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Abstract 

 

Computational Modeling of Protein Interactions at Multiple Lengthscales 
 

by 
 

Eng Hui Yap 
 

Joint Doctor of Philosophy 
 

with University of California, San Francisco 
 

in Bioengineering  
 

University of California, Berkeley 
 

Professor Teresa Head-Gordon, Chair 
 
 

We developed theories and algorithms for two coarse-grained implicit solvent models 
that can be deployed within a multiscale framework to enable computational studies of large-
scale protein-protein associations. The first model is a residue level alpha-carbon bead model 
intended for simulating proteins at close range during formation of encounter complexes. This 
model introduces a novel forcefield term to model directional backbone hydrogen bond semi-
explicitly, as well as a fourth bead flavor in its sequence-dependence to better represent the 
spectrum of residue-residue attractive interactions. We showed that the introduction of the 
orientation-dependent hydrogen bonding term resulted in more stable and realistic α−helices and 
β−sheets. In addition, the addition of a fourth bead flavor reduces energetic frustrations and 
competition from misfolded states. The overall model showed increased folding cooperativity, 
and a greater structural faithfulness to experimentally solved structures. The computational 
efficiency of the model has also permitted us to develop molecular models of the Alzheimer’s 
Aβ1-40 fibril to study nucleation and elongation1, 2, providing a good proof-of-concept and laying 
the foundation for applications to other protein-protein assembly processes. The second model is 
a protein level model intended for simulating proteins during diffusional search. It treats proteins 
as rigid bodies interacting solely through long-range electrostatics. We first described the theory 
and implementation of a novel method, Poisson-Boltzmann Semi-Analytical Method (PB-SAM), 
to model electrostatic interactions by efficiently solving the linearized Poisson-Boltzmann 
equation (PBE). This novel method combines advantages of analytical and boundary element 
methods by representing the macromolecular surface realistically as a collection of overlapping 
spheres, for which polarization charges can then be iteratively solved using analytical multipole 
method3. Unlike finite difference solvers, PB-SAM is not constrained spatially by the box size, 
making it suitable for simulating dynamics. We showed that this method realizes better accuracy 
at reduced cost relative to either finite difference or boundary element PBE solvers. We derived 
expressions for force and torque that account for mutual polarization in both the zero and first 
order derivative of the surface charges, and incorporated the complete PB-SAM method into a 
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protein level Brownian dynamics simulation algorithm. We demonstrated for the first time 
dynamic propagation of multiple Brownian particles with accurate accounting of mutual 
polarization effects for successive timesteps, using a model system of two monomers of brome 
mosaic virus (PDB code: 1YC64). While PB-SAM enable us to model mutual polarization effects 
in systems of hitherto inaccessible spatial dimensions, we can further reduce the computation 
time through parallelization, faster linear algebra operations, optimizing convergence criteria and 
polarization cutoffs, and approximating mutual polarization effects from analytical models. 
Finally, we discussed multiscale strategies to connect the two models described above for large-
scale protein assembly studies. The two models can be employed successively in a novel nested 
variant of the Northrup-Allison-McCammon5 formalism to compute bi-molecular kinetics rates. 
The kinetic parameters can in turn be inputs to chemical master equations or stochastic 
simulations.  Such multiscale modeling can be used to determine kinetics rates and the order of 
association, and help investigate how changing physical interactions can alter the association 
rates, and consequently control overall sequences of association. 
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Chapter 1 

Introduction 

Protein-protein association is central to all biological processes. It is integral to a diverse 
range of functions, from catalysis, transport, immune response, signal transduction, transcription 
regulation, to maintaining cytoskeletal structure. Not surprisingly, protein-protein interactions 
cover a similarly broad spectrum in spatial and temporal scales, as well as varying levels of 
complexity. The interactions range from simple bi-molecular enzyme-substrate catalysis, to 
spatially inhomogeneous complexes involving multiple proteins such as the T-cell receptor 
macromolecular signalosomes7, and to structurally uniform, macroscopic microtubules that span 
up to 25 µm. 

Our knowledge of protein-protein interactions has been accumulated principally from 
biochemical and genetic experiments, including the widely used yeast two-hybrid screening 
protocol8. While simple binary protein-protein interactions can be characterized experimentally 
using biochemical methods9-11, assemblies with three or more components entail complex cross-
dependence, making it difficult to intuit mechanistic insights from experimental data alone. 
Computational modeling can complement the experimental effort to provide important molecular 
insights into structure and energetics, giving high throughput predictions of docking geometries 
and binding affinities12-14. In particular, computer simulations of large scale, multi-component 
assembly processes will provide hitherto unavailable information about the kinetics rates and 
mechanistic sequence of these complexation events.  

Critical to successful computational modeling is selecting the appropriate level of theory 
and resolution that is commensurate with the research question. While all inter- and 
intramolecular interactions could in principle be investigated using ab initio quantum mechanics, 
it is neither tractable nor necessary for most purposes. In applications where the Born-
Oppenheimer approximation is valid so electronics motions can be safely ignored (e.g. when 
simulating intact molecules without breaking any covalent bond), we can express energies and 
forces as a function of nuclei positions using empirical forcefields, whose parameters are derived 
from experiments and electronic structure calculations. Such forcefields (AMBER15, 
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CHARMM16, GROMACS17, etc.) form the integral model core of molecular dynamics (MD) 
simulation methods.  

While classical MD simulations represent a significant speedup over ab initio quantum 
calculations, they are still too prohibitively expensive for studying large-scale protein complexes. 
In a typical MD simulation, biomolecules are solvated by explicit water molecules and ions; the 
position of each atom is then propagated by integrating Newton’s law of motion over 
femtosecond timesteps. Although MD simulations of large assembled biological complexes in 
explicit solvent (~1 million atoms) could be accomplished in tour-de-force calculations deployed 
on state-of-the-art supercomputers18-20, the steep computational cost of atomistic simulation with 
explicit solvent necessarily limits the simulation time to tens of nanoseconds. Atomistic 
simulation of the assembly process, which occurs over much longer time period (seconds to 
minutes), remains computationally intractable.   

To study the mechanistic process of large-scale complexation, we must enhance sampling 
to collect relevant statistics with less timesteps; and/or reduce the computational cost per 
timestep. Longer timesteps can be used if we constrain intramolecular bond lengths, thereby 
avoiding the need to simulate bond vibrations at femtosecond timesteps. We can also enhance 
sampling of activated processes involving barrier crossing between metastable states, which are 
plagued by long time intervals between rare barrier crossings. In such cases, one can using 
parallel tempering21 and metadynamics22 techniques to accelerate barrier crossings. If one is 
principally interested with finding transition pathways between known states, the transition path 
sampling and its variants (nudged elastic band, string method)23-25 can be used. 

Alternatively, we can make large-scale simulations tractable by judiciously reducing the 
computational complexity per timestep. Fortunately, we are justified in using simplified models 
by two observations. Firstly, since water molecules (solvent) relax to their equilibrium positions 
and momenta quickly, and we are principally interested in the behavior of the proteins (solutes), 
we can replace the explicit water molecules with an implicit solvation model of water. Secondly, 
as will be elaborated later, the association process is inherently multiscale, consisting of a 
diffusion phase characterized by long time- and lengthscales, followed by a docking phase 
characterized by shorter time- and lengthscales. It is hence possible to further simplify the solute-
solute interaction by incorporating the appropriate level of coarse-graining in space, time, and 
force field model. We shall first discuss the concept of implicit solvation, followed by coarse-
grained models of solute-solute interactions. 
 
(A) Implicit Solvation  

Explicit solvent typically dominates the atom count in a simulated system, and requires 
extended simulation to ensure solvent configurations are equilibrated before data sampling can 
be done. Since we are interested in the behavior of the solute and not the solvent, we can 
dramatically reduce computational complexity by replacing the explicit water molecules with an 
implicit solvation model, which averages over all solvent degrees of freedom to produce 
potential of mean forces that act on the solutes. The procedure is valid because the relaxation 
time of the solvent is much faster than the large macromolecular solute. The model must account 
for three important effects of aqueous solvent: (i) temperature-dependent random collisions of 
water molecules with solutes, and the associated frictional drag on the solutes’ motion; (ii) 
hydrophobic interaction; and (iii) electrostatic polarization by water and mobile ions. Below we 
elaborate on the nature of these effects, and survey how they are treated in implicit solvation 
models. 
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(i) Dynamics for Implicit Solvation Models 

A solute molecule in a solution experiences constant, random collisions from all sides 
with solvent molecules, as well as a frictional drag on its motion. The Langevin equation26, 27 
describe the position of the solute, r,  
 

€ 

m˙ ̇ r (t) = −ξ˙ r (t) + FC (t) + FR (t)    (1.1) 
 
where m is the solute mass, ξ is the frictional constant, FC(t) is the conservative (or systematic) 
force, and FR(t) is a random force that is usually assumed to be Gaussian with an infinitely short 
correlation time.   

We could further simplify the equation of motion in cases where the solute size and mass 
is much larger than that of the solvent molecules. In such cases the large number of solvent 
collisions with the solute averages out, allowing the solute momentum to relax quickly to its 
equilibrium distribution of <mv2> = 3kBT. If we choose a timestep ∆t to be within the diffusive 
regime, such that ∆t is larger than the momentum relaxation time (τ = m/ξ), yet smaller enough 
to ensure that Fc(t) is essentially constant, we could describe the solute position using Brownian 
dynamics. In a three-dimensional system with N solute molecules, the solute coordinate ri(t), 
where 1≤ i,j ≤ 3N, is given by28, 29 
 

€ 

ri(t + Δt) = ri(t) +
Dij (t)Fc, j (t)

kBT
Δt

j
∑ + Ri(Δt)      (1.2) 

 
where Dij(t) is the configuration-dependent diffusion tensor, and Ri(Δt) is a Gaussian-distributed 
random displacement with zero mean and variance 2Di(t)∆t. The diffusion tensor could be 
implemented as Oseen or Rotne-Prager tensors29, or simplified in isotropic cases (no 
hydrodynamic interaction between solutes) to a coefficient Dij(t) = D.δii. 
 
(ii) Hydrophobic Effect and Interaction 

Experimentally, the hydrophobic effect refers to the fact that transferring a nonpolar 
solute molecule from gas to aqueous phase is an energetically uphill process, with a positive 
Gibbs free energy difference (∆Gtransfer)30.At room temperature, the hydrophobic effect is 
entropically driven: water molecules surrounding a nonpolar solute re-orientate themselves to 
maximize hydrogen bonds with other water molecules since they cannot form hydrogen bonds 
with the nonpolar solute31, 32, resulting in a ‘cage-like’ water structure around the solute with 
decreased entropy. Hydrophobic interaction refers to the propensity for multiple nonpolar 
molecules or functional groups to aggregate with each other in water. It is the dominant driving 
force behind protein folding33. When multiple nonpolar solutes or intramolecular groups are 
present, the hydrophobic interaction is driven by the free energy difference between the 
entropically dominated solvation free energy of small molecules and the enthalpically dominated 
solvation free energy of their clustering into assemblies with large surface areas.  

Implicit solvent forcefields represent the hydrophobic effect as an energetic penalty that 
is proportional to the “solvent accessible surface area (SASA)”, i.e. the amount of hydrophobic 
surface area exposed to the solvent34-37, although it has been argued that for small solutes that do 
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not interrupt the hydrogen network, volume, not surface area, correlates better with hydrophobic 
effect38. Implicit solvent force fields can also represent the hydrophobic interaction for small 
hydrophobic groups as a potential mean force (PMF) that stabilize both an aggregated and 
solvent-separated configuration of two solutes species39.  
 
(iii) Electrostatics  

In implicit solvation models, water is treated as a continuum, so the collective dielectric response 
of water (εw) includes contribution from each water molecule. A molecule responds to an 
external electric field through three physical processes: (i) electronic polarization, (ii) 
conformational change, and (iii) reorientation of permanent dipoles40.A water molecule’s strong 
permanent dipole (1.85 D), polarizability (α=1.415-1.528 Å3)41, and high number density, 
coupled with it’s readiness to re-orientate cooperatively through the extensive hydrogen bond 
network, result in a high dielectric constant, εw ~ 78-8040. In contrast, the interior of a protein has 
a much lower dielectric constant, εp ~ 2-4 since large-scale reorientation of groups or domains 
are atypical42. Lastly, implicit solvation models account for mobile ions in bulk electrolytes 
using a mean field theory, where the distribution of each ion species is assumed to obey 
Boltzmann’s statistics. 

The electrostatic potential Φ(r) of the above continuum system is fully described by the 
nonlinear Poisson Boltzmann equation (PBE), in e.s.u-c.g.s. convention,  
 

€ 

−∇ ε r( )∇Φ r( )[ ]− 4π n iZi exp(−
eZiΦ r( )

kBT
)

i
∑ = 4πρ fixed r( )    (1.3) 

 
where ε is the relative dielectric function, ρfixed is the charge density due to the fixed protein 
partial charges, 

€ 

n i and Zi are the bulk concentration and valence of ion species i respectively, e is 
the fundamental electronic charge, kB the Boltzmann constant, and T the absolute temperature. 
The PB theory inherently assumes that (i) ions are dimensionless, (ii) the potential of mean force 
experienced by each ion is equal to the mean electrostatic potential. 

Further assumptions can be made to simplify the PB theory. The nonlinear PB equation 
can be linearized in cases where the salt is monovalent and qΦ/kBT << 1, to yield the linearized 
PB equation: 
 

€ 

−∇ ε r( )∇Φ r( )[ ] +κ 2Φ r( ) = 4πρ fixed r( )    (1.4) 
 
where 

€ 

κ = 8πn e2 /εwkBT  is the inverse Debye length.  
Solution of the PBE constitutes the most computationally intensive part of simulating 

protein association. Approaches to the PBE can be broadly categorized into analytical and 
numerical methods. Analytical solutions can be quickly computed, but are only available for 
certain idealized geometries (sphere, cylinder, and infinite plane). In contrast, numerical methods 
- finite difference (FD), finite element (FE) and boundary element methods (BEM) can handle 
realistic dielectric boundaries but are more computationally intensive. Reference [19] presents an 
excellent survey of current PBE methods, and below we highlight some of the most salient 
approaches that relate to this thesis.  
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FD methods, such as DelPhi43 and APBS44, are most commonly used due to its ease of 
implementation, and the large body of computational tools developed for solving sparse matrix 
linear algebra problems. However, FD methods do not impose continuity in electric displacement 
(εE) across the dielectric boundary, affecting their accuracy and convergence. More importantly, 
FD and FE methods are spatially constrained to the grid or mesh, making them unsuitable for 
multi-molecular simulations in which molecules could be separated by large distances.  

Boundary element methods45-51 formulate integral equations on the surface of the 
molecules and solve for the potential and field on the surface. They impose both potential and 
electric displacement continuity by construction, and have reduced number of unknowns since 
the unknowns are on the molecular surface, not the volume. More importantly, they are not 
constrained to grid points and hence suitable for dynamic simulations. Historically, BEM 
methods have been plagued by expensive memory requirement and dense interaction matrices 
that scale with O(N2), where N is the number of boundary elements. Recent implementations of 
BEM46, 48 that employs adaptive Fast Multipole Method (FMM) have achieved significant speed 
up, making them comparable to FD methods in timing and memory requirements. However, 
simulation of multiple proteins has not been demonstrated, except for simple test cases involving 
two spheres with monopole charge in vacuum.  

The Head-Gordon group has recently derived an analytical method using multipoles to 
solve the linearized PBE for N>2 spherical molecules3. This method forms the basis of a semi-
analytical approach, PB-SAM, to solve the linearized PBE by representing the macromolecular 
surface as a collection of overlapping spheres, for which polarization charges can then be 
iteratively solved using analytical multipole methods. Unlike finite difference solvers, PB-SAM 
is not constrained spatially by the box size, making it suitable for dynamics. This method realizes 
better accuracy at reduced cost relative to either finite difference or boundary element PBE 
solvers.  
 
(B) Coarse-Graining Solute-Solute Interactions 

A coarse-graining strategy can be motivated from the changing nature of the 
intermolecular interactions as two proteins approach each other. The association is comprised of 
two steps52: a diffusional search to form a mostly solvated encounter complex; followed by 
structural rearrangement and desolvation to form a docked complex (Figure 1.1). During the 
diffusion phase, intermolecular forces are dominated by long-range electrostatics53. In addition, 
conformational fluctuations of the macromolecules are insignificant compared to the lengthscale 
of their separation. Hence we can adopt a protein-level model, in which each molecule is 
represented as a rigid body interacting through electrostatic forces. During the formation of the 
encounter complex, short-range interactions such as hydrophobic interaction become significant. 
In addition, conformational changes are now comparable to the separation lengthscale, so a 
residue-level model becomes necessary to ensure correct sampling of the conformations. Finally, 
at short separation distances during docking, we must fall back to atomistic representations of the 
proteins. Simulations at atomistic resolutions can be performed using available MD software 
such as AMBER and CHARMM. This thesis work focuses on the development of the residue-
level and protein-level models, to enable simulations across various resolutions.  
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Figure 1.1 Schematic of a typical protein association pathway. Figure adapted from reference 
[52]. 
 
 

Residue-level coarse-grained models provide a cheap way to introduce residue-residue 
interactions and backbone flexibility. Depending on the specific models, each residue can be 
represented by one or more interacting centers. In the original Gō model for protein folding 
studies54, the protein is represented as a chain of one-bead amino acids having attractive 
interaction between native contacts, and repulsive interactions between non-native contacts. The 
folding rate is then primarily correlated with the topological complexity of the native state, from 
which the folding pathways and the thermodynamics (and kinetics) of folding can be reasonably 
inferred55.  

However, completely unfrustrated Gō models fail to account for intermediate metastable 
folding states and different folding mechanisms amongst proteins with similar topologies. Head-
Gordon et. al.56, 57 introduced sequence specificity into their alpha-carbon only model through 
non-bonded terms describing hydrophobicity with three flavors (hydrophobic, neutral, polar). 
The model is able to discriminate the different folding behavior of proteins L and G, which have 
the same native topology. While the addition of sequence-specificity made the Head-Gordon 
model more realistic, its limited flavors did not reflect the graded spectrum of hydrophobicity 
amongst the 20 naturally occurring amino acids. This introduces large frustrations in the folding 
funnel, resulting in many degenerate misfolds that compete with the native conformation. In 
addition, one-bead models lack the anisotropy to stabilize secondary structures and account for 
cooperativity in their formation.  

Chapter 2 describes a sequence-based α−carbon model that we developed to incorporate 
a mean field estimate of the orientation dependence of the polypeptide chain that gives rise to 
specific backbone hydrogen bond pairing to stabilize α−helices and β−sheets. Compared to a 
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previous 3-flavor model without hydrogen bond developed in the Head-Gordon group57, the new 
model shows greater folding cooperativity and improvements in designability of protein 
sequences, as well as predicting correct trends for kinetic rates and mechanism for 
immunoglobulin proteins L and G. This residue-level model has been applied to study protein-
protein interactions in Aβ 1-40 peptide aggregation1, 2.  

