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1. Introduction and Summary 

This report presents the results of an analytical study of the hydrological transport of 

a radioactive contaminant through fractured, porous rock. The purpose is to evaluate the 

time-, and space-dependent concentration of the contaminant in the ground-water in the 

fractures and in the rock pores. 

In a previous report1 we presented analytical solutions for transport of a sorbing 

radionuclide with no decay precursors through a single fracture, with and without dispersion. 

The importance of matrix diffusion was shown. Diffusion from the fracture into the rock 

matrix retards contaminant transport through the fracture even without sorption in the 

medium. In the present report we extend the previous work in two directions: multiple 

parallel fractures and a two-member decay chain. In some instances the contaminant 

penetrates so deeply into the rock matrix that concentration fields from adjacent fractures 

overlap, requiring consideration of multiple fractures in predicting contaminant transport. 

Migrating decay presursors can affect the concentration field of their daughters because the 

daughters are generated inside the rock and the fracture as well as in the repository. 

Sudicky and Frind3
.4 also gave analytical solutions for these problems, but their 

solutions for a system of multiple parallel fractures3 contain several apparently incorrect 

expressions. Their analytical solution for the concentration in the fractures does not satisfy 

the boundary condition at the fracture entrance. And their analytical solution for the 

concentration in a porous matrix does not satisfy the boundary condition at the rock/fracture 

interface, either. 

We provide corrected version of the Sudicky and Frind solutions, and we propose a 

simplified analytical method that superposes two single-fracture solutions for the 

concentration in the rock matrix with a system of parallel fractures. The exact solutions 

require multiple integrals and summation of an infinite series, which converges slowly 

because of its oscillating nature. The convergence of the series becomes slower for strongly-

1 



sorbing media, large spacing of two fractures, and early times. The superposition is valid, on 

the other hand, for these three cases. We show the validity of the approximation in terms of 

the Fourier modulus and (t, R ) space, where tis time and R the pore retardation coefficient. 
p p 

Validity is also a function of the assumed release mode. The approximation is valid for a 

larger domain for the step release than for the band release mode in ( t, R ) space. 
p 

Since the Sudicky and Frind's solutions for a two-member decay chain are obtained 

for an impulse release at the repository boundary, we can use them as Green's functions in 

convolution integrals to obtain solutions for arbitrary release modes. We calculate, for 

example, the concentrations for the exponentially decaying step release by making the 

convolution of their solutions and the step function. We compare these results with our 

previous numerical results6 approximated by neglecting decay in the rock matrix, and find 

that this approximation introduces considerable errors especially in the case of the daughter 

nuclide at far field from the repository. 

In summary, we made extension to the theory of radionuclide penetration into 

multiply fractured rock, and provided solutions for a two-member decay chain. 

2 
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2. Evaluation of the Sudicky and Frind's Solutions 

In a series of papers, Tang, Sudicky and Frind2
'
3

'
4 presented solutions for 

contaminant transport in multiple rock fractures. The system they considered is shown in 

Figure 2.1. We first present a review and evaluation of their work. 

2.1 Analytical solutions for a System of Parallel Fractures 

Tang, Sudicky and Frind showed analytical solutions for contaminant transport 

through equally-spaced, parallel fractures by advection and dispersion, and diffusion into 

the rock matrix. Sorption retardation of the movement of the contaminant in both 

fractures and rock pores is considered. Radioactive decay is considered without any 

precursors. Each fracture is identical. The governing equations are: 

aN v aN D iN q 
-+-·- --· -- +A.N +- =0 0 < z < oo, 
at Rf az Rf ai bRf ' 

aM D iM 
- ....£. · -- + A.M = 0, b < y < 2S -b, at R a 2 p y 

where N(z,t) 

M(y,z,t) 

v 

concentration in the water in fractures, kg/m3, 

concentration in rock pores, kg/m3
, 

groundwater velocity, m/yr, 

dispersion coefficient in fractures, kg/m2·yr, 
diffusion coefficient in rock pores, kg/m3 ·yr, 

decay constant, yr -1, 

half width of fractures, m, 

half spacing of fractures, m. 

Rf and Rp are the retardation coefficient defined as 

K 
R = 1 + _f 

f b 

a 
R = 1+_£.·K 

p 
E 

p 

3 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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Fig. 2.1 Parallel fractures and porous rock. The system is 

symmetric with respect toy = S plane because each fracture is 

identical. 
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where Kf and KP are the distribution coefficients for fracture and the pore surfaces 

([kg/m2]/[kg/m3]), respectively. a is the pore surface area per unit volume of rock matrix 
p 

(m2-pore surface/m3-rock volume). E is porosity of rock excluding the pores which are not 

connected to the fractures. Rock penetration is represented by q in (2.1 ), the rate of diffusion 

from a fracture into pores, per unit area of fracture surface (kg/m2·yr), and is defined as: 

aMI q(z, t) = - e D · -a -b , 
p y Y-

z>O, t>O. (2. 5) 

If the dispersion coefficient is zero, (2.1) becomes a first-order equation, which may be 

treated as a special case. 

