaconis and Efron [1983]. The fixed, moving
and circular block bootstraps are due to Hall [1985]; similar ideas are expressed in
Carlstein [1986], Künsch [1989], and Politis and Romano [1992]. A further variant of
the block bootstrap, the stationary bootstrap, is due to Politis and Romano [1994].
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1.2 Causal inference
The remaining two chapters are more accessible so we treat them only briefly here.
Chapter 2 assesses whether we can improve on a procedure for estimating heteroge-
neous treatment effects, the modified outcome method. In that procedure we first
construct a very coarse estimate for the individual treatment effect and then use that
estimate as the outcome for a classical regression algorithm. We ask whether it is
possible to improve the coarse estimate constructed in the first step. We describe
a procedure for making such an improvement and present some guarantees. In the
final chapter of the thesis we put the techniques of causal inference into practice, and
demonstrate the power and limitations of these techniques when they are applied to
answer problems of practical significance.



10

Chapter 2

A bootstrap for high-dimensional
classification problems

2.1 Introduction
Because of its strong intuitive appeal and ostensibly conservative assumptions, the
bootstrap is used throughout applied statistics. However, it does not always work,
and, when it fails, there may be few warnings. Classical examples of failure are given
by Bickel and Freedman [1981], Beran [1982] and Andrews [2000]. More recently a
literature has developed on the performance of the bootstrap in moderate and high-
dimensional problems. Karoui and Purdom [2016, 2018] demonstrate that some
varieties of the bootstrap do not provide correct coverage for the parameters of a
linear model or the eigenvalues of a covariance matrix.

The issues causing the failure of the bootstrap in high dimensions are subtle, so
we shall address them by reference to the better understood problem of estimating a
covariance matrix, Σ say, for high-dimensional data, for example when the number
of dimensions, p, is much greater than the sample size, n. In this setting it is
generally understood that conventional nonparametric estimators of Σ are of little
value; there are far too many degrees of freedom, relative to sample size, and at
least some parametric structure must be introduced to produce useful estimators.
One approach is to assume that the covariance matrix is banded and the number of
nonvanishing bands is small; see, for example, Bickel et al. [2004] and the references
in the last paragraph of this section. If there are 2m − 1 bands, one of which is
the main diagonal, then an approach such as this is tantamount to assuming that
the p-vectors that comprise the data each represent segments, of length p, of an
m-dependent time series.
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A similar approach can be used to overcome the problem of information scarcity
in high-dimensions, by resampling the vectors not as whole entities (this is referred
to below as synchronous bootstrap resampling) but as independent blocks (a form
of block bootstrap resampling we call the asynchronous bootstrap). The case where
the blocks are of length 1, so that the vectors are resampled as though they were
all independent, was suggested by Hall et al. [2009] in the context of assessing the
authority of rankings. More generally, if the blocks are of length m then the data
vectors are being resampled under an assumption of m-dependence, as is imposed
implicitly when constructing banded estimators of covariance matrices.

To clarify the discussion above, assume we have a sample X = {X1, ..., Xn} of in-
dependent p-vectorsXi = (Xi1, ..., Xip). Resampling using the standard, synchronous
bootstrap amounts to producing the resample X ∗ = {X∗1 , . . . , X∗n} by sampling the
whole vectors randomly, with replacement, from X . If we were to use the completely
independent, asynchronous bootstrap we would replace each X∗i by the vector that
was obtained by independently, for each j, choosing a value randomly from among
X1j, X2j, ..., Xnj, and putting it in the jth position in the resampled vector; and
then repeating this operation n independent times, i.e. for i = 1, ..., n. The ap-
proach suggested in the present paper amounts to a compromise between these two
extremes.

In section 3 we shall show, in applications to simulated data, that this mod-
ification of the bootstrap can improve significantly the performance of classifiers.
Section 4 will explain why, by showing that the asynchronous bootstrap, but not its
standard synchronous counterpart, can estimate consistently a nonlinear function of
high-dimensional data. The particular relevance of this property to classification,
which is the application considered in this paper, will be identified.

Bagging methods for the bootstrap, introduced by Breiman [1996], are often
an effective approach to reducing error in relatively complex statistical problems.
Bagging works because it reduces variability, and so it has been pressed into use in a
wide range of settings. Indeed, the literature on bagging is particularly extensive. To
give a flavour of it we mention only a few relatively recent contributions, in particular
the work of Bergmeir et al. [2016] and Collell et al. [2018] who studied the application
of bagging to neurological data; Bergmeir et al. [2016], who used bagging to forecast
economic time series; Biau et al. [2010], who explored properties of bagged nearest
neighbour regression estimators; and Hillebrand and Medeiros [2010], who applied
bagging to the modelling of volatility in stockmarkets. When used in classification
problems, bagging amounts to applying the classifier repeatedly to resampled versions
of the dataset, and allocating a new data value to the population to which it is most
frequently assigned in these resampling steps.

Prediction problems comprise an important application of the asynchronous boot-



CHAPTER 2. THE ASYNCHRONOUS BOOTSTRAP 12

strap methods, where they can be used in combination with Breiman’s bagging pro-
cedure. In both classification and prediction it is straightforward to use leave-one-out
methods to estimate the appropriate block size, or equivalently the number of blocks,
and in fact this is a major attractive feature of our methodology. In particular, even
though block bagging depends on a tuning parameter, determining its value does
not present any practical challenges. However, addressing prediction requires a very
different theoretical treatment, as well as a different class of numerical examples; and
moreover, the case of prediction is not encountered nearly as commonly, for relatively
high-dimensional data, as classification. Therefore we do not treat it here.

We conclude by discussing more of the literature on covariance estimation in rel-
atively high-dimensional problems, since the challenges (although not the method-
ologies) addressed there are related to those encountered when using the bootstrap
with classifiers for high-dimensional data. Ledoit and Wolf [2004] addressed vari-
ance estimation by shrinking the covariance matrix towards the identity; Wu and
Pourahmadi [2003] suggested, in effect, constructing the estimator as though the
data vectors came from varying-coefficient, varying-order regression models; Huang
et al. [2006] proposed penalisation methods related to the lasso; Furrer and Bengts-
son [2007] used parametric modelling based on the ensemble Kalman filter or the
square-root filter; and Fan et al. [2008] employed methods founded on dimension
reduction. Related work includes that of Bickel and Freedman [1981], Meinshausen
and Bühlmann [2006], Zou et al. [2006], Paul [2007], Johnstone and Lu [2009], Cai
et al. [2010, 2012], Cai and Liu [2011], Chen et al. [2011], Fisher and Sun [2011],
Negahban and Wainwright [2011] and Rohde and Tsybakov [2011].

2.2 Methodology

2.2.1 Block resampling

Suppose we have a training sample X = {X1, ..., Xn} comprised of independent p-
vectors Xi. Interpret Xi = (Xi1, ..., Xip) as k blocks of length b:

Xi = (Xi1, ..., Xib, Xi,b+1, ..., Xi,2b, ..., Xip) = (Bi1, ..., Bik) (2.1)

where Bij = (Xi,(j−1)b+1, ..., Xi,jb). Here, for the sake of simplicity, we assume that
p = kb, but the case where k does not divide p evenly is readily handled; see section
2.2.5.

Compute the resampled blocks B∗ij, for 1 ≤ i ≤ n and 1 ≤ j ≤ k, by sampling
randomly, with replacement, from B1j, ..., Bnj. Do this independently for each j,
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obtaining the following block-resampled analogue of Xi, at (2.1):

X∗i (k) = (B∗i1, . . . , B
∗
ik) = (X∗i1, . . . , X

∗
ib, X

∗
i,b+1, . . . , X

∗
i,2b, . . . , X

∗
ip) (2.2)

Here X∗i (k) is a block resampled p-vector, and the approach that produced it gener-
alizes the completely independent asynchronous bootstrap suggested by Hall et al.
[2009]. We recover the synchronous bootstrap by taking b = p, or equivalently, k = 1.

The block resampling method here should not be confused with its counterpart
for spatial data and time series (e.g. Hall, 1985; Carlstein, 1986; Kunsch, 1989),
which, in the context of a time series represented as a vector, takes the positions of
the blocks to be random. For example, one of several variants of the conventional
block bootstrap for time series would place the resampled block B∗ij into any of the
k positions in the representation X∗i (k) = (B∗i1, . . . , B

∗
ik). Those positions would

be chosen independently and uniformly from 1, . . . , k. This approach exploits the
assumed stationarity of the time series, and is necessary because, in the time series
case, there is usually only one realisation of the vector Xi. That is, the sample size is
n = 1. In the context of our work it is generally inappropriate to assume stationarity
of the time series Xi1, . . . , Xip, but we have the advantage of access to n realisations.

The algorithm discussed above tacitly assumes that there is some sense of order
in the components of the dataset. This is not necessarily the case for all datasets, but
for these data the block bootstrap can still be very useful; simply apply an algorithm,
such as hierarchical clustering, to impose a natural ordering on the components.

2.2.2 Distribution estimation

Assume we wish to construct a classifier to discriminate, on the basis of the dataset
X , among L mutually exclusive populations Π1, ...,ΠL. We take X to be a training
sample for this problem, and in particular, for each i = 1, ..., n we assume that we
know the value, J(Xi) say, of the index of the population from which Xi was drawn.
Of course, 1 ≤ J(Xi) ≤ L. A general classifier, which we denote by C(·|n,X ), can be
viewed as a function from Rp to the set {1, ..., L} and is interpreted as consigning a
new data value X to Π` if C(X|n,X ) = `.

Let X ∗ = X ∗(k) = {X∗1 (k), . . . X∗n(k)} denote the version of the training sample
X when it is drawn using block bagging with k blocks. The p-vectors comprising
X ∗(k) are independent (conditional on X ) versions of X ∗i (k), at (2.2). Construct
the classifier using X ∗(k) rather than X , and compute the conditional probability,
π̂`(X|k) say, that the classifier assigns X to Π`, where 1 ≤ ` ≤ L:

π̂`(X|k) = P[C{X|n,X ∗(k)} = ` | X , X]
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We interpret π̂`(x|k) as an estimator of π`(x) = P{C(x|n,X ) = `}. Of course, a
key assumption in our definition of π̂` is that the asynchronous bootstrap estimates
consistently the distribution of classification decisions. We shall show in section 4
that it does, but that the standard synchronous bootstrap generally does not.

In practice we compute π̂`(X|k) by simulation. That is, we draw B independent
versions X ∗1 (k), . . . ,X ∗B(k) of X ∗(k) and we take our numerical approximation to
π̂`(X|k) to be:

1

B

B∑
r=1

I [C{X|n,X ∗r (k)} = `] .

2.2.3 Block-bagged classifiers and their error rates

The block-bagged classifier, Cbb(·|n,X ), is defined to be the classifier that assigns X
to the population Π` whose index ` maximises π̂`(X|k):

Cbb(X|n,X ) = arg max` π̂`(X|k). (2.3)

Again, this methodology is appropriate only if our estimator π̂`(·|k) is consistent for
π`, and that is again a motivation for the block-bagged bootstrap.

The error rate of the classifier Cbb(·|n,X ) is

errbb(k) = P{Cbb(X|k, n,X ) 6= J(X)}, (2.4)

where X denotes a random p-vector drawn randomly from the mixture of the popula-
tions Π1, ...,ΠL, and is taken to be independent of the training data X ; and J(X) = `
if and only if X was drawn from Π`. Equivalently we can define errbb(k) in terms of
the prior probability ρ` of Π`, for 1 ≤ ` ≤ L:

errbb(k) =
L∑
`=1

ρ`P [Cbb(X(`)|k, n,X ) 6= `]

where the random p-vector X(`) has the distribution of a p-vector drawn randomly
from Π`, and ρ1 + ...+ ρL = 1.

2.2.4 Estimating the error rate of a block-bagged classifier

First we define a version of the classifier Cbb(·|k, n,X), for (n − 1)- rather than
n-samples. Given i1 in the range 1 ≤ i1 ≤ n, let X (i1) = X\{Xi1} denote the
(n − 1)-sample that remains if Xi1 is deleted from X ; let X∗i2(i1, k), for 1 ≤ i2 ≤ n,
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denote independent (conditional on X (i1)) versions of X∗i2(k), at (2.2), when X is
replaced by X (i1); define X ∗(i, k) = {X∗1 (i, k) . . . X∗n(i, k)}; put

π̂`(X|i, k) = P [C{X|n− 1,X ∗(i, k)} = `|X , X] ;

analogously to the definition of Cbb(X|k, n,X ) at (2.3), define the leave-one-out clas-
sifier Cbb(X|k, n− 1, X(i)) by

Cbb(X|k, n− 1, X(i)) = arg max` π̂`(X|i, k)

and put

êrr(k) =
1

n

n∑
i=1

P
[
Cbb(Xi|k, n− 1,X (i)) 6= J(Xi)

∣∣ X ]
If the prior probabilities ρ` are asymptotically, and respectively, proportional to the
numbers of data in X that come from Π`, then êrr(k) is a consistent estimator
of err(k), at (2.4). In other cases, êrr(k) can be re-defined by incorporating the
probabilities ρ` as weights, if they are known, or in terms of their estimators, if they
are estimated from the data. The value of k can be chosen to minimise êrr(k).

2.2.5 Block remnants

For the sake of simplicity, in the discussion above we assumed that k divides p. In the
majority of cases this will not be the case, and there are a variety of ways of dealing
with the problems that this creates. The simplest approaches involve appreciating
that the blocks Bij, in (2.1), need not be of the same width, and that they can be
increased to accommodate any block remnants that arise through the fact that p/k is
not an integer. For example, if p = kb+ c, where b, c and k are nonnegative integers
and 0 ≤ c ≤ b− 1, then the length of the kth block can be increased from b to b+ c.
Alternatively, if k ≤ c then c of the blocks can have their lengths increased by 1 unit.
Using either of these approaches, the total number of blocks equals k. On the other
hand, we could simply regard the block remnant of length c as a block by itself, in
which case there would be a total of k + 1 blocks. There are many other options of
this type.

Alternatively, the exact position of the breaks in the blocking procedure could
be randomised in each resample, so that while all blocks that do not include either
of the very ends of the p-vectors could be of size b, the length of the first (or last)
block would be randomly chosen from the set {1, ..., b}. This is actually the method
adopted in section 3.



CHAPTER 2. THE ASYNCHRONOUS BOOTSTRAP 16

2.3 Numerical properties

2.3.1 Simulation settings

To test the effectiveness of the asynchronous bootstrap, we simulate a classification
problem: Yi, indicates the binary class label of the ith observation and the predictor
matrix, Xij = µkj + εij records the value of the jth predictor for the ith observation,
here i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , p}. The class means, µkj, are defined such
that k indicates the value of Yi and j the component of X. The mean vector for the
first class, µ0j, is zero always and for the second class, µ1j, is zero with probability 1/2
and otherwise is uniform on [0, 1] or

[
0, 1

2

]
. The error structure εij is a zero mean, unit

variance Gaussian AR(1) process with autocorrelation function R(εij1 , εij2) = ρ|j1−j2|.
The classifier used is logistic regression with `1 regularisation.

2.3.2 Empirical effectiveness

A dataset with p = 500, n = 500 and error autocorrelation parameter ρ = 0.6 was
analysed. Figure 2.1 records the misclassification error on a test set of 10, 000 obser-
vations of ten block bagged classifiers trained on this data set. For each classifier, 60
bootstrap replicates were used and varying numbers of blocks were considered. The
improvement attributable to block bagging is dramatic with a relative reduction in
mean misclassification rate of 58% over standard bagging (corresponding to block
bagging with a single block) and 40% over bagging with a bootstrap that assumes
independence amongst the components of X (corresponding to block bagging with
500 blocks).

When we vary n and ρ the advantage of block bagging endures. A variety of
choices of n and ρ are shown in Figure 2.2 and summarised in Table 2.1. Block
bagging always achieves a substantial and significant reduction in misclassification
rate compared to bagging save one simulation when ρ = 0.3 and n = 500. This may
well be a type II error, particularly as the method used to account for the multiple
comparisons implicit in the selection of the optimal number of blocks, Bonferroni’s
correction, is highly conservative. When ρ = 0.3 block bagging seems not to confer
an advantage over bagging assuming independent components but neither does it
seem to degrade performance. Elsewhere, block bagging with an intermediate block
size is clearly the best performer except when ρ = 0.6 and n = 200.
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Figure 2.1: The performance of block bagging with regularised logistic regression
when p = 500, n = 500 and ρ = 0.6. Note that the numbers of blocks used are not
equally spaced and may not include the optimal number of blocks.

2.4 Theory

2.4.1 Summary and remarks

Section 2.4.2 will highlight the role that nonlinearity plays in failure of the stan-
dard synchronous bootstrap. In particular, both the synchronous bootstrap and
its asynchronous counterpart can estimate consistently a linear function of highly
multivariate data, but of these two approaches only the block-bagged, asynchronous
bootstrap is effective in nonlinear settings. This is relevant from a practical viewpoint
because classifiers are generally highly nonlinear functions of the training data. The
simplest way to access this issue seems to be by treating block bagging as a technique
for distribution estimation, and so we shall take that approach in section 2.4.2. Sec-
tion 4.3 will point specifically to failure of the synchronous bootstrap in the context
of classification, and demonstrate that the block-bagged, asynchronous bootstrap
overcomes that shortcoming.

Throughout section 4 we take dimension, p, to be the basic parameter, and in-
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Figure 2.2: Performance of block bagging for a variety of sample sizes and error
autocorrelations. In all cases p = 500. For ρ = 0.3, µ1j is chosen uniformly from

[
0, 1

2

]
with probability 1

2
and is zero otherwise; elsewhere it is chosen uniformly from [0, 1]

with probability 1
2
. The special treatment of ρ = 0.3 is necessary to make the

classification task harder because estimating very low misclassification rates poses
computational problems (although these are not insurmountable). For ρ = 0.6 a test
set of 10000 observations was used, elsewhere a test set of 1000 observations was
used.
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Table 2.1: Relative reduction in misclassification rate for the optimal block choice (of
those tried) compared to bagging (θ̂B) and bagging assuming independent compo-
nents (θ̂pBB). Confidence intervals are computed using Fieller’s Theorem. Family-wise
error attributable to selecting the optimal block size is controlled using Bonferroni’s
correction.

ρ n θB Bonferroni 95%CI θ̂pBB Bonferroni 95% CI
0.9 500 70% (35% to 87%) 99% (98% to 100%)
0.9 400 46% (3% to 75%) 93% (90% to 97%)
0.9 300 42% (26% to 55%) 79% (74% to 83%)
0.9 200 31% (16% to 45%) 65% (57% to 71%)
0.9 100 17% (8% to 25%) 35% (29% to 41%)
0.6 500 58% (45% to 69%) 40% (10% to 60%)
0.6 400 42% (32% to 51%) 31% (15% to 43%)
0.6 300 32% (17% to 45%) 36% (19% to 49%)
0.6 200 51% (39% to 61%) 22% (-7% to 42%)
0.6 100 32% (13% to 47%) 33% (13% to 48%)
0.3 500 22% (-11% to 42%) 0% (0% to 0%)
0.3 400 28% (10% to 42%) 8% (-19% to 29%)
0.3 300 21% (2% to 38%) 3% (-16% to 19%)
0.3 200 25% (8% to 40%) 6% (-16% to 25%)
0.3 100 22% (0% to 38%) 2% (-27% to 24%)

terpret sample size, n, and (in the case of the asynchronous bootstrap) block length,
b, to be functions of p that diverge with increasing p. When using the asynchronous
bootstrap we tacitly assume, in statements of results below, that block remnants are
dealt with in either of the two ways suggested in section 2.2.5. In technical argu-
ments we suppose for simplicity that p = bk, since the two ways of addressing block
remnants can be handled using identical arguments, with only notational changes.

2.4.2 Distribution estimation

Our main result in this section is that, while the standard synchronous bootstrap
accurately estimates the distribution of linear functions of the data, it can fail spec-
tacularly in nonlinear cases; whereas the asynchronous bootstrap is successful in both
linear and nonlinear settings.

To model dependence we take the p-vectors Xi = (Xi1, ..., Xip), for 1 ≤ i ≤ n,
to be independent and identically distributed as translated versions of the first p
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components of a zero-mean time series X0 = (X01, X02, ...). Define

Qj = n−1/2
n∑
i=1

(Xij − µj),

and let g be a function. Given a random variable R, write (1 − E)R to denote
R− E(R), and put

S = p−1/2
p∑
j=1

(1− E)g(Qj). (2.5)

A bootstrap estimator of the distribution function F (x) = P (S ≤ x) is given by

F̂ (x) = P(S∗ ≤ x|X),

where

S∗ = p−1/2
p∑
j=1

[
g(Q∗j)− E{g(Q∗j)|X}

]
, Q∗j = n−1/2

n∑
i=1

{X∗ij(k)− X̄j}

X̄j = n−1
∑

iXij is the jth component-wise sample mean, X∗ij is defined as at (2.2)
in the block-bagged, asynchronous case, and more generally the bootstrap can have
either the standard synchronous or the asynchronous form.

We assume that:

(a) for each p the vectors Xi − E(Xi) = (Xi1 − EXi1, ..., Xip −
EXip), for 1 ≤ i ≤ n, are independent and identically dis-
tributed as the vector of the first p components of the time-
series X0, and

(b) X0 is a stationary, m-dependent process, with E |X01|3 < ∞,
zero mean and fixed m ≥ 0,

(2.6)

Each of conditions (2.6)(a) and (2.6)(b) can be relaxed at the expense of longer

theoretical arguments in the proof of Theorems 1 and 2, below, and in particular m
can be permitted to increase with p. Third moments are needed principally for the
Berry-Esseen bound in (2.9).

Case of linear g

Here, if g(x) = a+ bx for constants a and b 6= 0, both the conventional synchronous
bootstrap and its asynchronous counterpart consistently estimate both the variance
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and the distribution of S, as n and p diverge. In particular, if S∗ is computed
from data vectors X∗i obtained using either the synchronous bootstrap, or the asyn-
chronous bootstrap with b → ∞ (in this case S∗ is interpreted as in (2.5)), then, if
(2.6) holds,

E(S∗2|X )

E(S2)
→ 1, sup

−∞<x<∞
|P(S∗ ≤ x|X )− P(S ≤ x)| → 0, (2.7)

where both convergences are in probability. For example, in the case of the syn-
chronous bootstrap the first result in (2.7) follows from the following easily proved
results:

E(S∗2|X ) =
1

np

n∑
i=1

{
p∑
j=1

(Xij − X̄j)

}2

=
1

np

n∑
i=1

E

{
p∑
j=1

(Xij − X̄j)

}
+ op(1),

1

np

n∑
i=1

E

{
p∑
j=1

(Xij − X̄j)

}
= (1− n−1)E(S2).