Chapter 3 describes the theory and implementation of a new approach for solving the 
linearized PBE – the Poisson-Boltzmann Semi-Analytical Method (PB-SAM). This method 
represents the macromolecular surface as a collection of overlapping spheres, for which 
polarization charges can then be iteratively solved using analytical multipole method3. Unlike 
finite difference solvers, PB-SAM is not constrained spatially by the box size, making it suitable 
for dynamics. This method realizes better accuracy at reduced cost relative to either finite 
difference or boundary element PBE solvers. We illustrate the strength of the PB-SAM approach 
by computing the potential profile of an array of 60 T1-particle forming monomers of the 
bromine mosaic virus. 

Chapter 4 incorporates the PB-SAM method within the framework of a Brownian 
dynamics simulation algorithm, where molecules are treated as rigid bodies. We describe the 
variational formalism for force and torque, and the method to solve for gradient of the interaction 
energy. Timing data for force and torque calculations were then reported for a system with two 
bromine mosaic virus monomers.  

Finally, chapter 5 surveys multiscale strategies currently used to connect simulations 
across varying resolutions. We propose ways in which the coarse-grained residue level model 
(Chapter 2) and the protein-level model (Chapter 3 and 4) that we developed can be deployed in 
a multiscale framework to study protein-protein association, by using either a serial, nested 
framework or feeding kinetic parameters from our coarse-grained simulations into stochastic 
simulations.  
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Chapter 2 

A Coarse-Grained alpha-Carbon Protein Model 

with Anisotropic Hydrogen-Bonding*
 

 
Introduction 

Understanding the general energetic principles of protein self-assembly is a long-standing 
problem in biophysical chemistry. Recently, the framework of energy landscape theory has 
provided direction in the design of protein folding models that should exhibit correct folding 
thermodynamics by optimization of a funneled free energy surface59-61. The spatial resolution of 
the models do not have to be at full atomic detail since it is well known that models with 
sufficient topological features (correct sequence distribution of local and non-local spatial 
contacts) are sufficient for reproducing trends in thermodynamic and even kinetic folding data.55  

Inspired by early efforts of Thirumalai and co-workers62-65, we have developed a 
“minimalist” protein bead model that uses an α-carbon (Cα) trace to represent the protein 
backbone, in which structural details of the amino acids and aqueous solvent are integrated out 
and replaced with effective bead-bead interactions. These physics-based potentials are 
formulated so that there is still a connection between bead type and amino acid sequence in a 
reduced letter code, and hence stand distinct from Go-based potentials.54 We have successfully 
used the coarse-grained protein model to study the folding mechanism and kinetics of several 
proteins of the ubiquitin α/β topology, and to analyze folding simulation protocols56, 57, 66-69, for 
competition between folding and aggregation in which we correlate differences in aggregation 

                                                
* Reproduced with permission from reference [58].  
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kinetic rates to differences in structural populations of unfolded ensembles70 and most recently in 
disease aggregation processes relevant for the Aβ peptide indicted in Alzheimer’s disease1, 2.  

When the experimental folding and aggregation data to be understood is of higher spatial 
or timescale resolution, then isotropic interactions used in protein bead models may break down. 
One example is the study of early molecular origins of amyloid fiber formation for the Aβ 
peptide, in which the mature amyloid aggregate has a precise morphology of unbranched fibers 
composed of parallel intermolecular β-sheets.71 To understand these more complex protein 
assembly or co-assembly problems, it is important to both retain the efficiency of a single bead 
Cα model while incorporating some of the orientation dependent properties of amino acids in 
protein structures. Several models formulated in this spirit include the extension of bead Go-
potentials with orientation-dependent statistical potentials72, or amino acid specific residue-
residue distances73.  

More closely related to this work are formulation of backbone hydrogen bond potentials 
in the context of off-lattice bead models60, 74-76. Onuchic and Cheung incorporated an implicit 
hydrogen bond in terms of a pseudo-dihedral angle between four Cα centers straddling two 
separate beta-strands potential within their Go model that uses two centers per residue77. 
However, their formulation incorrectly assumes that the strands’ Cα centers and hydrogen bonds 
lie in the same plane, when in fact hydrogen bonds are roughly perpendicular to the planes 
described by the Cα centers. Brooks and co-workers (private communications) use a three bead 
per residue model in which the Cα centers are straddled by additional centers embedded with a 
point dipole to represent the carbonyl and amide peptide linker. The work by Klimov and 
Thirumalai74, 75 approximates virtual positions of CO and NH moieties based on Cα positions, 
which are then used to determine whether the strands are well oriented to form hydrogen bonds. 
However, their implementation only takes into account hydrogen bond directionality and not 
hydrogen bond distance, and as a result the folding transition does not exhibit great 
cooperativity, with folding transitions occurring over a broad temperature range. Furthermore, 
their model is only effective for α−helical and anti-parallel β−sheet structures, but could not 
adequately describe parallel β−sheets. The protein model of Smith and Hall76 uses a four center 
residue in which hydrogen-bonds are described as pseudo-bonds between residues to restrict both 
distance and orientation to realize α−helical and β−sheet structure. In all of these coarse-grained 
models, the additional centers per residue, scales up the computational cost by ~(cN)2, where c is 
the number of centers per residue. 

In this work we propose a reformulation of a one-site α−carbon model to introduce a 
fourth bead flavor, new dihedral angle potentials, and a potential of mean force hydrogen 
bonding term that encourages the cooperative formation of protein-like secondary structures. The 
orientation-dependent hydrogen bonding term is based on a similar functional form developed by 
Ben-Naim78 and later adopted by Silverstein and co-workers79 to characterize hydrogen-bonding 
in a model of bulk water. Our protein model now incorporates a mean field estimate of the 
orientation dependence of the polypeptide chain that give rise to specific hydrogen bond pairing 
to stabilize α−helices and β−sheets. The model is first parameterized for protein G (PDB code: 
2GB1)80, and then validated using folding studies of protein L (PDB code: 2PTL)81. As we show 
in the Results, the model shows improvements in designability and greater folding cooperativity, 
and kinetic rates and mechanistic outcomes consistent with experiment.  

 
Models and Methods 
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Energy Function 

The modified minimalist model potential energy function is given by 
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where θ is the bond angle defined by three consecutive Cα beads, φ is the dihedral angle defined 
by four consecutive Cα beads, and rij is the distance between beads i and j. The hydrophobic 
strength εH sets the energy scale. The bo0nd angle term is a stiff harmonic potential with force 
constant kθ = 20 εH /rad2. The optimal bond angle θ0 for bead i set to 95° if bead i-1 has helical 
dihedral propensity, and 105° otherwise. Each dihedral angle in the chain is designated to be one 
of the following types: helical (H), extended (E), or turns (T, P, U, or Q). The third term in Eq. 
2.1 represents nonlocal interactions, and is determined according to the bead flavors: strong 
attraction (B), weak attraction (V), weak repulsion (N), and strong repulsion (L). The last term 
represents a new distance and orientation dependent potential that models backbone hydrogen 
bond explicitly. We describe these new features in more detail below. 

Our model has been extended to now include new dihedral types in the turn region. As 
Cα-only models lack chirality, we introduced -/+90° turns (designated Q and P respectively) to 
distinguish the native topology from its mirror image decoys, and 0° dihedral (designated U) to 
impose some rigidity in hairpin turns. The parameters A, B, C, D, and φ0 are chosen to produce 
the desired minima (Table 2.1). In accordance with the flexible nature of turn regions, these new 
dihedral types are weaker in strength than their helical and extended counterparts. While all 
dihedral types encourage formation of the assigned secondary structures, they also allow access 
to other competing local secondary minima through manageable (~1 - 2.8εH) barriers.  

 
Table 2.1. Parameters for various Dihedral Types 

Dihedral Type A (εH) B (εH) C (εH) D (εH) k φ0 (rad) Local minima 
(global minima in bold) 

H (Helical) 0 1.2 1.2 1.2 1 +0.17 -65°, +50°, 165° 
E (Extended) 0.45 0 0.6 0 1 -0.35 -160°, -45°, +85° 
T (Turn) 0.2 0.2 0.2 0.2 1 0 -60°, +60°, +180° 
P (+90°) 0.36 0 0.48 0 1 +1.57 -155°, -25°, +90° 
Q (-90°) 0.36 0 0.48 0 1 -1.57 -90°, +25°, +155° 
U (0°) 0.36 0 0.48 0 1 +3.14 -120°, +0°, 120° 

 
We have also increased the number of bead flavors from three of our original model to 

four in our new model by adding a weak attractive bead (denoted V). The amino acid sequence 
of a protein can be mapped to its four-flavor sequence using the mapping rule shown in Table 
2.2, and the bead types determine the type of non-bonded interaction between two beads (Figure 
2.1). The attractive interactions B–B, B-V and V-V all have S2 = –1, while S1 = 1.4, 0.7, and 
0.35 respectively. For repulsive interactions, S1 = 1/3 and S2 = –1 for L–L, L-V, and L–B 



- 11 - 

interactions; and S1 = 1 and S2 = 0 for all N–X interactions. The sum of van de Waals radii σ is 
set at 1.16 to mimic the large exclusion volume due to side chains.  

 

Figure 2.1. Non-bonded hydrophobic interaction energy as a function of pair-wise distance 
between bead i and j. Interactions BB, BV, and VV have attractive minima at rij = 1.3 while NX 
and BL/VL/LL interactions are purely repulsive. 
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Table 2.2. Mapping 20-letter (20) amino acid code to four-letter code (4) 

(20) (4) (20) (4) (20) (4) (20) (4) 
Trp B Met B Gly N Asn L 
Cys B Val B Ser N His L 
Leu B Ala V Thr N Gln L 
Ile B Tyr V Glu L Lys L 
Phe B Pro N Asp L Arg L 

 
Lastly, we have added a new term to the Hamiltonian to describe a pair-wise mean force 

hydrogen bond interaction UHB, inspired by the Mercedes Benz (MB) model of water first 
introduced by Ben-Naim78 and further developed by Silverstein and co-workers79. In the original 
MB model, water molecules are represented as two-dimensional discs with three symmetrically 
arranged arms, separated by an angle of 120°. Water molecules interact through a standard 
Lennard-Jones term and an explicit hydrogen-bonding (HB) interaction that is favorable when 
the arm of one molecule aligns with the arm of another. We have adapted the functional form of 
the hydrogen bonding interaction to our three-dimensional minimalist protein model. The 
hydrogen bond potential between two beads i and j is given by:  
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where rij is the distance and 

€ 

ˆ r ij  the unit vector between beads i and j respectively. The distance 
dependent term F is a Gaussian function centered at the ideal hydrogen bond distance rHB.  For 
the direction dependent terms G and H, we use an exponential instead of a Gaussian function to 
ensure a smoother potential energy surface. The vectors tHB,i and tHB,j are unit vectors normal to 
the planes described by bead centers (i-1, i, i+1) and (j-1, j, j+1) respectively. The ideal hydrogen 
bond distance rHB is set to 1.35 length units for α−helices and 1.25 length units for β−sheets in 
accordance with a survey of secondary structures in the PDB database. All other hydrogen bond 
parameters are identical for α−helices and β−sheets, with the width of functions F, G and H set 
by σHBdist

 = σHB
  = 0.5.  

The hydrogen bond potential is evaluated for all i-j bead-pairs capable of forming 
hydrogen bonds. Depending on its dihedral propensity, each bead is assigned a hydrogen bond 
forming capability from three possible types: sheet (designated D), helical (designated A), or 
none (designated N). For a bead assigned D, the hydrogen bond potential is evaluated between 
itself and all D-beads situated within a cutoff distance of 3.0 length units. For a bead assigned A, 
helical hydrogen bond potential is evaluated if its +3 neighbor is similarly assigned A. We find 
that the helical hydrogen bond is better modeled in a Cα-only model as an interaction between 
(i,i+3) bead pairs, rather than (i,i+4). From a survey of helices in the PDB, the distribution of 
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ri,i+3 has both a smaller mean and variance than ri,i+4. Hence a potential using (i,i+3) bead pairs is 
more stringent in discriminating between helical and non-helical geometry.  

The strength of the hydrogen bond is modulated by εHB, which is set to 0.7εH if the bead 
pair is B-B, B-V or V-V. For L-X and N-X pairs, a higher εHB of 0.98εH is required to 
compensate for the non-bonded repulsion. This provides anisotropy in our Cα-only model: L and 
N residues could maintain closer contact with their hydrogen bonding partners, while remaining 
repulsive to beads in all other directions.  
 
Protein Model  

The structural, thermodynamic, and kinetic properties of protein L and G have been well 
characterized experimentally82-91. Both proteins consist of an N-terminus hairpin, made up by β-
strands 1 and 2, followed by a helix, and lastly a C-terminus hairpin made up by β-strands 3 and 
4. Despite their similar topologies, L and G share only 15% sequence identity, and fold via 
different mechanisms92. Experimental studies have shown that while the transition state of 
protein L consists of partially formed β-hairpin 184, 91, that of protein G comprises of partially 
formed β-hairpin 286, 93. Our existing sequence-based model has been shown capable of 
predicting the mechanistic differences in L and G folding57, something not possible with Go 
potentials.  

Here we show that our new model preserves this sequence-based feature, and can thus 
replicate the different folding mechanisms of L and G. In developing the model we optimized the 
potential energy parameters for protein G in order to reliably reach a global minimum 
corresponding to the native state topology using simulated annealing, as well as yield reasonable 
thermodynamics such as sharp cooperative melting curves and heat capacities. We then fixed 
those parameters to validate the model by characterizing the kinetic mechanism of protein G, as 
well as the thermodynamics and kinetic mechanism of protein L.  

The resulting amino acid sequences of proteins L and G were mapped to reduced 
minimalist code as per Table 2.2. The dihedral angle propensities were assigned according to 
their respective PDB structures, with the hairpin turns described using P, U, and Q to encourage 
the correct chirality. Since we wish to focus on whether differences in the folding behaviors are 
due to sequence, we assign identical dihedral propensities to hairpins in both L and G. However, 
the first hairpin turn in protein L (Phe, Ala, Asn, Gly, Ser) is one residue longer than that of 
protein G (Gly, Lys, Thr, Leu). To address this we use a modified sequence for protein L in 
which the 11th residue (Asn) is omitted. Dihedral propensities in the hairpins in both proteins can 
now be similarly assigned for fair comparison. The hydrogen bond forming capability (A, B, or 
N) follows the dihedral specification above. The mapped sequence, dihedral propensity and 
hydrogen bond assignments are listed in Table 2.3. 

The initial mapping of the primary sequence from the 20-amino acid code to the 4-letter 
minimalist code contains some ambiguity. For instance, lysine has both a long hydrocarbon 
chain and a charged amine group, and could be treated as either hydrophilic or hydrophobic. The 
initial energy landscape contains many competing local minima due in part to such ambiguity. 
Sequence design based on the minimal frustration principle is done to smooth the potential 
energy surface and improve foldability. Our sequence design strategy is based on the theoretical 
criterion26-28 that a foldable heteropolymer sequence has a significant energy gap ΔE between its 
native-state energy Enative and average misfold energy <Emisfold>. Using our initial mapping 
sequence, we generate a library of misfolded (non-native) structures from simulated annealing. 



- 14 - 

To obtain a better folding sequence, we generated sequences with various single mutations, 
threaded them to structures in the misfold library, and select the mutant sequence that maximizes 
the energy gap ΔE. To minimize drift from the original sequence, we allow only single mutations 
of types B↔V, V↔N, or N↔L, or dihedral mutations. The mutation process is repeated until 
we obtain a foldable sequence that finds the native state reliably 50% of the time using simulated 
annealing.  

 
 

Table 2.3. Sequence, dihedral, and hydrogen bond assignments for proteins L and G 

Protein L  
1° 2PTL 
1° 2PTL (without Asn-11) 
1° model L (mapped): 
1° model L (optimized): 
2° model L: 
Hbond model L: 

VTIKANLIFANGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEYTVDVADKGYTLNIKFAG 
VTIKANLIFAGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEYTVDVADKGYTLNIKFAG 
BNBLVLBBBVNNNLNVLBLNNBLLVNNLVVVVVLNBLLLLNLVNBLBVLLNVNBLBLBVN 
NNBLVNBNVNNNNLNVLVLNNBLLVNNLVVVVBNNVLLLLNLVNVLVVLLNVNBLBLBNN 
EEEEEEEQUPEEEEEEETPTHHHHHHHHHHHHHHHTPUEEEEEEEEEPUQEEEEEEE 
DDDDDDDDNNDDDDDDDDNNAAAAAAAAAAAAAAANNNNNDDDDDDDNNNDDDDDDDD 
 

Protein G  
1° 2GB1 
1°model G (mapped): 
1°model G (optimized): 
2°model G: 
Hbond model G: 

MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE 
BNVLBBBLNLNBLNLNNNLVBLVVNVLLBBLLVVLLLNBLNLBNVLLVNLNBNBNL 
VNVLBNBLNLNVLNLNNNLVBLVNNNLLVBLLVVLLLNVLNLVNVLNVNNNBNBNN 
EEEEEEEQUPEEEEEEETTTQHHHHHHHHHHHHHHTTTTTEEEEEPUQEEEEE 
DDDDDDDDNNDDDDDDDDNNNAAAAAAAAAAAAAAANNNNDDDDDDNNDDDDDD 
 

 
 
Simulation Protocol 

All simulations are performed in reduced units with mass m, energy εH, length σ0, and kB 
set to unity. The bond length between adjacent Cα beads serves as the unit of length σ0, and is 
held rigid by using the RATTLE algorithm.94 Reduced temperature and time are given by 
T*=εH/kB and τ = (mσ0

2/εH)½ respectively. We use constant-temperature Langevin dynamics 
with a friction coefficient of 0.05τ-1, and a timestep of 0.005τ to perform simulations for 
characterizing the thermodynamics and kinetics of folding.  

For each simulated annealing run we launch 50 trajectories at a high temperature (T* = 
1.6) and evolve them for 1250τ to generate uncorrelated, unfolded conformations, then gradually 
cool these trajectories to T* = 0.1 for 7500τ. The trajectories are then annealed at T* =0.45 for 
50τ, and cooled for 5000τ to T* = 0.1, and the anneal-cool cycle repeated once more before the 
resulting structure is quenched from T* = 0.1 to T* =0.  

The free energy landscape is characterized with the multidimensional histogram 
technique.95, 96 We collect multiple nine-dimensional histograms over energy E, radius of 
gyration Rg, number of native contacts formed Q, number of native contacts formed between 
strand 1 and strand 2 (Qβ1), number of native contacts formed between strand 3 and 4 (Qβ2), and 
native-state similarity parameters χ, χα, χβ1, and χβ2, where χ is given by 
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The double sum is over beads on the chain, and rij and rij

native are the distances between beads i 
and j in the state of interest and the native state, respectively; h is the Heaviside step function, 



- 15 - 

with ε = 0.2 to account for thermal fluctuations away from the native-state structure. M is a 
normalizing constant to ensure that χ= 1 when the chain is identical to the native state and χ ≈ 0 
in the random coil state. The remaining χ parameters are specific to their respective elements of 
secondary structure. That is, χα involves summation over beads in the helix, and χβ1 and χβ2 

involve summation over beads in the first and second β-sheet regions, respectively. 
From the histogram method, we get the density of states as a function of nine order 

parameters, Ω(E, Rg, Q, Qβ1, Qβ2, χ, χα, χβ1, χβ2), which can be used to calculate thermodynamic 
quantities. In constructing the free energy surfaces, we collect histograms at 14 different 
temperatures: 1.30, 1.00, 0.80, 0.60, 0.50, 0.40, 0.38, 0.36, 0.34, 0.32, 0.30, 0.25, 0.20, and 0.15. 
We run five to eight independent trajectories at each temperature and collect 4,000 data points 
per trajectory.  The potential of mean force w along reaction coorindate Q is given by  
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where the δ-function is approximated using Gaussian functions. 