The side conditions are: 

N(z,O) = 0, z>O, 

M(y,z,O) = 0, b < y < S, z > 0, 

N(O,t) = \jf(t), t>O, 

N(oo,t) = 0, t>O, 

M(b,z,t) = N(z,t) z > 0, t > 0, 

aMI -o 
ay y=S- ' 

z > 0, t > 0, 

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 

(2.6e) 

(2.6f) 

(2.6f) is the difference from the single-fracture problem1. In our previous analysis, an 

infinite amount of rock was assumed to surround a fracture. Side condition (2.6f) limits the 

amount of rock surrounding each fracture. \jf(t) represents the release characteristics at the 

repository. Sudicky and Frind have applied the step release: 

(2.7) 

where N° is the concentration at the repository. They have made use of Laplace transforms 

and obtained the following solutions. However, these solutions contain apparently incorrect 

expressions. We show below the corrected version and note the corrected parts with boxes. 

5 



For non-zero D: 

z ~ 0, t~ 0, (2 8) 

- AfJsin(n~}} + 
1 [t-k<"*'>~. { ~in(Q) + A·cos(Q)}] d!Ldi;, 

lro+ A-1 
b<y<2S-y, z>O,t~O. (2.9) 

ForD =0: 

~o = 8<t-ZA) j ~-e~ 
4 

[e-J.:r" { lf·sin(J.L~It,)- A.·cos(J.L~IT') } + !fsin(Q0
) +A· cos(Q

0
)1dJ.L, 

1t OJ..2+J£. 
4 

z~ 0, t~ 0, (2.10) 

(2.11) 

where 

6 



T=t- YA, 

0 

v 
V= 2D' 

4Rp 
A2--­p - 2 

v 

T = t- ZA, 
bR , 

A- f 
- E fDR' 

v...,p .. 'p 

f.l2t y 
f.l = - - - . p (f.L) 

g 2 2 2 ' 

2 
0 f.Lt z 

f.l = - - - . p (f.L) 
g 2 2 2 ' 

J sinh(crf.L)- sin(crJ.L) ] 

p 1 (f.L) = 1 cosh(crf.L) + cos(crf.L) ' 

cr= B(S- b), B = Jfi;, 

y 
Q = 2. p 2(f.L), 

0 z 
Q = 2. p 2(f.L), 

_J sinh(crf.L) + sin(crf.L)] 

p /f.l) = 1 cosh(crf.L) + cos(crf.L) ' 

4a2 
(2.12) 

These errors shown in eqs. (2.8) to (2.11) may come from the incorrect time 

integration. In order to obtain the solution for NIN° they apparently applied the identity: 

-1[ -YAp - ] L e ·f(p) =h(t-YA)·f(t-YA), YA~O (2.13) 

where p and L -1 [ ] stand for the variable and inverse Laplace transform, respectively. In 

Sudicky and Frind's solution to NIN° for non-zero D, the Heaviside step function, h(t-YA), 

has been taken into account by changing the integration with respect to ~ in 

(2.8) from jto j, g = ~ · ~· 
0 g 

By this manipulation, T = t- YA remains non-negative in the interval,~~ 1. ForD= 0, h(t­

ZA) is included in (2.10). Then they obtained the solution for MIN° by taking the inverse 

transform of 

cosh(~ (S-y)) 
.M(y, z, p) = N(z, p) , 

cosh(~ (S-b)) 

(2.14) 

with the convolution theorem: 
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t 

c1
[ ~(p)-f2(p)] = J f1 ('t)f2(t- 't)dt, 

0 

where, in their case, 

- -f
1
(p) = N (z, p), and f 1 (t) = N(z, t) 

(2.15) 

(2.16) 

_ _ cosh(~·(S-y)) _ 1t ~ n -(eo+A)t [(2n+1)n(S-y)] 
f2(p)- , and fz(t)-

2 2
.L.J(-1) (2n+1)e cos 2(S-b) 

cosh(~·(S-b)) B (S-b) n=O 

(2.17) 

In case of non-zero D, they have made the time integration in (2.15) after substitution of 

(2.16) and (2.17), ignoring the fact that the lower limit of the integral with respect to s in 

(2. 8) becomes a function of<, i.e., g( <) = ~ · {R:. In the case of D = 0, they apparent! y 
\/"Dt 

ignored the presence ofh(t-ZA) in (2.10) on substitution of (2.10) into (2.15). 

Even after these corrections, equations from (2.8) to (2.12) require further 

consideration. 