Case of nonlinear g

Here a general theoretical exposition is made more difficult by the wide variety of
forms that g can take. We shall simplify matters by tailoring our account to the case
where g(x) = I(x ≤ y), for a fixed number y. Then, if the vectors (Wi1,Wi2) are
distributed with component-wise variances σ2

i1 and σ2
i2, respectively; and if (Z1, Z2)

is taken to be normally distributed with the same mean and covariance matrix as
the 2-vector (n−1/2

∑
Wi1, n

−1/2∑Wi2); then, using the Berry-Esseen theorem for
independent two-vectors (see e.g. Götze, 1991), we deduce that:∣∣∣∣ cov

{
g
(
n−1/2

n∑
i=1

Wi1

)
, g

(
n−1/2

n∑
i=1

Wi2

)}∣∣∣∣
≤
∣∣∣∣P(n−1/2 n∑

i=1

Wi1 ≤ y, n−1/2
n∑
i=1

wi2 ≤ y

)
− P(Z1 ≤ y, Z2 ≤ y)

∣∣∣∣
+

2∑
`=1

∣∣∣∣P(n−1/2 N∑
i=1

Wi` ≤ y

)
− P(Z` ≤ y)

∣∣∣∣
+

∣∣∣∣P(Z1 ≤ y, Z2 ≤ y)− P(Z1 ≤ y)P (Z2 ≤ y)

∣∣∣∣
≤ C1

{
(1− θ)−3/2 1

n3/2

n∑
i=1

(
E |Wi1/σi1|3 + E |Wi2/σi2|3) + θ

}
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where C1 > 0 does not depend on n or on the distributions of the Wijs, and

θ =

∣∣∣∣ corr

( n∑
i=1

Wi1,

n∑
i=1

Wi2

)∣∣∣∣. (2.8)

Therefore we shall assume that, with θ given by (2.8),∣∣∣∣ cov

{
g

(
n−1/2

n∑
i=1

Wi1

)
, g

(
n−1/2

n∑
i=1

Wi2

)}∣∣∣∣
≤ C1

{
(1− θ)−3/2 1

n3/2

n∑
i=1

(E |Wi1/σi1|3 + E |Wi2/σi2|3) + θ

}
. (2.9)

Theorem 1. Assume that (2.6) holds, and n = n(p)→∞ and

n/p→ 0 (2.10)

as p → ∞. When implementing the block-bagged, asynchronous bootstrap, take the
block length, b = b(p), to diverge with increasing dimension, p, such that b2+δ/n =
O(1) for some δ > 0. Then: (a) When using the standard synchronous bootstrap to
estimate the distribution of S∗ in the case g(x) ≡ I(x ≤ y), both results in (2.7) fail.
(b) When using the block-bagged, asynchronous bootstrap for a g satisfying both (2.9)
and sup |g| ≤ C2 (this includes the case g(x) ≡ I(x ≤ y)), both results in (2.7) hold.

Proofs are given in outline in section 5, and in detail in a longer version of the
paper available from the authors.

To stress that the synchronous bootstrap fails even when the marginals are inde-
pendent, and to demonstrate that these problems arise principally when p is of order
n or larger, we show below that if the Xijs are completely independent then the first
part of (2.7) holds for the synchronous bootstrap if and only if (2.10) holds. A proof
of part (a) of Theorem 1 is similar to but simpler than that of the following result.

Theorem 2. If (2.6) holds with m = 0, and in particular if the variables Xij are
independent and identically distributed; if

p = O(nC3) for some C3 > 0, and E |X01|C4 < ∞, where C4 is
chosen sufficiently large, depending on C3;

(2.11)

and if we use the standard synchronous bootstrap to estimate the distribution of
S; then the condition p/n → 0 is necessary and sufficient for E(S∗2|X)/E(S2) to
converge in probability to 1.
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In nonlinear cases, if (2.10) holds, and in particular if the number of dimensions
is an order of magnitude larger than the sample size, then the synchronous bootstrap
variance estimator, E(S∗2|X), is greater than the true variance by a factor that is
asymptotically proportional to p/n.

2.4.3 Classification

For simplicity we assume that there are just two populations, Π(0) and Π(1). That is,
in the notation of section 2.2.2 we suppose that L = 2. Assume too that the sample
X = {X1, ..., Xn} is the union of X (0) and X (1), where the training sample of size n(r)

is drawn by sampling randomly from Π(r), and X(r) = (X
(r)
i1 , . . . , X

(r)
ip ) for r = 0, 1.

Put X̄(r) = (n(r))−1
∑

1≤i≤n(r) X
(r)
ij .

We shall study the centroid classifier, which assigns a new data vector V =
(V1, ..., Vp), independent of the training samples, to Π(1) if the quantity

D(V ) ≡
p∑
j−1

{(
X̄

(0)
j − Vj

)2
−
(
X̄

(1)
j − Vj

)2}
=

p∑
j=1

(
X̄

(0)
j − X̄

(1)
j

)(
X̄

(0)
j + X̄

(1)
j − 2Vj

)
=

1∑
r=0

p∑
j=1

(−1)r
{(

X̄
(r)
j

)2
− 2VjX̄

(r)
j

}

=
1∑
r=0

p∑
j=1

(−1)r
{(

X̄
(r)
j − µ

(r)
j

)2
+ 2

(
µ
(r)
j − Vj

)(
X̄

(r)
j − µ

(r)
j

)
+ (µ

(r)
j )2 − 2Vjµ

(r)
j

}
(2.12)

satisfies D(V ) > 0, and assigns V to Π(0) otherwise. (We use the notation V here
and below, rather than X as in section 2.2.2, to avoid confusing the jth vector
component Vj with the jth data value Xj.) The centroid classifier is popularly
applied in contexts ranging from genomics to speech recognition; see, for example,
Cootes et al. [1993], Franco-Lopez et al. [2001], Bilmes and Kirchhoff [2003], Dabney
[2005], Dabney and Storey [2007], Schoonover et al. [2003], Tibshirani et al. [2002],
McKinney et al. [2006], Wang and Zhu [2007] and Sharma and Paliwal [2010]. It
also enjoys optimality properties [Hall et al., 2010].

The version of D(V ) in the bootstrap case is

D∗(V ) ≡
p∑
j=1

{
(X̄
∗(0)
j − Vj)2 − (X̄

∗(1)
j − Vj)2

}
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where we define X̄∗(r)j = (n(r))−1
∑

j≤i≤n(r) X
∗(r)
ij . Here, in the context of the standard

synchronous bootstrap, the random variablesX∗(r)j are defined by noting that the vec-
tors X∗(r)i = (X

∗(r)
i1 , . . . , X

∗(r)
ip ), comprising the resample X ∗(r) = {X∗(r)i , . . . , X

∗(r)
n(r)},

are drawn by sampling randomly, with replacement, from X (r); and the resampling
that produces X ∗(0) is independent (conditional on X ) of that which gives X ∗(1).
The variant of D∗(V ) in the case of the blockbagged, asynchronous bootstrap is con-
structed identically, except that the vectors are now drawn from X (r) using the block
resampling algorithm introduced in section 2.1.

Our theoretical analysis will lead to the following two conclusions. (i) Despite
D(V ) behaving very conventionally, when viewed as a random variable, the syn-
chronous bootstrap distribution of D∗(V ), conditional on X and V , is not a good
estimator of the unconditional distribution of D(V ) when dimension is high rela-
tive to sample size. We shall demonstrate this by showing first, in Theorem 3, that
D(V ) behaves in a particularly regular fashion, and then, in Theorem 4, that despite
this regularity, if p increases modestly faster than the training sample sizes then the
ratio of the synchronous bootstrap estimator of the variance of D(V ), to the true
variance, diverges to infinity. (ii) If the asynchronous bootstrap is used to estimate
the distribution of D(V ) then both the variance and the distribution are estimated
consistently; see Theorem 5.

These results have immediate impact on use of the bootstrap to estimate error
rate in high-dimensional data analysis. In particular, they imply that standard
synchronous bootstrap estimators of error rate are inconsistent, and that alternative
methodology, such as the asynchronous bootstrap, is necessary. Thus, the theoretical
results in this section motivate the techniques introduced in section 2, and explain
the numerical properties summarized in section 3. In asymptotic terms, appropriate
implementation of the block bootstrap requires the block size, b, or alternatively,
the number of blocks, k, to diverge with increasing dimension, but not to increase
too fast. Our regularity conditions prescribe rates of increase, but in practice, as
illustrated in sections 2.3 and 3, leave-one-out methods can be used very effectively
to estimate error rate and thereby to choose b or k.

In preparation for Theorems 3 and 4 we extend (2.6) by allowing the components
of Xi to be both non-stationary and dependent; see (2.13) below. There E(r) denotes
the expectation operator applied to functions of data from Π(r):
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(a) for each p ≥ 1, and for data from Π(r) where r = 0 or 1,
the p-vector (Xi1−E(r)(Xi1), ..., Xip−E(r)(Xip)) is distributed
as a zero-mean, m-dependent but not necessarily stationary
stochastic process X0 = (X01, ..., X0p);

and X0 enjoys the properties:

(b) supj≥1 E(|X0j|4+2ε) ≤ C <∞, and

(c) var
(∑

j1+1≤j≤j2 X
k
0j

)
≤ C(j2 − j1) whenever 0 ≤ j1 < j2 ≤ p

and k = 1 or 2,

where ε > 0 and C do not depend on p, but m and the distribution
of X0 (and in particular, the marginal distributions) may so depend.

(2.13)

Condition (2.13) still makes the simplifying assumption that the populations Π(0)

and Π(1) differ only in terms of their means, although this constraint can be removed
at the expense of a longer argument. If the distribution of X0 were that of the
first p components of a stationary process (X01, X02, ...), and if m were bounded,
then (2.13) would imply the following condition for q = 1 and for a constant τ 2:

(a)
∑

j

∑
k{cov(X0j, X0k)}2 = pτ 2 + o(p),

(b) var(
∑

j X
2
0j) = O(p) and

(c) for some q ∈ [1, 2], supj
∑

k | cov(X0j, X0k)|q = O(1) as p →
∞.

(2.14)

To further simplify discussion we ask that, in one population (say, Π(0)), the
marginal means are all zero; in the other population, just ν of the p marginal means
equal η, say, and the other means all vanish; and the training sample sizes, n(0) and
n(1), diverge and are of similar sizes:
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(a) E(X
(0)
1j ) = 0 for each j,

(b) E(X
(1)
1j ) = 0 for all but ν values of j, for which E(X

(1)
1j ) = η, a

function of p,

(c) ν2−(1/q)η2 = o(p/n), where q is as in (2.14)(c), and

(d) n(0 � n(1) and n ≡ n(0) + n(1) →∞ as p→∞,

(2.15)

where an � bn means tha an/bn is bounded away from zero and infinity as n increases.

Theorem 3, below, shows that, under these conditions, the discriminator D(V ) be-
haves very regularly. In particular it has variance of size p/n, where n = n(0) + n(1),
and is asymptotically normally distributed.

Theorem 3. If (2.13)–(2.15), hold with τ > 0 in (2.14), and if m2+(2/ε)/p → 0 where
ε > 0 is as in (2.13), then (a)

var{D(V )} ∼ 4pτ 2
1∑
r=0

(
n(r)
)−1

(2.16)

and (b) the distribution of D(V ) is asymptotically normally distributed with this
variance, in the sense that

sup
−∞<x<∞

∣∣∣∣P {D(V ) ≤ x} − P
[
{varD(V )}1/2N + E{D(V )} ≤ x

] ∣∣∣∣→ 0 (2.17)

where the random variable N has the standard normal distribution.

Next we show that the standard synchronous bootstrap typically overestimates
the variance of D(V ) by an order of magnitude. Likewise, the synchronous bootstrap
fails to capture the broader distribution of D(V ), despite the regularity of that
distribution evinced by (2.17). We treat the case of relatively large p, considered
as a function of n, but the synchronous bootstrap leads to inconsistency for smaller
orders too. In lower dimensional settings, different terms come into play, and so
result (2.18) below changes.

Theorem 4. If (2.13) holds with (2.13)(b) strengthened to supj≥1 E(|X0j|8) ≤ C <
∞, if the marginal means for both populations are uniformly bounded, if D∗(V ) is
constructed using the conventional synchronous bootstrap, and if mn3/p → 0 as p
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diverges, then the ratio var{D∗(V )|X, V }/ var{D(V )} diverges. More particularly,
no matter whether V is drawn from Π(0) or Π(1),

var{D∗(V )|X , V }
var{D(V )}

= {1 + op(1)}σ
4p

2τ 2

∑
r=0,1(n

(r))−4∑
r=0,1(n

(r))−1
(2.18)

Finally we show that the asynchronous bootstrap overcomes these these difficul-
ties.

Theorem 5. Assume the conditions of Theorems 1 and 4. If D∗(V ) is constructed
using block bagging, where the block size, b = b(p), satisfies b → ∞ and b/p → 0
as p → ∞, then, no matter whether V is drawn from Π(0) or Π(1), the ratio on the
left-hand side of (2.18) converges in probability to 1; that is,

var{D∗(V )|X , V } = {1 + op(1){var{D(V )} (2.19)

where var{D(V )} satisfies (2.16); and

sup
−∞<x<∞

∣∣∣∣P[D∗(V )−E{D∗(V )|X , V } ≤ x

∣∣∣∣X , V ]
− P

[
D(V )− E{D(V )} ≤ x

]∣∣∣∣→ 0 (2.20)

in probability.

2.5 Outlines of technical arguments

2.5.1 Outline of the proof of Theorem 1

Preliminaries

We derive only part (b) of the theorem; establishing part (a) is similar to, but simpler
than, the derivation of Theorem 2. Assume for notational simplicity that p = bk,
where b, denoting block length, and k, the number of blocks, are both positive
integers. Writing EX for expectation conditional on X , we have:

S∗ =
1

p1/2

p∑
j−1

(1− EX )g

[
1

n1/2

n∑
i=1

{X∗ij(k)− X̄j}

]
=

1

k1/2

k∑
j=1

T ∗j ,

where
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T ∗j =
1

b1/2

b∑
r=1

(1− EX )g(V ∗jr), V ∗jr =
1

n1/2

n∑
i=1

{
X∗i,(j−1)b+r(k)− X̄(j−1)b+r

}
,

and, by the definition of the block-bagging algorithm, if block-bagging is used then
the variables T ∗j , for 1 ≤ j ≤ k, are independent conditional on X . Let varX and
covX denote variance and covariance, respectively, conditional on X , and note that

b varX (T ∗j ) =
b∑

r1=1

b∑
r2=1

covX
{
g(V ∗jr1), g(V ∗jr2)

}
. (2.21)

Outline proof of first part of (2.7)

Careful calculations from (2.9) show that

E
∣∣covX{g(V ∗jr1), g(V ∗jr2)}

∣∣ = O(n−1/2)

uniformly in 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ r1, r2 ≤ b and |r1 − r2| > m. This result, the
fact that n−1/2b→ 0 (since we assumed that b2+δ/n = O(1)), and the m-dependence
property can be used to prove that

b∑
r1=1

∑
1≤r2≤b,|r1−r2|>m

E
[∣∣covX{g(V ∗jr1), g(V ∗jr2)}

∣∣] = O(n−1/2b2) = o(b) (2.22)

var

 b∑
r1=1

∑
1≤r2≤b,|r1−r2|>m

covX{g(V ∗jr1), g(V ∗jr2)}

 = o(b2) (2.23)

Combining (2.21), (2.22) and (2.23) we deduce that

b varX (T ∗j ) =
b∑

r1=1

min(b,r1+m)∑
r2=max(1,r1−m)

E[covX{g(V ∗jr1), g(V ∗jr2)}] + op(b). (2.24)

Standard arguments show that

E[covX{g(V ∗jr1), g(V ∗jr2)}] = cov{g(Qr1), g(Qr2)}+ o(1) (2.25)

and together (2.24) and (2.25) imply that

varX (T ∗j ) =
2m∑
r=1

cov{g(Qr), g(Qm)}+Rj (2.26)
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where the random variables Rj are identically distributed and satisfy Rj = op(1).
Combining (2.26) with analogous results for covX (T ∗j , T

∗
j±1) it can be proved that

var(S∗|X ) =
2m∑
r=1

cov{g(Qr), g(Qm)}+ o(1) (2.27)

Result (2.5) and the m-dependence property can be employed to show that

var(S) =
2m∑
r=1

cov{g(Qr), g(Qm)}+ o(1) (2.28)

Together (2.27) and (2.28) imply the following, result equivalent to the first part of
(2.7):

var(S∗|X) = var(S) + op(1)

Outline proof of second part of (2.7)

It suffices to note that the variables

U∗j = (1− EX )g

[
1

n1/2

n∑
i=1

{
X∗ij(k)− X̄j

}]

in the formula S∗ = p−1/2
∑

1≤j≤p U
∗
j , are b-dependent conditional on X , and to check

that the conditions for Berk’s (1973) theorem. Appropriate conditional versions of
those conditions can be established using stochastic analysis.

2.5.2 Outline of the proof of Theorem 2

In the case of independent marginals, and when g(x) = I(x ≤ y), we have π ≡ P(Q1 ≤
y) → π0, say, and v2 = π0(1 − π0) is the limit of E(S2). Define π̂j = P(Q∗j ≤ y|X ),
an estimator of π, and put

∆jk = P(Q∗j ≤ y,Q∗k ≤ y|X )− P(Q∗j ≤ y|X )P(Q∗k ≤ y|X ).

In this notation,

var(S∗|X ) =
1

p

p∑
j=1

p∑
k=1

∆jk = A1 + A2 (2.29)

where

A1 =
1

p

p∑
j=1

∆jj =
1

p

p∑
j=1

π̂j(1− π̂j), A2 =
1

p

∑∑
j,k:j 6=k

∆jk
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Now, E(π̂1 − π)2 → 0 as n → ∞, whence it follows, since the variables π̂j are
identically distributed, that A1 = π(1 − π) + op(1). From this property, (2.29), a
central limit theorem and the fact that π(1− π)→ v2, it follows that either part of
(2.7) holds, and in particular that E(S∗2|X)→ v2, if and only if

A2 → 0 in probability. (2.30)

as p → ∞. The proof of the equivalence of (2.10) and either part of (2.7) is com-
pleted by showing that (2.10) is necessary and sufficient for (2.30). First we derive
Edgeworth expansions for P(Q∗j ≤ yσ̂j|X ) and P(Q∗j ≤ yσ̂j, Q

∗
k ≤ yσ̂k|X ), where

σ̂j = var(Q∗j |X ), and use those to show that for a constant a(y) 6= 0,

∆ ≡
∑∑
j,k:j 6=k

{
P(Q∗j ≤ yσ̂j, Q

∗
k ≤ yσ̂k|X )

− P(Q∗j ≤ yσ̂j|X )P(Q∗k ≤ yσ̂k|X )
}

= a(y)n−1p2 + op(p+ n−1p2). (2.31)

Taylor expansion in the Edgeworth expansion can be used to show that if σ̂j and σ̂k
in the definition of ∆ are replaced by the true standard deviations, which without
loss of generality both equal 1, then (2.31) still holds. If this replacement is made
then ∆ changes to pA2, and so (2.31) becomes: A2 = a(y)n−1p+ op(1 + n−1p). It is
clear from this property that (2.10) is necessary and sufficient for (2.30).

2.5.3 Outline of the proof of Theorem 3

Let Wj =
∑

r=0,1(−1)rW
(r)
j where

W
(r)
j = (X̄

(r)
j − µ

(r)
j )2 + 2(µ

(r)
j − Vj)(X̄

(r)
j − µ

(r)
j ) +

(
µ
(r)
j

)2
− 2Vjµ

(r)
j

In this notation, D(V ) =
∑

jWj; see (2.12). Minor changes to the proof of Berk’s
(1973) central limit theorem enable it to be shown that, if there exist constants
C, ε > 0, not depending on p and such that

E |(1− E)n1/2Wj|2+ε ≤ C, E

{
(1− E)n1/2

j2∑
j=j1+1

Wj

}2

≤ C(j2 − j1), (2.32)

for all 1 ≤ j ≤ p and 0 ≤ j1 < j2 ≤ p; if, as assumed in Theorem 3, the quantity
m = m(p), introduced in (2.13), satisfies m2+(2/ε)/p→ 0 as p→∞, where ε is as in
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(2.32); and if, as p→∞,

v(r)n ≡
1

p

{
(1− E)(n(r))1/2

p∑
j=1

W
(r)
j

}2

→ 4τ 2, (2.33)

for r = 0, 1, where τ is as in (2.14); then, defining vn = (n(0))−1v
(0)
n + (n(1))−1v

(1)
n ,

and writing N for a normally distributed N (0, 1) variable, D(V ) satisfies:

sup
−∞<x<∞

∣∣∣∣P{D(V ) ≤ x} − P
[
(pvn)1/2N + E{D(V )} ≤ x

]∣∣∣∣ (2.34)

Result (2.34) is equivalent to (2.17) and so implies part (b) of the theorem. The
proof of Theorem 3 is completed by establishing (2.32) and

var

(
p∑
j=1

W
(r)
j

)
∼ 4pτ 2(n(r))−1, for r = 0, 1. (2.35)

Note that (A.39) implies both (2.16) and (2.38). The first part of (2.32) follows by
direct calculation. A proof of the second part is more complex, and exploits (2.13)(c),
(2.14)(c) and (2.15)(a)-(2.15)(c). To derive (A.39), first define t2 = var(

∑
jW

(r)
j )),

t24 = var{
∑

j(Vj − EVj)µ(r)
j },

t21 = var

[
p∑
j=1

{
(µ

(r)
j − Vj)(X̄

(r)
j − µ

(r)
j )− (Vj − EVj)µ(r)

j

}]
,

t22 = var

{
p∑
i=1

(X̄
(r)
j − µ

(r)
j )2

}
, t33 = var

{
p∑
j=1

(µ
(r)
j − Vj)(X̄

(r)
j − µ

(r)
j )

}
.

It can be proved by lengthy calculations that t22 and t24 both equal o(p/n), and that
n(r)t23 = pτ 2 + o(p). Result (2.35) follows from these properties and the fact that
|t− 2t1| ≤ t2 and |t1 − t3| ≤ t4, implying that |t− 2t3| ≤ t2 + t4.

2.5.4 Outline of the proof of Theorem 4

Defining D(V ) as at (2.12), and

D∗1(V ) ≡
∑
r=0,1

(−1)r
p∑
j=1

{
(Ū
∗(r)
j )2 + 2Ū

∗(r)
j (X̄

(r)
j − Vj)

}
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where Ū∗(r)j = (n(r))−1
∑

1≤i≤n(r)(X̄
∗(0)
j −Vj), we have: D∗(V ) = D(V ) +D∗1(V ). The

resamples X ∗(0) and X ∗(1) were drawn independently, conditional on X , hence:

var{D∗1(V )|X , V } =
1∑
r=0

p∑
j=1

p∑
k=1

[
cov

{
(Ū
∗(r)
j )2, (Ū

∗(r)
k )2|X

}
+ 4(X̄

(r)
j − Vj) cov

{
Ū
∗(r)
j , (Ū

∗(r)
k )2

}
+ 4(X̄

(r)
j − Vj)(X̄

(r)
k − Vk) cov(Ū

∗(r)
j , Ū

∗(r)
k |X )

]
(2.36)

From (A.50) it can be proved that

var(D∗(V )|X , V ) =
1∑
r=1

[
2

(n(r))4

∑∑
i1 6=i2

(Ĝ
(r)
i1i2

)2

+
4

(n(r))2

n(r)∑
i=1

{
1

n(r)
Ĥ

(r)
i1 Ĥ

(r)
i2 + (Ĥ

(r)
i1 )2

}]
(2.37)

where, for s = 1, 2,

Ĝ
(r)
i1i2

=

p∑
j=1

(X
(r)
i1j
− X̄(r)

j )(X
(r)
i2j
− X̄(r)

j ), Ĥ
(r)
is =

p∑
j=1

(X̄
(r)
j − Vj)2−s(X

(r)
ij − X̄

(r)
j )s.