The folding kinetics is studied using mean first passage time (MFPT) based on a native 
state cut-off. With the MFPT method, we decorrelate 2000 independent trajectories at T* = 1.6 
for 1,250τ, jump to the temperature of interest, and continue evolving the trajectories. We 
recorded the time τi that each trajectory took to enter the native basin of attraction, defined as 
Q>0.8. The fraction of trajectories folded at time t is then calculated by Pnat(t) = (no. of 
trajectories with τi < t)/N. Analysis of the PNat(t) kinetic data are detailed in Results and 
Discussions. 

Studies of transition state (TS) ensembles are performed using the Pfold analysis method97. 
Noting that true transition states should (a) be the highest point along the minimum free energy 
path, and (b) sit on saddle points on the multi-dimensional landscape, we first identify putative 
transition states from various projections of order parameters onto the free energy surface. 
Because we are vetting the new model against a known mechanism, we focused our free energy 
projections for protein L and G along the order parameters Q and/or χβ1 and Q and/or χβ2, 
respectively, in order to collect putative TS structures. Pfold analysis is then performed: for each 
putative TS structure, we launch 100 trajectories at the folding temperature, evolve them for 
1000τ, and evaluate the probability (Pfold) that these trajectories fall into the folded basin (defined 
as Q>0.8). Structures with 0.4 ≤ Pfold ≤ 0.6 are considered to be part of the TS ensemble.   
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Results and Discussions 
 
Sequence Design and Native Structures 

We obtained an optimized sequence for protein L after twelve sequence mutations and 
three dihedral mutations, while the optimized sequence for protein G consists of nine sequence 
mutations and one dihedral mutation. Table 2.3 compares the optimized sequences to their 
original mapping. We find that the original mapping is robust since 50% of the sequence 
mutations involved ambiguous definitions of valine (B or V) or alanine (V or N), and thus could 
be explained by these amino acids being ‘borderline’ on the hydrophobic scale. We find a trend 
that valines and alanines in the core tend to be retained as B and V (more strongly hydrophobic), 
while those on the periphery are mutated to V and N (less hydrophobic).  

We performed simulated annealing using these optimized sequences to obtain the lowest 
energy structures (Figure 2.2). First we compare the structural similarity of the native state of our 
protein L and G models with the experimental structures using the Combinatorial Extension (CE) 
method98. The CE algorithm excludes loop α−carbon positions to align the model and solution 
structures despite the different lengths of the loop regions. Using the CE method the new model 
gave RMSDs of 2.6Å for Protein L and 3.0Å for protein G, compared to the old model RMSDs 
of 4.4Å for Protein L and 5.3Å for protein G.57 We also calculated the root mean square distance 
(RMSD) of Cα atoms between these simulated native structures and their NMR counterparts 
using the rms.pl script from the MMTSB toolbox.99 To ensure a stringent comparison, this time 
we do not allow gaps or deletions in our alignments, although we modified the 2PTL coordinate 
file to omit Asn-11 to allow a bead-to-bead comparison with our 60-bead model of protein L. 
The calculated RMSDs of our simulated native structures are 4.4Å for Protein L and 3.0Å for 
protein G using the alignments with no gaps.         
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

 
Figure 2.2. Simulated Annealing Results for Protein L and G. (a) PDB structure of Protein L 
(2PTL) with N-terminus loop region (residue 1-17) omitted. (b) Lowest energy structure from 
simulated annealing of 60-residue optimized sequence of Protein L. RMSD between2PTL and 
our model protein L is 4.4Å (c) PDB structure of Protein G (2GB1). (d) Lowest energy structure 
from simulated annealing of 56-residue optimized sequence of Protein G. RMSD between 2GB1 
and our model protein G is 3.5Å. 
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Thermodynamics 
Figure 2.3 plots the thermodynamic averages of percentage folded PNat (Figure 2.3a), heat 

capacity Cv (Figure 2.3b), and radius of gyration Rg (Figure 2.3c) against temperature for Protein 
L and G. Compared to results from our old model without the hydrogen bond57, the new model 
demonstrates improved folding cooperativity. The folding temperature Tf, defined as the 
temperature at which PNat = 0.5, is 0.36 for protein L and 0.325 for protein G. The thermal 
stability plots show sharp transitions about Tf, a sign of greater folding cooperativity. The heat 
capacity and radius of gyration plots likewise show distinct transitions. The collapse 
temperatures are Tθ=0.36 for protein L and Tθ=0.335 for protein G, indicating that folding (Tf) is 
almost concomitant with collapse (Tθ).  

The thermal stability PNat plot suggests that Protein L is more stable than protein G at any 
given temperature. This disagrees with experimental findings that protein G is marginally more 
stable than protein L under various denaturant conditions.53, 58 It has been suggested that protein 
L’s instability arises in part from torsional strain in the second hairpin.84 Since we have adopted 
identical dihedral propensities for hairpins in our model L and G to focus on sequence effects, 
our models do not take into account this torsional destabilization. This could explain why our 
model protein L appears more stable than protein G. The heat capacity peak for protein L has a 
larger magnitude than that of protein G, which could be explained by protein L forming more 
hydrophobic contacts and hydrogen bonds in its native state than protein G. 

To examine the free energy landscape, we project the potential mean force W along 
various order parameters. Figures 2.4a and 2.4b show the projections along Q for protein L and 
G at different temperatures. At their respective folding temperatures, proteins L and G each have 
two minima (denatured and native), suggesting a two-state folding mechanism. Figure 2.4c and 
4d show the two-dimensional (2-D) projections along χβ1 and χβ2 for L and G at their folding 
temperatures. For Protein L, the minimum-energy path proceeds through a transition state in 
which hairpin 1 is partially formed while hairpin 2 is structureless, before reaching the native 
state. Protein G, on the other hand, has a minimum energy path that involves formation of a 
native-like hairpin 2, before crossing the transition state to reach the native state. The 2-D 
projections are in agreement with experimental evidence that the denatured state ensemble (DSE) 
and transition state ensemble (TSE) of protein L consist of partially formed β−hairpin 158, 59, 
while those of protein G involve a partially buried β−hairpin 253, 60. However, P-fold analysis is 
needed to determine whether transition state ensembles obtained from the free energy projections 
are meaningful with respect to folding mechanism. 
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Figure 2.3. Thermodynamics averages for proteins L and G as functions of temperature. (a) 
percentage folded PNat, (b) heat capacity Cv, and (c) radius of gyration Rg.  
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Figure 2.4. Free energy surface projections onto different reaction coordinates. (a) Projection of 
protein L’s free energy along reaction coordinate Q over temperature range of 0.32<T<0.39. (b) 
Projection of protein G’s free energy along reaction coordinate Q over temperature range of 
0.29<T<0.36. 
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Figure 2.4. Free energy surface projections onto different reaction coordinates (continued)  
(c) Projection of protein L’s free energy surface onto χβ1 and χβ2 at Tf=0.36.  
(d) Projection of protein G’s free energy surface onto χβ1 and χβ2 at Tf=0.325. Contours for (c) 
and (d) are spaced 0.5kT apart. 

(c) 

(d) 



- 22 - 

Transition States Analysis 
The 2D free energy projections along χβ1 and χβ2 (Figure 2.4c and 2.4d) suggest different 

minimum free energy paths for the folding of L and G. From these projections, highest energy 
state for protein L appears to have a partially formed β−hairpin 1, while that of protein G has a 
partially formed β−hairpin 2. Noting that true transition states should be the highest point along 
the minimum free energy path, and correspond to saddle points on the multi-dimensional 
landscape, the relevant transition state ensemble (TSE) may be of higher dimension than 
suggested by simpler reaction coordinates χβ1 or χβ2. In fact these simpler reaction coordinates 
proved not to be saddle points on the multi-dimensional energy landscape according to Pfold, and 
therefore we needed to collect putative transition states for more complicated reaction 
coordinates. We found that the collective Q coordinate combined with χβ1 and χβ2 for proteins L 
and G respectively were sufficient to determine the TSE. According to the Q-χβ1 projection for 
protein L, the putative TSE structures are collected for structures with 0.4 < Q < 0.6 and 0.5 < χβ1 
< 0.7 (Figure 2.5a). According to the Q-χβ2 projection for protein G, putative TSE structures are 
collected for structures with 0.6 < Q < 0.8 and 0.35 < χβ2 < 0.8 (Figure 2.5b). Pfold analysis was 
performed (see methods) and we identified the true transition state ensembles for proteins L and 
G (Figure 2.5c and 2.5d, respectively). Comparing the transition state contacts (red contours) for 
protein L and G, it is evident that the TSE of protein L consists of more native-like contacts in 
hairpin 1, while the TSE of protein G has more native-like contacts in hairpin 2. This is 
consistent with experimental studies using φ-value analysis86, 93. Both TSE contours indicate 
well-formed helices for L and G, while mutagenesis studies have suggested helices are relatively 
disrupted in TSEs. The contact maps also show some contacts between strand 1 and 4, which are 
consistent with experiments.  

To explore how our simulated TSE correlates with mutagenesis experiments at a residue 
level, we perform single mutations on the optimized sequence of protein L and monitor how its 
transition state is perturbed by each mutation. From the mutations done by Kim et. al84,  we 
performed sixteen single mutations which can be represented by our four-flavor code. Table 2.4 
lists the actual experimental mutations, and implementation in our model. Note that the residue 
indices are different for the experiment and simulation.  
We then compute 

€ 

1− NTSE (MUT ,i) /NTSE to quantify how much the transition state is perturbed. NTSE 
refers to the number of conformations in the transition state of the optimized sequence. 
NTSE(MUT.i) refers to the number of conformations collected when we performed Pfold analysis on 
conformations in TSE with the mutation i. To compare against φ-values, we define a parameter 
Ri 

€ 

Ri =

 0.2;       0     ≤1− NTSE (MUT ,i) /NTSE ≤ 0.33 
 0.4;       0.33 <1− NTSE (MUT ,i) /NTSE ≤ 0.5
 0.8;       0.5  <1− NTSE (MUT ,i) /NTSE ≤1.0

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

Figure 2.6 shows the correlation between the experimental φ-values and Ri. While there 
are some outliers (namely N11S, N26S and N41S), the general trend is consistent with the 
experimental findings that residues in hairpin 1 are more important in the transition state then 
those in hairpin 2.  
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(a) 

 
(b) 

 
Figure 2.5. Pfold analysis of proteins L and G. Putative transition state ensembles are identified 
from free energy projections along (a) Q-χβ1 and (b) Q-χβ2 for proteins L and G, respectively.  
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(c) 

 
(d) 

 
 
Figure 2.5. Pfold analysis of proteins L and G (continued) Contact maps of transition state 
ensembles from Pfold for (c) Protein L and (d) Protein G. Black contours denote native contacts. 
Red contours denote contacts made by 90% of structures in the transition state ensembles.  
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Table 2.4. Mutations performed on Protein L 

Experimental 
Mutation84 Model Mutation 

Experimental 
φ-values84 

€ 

1− NTSE (MUT ,i) /NTSE  R 
V4A L4S 0.7 0.61 0.80 
A8G S5N, E5T* 0.43 0.39 0.4 

G15A N11S 0.86 0.24 0.20 
T17A N13S 0.42 0.36 0.40 
T19A N15S 0.17 0.27 0.20 
E21A L17S 1.08 0.61 0.80 
K23A L19S 0.57 0.39 0.40 
G24A N20S 0.2 0.33 0.20 
T30A N26S 0.14 0.88 0.80 
N44A L40S 0.08 0.27 0.20 
G45A N41S -0.1 0.39 0.40 
T48A N44S 0.44 0.30 0.20 
G55A N51S 0.18 0.33 0.20 
T57A N53S 0.07 0.42 0.40 
N59A L55S 0.12 0.39 0.40 
K61A L57S 0.18 0.33 0.20 

* Mutation in dihedral sequence 
 
 

 
Figure 2.6. Correlation between experimental φ-values and perturbation to transistion state R 
for protein L. There is general agreement between experiment and R, with some outliers (N11S, 
N26S, N41S). Both experiment and our simulation indicate residues in Hairpin 1 are more 
important for the transition state than those of hairpin 2.  

φ,
 R
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Kinetics 

To rule out the possibility of glassiness, we evaluate the glass transition temperature, Tg, 
for our model. Wolynes and co-workers59 have shown that a foldable, minimally-frustrated 
heteropolymer has a folding temperature well above its glass transition, so that a ratio of Tf to Tg 
should be greater than one. A working definition of the kinetic glass temperature Tg is the 
temperature at which average folding time <τf > is midway between τmin, the fastest (minimum) 
folding time achievable, and τmax the simulation cutoff time chosen to greatly exceed the 
observable folding times6 (set to 100,000τ in this work). In Figure 2.7 we show that this occurs at 
Tg = 0.14, so that Tf/Tg ~ 2.2 for our model of Protein G, indicating that the energy landscapes is 
sufficiently smooth down to fairly low temperatures. 

 
 

 
 

Figure 2.7. Determining the kinetic glass temperature Tg of protein G.  
The temperature at which average folding time <τf > is midway between τmin, the fastest 
(minimum) folding time achievable, and τmax the simulation cutoff time chosen to greatly exceed 
the observable folding times6 (set to 100,000τ in this work). We determine that Tg = 0.14, so that 
Tf/Tg ~ 2.2 for our model of Protein G, indicating that the energy landscapes is sufficiently 
smooth down to fairly low temperatures. 
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Table 2.5. Kinetic Fit Parameters 

  Sequential fit 100 
(Gaussian relaxation followed by single exponential) * 

 Conditions µ σ τ0 χ2 
1.  L, T*=0.36 

 
712 305 11,895 0.0408 

2.  G, T*=0.325 
 

741 450 3,963 0.0935 

  Single exponential fit with deadtime † 
 Conditions τD τ0 χ2 
3.  L, T*=0.36 

 
694 11,928 0.0506 

4.  G, T*=0.325 641 4,142 0.3436 
 
The protein L and G models were next analyzed for the kinetic rates and mechanism of 

folding at their folding temperatures Tf=0.36 and Tf=0.325 respectively. During folding 
simulations, there is a finite equilibration time during which trajectories equilibrate from the 
initial free energy surfaces at T=1.6 to those at their target temperatures. The conventional 
treatment is to include a fitting parameter for dead time τD when fitting PNat(t)  

 
PNat (t) = 1− Ai exp − t − τD( ) / τ i⎡⎣ ⎤⎦

i
∑     (2.6a) 

where Ai is the population for average timescale process τi. The parameters used to fit the kinetic 
data for proteins L and G using Equation 2.6a are listed in Table 2.5.  

We have shown in previous work100 that, instead of using a constant deadtime, the initial 
equilibration to the new folding conditions could be better modelled as a relaxation process with 
Gaussian distributed probability. The overall kinetic data could hence be modelled as a 
sequential process with (a) initial Gaussian relaxation followed by (b) subsequent 
(multi)exponential kinetics 

€ 

PNat (t) =
1

σ 2πs= 0

t−u
∫u= 0

t
∫ e

−
u−µ( )2

2σ 2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⋅αe−αsdsdu     (2.6b) 

 
Integration of Equation 2.6b leads to 

 

€ 

PNat (t) =
1
2
1+ erf t −µ

σ 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −

Ai

2
1+ erf t −Bi

σ 2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ e

−
t
τ i e

−
Di

2σ 2

i
∑

   (2.6c) 
 
where Bi = (µ+αiσ

2) and Di = µ2-(µ+αiσ
2)2, t is the time over which the relaxation process 

happens, with mean µ and variance σ, and αi is the kinetic folding rate for average timescale  
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Figure 2.8. Kinetics data with fits for L and G at their respective folding temperatures using 
mean first passage time (MFPT) data. (a) Percentage of trajectories folded (PNat) as a function 
of time for protein L at Tf = 0.36. (b) Percentage of trajectories folded (PNat) as a function of time 
for protein G at Tf = 0.325. Both set of data are fitted to both a sequential and dead time model 
(see text). Fit parameters are listed in Table 2.5. The sequential process is seen to give a better fit 
to the kinetic data. 
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process τi. The fitting parameters using the sequential fit are also listed in Table 2.5. Comparing  
the fit quality, it is evident that the sequential mechanism provides a better fit than the dead time 
treatment, and Figure 2.8 shows the quality of fit for PNat(t) for Protein L and G at their 
respective folding temperatures. Beyond the equilibration phase, the PNat(t) data of Protein L 
(Figure 2.8a) fits to a single exponential, in agreement with experimental data91. The PNat(t)  data 
of Protein G at Tf = 0.325 also fits a single exponential (Figure 2.8b), agreeing with single 
exponential kinetics reported for protein G at its denaturant midpoint88. The folding time 
constants for L and G are 11,895τ and 3,963τ respectively. This is in qualitative agreement with 
experimental data53, 58 that protein G folds faster than L.  
 
Conclusions 

We have presented an improved coarse-grained model capable of modeling directional 
hydrogen bonding. The model retains a strong connection between sequence and folding 
mechanism for proteins L and G, and shows increased folding cooperativity. The model native 
states also exhibit a greater structural faithfulness to experimentally solved structures. The 
addition of a fourth bead flavor (V) also provides an improvement over the old model by 
providing a more graded spectrum of attractive interaction energies (Figure 2.1). Overall the 
improvements to the original model, without introducing greater computational cost, translate to 
a smoother energy landscape and improved Tf/Tg ratios. The thermodynamic data presented 
demonstrate that our model assembles more cooperatively and preserves the sequence 
information that result in different free energy pathways for proteins L and G. This finding is 
further reinforced by kinetic Pfold analysis of their respective TSEs, which show good agreement 
with experimental mechanisms of protein L and G folding. The kinetics performed at their 
melting point (T = Tf) showed that both L and G fold via two-state mechanisms, consistent with 
experimental consensus under these midpoint denaturant conditions88, 91.  

We believe the model shows promise in application to other protein folding studies. One 
interesting outcome of the new model is our observation of kinetic complexity and burst phase 
kinetics under more strongly folding conditions for protein G that we hope to report in a future 
paper. The computational efficiency of the model has also permitted us to develop molecular 
models of the Alzheimer’s Aβ1-40 fibril in order to determine the critical nucleus, stability with 
chain size, and fibril elongation1, opening opportunities for other protein-protein co-assembly 
processes. 
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Chapter 3 

A New and Efficient Poisson-Boltzmann Solver 

for Interaction of Multiple Proteins 

Introduction 
The formation of protein complexes is ubiquitous in a crowded, salty cellular 

environment. Since electrostatic forces dominate the earliest of protein-protein recognition 
events in the cell, various analytical and numerical continuum theories of bulk electrolytes have 
been adapted for use to describe protein complexation mechanisms on the supramolecular 
scale.102 One popular continuum mean-field theory is the Poisson-Boltzmann (PB) treatment, 
which forms the basis of Gouy-Chapman theory103, 104 in electrochemistry, and under the low 
field linearized PB (LPB) approximation, the Debye-Hückel theory in solution chemistry105 and 
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in colloid chemistry106, 107. Numerous 
techniques for solving the PB equation exist108, including both analytical or numerical methods, 
and each has its drawbacks and its strengths. 