First, let us consider whether or not eqs. (2.8) and (2.1 0) satisfy the boundary 

condition (2. 7). Substituting z = 0 into (2.10), for example, yields 

00 

[ { (2) (2)} ] N(O,t) 1 J ~ -At ~2 
. ~t ~t 

No =;h(t) 
2 

~4 e 2·sm 2 -A·cos 2 +A d~, 

o A+-
4 

which cannot be reduced to h(t). This error arose when the order of two integrations was 

interchanged: As a result of the inversion of Laplace-transformed solutions, Sudicky and 

Frind obtained solutions of the following forms: 

For non-zero D: 
2 2 

2 v z T 00 -~ --- "A.YA 

N 2 VZJ 4~2 f -A'tf ~R 
No= T3 · e e e ~ · e ros (~gl)d~dtds, 

v 1t- g 0 0 

00 

(2.8') 

8 

., 
"' 
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ForD =0: 

(2.10') 

They exchanged the order of the integration of Jl and t in the above equations, resulting in 

eqs. (2.8) and (2.10), respectively. However, this operation is valid only if the following 

conditions are met9 (We write the conditions for (2.8'); equivalent ones can be written for 

(2.10')): 
•. 

(1) exp(- A.t)·cos(Jl I ) is continuous and bounded fort and Jl on the intervals C: 0 $ t $ T 
g't 

and r: 0 $ Jl < oo. 

(2) the integral 

f flR 
Jl · e dJ.! 

0 

must converge absolutely. 

The second condition cannot be met if z = 0 because with z = 0, we have J.!R = 0, 

and the integral does not converge at all. Hence, (2.8) is not valid for z = 0. By the same 

reason, (2.10) is not valid for z = 0, either. Thus we must still use (2.8') and (2:10') to satisfy 

the boundary condition (2.7). To check if (2.8') and (2.10') actually satisfy (2.7), let us 

substitute z = 0 into (2.8'), for example, obtaining 

N(O, t) 2 foo - sz ft - A.'t foo [ Jl2t] 
No = f3 e e Jl · cos l dJ.!dtd~ 

"n-o o o 

Considering the identities 

and 

f
oo Jl [ Jl2't] foo cos(xt) [ sin(xt)]oo . 

- · cos -- dJ.! = dx = = Inn n 2 n nt 
0 0 ox~oo 

9 

sin(xt) = D(t) 
nt 



where 8('t) is Dirac's delta function, we can obtain the identical form to the boundary 

condition (2.7) as follows: 
t 

N~~ t) = J e- 1..1:. 8('t)d't = 1, fort> 0. 

0 

By setting y = b, (2.9) and (2.11) should give the same forms as (2.8) and (2.10), 

respectively, by the boundary condition (2.6e). But they do not. This is because the inverse 

transform of (2.17) is valid only in the region b < y < 2S-b7
. Hence (2.9) and (2.11) are 

correct only in this region. In order to avoid this difficulty, we write the Laplace­

transformed solution for M/N° explicitly by substituting the Laplace-transformed solution 

for N/N° into (2.14): 

- 0 vz 
M (y, z,p) = N e e 

1+~{:;;;. tanh( o[;0-t{p+A.) l cosh(B.r;;: ·(S-y)) 

p·cosh(B.r;;: ·(S-b)) 

Then we take f~(p) and f;(p) in (2.15), instead of (2.16) and (2.17), as follows: 

_ cosh( Br;;.. (S-y)) 
f1(p) = , and 

p· cosh( B~ ·(S-b)) 

-v 
- 0 vz 
flp) =N e e 

1-1{32 [:;;;tanh( o{;;) + (p+A.)] 
, for non-zero D, 

(2.18) 

(2.19) 

(2. 20a) 

(2. 20b) 

and apply the convolution theorem. Then the correct solutions that are valid for b ~ y ~ 2S-

bare: 

10 



(i) non-zero D: 

} ] ~ (-1)n(2n+1) 1 ~(2n+1)n(S-y)] [ 2 
+A·COs(Q) -41t..LJ 22 2

· 
4

·CO 2(S-b) · .!f·sin(JlgiT)+COCOS(Jlgl~ 
n=O (2n+ 1) 1t +4A. cr cif +.!!:.. _ -

4 

+ i 0
T· { 1sin(Q)- ro-cos(Q)}] } dpdi;, z>O, t~ 0, (2.21) 

(ii) D = 0: 

M 1 -'AZA,/ foo fl~{ cosh(Bh·(S-y)) [ -'Af{ 2 o o } 
No=;e f\t-ZA) J..l:e ( 4) e !f·sin(~giT0) -A.·cos(~giT.) 

o 1...2+!£. cosh(crf0 

] 