Let Z(r)
ij = X

(r)
ij −E(X

(r)
ij ), Z̄(r)

j = (n(r))−1
∑

i Z
(r)
ij and σ2

j = var(X0j). For each j
in the range 1 ≤ j ≤ p,

E(Ĥ
(r)
i1 ) =

p∑
j=1

E{Z̄(r)
j (Z

(r)
ij − Z̄

(r)
j )} =

p∑
j=1

{
σ2
j (n

(r))−1 − σ2
j (n

(r))−1
}

= 0

and so, using the m-dependence property, E{(Ĥ(r)
i1 )2} = var(Ĥ

(r)
i1 ) = O(mp). Sim-

ilarly, since by assumption in Theorem 4 the components of X0 have eight finite
moments, E{(Ĥ(r)

i1 )4} = O((mp)2). From these results it can be shown by lengthy
argument, including bounds to the variance of

∑
i(Ĥ

(r)
i1 )2, that

1

(n(r))2

n(r)∑
i=1

(Ĥ
(r)
i1 )2 = Op(mp/n) (2.38)
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Analogously it can be proved that E(Ĥ
(r)
i1 Ĥ

(r)
i2 ) = cov(Ĥ

(r)
i1 Ĥ

(r)
i2 ) = O(mp), and

similarly, E{(Ĥ(r)
i1 Ĥ

(r)
i2 )2} = O(mp3). Therefore,

1

(n(r))3

n(r)∑
i=1

Ĥ
(r)
i1 Ĥ

(r)
i2 = Op

{
(mp/n2) + (mp3/n5)1/2

}
(2.39)

Combining (2.38) and (2.39) we find that

1

n(r)

n(r)∑
i=1

{
Ĥ

(r)
i1 Ĥ

(r)
i2 + (Ĥ

(r)
i1 )2

}
= Op

{
(mp/n) + (mp3/n5)1/2

}
(2.40)

Noting the definitions of Ĝ(r)
i1i2

, Z(r)
ij and Z̄(r)

j we see that if i1 6= i2 then

E(Ĝ
(r)
i1i2

) = −
p∑
j=1

E
{
Z

(r)
i1j
Z̄

(r)
j + Z

(r)
i2j
Z̄

(r)
j − (Z̄

(r)
j )2

}
= − 1

n(r)

p∑
j=1

E(X2
0j)

Since the process X0 in (2.13) is m-dependent then var(Ĝ
(r)
i1i2

) = O(mp). Therefore,∑∑
i1 6=i2

E(Ĝ
(r)
i1i2

)2 =
∑∑
i1 6=i2

{
(E Ĝ(r)

i1i2
)2 + var(Ĝ

(r)
i1i2

)
}

=
∑∑
i1 6=i2

 1

(n(r))2

(
p∑
j=1

EX2
0j

)2

+O(mp)


= {1 + op(1)}

(
p∑
j=1

EX2
0j

)2

+O(mn2p).

From this formula, the property mn2/p → 0 (a consequence of the assumption
that mn3/p → 0), and lengthy arguments that include bounds to the variance of∑∑

i1 6=i2(Ĝ
(r)
i1i2

)2, it can be shown that

∑∑
i1 6=i2

(Ĝ
(r)
i1i2

)2 = {1 + op(1)}

(
p∑
j−1

EX2
0j

)
(2.41)

From (2.37), (2.40) and (2.41) we deduce that, since mn3/p→ 0,

var{D∗(V )|X , V } = {1 + op(1)}2

(
p∑
j−1

EX2
0j

)
1∑
r=0

(n(r))−4 (2.42)

Result (2.18) follows from (2.16) and (2.42).
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2.5.5 Outline of the proof of Theorem 5

Outline of the proof of (2.19)

As in the proof of Theorem 1 we assume, for simplicity, that p = bk, where b and k
are positive integers. A variant of property (2.37) can be shown to hold, written to
express the block structure of D∗1(V ):

var{D∗1(V )|X , V } =
1∑
r=0

k∑
j=1

var{A∗(r)j (V )|X , V }, (2.43)

where

A
∗(r)
j (V ) = (−1)r

b∑
t=1

[(
Ū
∗(r)
(j−1)b+t

)2
+ 2Ū

∗(r)
(j−1)b+t

(
X

(r)
(j−1)b+t − V(j−1)b+t

)]
So the block variances are:

var{A∗(r)j (V )|X , V } =
1∑
r=0

[
2

(n(r))4

∑∑
i1 6=i2

(Ĝ
(r)
i1i2

)2

+
4

(n(r))2

n(r)∑
i=1

{
1

n(r)
(Ĥ

(r)
ji1
Ĥ

(r)
ji2

+ (Ĥ
(r)
ji1

)2
}]

,

Ĝ
(r)
i1i2

=
b∑
t=1

(X
(r)
i1,(j−1)b+1 − X̄

(r)
(j−1)b+1)(X

(r)
i2,(j−1)b+t − X̄

(r)
(j−1)b+t)

Ĥ
(r)
jis

=

p∑
j=1

(X̄
(r)
(j−1)b+t − V(j−1)b+t)

2−s(X
(r)
i,(j−1)b+t − X̄

(r)
(j−1)b+t)

s

Lengthy calculations can be used to show from (2.43) that

var{D∗1(V )|X , V } = 4pτ 2
1∑
r=1

(n(r))−1 + o(p/n). (2.44)

Properties (2.16) and (2.44) together imply (2.19).
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Outline proof of (2.20)

It can be shown that:

(1− EX )D∗(V ) =
k∑
j=1

(1− EX )A∗j(V ) =
1∑
r=0

(−1)r
k∑
j=1

B
∗(r)
j , (2.45)

where the random variables

B
∗(r)
j =

b∑
t=1

{
(1−EX )(Ū

∗(r)
(j−1)b+t)

2

+ 2(X̄
(r)
(j−1)b+t − V(j−1)b+t)(1− EX ,V )Ū

∗(r)
(j−1)b+t

}
for 1 ≤ j ≤ k and r = 0, 1, are independent and have zero mean, both statements
holding conditional on X , and EX and EX ,V denote expectation conditional on X ,
and expectation conditional on both X and V , respectively. Therefore Lyapounov’s
central limit theorem for sums of independent random variables, using a bound on
fourth rather than third moments, can be used to give (2.20).
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Chapter 3

A simple and doubly robust estimate
for heterogeneous treatment effects

3.1 Introduction
Statistical inquiries investigate phenomena that have different manifestations in dif-
ferent circumstances and these differences cannot be captured by statistics that esti-
mate population average or sample average effects. Identifying this heterogeneity has
assumed increasing importance in the last quarter century in several domains. For
example, technology companies can now conduct experiments on tens or hundreds of
millions of subjects, which might provide the power to detect fine-grained heterogene-
ity; this is desirable in practice because many interventions explored by technology
companies have negligible effects on outcomes of interest for all but a small fraction
of subjects, so it is important to identify the subjects most likely to have a positive
response to avoid wasted expenditure. In addition, there is an increasing focus in
medicine in providing treatments that are tailored to the peculiarities of individual
patients; this has become viable because there are rich datasets on patients — par-
ticularly for those patients in intensive care or those for whom genomic datasets are
available.

The notion that the expected treatment effect may differ with observed char-
acteristics has a long history. In medical statistics, the canonical early citation is
Bernard [1865]:

... in physiology, we must never make average descriptions of experi-
ments, because the true relations of phenomena disappear in the average;
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when dealing with complex and variable experiments, we must study their
various circumstances ...

Subgroup estimation is widely used to estimate heterogeneity: discrete (or ordered)
covariates are used to define subgroups for which separate treatment effects can be
estimated [Byar and Corle, 1977, Simon, 1982, Foster et al., 2011]. Much of this
literature provides methods that ensure the validity of tests conducted on estimates
for subgroups and discourages the use of data dredging to conduct tests for which
Type I error is not controlled. There is also a literature on optimal designs for studies
conducted online that acknowledges the potential for heterogeneity: the goal here is
to arrive at a treatment policy that allocates each individual to the treatment that
will yield the best expected outcome conditional on covariate information [Aitchison,
1970, Zhang et al., 2012, Luedtke and van der Laan, 2016]. More recently a literature
has developed that focuses on estimation when there are a large number of covariates
relative to the number of samples [Su et al., 2009, Tian et al., 2014, Athey and
Imbens, 2016, Wager and Athey, 2017, Künzel et al., 2017]. In particular, our work
is complementary to the procedures of Künzel et al. [2017], whose X-learner could
be viewed as a kind of regression adjustment.

3.2 The modified outcome method
We will use the Neyman-Rubin model to describe the method under study: each
individual i is characterized by the quadruple (Wi, Yi(0), Yi(1), Xi), where Wi ∼
Bernoulli(pi) indicates treatment assignment, Yi(0) is the potential outcome we ob-
serve if individual i is assigned to the control group, and Yi(1) is the outcome we
observe if individual i is assigned to the treatment group. The individual treatment
effect is then Yi(1) − Yi(0); Xi is a d-vector of covariates thought to be associated
in some way with the individual treatment effect. This notation implicitly assumes
there is no interference: for each i and W,W ′ ∈ {0, 1}n,

Yi(W1, . . .Wi, . . . ,Wn)) = Yi(W
′
1, . . .Wi, . . . ,W

′
n)) = Yi(Wi)

and there is only one version of treatment: if Wi = w, then, with probability one,
the observed outcome, Yi, is equal to the corresponding potential outcome Yi(w).

Our data consists of the iid sample (Wi, Yi(Wi), Xi)
n
i=1 and our goal is to estimate

the superpopulation conditional average treatment effect:

τ(x) = E(Yi(1)− Yi(0)|Xi = x)

where E(·) denotes expectation with respect to the infinite superpopulation from
which the data are drawn. We assume throughout that strong ignorability holds:
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(Yi(0), Yi(1)) ⊥⊥ Wi|Xi

Using p(Xi) = E(pi|Xi) to denote the propensity score, the modified outcome is:

Y ∗i =
Wi − p(Xi)

p(Xi)(1− p(Xi))
Yi =

WiYi(1)

p(Xi)
− (1−Wi)Yi(0)

1− p(Xi)

It is straightforward to see that under the strong ignorability assumption, EWi
(Y ∗i |Xi) =

E(Yi(1)− Yi(0)|Xi) (where EWi
means the expectation is taken over the distribution

of Wi). So we conclude that any consistent estimator for E(Y ∗i |X = x) is also con-
sistent for the treatment effect τ(x). The modified outcome method fits a regression
model with response Y ∗i and this model is interpreted as an estimate of τ(x).

It will also be useful to work with a generalized version of this transformation:

Definition 1. Generalized modified outcome transformation

f ∗ =
Wi − p(Xi)

p(Xi)(1− p(Xi))
f

Here f can be any function of the data.

This procedure has been discovered several times in the literature: Miller [1976]
explored an analogous approach in survival analysis, which can be mapped to our
problem by letting pi be the censoring probability, Wi indicate censoring and Yi
be the survival time. Miller [1976] then advocates using the outcome WiYi/pi to
estimate E(Yi|Xi = x). Tian et al. [2014] suggest extensions of the modified outcome
method and attribute its first use to Signorovitch [2007]. An approach based on a
different transformation (which is in fact the refinement we describe in this paper)
is given in Rubin and van der Laan [2007] and Luedtke and van der Laan [2016].

The modified outcome method is seldom used in practice, even when the propen-
sity score is known, because the modified outcome has unnecessarily high variance.
By way of example, suppose Fisher’s sharp null holds: ∀i Yi(1) = Yi(0); then Y ∗i
has mass concentrated on two atoms Yi(1)/p(Xi) and −Yi(1)/(1 − p(Xi)). Now if
Yi(1) is relatively large, then Y ∗i will have very high variance, even if the potential
outcomes and the treatment effect are constant. Aside from inducing high variance,
the bimodal structure of the transformation is particularly problematic for adaptive
local methods. For example, when using unpruned decision trees there is a tendency
for observations in leaves to belong entirely to one treatment status. This means for
fixed covariate value x, the tree tends to converge to a mixture distribution composed
of Yi(1)/p(Xi)|Xi = x and −Yi(0)/p(Xi)|Xi = x. This phenomenon will typically
make decision trees fit to the modified outcome inconsistent. Similarly if p is close to
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zero or close to one then the variance of the modified outcome is exceptionally large
because we must divide by a number very near zero. When the propensity score
itself is unknown, the modified outcome will be worse still, as it relies on a consistent
estimator of the propensity score. This is often unachievable, particularly in high
dimensions. This situation is remedied by doubly robust estimation.

Definition 2. Let Ŷi(Wi, Xi) be an estimate of E(Yi(Wi)|Xi) and p̂(Xi) estimate
p(Xi). An estimate τ̂(Ŷ , p̂i) of a causal effect τ is doubly robust iff whenever Ŷi(Wi, Xi)→
E(Yi(Wi)|Xi) or p̂(Xi)→ p(Xi) then τ̂ → τ

Double robustness is a desirable property of many estimators of causal effects and
we will see in the sequel that the refinement we propose enjoys this property.

3.3 Regression adjustment for the modified
outcome

We aim to repair the modified outcome method by using regression adjustment.
To develop this we consider the modified outcome an estimate of the individual
treatment effect, so with no regression adjustment the modified outcome has risk:

R(Y ∗i ) = EYi(1),Yi(0),Wi

[
(Y ∗i − [Yi(1)− Yi(0)])2

]
(3.1)

We aim to find a better transformation by considering the risk of a regression adjusted
modified outcome:

R(Y ∗i − fi(Y,X,W )) = EYi(1),Yi(0),Wi

[
([Y ∗i − fi(Y,X,W )]− [Yi(1)− Yi(0)])2

]
(3.2)

We call estimators of this form RAMO standing for regression adjustment for the
modified outcome. Unfortunately, optimizing this criterion directly is cumbersome
and depends on detailed properties of the family from which fi is chosen and the
functions x 7→ Yi(1)|Xi = x and x 7→ Yi(0)|Xi = x, which are not known a priori.
Before addressing this complexity, we can at least determine the correct estimand
for regression adjustment. To do this we idealize our problem by allowing our re-
gression adjustment to depend on all potential outcomes (even unobserved potential
outcomes) and suppose that we seek to minimize the variance of the modified out-
come after regression adjustment, subject to the condition that the adjustment does
not introduce bias:

fi = arg min
fi

VWi
[Y ∗i − fi(Y (1), Y (0), p(Xi),W )|Yi(1), Yi(0)]

subject to EWi
[fi(Y (1), Y (0), p(Xi),W )|Yi(1), Yi(0)] = 0

(3.3)



CHAPTER 3. ADJUSTMENT FOR THE MODIFIED OUTCOME 40

This optimization can be motivated by analogy to uniform minimum variance unbi-
ased estimation. The advantage of the idealization is that it permits an easy solution:

Proposition 1. The unique solution to (3.3) is:

fi =
Wi − p(Xi)

p(Xi)(1− p(Xi))

[
Yi(1)(1− p(Xi)) + Yi(0)p(Xi)

]
and this satisfies:

VWi
(Y ∗i − fi) = 0

Proof. We observe

Y ∗i =
WiYi(1)

p(Xi)
− (1−Wi)Yi(0)

1− p(Xi)

= Yi(1)− Yi(0) +

(
Wi − p(Xi)

p(Xi)

)
Yi(1) +

(
Wi − p(Xi)

1− p(Xi)

)
Yi(0)

= Yi(1)− Yi(0) +
Wi − p(Xi)

p(Xi)(1− p(Xi))

[
Yi(1)(1− p(Xi)) + Yi(0)p(Xi)

]
We can verify that the expectation of the third summand is zero and the remainder
after subtracting it from the modified outcome is equal to the treatment effect and
so VWi

(Y ∗i − fi) = 0.

So, if Ŷi(1) estimates Yi(1) and Ŷi(0) estimates Yi(0), we expect that many desir-
able adjustments can be written in the form:

Y ∗i − f̂i =

[
Yi − (Ŷi(1)(1− p(Xi)) + Ŷi(0)p(Xi))

]∗
The effectiveness of regression adjustment is illustrated in a simple synthetic data
example in Figure 3.1.

In practice this adjustment is not feasible because it depends on both potential
outcomes and the best unbiased regression adjustments that is feasible is:

f̂i = arg min
f̂i

V [Y ∗i − fi(X, Y,W, p(Xi))]

subject to E[fi(X, Y,W, p(Xi))] = 0

(3.4)

Note that in (3.4) we permit all observations to be used to compute the regression
adjustment and only allow observed potential outcomes to be used when construct-
ing the regression adjustment. This makes things more difficult and, in general,
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Figure 3.1: The first panel shows the modified outcome, with each point colored
according to its treatment assignment; the bimodal struture of the transformation is
evident; the second panel shows our estimates of the optimal regression adjustment
estimand; and the final panel shows the modified outcome after regression adjust-
ment. In this setting Yi(0) ∼ N (0, 1), Yi(1) ∼ N (2Xi, 1) and Xi ∼ U [0, 10]. The
blue line is the CATE, the green points are the outcomes for individuals assigned to
the treatment group and the red points are the outcomes for individuals assigned to
the control group.

there is no uniformly optimal solution as the optimum depends on properties of the
random functions x 7→ Yi(1)|Xi = x and x 7→ Yi(0)|Xi = x. We will give strategies
for finding optimal regression adjustments that hold for all UMVU, minimax and
admissible estimators at the same time. We begin by formally defining the three
types of optimality. Throughout we suppose the potential outcomes are generated
from a family of distributions indexed by a (possibly infinite dimensional) parameter:
(Yi(1), Yi(0))|Xi ∼ Pθ where Pθ ∈ P = {Pθ : θ ∈ Θ}.

In this section we will work with a generic loss function Lθ(·, ·) which could be,
for example, the squared error loss: Lθ(τi, τ̂i) = (τi − τ̂i)2.

Definition 3 (Optimality). A regression adjustment f̂i is admissible using the loss
Lθ(·, ·) with respect to a family of distributions on the potential outcomes P if there
is no other regression adjustment f̃ which is uniformly better:

∀θ ∈ Θ,
n∑
i=1

E[Lθ(Y
∗
i − f̂i, τi)|Xi] ≤

n∑
i=1

E[Lθ(Yi − f̃i, τi)|Xi]

and

∃θ ∈ Θ,
n∑
i=1

E[Lθ(Y
∗
i − f̂i, τi)|Xi] <

n∑
i=1

E[Lθ(Yi − f̃i, τi)|Xi]
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A regression adjustment is minimax if
n∑
i=1

E[Lθ(Y
∗
i − f̂i, τi)|Xi] = inf

f̃
sup
θ

n∑
i=1

E[Lθ(Y
∗
i − f̃i, τi)|Xi]

A regression adjustment is uniform minimum variance unbiased [UMVU] if
∀ Pθ ∈ P, E(f̂i|Xi) = 0 and

n∑
i=1

V(Y ∗i − f̂i|Xi) = inf
f̃i:E(f̃i)=0

n∑
i=1

V(Y ∗i − f̃i|Xi)

Next we consider a correspondence between optimal estimates of the treatment
effect and optimal regression adjustments. These results collectively suggest that all
optimal estimators can be cast as regression adjustment estimators.

Definition 4. A modified outcome estimator with regression adjustment, τ̂ , is doubly
admissible, minimax, or UMVU if the adjustement is admissible minimax or UMVU
according to Definition 3 and τ̂ is admissible, minimax, or UMVU estimate of the
treatment effect with respect to the data (Y ∗i − f̂i, Xi)

n
i=1.

Theorem 6. If τ̂ is an admissible, minimax, or UMVU estimate of the treatment ef-
fect then it is equal to a doubly admissible, minimax, or UMVU regression adjustment
estimator of the modified outcome with respect to the expected sample loss:∑

i

E(Lθ[τi(Xi), τ̂(Xi)]|Xi)

Proof. We prove this holds for admissible estimators, the proofs for minimax and
UMVU estimators are identical. Suppose that τ̂ is an admissible estimator and
define the adjustment:

f̂i = τ̂i − Y ∗i
We can rewrite the loss for the regression adjustment using f̂i as

n∑
i=1

Lθ(Y
∗
i − f̂i, τi) =

n∑
i=1

Lθ(τ̂i, τi)

So we conclude that this must be an admissible adjustment because τ̂ is admissible
by assumption. Next consider the following estimator based on the modified outcome
with regression adjustment:

τ̃i(X, Y
∗ − f̂i) = Y ∗i − f̂i = Y ∗i − (τ̂i − Y ∗i ) = τ̂i
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We observe that τ̂ = τ̃ and because the class of estimators over which τ̂ is admissible
is strictly larger than the class of estimators over which τ̃ is admissible the conclusion
follows.

To show the modified outcome with regression adjustment is doubly robust it
suffices to show that if p̂i →p E(Wi|Xi) or Ŷi(Wi)→p E(Yi(Wi)|X = Xi) then

EWi
(Y ∗i − f̂i|Xi)→p Yi(1)− Yi(0)

Establishing this is a straightforward computation.

3.4 Simulations
A comparison of RAMO to the methods and a selection of the simulation settings
explored in Künzel et al. [2017] are shown in figure 3.2. In all simulations Yi(Wi) =
µi(Wi) + εi where the definition of µi(Wi) varies across settings and εi ∼ N (0, 1).
The rows of the covariate matrix X are iid and multivariate normal with mean 0 and
covariance matrix generated by the C-vine method described in Lewandowski et al.
[2009]; this method requires the selection of a tuning parameter α, which we set to
0.3. We generate training and testing sets each with 100 observations and allow the
dimension of X to vary so that its aspect ratio (p/n) ranges between 0.1 and 1. Four
response functions are considered:

(1) µi(0) = Xβ0 where the entries of β0 are iid U(1, p)

µi(1) = Xβ1 where the entries of β1 are iid U(1, p)

pi = 0.5

(2) µi(0) = sin(Xi1) + sin(Xi2) + sin(Xi3) + sin(Xi4)

µi(1) = µi(0) + 0.3I(Xi2 > 0.1)

pi = 0.5

(3) µi(0) = 3(Xi1) + 5Xi2

µi(1) = µi(0) + 30Xi3

pi = 0.1
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Figure 3.2: Performance of RAMO on synthetic datasets.

(4) µi(0) = 3(Xi1) + 5Xi2

µi(1) = µi(0) + 30Xi3

pi = 0.5

Inspection of the top left panel of Figure 3.2 suggests that no method appears to enjoy
a substantial advantage or disadvantage for the first simulation setting; however in
the remaining three settings RAMO is superior with its superiority increasing with
the dimension of the problem.
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3.5 Conclusion
This work demonstrates that, when regression adjustment is used, the modified out-
come deserves a prominent place in the toolbox of applied statisticians working to
estimate heterogeneous treatment effects in practice. It enjoys a variety of optimality
properties and is simpler to use than several competing procedures for estimating
heterogeneous treatment effects.
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Chapter 4

Once ticketed, twice shy

4.1 Introduction
Motor vehicle accidents inflict a devastating toll on human life and well-being. In
2010, they killed 1.3 million people worldwide (3% of all deaths) and caused 78
million injuries serious enough to require medical care.1 They rank 8th among the
leading causes of premature mortality,2 and are projected to rise to 4th by 2030.3

Much of this injury burden falls on developing countries. Developed countries,
and some middle-income countries, have made huge gains in road safety over the
last 50 years. The decline in road traffic injuries—due primarily to safer vehicle and
roadway redesign, seatbelts, and reductions in speeding and drunk driving—stands
as one of the great public health victories of the twentieth century.4 However, motor
vehicle accidents remain a major cause of mortality and morbidity in rich countries.