Analytical methods typically allow rapid solution of the PB equation using multipole 
expansions under specialized geometries such as spheres or cylinders. A complete PB solution 
comprising one spherical macromolecule was developed by Kirkwood109 more than 70 years 
ago, but generalization of this complete solution to two or more spherical macromolecules 
proved to be more difficult, and many different partial and approximate solutions have been 
proposed110-113. We have recently achieved a fundamental result in deriving an analytical PB 
solution for computing the screened electrostatic interaction between arbitrary numbers of 
spherical proteins of arbitrarily complex charge distributions, separated by arbitrary distance3. 
While such idealized protein geometries will typically be inappropriate for describing 
complexation on a supermolecular scale, this new analytical solution is a novel component of our 
new numerical PB solver for arbitrary protein shape. It also serves as a benchmark for the 
accuracy of the numerical solutions in certain idealized test cases.  
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By contrast, numerical methods (see reference [108] for a recent survey) such as finite-
difference (FD) 43, 44, 114 and finite-element (FE)115-117 methods can handle arbitrary dielectric 
boundaries by solving for the PB potential on a 3-D grid or mesh. However there are limitations 
of the FE or FD formulations, such as singularities in the potential solution due to point charges, 
that electric displacement continuity could not be enforced across dielectric boundaries (thereby 
reducing the solution accuracy and convergence rate), and forces must be estimated from finite-
difference calculations108. But most importantly, the requirement that the solution be solved on a 
grid limits its practical application to spatial domains of either two to three typical 
macromolecules at reasonably high resolution (~0.2Å), or to larger numbers of macromolecules 
with greatly diminished resolution and thus solution accuracy. For example, the PBE solution for 
an assembled 50S ribosomal subunit has been evaluated at 0.45Å resolution44, at the limit of 
machine memory, but to describe the preceding assembly process that occur over much larger 
spatial distances, the spatial resolution and consequently the solution accuracy would greatly 
deteriorate. As such, computational and memory cost in FD and FE methods are strictly 
functions of the number of grid points, and not the number of macromolecules described. 

Boundary element (BE) methods45-47, 50, 51 are an attractive alternative since they satisfy 
both the Dirichlet and von Neuman boundary conditions by construction, singular charges can be 
correctly treated, and most importantly the 2D solutions on the macromolecular surface removes 
spatial resolution limitations imposed by the 3D grid of the FD or FE solvers. However 
increasing the number of boundary surface element results in an increasingly large dense matrix 
to be solved with severe memory requirements, a problem which scales with the number of 
macromolecules. Acceleration of the BE approach46, 49 incorporating fast multipole methods 
have rendered BE computational times comparable to state-of-the-art software packages like the 
Adaptive Poisson Boltzmann Solver (APBS)44 based on FD solutions.  

In this work we derive a new numerical approach to solving the PB equation by 
combining the advantages of both the boundary element and our analytical model3 formalism. In 
particular, we replace the discretization of the molecule surface into a large number (tens of 
thousands) of boundary elements, by a discretization involving a smaller number (tens to 
hundreds) of spheres. The surface charges can then be iteratively solved using analytical 
multipole methods3. We show that our Poisson Boltzmann semi-analytical method, PB-SAM, 
converges to the analytical solution with better accuracy and at greatly reduced cost relative to 
the readily available public domain PB solver APBS.44 Furthermore, we define a high quality 
benchmark using 140 poles to describe the electrostatic potential for two overlapping spheres 
that are models for the sharp features that are sometimes present in real protein geometries, in 
which we show that our PB-SAM solution converges to the correct solution with the same 
computational cost or better than the finite difference solution. Finally we illustrate the strength 
of the PB-SAM approach by computing the potential profile of an array of 60 T1-particle 
forming monomers of the bromine mosaic virus (PDB code 1YC64). 
 
Theory 
Mathematical Preliminaries 

Our theory makes extensive use of the spherical harmonics (SH) family of functions. The 
spherical harmonic function of order n and degree m, at polar angle θ and azimuthal angle φ, is 
defined per the convention from Gumerov and Duraiswami118 as 
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€ 

Ynm (θ,φ) = (−1)m
n − m( )!
n + m( )!

Pn m cosθ( )eimφ     (3.1) 

where 

€ 

Pnm x( ) is the associated Legendre polynomial. Note that this definition of Ynm(θ,φ) differs 
from the common convention by a 

€ 

(2n +1) /4π  factor. The complex conjugate of Ynm(θ,φ) will 
be denoted as 

€ 

Ynm (θ,φ). 
We shall utilize two important properties of spherical harmonics – their addition 

theorems and orthogonality. Let r1 = [r1,θ1,φ1] and r2 = [r2,θ2,φ2] be two points in 3D space 
specified by spherical coordinates, where r2 > r1. The Euclidean distance |r1-r2| between them 
then obeys the addition theorems46, 119: 

 

€ 

1
r1 − r2

=
r1
n

r2
n+1Ynm (θ1,φ1)Ynm (θ2,φ2)

m=−n

n

∑
n= 0

∞

∑                  (3.2a) 

and for the screened Yukawa potential Eq. (3.2a) is modified to read as 

€ 

e−κ r1−r2

r1 − r2
=

r1
n

r2
n +1

ˆ i n (κr1)e
−κr2 ˆ k n (κr2)Ynm (θ1,φ1)Ynm (θ2,φ2)

m=−n

n

∑
n= 0

∞

∑               (3.2b) 

where κ is the inverse Debye Huckel screening length (described later), and 

€ 

ˆ k n (z)  and 

€ 

ˆ i n (z) are 
adapted modified spherical Bessel functions defined as 

€ 

ˆ k n (z) =
2
π

ezzn +1 / 2

(2n − 1)!!
Kn +1 / 2 (z)     (3.3a) 

€ 

ˆ i n (z) =
π
2

(2n + 1)!!
zn +1 / 2 In +1 / 2 (z)     (3.3b) 

In(z) and Kn(z) are the modified Bessel functions of the first and second kind respectively. 
Detailed properties of 

€ 

ˆ k n (z)  and 

€ 

ˆ i n (z) have been described in ref 3.  
 
The spherical harmonic functions are also orthogonal over the surface of a unit sphere (S1):  

€ 

Yls (θ,φ)Ynm (θ,φ)sinθ∂θ∂φθ = 0

π

∫φ= 0

2π
∫ =

4π
2n +1

δnlδms   (3.4a) 

Hence a square-integrable function g(θ,φ) on S1 can be expanded using 

€ 

Ynm{ } as the basis set:  

€ 

g θ,φ( ) =
2n + 1
4π

GnmYnm(θ,φ )
m=−n

n

∑
n=0

∞

∑     (3.4b) 

with the coefficients Gnm determined through the reciprocal transform 

€ 

Gnm = g ʹ′ θ , ʹ′ φ ( )Ynm ( ʹ′ θ , ʹ′ φ )
θ = 0

π

∫φ= 0

2π
∫ sin ʹ′ θ ∂ ʹ′ θ ∂ ʹ′ φ     (3.4c) 

Setting up the boundary value problem 

We seek to set up a boundary value problem for a system of Nmol macromolecules immersed in 
an implicit aqueous salty solvent. Figure 3.1 gives an example of the spatial domain for which 
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we solve the linearized PB equation (LPBE). Each macromolecule I is embedded with 

€ 

NC
(I )

 fixed 
partial charge and represented as a collection of 

€ 

NS
(I )  overlapping spheres with dielectric constant 

εin. For simplicity we consider in this paper the same εin for all molecules, but the model can 
handle different dielectric constants. The solvent is treated as a continuum with dielectric 
constant εout, with screening effects due to mobile ions captured via the inverse Debye length κ. 
The LPBE gives the potential Φ at any point r in space ℜ3 as 

€ 

−∇ ε r( )∇Φ r( )[ ] +κ 2Φ r( ) = 4πρ fixed r( )     (3.5) 

where ε is the relative dielectric function, ρfixed is the charge density due to the fixed protein 
partial charges, and 

€ 

κ = 8πn e2 /εoutkBT , where 

€ 

n  is the bulk concentration of monovalent salt 
in the solution, e is the fundamental electronic charge, kB the Boltzmann constant, and T the 
absolute temperature.  
 
 

 
Figure 3.1. Setting up the boundary value problem. The example system is comprised of two 
proteins with arbitrary charge distribution, each represented as a collection of overlapping 
spheres to describe an arbitrarily shaped dielectric boundary containing no salt, immersed in a 
high dielectric salty continuum solvent. Salt screening effects are captured via the Debye Huckel 
parameter κ. 
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Inside each macromolecule I, the potential 

€ 

Φ in
(I ) r( )  satisfies the Poisson equation  

€ 

−∇2Φ in
(I ) r( ) = ρ fixed

(I ) r( ) /ε in      (3.6a) 

while in the region outside all macromolecules, the potential 

€ 

Φout r( ) satisfies the Helmholtz 
equation  

€ 

∇2Φout r( ) −κ 2Φout r( ) = 0      (3.6b) 

 
We first express the potential 

€ 

Φ in
(I ) r( )  anywhere inside molecule I as the sum of the 

potentials due to the embedded fixed charges and a single-layer of yet unknown reaction 
charges

€ 

f (I ) r( )  on the surface dΩ(I)45, 120:  

€ 

Φ in
(I ) r( ) =

1
r − rα

( i)

qα
(I )

ε inα =1

NC
( I )

∑   +   1
4π

1
r − ʹ′ r 

dΩ ( I )
∫ f (I ) ʹ′ r ( )d ʹ′ r    (3.7) 

 
In our new approach, the surface of molecule I is discretized into 

€ 

NS
(I ) spheres. We 

consider each sphere k of molecule I of radius 

€ 

a I ,k( )
 in turn, and all position vectors and 

coefficients are defined with the center of sphere k as the origin. We apply the first addition 
theorem (Eq. (3.2a)) to Eq. (3.7) to obtain 
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with the coefficients defined as 
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a I ,k( )

ʹ′ r 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )d ʹ′ r 

dΩ ( I ,k )
∫    (3.8c) 

€ 

LFSnm
(I ,k ) ≡

1
4π

f (I ,k ) ʹ′ r ( )
ʹ′ r 

a I ,k( )

ʹ′ r 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )d ʹ′ r 

dΩ ( I ,k )
∫    (3.8d) 
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Notice that we have scaled the terms with 

€ 

rα
n  and 

€ 

rα
n+1 dependence by 

€ 

a I ,k( )( )n  and 

€ 

a I ,k( )( )−n respectively. This is to avoid machine imprecision as n becomes large. Coefficients with 

€ 

rα /a
I ,k( )( )ndependence, such as 

€ 

Enm
I ,k( ) , are known as multipole (external) coefficients, while those 

with 

€ 

a I ,k( )n /rα
n+1 dependence (

€ 

LEnm
I ,k( ), 

€ 

LFnm
I ,k( ) and 

€ 

LFSnm
I ,k( ) ) are known as Taylor (local) 

coefficients. The first sum in Eq. (3.8) represents the potential due to fixed charges, where 

€ 

Enm
i,k( )  

sums over 

€ 

NC
(I ,k ) fixed charges inside sphere k of molecule I, while 

€ 

LEnm
I ,k( ) sums over the 

remaining 

€ 

N C
(I ,k ) fixed charges outside sphere k. The second sum in Eq. (3.8) gives the potential 

due to the unknown surface charge

€ 

f (I ) r( ) ; 

€ 

LFSnm
I ,k( )  and 

€ 

LFnm
I ,k( ) account for represents reactive 

charges on sphere k, and on other spheres in molecule I, respectively.  
In the solvent region outside the molecules, the potential 

€ 

Φout r( )  can be represented as 
the sum of Yukawa potentials due to each molecule’s yet unknown effective surface charges 

€ 

h(I ) r( )45, 120 

€ 

Φout (r) =
1
4π

e−κ r− ʹ′ r 

r − ʹ′ r 
h(I )( ʹ′ r )d ʹ′ r 

dΩ ( I )
∫

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

I =1

Nmol

∑     (3.9) 

 
The above equation valid for the exposed portion of sphere k of molecule I. Applying 

addition theorem 2 (Eq. (3.2b)) to Eq. (3.9), the potential on the exposed surface can be 
expressed as  

€ 

Φout
(I ,k )(r) =

Hnm
(I ,k )

r
a I ,k( )

r
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

e−κr ˆ k n (κr) +
r

a I ,k( )
⎛ 
⎝ 

⎞ 
⎠ 

n

ˆ i n (κr) LHnm
(I ,k ) + LHNnm

(I ,k )( )
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Ynm

(I ,k )(θ,φ)
m =−n

n

∑
n =0

∞

∑  

 (3.10) 

where the coefficients are defined as 

€ 

Hnm
(I ,k ) ≡

1
4π

h(I ,k ) ʹ′ r ( ) ʹ′ r 
a I ,k( )
⎛ 
⎝ 

⎞ 
⎠ 

n

ˆ i n (κ ʹ′ r )Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )d ʹ′ r 

dΩ ( i ,k )
∫    (3.10a) 

€ 

LHnm
(I ,k ) ≡

1
4π

h(I ,k ) ʹ′ r ( )
ʹ′ r 

a I ,k( )

ʹ′ r 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

e−κ ʹ′ r ˆ k n (κ ʹ′ r )Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )d ʹ′ r 

dΩ ( I ,k )
∫       (3.10b) 

€ 

LHNnm
(I ,k ) ≡

1
4π

h(J ,l ) ʹ′ r ( )
ʹ′ r 

a I ,k( )

ʹ′ r 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

e−κ ʹ′ r ˆ k n (κ ʹ′ r )Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )d ʹ′ r 

dΩ ( J ,l )
∫

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

l =1

NS
( J )

∑
J ≠I

Nmol

∑   (3.10c) 

 
The multipole coefficient 

€ 

Hnm
I ,k( )  represents effective polarization charges on sphere k of 

molecule I’s exposed surface. The local coefficients 

€ 

LHnm
I ,k( )  and 

€ 

LHNnm
I ,k( )  represent effective 

polarization charges on other spheres in molecule I, and on other molecules, respectively.  
With equations (3.8) and (3.10) in hand, we can impose boundary conditions at the 

dielectric boundary surface 

€ 

rE = a I ,k( ),θE ,φE( )∈dΩE
(I ,k )  between each sphere k in molecule I 

exposed to solvent:  
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€ 

Φ in
(I ,k ) rE( ) = Φout

(I ,k ) rE( )         (3.11a) 

€ 

ε
dΦ in

(I ,k )

dn rE

=
dΦout

(I ,k )

dn rE

,        ε = ε in /εout    (3.11b) 

The Dirichlet boundary condition (Eq. 3.11a) enforces potential continuity across the 
boundary 

€ 

Enm
(I ,k ) + a I ,k( ) LEnm

(I ,k ) + LFnm
(I ,k ) + LFSnm

(I ,k )( )( )Ynm
(I ,k )(θE ,φE )

m =−n

n

∑
n =0

∞

∑

= Hnm
(I ,k )e−κa I ,k( ) ˆ k n (κa I ,k( )) + a I ,k( )ˆ i n (κa I ,k( )) LHnm

(I ,k ) + LHNnm
(I ,k )( )( )Ynm

(I ,k )(θE ,φE )
m =−n

n

∑
n =0

∞

∑
(3.12a) 

while the von Neumann boundary condition (Eq. 3.11b) enforces electric displacement 
continuity 

€ 

ε −(n +1)Enm
(I ,k ) + nFnm

(I ,k ) + na I ,k( ) LEnm
(I ,k ) + LFnm

(I ,k )( )( )Ynm
(I ,k )(θE ,φE )

m =−n

n

∑
n =0

∞

∑

=

Hnm
(I ,k )e−κa I ,k( )

n ˆ k n (κa I ,k( )) − (2n +1) ˆ k n +1(κa I ,k( ))[ ] +

a I ,k( ) nˆ i n (κa I ,k( )) +
κa I ,k( )( )2 ˆ i n +1(κa I ,k( ))

2n + 3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

LHnm
(I ,k ) + LHNnm

(I ,k )( )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

Ynm
(I ,k )(θE ,φE )

m =−n

n

∑
n =0

∞

∑
 

(3.12b) 

where we have introduced 

€ 

Fnm
(I ,k ) ≡ a I ,k( )LFSnm

(I ,k ). We continue to simplify Eqs. (3.12a) and (3.12b) 
by rearranging  

€ 

−Hnm
(I ,k )e−κa I ,k( ) ˆ k n (κa I ,k( )) + Fnm

(I ,k ) + XHnm
(I ,k )( )Ynm

(I ,k )(θE ,φE )
m =−n

n

∑
n =0

∞

∑ = 0  (3.13a) 

 

€ 

e−κa I ,k( )

n ˆ k n (κa I ,k( )) − (2n +1) ˆ k n +1(κa I ,k( ))[ ]Hnm
(I ,k ) − nεFnm

(I ,k ) + XFnm
(I ,k )( )Ynm

(I ,k )(θE ,φE )
m =−n

n

∑
n =0

∞

∑ = 0 (3.13b) 

where  

€ 

XHnm
(I ,k ) ≡ Enm

(I ,k ) + a I ,k( ) LEnm
(I ,k ) + LFnm

(I ,k )( ) − a I ,k( )ˆ i n (ka I ,k( )) LHnm
(I ,k ) + LHNnm

(I ,k )( )  (3.14a) 

€ 

XFnm
(I ,k ) ≡ a I ,k( ) nˆ i n (ka I ,k( )) +

κa I ,k( )( )2 ˆ i n +1(ka I ,k( ))
2n + 3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

LHnm
(I ,k ) + LHNnm

(I ,k )( ) +

(n +1)εEnm
(I ,k ) − nεa I ,k( ) LEnm

(I ,k ) + LFnm
(I ,k )( )

  (3.14b) 

 
The boundary equations above are valid on the solvent-exposed surfaces of sphere k on 

molecule I. We need another set of boundary equations on the buried surface 

€ 

rB = a I ,k( ),θB ,φB[ ]∈dΩB
(I ,k ). We shall utilize the fact that there is no polarization charge on the 
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buried surface, i.e. 