00

4 

n -'Af I ] 11 2 .. (rP'. '~. (rl>\ _4 ~ (-1) (2n+1) e . (2n+1)n(S-y). 
+ 2 sm u, + "- cos olo"- J 1t L..J 2 2 . cos 2(S-b) 

n=0(2n+1) 1t + 4A.cr2 ro2+ ~ 
4 

[

112. o -ror"(n2 o o)]} 2 sm(JlgiT.)+<O·cos(Jl~IT) + e -1-sin(Q) - ffi· 00> (Q) dJ.I., b ~ y ~ 2S-b, z > 0, t ~ 0 (2.22) 

Note that for eqs. (2.21) and (2.22), z = 0 is carefully excluded from their domain of 

definition because the concentration in the porous rock is considered only in the region z > 

0, b ::; y ::; 2S - b, t ~ 0. Therefore, we can exchange the order of integration with respect to 

~and 'tin the preceding forms of (2.21) and (2.22), which contain very similar forms to 

(2.8') and (2.10'). 

Finally, equations (2.8') and (2.10'), (2.21) and (2.22) are the correct solutions for 

the concentration in the fractures and for the concentrations in the rock matrix, respectively. 

In (2.8'), (2.10'), (2.21) and (2.22), the multiple integrals and the infinite series must 

be evaluated numerically for the M/N° calculation. In order to achieve reasonable accuracy 

for numerical evaluation of infinite series, many terms must be summed because the series 

1 1 



has oscillating behaviour. The series converges very slowly especially for strongly-sorbing 

media (large Rp)' large spacing of two fractures (large S), and early time (small t). This 

could be one of the reasons why Sudicky and Frind have not shown any numerical results for 

M/N°. In Chapter 3 we will show a simplified analytical method for the evaluation of M/N° 

and its validity to overcome such difficulties. 

2.2 Analytical Solutions for a Two-member Decay Chain in a Single Fracture 

Sudicky and Frind4 provided analytical solutions for the transport of a two-member 

decay chain through a single fracture (Fig. 2.2). Dispersion in the fracture is neglected 

because its effects were shown not to be important1
'
2 and the solutions can be reduced to 

simpler functions. They considered an impulse release at the repository. Although general 

solutions for radioactive chains of more than two members can be derived by the same 

method, Sudicky and Frind have not obtained them because the solution form might be so 

complicated that the numerical evaluation is impractical. 

In our previous report6
, we presented exact analytical solutions for an n-member 

decay chain, for any release mode, in recursive forms. From the standpoint of numerical 

evaluation, however, it is desirable to derive nonrecursive solutions, which is rather 

difficult for higher n. To ease the numerical evaluation, we neglected radioactive decay in 

the rock pores in previous calculations. In this section we will check the Sudicky and 

Frind's solutions and show how their solutions can be applied for obtaining the solutions for 

a general release. 

The governing equations are: 

dNI v dNI ql 
-+---+A.N +--=0 O<z<oo,t>O, 

dt R dz 1 1 bRf ' 
fl 1 

(2.23) 

12 
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y 

b 

-b 

. 1 2 
1 = ' 

Fig. 2.2 A single fracture surrounded by a porous rock (the velocity v, the 

retardation coefficient R, the diffusion coefficient D, the rate of 

diffusion into the matrix q, porosity e, and concentrations N(z,t), 

M(y,z,t). Subsctipts 1 and 2, f and p stand for the mother and the 

daughter nuclides, and fracture and pore, respectively) 

13 



(2.24) 

y > b, z > 0, t > 0, (2.25) 

y> b, z>O, t> 0, (2. 26) 

where the nomenclature is as defined in the previous section. Subscripts 1 and 2 are for the 

mother and daughter nuclides, respectively. Dispersion in the fracture is neglected. The side 

conditions are: 

Ni (z, 0)= 0, z>O, (2. 27a) 

M.(y, z, 0)= 0' 
I 

y> b,z > 0, (2.27b) 

Ni (0, t)= Nj00(t-D), t> 0, (2. 27c) 

N. (oo, t) =0, 
I 

t> 0, (2.27d) 

M.(b, z, t)=N .(z, t), 
I I 

t> 0, z>O, (2.27e) 

M.(oo, Z, t) =0, 
I 

t> 0, z>O, (2.27~ 

where i = 1,2 and O(t) is a delta function. N. 0
, i = 1, 2 are the strengths of the impulses at the 

1 

repository at t = 0. 