1Global Road Safety Facility. The World Bank & Institute for Health metrics and Evaluation,
University of Washington. Transport for health: the global burden of disease from motorized road
transport. Seattle, WA; Washington DC: The World Bank, 2014; Lozano R, et al. (2012). Global
and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic
analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2095-2128.

2Murray CJL, et al. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries
in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. The
Lancet, 380: 2197-2223.

3Mathers CD, Loncar D (2006) Projections of Global Mortality and Burden of Disease from
2002 to 2030. PLoS Med 3(11): e442.

4Peden M, Scurfield R, Sleet D, et al (eds). World Report on Road Traffic Injury Prevention.
Geneva: World Health Organization, 2004; Dellinger AM, Sleet DA, Jones BH. Drivers, Wheels, and
Roads: Motor Vehicle Safety in the Twentieth Century, in Ward JW, Warren C. Silent Victories:
The History and Practice of Public Health in Twentieth-Century America. New York, NY: Oxford
University Press, 2006.
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In the United States, for example, nearly 35,000 people die on the road each year
and 2.3 million are injured,5 at an estimated total cost of $ 100 billion.6 Part of the
immense social cost stems from the disproportionately high incidence of car crashes
among the young: car crashes are the leading cause of death and injury among
Americans 4-34 years of age.7

Laws governing the use of mechanically propelled vehicles appeared in the mid-
nineteenth century, well before petrol-powered automobiles were commercially avail-
able.8 The “red flag” traffic laws, enacted by the British Parliament in 1865, are
recognized as among the first. They imposed a speed limit of four miles per hour
and mandated a three-man crew for every vehicle, one of whom was to walk ahead to
warn bystanders of the approaching car by means of “a red flag constantly displayed”.9

Today, traffic laws are ubiquitous. Getting a ticket, or hearing of a friend or family
member who got one, is not exactly a routine event, but it might be the occasion
for no more surprise and anguish than would greet, say, losing one’s credit card or
having a particularly bad day at work. Governments promulgate elaborate lists of
road rules, which are designed to mitigate hundreds of different behaviours—from
speeding and stoplight breaches to carriage of excessive loads and driving under the
influence of alcohol. Many—though clearly not all—of these sanctioned behaviours
are empirically-established risk factors for accidents.10

Enforcement occurs on a vast scale. A 2010 analysis of US state courts counted
58 million traffic offenses under judicial management in that year; they accounted
for 54% of the aggregate trial court caseload.11 The vast majority of these charges

5National Highway Transportation Safety Agency. Traffic safety facts: 2012 Data. DOT HS
812 016 (May 2014).

6Naumann RB, Dellinger AM, Zaloshnja E, Lawrence BA, Miller TR. Incidence and total
lifetime costs of motor vehicle-related fatal and nonfatal injury by road user type, United States,
2005. Traffic Inj Prev 2010;11:353-60.

7Centers for Disease Control. Nonfatal, motor vehicle-occupant injuries (2009) and seat belt
use (2008) among adults—United States. MMWR 2011;1681-86; Subramanian R. Motor vehicle
traffic crashes as a leading cause of death in the United States, 2006. DOT HS 811 226 (Oct 2009).

8Oliphant K. Tort law, risk, and technological innovation in England. 59 McGill L.J. 819 (2014).
9The Locomotive Act 1865, 28 & 29 Vict. C. 83, s.3.

10Some behaviours are sanctioned because of their role in reducing the severity of injuries when
accidents occur, rather than the incidence of accidents. Rules regarding use of seatbelts and mo-
torcycle helmets are two examples.

11LaFountain R, Schauffler R, Strickland S, Holt K. Examining the work of state courts: An
analysis of 2010 state court caseloads. (National Center for State Courts 2012). (Note: The category
used in this analysis is actually titled “traffic/violations” , and it includes some non-traffic related
violations, such as breaches of ordinances. However, state-specific sub-analyses presented in the
report suggest that traffic offenses account for about 90-95% of the total counts in this category.)
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are resolved outside court.12 Nonetheless, with a median incidence of 18 offenses per
100 persons per year,13 traffic law violations must surely rank as the most common
point of contact Americans have with any punitive side of the legal system.

Although the detail, scale, and reach of traffic laws expanded dramatically over
the twentieth century, the core rationale of these regimes remains essentially un-
changed from the red flag days: they exist to protect the public’s health. The
standard account of how this outcome is achieved turns on deterrence: sanctioning
risky driving practices discourages them, thereby improving safety.14

To what extent do traffic laws actually achieve their foundational safety objec-
tives? And in what ways does deterrence shape driver behaviour? This study aimed
to add to the empirical evidence base available to answer those fundamental ques-
tions. Our focus was specific deterrence. We searched for evidence of its imprint on
recidivism and crash rates, drawing on a large dataset of driver, offense, and crashes
records from the Australian state of Queensland.

In the next section, we sketch a simple theoretical model of deterrence in the
context of traffic penalties. Part III reviews the literature on traffic law deterrence.
Part IV discusses some of the difficulties with causal inference in this area. Part V
describes our study approach. Part VI reports results. Part VII discusses the study
findings and considers their implications for law and road safety policy. Part VIII
concludes.

4.2 Pathways and targets
Classic deterrence theory describes two distinct mechanisms of action.15 “General
deterrence” refers to the threat of punishment prevailing in society at large. In the
road traffic context, this is the diffuse signal emanating from the very existence of

12The figures reported by the National Center for State Courts are based on tallies across state
courts. Cases from single-tiered courts, courts of general jurisdiction, courts of limited jurisdiction
are combined. In some states parking tickets fall under court jurisdiction, in which case they
contributed to the caseload totals from these jurisdictions. However, many states assign parking
ticket enforcement to a separate administrative agency, in which case they do not figure in caseload
totals. But even in states where parking tickets are excluded, traffic offenses remain a very large
proportion of total court caseloads. Take California, whose case total exclude parking tickets. The
state had 6.4 million incoming traffic offenses in 2010, which represents 61% of all civil, criminal,
and other cases in the state court system.

13LaFountain et al, supra note 11.
14Andenaes J. Punishment and deterrence. Ann Arbor: University of Michigan Press, 1974.
15Zimring FE, Hawkins GJ. Deterrence: the legal threat in crime control. Chicago: Univ Chicago

Press, 1973; Shavell S. Foundations of economic analysis of law. Cambridge, MA: Harvard Univer-
sity Press, 2004; Kahan D. The secret ambition of deterrence. Harv Law Rev. 1999;113:413–500
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a rule or regime; drivers seek to obey road rules because they realize they risk fines
and penalties if they break them. “Specific deterrence” comes from direct personal
experience. Drivers who infringe road rules get caught and are penalized, and then
learn their lesson; they become less likely to reoffend, which indirectly leads them to
drive more safely and have fewer accidents.

Figure 1 presents a simple illustration of the pathways through which general
and specific deterrence are theorized to influence road safety. General deterrence
is scattershot; it may simultaneously affect drivers’ propensity to offend, the safety
with which they drive, and their risk of crashing. Specific deterrent signals travel
along a more structured pathway. The penalty experience reduces propensity to
offend and to drive dangerously, in that order, or possibly simultaneously. The net
effect of those behavioral changes is a reduction in crash risk.

The classic model of deterrence has long been an intellectual punching bag. There
are many lines of attack. The clarity of the conceptual distinction between general
and specific deterrence, for example, is hotly debated. Criminal justice scholars
have also questioned the severability of deterrent effects from other determinants
of behavior change, such as incapacitation and rehabilitation. And Stafford and
Warr’s widely-discussed reconceptualization of deterrence theory posits that far too
little attention has been paid to the “anti-deterrent” effects that flow from personal
experiences with committing offenses that go unsanctioned.16

We would readily agree that the orthodox accounts of deterrence are incomplete
and, of particular relevance to our study, that the dividing lines between different
forms of deterrence are not always bright. Nonetheless, in describing the behavioral
effects under investigation among Queensland drivers we generally stick with the
traditional constructs and nomenclature. We do so partly for reasons of expediency.
But it is also worth pointing out that a couple of aspects of our study design help
to deflect some of most trenchant theoretical attacks. Specifically, we search for
evidence of specific deterrence within a time frame that is short—short enough to
discount rival explanations for any behavioral changes observed.17 In addition, we
observe which Queensland drivers had their licenses lapse or become suspended or
revoked, when, and for how long. “Censoring” those periods from the analysis helps
to separate true deterrent effects from incapacitation effects (i.e. lack of exposure to
the risks under study).

16Stafford M, Warr M. A reconceptualization of general and specific deterrence. Journal of
Research in Crime and Delinquency. 1993;30:123-35; Piquero A, Paternoster R. An application of
Stafford and Warr’s reconceptualization of deterrence to drinking and driving. J Res Crime Delinq.
1998;35(1):3-39.

17The tradeoff is that we are not positioned to draw inferences about how enduring specific
deterrent effects are.
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4.3 What is known about the deterrent effects of
traffic laws?

Over the last 40 years dozens of studies have sought to measure deterrent effects asso-
ciated with traffic laws. The body of research converges tightly around two outcomes:
recidivism and crashes. In other respects, however, it is quite heterogeneous.

4.3.1 Drunk driving studies

Perhaps the most striking feature of the traffic law deterrence literature is that the
overwhelming majority of studies focus on drunk driving. An obvious explanation
is the important causal role of alcohol in crashes.18 Other factors are also at work.
The sharp rise in the prevalence and severity of drunk driving laws since the 1970s,
coupled with the availability of high-quality population-level data on offenders and
road accidents, have created abundant opportunities for research. Further, the large
number of studies examining recidivist drunk driving almost certainly reflects the
leadership of criminologists in this area.

Drunk driving studies are included in the literature review of general and specific
deterrence that follows—without them the review would be short and the evidence
base remarkably thin. There are good reasons, however, to be cautious about ex-
trapolating from findings in those studies to surmise the nature of deterrent effects
of traffic laws more broadly. First, drunk drivers account for a small minority of pe-
nalized offenders. In Queensland, for example, over the 16-year period we examined,
less than 2% of the 11.6 million recorded offenses were DUIs. Second, driving under
the influence of alcohol or drugs sits at the egregious end of the traffic offense spec-
trum. It is commonly treated as a crime, whereas most other types of traffic offenses
are civil or administrative in nature, and are sanctioned by fines and license demerit
points.19 Third, owing to their criminal nature, drunk driving offenses often trigger
penalties such as license suspension, vehicle impoundment, and, for repeat offenders,

18In the US in 2012, for example, 10,322 deaths, or 31 percent of all road fatalities, occurred
in alcohol-impaired-driving crashes. These figures have declined steeply over the last 30 years. In
1982, 57% of the 43,945 traffic fatalities were alcohol-related. See National Highway Transportation
Safety Administration, Traffic Safety Facts: Alcohol-impaired driving DOT HS 81 1 870. December
2013.

19While it may be tempting to infer from that distinction that drunk driving laws should therefore
set the high-water mark for deterrent effects, that conclusion ignores research suggesting that: (1)
severity of punishment is a poor predictor of safer driving; and (2) drunk driving offenders, especially
recidivist drunk drivers, tend to be an atypical kind of traffic offender. See Nochajski TH, Stasiewicz
PR. Relapse to driving under the influence (DUI): a review. Clin Psychol Rev 2006;26(2):179-95.
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incarceration.20 Such incapacitating interventions have been associated with some
of the most impressive deterrent effects detected in the literature.21 However, as
noted above, these studies generally do not disentangle safer driving responses from
drivers’ reduced or complete lack of exposure to driving during the penalty period,
and the latter is not a species of deterrence. Finally, the prevalence of alcohol addic-
tion among drunk drivers may mute their susceptibility to deterrent effects, although
this theory is controversial.22

4.3.2 General deterrence

Nearly all studies of general deterrence from traffic laws employ the same design: they
are before-and-after comparisons of accident rates and/or recidivism, centered on the
introduction of new penalties or enhancements of existing ones. Two laws that have
consistently demonstrated large safety effects are the lowering of permissible levels
of blood-alcohol concentration (BAC) 23 and pre-conviction license suspensions for
drunk drivers.24 Isolating general deterrent effects in ecological pre/post studies is
challenging. The difficulty is compounded in the case of drunk driving laws by the

20Under so-called “administrative per se” laws, around 30 states now suspend licenses immedi-
ately, at the point of test failure. See Wagenaar et al, infra note 24.

21See, for e.g., Zaldor PL, Lunk AK, Fields M, Weinberg K. Fatal crash involvement and laws
against alcohol-impaired driving. Journal of Public Health Policy 1989;10:467-485; Voas RB Tip-
petts AS, Fell JC. The relationship of alcohol safety laws to drinking drivers in fatal crashes.
Accident Analysis and Prevention 2000;32;483-92.

22Nochajski, Miller, Parks. Comparison of first time and repeat DWI offenders Alcoholism: Clin-
ical and Experimental Research 1994;18:48; Wiczorek and Nochaski. Characteristics of persisent
drinking drivers; Yu and Williford 1993, Problem drinking and hi-risk driving ; Yu J, Chin Evans
P, Perfetti Clark L. Alcohol addiction and perceived sanction risks: Deterring drinking drivers. J
Crim Justice. 2006;34:165-174.

23Wagenaar AC, Maldonado-Molina MM, Ma L, Tobler AL, Komro KA. Effects of legal BAC
limits on fatal crash involvement: analyses of 28 States from 1976 through 2002. J Safety Res.
2007;38:493-499; Fell JC, Voas RB. The effectiveness of reducing illegal blood alcohol concentration
(BAC) limits for driving: evidence for lowering the limit to .05 BAC. J Saf Res 2006;37:233-243;
Whetten-Goldstein et al. Civil liability, criminal law, and other policies and alcohol-related motor
vehicle fatalities in the United States: 1984-1995. Accid Anal Prev 2000;32:723-33; Williams AF,
Zador PL, Harris SS, Karpf RS. The effect of raising the legal minimum drinking age on involvement
in fatal crashes. J Legal Stud. 1983 Jan;12(1):169-179; Deshapriya EB, Iwase N. Impact of the
1970 Legal BAC 0.05 mg% limit legislation on drunk-driver-involved traffic fatalities, accidents, and
DWI in Japan. Subst Use Misuse. 1998;33(14):2757-2788

24Wagenaar AC, Maldonado-Molina MM. Effects of drivers’ license suspension policies on
alcohol-related crash involvement: long-term follow-up in forty-six states. Alcohol Clin Exp Res.
2007 Aug.;31(8):1399-1406; Rogers PN. The general deterrent impact of California’s 0.08% blood
alcohol concentration limit and administrative per se license suspension laws. An evaluation of
the effectiveness of California’s 0.08% blood alcohol concentration and administrative per se license



CHAPTER 4. ONCE TICKETED, TWICE SHY 52

incapacitating nature of the penalties involved which, as note above, can cloud the
true size and nature of the deterrent effect.

BAC and pre-conviction license suspension laws aside, the evidence for general
deterrence from drunk driving laws is variable. Evans et al25 found no reduction
in accident risk in the US from escalations in the drunk driving penalties, nor did
Briscoe26 in Australia. Wagenaar et al27 identified a modest negative association
between mandatory minimum fines for drunk driving and fatal crash rates, but the
effects were not consistent across the 32 US states examined; this study also found no
strong deterrent effects from mandatory minimum jail policies. On the whole, inter-
national reviews of general deterrence have concluded that traffic laws that promise
increased certainty of punishment lead to temporary reductions in alcohol-related
fatalities, whereas laws aimed at increased severity are ineffective.28

Outside the drunk driving context, there is limited evidence on the general de-
terrent effects of traffic laws. What published studies exist are mostly positive. For
example, Bar-Ilan and Sacerdote29 found that red-light running in San Francisco
and Israel decreased in response to an increase in the applicable fine. In Portugal,
Tavares et al found that fine increases and the introduction of an “on-the-spot” fine
payment policy were associated with decreases in both accident and injury rates.30

suspension laws, Volume 1. Sacramento, California: California Department of Motor Vehicles,
Research and Development Section. CAL-DMV-RSS-95-158; 1995; McArthur DL, Kraus JF. The
specific deterrence of administrative per se laws in reducing drunk driving recidivism. Am J Prev
Med. 1999;16(1):68-75; Klein TM. Changes in alcohol-involved fatal crashes associated with tougher
state alcohol legislation. Washington, DC: US Department of Transportation, National Highway
Safety Administration. DOT HS 807 511; 1989; Zador P, Lund AK, Fields M, Weinberg K. Fatal
crash involvement and laws against alcohol-impaired driving. Washington, DC: Insurance Institute
for Highway Safety; 1988.

25Evans WN, Neville D, Graham JD. General deterrence of drunk driving: evaluation of recent
American policies. Risk Anal. 1991;11(2):279-289

26Briscoe S. Raising the bar: can increased statutory penalties deter drink-drivers? Accid Anal
Prev. 2004;36(5)919-929.

27Wagenaar AC, Maldonado-Molina MM, Erickson DJ, Ma L, Tobler AL, Komro KA. General
deterrence effects of U.S. statutory DUI fine and jail penalties: long-term follow-up in 32 states.
Accid Anal Prev. 2007;39:982-994.

28Ross HL. Deterring the drinking driver: legal policies and social control. Lexington, MA:
Lexington Books, 1980; Homel R. Policing and Punishing the Drinking Driver. A Study of General
and Specific Deterrence. New York: Springer, 1988; Nagin DS, Pogarsky G. Beyond Stafford
and Warr’s reconceptualization of deterrence: personal and vicarious experiences, impulsivity, and
offending behaviors. J Res Crime Delinq 2001;39:153-186.

29Bar-Ilan A, Sacerdote B. The response of criminals and noncriminals to fines. J Law Econ.
2004 April;47(1):1-17.

30Tavares AF, Mendes SM, Costa CS. The impact of deterrence policies on reckless driving: the
case of Portugal. Eur J Crim Policy Res. 2008;14:417-429.
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The introduction of a penalty points system in Italy in 2003 was associated with re-
ductions in both crashes and fatalities there.31 And Canadian laws aimed at stopping
street racing and stunt driving have been linked to a small but significant reduction
in speeding-related casualties among male drivers.32

4.3.3 Specific deterrence

Drunk driving studies also dominate the specific deterrence literature. The standard
approach here is to compare the effects of different forms and levels of punishment
on recidivism.33 The evidence is somewhat mixed. A few studies have detected
significant specific deterrent effects,34 but most have found no effects, very small
effects, or effects only in discrete subpopulations (e.g. first-time offenders).35

Two studies are noteworthy for extending specific deterrence investigations be-
yond the drunk driving context. Both reported evidence of specific deterrence. Li et
al36 examined a cohort of nearly 30,000 Maryland drivers who were ticketed for speed-
ing. The researchers found lower risks of subsequent speeding citations but higher
risks of crashes among drivers who elected to appear in traffic court, compared with
drivers who chose to simply mail in payment of their fines. Among court-goers,

31De Paola M, Scoppa V, Falcone M. The deterrent effects of the penalty point system for driving
offenses: a regression discontinuity approach. Empir Econ. 2013;45:965-985.

32Meirambayeva A, Vingilis E, McLeod AI, Elzohairy Y, Xiao J, Zou G, Lai Y. Road safety
impact of Ontario street racing and stunt driving law. Accid Anal Prev. 2014;71:72-81.

33Salzberg PM, Paulsrude SP. An evaluation of Washington’s driving while intoxicated law: Ef-
fect on drunk driving recidivism. J Safety Res. 1984;15(3):117–124; Yu J. Punishment celerity
and severity: testing a specific deterrence model on drunk driving recidivism. J Crim Justice.
1994;22(4):355-366; Taxman FS, Piquero A. On preventing drunk driving recidivism: an examina-
tion of rehabilitation and punishment approaches. J Crim Justice. 1998;26(2):129-143; McArthur
DL, Kraus JF. The specific deterrence of administrative per se laws in reducing drunk driving recidi-
vism. Am J Prev Med. 1999;16(1):68-75; Briscoe S, New South Wales, Bureau of Crime Statistics
and Research. The impact of increased drink-driving penalties on recidivism rates in NSW. Bureau
of Crime Statistics and Research. 2004;5:11; Weatherburn D, Moffatt S. The specific deterrent
effect of higher fines on drunk-driving offenders. Br J Criminol. 2011;51(5):789-803; Ahlin EM,
Zador PL, Rauch WJ, Howard JM, Duncan GD. First-time DWI offenders are at risk of recidivating
regardless of sanctions imposed. J Crim Justice. 2011;39(2):137-142.

34Yu et al 1994; McArthur et al 1999
35Taxman and Piquero 1998; Salzberg and Paulsrude 1984; Ahlin et al 2011; Weatherburn and

Moffatt 2011; Briscoe 2004.
36Li J, Amr S, Braver ER, Langenberg P, Zhan M, Smith GS, Dischinger PC. Are current

law enforcement strategies associated with a lower risk of repeat speeding citations and crash
involvement? A longitudinal study of speeding Maryland drivers. Ann Epidemiol. 2011;21(9):641-
647.



CHAPTER 4. ONCE TICKETED, TWICE SHY 54

those whose case was not prosecuted or suspended had significantly lower rates of
subsequent crashing and reoffending than drivers with other case outcomes.37

Redelmeier et al38 studied a sample of drivers in Ontario, Canada, who were
convicted of a wide range of traffic offenses. The drivers’ risks of having fatal crashes
in the month after a conviction were about 35% lower than in another comparable
period; 2 months after the conviction this “benefit” had dwindled, and by 3-4 months
it was no longer significantly different from the drivers’ baseline risks. These results
suggested a short-run specific deterrent effect.

4.4 The causal inference challenge

4.4.1 Known unknowns and unknown unknowns

The causal relationship between traffic laws and road safety is nuanced and challeng-
ing to isolate. Several inter-related factors conspire to complicate causal inference.
One is that penalties do not occur in isolation; they are one of a host of variables
that influence a driver’s risk of crashing. Another complication is the well-established
association (as distinct from causal relationship) between offenses and accidents: nu-
merous studies have shown that drivers at high risk of incurring traffic citations are
also at relatively high risk of crashing.39

A more general way of describing these causal inference problems is to say that
differences between drivers that influence both their risks of offending and their risks
of crashing—and thus modulate the effects of penalties on driving behavior—cannot
be fully observed and adjusted for, at least not in large population-level studies. Such
“confounders” undercut researchers’ ability to make strong causal claims about the
effect of penalties on rates of accidents and recidivism.

Two of the most important between-person differences that usually cannot be
observed in population-based studies are driving “exposure” (how much and when a
driver is on the road) and driving performance (how safely a driver drives relative
to others). A simple example helps to illustrate the problem. Imagine a driver

37The investigators compared drivers in four outcome groups: (1) not guilty; (2) suspended/no
prosecution; (3) probation before judgment and fines; and (4) fines and demerit points.

38Redelmeier DA, Tibshirani RJ, Evans L. Traffic-law enforcement and risk of death from motor-
vehicle accidents: case-crossover study. Lancet 2003; 361: 2177–2182.