€ 

f (I ,k ) rB( )  = 

€ 

h(I ,k ) rB( )  = 0, since there is no dielectric discontinuity. It follows 

that scaled versions of the charge distributions, 

€ 

˜ f (I ,k ) θ,φ( ) ≡ a I ,k( )( )2
f (I ,k ) a I ,k( ),θ,φ( )  and 

€ 

˜ h (I ,k ) θ,φ( ) ≡ a I ,k( )( )2
h(I ,k ) a I ,k( ),θ,φ( ) , are also zero on the buried surface. Separately, we can 

express 

€ 

˜ f (I ,k ) and 

€ 

˜ h (I ,k )
 in terms of 

€ 

Fnm
(I ,k )and 

€ 

Hnm
(I ,k )

 using Eqs. (3.4c), (3.8d) and (3.10a), 
 

€ 

˜ f (I ,k ) θ,φ( ) =
2n +1

4π
Fnm

I ,k( )Ynm
(I ,k )(θ,φ)

m =−n

n

∑
n =0

∞

∑     (3.15a) 

€ 

˜ h (I ,k ) θ,φ( ) =
2n +1

4π
Hnm

I ,k( )

ˆ i n (κa I ,k( ))
Ynm

(I ,k )(θ,φ)
m =−n

n

∑
n =0

∞

∑    (3.15b) 

 
so the ‘zero-charge’ requirement at the buried boundary can be imposed as 

 

€ 

2n +1
4π

Fnm
I ,k( )Ynm

(I ,k )(θB ,φB )
m=−n

n

∑ = 0
n=0

∞

∑     (3.16a) 

€ 

2n +1
4π

Hnm
I ,k( )

ˆ i n (κa I ,k( ))
Ynm

(I ,k )(θB ,φB )
m =−n

n

∑
n =0

∞

∑ = 0      (3.16b) 

 
Equations (3.13a), (3.13b), (3.16a) and (3.16b) specified the complete boundary value problem, 
from which 

€ 

Fnm
(I ,k )and 

€ 

Hnm
(I ,k )  can be solved. 

 
Solution of the boundary value coefficients and interaction energy 

To solve for 

€ 

Fnm
( i,k )  and 

€ 

Hnm
( i,k ) , we need to cast the boundary value problem as a linear 

system of equations. The infinite expansion series must first be truncated at a maximum pole 
order p, chosen depending on the desired level of accuracy versus computational cost (see 
Results). The obvious approach is to set up the boundary equations as a linear least square 
problem (Figure 3.2a), by discretizing sphere k into MB buried and ME exposed grid points, and 
then finding solutions of vectors 

€ 

F( I ,k )and 

€ 

H( I ,k )  that best satisfy the appropriate boundary 
equations on all grid points. Using the DGELSY routine (complete orthogonal factorization) in 
LAPACK for (ME + MB)= 10,000 and p = 60, each sphere is solved in approximately 10 minutes. 
This is computationally intractable if the LPBE needs to be solved repeatedly for tens to 
hundreds of spheres during dynamics simulations.  
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Figure 3.2. Setting up the boundary equation (Eqs. 3.13a-b, 3.16a-b). (a) As a Linear Least 
Square solve problem. (b) As a matrix-vector multiply operation.  
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Instead, we formulated a novel approach that makes use of spherical harmonics’ 

orthogonal property (Eq. 3.4). It converts the problem to a direct matrix-vector multiply 
operation (Figure 3.2b), which can be evaluated two-orders of magnitude faster than the LLS 

approach. We first add 

€ 

(2n +1) Hnm
I ,k( )

ˆ i n (κa(I ,k ))
Ynm

I ,k( )(θE ,φE )
m =−n

n

∑
n =0

∞

∑  to both sides of Eq. (3.13a) and 

divide by 4π to arrive at: 

€ 

2n +1
4π

Hnm
I ,k( )

ˆ i n (κaki)
Ynm

I ,k( )(θE ,φE )
m =−n

n

∑
n =0

∞

∑ = ˜ w H ,exposed (θE ,φE )     (3.17a) 

where 

€ 

˜ w H ,exposed (θ,φ) =
1

4π
Hnm

(I ,k ) 2n +1
ˆ i n (κa(I ,k ))

− e−κa ( I ,k ) ˆ k n (κa(I ,k ))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Fnm

(I ,k ) + XHnm
(I ,k )⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Ynm

(I ,k )(θ,φ)
m =−n

n

∑
n =0

∞

∑  (3.17b) 

 

Similarly, we add 

€ 

(2n +1)Fnm
I ,k( )Ynm

I ,k( )(θE ,φE )
m=−n

n

∑
n=0

∞

∑  to both sides of Eq. (3.13b) and then 

divide by 4π:  

€ 

2n +1
4π

Fnm
I ,k( )Ynm

I ,k( )(θE ,φE )
m =−n

n

∑
n =0

∞

∑ = ˜ w F ,exposed (θE ,φE )    (3.18a) 

€ 

˜ w F ,exposed (θ,φ) =
1

4π
e−ka I ,k( )

n ˆ k n (ka I ,k( )) − (2n +1) ˆ k n +1(ka I ,k( ))[ ]Hnm
I ,k( ) +

(2n +1− nε)Fnm
I ,k( ) + XFnm

I ,k( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ Ynm

I ,k( )(θ,φ)
m =−n

n

∑
n =0

∞

∑   (3.18b) 

 
Equations (3.17a) and (3.17b) (and similarly (3.18a) and (3.18b)) now completely 

describe functions 

€ 

˜ w H (θ,φ ) (and 

€ 

˜ w F (θ,φ ) ) over the entire surface of sphere k: 
 

€ 

2n +1
4π

Hnm
I,k( )

ˆ i n (κa I,k( ))
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Ynm

I,k( )(θ,φ)
m =−n

n

∑
n =0

∞

∑ = ˜ w H (θ,φ) =
˜ w H ,exposed (θ,φ),  (θ,φ)∈ θE ,φE{ }

0,                      (θ,φ)∈ θB ,φB{ }
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
     (3.19a) 

€ 

2n +1
4π

Fnm
I ,k( )[ ]Ynm

I ,k( )(θ,φ)
m =−n

n

∑
n =0

∞

∑ = ˜ w F (θ,φ) =
˜ w F ,exposed (θ,φ),    (θ,φ)∈ θE ,φE{ }

0,                      (θ,φ)∈ θB ,φB{ }
⎧ 
⎨ 
⎪ 

⎩ ⎪ 
      (3.19b) 

 
The above equations now have the familiar form of spherical harmonic expansion of Eq. 

(3.4b), so we can directly evaluate the coefficients in square parentheses via the reciprocal 
transform Eq. (3.4c). We show below the derivation for 

€ 

H( I ,k )
: 
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€ 

Hnm
(I ,k )

ˆ i n (κa(I ,k ))
= ˜ w H ʹ′ θ , ʹ′ φ ( )Ynm

(I ,k )( ʹ′ θ , ʹ′ φ )
θ = 0

π

∫φ= 0

2π
∫ sin ʹ′ θ d ʹ′ θ d ʹ′ φ 

= ˜ w H,exposed ʹ′ θ , ʹ′ φ ( )Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )sin ʹ′ θ d ʹ′ θ d ʹ′ φ 

θ E
∫

φE
∫

=
Hls

(I ,k ) 2l +1
ˆ i l (κa i,k( ))

− e−κa ( I ,k ) ˆ k l (κa(I ,k ))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

+Fls
(I ,k ) + XHls

(I ,k )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
Yls

(I ,k )( ʹ′ θ , ʹ′ φ )
s=− l

l

∑
l= 0

∞

∑
⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

⎫ 

⎬ 
⎪ 

⎭ 
⎪ 
Ynm

(I ,k )( ʹ′ θ , ʹ′ φ )sin ʹ′ θ d ʹ′ θ d ʹ′ φ 
θ E
∫

φE
∫

= IE ,lsnm
(I ,k ) Hls

(I ,k ) 2l +1
ˆ i l (κa i,k( ))

− e−κa ( I ,k ) ˆ k l (κa(I ,k ))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Fls

(I ,k ) + XHls
(I ,k )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

s=−l

l

∑
l= 0

∞

∑

 (3.20) 

 
where IE, the exposed surface integral matrix, is computed using quadrature method with Mgrid 
uniform surface grid points: 

€ 

IE ,lsnm
I ,k( ) ≡

1
4π

Yls
I ,k( )( ʹ′ θ , ʹ′ φ )Ynm

I ,k( )( ʹ′ θ , ʹ′ φ )sin ʹ′ θ d ʹ′ θ d ʹ′ φ 
θ E
∫

φE
∫

≈
1

Mgrid

Yls
I ,k( )(θk,φk )Ynm

I ,k( )(θk,φk )
k=1

M E

∑  (3.21)
 

A similar transform to Eq. (3.20) can be written for

€ 

Fnm
( I ,k ). Finally, we truncate the series 

at pole order p to get the iterative equations 

€ 

Hnm
I ,k( )

ˆ i n (κa I ,k( ))
= IE ,lsnm

I ,k( ) Hls
I ,k( ) 2l +1

ˆ i l (κa I ,k( ))
− e−κa I ,k( ) ˆ k l (κa I ,k( ))

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Fls

I ,k( ) + XHls
I ,k( )⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

s=−l

l

∑
l =0

p

∑  (3.22a) 

€ 

Fnm
I ,k( ) = IE ,lsnm

I ,k( )
e−κa I ,k( )

l ˆ k l (κa I ,k( )) − (2l +1) ˆ k l +1(κa I ,k( ))[ ]Hls
I ,k( )

+(2l +1− lε)Fls
I ,k( ) + XFls

I ,k( )

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

s=− l

l

∑
l= 0

p

∑    (3.22b) 

 
Equations (3.22a-b), along with Eqs. (3.14a-b), represent a key result of this paper.  The 

equations are iteratively evaluated, until the values of 

€ 

F( I ,k )
 and 

€ 

H( I ,k )  converge to a stipulated 
tolerance. The operations are simply matrix-vector multiply, y=Ax, where the vector x is 
constantly updated using the latest values of 

€ 

F( I ,k )
 and 

€ 

H( I ,k ) . During computation, the surface 
integral coefficients 

€ 

IE ,lsnm
(I ,k ), and fixed charge coefficients 

€ 

Enm
(I ,k ) and 

€ 

LEnm
(I ,k )

 are pre-computed for 
each sphere (I,k) prior to simulation; while 

€ 

LFnm
(I ,k ), 

€ 

LHnm
(I ,k ), and 

€ 

LHNnm
(I ,k )  are updated via 

multipole-to-local operations (see implementation section below).  
In summary, our approach to solve the LPBE is as follows: (1) For each sphere k in 

molecule I, we apply the addition theorems to express the potentials 

€ 

Φin r( )  and 

€ 

Φout r( ) as 
spherical harmonic expansions containing unknown coefficients (

€ 

Fnm
I ,k( )and 

€ 

Hnm
I ,k( )) representing 

sphere k’s polarization charges. (2) We impose boundary conditions on the sphere surface to 
derive boundary equations. (3) We account for charges from other spheres and molecules by re-
expanding their polarization coefficients (

€ 

Fnm
J , l( ) and 

€ 

Hnm
J, l( ) ) about the center of sphere k using 
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‘multipole-to-local’ operations. (4) We then solve the boundary equations for 

€ 

Fnm
I ,k( )and 

€ 

Hnm
I ,k( )

 
iteratively using a novel fast iterative method (‘inner-iteration’). (5) We repeat steps (1)-(4) for 
all other spheres (‘outer-iteration’) until the convergence criteria is reached.  

Convergence is monitored using relative change in 

€ 

H( I ,k )between the tth and (t-1)th outer 
iterations  

€ 

µH ,t
(I ,k ) ≡

Hnm,t
I ,k( ) − Hnm,t−1

I ,k( )

m=−n

n

∑
n=0

p

∑
1
2

Hnm,t
I ,k( ) + Hnm,t−1

I ,k( )

m=−n

n

∑
n=0

p

∑      (3.23)
 

We now can calculate the interaction energies from converged values of 

€ 

H . The 
interaction energy of sphere k is the inner product of its effective charge distribution with the 
potential due to external sources. The interaction energy 

€ 

W (I )of each molecule I is the sum of 
interaction energies of its constituent spheres 

 

€ 

W I( ) = LHN I ,k( ),H I ,k( )

k =1

NS
( I )

∑ = LHNnm
I ,k( )H nm

I ,k( )

m =−n

n

∑
n =0

p

∑
k =1

NS
( I )

∑
   (3.24)

 

 
Implementation of re-expansion operations 

To solve for 

€ 

F( I ,k )
 and 

€ 

H( I ,k ) , we need to first account for the polarization charges from 
all other spheres via 

€ 

LF( I ,k ) , 

€ 

LH( I ,k ) , and 

€ 

LHN( I ,k ) . To do this, we convert source multipoles F 
and H from other spheres to target local expansions centered at 

€ 

c( I ,k ). If the source and target 
spheres are well-separated (see criterion below), the re-expansion can be accomplished 
analytically through multipole-to-local operators 

€ 

T0  and 

€ 

Tκ . The procedure for computing 
coefficients of 

€ 

T0  and 

€ 

Tκ  has been previously detailed in reference [3]. For intramolecular re-
expansions (i.e. from spheres j to center of sphere k in the same molecule I) 
 

€ 

LF I ,k( ) = T0
I ,k( ) I , j( )F I , j( )

j≠k

NS
( I )

∑ ; LH I ,k( ) = Tκ
I ,k( ) I , j( )H I , j( )

j≠k

NS
( I )

∑    (3.25) 

or intermolecular re-expansions (i.e. from spheres l on molecule J to center of sphere k in the 
same molecule I) 

€ 

LHN I ,k( ) = Tκ
I ,k( ) J ,l( )H(J ,l )

l=1

NS
( J )

∑
J ≠I

Nmol

∑     (3.26) 

 
The analytical re-expansion operators are only valid when the target center 

€ 

c( I ,k )  lies 
outside the bounding sphere of the source charge distribution, so they cannot be used in cases 
where source and target spheres overlap. Nonetheless, the local expansions 

€ 

LF( I ,k )
 and 

€ 

LH( I ,k )  
are still well-defined and could be directly computed using discrete versions of Eqs. (3.8c) and 
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(3.10b) – a procedure we termed ‘numerical re-expansion’, as described below. To our 
knowledge this method of circumventing the restriction by analytical re-expansion has not been 
previously documented. 

We first discretize the surface of source sphere j uniformly into Mp patches, with each 
patch b centered at 

€ 

rb
I , j( ) = a I , j( ),θb

I , j( ),φb
I , j( )[ ]. We then compute the surface charge on the bth 

patch 

€ 

˜ q b
I , j( ) = 4π ˜ q I , j( ) θb

I , j( ),φb
I , j( )( ) / M p , where 

€ 

˜ q I , j( ) = ˜ f I , j( ) or ˜ h I , j( )
 from Eqs. (3.15a) and (3.15b). 

The local expansions of sphere j’s multipoles re-centered on k are then approximated from Eqs.  
(3.8c) and (3.10b) as 

€ 

LFnm
I ,k( ) ≈

fb
I , j( )

rb
I,k( )

a I ,k( )

rb
I ,k( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

Ynm (θb
I ,k( ),φb

I ,k( ) )
b=1

M p

∑     (3.27a) 

€ 

LHnm
I ,k( ) ≈

hb
I , j( )

rb
I ,k( )

a I ,k( )

rb
I ,k( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

e−κrb
I ,k( ) ˆ k n (κrb

I ,k( ) )Ynm (θb
I ,k( ),φb

I ,k( ) )
b =1

M p

∑    (3.28b) 

where 

€ 

rb
I ,k( ) = rb

I , j( ) − c I ,k( ) − c I , j( )( ) . The re-expansion becomes exact as Mp approaches infinity, 
although in practice we find that a value of Mp ≈ 2.5p2 adequately captures features of the surface 
charge distributions. Numerical re-expansion is also used in cases where the source and target 
spheres are non-overlapping but not well-separated, which we defined as when the distance 
between sphere surfaces is less than 5Å. At such short distance, analytical re-expansion requires 
a high number of poles for a stipulated level of error. Since both computational time and memory 
for T scales with p3 it is more efficient to perform the re-expansion using direct numerical 
method.  

We have also derived a formula using Greengard’s error bound121 to adaptively determine 
the minimum pole order adequate for a re-expansion operation. To re-expand sphere j’s 
multipole to a local expansion at target center k within an error of εX, the pole order required is 
given by 

€ 

p = log
˜ q 

charges on j
∑

εX a I , j( )(c −1)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

/log(c) −1

    (3.29) 

where 

€ 

c =
c I ,k( ) − c I , j( )

a I , j( ) − 1, and 

€ 

˜ q = ˜ f  or ˜ h  are the surface polarization charges. The optimal pole 

order is calculated on the fly every outer iteration.  
 

Further implementation details 

The surface integral coefficients 

€ 

IE ,lsnm
(I ,k ) involve numerical quadratures that are pre-

computed for each sphere (I,k); we have found that the number of quadrature points should scale 
with pole number as Mgrid ~ 20p2, which we found to be adequate for capturing the spatial 
features of the integrand in Eq. (3.21).  

To prepare a target molecule for computation, we must discretize it into a collection of 
overlapping spheres. To do so, we first convert its PDB file to PQR format using the PDB2PQR 
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webserver12-13. We then obtain its solvent excluded surface (SES) using MSMS122 and a chosen 
probe radius rp in Å. We proceed with a Monte Carlo search algorithm to find the minimum 
number of spheres and corresponding radii that satisfying the following criteria:  
 
1. The sphere surface must be at least d (in Å) away from the outermost atom center. The 

distance d can be held constant, or set to the van de Waals radius of each atom. 
2. The surface of the spheres cannot protrude more than t (in Å) from the SES surface.  
The search is terminated when each atom is encompassed by at least one sphere. 
 
Finally, the code is implemented in C++, and is parallelized in a shared memory framework 
using openMP 2.0. Timings for PB-SAM and APBS in Results are based on single processor 
runs on an Intel(R) Xeon(R) CPU 2.27GHz processor with 24GB of physical memory; we did 
this to compare PB-SAM in a serial version against the APBS serial code. We performed APBS 
calculations section with the following parameters:  
 
mg-auto, cgcent 0 0 0, fgcent 0 0 0, cglen 200 200 200, fglen 100 100 100, 
mol 1,  lpbe, bcfl mdh, pdie 4.0,  sdie 78.0,  srfm mol, chgm spl2, sdens 
10.00, srad 0.0, swin 0.30, temp 298.15, ion charge 1 conc 0.05 radius 0.0, 
ion charge -1 conc 0.05 radius 0.0. 
 
Results 
Non-overlapping spherical test cases  

We first assess the accuracy of PB-SAM and APBS finite difference solutions against analytical 
values for three test systems involving 2, 27, and 343 non-overlapping spherical dielectric 
cavities (of diameter 20Å, 15Å, and 5Å, respectively) with internal charges placed near the 
dielectric boundaries (Table 3.1). For large spheres this corresponds to a highly asymmetric 
charge arrangement, while as sphere size decreases the charge distribution approaches a 
monopole. The exact analytical solution of the PBE for multiple non-overlapping spheres has 
only become available recently3. In all cases, the salt concentration is set to 0.05M, 
corresponding to κ = 0.07374. Convergence is reached when the relative change 

€ 

µH ,t
(I ,k ) falls 

below 10-2 for all spheres.  
 