Sudicky and Frind apparently applied Laplace transforms for the governing 

equations and obtained the solutions. However, these solutions contain several apparently 

incorrect expressions as indicated in the following by boxes: 
0 

N1(z,t)=N1W1(b,z,t), z::::O,t::::O, (2. 28) 

y::::b,z>O,t::::O, (2.29) 

z ::::o, t:::: 0, (2. 30) 

~(y, z, t) = N; { U 
1
(y, z, t) + Uly, z, t)} + N~Wiy, z, t), y;::: b, z > 0, t;::: 0, (2.31) 

where 

14 



Zi+ Bi(y-b) -A,~~ 
W.(y,z,t) = h(t-Z.A) h E.(Z. + B.(y-b), t-Z.A)·e , 

I I I I I I I I 

2 1t 

i= 1, 2 (2.32) 

1 
_S..:._A,u 

J:. 4u 
Ei(~, u) = (3. e 

. "u-
i = 1, 2, (2. 34) 

y
1 

{ y2~+B2(y-b) }(z-{,) _ 8{ y
1 
B2(z-{,)+B1 [y2~+B2(y-b)]} 

'Y- E ff)i{ 
i- bvv -Pi--Pi • 

Rr<z-~) Rf~ 
g= 1 +-2, 

v v 

}], 
~-z 

Z=-' 
I vA.' 

I 

y B 1(z-~) [y ~+Bz<y-b)]B2 E>= 1 + 2 ' 
2u 2(t-u-g) 

B2 B2 
<P=-1+ 2 

4u 4(t-u-g) · 

2 4<I> 

fl,
. 

Bi = , i = 1, 2, 
. 

U
1
(y,z,t) has three different forms depending upon the parameter values: 

(i) B~ :t= B~ 

15 

(2.35) 

(2. 36) 

(2. 37) 

(2. 38) 

(2. 39) 



where 

(2.40) is valid for negative a. as well as non-negative a.. 

(ii) B~ = B~ and\*- A-
2 

(240) 

(2.41) 

t-~A1 . . z~ 

A D [ T"7.lR ( b) f - -A. (t-u) 1 P1 t=!J1 y- 1 4(t-~~-u) 1 

U1(y,z,t) = W1(y,z,t) - ~(t-Z 1 A 1
)j , e 

D (A -A ) 47t J 3(t 7 A )3 P2 2 1 
0 

u -1 . 1 -u 

2 2 J B1(y-b) 
----A.u 

4u 2 
e du , (242) 

The Heaviside step function which comes from the identity (2.13) has been ignored 

16 
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in several places. When Sudicky and Frind took the inverse Laplace transform of the term, 

-Biy-b~ e 2 
' 

which exists in the Laplace-transformed solution for U 
1 
(y, z, t), they apparently made use of 

the identity: 
k2 

clkJPJ= ~e" (2.44) 

which is valid8 only fork> 0. In their case k = B
2
(y-b). Therefore, U

1 
(y, z, t) is applicable 

in the region y > b; and the solution for M
2
(y, z, t), \-:~= A.

2
, does not satisfy the boundary 

condition (2.27e). This difficulty can be avoided by considering the limit: 

I k

2

] 
k --

lim p· e" ~O(t-0). 
t---tO 2 3 
k---tO 1tt 

(2.45) 

Another way is to regroup the terms in ul (y, Z, p), the Laplace transformed Ul,and to 

apply the identity: 

(2.46) 

which is valid fork ;;::: 0. 

From the standpoint of numerical evaluation there are two major difficulties in their 

solutions: to perform the double integral in U
2
(y,z,t) and to evaluate the complementary 

error function erfc(z) for a complex value z , which occurs in the case A.
1 

< A-
2

. The latter 

requires the summation of infinite series8
: 

2 

2 
n 

-X 2 oo 2 

erf(x+iy) = erf(x) + ~ (1- cos2xy) + isin2xy) +~e-x~ e { f (x,y) + ig (x,y))+(remainder), 
L../2 2 n n 

where 

2nx 1t n=ln +4x 

f (x, y) = 2x- 2x·cosh(ny)·cos(2xy) + n·sinh(ny)·sin(2xy), 
n 

g (x, y) = 2x·cosh(ny)·sin(2xy) + n·sinh(ny)·sin(2xy), 
n 
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i is the imaginary unit, x , y real. (2.47) 

By using the solutions (2.28) to (2.31), we can write the solutions for a general 

release: 

N.(O, t) ='I'· (t), 
1 1 

i = 1, 2, t > 0, (2.48) 

by taking the convolution of '1'/t) and W 
1 
(y,z,t), W 2(y,z,t), U 

1 
(y,z,t), and U2(y,z,t) with 

respect to time: 

t 

N1 (~ t)= J'l'1(t-'t)W1(b, z, 't)d't, 
0 

t 

~(y, z, t) = J'l'1(t-'t)W1(y, z, 't)d't, 

0 

t t 

N2(z, t) = f 'lf
1 
(t-'t)U 2(b, z, 't)d't + f 'lflt-'t)Wib, z, 't)d't, 

0 0 

t t 

~(y, Z, t)= J'l't(t-'t){Ul(y, Z,'t)+Uly, z, 't)}dt+ J'l'2(t-'t)W2(y, z, 't)d't, 
0 0 

(2.49) 

(2.50) 

(2. 51) 

(2.51) 

which means that U.(z, t), W.(y, z, t) i = 1, 2 can be used as Green's functions. In Chapter 4 
1 1 

we make numerical evaluations for N.(z, t) with 'lf.(t) obeying the Bateman equations, and 
1 1 

compare the results with our previous evaluation obtained by neglecting the decay in the 

porous rock. 
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3. Superposition Approximation for Parallel Fracture System 

As shown in Section 2.1, the exact solutions for a system of parallel fractures are 

rather complicated, and no numerical evaluations for the concentration in the rock pores 

w;re given by Sudicky and Frind. Here we show the numerical results of the concentration 

in the rock pores by applying a simplified analytical method that superposes single-fracture 

solutions. And we consider the validity of the superposition approximation. 