39See, for e.g., Gebers MA. An inventory of California driver accident risk factors. Technical
report; California Department of Motor Vehicles: 2003; Blows S, Ameratunga S, Ivers RQ, Lo SK,
Norton R. Risky driving habits and motor vehicle driver injury. Accident Analysis and Prevention
2005; 37: 619–624; DeYoung DJ, Gebers MA. An examination of the characteristics and traffic
risks of drivers suspended/revoked for different reasons. J Safety Res. 2004;35(3):287-295.
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who commutes to work and averages 100 kilometers of driving per day; she incurs
two citations per year on average and crashes twice over a 10-year period. Another
driver, who works at home and drives 10 kilometers per day, averages one citation per
year and is involved in one crash over a decade. A comparison of the 10-year track
records of these two drivers, based only on information about their offense and crash
histories, would draw the specious conclusion that citations increase crash risk.40

A range of other unobserved differences besides driving exposure have the po-
tential to bias estimates of the causal effects of traffic law penalties. In interpreting
results from their study of specific deterrence among Maryland speeders, for ex-
ample, Li et al concede that “[t]he increased risk of crashes associated with court
appearances likely reflects the high-risk characteristics of drivers who chose this ap-
proach rather than being a true causal relationship.” In sum, problems of unobserved
heterogeneity bedevil large-scale studies that rely on unadjusted or under-adjusted
comparisons of different classes of offenders41—which is to say all but a couple of the
specific deterrence studies conducted to date.

4.4.2 Attempts at stronger causal inference

Two studies of the safety effects of traffic laws were carefully designed to try to
combat potential confounding bias. The studies reached opposite conclusions about
whether penalties specifically deterred, although they were focused on different types
of offenses.

Weatherburn and Moffat’s analysis of the specific deterrent effects of high fines
on recidivist drunk driving exploited a quirk in the management of these cases in
the New South Wales court system. The cases were assigned randomly within a
panel of magistrates, yet court records showed wide variation in the severity of the
penalties the magistrates imposed on offenders. The researchers took advantage of
this variation to measure the effect of different penalty levels on recidivism. They
detected no evidence of specific deterrence. Offenders who received more severe
penalties did not have lower rates of recidivism.

In the Ontario study discussed above, Redelmeier, Tibshirani, and Evans made
creative use of a case-crossover design to estimate the effect of convictions for a range
of different traffic offenses on crash risk. In the case-crossover design, each case serves
as its own control. All drivers in the study sample were involved in a fatal crash.

40A number of the studies of the deterrent effects of traffic laws make an inferential leap not
unlike this.

41Nagin D, Cullen FT, Jonson CL. Imprisonment and reoffending. In Tonry M (ed.), Crime and
Justice: A review of Research, 115-200. Chicago: Univ Chic Press 2009; Weatherburn and Moffat
2011.
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The researchers compared each driver’s probability of incurring a penalty in the
month before the crash with the probability that driver incurred a penalty in the
same month one year earlier (when they did not crash). A lower penalty risk in the
pre-crash period was interpreted as evidence of specific deterrence. The researchers
found such an effect, albeit a transient one.

Although these two studies had very different designs, focused on different offenses
or measures of safety, and reached opposite conclusions regarding specific deterrence,
their methodologies were shaped by a common goal: to counteract the threat of biases
from unobserved between-driver differences. We shared this goal, and pursued it
through a novel study design.

4.4.3 Overview of study approach

We exploited a “wrinkle in time” created by the way drivers are notified of certain
offenses in Queensland. We followed a large cohort of drivers who were caught
speeding or red-light running by traffic cameras. The drivers did not learn of their
offense and the penalty to be imposed until 2-3 weeks after the offense occurred. We
compared crash and offending rates in the periods immediately before and after the
drivers received notification.

This approach addresses the potentially pernicious effects of unobserved hetero-
geneity in two main ways. First, the comparison is between crash risk for a cohort
of drivers immediately before and immediately after notification. The pre and post
groups are homogeneous because they contain the same drivers (barring small losses
for drivers who are censored because they crash or reoffend). Second, because the
date of notification is determined by the regulator’s internal processes and the vari-
ability of the postal service, both of which are beyond the influence of drivers, it
is difficult to imagine any connection, unrelated to specific deterrence, yielding an
instantaneous change in drivers’ risk profile precisely at notification.42

We turn to now to describe the methods in more detail.
42As well as tackling unobserved between-driver differences, the short time-frame of our re-

gression discontinuity design also addresses within-driver differences that may emerge over time,
provided any such differences do not arise instantaneously at notification.
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4.5 Study approach

4.5.1 Setting

With 4.8 million residents, Queensland is the third most populous state in Aus-
tralia.43 Its regime for driver licensing and regulation is broadly similar to Australia’s
other states and territories, and to regimes in many other developed countries, in-
cluding those currently in force in US states. 44 Queensland operates a graduated
licensing scheme. Residents 17 years or older may apply for a learner license. Learn-
ers who log 100 hours of supervised driving, are at least 18 years of age, and pass
both a written road rules test and a practical driving test are issued a provisional
license. Provisional license holders become eligible for an “open” general license after
one to three years.

4.5.2 Offenses and penalties

In Queensland’s penalty scheme, each traffic offense triggers a fine and carries a spec-
ified number of demerit points. Fine amounts vary widely, from around one hundred
dollars for minor infractions to several thousand for the most serious ones. In 2014,
the lowest speeding fine for first time offenders was $ AU151 and the highest was $
AU1,062.45 The demerit points assigned to each offense are codified by statute, and
range from 1 point for minor transgressions (e.g. failure to dip high-beam headlights
for oncoming traffic, a small defect that renders the vehicle unroadworthy but not
necessarily unsafe) to 8 points for exceeding the speed limit by more than 40 kilo-
metres per hour. One-point and three-point offenses are by far the most common:
they account for approximately 30% and 45% , respectively, of all citations issued.

The Queensland Department of Transport and Main Roads (DTMR) keeps a
running tally of cumulative demerit points against every licensed driver in the state.
Demerit points are removed three years after the offense, and fully reset after a
period of license suspension or good driving behaviour.46 Drivers who accumulate
12 or more demerit points in a three-year period typically face a period of license

43Australian Bureau of Statistics. Australian Demographic Statistics. Canberra: 2013.
44Transport Operations (Road Use Management—Driver Licensing) Regulation 2010 (Queens-

land, Australia).
45The Australian dollar is roughly equivalent in value to the US dollar.
46When Queensland drivers reach 12 demerit points, they are given a choice of accepting a

suspension for a relatively short period (usually 3 months) or continuing to drive under threat of
heavier suspension (usually 6 months) if one further offense occurs during a defined period of good
driving behaviour (usually 12 months). Our data allowed us to observe these choices and drivers
were excluded from our analysis for any periods in which their license was suspended.
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suspension of 3-6 months. Drunk driving offenses occupy a category of their own;
they result in fines but not demerit points as such, because they almost always trigger
a license suspension that is applied independently of the demerit point scheme.

Offenses are detected through a combination of direct observation by police and
fixed and mobile traffic enforcement cameras.47 Cameras are used in the detection of
only two types of offenses: speeding and red-light violations.48 For directly-observed
offenses, police issue tickets at the roadside.49 Camera-detected offenses are notified
by mail. Over the time period of our study in Queensland, about half of all speeding
and red-light offenses were detected by direct observation and half were detected by
camera.

4.5.3 Data and variables

DTMR routinely collects details of both traffic offenses and crashes. Accurate track-
ing of offenses and penalties is essential for the operation of the state’s demerit point
system. All crashes that cause death, injury or substantial property damage are
recorded, provided they are reported to the Queensland Police Service.50

DTMR provided us with de-identified offense and crash data spanning the period
2 November 1996 to 31 December 2010. It also provided de-identified license histories
for all drivers in Queensland over the same period; for each driver, this included dates
when the driver was licensed and, if applicable, dates when the license was suspended
or disqualified.

Using de-identified numbers unique to each licensee, we linked the infringement,
crash and license history data to create the study dataset. The dataset included
variables describing drivers (age, sex), crashes (severity, fault), and offenses (type,
number of demerit points). Our offense typology was based on categories set forth
in the Australian and New Zealand Offense Classification.51 We also constructed
measures of the cumulative number of demerit points each licensed driver had at
successive points in time.

47State Penalties and Enforcement Act 1999 (Queensland, Australia).
48Transport Operations (Road Use Management) Act 1995 (Queensland, Australia), s 13, 158.
49Colloquially, these are referred to as “on-the-spot” tickets.
50The “substantial” property damage threshold is met if at least one vehicle is towed away,

the cost of damage to all property exceeds $2,500 (before December 1999), or the cost of dam-
age to property other than vehicles exceeds $2,500 (from December 1999). See Queensland De-
partment of Transport and Main Roads. Data Analysis: Road crash glossary. Available at
https://www.webcrash.transport.qld.gov.au/webcrash2/external/daupage/docs/glossary.pdf (ac-
cessed 10 Sept 2014).

51Australian Bureau of Statistics. Australian and New Zealand Offense Classification 2011 (3rd
edition).
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DTMR uses five mutually-exclusive categories to describe crash severity: (1)
fatality; (2) injury requiring hospitalization; (3) injury requiring medical treatment
but not hospitalization; (4) injury not requiring medical treatment; and (5) property
damage only. We collapsed these into a binary variable indicating “serious or fatal
injury” (first three categories) and “minor or no injury” (last two categories). Of
course, many crashes involve multiple injuries and property damage. The variable
we used pertains to the most serious outcome in each crash.

Determinations of fault for each crash, including single vehicle collisions, are made
by DTMR on the basis of the police report. The “at fault” designation is applied to
the person judged to be most at fault, and to any persons issued with traffic citations
in connection with the crash.

4.5.4 Study design

We used a regression discontinuity design to compare the two outcome variables
of interest—crash rates and recidivism rates—across two time periods.52 This is a
quasi-experimental design that permits causal inference in wide variety of situations.
The design requires that experimental units are assigned to treatment on the basis
of threshold defined by a covariate that takes values on a continuum. If the only
difference between experimental units immediately on either side of the threshold is
the fact of the treatment, then any discontinuity arising at the threshold must be
linked causally to treatment.53 In our analysis, the continuous measure is time and
the threshold is defined by the moment at which offending drivers were notified that
their violation had been caught on camera and that penalties were being imposed.54

52On one view, it is somewhat unorthodox to conceive of time as the continuous measure for
assortment in a regression discontinuity design. However, previous studies with designs in the
regression discontinuity family have used attainment of a certain age to “switch on” treatment
status (see studies reviewed in David S. Lee and Thomas Lemieux, Regression discontinuity designs
in economics. NBER Working Paper No. 14723 (February 2009). It is also true that our approach
also has many of the basic features of an interrupted time series design (see Penfold RB, Zhang
F. Use of interrupted time series in evaluating health care quality improvements. Acta Pediatr.
2013;13(6 Suppl):S38-44). We believe these are largely distinctions in labels, which do not have a
substantive bearing on the nature or appropriateness of the design we implemented.

53Thistlethwaite DA, Campbell DT. Regression-discontinuity analysis: An alternative to the ex
post facto experiment. Journal of Educational Psychology 1960;51(6):309-317; Imbens G, Lemieux,
T. Regression discontinuity designs: a guide to practice. Journal of Econometrics 2008;142:615–635

54If notification and infringement occur on the same day then causal inference from a regression
discontinuity design is not possible because drivers who experience crashes are much less likely to
go on to commit offenses (because, for example, their car is off the road being repaired), so any
discontinuity must be interpreted as the sum of the extent to which crashes prevent subsequent
offenses and the deterrent of effect of the penalty associated with the offense.
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Specific deterrence theory suggests that drivers’ risks of both offenses and crashes
should decrease from that moment forward.

Construction of the two time periods requires further explanation. The first time
period consisted of an interval running from the day a driver committed a camera-
detected offense to a day near the moment when the driver received notification of the
offense and the applicable penalty. We refer to this interval as the “pre-notification
period” . We set an upper limit of 21 days on the pre-notification period. The second
time period, the “post-notification period” , ran for 90 days following notification.

One complication with construction of the discontinuity in our study is that
we did not know the exact date drivers became aware of their offense. Our data
included a variable indicating the date the offense was registered by DTMR; as a
matter of routine practice, this date is one business day before the DTMR generates
the notification letter.55 The letter is sent by regular post, which typically takes
1-2 days, but the letter may not be opened and read by the offender immediately.
Further, although licensees are obligated by law to notify DTMR within 14 days of
any change of name or address, not all do, and some letters are sent to the wrong
address or wrong person.

To address this fuzziness around the day of the offender’s first awareness, we
created a “notification week.” Specifically, for each offense we calculated a best-
estimate date, defined as the date three business days (i.e. exclusive of weekends
and public holidays) after the date DTMR registered the offense. The notification
week was calculated by counting three days forward and three days back from the
best-estimate day. Thus, the pre-notification period actually ended on the fourth day
before the best-estimate day and the post-notification period began on the fourth day
after the best-estimate day. Some misclassification across time periods is inevitable,
and its effect would be to bias any true differences between the periods to the null.
However, we believe if it safe to assume that the vast majority of drivers in our
sample would have become aware of their offense and penalty during the notification
week.

4.5.5 Study sample

Drivers who committed camera-detected offenses entered the study sample, provided
they were at least 20 years of age56 and their license remained active throughout the

55Telephone conversation of July 23, 2014 with Dr. Nerida Leal, Principal Behavioural Scientist,
Queensland Department of Transport and Main Roads.

56Drivers with learner and provisional licenses must comply with special rules that do not apply
to other drivers. For example, learners must drive under supervision; provisional license holders have
certain restrictions on carrying passengers, driving high-powered vehicles, and driving at night, and
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study period. We observed this “cohort” for 112 days—21 days pre-notification, the
day of notification, plus 90 days post-notification.57 However, the cohort’s member-
ship was not completely fixed; it changed in two ways over the observation window.

First, we allowed for different lag periods between the offense and notification.
Any driver whose lag period was 22 days or more entered on the first day of the
pre-notification period; the rest joined on the day after their index offense.

Second, drivers who crashed or re-offended were censored from the cohort imme-
diately after counting those events in the daily rate. There was a strong reason to do
this for drivers who crashed: the crash reduced the likelihood they would continue
driving for some or all of the remaining observation period, so retaining them would
be likely to bias downwards the crash and offense rates calculated for subsequent
days.58 Re-offenders were censored because their response to any subsequent offense
may have overlapped in time with their response to the index offense, thus blurring
the deterrent effect under study. A countervailing consideration in the treatment
of re-offenders is that, because offenses are such frequent events, our censoring rule
served to eliminate nearly 15% of the cohort by the end of the post-notification pe-
riod. Such attrition should not have affected the discontinuity effects, but it may
have introduced some more general biases.59

4.5.6 Statistical analysis

The main goal of the statistical analysis was to estimate the size and significance of
the two discontinuities of interest—differences in crash risk and recidivism, respectively—
between the pre- and post-notification periods. We fit a generalized additive regres-
sion model from the Poisson family with an offset to permit the estimation of rates
rather than counts. Time trends in the crash and recidivism rates were modelled

the demerit point threshold for license disqualification is lower than for drivers with open licenses.
Hence, to avoid complications in the analysis and in interpretation of findings, we sought to exclude
learners and provisional license holders from the study sample. The difficulty was that we did not
have information that allowed us to identify these drivers directly. Therefore, we used age as a proxy,
excluding all drivers under 20 years of age. This undoubtedly produced errors: Queenslanders as
young as 19 obtain unrestricted open licenses, and some learners and provisional drivers are over 20
years of age. However, the overwhelming majority of learner and provisional drivers are under 20,
and most drivers under 20 fall into one of these two license categories, so the age-based exclusion
rule was a reasonable work-around.

57Hereafter, when it is necessary to distinguish the camera-detected speeding or red light offense
that brought drivers into the sample from subsequent offenses drivers committed, we refer to the
former as the “index” or “notified” offense.

58On the other hand, the fact that so few drivers crashed, relative to the size of the baseline
population, means this bias would probably not be noticeable.

59We describe this issue in more detail in the Discussion section.
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using thin plate splines. Other covariates were added to the model as parametric
terms.60

In the primary crash model, the outcome variable was crashes per 100,000 drivers
per day; in the primary recidivism model, the outcome variable was offenses per
100,000 drivers per day. The covariates specified in these two models were essentially
the same. The predictor of interest was a dummy variable distinguishing observations
in the pre-notification period from observations in the post-notification period. The
thin plate splines controlled for time trends within the pre- and post-notification
periods. The models also included dummy variables marking the number of days
from notification modulo 7 to account for a day-of-the-week effect.61 In addition, we
adjusted for several covariates known to have an independent association with the
outcomes of interest: driver age, offense type (red light, minor speeding, moderate
speeding, major speeding), and cumulative demerit points. Inclusion of these baseline
risk factors strengthened our ability to interpret the magnitude of the discontinuities
as average effects at the population level.

Results of the primary crash and recidivism models are presented in two ways.
We drew adjusted trend lines on either side of the discontinuity, and superimposed
them on scatter plots of the raw daily rates. We also present coefficients and 95%
confidence intervals from the models in tabular form.

The second step in our analysis was to determine whether there were subgroup
differences in the size of the discontinuity effects estimated in the primary models.
To do this we conducted a series of stratified analyses. The models had identi-
cal specifications to the primary models, but were run within defined subgroups of
drivers.

For crash risk, we analysed the magnitude of the discontinuity within the following
subgroups: (1) drivers for whom the notified offense brought their cumulative demerit
point total near to the point of license disqualification (9-11 points) versus drivers
who remained at a low point count after the notification (1-5 points); (2) crashes in
which the driver was judged to be at fault versus not at fault; and (3) crashes that
resulted in serious injury versus minor injury.

For recidivism risk, we estimated discontinuity effects within the following strata:
(1) the same high-versus-low cumulative demerit point totals as described above for
the crash risk analyses; (2) subsequent offenses detected by camera versus direct

60Wood SN. Modelling and smoothing parameter estimation with multiple quadratic penalties.
Journal of the Royal Statistical Society (B) 2000;62(2):413-428; Hastie TJ, Tibshirani RJ. Gener-
alized additive models. Chapman & Hall/CRC, 1990.

61We could not include day of the week directly because notification may have been made on
any non-holiday weekday. Thus, a day that was 8 days from notification would assume the same
value in this day-of-the-week variable as would the day that was one day from notification.
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observation; (3) high-risk versus low-risk offenses;62 and (4) concordance between
the type of index offense and the type of subsequent offense versus discordance in
offense types.

All analyses were conducted in R (version 3.1.1).63 Only a small fraction of the
data was missing (<0.25% for all variables analysed).

4.5.7 Ethics

The Human Research Ethics Committee at the University of Melbourne approved
the study.

4.6 Results

4.6.1 Sample characteristics

Table 1 profiles characteristics of the drivers (n=2,880,763) in the study sample,
together with the type of camera-detected offense that brought them into the sample.
Sixty percent of the drivers were male and 64% were aged between 31 and 60 years.
Ninety-one percent were caught speeding; the rest ran red lights. Two thirds of
drivers had acquired fewer than six demerit points, inclusive of the points associated
with the notified offense; at the other end of the spectrum, the notified offense
brought 14% of drivers up to nine or more demerit points.

Table 2 shows the severity of crashes (n=15,317) that occurred during the study
period. One percent caused at least one fatality, 22% caused injuries serious enough
to require hospitalization, and 27% caused injuries that were treated outside hospital.
Drivers in our sample were judged to be at fault in 62% of the crashes in which they
were involved.

Table 3 describes the offenses (n=184,544) drivers committed during the 112-
day observation period, following their index camera-detected offense.64 Seventy-one

62These two strata were created by separating offenses clearly indicative of risk driving behaviour
(e.g. dangerous/careless driving, speeding, red-light running, line crossing, drunk driving, failure to
wear a seatbelt or helmet, failure to give way, etc) from offenses not clearly related to risky driving
(e.g. administrative non-compliance, unsafe carriage of goods, defective vehicle, public nuisance
etc.).

63R Core Team (2014). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria.

64These figures do not represent a full accounting of the reoffending by drivers in our cohort
during the 112-day period. Because we treated re-offending as a censoring event, we did not
analyze and do not report in Table 3 any further offenses (third, fourth, fifth, etc.) by drivers who
committed more than two offenses.
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percent of the re-offending involved speeding. The next most prevalent types of
offenses were red light violations (4%), driving while uninsured or unregistered (3%),
and using a mobile phone while driving (2%). Fifty-three percent of the offenses
were detected by camera and 47% by direct police observation.

4.6.2 Effects of notification on crashes

Notification did not lead to a significant change in drivers’ risks of crashing (Rate
Ratio [RR], 0.94; 95% Confidence Interval [CI], 0.86-1.02) (Figure 2).

Table 4 shows the full set of estimates from the multivariate regression model.
Drivers’ age, gender, and cumulative demerit point total were all significant pre-
dictors of crash risk, as was the type of camera-detected offense committed, but
notification was not.

This result was robust across all subgroups examined (Figure 3). Drivers for
whom the notified offense took their cumulative demerit point tally into the range
of 9-11 points, the level at which one further offense would likely result in license
disqualification, did not exhibit a significant change in crash risk following notifica-
tion (RR, 1.31; 95% CI, 0.91-1.87). Nor did we detect a significant change in crash
risk when the analysis was restricted to drivers at fault in the crash (RR=0.93; 95%
CI, 0.87-1.01), or to crashes that caused fatal or serious injury (RR, 0.97; 95% CI,
0.85-1.10).

4.6.3 Effects of notification on recidivism

The rate at which drivers committed offenses decreased by 25% immediately after
notification (RR, 0.75; 95% CI, 0.73-0.78) (Figure 4), and remained relatively low
for the remainder of the post-notification period.

Table 5 shows the full regression results. The baseline predictors for recidivism
ran in the same direction and were of a similar magnitude as in the crash model,
except for offense type. Speeders reoffended at a higher rate than red light runners,
but they crashed at a lower rate.

The decrease in recidivism following notification varied within several of the sub-
groups of drivers examined (Figure 5). The decrease in rates of offenses clearly
indicative of risky driving (RR, 0.70; 95% CI, 0.69–0.72) was larger than the de-
crease observed in rates of low-risk offenses (RR, 0.78; 95% CI, 0.73–0.83).65 There
was a larger decrease in camera-detected offenses following notification (RR, 0.68;

65For a description of which offenses went into which categories, and the basis for the classifica-
tions, see supra note 62.
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95% CI, 0.66-0.70) than there was in offenses detected by direct police observation
(RR, 0.75; 95% CI, 0.73-0.77).

Drivers whose index offense was a camera-detected red light violation had rates
of red light violation after notification that were 41% lower (RR=0.59, 95% CI,
0.49-0.72). Drivers whose notified offense was speeding had rates of speeding re-
offending that were 31% lower (RR=0.69, 95% CI, 0.67-0.71). By contrast, rates
of reoffending by offenses of a different type to the notified offense were “only” 23%
lower after notification (RR=0.77, 95% CI, 0.74-0.80).

On the other hand, the magnitude of the decline in recidivism was insensitive to
drivers’ demerit point tallies. Drivers whose notified offense took them into the 9-11
point range decreased their offending rates (RR=0.69, 95% CI, 0.65-0.73) by about
the same amount as drivers whose notified offense did not take their cumulative
demerit point above 5 points (RR=0.71, 95% CI, 0.69-0.73).

4.7 Discussion
This study followed a cohort of drivers who had broken road rules and been caught.
We followed them from the time the committed a speeding or red-light offense,
through the time they were informed that they had been caught and would be pe-
nalized, and then for three months afterwards. We found that notification did not
reduce the likelihood of subsequent crashes, even among drivers for whom another
offense probably spelled license suspension.