Table 3.1: Spherical test systems for comparison of APBS and PB-SAM to analytical model 
solution in Tables 3.2 and 3.3. Cavities have surface-to-surface separation of 1Å from one 
another 

Test 
System 

Description Charge Configuration 
[position from center], charge [e] 

1 2 dielectric cavities  
of radius 20Å  

Cavity 1 
Cavity 2 

[18, 0, 0],    +3 
[-18, 0, 0],    -3 

2 27 dielectric cavities  
of radius 15Å  

All Cavities 
 

[13, 0, 0], +1;   [-13, 0, 0], -1 
[0, 13, 0], +2;   [0, -13, 0], -2 
[0, 0, 13], +1;   [0, 0, -13], -1 

3 343 dielectric cavities  
of radius 5Å  

All Cavities 
 

[3, 0, 0], +1;   [-3, 0, 0], -1 
[0, 3, 0], +2;   [0, -3, 0], -2 
[0, 0, 3], +1;   [0, 0, -3], -1 
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For test system 1 (two non-overlapping spheres), we computed the APBS solutions at 
four different grid resolutions that are typically used in biomolecular applications, and compared 
the potential value over the entire surface against the analytical model, as well as reporting the 
corresponding memory requirements and timings (Table 3.2). At the most coarse resolution we 
find that the APBS error can be as high as ~20% of the theoretical result; as the APBS grid 
spacing decreases the APBS accuracy increases, reaching ~5% of the true value. The APBS 
timing scales cubically with the number of grid points, as does memory cost that largely reached 
the limit of 27GB on our computing node at the highest resolution we tested. Using this highest 
resolution grid but increasing the number of spheres in test systems 2 and 3, the APBS solution 
gets corresponding better as the charge distribution simplifies, with average errors of ~2% and 
~1%, respectively. Table 3.3 shows that the corresponding result for our PB-SAM model, in 
which we can quickly exceed the accuracy of the APBS solution at a fraction of the cost and 
memory requirements for all three systems. In all three test cases, very few poles (p ≤ 40) are 
needed to define a high accuracy solution, primarily because there are no problematic deep cusp 
dielectric geometries in the non-overlapping sphere case. 

 
Table 3.2. Comparison of APBS against analytical model for test systems described in Table 3.1.  

Test 
System 

Grid Points Resolution 
(Å) 

Run time 
[s] 

Memory 
[GB] 

Overall 
Relative Error 

Maximum 
Relative Error 

1 65x65x65 1.5625 3 0.08 19.7% 34.8% 
1 129x129x129 0.7813 29 0.47 14.4% 24.7% 
1 257x257x257 0.3906 142 3.50 11.2% 31.7% 
1 513x513x513 0.1953 1315 27.8 4.9% 11.4% 
2 513x513x513 0.1953 1216 27.8 1.9% 5.3% 
3 513x513x513 0.1953 1421 27.8 1.1% 4.9% 

 
 
Table 3.3. Comparison of PB-SAM against analytical model for test systems described in Table 
3.1.  

Test 
System 

Number of 
multipoles 

Run time 
[s] 

Memory [GB] Overall 
Relative 

Error 

Maximum 
Relative 

Error 
1 30 4.3 23 13.5% 17.6% 
1 35 12.1 31 4.3% 4.6% 
1 40 20.7 51 2.4% 1.9% 
2 10 1.4 15 13.6% 26.7% 
2 15 2.3 21 6.4% 11.8% 
2 20 7.6 33 2.2% 4.1% 
2 30 46.5 82 0.4% 4.4% 
3 5 22.2 108 4.4% 9.6% 
3 10 28.4 167 0.1% 0.3% 
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Overlapping spherical test cases 

Our second comparison involves two overlapping spheres of various sizes. In this case no 
analytical solution is known, but we can define a benchmark calculation based on a high quality 
PB-SAM solution computed at p=140 and Mp=200,000 (PB-SAM140). In Table 3.4, we compare 
the relative difference in surface potential against PB-SAM140 as sphere size increases. We 
considered the worst-case scenario by placing the positive charge close to the surface, at a fixed 
distance of 1.73 Å below the cusp region, so that as sphere size grows it results in higher 
asymmetry of the charge distribution. For each sphere radius, we first compared the surface 
potential computed by APBS against that of PB-SAM140, and then seek a corresponding set of 
PB-SAM parameters that provide solutions with comparable relative errors. PB-SAM at 40 and 
60 poles is able to achieve relative difference comparable to APBS with comparable total solve 
time, and with less memory requirements. We want to point out that the total solve time for PB-
SAM reported in Table 3.4 is principally dominated by the one-time cost of surface integral 
computation (1140s), while the actual time for solving the iterative equations, Eqs. (3.22a and 
3.22b), are between 9 seconds to 2 minutes.  
 
 
Table 3.4: Two overlapping spheres with varying sphere sizes. Comparison of the surface 
potential computed with APBS and PB-SAM (Mgrid=100k, Mp=2.5p2) against PB-SAM140. 

 APBS PB-SAM 
Sphere 

Size 
Grid 
Size 
[Å] 

Solve 
Time 

[s] 

Memory 
[GB] 

 

Relative 
Error 

Maximum 
Relative 

Error 

Pole 
Order 

Solve 
Time 

[s] 

Memory 
[GB] 

 

Relative 
Error 

Maximum 
Relative 

Error 
2 0.0195 960 27.8 0.6% 1.6% 20 1141 0.018 12.1% 16.1% 
      30 1143 0.030 7.0% 9.2% 
      40 1149 0.057 3.8% 5.6% 
      60 1209 0.230 1.5% 2.1% 

5 0.0391 1018 27.8 1.6% 3.5% 20 1141 0.018 14.4% 20.6% 
      30 1143 0.030 7.7% 10.5% 
      40 1148 0.057 5.5% 7.8% 
      60 1315 0.229 2.3% 3.9% 

15 0.1172 1,158 27.8 4.6% 9.7% 20 1141 0.018 21.7% 30.4% 
      30 1143 0.030 12.5% 18.4% 
      40 1148 0.057 8.6% 14.4% 
      60 1223 0.229 4.3% 6.9% 

50 0.3906 1,276 27.8 16.8% 32.8% 20 1141 0.018 41.8% 36.2% 
      30 1142 0.030 27.7% 25.3% 
      40 1148 0.057 19.6% 18.2% 
      60 1180 0.229 11.3% 13.3% 

 
 
It is interesting to note that, for a fixed number of poles, PB-SAM’s relative error increases with 
increasing sphere sizes. Since the boundary equations are formulated and solved in scaled 
representations, they should be independent of sphere sizes. The two potential sources of error 
are if Mp is insufficient in discriminating the positions of the source surface charges for 
numerical re-expansion, or the scaled fixed charge multipole 

€ 

Enm
I ,k( ) decays more slowly with 

poles with increasing charge asymmetry. While we found that increasing Mp by a factor of 40 
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resulted in no change in potential, the term (rα/a(I,k))n in 

€ 

Enm
I ,k( )  converges slower at large sphere 

radii, hence more poles are needed to describe the corresponding increase in charge asymmetry. 
In practice, charges in realistic biomolecules are more evenly distributed, hence their fixed 
charge multipoles will converge much faster. The convergence improves further when smaller 
spheres are used to define higher resolution dielectric boundaries. Hence Table 3.4 shows that 
PB-SAM’s relative error decreases with smaller spheres and higher pole, and our simplified case 
with maximum charge asymmetry provides a worse case upper bound on the relative error for 20 
< p < 60. This will inform estimates of error in our calculation of the bromine mosaic virus in the 
following section. 
 
The Bromine Mosaic Virus  

We have also applied our PB-SAM method to solve for the potential around a biological 
molecule, the T=1 particle of the brome mosaic virus (BMV) capsid (PBD code: 1YC6). The 
virus has been shown to convert from T=3 (comprising of 180 monomers) to T=1 (comprising of 
60 monomers) capsid under proteolytic conditions4. Each capsid protein monomer is comprised 
of 154 amino acids. To prepare the PDB file for calculation, we converted chain A of the PDB 
file into PQR format using the PDB2PQR server123, 124, which also assigned partial atomic 
charges using the AMBER 99 force field125. We then discretized the protein into a collection of 
overlapping spheres using an in-house algorithm (see implementation details in Methods). Using 
discretization criteria that varies in spatial resolution, we generated three representations of the 
protein monomer with 107, 354 and 712 spheres, and Figure 3.3 compares the dielectric 
boundary representation against the solvent excluded surface computed using MSMS122 with 
probe radius rp = 1.4 Å.  
 
It is our intention to study the dynamics of BMV capsid assembly via Brownian dynamics in 
future work. Therefore Table 3.5 describes the computational time and memory resources for 
PB-SAM to calculate the self-polarization of one 1YC6 monomer, and the mutual polarization of 
an array of 60 monomers that make up the unassembled BMV capsid. We therefore consider the 
breakdown of computational cost and memory as (1) a one time cost to prepare the surface 
integral of the chosen dielectric representation of the 1YC6 monomer, (2) the one-time cost to 
self-polarize each monomer, and (3) the cost to mutually polarize the 60 monomers. In the 
context of a Brownian dynamic simulation, Table 3.5 represents the cost of the initialization 
phase that will require “cold” guesses for F and H for steps (2) and (3) and the timings will be 
non-optimal relative to later solutions that will provide better initial guesses as the dynamics 
algorithm proceeds as the capsid assembles.  
 
The PB-SAM computational cost depends on the number of poles and number of spheres, and 
timings are faster or slower depending on how much of the calculation can be done in memory. 
Using Table 3.4, we will focus our PB-SAM solutions at a ~5-7% error by choosing pole order 
20 < p < 60 and keeping average size of spheres of the dielectric boundary representation 
between 2-5Å. For step (1), Table 3.5 shows the one time surface integral cost of the 1YC6 
monomer, which scales as O(Mgridp4) (see methods), varies between several minutes to several 
hours. However, a nice benefit is that as resolution increases the sphere size and hence Mgrid 
decreases as do the number of needed poles, which together mitigates the time of calculating 
more spheres. The cost to self-polarize will depend on the available memory; in memory-saving 
mode the re-expansion operators T0 and TΚ are computed on the fly, instead of being stored in 
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memory and hence increase the cost of the calculation. In Table 3.5, the self-polarization timings 
are based on a “cold” guess of F(I,k) = 0 and H(I,k) approximated using the fixed charges, and 
iterated until the relative change in H(I,k)  falls below 10-2 for all spheres. For the 1YC6 monomer, 
the APBS result is necessarily evaluated at a low resolution of 0.22Å based on the maximum 
allowed grid points of 5133 given our maximum memory of 24GB; Table 3.4 suggests that the 
APBS relative error would be ~10-12% for this system. Therefore it is evident that with 30-40 
poles for the representations of 107 and 353 spheres, and 20-30 poles for 712 spheres, we have 
arguably a higher quality solution at a comparable cpu cost and memory of the APBS solution.  
 
 
Table 3.5. Computational timing and memory resources using PB-SAM for capsid assembly. 
Self-polarization of 1YC6 monomer and mutual polarization of 60 monomers of BMV capsid for 
various dielectric representations (Figure 3.3) 

** memory-saving mode 

Self-polarization  Mutual-polarization  Number and  
median 
sphere 
radius  

Poles Time to 
calculate 
surface 

integrals [s] 

Time [s] Memory 
[GB] 

Time [s] Memory 
[GB] 

107 spheres 40 1,083 280 3.6 2,589 4.4 ** 
4.40 Å 50 4,131 552 7.2   

 60 12,336 1,180 13.3   
354 spheres 30 423 603 7.8   

3.06 Å 40 2,380 2,091 7.1** 9,365 13.5 ** 
  50 9,079 4,934 17.1**   

712 spheres 20 70 271 8.6   
1.91 Å 30 802 1,177 17.5 16,046 33.8 ** 

 40 4,508 3,707 14.2**   



- 48 - 

 
(a) 

 

(b) 

 

(c) 

 

(d) 

 
 
 
Figure 3.3. Representations of 1YC6 monomer based on different discretization criteria. (a) 
the solvent excluded surface computed using MSMS with p = 1.4Å. (b) 107 spheres with p = 1 
Å, d = 1 Å, t = 2 Å, (c) 354 spheres with p = 1 Å,  d = atomic vdW radii, t = 1 Å (d) 712 spheres 
with p = 1 Å,  d = atomic vdW radii, t = 0.5 Å. 
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(a)  

 
(b) 

 
 

Figure 3.4. Array of 60 virus monomers. (a) Array configuration (b) Potential profile of a cross-
section through the z=0 plane with twenty monomers. Contour lines at 0.05 kT. 
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Finally we have evaluated the potential of an assembly of 60 copies of 1YC6 monomers in a 5 x 
4 x 3 array, corresponding to a system size of 165 Å x 220 Å x 275 Å (Figure 3.4). The array 
configuration is intended to mimic late stage assembly, at which the entire capsid system is 
compact and mutual polarization becomes significant and more difficult to converge (as opposed 
to the 60 monomers being well separated). All monomers were given the same initial guess of 
Fself and Hself from the converged self-polarization step, and the computational time and memory 
to calculate the total (self and mutual) polarization is given in Table 3.5. The memory for the 
712-sphere representation required 33GB of virtual memory, which is not as efficient if it were 
able to fit in the available 24GB of physical memory. The fact that the calculation of a high 
quality solution is doable on a single standard commodity node is a strength of the PB-SAM 
approach, although further optimization will be explored in the future.  
 
Conclusion 
We have developed a novel method for solving the linearized Poisson Boltzmann equation by 
discretizing the protein surface as a collection of spheres, in which the surface charges can be 
iteratively solved by our recent analytical solution of the PBE equations for spherical geometries 
in which mutual polarization is treated exactly3. We have compared PB-SAM and the finite 
difference PB solver APBS against two new benchmarks never before available to compare 
numerical methods. First we show that PB-SAM converges to the analytical solution of hundreds 
of spheres with better accuracy and at greatly reduced cost relative to APBS. Second the PB-
SAM solution using 140 poles allows us to define a high quality benchmark to describe the 
electrostatic potential for two overlapping spheres that are models for cusp-like features of 
protein active sites, in which we show that our PB-SAM solution converges to the correct 
solution with the same computational cost or better than the finite difference solution. Finally we 
illustrate the strength of the PB-SAM approach by computing the potential profile of a close 
configuration of 60 T1-particle forming monomers of the bromine mosaic virus (PDB code 
1YC6), with clear improvements in accuracy relative to other numerical PB solutions, given a 
fixed hardware configuration of physical memory. 
 
Further development is necessary to enable PB-SAM’s application in large-scale Brownian 
dynamic simulations. The current version of PB-SAM expends significant computational time 
solving Eqs. 3.22(a-b) iteratively. This step was implemented simply as repeated calls to the 
BLAS matrix-vector multiply routine dgemv, but can be accelerated by preconditioning Eqs. 
3.22(a-b) and using a more sophisticated linear system solving method, such as generalized 
minimal residual method. We also noted during our benchmarking studies that when our current 
convergence criterion is relaxed, the resulting surface potential is unchanged, so there is room 
explore a less stringent but adequate convergence criterion. Finally, forces and torques are 
required for Brownian dynamic simulation. We have derived in reference [3] how forces and 
torques can be computed analytically for spherical dielectrics. The same formulation can be 
extended to the overlapping sphere representation in PB-SAM via superposition, which is on-
going work in our lab. 
 
Acknowledgements We gratefully acknowledge support from an NIH Multiscale grant and 
NERSC for computational resources, and Dr. Itay Lotan for providing source code for reference 
[3] and clarifications. 
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Chapter 4 

Brownian Dynamics of Particles in a Poisson 

Boltzmann Continuum 
 
Introduction 

In Chapter 3 we presented a new mathematical formalism, the Poisson-Boltzmann Semi-
Analytical Method (PB-SAM), for solving the linearized Poisson Boltzmann equation. In this 
chapter, we derive the corresponding force and torque equations, using a variational approach to 
account for mutual polarization.  

When a dielectric cavity is placed in a medium of a different dielectric constant, the 
cavity develops surface charges in response to the dielectric discontinuity across the boundary, in 
a process we termed self-polarization. This is in accordance to Gauss’s Law, which states that 
the net normal electric displacement flux (

€ 

εE ⋅ ∂A
S∫ ) emanating from a closed surface must be 

equal to the net charge in that enclosed volume. Now, when two dielectric cavities are placed in 
close proximity to each other, the electric field from the first cavity’s fixed and self-polarized 
charges induces additional polarization on the second cavity, which in turn induces additional 
charges on the first. This iterative charging process is termed mutual polarization. 

Mutual polarization is negligible for well separated cavities, but becomes dominant at 
small separation distance d. Forces and torques computed with and without accounting for 
mutual polarization essentially agree for d > 40Å (for what size cavity and charge distribution), 
but differ by more than 80% at d = 2 Å3. It is hence clear that inclusion of (at least some) mutual 
polarization effect is essential for realistic modeling of intermolecular electrostatic interactions at 
close range.  

To account for mutual polarization, we need to solve for two quantities: the mutual 
polarized charge distribution and its gradient. Solving the mutual polarized charge distribution 
allows us to compute a system’s total energy. If we are interested in calculating the force on a 
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particular site i, we must also compute the gradient, i.e. how the mutual polarized charge 
distribution will change with respect to the position of i.  

Accounting for mutual polarization effects requires significant computation effort. To 
compute the force at each atom i, one could employ the ‘virtual work method’126, i.e. a finite 
difference solution, in which each atom is displaced slightly and the system re-solved. Three 
separate solutions are required (one in each direction) to compute the gradient at atom i. The 
process is then repeated for other atoms. Gilson127 derived force expression using a Maxwell 
stress tensor that has been widely used48, 49, although its use is limited to a single cavity and 
suffers from hyper-singularity issues when deployed on multiple cavities128.   

Itay and Head-Gordon3 and Lu et. al.128 independently developed solutions for solving 
the lineared PBE for multiple cavities. Reference [3] was based on an analytical approach, while 
128 was based on numerical boundary element methods, but both used essentially the same 
fundamental theory and variational approach to force127 calculation.  

In this chapter we derived expressions for forces and torques using the same variational 
approach described by references [3] and [128], and then implement the derived equations with 
the PB-SAM model. The force and torque computation is then coupled to a Brownian dynamics 
algorithm. Force and torque calculations were performed on two monomers of the T1-particle 
forming brome mosaic virus for two successive timesteps, and the timings are reported.   
 
Methods 

The method for solving mutually polarized charge distribution has been presented in 
Chapter 3. Here we first summarize the principal result, namely the solution of the charge 
distribution due to mutual polarization, followed by derivation of expressions for force and 
torque. 
 
Solution of mutually polarized charge distribution 

The system of interest comprises of Nmol macromolecules immersed in an implicit 
aqueous salty solvent. Each macromolecule I is embedded with 

€ 

NC
(I )

 fixed partial charge and 
represented as a collection of 

€ 

NS
(I ) overlapping spheres with dielectric constant εin. The solvent is 

treated as a continuum with dielectric constant εout, with screening effects due to mobile ions 
captured via the inverse Debye length κ. The linearized PB equation (LPBE) gives the potential 
Φ at any point r in space ℜ3 as 

 

€ 

−∇ ε r( )∇Φ r( )[ ] +κ 2Φ r( ) = 4πρ fixed r( )    (4.1) 

where ε is the relative dielectric function, ρfixed is the charge density due to the fixed protein 
partial charges, and 

€ 

κ = 8πn e2 /εoutkBT , where 

€ 

n  is the bulk concentration of monovalent salt 
in the solution, e is the fundamental electronic charge, kB the Boltzmann constant, and T the 
absolute temperature. 
 