3.1 Formulations 

Consider the system of parallel fractures depicted in Fig. 2.1. Single.:fracture 

solutions have been derived based upon the assumption that the fracture spacing is such that 

there is no overlap of two concentration fields produced by the adjacent fractures. If the 

contaminant penetrates so deeply into the rock matrix that concentration fields from adjacent 

fractures overlap, consideration of multiple fractures in predicting contaminant transport is 

required. However, the single-fracture solutions are applicable if the overlap is acceptably 

small. In Figure 3(a), the overlap of two profiles in the rock matrix is almost negligible. 

This means that the single-fracture solutions satisfy the boundary condition, (2.6e), at the 

rock/fracture interface with negligible errors. This situation will occur if it is early time, if 

the rock has strong sorption capacity, if the diffusion coefficient is small, or if the spacing of 

two fractures is large. In Figure 3(b), on the contrary, the overlap is significant. The 

influence of the adjacent fractures is so large that the boundary condition, (2.6e), is no longer 

satisfied by the single-fracture solutions. This situation will occur in cases of long time, 

weakly-sorbing rock, large diffusion coefficients, or small spacings. In the former case, we 

can approximate the concentration in the rock pores by superposing two profiles: 

Mt(y, z, t) = M(y, z, t) + M(2S-y, z, t) (3.1) 
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(a) 

(b) 

Cone. 

profile by fracture 
at y = -2S 

profile by fracture 
at y = 4S 

Fig. 3.1 Illustration of the overlap of two concentration fields. The top figure 
depicts valid superposition, which occurs in cases of small t and D and 

p 
large R and S. The bottom figure shows invalid superposition. Note 

p -

that, in the bottom figure, significant overlap takes place such that the 

profile by each fracture shows considerably large concentration beyond 

its adjacent fractures. 
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where Mt(y, z, t) is the approximation of the concentration in the rock pores for finite 

fracture spacing, 2S, and M(y, z, t) is the single-fracture solution. (For M(y, z, t), several 

analytical solutions have been obtained1•2•6 depending on the source boundary conditions 

and the presence of the dispersion in the fracture.) 

Based upon the above observation, we impose the condition for valid superposition 

solutions: 

M(2S- b, z, t) ::; O. 01 , 
M(b, z, t) 

(3. 2) 

so that the influence of the concentration field by the neighboring fracture is less than one 

percent of the concentration produced by the fracture of interest (Fig. 3.2). Then the 

boundary condition at y = b can be satisfied by the single-fracture solutions within 1 percent 

accuracy. 

This condition can be expressed more clearly in terms of the Fourier number, 

D t 
F =_...E..-- (3.3) 

RP (2S)2 

The Fourier number measures the time in which the diffusion process is continuing. A large 

Fourier number means that long time has passed since the diffusion process started. Hence, 

the diffusion front has penetrated deeply into the medium. 
M 

M(b,z,t) 

M(2S-b,z,t) ~L...------------" y 
2S-b b s 

M(2S-b,z,t) 

M(b,z,t) 
::; 0.01 

Fig. 3.2. Illustration of the validity condition imposed on the single-fracture solution. 
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Turning to our problem, since thevalid superposition can be interpreted as shallow 

penetration by diffusion, we could find an upper bound of the Fourier number for a valid 

superposition. Since taking a large Dp or a small2S is equivalent to taking a small Rp, we 

survey the range of the Fourier number, where (3.2) is satisfied, by changing t and Rp' fixing 

the values of Dp and 2S, and express the validity domain in (t, Rp) space. This validity 

domain can be expressed by an inequality for t/Rp: 

;-::;~, (3.4) 
p 

where 13 is a constant obtained from the numerical evaluations. Then the condition which 

the Fourier number must satisfy becomes: 

DP F::;--·P. 
os/ 

(3.5) 

To illustrate, we consider the step and band releases for the boundary con-

centration at z = 0 in the fractures: 

o - A.t. 
\jl(t) = N e n(t), and 

0 - A.t 
\jl(t) = N e {h(t)- h(t-T)}, 

(3.6a) 