The notification did, however, result in a substantial reduction in drivers’ risks of
committing additional offenses. Subgroup analyses shed further light on this effect.
There was an especially large reduction in offenses of the same type as the notified
offense, suggesting a kind of specific-specific deterrence at work. Similarly, notifica-
tion reduced the incidence of offenses indicative of risky driving choices more than
it did the incidence of offenses that were more administrative or technical in nature.
In other words, behaviours that were relatively dangerous and which ostensibly fell
more directly under the drivers’ control decreased by a larger amount. This is a
plausible result within a deterrence framework.

Set alongside each other, the effects we observed on crash risk and recidivism
raise two obvious questions. First, if deterrence theory rests on the assumption that
curbing offending prevents accidents, how does one happen without the other? Sec-
ond, should one infer from our findings that traffic laws in Queensland are producing
an effective form of specific deterrence? We consider each of these questions in turn.
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4.7.1 The bifurcation of specific deterrence

Pure avoidance behaviour

One way in which recidivism could decline without moving the needle on crash rates
is through avoidance behaviour. Notification may have prompted drivers to alter
their driving behaviour in ways that substantially reduced their risk of incurring
additional penalties but which did not materially affect their crash risk. Imagine
a driver who is motivated to steer clear of intersections he knows have cameras, or
avoid stretches of road he knows are a common speed trap. These moves could be
made without necessarily changing the care with which he drove.

One of the subgroup analyses provides some indirect support for an avoidance
explanation. The rate of camera-detected offenses dropped more sharply after notifi-
cation than did the rate of offenses ticketed at the roadside.66 Mobile enforcement by
police has a stochastic dimension that probably makes it more difficult than cameras
to thwart, in the absence of authentic changes to the safety with which one drives.
In sum, behavioural responses focused on pure enforcement evasion could drive a
wedge between risks of recidivism and risks of crashing.

Relationship between offending and crash risk

A more fundamental and damning explanation for the bifurcation is that offending
behaviour—or more precisely, offending behaviour that law enforcement catches—
has a weak connection to crash risk at the population level. Regulators and safety
experts like to focus on the strength of the connection, emphasizing, for example,
that the behaviours traffic law regimes sanction are associated with crash risk, and
that multi-offenders have higher crash risks than occasional or never offenders.67 But
widening the frame, the reality is that the strength of the relationship is diluted at
several critical nodes. Cameras and police capture only a small fraction of offenders.
Crashes are rare events (much rarer than penalties.) And many crashes are not
attributable to unlawful behaviours, although a sizeable proportion appears to be.68

66Recall that all cohort members entered on camera-detected offenses, but the daily rates re-
ported in the recidivism model relate to both camera detected and directly observed offenses.

67See, for e.g., Gebers MA. An inventory of California driver accident risk factors. Technical
report; California Department of Motor Vehicles: 2003

68It is difficult to find statistics to quantify this split. Data from the National Highway Trans-
portation Safety Agency indicate that in 2012 31 percent of all road fatalities (n=10,322) were due
to alcohol-impaired driving and 31 percent of all fatalities (n=10,219) were due to speeding. Red
light runners are apparently responsible for 2% of fatalities and 7% of injuries. But there is un-
doubtedly overlap between these various groups, and the representation of other types of offending
behaviours in crashes is not readily available.
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Each of these factors weakens the relationship between the incidence of offending
behaviour and crashes at the population level. 69 The sinews are probably loose
enough to permit offending rates within a defined population to decrease or increase
across a fairly large range without altering crash rates. This theory does not explain
why, in our study, recidivism was deterred and crashes were not, but it explains how
the two effects can coexist.

4.7.2 Is specific deterrence working in Queensland?

Unlike some other realms of law—much of criminal law, for example—traffic laws face
a separation between the bad act and the bad outcome. The regime is oriented almost
entirely to certain bad acts—specifically, it penalizes bad acts known or believed to
be associated with bad outcomes (i.e. crashes, injury, and property damage). The
bad outcome need not materialize in a given case for the penalty to apply—indeed it
rarely does.70 Our results throw this separation between act and outcome into sharp
relief. This poses an interesting quandary for specific deterrence.

Tort scholars tend to focus primarily on behaviour change as the principal target
for deterrence. At one level, this is sensible. The causes of crashes are multifac-
torial and the driver carelessness is just one factor. So surely the law should not
be judged by its capacity to curtail dangers over which it has little or no control.
Nonetheless, honouring the focus on behavioural change might lead one to conclude
that Queensland’s traffic laws are performing admirably as a specific deterrent.

From a broader public health and policy standpoint, however, the suggestion
that a legal regime could be regarded as performing successfully for having curbed a
surrogate of the bad outcome, without having any measurable effect on the outcome
itself, is somewhat absurd. Traffic safety regulators do not proclaim to sanction
unlawful driving as an end in itself; they sanction it to prevent harm. We did not
find evidence of such prevention.

One caveat to that conclusion is that that there may have been some true reduc-
tion in crashes that we could not detect. The risk ratio for the notification variable in
the primary crash risk analysis was 0.94. Although the estimate was not statistically

69The weakness of the relationship also helps to explain why it has proven infeasible to predict
the incidence of crashes at the population level on the basis of drivers’ offense records. Some studies
have shown a significant relationship between infringement and crash histories (see, for e.g., Geber
MA, Peck RC. Using traffic conviction correlates to identify high accident-risk drivers. Accident
Analysis and Prevention 2003;35:903-912). But correlation and prediction are different beasts. No
study has shown offense data can predict crashes with levels of accuracy that are high enough to
justify aggressive interventions in high risk populations of drivers.

70The obvious exception is citations triggered by the behaviour of a driver who has crashed, but
these represent only a small fraction of all citations issued.
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significant at conventional levels, the relative rarity of crashes meant this analysis
was not nearly as highly powered as the recidivism analysis. If it had been statisti-
cally significant, a reduction in crash risk of this magnitude is not trivial. Depending
on how much it cost, a community might very happily embrace a safety intervention
that reduced crash risk by 6 percent.71

4.7.3 Other trends in levels risk over time

Although our analysis was designed to examine changes in crash and offending rates
immediately after notification, two other patterns appeared repeatedly in the pre-
and post-notification periods, and warrant discussion.

Increase in recidivism in the pre-notification period

The primary recidivism plot and most of the stratified recidivism analyses show a
steep rise in penalty risk in the pre-notification period, peaking at or shortly before
notification. What accounts for this uptick?

Recall that the period of time between the camera detected offense that marked
drivers’ entry into the cohort and the time at which they received notification of
their offense varied considerably. Drivers with notification periods of three weeks or
longer contributed to the daily rate calculations beginning on the first day of the
pre-notification period. Others had notification periods of less than a week, which
meant they would have contributed only to the rates in the few days before the
notification week began.

If riskier drivers were more likely to have short notification periods, this might
explain the upward-sloping curves we observed in the pre-notification period. We
found some evidence to support this theory. For example, daily recidivism rates
increased slightly less in the pre-notification period among drivers with characteristics
normally associated with lower crash risks (e.g. female drivers, city dwellers, low-level
offenders)

Why would high-risk drivers have systematically shorter notification periods?
Two reasons seem plausible. First, DTMR may have pursued a practice of faster
notification of drivers who appeared to be riskier, based either on the nature of the
offense they had committed or their demographic profile. Second, offenders who, on
average, took longer to reach may have had lower risks of reoffending than those who
were reached more quickly. Drivers living in rural areas, for example, generally have

71In the United States, a reduction of that size would equate to over 2,000 deaths and 100,000
injuries per year.
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slower postal service than city dwellers, and intensity of enforcement in rural areas,
particularly by cameras, is lower than in cities.

Decrease in crashes and recidivism in the post-notification period

Another noteworthy trend, not obviously related to the discontinuity of interest, is
the steady decline in rates of both recidivism and crashes observed over the 90-day
post-notification period. This is evident in nearly all of plots. One explanation is
that the specific deterrent effect gains momentum gradually, possibly instigating a
“learning curve” along which drivers move toward safer driving. This is a hopeful
scenario, but a doubtful one. It cuts against several other studies that have found
the opposite—namely, deterrent effects from traffic penalties tend to decay over a
period of a few months.72

The steady decreases in the post-notification period are more likely to be an
artefact of a methodological limitation of our study. One problem that is more-or-
less intrinsic to population-level road safety studies was discussed at length earlier—
namely, lack of direct adjustment for driving behaviour. Drivers in our cohort were
known to have been driving at the date of their offense,73 but the extent of their
presence on the road becomes less clear the further one moves in time past the
offense date. Consequently, the declines in penalty and crash risk observed in the
post-notification periods probably reflect a reduced exposure to driving.

There are a couple of further points to be made here. First, this exposure mea-
surement problem should not materially affect our main findings.74 The daily rates
that matter most to our estimates are those close to the discontinuity. Second, if
drivers are driving less in the post notification period, part of their motivation for
doing so may be a desire to avoid further penalties. Reductions in risk that stem

72See, for e.g., Homel 1988; Redelmeier et al 2003.
73This is not strictly true. The citation is normally sent to the vehicle’s registered owner, and

someone else may be been at the wheel the vehicle at the time of the camera detected offense. DTMR
has a routine process for accepting challenges on “other driver” grounds. If the challenge is upheld,
the penalty, together with any associated demerit points, are re-assigned to the actual offender. The
offenders in our data are those to whom the penalty was ultimately assigned. Thus, our confidence
that the offender was driver can be reasonably high, but some scope for misclassification still exists
(e.g. a challenge is wrongly dismissed, a registered owner who did not offend does not challenge and
“takes the hit” for someone else, drivers collude in some other way to shuffle penalties and demerit
points between each other, etc.).

74The same cannot be said of measurement of road safety risks using the case-crossover design,
where this phenomenon creates, what epidemiologists refer to as, “confounding by indication” .
This is a substantial and largely intractable problem in studies of this kind. See, Redelmeier et
al 2003; Simon J. Walter and David M. Studdert, Relationship between penalties for road traffic
infringements and crash risk in Queensland, Australia: A case-crossover study (in press, 2015).
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from such a response might legitimately be counted as part of a specific deterrent
effect, not confounding.

4.7.4 Limitations

Our study has several limitations worth noting. First, the generalizability of our
findings outside Queensland is unknown. Even within Queensland, it is unclear
whether the cohort entry criterion—camera-detected speeding or red-light offenses—
produced a sample of drivers whose subsequent behaviour differs from the universe
of offenders.

Second, although we could guess with a fair degree of confidence at a date range
within which offenders became aware of their penalty, we did not know with certainty.
A non-trivial number of drivers in our sample of nearly three million will have learned
of their penalty after the notification week. Penalty letters are not infrequently sent
to the wrong address or the wrong person; people are away from their home address
for extended periods; and some people defer opening their mail—perhaps especially
if it has the hallmarks of bad news from the government!

Relatively few drivers are likely to have received their letters before the notifica-
tion week. However, some may have known they offended and suspected they were
caught at the time of the offense—alerted, for example, by the flash of a camera at
night.75

Whether actual awareness occurred before or after the notification week we spec-
ified, the effect on our results is probably the same: a bias to the null. Incidentally,
using a notification week instead of a precise date should bias our results in the same
direction.

Third, our decision to censor drivers who crashed or reoffended from the cohort
was not ideal, but preferable to the alternative. Many crashes force drivers off the
road for a period of time, so retaining them inflates the “at risk” population for
an unknown number of subsequent days. Retaining offenders is problematic for a
different reason: deterrent effects of the subsequent offense could become entangled
with deterrent effects associated with the offense of interest.

There is no realistic possibility that removal of drivers who crashed affected our
findings: there were far too few of them. By contrast, 2,000-3,000 drivers reoffended
each day, and by the end of the observation period in the recidivism analysis, 14%
of the sample had been censored. To explore whether this censoring affected our

75Some offenders photographed at night will have experienced camera flashes; others will not
have, because many of the cameras in use during the study period were fitted with infrared tech-
nology.
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results, we re-ran the recidivism model without censoring recidivists. The results
changed very little.

Finally, it would be inappropriate to infer from our findings that penalizing traffic
offenses does not reduce crashes in Queensland. We did not consider the effects of
general deterrence, and it may succeed where specific deterrence fails.

4.8 Conclusion
Traffic laws exist primarily to promote road safety. In a broad sense, “safety” refers
to the care and competence with which people behave on and around the road. The
two standard ways of measuring safety at the population level are rates of offending
and rates of crashes; both are regularly used as proxies for unsafe driving.

Our results call into question some of the assumptions embedded in this practice.
We found that offending rates dropped in Queensland following notification of an
offense while crash rates were unmoved. This is a form of specific deterrence, but a
hollow one.

The split finding also raises fundamental questions about what specific deterrence
means and what traffic laws are accomplishing. Should recidivism be de-emphasized
as a proxy for safety, and avoided as a measure of deterrence? Is Queensland’s regime
penalizing the wrong behaviours, or the right behaviours in the wrong way? Could
better enforcement bridge the gap and produce real reductions in both recidivism
and crash risk? And if true safety effects flow only from general deterrence, should
specific deterrence goals be abandoned? Perhaps Queensland would be better off
diverting resources from catching and penalizing drivers to publicity campaigns and
showy displays of enforcement, in the interests of pursuing a form of deterrence
that may work. Future research should address these questions in Queensland and
consider them elsewhere. Important aspects of the logic and efficacy of traffic laws
hinge on the answers.
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Figure 1. Conceptual model of general and specific deterrent effects of traffic
laws

Note: Solid blue lines indicate pathways for general deterrent effects. Dotted red lines
indicate pathways for specific deterrent effects.
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Table 1. Characteristics of drivers and index offenses in the study sample
(n=2,880,763)

n %

Sex

Male 1,736,971 60%

Female 1,143,792 40%

Age

20-25 years 412,947 14%

26-30 years 364,480 13%

31-60 years 1,842,321 64%

>60 years 261,015 9%

Cumulative demerit point
total

<6 points 1,897,749 66%

6-8 points 572,804 20%

9-11 points 237,512 8%

>12 points 172,698 6%

Type of camera-detected
offense

Speeding 2,617,107 91%

Minor (0 or 1 points)∗ 1,417,839 49%

Moderate (3 points) 1,067,386 37%

Major (4+ points) 131,882 5%

Red light violation (3 points) 263,656 9%

∗ 823 speeding violations (0.03% of the sample) resulted in no demerit points.
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Table 2. Characteristics of crashes that occurred during the study period
(n=15,317)

n %

Severity
Fatal 147 1%
Injury requiring hospitalization 3,300 22%
Injury requiring medical treatment outside hospital 4,068 27%
Injury not requiring medical treatment 2,295 15%
Property damage only 5,507 36%
Fault
At fault 9,548 62%
Not at fault 5,769 38%
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Table 3. Characteristics of offenses that occurred during study period, fol-
lowing the index camera-detected offense (n=184,544)∗

Type of offense n %

Speeding 131,922 71%

Minor 54,054 29%

Moderate 62,413 34%

Major 15,455 8%

Red light violation 7,966 4%

Uninsured or unregistered driving 4,860 3%

Use of mobile phone while driving 4,609 2%

Driving under influence of alcohol or drugs 4,571 2%

Illegal stop or park 3,956 2%

Failure to wear seatbelt or helmet 3,316 2%

Administrative non-compliance 2,425 1%

Defective vehicle 2,325 1%

Illegal turn 2,293 1%

Unlicensed driving 2,271 1%

Other failure to stop 2,155 1%

Violation of probationary driving rules 1,232 1%

Other 10,643 6%

Demerit points

0 25,048 14%

1 57,150 31%

2 2,518 1%

3 84,373 46%

4+ 15,455 8%

Mode of detection

Camera 98,426 53%

Police observation 86,118 47%

∗This table does not include the index camera-detected offenses that brought drivers into the
study sample
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Figure 2. Discontinuity in the crash rate
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Table 4. Multivariate predictors of crashes∗

Rate ratio (95% CI) p-value
Notification 0.94 (0.86–1.02) 0.1384
Driver male (ref: Female) 1.31 (1.27–1.36) <0.001
Driver age (ref: 20–25 years)
26–30 years 0.73 (0.69–0.77) <0.001
31–60 years 0.57 (0.55–0.59) <0.001
>60 years 0.47 (0.44–0.51) <0.001
Cumulative demerit points (ref:
<5)
5–8 points 1.37 (1.31–1.43) <0.001
9–11 points 1.73 (1.64–1.82) <0.001
>11 points 2.60 (2.47–2.74) <0.001
Type of offense (ref: Red light vi-
olation)
Speeding – minor 0.78 (0.74–0.82) <0.001
Speeding – moderate 0.77 (0.73–0.81) <0.001
Speeding – major 0.87 (0.81–0.94) <0.001

∗ The model also included a smooth term to adjust for crash risk over time, and dummy variables
indicating the number of days from notification modulo 7 to adjust for a day-of-week effect.
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Figure 3. Discontinuities in crash rates within defined subgroups
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Figure 4. Discontinuity in the recidivism rate
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Table 5. Multivariate predictors of recidivism*

Rate ratio
(95% CI)

p-value

Notification 0.75 (0.73–0.78) <0.001
Driver male (ref: Female) 1.31 (1.3–1.32) <0.001
Driver age (ref: 20–25 years)
26–30 years 0.87 (0.87–0.88) <0.001
31–60 years 0.68 (0.67–0.68) <0.001
>60 years 0.41 (0.41–0.42) <0.001
Cumulative demerit points (ref:
<5)
5–8 points 1.35 (1.34–1.36) <0.001
9–11 points 1.58 (1.56–1.6) <0.001
>11 points 2.26 (2.23–2.28) <0.001
Type of offense (ref: Red light vi-
olation)
Speeding – minor 1.16 (1.15–1.17) <0.001
Speeding – moderate 1.08 (1.06–1.09) <0.001
Speeding – major 1.12 (1.11–1.14) <0.001

∗ The model also included a smooth term to adjust for re-offending risk over time, and dummy
variables indicating the number of days from notification modulo 7 to adjust for a day-of-week
effect.
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Figure 5. Discontinuities in recidivism rates within defined subgroups
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Appendix A

Technical results for the
asynchronous bootstrap

A.1 Detailed proofs
There is some overlap in text in this appendix with the outline of proofs given in
section 5 of the main paper.

A.1.1 Proof of Theorem 1

As in the main paper we consider only part (b) of the theorem, since part (a) be
derived in a similar fashion to the proof of Theorem 2. Assume for notational sim-
plicity that p = bk, where b, denoting block length, and k, the number of blocks, are
both positive integers. Writing EX for expectation conditional on X , we have:

S∗ =
1
√
p

p∑
j=1

(1− EX )g

[
1√
n

n∑
i=1

{
X∗ij(k)− X̄j

}]
=

1√
k

k∑
j=1

T ∗j ,

where

T ∗j =
1

b1/2

b∑
r=1

(1− EX )g(V ∗jr), V ∗jr =
1

n1/2

n∑
i=1

{
X∗i,(j−1)b+r(k)− X̄(j−1)b+r

}
,

and, by the definition of the block-bagging algorithm, if block-bagging is used then
the variables T ∗j , for 1 ≤ j ≤ k, are independent conditional on X . Let varX and
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covX denote variance and covariance, respectively, conditional on X , and note that

b varX (T ∗j ) =
b∑

r1=1

b∑
r2=1

covX
{
g(V ∗jr1), g(V ∗jr2)

}
. (A.1)

If (2.9) holds then, defining σ̂j(r`)2 = varX{X∗i,(j−1)b+r`(k)} and

θ̂j(r1, r2) =
1

σ̂j(r1), σ̂j(r2)

∣∣∣∣covX

{
X∗i,(j−1)b+r1(k), X∗i,(j−1)b+r2(k)

∣∣∣∣X}∣∣∣∣
we have:

∣∣ covX
{
g(V ∗jr1), g(V ∗jr2)

}∣∣
≤ C1

[{
1− θ̂j(r1, r2)

}−3/2 1

n3/2

2∑
`=1

1

σ̂j(r`)3

n∑
i=1

E
{∣∣(X∗i,(j−1)b+r`(k)

− X̄(j−1)b+r`
)∣∣3∣∣∣∣X}+ θ̂j(r1, r2)

]
(A.2)

Next we use (A.2) to derive an upper bound to E
∣∣covX

{
g(V ∗jr1), g(V ∗jr2)

}∣∣. By the
m-dependence property,

E
∣∣ covX (X∗i,(j−1)b+r1 , X

∗
i,(j−1)b+r2)

∣∣ = O(n−1/2), (A.3)

uniformly in 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ r1, r2 ≤ b and |r1 − r2| > m. (In fact, the
left-hand side of (A.3) does not depend on i, j, r1 or r2 in this range.) Hence for each
ε > 0,

P
{∣∣ covX (X∗i,(j−1)b+r1 , X

∗
i,(j−1)b+r2)

∣∣ > ε
}

= O(n−1/2)) (A.4)
uniformly in the same sense. Defining σ2 to be the common variance of the Xijs,
and using the finiteness of third moments of the process X0, we have for each r and
each ε > 0:

P{|σ̂j(r)2 − σ2| > ε} ≤ ε−3/2 E |σ̂j(r)2 − σ2|3/2 = O(n−1/2) (A.5)

Therefore, taking ε small and noting that sup |g| ≤ C2, we obtain:

E
∣∣covX

{
g(V ∗jr1), g(V ∗jr2)

}∣∣
≤ C3

[
n−1/2 E(|X∗ij − X̄j|3) + E | covX (X∗i,(j−1)b+r1 , X

∗
i,(j−1)b+r2)|

+ P
{∣∣ covX (X∗i,(j−1)b+r1 , X

∗
i,(j−1)b+r2)

∣∣ > ε
}

+
2∑
`=1

P{|σ̂j(r`)2 − σ2| > ε}
]

= O(n−1/2) (A.6)
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uniformly in 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ r1, r2 ≤ b and |r1 − r2| > m, where the
inequality follows from (A.1) and the equality from (A.3)-(A.5).