The potentials inside and outside a molecule I are given respectively by:  

€ 

Φout (r) =
1
4π

e−κ r− ʹ′ r 

r − ʹ′ r 
h(I )( ʹ′ r )d ʹ′ r 

dΩ ( I )
∫

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

I =1

Nmol

∑      (4.2a) 



- 53 - 

€ 

Φ in
(I ) r( ) =

1
r − rα

( i)

qα
(I )

ε inα =1

NC
( I )

∑   +   1
4π

1
r − ʹ′ r 

dΩ ( I )
∫ f (I ) ʹ′ r ( )d ʹ′ r    (4.2b) 

 
where f(r) and h(r) are the mutually polarized, reactive and effective surface charge distributions 
respectively. Charges on the surface of sphere k, denoted as f(I,k)(r) and h(I,k)(r) , can be 
transformed into reactive and effective multipoles: 
 

€ 

Fnm
(I ,k ) ≡

1
4π

f (I ,k ) ʹ′ r ( ) a I ,k( )

ʹ′ r 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n +1

Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )d ʹ′ r 

dΩ ( I ,k )
∫                  (4.3a) 

€ 

Hnm
(I ,k ) ≡

1
4π

h(I ,k ) ʹ′ r ( ) ʹ′ r 
a I ,k( )
⎛ 
⎝ 

⎞ 
⎠ 

n

ˆ i n (κ ʹ′ r )Ynm
(I ,k )( ʹ′ θ , ʹ′ φ )d ʹ′ r 

dΩ ( i ,k )
∫   (4.3b) 

 
Coefficients of F(k,I) and H(k,I) can then be solved iteratively using 

€ 

Fnm
I ,k( ) = IE ,nm

I ,k( ) ,WF(I ,k )               (4.4a) 

€ 

Hnm
I ,k( )

ˆ i n (κa I ,k( ))
= IE ,nm

I ,k( ) ,WHH
(I ,k )      (4.4b) 

where WF(k,I) and WH(k,I) are scaled multipoles computed from fixed charges and polarization 
charges from other spheres (see Chapter 3 for definitions) , and IE

(k,I) is a surface integral over 
the exposed surface, defined by 
 

€ 

IE ,lsnm
I ,k( ) ≡

1
4π

Yls
I ,k( )( ʹ′ θ , ʹ′ φ )Ynm

I ,k( )( ʹ′ θ , ʹ′ φ )sin ʹ′ θ d ʹ′ θ d ʹ′ φ 
θ E
∫φE

∫   (4.5) 

 
We can evaluate the interaction energies upon solution of F(k,I) and H(k,I). The interaction 

energy of sphere k with the external field is the inner product of its effective multipole H(k,I) with 
its local expansion of external (i.e. intermolecular) effective charges, LHN(k,I). The total 
interaction energy of molecule I is in turn the sum of interaction energies of all constituent 
spheres.  

€ 

W I( ) = LHN I ,k( ),H I ,k( )

k=1

NS
( I )

∑ = LHNnm
I ,k( )H nm

I ,k( )

m=−n

n

∑
n= 0

p

∑
k=1

NS
( I )

∑    (4.6) 

 
Force on an effective charge  

The surface of each sphere can be discretized into MP grid points, of which ME (MB) are 
exposed (buried). Since buried grid points have no surface charge and experience no force, we 
only need to consider the force experienced at each exposed grid point P.  
 

We begin by deriving an expression for the force at P, and then summing up 
contributions from all exposed charges to derive the total force and torque on molecule I. We 
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only consider forces due to external field, because forces due to intramolecular effective charges 
cancel out and do not contribute to the overall force and torque on molecule I.  

We shall use the shorthand hP to denote h(rP), the effective charge at space position P. 
The multipole coefficient 

€ 

HP
I ,k( )  is the product of hP and the spherical harmonic 

€ 

YP
I ,k( ) ≡ Y I ,k( )(θP ,ϕP ) . The force fP acting on the effective charge at point P is the negative 

gradient of the interaction energy of charge hP with the external field: 
 

€ 

fP = −∇PWP = −∇P LHN
I ,k( ),HP

I ,k( )

= − ∇PLHN
I ,k( ),HP

I ,k( ) − LHN I ,k( ),∇PHP
I ,k( )

= − ∇PLHN
I ,k( ),HP

I ,k( ) − LHN I ,k( ),∇PhP ⋅YP
I ,k( ) − LHN I ,k( ),hP ⋅∇PYP

I ,k( )

 (4.7) 

 
In rigid body dynamics, the translational force on a molecule acting through its center of 

mass is the sum of all forces acting on all its constituent parts. Summing up fP from Eq. (4.7) 
from all exposed points, we get the translational force fI as

  

€ 

fI = fP
all P
∑ = fP

P∈k
∑

k

Nk ( I )

∑

   = − ∇PLHN
I ,k( ),HP

I ,k( ) + LHN I ,k( ),∇PhP ⋅YP
I ,k( ) + LHN I ,k( ),hP ⋅ ∇PYP

I ,k( )

P∈k
∑

k

Nk ( I )

∑    (4.8) 

 
The last inner product represents the traditional ‘direct’ force between charges and is 

equivalent to

€ 

hPhQ∇P exp(−κRPQ ) /RPQ( )
ext Q
∑

P
∑ . The first two inner products are best understood 

from a variational perspective: the operator 

€ 

∇P  measures how a scalar field changes with the 
position of P, so the first two inner products account for how the magnitude of mutually 
polarized charges change as P moves. These nonlinear changes are dependent of the 
instantaneous configuration of the molecules, and must be solve numerically. In cases where 
mutual polarization is neglected, polarization charges are fixed to their self-polarized value, and 
moving P does not induce any changes in polarization charges. The first two inner products are 
hence dropped and we are left with the familiar direct force expression used in fast multipole 
methods for discrete fixed charges.  

If we wish to include mutual polarization in our force computation, all three components 
need to be included. The large number of surface charges makes it impractical to consider a 
variational (or ‘virtual work’) treatment of each charge. However, since charges on one molecule 
are constrained to move concertedly, we can use the variational approach about the center of 
mass c(I) of each molecule, and consider how the quantity in question changes with the position 
of c(I). This is the method used in references [3] and [128], although they did not discuss the 
following caveat: the approach does not consider variation due to rotational movement of 
molecule I when determining the mutual polarization forces. That is, we compute the gradients 
by exploring only a sub-portion of the neighboring configuration space where molecules 
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maintain their same orientations but are translated with respect to each other. Fortunately we are 
justified in this approximation because the translational diffusion constants are much larger than 
rotational diffusion constants. We denote this ‘gradient at I under fixed orientation’ as 

€ 

˜ ∇ I  to 
highlight its difference from convention gradient operator 

€ 

∇. Since all points P move 
concertedly with I under translation, we can replace 

€ 

∇P  in Eq. (4.8) with
 

€ 

˜ ∇ I : 

 

€ 

fI = − ˜ ∇ ILHN
I ,k( ),HP

I ,k( ) + LHN I ,k( ), ˜ ∇ IqP ⋅YP
I ,k( ) + LHN I ,k( ),qP ⋅ ˜ ∇ IYP

I ,k( )

P∈k
∑

k

Nk ( I )

∑

= − ˜ ∇ ILHN
I ,k( ),HP

I ,k( ) + LHN I ,k( ), ˜ ∇ IqP ⋅YP
I ,k( )

P∈k
∑

k

Nk ( I )

∑

= − ˜ ∇ ILHN
I ,k( ), HP

I ,k( )

P∈k
∑ + LHN I ,k( ), ˜ ∇ IHP

I ,k( )

P∈k
∑

k

Nk ( I )

∑

= − ˜ ∇ ILHN
I ,k( ),H I ,k( ) + LHN I ,k( ), ˜ ∇ IH

I ,k( )

k

Nk ( I )

∑

(4.9)
 

 
The last inner product on the first line was dropped because the spherical harmonic YP

(I,k) 
centered at c(I,k)  is unchanged if molecule I does not change its orientation. 
 
Solution mutually polarized gradients 

We now need to compute gradients 

€ 

˜ ∇ IH
I ,k( )  and 

€ 

˜ ∇ ILHN
I ,k( )  to account for how the 

position of molecule I changes the polarization charges. The gradient 

€ 

˜ ∇ ILHN
I ,k( )  is given by  

 

€ 

˜ ∇ ILHN
I ,k( ) = ˜ ∇ ITκ

(I ,k )(J , j )H J , j( )

j

NS
( J )

∑
J≠I
∑ + Tκ

(I ,k )(J , j ) ˜ ∇ IH
J , j( )

j

NS
( J )

∑
J≠I
∑

 (4.10)
 

 
where Tκ

(I,k)(J,j) denotes the multipole-to-local re-expansion operator (see Chapter 3).  The first 
sum can be computed from the converged solutions of effective multipoles H. For the second 
sum, we would need 

€ 

˜ ∇ IH
J , j( ) . That is, for each sphere, we need to compute the gradient of its 

effective multipole H, with respect to every molecule I.  
The gradient polarization step thus comprises of three nested iteration loops. The 

outermost loop goes over 1 ≤ J ≤ Nmol to compute gradients with respect to each J. The middle 
and innermost loops then solve for 

€ 

˜ ∇ JH
I ,k( ) of all spheres in a procedure analogous to the 

multipole polarization loops described in Chapter 3. Below we detailed the formulism for solving 

€ 

˜ ∇ JH
I ,k( ) for a sphere (I,k). 

To compute 

€ 

˜ ∇ JH
I ,k( ) with respect to molecule J, we begin by applying the gradient 

operator 

€ 

˜ ∇ J  to equations (3.22a) and (3.22b): 

€ 

˜ ∇ JFnm
I ,k( ) = IE ,nm

I ,k( ) , ˜ ∇ JWF
(I ,k )       (4.11a) 
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€ 

˜ ∇ J
Hnm

I ,k( )

ˆ i n (κa I ,k( ))
= IE ,nm

I ,k( ) , ˜ ∇ JWHH
(I ,k )     (4.11b) 

 
If molecule I is fixed in orientation, IE, E(I,k), and LE(I,k) do not depend on position of I 

since their positions move concertedly with I,  so we are only concerned with 

€ 

˜ ∇ JWF
(I ,k )and 

€ 

˜ ∇ JWH
(I ,k ):  

€ 

˜ ∇ JWFnm
I ,k( ) = e−κa I ,k( )

l ˆ k l (κa I ,k( )) − (2l +1) ˆ k l +1(κa I ,k( ))[ ] ˜ ∇ J Hls
I ,k( )

+ (2l +1− lε) ˜ ∇ J Fls
I ,k( ) − nεa I ,k( ) ˜ ∇ J LFnm

(I ,k )

+ a I ,k( ) nˆ i n (ka I ,k( )) +
κa I ,k( )( )2 ˆ i n +1(ka I ,k( ))

2n + 3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

˜ ∇ J LHnm
(I ,k ) + ˜ ∇ J LHNnm

(I ,k )( )

 (4.12a) 

 

€ 

˜ ∇ JWHnm
I ,k( ) =

2l +1
ˆ i l (κa I ,k( ))

− e−κa I ,k( ) ˆ k l (κa I ,k( ))
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ˜ ∇ J Hls

I ,k( ) + ˜ ∇ J Fls
I ,k( )

+ a I ,k( ) ˜ ∇ J LFnm
(I ,k ) − a I ,k( )ˆ i n (ka I ,k( )) ˜ ∇ J LHnm

(I ,k ) + ˜ ∇ J LHNnm
(I ,k )( )

  (4.12b) 

 

During each middle-loop iteration, we consider one sphere (I,k), and compute the local 
expansions 

€ 

˜ ∇ JLF
(I ,k ), 

€ 

˜ ∇ JLH
(I ,k ), and 

€ 

˜ ∇ JLHN
(I ,k )  from outer spheres’ polarized gradients. The 

local expansions are defined below: 

€ 

˜ ∇ JLF
(I ,k ) = T0

I ,k( ) I , j( ) ˜ ∇ JF
I , j( )

j≠k

NS
( I )

∑ ; ˜ ∇ JLH
I ,k( ) = Tκ

I ,k( ) I , j( ) ˜ ∇ JH
I , j( )

j≠k

NS
( I )

∑  (4.13a) 

€ 

˜ ∇ JLHN
I ,k( ) = ˜ ∇ JTκ

(I ,k )(M ,m )H M ,m( )

m

NS
( M )

∑
J ≠M
∑ + Tκ

(I ,k )(M ,m ) ˜ ∇ JH
M ,m( )

j

NS
( M )

∑
J ≠I
∑

 
(4.13b) 

 

Note that intramolecular re-expansions (within same molecule I) does not have a 

€ 

˜ ∇ JT ⋅H 
component, since for intramolecular re-expansion the operation T does not change with position 
of I. 

As discussed in Chapter 3, analytical re-expansions can be performed between well-
separated spheres. Details of computing 

€ 

˜ ∇ JT coefficients were described in reference [3]. For 
spheres in close spatial proximity the analytical re-expansions break down, and we resort to 
numerical re-expansions. To do this, we first compute the vector representing the gradient at 
each exposed points P:  

€ 

˜ ∇ J h( )
α
θP ,φP( ) =

2n +1
4π

˜ ∇ J Hα ,nm
I ,k( )

ˆ i n (κa I ,k( ))
Ynm

(I ,k )(θP ,φP )
m =−n

n

∑
n =0

∞

∑ α = x, y,z  (4.14a) 
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€ 

˜ ∇ J f( )
α
θP ,φP( ) =

2n +1
4π

˜ ∇ JFα ,nm
I ,k( )Ynm

(I ,k )(θP ,φP )
m=−n

n

∑
n=0

∞

∑  (4.14b) 

Finally, with all local expansions computed, we can enter the innermost loop to solve for 

€ 

˜ ∇ JF
(I ,k )

€ 

˜ ∇ JH
(I ,k ) using Eqs. (4.11a-b) and (4.12a-b). 

Since mutual polarization is a short-range effect, a cutoff rcut can be used during charge 
and gradient polarization to simplify the computations. Intermolecular spheres whose surface-to-
surface distances are greater than rcut will not be included in each other’s external field. The 
validity of cutoffs for intramolecular spheres needs to be further investigated. 
 
Expressions for force and torque 

The translational force on molecule I is given
   

  

€ 

fI = − fI ,k
k

Nk ( I )

∑      (4.15) 

 
where  

€ 

fI ,k = − ˜ ∇ ILHN
I ,k( ),H I ,k( ) + LHN I ,k( ), ˜ ∇ IH

I ,k( )    (4.16) 
 

The torque on a charge at position P about the molecule I’s center of mass c(I) is given by 
the cross product of its position rP

(I) with respect to c(I) and the force it experienced, fP. The total 
torque on molecule I is then the sum of all torques:  
 

€ 

τ I = τ P
P∈k
∑ =

k

Nk ( I )

∑ rP
(I ) × fP

P∈k
∑

k

Nk ( I )

∑    (4.17) 

 
We can re-express rP

(I) as the sum of vectors from center of molecule I to center of sphere 
k (c(I,k)), and from center of sphere k to point P (rP

(I,k)). The total torque about the center of 
molecule I is then: 

€ 

τ I = c(I ,k ) × fk
k

Nk ( I )

∑ + rP
(I ,k ) × fP

P∈k
∑

k

Nk ( I )

∑
   (4.18) 

 
where  

€ 

fP = − ˜ ∇ ILHN
I ,k( ),HP

I ,k( ) + LHN I ,k( ), ˜ ∇ IHP
I ,k( )

k

Nk ( I )

∑   (4.19) 

and 
 

€ 

HP
I ,k( ) = h(θP ,φP )Ynm

(I ,k )(θP ,φP ), α = x,y,z   (4.20a) 

€ 

˜ ∇ jHP ,α
I ,k( ) = ˜ ∇ jh(θP ,φP )( )

α
Ynm

(I ,k )(θP ,φP )  (4.20b) 
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Equations (4.15-4.16) and equations (4.18-4.20b) will be used to compute the force and torque 
respectively. 

  
Brownian Dynamics 

We have adopted the Brownian dynamics simulation protocol developed by Ermak and 
McCammon29. Each macromolecule I is treated as a Brownian particle experiencing a 
conservative force fI and torque τ I, in addition to hydrodynamic interactions with the solvent. 
The Langevin equation describing a system of N Brownian particles is given in 28 as  

€ 

mI ˙ v i = − ξ ijv j
j
∑ + Fi + α ij f j

j
∑     (4.21) 

where the index I runs over particles 

€ 

1≤ I ≤ N , and indices i and j (

€ 

1≤ i, j ≤ 3N ) run over x, y, 
and z particle coordinates, mI is mass of particle I, Fi is the sum of systematic interparticle and 
external forces acting in direction i, vi is the velocity in the direction i, ξij is the configuration-
dependent friction tensor between directions i and j. The sum

€ 

α ij f j
j
∑ represents the random 

fluctuating force exerted on particle I, the coefficients α are related to the friction tensor by 

€ 

ξ ij = α ilα jl
l
∑ /kBT . The above equation can be integrated twice to yield an equation for 

displacement r. If we further stipulate that our timestep Δt is much longer than 

€ 

τ ii
0 = mI /ξ ij = mIDii

0 /kBT , the relaxation time for velocity correlation for particle I, we obtain a 
displacement equation to propagate the Brownian dynamics 29 
 

€ 

ri − ri
0 =

∂Dij
0

∂rj
Δt +

j
∑

Dij
0Fj

0

kBT
Δt +

j
∑ Si(Δt)    (4.22) 

 
where the random displacement S has the property 
 

€ 

Si(Δt) = 0        (4.23a) 

€ 

Si(Δt)S j (Δt) = 2Dij
0Δt     (4.23b) 

 
The hydrodynamic interactions between particles can be approximated using the Oseen and 
Rogne-Prager diffusion tensors.These two tensors have the property that 

€ 

∂Dij
0 /∂rj = 0

j
∑ , so the 

first term on the right of Eq. (4.22) can be dropped. The Oseen tensor is given by129  
 

€ 

Dij =
kBT

cπηRhyd ,I

δij ,    i,  j on the same particle

Dij =
kBT

8πηRhyd ,I

I +
rijrij

T

rij
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,    i,  j on the different particle

    (4.24) 

 
while the Rotne-Prager tensor is given by130  
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€ 

Dij =
kBT

cπηRhyd ,I

δij ,    i,  j on the same particle

Dij =
kBT

8πηRhyd ,I

I +
rijrij

T

rij
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

2Rhyd ,I
2

rij
2

1
3
I −
rijrij

T

rij
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ,    i,  j on the different particle

  

 (4.25) 
where η is the viscosity of the solvent, c = 6 or 4 for stick or slip boundary condition  
respectively, and Rhyd,I is the hydrodynamic radius of molecule I, and rij is the vector connecting 
the center of particles associated with indices i and j. 