(3.6b) 

where Tis the leach time and h(t) is a Heaviside step function. We do not consider the 

dispersion in the fracture because its effect is negligible1 for expected values of the 

dispersion coefficient. Then the single-fracture solutions, M(y, z, t), for (3.2a) and (3.2b) 

b 
. 1 can e wntten as : 

M(y, z, t) = f
1
(y, z, t), fora step release 

-A.T 
M(y, z, t) = f1(y, z, t) - e f

1
(y, z, t- T), for a band release 

respectively, where 

... ..o -A.t [z+ B(y-b) J f1 (y, z, t) = 1~ h(t - ZA.) e erfc , ,;-;::;-; 
LoJt- ZA 
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(3.7b) 

(3.8) 



Rf 
Z=­

vA' 
A = ----=b=R=f= 

E /j)"R' v...,P..,..P 

The nomenclature is the same as defined in Section 2.1. 

3.2 Validity of the Superposition Approximation 

(3.9) 

We calculate the single-fracture solution, M(y, z, t) at y =bandy= 2S - b for R p 

and t ranging from 1 to 103 and from 102 to 107 years, respectively, with the common 

parameter values: 
2 4 z = 1, 10, 10 m, 

e = 0.01, 
2 

Dp = 0.01 m /yr, 

'\ -7 
1\, = 3.24 x 10 1/yr, 

v = 10 m/yr 

2b=0.01 m 

Rf= 1 

T = 30,000 yr for band release. 

We performed numerical calculations for 237Np. Because of the imposed condition for 

validity (3.2), the decay constant does not affect the validity. (The factor exp( -At) in f
1 
(y, z, 

t) cancels when (3.7a,b) are substituted into (3.2).) 

The inequality (3.2) is checked at z = 1, 102
, and 104 m for various (t, Rp) points, 

resulting in Fig. 3.3. This figure shows the domain of (t, Rp) that satisfies (3.2). Super­

position is valid to the left of each line. For a band release there is a stepwise change at the 

end of the leach time; thereafter the constraints on t and Rp are more limited. For large z the 

change at the end of the leach time is small, and at z = 104 m the stepwise change disappears. 

2 For a step release t/ Rp must be smaller than 3000 yr for z = 1 m and z = 10 m and smaller 

than 8000 yr for z = 104 m. From (3.3), therefore, the Fourier number must be less than 

0.075 for z =1m and 102 m and can be as large as 0.2 for z =104 m. For a band release and 

at times greater than the leach time, we require F ~ 0.02 for z = 1 m, 0.033 for z = 102 m, 

and 0.2 for z = 104 m. Different constraints on F will be obtained for different Rf values. 

One can see the advantage of the approximation method from this figure. The exact 

solutions obtained by Sudicky and Frind require the summation of an infinite series, which 

converges very slowly especially at early times. However, it is in the early time region that 
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the approximation is valid regardless of Rp values. 

We can confirm the observation in Fig.3.3 by calculating the actual concentration 

profiles in the rock matrix for several t and Rp values with a step or a band release, which 

are depicted in Figs. 3.4 to 3.6. In Table 3.1, summarized are the calculation conditions and 

the validity of the resultant profiles. Figure 3.4 shows the calculated concentration profiles 

for z = 102 m, a step release. One can observe that the concentration profile is extending 

into the rock matrix as time increases. The three early time profiles yield valid 

superposition; the later profile shows considerable overlap from adjacent fractures, resulting 

in invalid superposition. 

Figure 3.5 shows the concentration profiles calculated for z = 102 m, Rp = 102
, a 

band release. As can be deduced from Fig. 3.3, with t = 2 x 105 yr and Rp = 102 the 

superposition is valid for a step release, but not for a band release. Before and after the end 

of the leach time, the concentration in the fractures decreases quickly. So does the 

concentration at the rock/fracture interface by the boundary condition, (2.6e), i.e., M(b,z,t) = 

N(z,t). Then the concentration profile in the rock produced by each fracture has a maximum 

in the y-direction. Because the denominator of the condition (3.2) becomes smaller after the 

leach time, it becomes more difficult to meet the condition (3.2), and the constraint on the 

Fourier number becomes more limited. Two early time profiles yield valid superposition. 

At t = 104 yr, the profile is the same as that for the step releas.e (see Fig. 3.4). At t = 6 x 104 

yr, greater than the leach time, the superposed profile shows two peaks in the y-direction 

because the two fracture-induced profiles, each of which has a maximum in the y-direction, 

are about to overlap at the midpoint (y = 10 m). Two later profiles show invalid 

superposition. At t = 2 x 105 yr and 106 yr, the fracture-induced profiles become very 

broad, and the diffusion front of each profile exceeds the adjacent fracture location. We can 

no longer distinguish the peak of each fracture-induced profile in the superposed profile. 

Thus the single-peak superposed profile implies invalid superposition. 