Result (A.6), and the condition b2/n → 0 as p diverges (which follows from the
assumption b2+δ/n = O(1) in the theorem), imply that

b∑
r1=1

∑
1≤r2≤b,|r1−r2|>m

E
[∣∣covX{g(V ∗jr1), g(V ∗jr2)}

∣∣] = O(n−1/2b2) = o(b) (A.7)

Again using the m-dependence property,

cov

[
covX

{
g(V ∗jr1), g(V ∗jr2)

}
, covX

{
g(V ∗jr3), g(V ∗jr4)

} ]
= 0

if neither of r1 and r2 is nearer than m to either of r3 and r4. Therefore,

var

 b∑
r1=1

∑
1≤r2≤b,|r1−r2|>m

covX{g(V ∗jr1), g(V ∗jr2)}


=

b∑
r1=1

∑
1≤r2≤b,|r1−r2|>m

b∑
r3=1

∑
1≤r4≤b,|r3−r4|>m

cov

[
covX

{
g(V ∗jr1), g(V ∗jr2)

}
, covX

{
g(V ∗jr3), g(V ∗jr4)

}]
= o(b2). (A.8)

Combining (A.1), (A.7) and (A.8) we deduce that

b varX (T ∗j ) =
b∑

r1=1

min(b,r1+m)∑
r2=max(1,r1−m)

E
[
covX

{
g(V ∗jr1), g(V ∗jr2)

}]
+ op(b). (A.9)

Standard arguments show that

E
[
covX

{
g(V ∗jr1), g(V ∗jr2)

}]
= cov{g(Qr1), g(Qr2)}+ o(1) (A.10)

Neither the left-hand side, nor the covariance on the right-hand side, depends on b, j
or p, and they depend only r1 and r2 only through the value of r1 − r2. Together,
(A.9) and (A.10) imply that

varX (T ∗j ) =
2m∑
r=1

cov{g(Qr), g(Qm)}+Rj, (A.11)
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where the random variables Rj are identically distributed and satisfy Rj = op(1).
Similar arguments show that, for either choice of the ± signs,

covX (T ∗j , T
∗
j±1) = Rj,±, (A.12)

where the variables Rj,+ are identically distributed, as too are the variables Rj,−,
and Rj,± = op(1). Combining (A.11) and (A.12) we deduce that, in the case of the
asynchronous bootstrap,

k var(S∗|X ) =
k∑

j1=1

k∑
j2=1

cov(T ∗j1 , T
∗
j2
|X )

=
k∑

j1=1

∑
j2=j1−1,j1,j1+1

cov(T ∗j1 , T
∗
j2
|X )

=
k∑
j=1

varX (T ∗j ) + op(k) = k
2m∑
r=1

cov{g(Qr), g(Qm)}+ op(k)

That is,

var(S∗|X ) =
2m∑
r=1

cov{g(Qr), g(Qm)}+ op(1). (A.13)

By (2.5) and the m-dependence property,

p var(S) =

p∑
j=1

p∑
k=1

cov{g(Qj), g(Qk)} =

p∑
j=1

∑
1≤k≤p,|k−j|≤m

cov{g(Qj), g(Qk)}

= p
2m∑
r=1

{g(Qr), g(Qm)}+ o(p) (A.14)

Combining (A.13) and (A.14) we deduce that

var(S∗|X) = var(S) + op(1). (A.15)

This is equivalent to the first part of (2.7).
In view of the first part of (2.7), to establish the second part it suffices to note

that the variables

U∗j = (1− EX )g

[
1

n1/2

n∑
i=1

{
X∗ij(k)− X̄j

}]
,
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in the formula

S∗ =
1

k1/2

k∑
j=1

T ∗j =
1

p1/2

p∑
j=1

U∗j

are b-dependent conditional on X , and to check that that the sufficient conditions
given by Berk (1973), for a central limit theorem for b-dependent random variables,
hold. Those conditions reduce here to

(a) supj E(|U∗j |2+ε|X ) ≤ C4 <∞

(b)

lim
C→∞

lim inf
p→∞

P
{

varX

( j2∑
j=j1+1

U∗j

)
≤ C(j2 − j1) for all 1 ≤ j1 < j2 ≤ p

}
→ 1

(c) the in-probability limit of p−1 varX (
∑

j U
∗
j ) exists and is finite and nonzero,

and

(d) b2+(2/ε)/p→ 0.

Indeed, (a) follows from the boundedness of g, (b) can be proved using the argument
leading to (A.15), (c) is a consequence of the first part of (2.7), and since (a) holds
with ε < ∞ then for (d) it suffices to have b2+δ/p → 0 for some δ > 0; the latter
property follows from the assumptions b2+δ/n = O(1) and n/p → 0 imposed in the
theorem.

A.1.2 Proof of Theorem 2.

Step 1: Decomposition of var(S∗|X ) In the case of independent marginals, and when
g(x) = I(x ≤ y), we have π ≡ P (Q1 ≤ y)→ π0, say, and v2 = π0(1− π0) is the limit
of E(S2). Define π̂j = P(Q∗j ≤ y|X ), an estimator of π, and put

∆jk = P(Q∗j ≤ y,Q∗k ≤ y|X )− P(Q∗j ≤ y|X )P(Q∗k ≤ y|X ).

In this notation,

var(S∗|X ) =
1

p

p∑
j=1

p∑
k=1

∆jk = A1 + A2 (A.16)

where

A1 =
1

p

p∑
j=1

∆jj =
1

p

p∑
j=1

π̂j(1− π̂j), A2 =
1

p

∑∑
j,k:j 6=k

∆jk
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Now, E(π̂1 − π)2 → 0 as n → ∞, whence it follows, since the variables π̂j are
identically distributed, that A1 = π(1 − π) + op(1). From this property, (2.29), a
central limit theorem and the fact that π(1− π)→ v2, it follows that either part of
(2.7) holds, and in particular that E(S∗2|X)→ v2, if and only if

A2 → 0 in probability. (A.17)

as p→∞.
Our proof of the equivalence of (2.10) and E(S∗2|X )/E(S2) → 1 in probability

is completed by showing that (2.10) is necessary and sufficient for (A.17).
Step 2: Proof of Equivalence of (2.10) and (A.17). The proof is in four parts,

given in sections A.2.1-A.2.4 respectively.

Expansion of bivariate normal distribution

To simplify exposition we take var(X01) = 1. Recall the definition of Qj in section
4.2. The random variables Xi1 and Xi2 are, under assumption (2.6), independent
and identically distributed, but in this paragraph it is convenient to permit Xi1

and Xi2 to have a small but not necessarily zero correlation, ρ = ρ(n), say, which
converges to zero as p → ∞. If the common distribution of the components Xij
has sufficiently many finite moments, and if the joint distribution of (Xi1, Xi2) is
sufficiently smooth, then the probability P(Q1 ≤ y,Q2 ≤ y) can be developed in
an Edgeworth expansion, in which the leading term is Pρ(ξ1 ≤ y, ξ2 ≤ y|X), where
Pρ denotes probability measure for a two-vector (ξ1, ξ2) that has a joint normal
distribution with zero means, unit variances and correlation ρ. (Without loss of
generality the data Xij have unit variances.) By Taylor expansion of the bivariate
normal distribution function it can be proved that there exists an absolute constant
A > 0 such that∣∣Pρ(ξ1 ≤ y, ξ2 ≤ y)− {a0(y) + a1(y))ρ+ a2(y)ρ2}

∣∣ ≤ A|ρ|3 (A.18)

whenever |ρ| ≤ 1
2
, where the nonzero constants a`(y) depend only on y and, for

example,

a0(y) = P(ξ1 ≤ y)2, a1(y) =
1

2π
e−y

2

(A.19)

Define ρ̂jk = γ̂jk/(σ̂jσ̂k) where

σ̂j = var(Q∗j |X ) =
1

n

n∑
i=1

(Xij − X̄j)
2,

γ̂jk = cov(Q∗j , Q
∗
k|X ) =

1

n

n∑
i=1

(Xij − X̄j)(Xik − X̄k).
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Analogously to the expansions discussed in the previous paragraph, an Edgeworth
expansion of P(Q∗j ≤ yσ̂j, Q

∗
k ≤ yσ̂k|X ) has, as its first term, the probability Pρ(ξ1 ≤

y, ξ2 ≤ y) in (A.18), with ρ = ρ̂jk. (We take ξ1 and ξ2 to be independent of X ,
and preserve the interpretation that ρ̂jk is a constant by treating the probability
Pρ(ξ1 ≤ y, ξ2 ≤ y) as Pρ(ξ1 ≤ y, ξ2 ≤ y|X ).) Therefore, in view of (A.18), the first
term in an Edgeworth expansion of P(Q∗j ≤ yσ̂j|X )P(Q∗k ≤ yσ̂k|X ) can be written
as

a0(y) + a1(y)ρ̂jk + a2(y)ρ̂2jk + AΘjk|ρ̂jk|3,
where, for all j 6= k

P(|Θjk| > 1, |ρ̂jk| ≤ 1
2
) = 0 (A.20)

First term in an Edgeworth expansion

Similarly, the first term in the Edgeworth expansions of each of P(Q∗j ≤ yσ̂j|X ) and
P(Q∗k ≤ yσ̂k|X ) equals P(ξ1 ≤ y), and so the first term in the analogous expansion
of P(Q∗j ≤ yσ̂k|X ) equals P(ξ1 ≤ y)2 = a0(y); see (A.19). Hence, the first term in
the expansion of

∆ ≡
∑∑
j,k:j 6=k

{
P(Q∗j ≤ yσ̂j, Q

∗
k ≤ yσ̂k|X )

− P(Q∗j ≤ yσ̂j|X )P(Q∗k ≤ yσ̂k|X )
}

(A.21)

equals

∑∑
j,k:j 6=k

{
a0(y) + a1(y)ρ̂jk + a2(y)ρ̂2jk + AΘjk|ρ̂jk|3

}
= a0(y)

∑∑
j,k:j 6=k

ρ̂jk + a1(y)
∑∑
j,k:j 6=k

ρ̂2jk + a2(y)
∑∑
j,k:j 6=k

AΘjk|ρ̂jk|3. (A.22)

If ε > 0 is given, then, by taking C2 > 0 sufficiently large in the moment condition
E |Z|C2 <∞ in (4.7), it can be proved that

P
(

max
j,k:j 6=k

|ρ̂jk| > nε−
1
2

)
→ 0

Therefore, by (A.20), ∑∑
j,k:j 6=k

Θjk|ρ̂jk|3 = Op
(
p2n3ε−3

2

)
(A.23)
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Furthermore, since ρ̂jj = 1 for each j,

∑∑
j,k:j 6=k

ρ̂jk =

p∑
j=1

p∑
k=1

ρ̂jk −
p∑
j=1

ρ̂2jj =
1

n

n∑
i=1

(
p∑
j=1

Xij − X̄j

σ̂j

)2

−
p∑
j=1

ρ̂2jj

= p+ op(p)− p = op(p) (A.24)

and more simply, since w = 1,∑∑
j,k:j 6=k

ρ̂2jk = {1 + op(1)}
∑∑
j,k:j 6=k

γ̂2jk

= {1 + op(1)}n−1
∑∑
j,k:j 6=k

1 = {1 + op(1)}p(p− 1)

n
.

Hence, ∑∑
j,k:j 6=k

ρ̂jk = {1 + op(1)}p(p− 1)

n
. (A.25)

Combining (A.22)–(A.25), and choosing ε < 1
6
in (A.23), we deduce that the

first term in an Edgeworth expansion of the quantity ∆ defined at (A.21) equals
a2(y)n−1p(p−1)+op(p+n−1p2). A similar analysis of higher-order terms shows that
their net contribution equals op(p+ n−1p2); see the paragraph below. Moreover, the
expansions are valid uniformly in real y. Therefore, again uniformly in y,

∆ = a2(y)n−1p(p− 1) + op(p+ n−1p2) (A.26)

Completion of proof of (A.26)

We complete the proof by establishing the claim made in the previous paragraph
about high-order terms in an Edgeworth expansion of ∆. Note that

P(Q∗j ≤ σ̂jy
∣∣X ) = P(ξ1 ≤ y) + n−1/2(âj + b̂jy

2)φ(y)

+ n−1(ĉjy + d̂jy
3 + êjy

5)φ(y)

+Op
(
nε−

3
2

)
(A.27)

P(Q∗j ≤ σ̂jy,Q
∗
j ≤ σ̂ky|X ) = Pρ̂jk(ξ1 ≤ y, ξ2 ≤ y) + n−1/2(âjk + b̂jky

2)φ(y)2

+ n−1(ĉjky = d̂jky
3 + êjky

5)φ(y)2

+Op
(
nε−

3
2

)
(A.28)
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where ρ denotes the standard normal density, and, for any ε > 0, the Op(nε − 3
2
)

remainders are of the stated orders uniformly in 1 ≤ j, k ≤ p, provided the constant
C2, in (4.7), is sufficiently large (how large depends on ε). Moreover, the independent
and identically distributed random variables âjk (likewise, b̂jk, ĉjk, d̂jk, êjk, âj, b̂j, ĉj,
d̂j, êj) satisfy E |âjk|C3 ≤ C4 for all 1 ≤ j, k ≤ p and any given C3 > 0 (provided C2

is sufficiently large, depending on C3) and C4 does not depend on n. (Ensuring the
existence of the moments E |âjk|C3 requires Taylor expansion of denominators.)

Combining (A.27) and (A.28) we deduce that:

∆jk ≡ P(Q∗j ≤ yσ̂j, Q
∗
k ≤ yσ̂k

∣∣X )− P(Q∗j ≤ yσ̂j
∣∣X )P(Q∗k ≤ yσ̂k|X )

= Ĝ0,jk(y) + n−1/2Ĝ1,jk(y) + n−1Ĝ2,jk(y) +O
(
nε−

3
2

)
(A.29)

where the remainder is of the stated size uniformly in the sense given in the previous
paragraph, and

Ĝ0,jk(y) = Pρ̂jk(ξ1 ≤ y, ξ2 ≤ y)− P(ξj ≤ y)P(ξk ≤ y),

Ĝ1,jk(y) = (âjk + b̂jky
2)φ(y)2 − (âj + b̂jy

2 + âk + b̂ky
2)P(ξ1 ≤ y)φ(y),

Ĝ2,jk(y) =
{
ĉjky + d̂jky

3 + êjky
5 − (âj + b̂jy

2)(âk + b̂ky
2)
}
φ(y)2

− (ĉjy + d̂jy
3 + êjy

5 + ĉky + d̂ky
3 + êky

5)P(ξ1 ≤ y)φ(y)

An identical expansion holds for P(Qj ≤ y,Qk ≤ y) − P(Qj ≤ y)P(Qk ≤ y), except
of course that the analogues of the coefficients a, b, c, d and e in the formulae
for Ĝ0,jk(y), Ĝ1,jk(y), and Ĝ2,jk(y)) now all vanish identically, since Qj and Qk are
independent. Comparing the coefficients it can be deduced that:

(i) The second moments E(â2), E(b̂2), E(ĉ2), E(d̂2), and E(ê2),
with either single or (unequal) double subscripts, equal
O(n−1) uniformly in the subscripts, and first moments also
equal O(n−1), uniformly in the same sense.

(ii) Similarly, E(â12â34) = O(n−2) and E(â12â13) = O(n−2), with
analogous results holding for b̂ instead of â and uniformly in
other subscripts bearing the same relationships.

(A.30)

In view of part (i) of (A.30) the term Ĝ2,jk(y) in (A.29) can be absorbed into the
remainder, giving:

∆jk = Ĝ0,jk(y) + n−1/2Ĝ1,jk(y) +Op
(
nε−

3
2

)
(A.31)
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uniformly as before. Since the âjs, for 1 ≤ j ≤ p, are independent and identically
distributed, as too are the b̂js, then by part (i) of (A.30),

E

∣∣∣∣∣
p∑
j=1

âj

∣∣∣∣∣+ E

∣∣∣∣∣
p∑
j=1

b̂j

∣∣∣∣∣ = Op(n−1p+ n−1/2p1/2) (A.32)

Since âjk is independent of â`m if the integers j, k, `,m are distinct then, by parts (i)
and (ii) of (A.30),

E

∣∣∣∣∣∑∑
j,k:j 6=k

âjk

∣∣∣∣∣
2

+ E

∣∣∣∣∣∑∑
j,k:j 6=k

b̂jk

∣∣∣∣∣
2

= O(n−1p2 + b−2p4) (A.33)

Combining (A.31)–(A.33) we deduce that if ε ∈ (0, 1
2
),

∑∑
j,k:j 6=k

∆jk =
∑∑
j,k:j 6=k

Ĝ0,jk(y) +Op
{
n−1/2(n−1/2p+ n−1p) + nε−

3
2

}
=
∑∑
j,k:j 6=k

Ĝ1,jk(y) + op(p+ n−1p2) (A.34)

The first term on the second right-hand side of (A.34) represents the first term in
an Edgeworth expansion of the quantity ∆ at (A.21), and equals the first term on
the righthand side of (A.26), i.e. a2(y)n−1p(p − 1) + op(p + n−1p2). Likewise, ∆ is
identical to the left-hand side of (A.34). Therefore we have established (A.26).

Removing the terms σ̂j and σ̂k in (A.21)

We describe their removal from the first term in the Edgeworth expansion; removal
from subsequent terms is similar. As before, let Pρ denote probability measure
for a two-vector (ξ1, ξ2) that has a joint normal distribution with zero means, unit
variances and correlation ρ, and interpret Ψ(y1, y2) = Pρ(ξ1 ≤ y1, ξ2 ≤ y2) as Pρ(ξ1 ≤
y1, ξ2 ≤ y2|X), where it is assumed that ξ1 and ξ2 are independent of X . Let
ψ(y) = P (ξ1 ≤ y). Writing σ̂1 = 1 + δj and σ̂2 = 1 + δk we have, by Taylor
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expansion:

Ψ {y(1 + δ1), y(1 + δ2)} = Ψ(y, y) + y {δ1Ψ10(y, y) + δ2Ψ01(y, y)}
+ 1

2
y2
{
δ1Ψ20(y, y) + δ22Ψ02(y, y) + 2δ1δ2Ψ11(y, y)

}
+Op

(
nε−

3
2

)
ψ {y(1 + δ1)}ψ {y(1 + δ2)} = ψ(y)2 + y(δ1 + δ2)ψ(y)ψ′(y)

+ 1
2
y2
{

(δ21 + δ22)φ(y)φ′′(y) + 2δ1δ2ψ
′(y)2

}
+Op

(
nε−

3
2

)
and so

Ψ{y(1 + δ1), y(1 + δ2)} − ψ{y(1 + δ1)}ψ{y(1 + δ2)}
= Ψ(y, y)− ψ(y)2 + y(δ1 + δ2){Ψ10(y, y)− ψ(y)ψ′(y)}

+ 1
2
y2
[
(δ21 + δ22){Ψ20(y, y)− ψ(y)ψ′′(y)}+ 2δ1δ2{Ψ11(y, y)− ψ′(y)2}

]
+Op

(
nε−

3
2

)
where (here and below) the remainders) are of that size uniformly in unequal values
of j, k in the range from 1 to p, and we have used the fact that Ψ10(y, y) = Ψ01(y, y)
and Ψ20(y, y) = Ψ02(y, y). Now, Ψ(y1, y2) = ψ(y1)ψ(y2) + ρψ′(y1)ψ

′(y2) + O(ρ2),
Ψ10(y, y) = ψ(y)ψ′(y)+ρψ′(y)ψ′′(y)+O(ρ2), Ψ20(y, y) = ψ(y)ψ′′(y)+ρψ′(y)ψ′′′(y)+
O(ρ2) and Ψ11(y, y) = ψ′(y)2 + ρψ′′(y)2 +O(ρ2), whence it follows that:

Ψ{y(1 + δ1),y(1 + δ2)} − ψ{y(1 + δ1)}ψ{y(1 + δ2)}
= Ψ(y, y)− φ(y)2 + y(δ1 + δ2)ρψ

′(y)ψ′′(y)

+ 1
2
y2
{

(δ21 + δ2)
2ρψ′(y)ψ′′′(y) + 2δ1δ2ρψ

′′(y)2
}

+Op
(
nε−

3
2

)
= Ψ(y, y)− ψ(y)2 + y(δ1 + δ2)ρψ

′(y)ψ′′(y) +Op
(
nε−

3
2

)
Therefore, since σ̂j − 1 = 1

2
(σ̂2

j − 1) + Op(nε−1), uniformly in j, then if we replace
σ̂j and σ̂k, in the definition of ∆ at (A.21), by 1, the only change necessary to the
expansion of ∆ at (A.26) is to add a term equal to 1

2
yψ′(y)ψ′′(y) multiplied by H1,

where
H1 =

∑∑
j,k:j 6=k

(σ̂2
j + σ̂2

k − 2)ρ̂jk, H2 =
∑∑
j,k:j 6=k

(σ̂j − 1)ρ̂jk
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In order to prove that the added term is negligible it suffices to show that

H1 = op(p+ n−1p2), (A.35)

and for this it is enough to prove the same property for H2, and hence for

H3 =
∑∑
j,k:j 6=k

{
1

n

n∑
i=1

(Xij − X̄j)
2 − 1

}{
n∑
i=1

(Xij − X̄j)(Xik − X̄k)

}
= H4 + op(p+ n−1p2),

where

H4 =
∑∑
j,k:j 6=k

Hjk, Hjk =

{
1

n

n∑
i=1

(U2
ij − 1)

}{
1

n

n∑
i=1

(UijUik)

}
and Uij = (1 − E)Xij. By assumption the random variables Uij and U2

ij − 1 have
zero means, and the Uijs are independent; and, in view of (4.7), we may assume that
the Uijs have eight finite moments. Using these properties it can be proved that
E(V 2

4 ) = o(p2 + n−2p4), and hence that (A.35) holds.

A.1.3 Proof of Theorem 3

Step 1: Preliminaries. Recall that n = n(0) + n(1), and let Wj =
∑

r=0,1(−1)rW
(r)
j

where

W
(r)
j = (X̄

(r)
j − µ

(r)
j )2 + 2(µ

(r)
j − Vj)(X̄

(r)
j − µ

(r)
j ) +

(
µ
(r)
j

)2
− 2Vjµ

(r)
j

In this notation, D(V ) =
∑

jWj; see (2.12). Minor changes to the proof of Berk–
’s (1973) central limit theorem enable it to be shown that, if there exist constants
C, ε > 0, not depending on p and such that

E |(1− E)n1/2Wj|2+ε ≤ C, E

{
(1− E)n1/2

j2∑
j=j1+1

Wj

}2

≤ C(j2 − j1), (A.36)

for all 1 ≤ j ≤ p and 0 ≤ j1 < j2 ≤ p; if, as assumed in Theorem 3, the quantity
m = m(p), introduced in (2.13), satisfies m2+(2/ε)/p → 0, where is as in (2.37); and
if, as p→∞,

v(r)n ≡
1

p

{
(1− E)(n(r))1/2

p∑
j=1

W
(r)
j

}2

→ 4τ 2, (A.37)
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for r = 0, 1, where τ is as in (2.14); then, defining vn = (n(0))−1v
(0)
n + (n(1))−1v

(1)
n ,

D(V ) satisfies:

sup
−∞<x<∞

∣∣∣∣P{D(V ) ≤ x} − P
[
(pvn)1/2N + E{D(V )} ≤ x

]∣∣∣∣ (A.38)

where N denotes a random variable with the standard normal distribution. Result
(2.39) is equivalent to (2.17) and so implies part (b) of the theorem. We shall
complete our proof of Theorem 3 by establishing respectively, in steps 2 and 3 below,
properties (2.37) and

var

(
p∑
j=1

W
(r)
j

)
∼ 4pτ 2(n(r))−1, for r = 0, 1. (A.39)

Note that (A.39) implies both (2.16) and (2.38).

Step 2: Proof of (2.37). The first part of (2.37) follows by direct calculation. Note
that in (2.13) we assumed uniformly bounded (4 + 2ε)th moments of the variables
X

(r)
ij − E(X

(r)
ij ).