 
Assuming no hydrodynamic interaction between the macromolecules, the displacement 

ΔrI and angular rotation Δϑ I per timestep Δt are given by  
 

€ 

ΔrI =
DI ,transΔt
kBT

fI +  SI (Δt)     (4.26a) 

€ 

Δϑ I =
DI ,rotΔt
kBT

τ I +ΘI (Δt)    (4.26b) 

where the stochastic displacement (S) and rotation (Θ) have the properties  
 

€ 

Sα = 0,            Sα
2 = 2DI ,transΔt     (4.27a) 

€ 

Θα = 0,            Θα
2 = 2DI ,rotΔt         α = x,y,z   (4.27b) 

                   
The translational and rotational diffusion constants of each molecule I are given by 
 

 

€ 

DI ,trans =
kBT

cπηRhyd ,I
     (4.28a) 

€ 

DI ,rot =
kBT

8πηRhyd ,I
3      (4.28b) 
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Model and Parameters 

We consider a system of two brome mosaic virus (PDB: 1YC64) monomers whose 
dynamics are simulated using Eqs. (4.26a-b) under the PB-SAM model. The first monomer 
(“M1”) is fixed at the origin, while the second monomer (M2) is positioned 100Å away, and 
allowed to move with respect to M1 (Figure 4.1). We represent each monomer’s dielectric 
boundary using different number of spheres: 107 spheres (‘107S’), 354 spheres (‘354S’), and 
712 spheres (‘712S’) (see Figure 3.3). We note that this same system would have been 
represented on a 300Å x 300Å x 300Å grid, which translates to a 0.6Å resolution, in a finite 
difference PBE solver. Thus the accuracy of our PB-SAM solution is far superior.  

During the initialization step, the system is solved with full polarization (rcut = ∞). The 
mobile monomer M2 is then propagated for one time step, and the system solved again, with rcut 
= 50Å. Convergence is reached when the relative changes in H(I,k) and 

€ 

˜ ∇ I Hnm
I ,k( ) fall below 10-2 for 

all spheres. For each representation, we solve for the multipole and gradient polarization at 
maximum pole order p = 10 and p = 20. The system temperature was set to 298.15 K. The 
dielectric constants were εs = 78 and εp = 4. The inverse Debye length κ = 0.07374, 
corresponding to a salt concentration of 0.05M. The viscosity of water is 0.001002 kg m-1 s-1 at 
20°C, and we use c = 6 corresponding to stick boundary conditions. The hydrodynamic radius of 
1YC6 is set to 33Å, based on an equivalent sphere with identical volume. A timestep of 10 ps is 
used. All computations were performed on a single processor on an Intel(R) Xeon(R) CPU 
2.27GHz processor with 24GB of physical memory.  
 
 

 
 
Figure 4.1 Starting configuration for force and torque calculations. Figure shows two 1YC6 
monomers using 107S representations. Forces and torques were also computed using 
representations with 354 and 712 spheres. Figure is not to scale. 
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Results and Discussion 

The total time taken for force and torque computation at each timestep is presented in 
Table 4.1. This time includes the solution of (i) mutually polarized multipoles F(I,k) and H(I,k) for 
each sphere, and (ii) corresponding gradient for each sphere with respect to M1 and M2; (iii) 
computing forces and torques according to Eqs. (4.15-4.16) and Eqs. (4.18-4.20b). The timing 
for the first step (which includes one time cost of initialization) is presented in italic while the 
timing for the subsequent step is in parentheses.  
 
Table 4.1. Timings for force and torque computation. Timings presented for three boundary 
representations (107S, 354S, 712S), and two pole orders. Timings for the initializing step are in 
italic; timings for the subsequent step are in parentheses. 
 

 Timing [hours] 
Pole Order 107S 354S 712S 

10 0.02 (0.01) 0.17(0.06) 0.34 () 
20 0.17 (0.10) 1.18 (0.87) 2.02 (2.14) 

 
The initializing step involves solving the mutual polarization quantities from a ‘cold-

start’, using initial guesses from self-polarized values. Consequently they are generally longer 
than the subsequent step, although the difference diminishes as the number of spheres Ns 
increases. A possible reason for this trend is that, as Ns increases, it becomes harder to obtain a 
converged solution within the stipulated number of iterations during the initialization step. 
Therefore, subsequent steps have to continue solving for the quantities using imperfect initial 
guesses, using up comparable computation time.  

The timing scales with O(p3 ~ 4). This behavior is dominated by two routines that scale 
with p4: (i) matrix-vector multiply operations in the innermost iterative loops of charge and 
gradient polarizations, and (ii) numerical re-expansions of surface charges and gradients. Future 
efforts to improve scaling with pole order must address these two areas. The timing scales 
approximately linear with Ns, the number of spheres. This is encouraging because this gives us 
some freedom to select the appropriate resolution without incurring excessive computational 
cost.  

While PB-SAM enable us to model mutual polarization effects in systems of hitherto 
inaccessible spatial dimensions, the current computation time per step could be further improved 
in order to perform multiple trajectories for longer durations to collect association statistics: 
firstly, the computation is currently performed on a single processor, and can be trivially 
modified to run on 8-processor shared memory platform to given a speed-up factor of 8. 
Secondly, we can improve the convergence of the innermost iterative loop through pre-
conditioning, and replace the repeated matrix-vector multiply subroutine calls with a fit-for-
purpose linearized equation solution routine such as Generalized minimal residual method 
(GMRES). Thirdly, more studies need to be done to determine how much we can relax the 
convergence criteria while maintaining a stipulated level of accuracy. In addition, the choice of 
cutoff distance, rcut, for inter- and intramolecular polarizations can be further optimized. Lastly, 
we observe that the gradient calculation step constitutes ¾ of the total polarization time. A 
promising approach to reducing the computation costs while including some aspect of gradient 
polarization could involve approximating the polarized gradients from analytical calculation 
using spherical dielectric boundaries.  
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Conclusions 

We have derived the formalism for force and torque calculation in the context of our new 
Poisson Boltzmann solution algorithm, PB-SAM, and incorporated within the framework of a 
Brownian dynamics simulation algorithm. The formulism accounts for mutual polarization in 
both the zero and first order derivative of the surface charges. We demonstrated for the first time 
dynamic propagation of Brownian particles with accurate accounting of mutual polarization 
effects for successive timesteps, using a model system of two monomers of brome mosaic virus 
(1YC6), with resolutions ranging from a spatial coarsening at the residue-level to atomistic 
resolution. The time taken to perform the initialization step and subsequent step are collected, 
and future strategies for algorithm accelerations were proposed. 

Future simulations of PB-SAM could be extended to address periodic boundary 
condition. For a simulation box of length l, the force attenuates rapidly with exp(-κR)/R2 at 
physiological salt concentrations (n ~ 0.05M), so a simple truncation of the Yukawa potential 
with l/2, along with minimum image convention, adequately addresses the periodic boundary 
condition. At lower salt concentrations where the forces decay more slowly, long range 
contributions would have to be included using an Ewald sum for Yukawa potential131, 132. 
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Chapter 5  

Strategies for Multiscale Simulations 

 
Introduction  

Many processes in nature are inherently multiscale, spanning the microscopic to 
mesoscopic and macroscopic lengthscales. Coupling simulation models of different length- and 
timescales will allow us to study interesting phenomena with sufficient breadth (long timescales, 
macroscopic lengthscales, reliable statistics), without sacrificing depth (atomistic details).  

The term ‘multiscale’ typically refers to strategies for connecting different spatial 
resolutions such as all atomic (AA) to coarse-grained (CG) representations of materials. A 
broader interpretation of multiscale strategies could also include connecting different temporal 
resolutions such as strategies to couple continuous, dynamic simulations with discrete event 
simulations or replacement of basic quantum mechanically motivated interactions in terms of 
effective interactions. Multiscale methods can be roughly categorized into parallel and serial 
strategies133. Below we provide examples of methods in each category, and discuss approaches 
relevant to studies of protein-protein association.  
 
Parallel Multiscale Strategies 

In parallel multi-scaling approaches, simulations using models of different resolutions are 
carried out concurrently. Information is constantly exchanged between the different models in 
real time. In the ‘mixed resolution’ approach, a selected region (or molecular species) is 
simulated in atomistic resolution, while the other regions (or species) are simulated using coarse-
grained models. This approach is analogous to hybrid quantum mechanics / molecular mechanics 
(QM/MM) methods. Mixed resolution simulations have been used to study membrane-bound ion 
channels by coarse graining the lipid and water molecules while using an all-atom representation 
for the polypeptide ion channel134. 
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In another approach, known as ‘resolution exchange’ or ‘model swapping’135, replicas of 
a system are evolved concurrently using different resolution models, and exchanges are 
attempted at regular time intervals. The approach is analogous to replica exchange or parallel 
tempering, and allows movement between different levels of structural detail in order to cross 
energy barriers, in. One challenge in using this method is the ability to regenerate realistic 
atomistic details from coarse-grained models. Recent effort in this area136 has introduced an 
efficient and reliable algorithm to generate all-atom details from alpha-carbon only protein 
models.   
 
Serial Multiscale Strategies 

In serial multiscale approaches, also known as field theoretic approaches, different 
resolution models are employed in sequence, so there is no real-time coupling between the 
simulations. Instead, information is transferred in a bottom-up approach, such that emergent 
parameters (e.g. diffusion constants, transmission coefficients) are extracted from simulations at 
a finer resolution, and used as input parameters for the coarser model.   

Force-matching 137 is a technique to obtain classical force fields from trajectory and force 
databases produced by ab initio MD simulations. The force-matching procedure includes a fit of 
short-ranged nonbonded forces, bonded forces, and atomic partial charges from ab initio MD and 
MD simulations. The technique has been applied to parameterize coarse-grained water and 
protein forcefields 138, 139. 

In another example, hydrodynamic parameters were extracted from atomistic MD to 
model coarse-grained dynamics. Coarse-graining introduces spurious, accelerated diffusional 
behavior because the fluctuating forces associated with missing molecular degrees of freedom 
are eliminated. To correct this, one can approximate the frictional constant from the 
instantaneous difference between the mean CG forces and the exact all-atom MD forces140, and 
use the frictional constant to model Langevin dynamics in the CG model.  
 
Multiscale Strategies for Protein-Protein Kinetics 

Multiscale algorithms have been used on static protein docking problems141. Below we 
discuss ways in which multiscale strategies can be applied to investigate kinetics of large-scale 
protein assembly kinetics. 
 
a) Built-in Multiscale Forcefields 

Conventional multiscale strategies approach the challenge from the angle of spatial coarse-
graining. Alternatively, one can also think about how multi-scaling can be implicitly built into 
force-fields. An illustrative example is the fast multipole method, in which well-separated 
objects are automatically collectivized into coarser resolutions and less information (pole) 
propagated back to the local field. In our PB-SAM methodology, we employ a similar 
philosophy, adaptively using the minimum pole order necessary to perform interactions with 
entities at different separation lengthscales.  
 
b) Nested Northrup-Allison-McCammon (NAM) method for bi-molecular kinetics 

Bimolecular association rates can be obtained from Brownian dynamic simulations using 
the Northrup-Allison-McCammon (‘NAM’) formulism5. Here we propose a procedure to convert 
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the basic NAM methodology into a multiscale framework using the two coarse-grained models 
that we developed. 

In the basic NAM method, the first molecule (‘A’) is positioned at the origin and the 
second molecule (‘B’) randomly on a sphere with r = b, chosen such that the potential of mean 
force and reactive flux of B are centrosymmetric for r ≥ b. Molecule B is then evolved in time 
until it either satisfy the collision criteria for encounter complex or escape to distance q  (q > b). 
The above is repeated for 1000 or more trajectories to obtain the collision frequency δ. The 
intrinsic association rate k can then evaluated with  
 

€ 

k =
k(b)δ

1− (1−δ)k(b) /k(q)
    (5.1) 

 
where k(b) and k(q) are rates at which a molecule B starting infinity reaches r = b and r = q 
respectively, evaluated analytically from the Smouluchowski rate equation 
 

€ 

k(R) =
1

4π (DA + DB )
exp(q1q2 /kBTr)

r2R

∞

∫ dr
⎡ 

⎣ 
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⎦ 
⎥ 

−1

   (5.2) 

 
To extend the NAM formulism to a multi-scale framework, the simulation will be divided 

into overlapping regimes R1 and R2 that uses the protein level and residue level models 
respectively (see Figure 5.1). In regime R1, defined as s < r < q, the protein level model is 
employed, treating proteins as rigid bodies that interact through electrostatics only. Simulations 
begin with B at r = b, and stopping at either the r = s boundary (‘collided’) or r = q boundary 
(‘escaped’). The collision frequency thus collected, δ1, can then be used to evaluate  
 

€ 

k(s) =
k(b)δ1

1− (1−δ1)k(b) /k(q)
    (5.3)  

 
A separate set of simulations is performed for regime R2 (r < b) using the residue level 

model, starting with B at r = s and stopping when the encounter complex is formed or at r = b, to 
collect collision frequency δ2. The overall intrinsic association rate is then  
 

€ 

k =
k(s)δ2

1− (1−δ2)k(s) /k(b)
    (5.4) 

 
The method can in theory accommodate multiple simulation shells, each using a different 
resolution model.  
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(a) 

 

 
 

(b) 

 

 

 
Figure 5.1. Simulation procedure for association rate calculations. (a) Original NAM method 
(b) Multi-scale extension of NAM method. The protein-level model will be used for to simulate 
trajectories starting at b and ending at either s or q. The residue-level model will be used to 
simulate trajectories starting at s and ending at either encounter complex formation or b.   
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c) Continuous Dynamic Simulations as inputs to Chemical Master Equation 

Coarse-grained simulations, such as the binary association presented in (b), can provide 
us with rate constants that can be in turn plugged into chemical master equations (CME). For a 
system with N species {S1, …, SN}, interacting through M number of reaction channels, the CME 
describes the evolution of the state vector x = X(t) = {X1(t), …, XN(t)} 142 

  

€ 

∂P(x,t | x0,t0)
∂t

= a j (x − v j )P(x − v j ,t | x0,t0) − a j (x)P(x,t | x0,t0)[ ]
j=1

M

∑  (5.5) 

 
where P(x,t|x0,t0) is the conditional probability that the system is in state x at time t, given that it 
is at state x0 at time t0, vj is the state change vector describing the changes in species populations 
associated with reaction j; and aj(x) is the propensity for reaction j to occur given the system is in 
state x. 

Solutions of CME will provide us with detailed information about how the concentration 
of each species varies with time, from which a dominant assembly pathway can be determined. 
Sept and McCammon143 investigated the nucleation pathway of actin by first characterizing the 
association and dissociation rate constants for all possible pairwise associations using Brownian 
dynamics. The kinetic parameters were inputted into a chemical master equation for nucleation–
elongation. The CME was solved to obtain the time course of polymerization and identify the 
dominant nucleation pathway.  
 
d) Continuous Dynamic Simulations as inputs to Discrete-Event Simulations 

While the chemical master equation provides full detail of the time course of each 
species, its direct solution is only tractable for low dimensions (number of species < ~10). For 
systems of higher dimensions, the kinetics can be studied by generating trajectories based on the 
underlying Markov process. This is the basis of the Gillespie’s stochastic simulation 
algorithm144. In such cases, the continuous dynamic simulations using residue level and/or the 
protein level model(s) can provide kinetic rates, or transition probability in Markovian 
terminology, to direct the stochastic simulations. Chodera et. al. described the long-time 
statistical dynamics of solvated terminally blocked alanine peptide using a discrete-state Markov 
chain model constructed from short MD trajectories145, 146. In another example, Hemberg et. al. 
performed stochastic kinetics to simulate the viral capsid assembly using an updated Gillespie 
algorithm that is modified for heterogeneous solvent conditions147. 
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Conclusions 

This thesis work focuses on the theory and algorithm development of coarse-grained 
implicit solvent models that could be deployed within a multiscale framework to enable 
computational studies of large-scale protein associations. A multiscale coarse-graining approach 
is ideal for such studies, because different stages of the association process fall naturally into 
different time and length-scales regimes. At very short separation distance (e.g. during docking), 
all atom molecular dynamics is necessary to model side chain packing and capture short-range 
interactions such as van de Waal forces, hydrogen bonding. As we move to intermediate 
separation distances characteristic of encounter complexes (separation by one to two water 
layers), a residue level model propagated by Langevin dynamics is sufficient to account for 
backbone conformational fluctuations and hydrophobic interactions. At even greater separation 
distances, conformational fluctuations become insignificant, so proteins can be represented as a 
rigid bodies moving according to Brownian dynamics, and only long range electrostatic 
interaction persists. 

The residue level α−carbon model presented in chapter 2 incorporates a novel forcefield 
term to model directional backbone hydrogen bond, leading to more stable and realistic 
α−helices and β−sheets. In addition, the addition of a fourth bead flavor provides a more graded 
spectrum of attractive interaction energies that better reflect the hydrophobicity range of the 20 
naturally occurring amino acids, reducing energetic frustrations and competition from misfolded 
states. The model retains a strong connection between sequence and folding mechanism for 
proteins L and G, shows increased folding cooperativity, and a greater structural faithfulness to 
experimentally solved structures. The computational efficiency of the model has also permitted 
us to develop molecular models of the Alzheimer’s Aβ1-40 fibril in order to determine the critical 
nucleus, stability with chain size, and fibril elongation1, 2, providing a good proof-of-concept and 
setting the foundation for applications to other protein-protein assembly processes. 

Chapters 3 and 4 describe the development of a protein level model to simulate proteins 
during diffusional search. Chapter 3 focuses on the theory and implementation of a new 
approach, Poisson-Boltzmann Semi-Analytical Method (PB-SAM) to model electrostatic 
interactions by efficiently solving the linearized PBE. This method represents the 
macromolecular surface as a collection of overlapping spheres, for which polarization charges 
can then be iteratively solved using analytical multipole method3. Unlike finite difference 
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solvers, PB-SAM is not constrained spatially by the box size, making it suitable for dynamics. 
This method realizes better accuracy at reduced cost relative to either finite difference or 
boundary element PBE solvers.  

We then incorporated the PB-SAM solver into a protein level Brownian dynamics 
simulation algorithm (chapter 4). We derived the formalism for force and torque calculation that 
account for mutual polarization in both the zero and first order derivative of the surface charges, 
and demonstrated for the first time dynamic propagation of multiple Brownian particles with 
accurate accounting of mutual polarization effects for successive timesteps, using a model 
system of two monomers of brome mosaic virus (1YC6). While PB-SAM enable us to model 
mutual polarization effects in systems of hitherto inaccessible spatial dimensions, the current 
computation time per step can be further improved through parallelization, pre-conditioning and 
more efficient solution of the iterative equations, careful choices of convergence criteria and 
polarization cutoff distances, and approximating mutual polarization effects from cheap 
analytical calculation based on spherical dielectric boundaries.  

Lastly, we discussed in chapter 5 multiscale strategies to connect the two models 
described above for large-scale protein assembly studies. The two models can be employed 
successively in a novel nested variant of the Northrup-Allison-McCammon5 formalism to 
compute bi-molecular kinetics rates. These rates will in turn be inputs to chemical master 
equations or, for more complex systems, stochastic simulations such as Markov chains and the 
Gillespie algorithm144. The framework can be applied to study the role of protein-protein 
interactions in recruitment of adapter and binding proteins in signal transduction to form 
organized scaffolds known as “signalosomes”148 and virus capsid assembly for drug delivery 
research149-153. Multiscale simulations using the two coarse-grained models can be performed to 
determine kinetics rates and the order of association, and help investigate how modifying the 
physical interactions (e.g. through mutation or changing solution conditions) can alter the 
association rates, and consequently modify the overall sequences of association. 
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