Next we derive the second part of (2.37). Put ξjk = cov(X0j, X0k) and observe
that

cov
{

(X̄
(r)
j −µ

(r)
j ), (X̄

(r)
k − µ

(r)
k )
}

= (n(r))−4
{
n(r) E(X2

0jX
2
0k) + n(r)(n(r) − 1)E(X2

0j)E(X2
0k)

+ 2n(r)(n(r) − 1)ξ2jk − (n(r))2 E(X2
0j)E(X2

0k)

}
= (n(r))−3 cov(X2

0j, X
2
0k) + 2(n(r))−2ξ2jk (A.40)

Therefore,

var

{
j2∑

j=j1+1

(X̄
(r)
j − µ

(r)
j )2

}
=

j2∑
j=j1+1

j2∑
k=j1+1

{(
n(r)
)−3

cov(X2
0j, X

2
0k)

+ 2(n(r))−2 cov(X0jmX0k)

}
≤ C1(j2 − j1) (A.41)

where the inequality follows from (2.13)(c).
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Note too that, defining λj = E(Vj), we have:

1

η

j2∑
j=j1+1

|ξjk||λj − µ(r)
j | ≤

(
j2∑

j=j1+1

|ξjk|q
)1/q( j2∑

j=j1+1

I(λj 6= µ
(r)
j )

)(q−1)/q

= O(ν(q−1)/q)

where the inequality is Hölder’s, and the identity is a consequence of the fact that,
for either choice of r, E(Vj) and E(X

(r)
ij ) differ for at most ν values of j. Therefore,

if q ∈ [1, 2] is as in (2.14)(c), then

var

{ j2∑
j=j1+1

(
Vj − µ(r)

j

)(
X̄

(r)
j − µ

(r)
j

)}

=

j2∑
j=j1+1

j2∑
k=j1+1

{(
λjµ

(r)
j

)(
λk − µ(r)

k

)
+ ξjk

}
ξjk

=

j2∑
j=j1+1

|λjµ(r)
j ||ξjk|+

j2∑
j=j1+1

j2∑
k=j1+1

ξ2jk

≤ C2

{
ν(q−1)/qη2

j2∑
j=j1+1

I(λj 6= µ
(r)
j ) +

j2∑
j=j1+1

j2∑
k=j1+1

|ξjk|q
}

≤ C3{η(q−1)/qη2(j2 − j1) + j2 − j1} ≤ C4(j2 − j1) (A.42)

where the second-last inequality follows from (2.15)(a) and (2.15)(b), and the last
is a consequence of (2.15)(c). Similarly,

var

(
j2∑

j=j1+1

Vjµ
(r)
j

)
≤

j2∑
j=j1+1

|µ(r)
j |

j2∑
k=j1+1

µ
(r)
k ||ξjk| ≤ C5(j2 − j1) (A.43)

The second part of (2.37) follows from (A.41)–(A.43).
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Step 3: Proof of (A.39). Define t2 = var(
∑

jW
(r)
j ),

t21 = var

[
p∑
j=1

{
(µ

(r)
j − Vj)(X̄

(r)
j − µ

(r)
j )− (Vj − EVj)µ(r)

j

}]
,

t22 = var

{
p∑
i=1

(X̄
(r)
j − µ

(r)
j )2

}
, t23 = var

{
p∑
j=1

(µ
(r)
j − Vj)(X̄

(r)
j − µ

(r)
j )

}
.

t24 = var{
∑
j

(Vj − EVj)µ(r)
j }

Then |t− 2t1| ≤ t2 and |t1 − t3| ≤ t4, so

|t− 2t3| ≤ t2 + t4. (A.44)

By (A.40),

t22 =

p∑
j=1

p∑
k=1

cov

{
(X̄

(r)
j − µ

(r)
j )2, (X̄

(r)
k − µ

(r)
k )2

}

= (n(r))−3 var

( p∑
j=1

X2
0j

)
+ 2(n(r))−2

p∑
j=1

p∑
k=1

ξ2jk

The first and second parts of (2.14) imply, respectively, that

p∑
j=1

p∑
k=1

ξ2jk = O(p), var

(
p∑
j=1

X2
0j

)

Therefore,
t22 = O(n−2p) = o(n−1p). (A.45)

We claim too that, for r = 0 and 1,

s21 ≡
p∑
j=1

p∑
k=1

ξjkµ
(r)
j µ

(r)
k = o(p/n) (A.46)
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Indeed, if r = 0 then (2.15)(a) implies s21 = 0, and if r = 1 then the argument leading
to (A.42) can be used to prove that:

s21 ≤ η2
p∑
j=1

I(µ(1)
j 6= 0)

j2∑
k=j1+1

|ξjk|I(µ(1)
k 6= 0)

≤ η2
p∑
j=1

I(µ(1)
j 6= 0)

(
j2∑

k=j1+1

|ξjk|q
)1/q{ j2∑

k=j1+1

I
(
µ
(1)
k 6= 0

)}(q−1)/q

= O(η2−(1/q)η2) = o(p/n),

where the first inequality follows from (2.15)(b), the second from Hölder’s inequal-
ity, and the first and second identities are consequences of (2.14)(c) and (2.15)(c),
respectively. Define λj = E(Vj) and, which, in view of the first part of (2.14), equals
pτ 2 + o(p). Combining the latter property and (A.46) we deduce that:

n(r)t23 =

p∑
j=1

p∑
k=1

E
{

(Vj − µ(r)
j )(Vk − µ(r)

k )
}
ξjk

=

p∑
j=1

p∑
k=1

{
(Vj − µ(r)

j )(Vk − µ(r)
k ) + ξjk

}
ξjk

= s21 + s22 = pτ 2 + o(p) (A.47)

Moreover t24 = var(
∑

j X0jµ
(r)
j ). From the latter result, (A.44), (A.45) and (A.47) we

deduce that

t = 2t3 +O(t2 + t4) = 2τ(p/n(r))1/2 = o
{

(p/n)1/2
}
,

which implies (A.39).

A.1.4 Proof of Theorem 4

Observe that
D∗(V ) = D(V ) +D∗1(V ) (A.48)

where D(V ) is as at (2.12),
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D∗1(V ) =

p∑
j=1

[{
(Ū
∗(0)
j )2+2Ū

∗(0)
j (X̄

(0)
j − Vj)

}
−
{

(Ū
∗(1)
j )2 + 2Ū

∗(1)
j (X̄

(1)
j − Vj)

}]
(A.49)

and Ū
∗(r)
j = (n(r))−1

∑
1≤i≤n(r)(X̄

∗(0)
j − Vj). (Note that E(Ū

∗(r)
j |X ) = 0.) Since the

resamples X ∗(0) and X ∗(1) were drawn independently, conditional on X , hence:

var{D∗1(V )|X , V } =
1∑
r=1

p∑
j=1

p∑
k=1

cov

{
(Ū
∗(r)
j )2 + 2Ū

∗(r)
j (X̄

(r)
j − Vj),

(Ū
∗(r)
k )2 + 2Ū

∗(r)
k (X̄

(r)
k − Vk)

}
=

1∑
r=1

p∑
j=1

p∑
k=1

[
cov

{
(Ū
∗(r)
j )2, (Ū

∗(r)
k )2|X

}
+ (X̄

(r)
j − Vj) cov

{
Ū
∗(r)
j , (Ū

∗(r)
k )2

}
+ 4(X̄

(r)
j − Vj)(X̄

(r)
k − Vk) cov(Ū

∗(r)
j , Ū

∗(r)
k |X )

]
(A.50)
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Note that

ρ̂
(r)
jk ≡ n(r) cov(Ū

∗(r)
j , Ū

∗(r)
k |X ) =

1

n(r)

n(r)∑
i=1

(X
(r)
ij − X̄

(r)
j )(X

(r)
ik − X̄

(r)
k )

β̂
(r)
jk ≡ (n(r))2 cov

{
Ū
∗(r)
j ,

(
Ū
∗(r)
k

)2 ∣∣∣∣X} =
1

n(r)

n(r)∑
i=1

(X
(r)
ij − X̄

(r)
j )(X

(r)
ik − X̄

(r)
k )2

γ̂
(r)
jk ≡ cov

{(
Ū
∗(r)
j

)2
,
(
Ū
∗(r)
k

)2 ∣∣∣∣X}
= E

{
1

(n(r))4

∑
i1

· · ·
∑
i4

(X
(r)
i1j
− X̄(r)

j )(X
(r)
i2j
− X̄(r)

j )

× (X
(r)
i3j
− X̄(r)

j )(X
(r)
i4j
− X̄(r)

j )

∣∣∣∣X}
− E

{(
Ū
∗(r)
j

)2 ∣∣∣∣X}E
{(

Ū
∗(r)
k

)2 ∣∣∣∣X}
=

1

(n(r))4

∑
i1

∑
i2

{
(X

(r)
i1j
− X̄(r)

j )2(X
(r)
i2j
− X̄(r)

j )2

+ 2(X
(r)
i1j
− X̄(r)

j )(X
(r)
i1k
− X̄(r)

k ) · (X(r)
i2j
− X̄(r)

j )(X
(r)
i2k
− X̄(r)

k )

}
− 2

(n(r))4

n(r)∑
i=1

(X
(r)
ij − X̄

(r)
j )2(X

(r)
ik − X̄

(r)
k )2 − (n(r))−2(σ̂

(r)
j σ̂

(r)
k )2

= 2(n(r))−2ρ̂2jk − 2(n(r))−3α̂
(r)
jk (A.51)

where (σ̂
(r)
j )2 = ρ̂

(r)
jj and

α̂
(r)
jk =

1

n(r)

n(r)∑
i=1

(X
(r)
ij − X̄

(r)
j )2(X

(r)
ik − X̄

(r)
k )2
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Observe too that

(n(r))4
p∑
j=1

p∑
k=1

{
(n(r))−2ρ̂2jk − (n(r))−3α̂

(r)
jk

}
=
∑∑
i1 6=i2

p∑
j=1

p∑
k=1

(X
(r)
i1j
− X̄(r)

j )(X
(r)
i1k
− X̄(r)

k )(X
(r)
i2j
− X̄(r)

j )(X
(r)
i2k
− X̄(r)

k )

=
∑∑
i1 6=i2

{ p∑
j=1

(X
(r)
i1j
− X̄(r)

j )(X
(r)
i2k
− X̄(r)

k )

}2

(A.52)

Combining (A.51) and (A.52) we deduce that
p∑
j=1

p∑
k=1

γ̂
(r)
jk =

2

(n(r))4

∑∑
i1 6=i2

(
Ĝ

(r)
i1i2

)2
, (A.53)

where

Ĝ
(r)
i1i2

=

p∑
j=1

(X
(r)
i1j
− X̄(r)

j )(X
(r)
i2j
− X̄(r)

j ), (A.54)

It follows from (A.48) and (A.50) that

var{D∗(V )|X , V } = var {D∗1(V )|X , V }

=
1∑
r=0

p∑
j=1

p∑
k=1

{
γ̂
(r)
jk + 4

(
n(r)
)−2

(X̄
(r)
j − Vj)β̂

(r)
jk

+ 4
(
n(r)
)−1 (

X̄
(r)
j − Vj

)(
X̄

(r)
k − Vk

)
ρ̂
(r)
jk

}
(A.55)

For s = 1, 2 define

Ĥ
(r)
is =

p∑
j=1

(X̄
(r)
j − Vj)2−s(X

(r)
ij − X̄

(r)
j )s. (A.56)

Then,

p∑
j=1

p∑
k=1

(X̄
(r)
j − Vj)β̂

(r)
jk =

1

n(r)

n(r)∑
i=1

Ĥ
(r)
i1 Ĥ

(r)
i2 (A.57)

p∑
j=1

p∑
k=1

(X̄
(r)
j − Vj)(X̄

(r)
k − Vk)ρ̂jk =

1

n(r)

n(r)∑
i=1

(
Ĥ

(r)
i1

)2
. (A.58)
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Combining (A.53) and (A.55)–(A.58) we deduce that

var(D∗(V )|X , V ) =
1∑
r=1

[
2

(n(r))4

∑∑
i1 6=i2

(Ĝ
(r)
i1i2

)2

+
4

(n(r))2

n(r)∑
i=1

{
1

n(r)
Ĥ

(r)
i1 Ĥ

(r)
i2 + (Ĥ

(r)
i1 )2

}]
(A.59)

Let Z(r)
ij = X

(r)
ij − E(X

(r)
ij ), Z̄(r)

j = (n(r))−1
∑

i Z
(r)
ij and σ2

j = var(X0j). Noting the
definition of Ĥ(r)

is at (A.56) we deduce that, for each j in the range 1 ≤ j ≤ p,

E(Ĥ
(r)
i1 ) =

p∑
j=1

E{Z̄(r)
j (Z

(r)
ij − Z̄

(r)
j )} =

p∑
j=1

{
σ2
j (n

(r))−1 − σ2
j (n

(r))−1
}

= 0, (A.60)

and so, using the m-dependence property,

E{(Ĥ(r)
i1 )2} = var(Ĥ

(r)
i1 ) = O(mp). (A.61)

Similarly, since by assumption in Theorem 4 the components of X0 have eight finite
moments, E{(Ĥ(r)

i1 )4} = O{(mp)2}. Therefore,

var

 1

n(r)

n(r)∑
i=1

(
Ĥ

(r)
i1

)2 =
1

n(r)

n(r)∑
i=1

var

{(
Ĥ

(r)
i1

)2}

≤ 1

(n(r))2

n(r)∑
i=1

E
{(

Ĥ
(r)
i1

)4}
= O

{
(n(r))−1(mp)2

}
(A.62)

Combining (A.61) and (A.62)

1

(n(r))2

n(r)∑
i=1

(Ĥ
(r)
i1 )2 = Op(mp/n) (A.63)

Analogously using the property that E{(X̄(r)
j − Vj)(X

(r)
ij − X̄

(r)
j )} = 0 (see (A.60))

and the m-dependence of X0, it can be proved that E(Ĥ
(r)
i1 Ĥ

(r)
i2 ) = cov(Ĥ

(r)
i1 Ĥ

(r)
i2 ) =
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O(mp) and similarly,

E{(Ĥ(r)
i1 Ĥ

(r)
i2 )2} =

p∑
j1=1

· · ·
p∑

j4=1

(
X

(r)
ij1
− X̄j1

)2 (
X

(r)
ij2
− X̄j2

)2
×
(
X̄j3 − Vj3

) (
X

(r)
ij3
− X̄j3

) (
X̄j4 − Vj4

) (
X

(r)
ij4
− X̄j4

)
= O(mp3)

Therefore,
1

(n(r))3

n(r)∑
i=1

Ĥ
(r)
i1 Ĥ

(r)
i2 = Op

{
(mp/n2) + (mp3/n5)1/2

}
. (A.64)

Combining (A.63) and (A.64) we find that

1

n(r)

n(r)∑
i=1

{
Ĥ

(r)
i1 Ĥ

(r)
i2 + (Ĥ

(r)
i1 )2

}
= Op

{
(mp/n) + (mp3/n5)1/2

}
(A.65)

Noting the definitions of Ĝ(r)
i1i2

at (A.54) and recalling the definitions of Z(r)
ij and Z̄(r)

j

we see that if i1 6= i2 then

E(Ĝ
(r)
i1i2

) = −
p∑
j=1

E
{
Z

(r)
i1j
Z̄

(r)
j + Z

(r)
i2j
Z̄

(r)
j − (Z̄

(r)
j )2

}
= − 1

n(r)

p∑
j=1

E(X2
0j). (A.66)

Since the process X0 in (2.13) is m-dependent then var(Ĝ
(r)
i1i2

) = O(mp). There-
fore, ∑∑

j,k:j 6=k

E(Ĝ
(r)
i1i2

)2 =
∑∑
j,k:j 6=k

{
(E Ĝ(r)

i1i2
)2 + var(Ĝ

(r)
i1i2

)
}

=
∑∑
j,k:j 6=k

 1

(n(r))2

(
p∑
j=1

EX2
0j

)2

+O(mp)


= {1 + op(1)}

(
p∑
j=1

EX2
0j

)2

+O
{
m(n(r))2p

}
. (A.67)

Furthermore, noting that, for i1 6= i2, −n(r)p−1 E(Ĝ
(r)
i1i2

) = p−1
∑

j E(X2
01) (see

(A.66)), which is bounded away from zero and is therefore denoted below by C(p)
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and writing (1− E)R = R− E(R) for any random variable R, we have:

var

{(
Ĝ

(r)
i1i2

)2}
=
( p

n(r)

)2
var

{1− n(r)

C(p)p

p∑
j=1

(1− E)
(
X

(r)
i1j
− X̄(r)

j

)(
X

(r)
i2j
− X̄(r)

j

)}2


= O

{( p

n(r)

)2((n(r)

p

)2

var

{
p∑
j=1

(
X

(r)
i1j
− X̄(r)

j

)(
X

(r)
i2j
− X̄(r)

j

)}

+

(
n(r)

p

)4

E

{(1− E)

p∑
j=1

(
X

(r)
i1j
− X̄(r)

j

)(
X

(r)
i2j
− X̄(r)

j

)}4
)}

= O

[( p

n(r)

)2{(n(r)

p

)2

mp+

(
n(r)

p

)4

(mp)2

}]
= O

{
mp+ (mn(r))2

}
.

Therefore,

var

{∑∑
i1 6=i2

(Ĝ
(r)
i1i2

)2

}
= O

[
(n(r))2 var

{
(Ĝ

(r)
i1i2

)2
}]

= O
[
(n(r))2

{
mp+ (mn(r))2

}]
. (A.68)

Together (A.67), (A.68) and the fact that mn2/p → 0 (a consequence of the
assumption that mn3/p→ 0), imply that

∑∑
j,k:j 6=k

(Ĝ
(r)
i1i2

)2 = {1 + op(1)}

(
p∑
j−1

EX2
0j

)
+Op

{
mp(n(r))2

}
= {1 + op(1)}

(
p∑
j−1

EX2
0j

)
(A.69)

From (A.59), (A.65) and (A.69) we deduce that, since mn3/p→ 0,

var{D∗(V )|X , V } = {1 + op(1)}2

(
p∑
j−1

EX2
0j

)
1∑
r=0

(n(r))−4 (A.70)

Result (2.18) follows from (2.16) and (A.70).
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A.1.5 Proof of Theorem 5.

Step 1: Proof of (2.19). As in the proof of Theorem 1 we assume, for simplicity, that
p = bk, where b and k are positive integers. Property (A.48) holds as before, for the
definition of at (A.49), but we rewrite that formula to express the block structure of
D∗1(V ):

D∗1(V ) =
k∑
j=1

A∗j(V ), (A.71)

where

A∗j(V ) =
b∑
t=1

[(
Ū
∗(0)
(j−1)b+t

)2
+ 2Ū

∗(0)
(j−1)b+t

(
X

(0)
(j−1)b+t − V(j−1)b+t

)
−
{(

Ū
∗(1)
(j−1)b+t

)2
+ 2Ū

∗(1)
(j−1)b+t

(
X

(1)
(j−1)b+t − V(j−1)b+t

)}]
(A.72)

The independence of blocks, conditional on X and on V ensures that the variables
A∗j(V ) are independent, conditional on X and V . Therefore, instead of (A.59),

var{D∗1(V )|X , V } =
1∑
r=0

k∑
j=1

var{A∗(r)j (V )|X , V }, (A.73)

where

var{A∗(r)j (V )|X , V }

=
b∑
t1

b∑
t2

cov

{(
Ū
∗(r)
(j−1)b+t1

)2
+ 2Ū

∗(r)
(j−1)b+t1

(
X̄

(r)
(j−1)b+t1 − V(j−1)b+t1

)
,

(
Ū
∗(r)
(j−1)b+t2

)2
+ 2Ū

∗(r)
(j−1)b+t2

(
X̄

(r)
(j−1)b+t2 − V(j−1)b+t2

) ∣∣∣∣X}
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=
b∑
t1

b∑
t2

cov

{(
Ū
∗(r)
(j−1)b+t1

)2
,
(
Ū
∗(r)
(j−1)b+t2

)2 ∣∣∣∣X}
+ 4

(
X̄

(r)
(j−1)b+t1 − V(j−1)b+t1

)
cov

{
Ū
∗(r)
(j−1)b+t1 ,

(
Ū
∗(r)
(j−1)b+t2

)2 ∣∣∣∣X}
+ 4

(
X̄

(r)
(j−1)b+t1 − V(j−1)b+t1

)(
X̄

(r)
(j−1)b+t2 − V(j−1)b+t2

)
× cov

{
Ū
∗(r)
(j−1)b+t1 , Ū

∗(r)
(j−1)b+t2

∣∣∣∣X}
=

1∑
r=0

[
2

(n(r))4

∑∑
i1 6=i2

(Ĝ
(r)
i1i2

)2 +
4

(n(r))2

n(r)∑
i=1

{
1

n(r)
(Ĥ

(r)
ji1
Ĥ

(r)
ji2

+ (Ĥ
(r)
ji1

)2
}]

(A.74)

with

Ĝ
(r)
i1i2

=
b∑
t=1

(X
(r)
i1,(j−1)b+1 − X̄

(r)
(j−1)b+1)(X

(r)
i2,(j−1)b+t − X̄

(r)
(j−1)b+t),

Ĥ
(r)
jis

=

p∑
j=1

(X̄
(r)
j − V(j−1)b+t)2−s(X

(r)
i,(j−1)b+t − X̄

(r)
(j−1)b+t)

s.

Define Yij = Xij − E(Xij) and Zj = Vj − E(Vj). Then,

E(Ĝ
(r)
i1i2

)2 = var
(
Y

(r)
1,(j−1)b+tY

(r)
2,(j−1)b+t

)
+ o(b) = O(b),

and therefore
1

(n(r))4

∑∑
i1 6=i2

(Ĝ
(r)
i1i2

)2 = Op(b/n2). (A.75)

Note too that

E
{(

Ĥ
(r)
ji1

)2}
= E

(
Zj−1)b+tY

(r)
i,(j−1)b+t

)2
+ o(b) = bτ 2 + o(b),

and

var


n(r)∑
i=1

(
Ĥ

(r)
ji1

)2 = o(b2n2),

whence it follows that

1

(n(r))2

n(r)∑
i=1

(
Ĥ

(r)
ji1

)2
=
bτ 2

n(r)
+ op(b/n

(r)). (A.76)
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More simply,
4

(n(r))3

n(r)∑
i=1

Ĥ
(r)
ji1
Ĥ

(r)
ji2

= op(b/n) (A.77)

Together, (A.74)–(A.77) imply that

var{D∗1(V )|X , V } = 4pτ 2
1∑
r=1

(n(r))−1 + o(p/n). (A.78)

Properties (2.16) and (A.78) together imply (2.19).

Step 2: Proof of (2.20). Note first that, by (A.48), (A.71) and (A.72),

(1− EX )D∗(V ) =
k∑
j=1

(1− EX )A∗j(V ) =
1∑
r=0

(−1)r
k∑
j=1

B
∗(r)
j , (A.79)

where the random variables

B
∗(r)
j =

b∑
t=1

{
(1− EX )

(
Ū
∗(r)
(j−1)b+t

)2
+ 2

(
X̄

(r)
(j−1)b+t − V(j−1)b+t

)
(1− EX ,V )Ū

∗(r)
(j−1)b+t

}
,

for 1 ≤ j ≤ k and r = 0, 1, are independent and have zero mean, both statements
holding conditional on X , and EX and EX ,V denote expectation conditional on X , and
expectation conditional on both X and V , respectively. The central limit theorem
that asserts that the distribution function F̂ , say, of

(1− EX )D∗(V )√
var{D∗(V )|X , V }

,

conditional on X , satisfies supx |F̂ (x) − Φ(x)| → 0 in probability, where Φ is the
standard normal distribution, follows from (A.78) and (A.79) if it is proved that

(p/n)−2
k∑
j=1

E
{

(B
∗(r)
j )4|X , V

}
→ 0 (A.80)

in probability as p→∞. In view of (2.17) and (2.19) this is enough to give (2.20).
Property (A.80) can be derived using arguments from the proof of Theorem 4.
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