Figure 3.6 shows the concentration profiles calculated for z = 102 m, R = 2, for 
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both band and step releases. Before the end of the leach time, both release modes give the 

same profiles (t = 2 x 103 yr and 104 yr). The superposition becomes invalid even before the 

leach time (at t = 104 yr). At t = 105 yr, greater than the leach time, for a step release, the 

concentration at the rock/fracture interface is significantly higher than unity. This means at 

once invalid superposition because the maximum probable concentration is unity. For a 

band release, we observe a single-peak profile, which means invalid superposition. 

Figure 

3.4 

3.5 

3.6 

Note: 

Table 3.1 Calculation conditions and validity of resultant profiles 

Distance Leach time Release Pore Time Superposition 
(z), m (T), year mode Retardation (t), year technique 

\jf(t) (Rp) valid or invalid ( 1) 

100 _____ (2) Step 100 1 X 104 VALID 
6x 104 VALID 
2x 105 VALID(3) 

1x 106 NOT VALID 

100 30,000 Band 100 1 X 104 VALID 

6x 104 VALID 

2 X 105 NOT V ALio(3) 

1 X 106 NOT VALID 

100 3o,ooo(4) Step/Band 2 2 X 103 VALID 

Step/Band 2 1x 104 NOT VALID 

Step 2 1 X 105 NOT VALID 

Band 2 1 X 105 NOT VALID 

(1) Validity is judged by Fig. 3.3. 
(2) For a step release, the leach time can be considered infinite. 
(3) These two show that the constraint for valid superposition is more limited for 

a band release than for a step release. 
(4) Before the leach time (30,000yr), the profiles are identical for both release 

modes. After the leach time, (1 x 105 yr is the only case), they becomes 
different, but both of them are invalid superposition. 
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10 
3 

v=lOm/s 
£=0.01 
2b=O.Olm Band release 
D=O z=lm------~ 
!?iJ=O.Olm2/y 
Rr=l 
2S=20m 7 A =3.24 X 10- /y 

Valid 

Leach time 

104 

Time, t (year) 

Band or step release 
z=lO,OOO m 

Invalid 

Fig. 3.3 Validity domain for superposed solutions, step and band releases 
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~ 
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~ 
"' ,,.. ~ 

0 ....... 
~ 
c:\j 

.b 
~ 
(1) 

u 
~ 
0 
u 
(1) 

> ....... 
~ 
c:\j 
~ 

(1) 

~ 

... 

1.0 
* Valid 6 
** Invalid t=lO yr** 

0.5 
4 

t=6 xlO yr* 

0 

Distance into rock matrix (y), m 

fracture fracture 

N°: the initial concentration at t he repository 

Fig. 3.4 Concentration profiles in the rock matrix (z=lOO m, Rp= 100), a 

step release . 
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0 

~ 

0.2 

0 

t=l04yr* 
~ 

t=6 xlO 4yr* 

/ 

* Valid 
**Invalid 

5 
t=2 xlO yr** 

6 
t=lO yr** 

Distance into rock matrix (y), m 

fracture fracture 

N°: the initial concentration at the repository 

Fig. 3.5 Concentration profiles in the rock matrix (z = 100m, Rp = 100), 

a band release with a leach time of 30,000 yr 
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·~ 

0 Step 't=l05y** 
~ Band ~ ................... ". 

~ 1.0 Both release modes 
* Valid 

r- **Invalid ~ 
0 
·~ 
~ 

~ 

b 
~ 
Q) 

(.) 

0.5 ~ 
0 
(.) 

t=105 y** Q) 

> 

~----L 
·~ ~ 
~ 

......-~ 

Q) 

~ .. 
0 10 2 

Distance into rock matrix (y), m 

fracture fracture 

N°: the initial concentration at t he repository 

Fig. 3.6 Concentration profiles in the rock matrix (z=lOO m, Rp = 2), step and band releases 

(T = 30,000 yr). Before t = 30,000 yr both release modes give the same profiles 
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4. Numerical Evaluation of the Solutions for a Two-Member Decay Chain 

with a Step Release 

4.1 Formulations 

We consider here the problem described through (2.23) to (2.27f) for a general 

release mode. The governing equations and side conditions are: 

aNI v aNI qi 
at+ "R;. Tz+ A.I NI + bR.r = 0, 

1 1 

O<z<oo, t>O, 

y > b, z > 0, t > 0, 

a D a2M R ~ P2 ··-z Pt ---·--+AM --·AM =0 y>b, z>O,t>O, at R a 2 2 2 R r""Z ' 
P2 Y P2 

subject to the side conditions: 

Ni(z,O)=O, z>O, 

Mi(y,z,O)=O, y>b, z>O, 

Ni(O, t) = 'Jf i (t), t > 0, 

N.(oo,t)=O, t>O, 
I 

Mi{b, z, t) = Ni{z, t), t> 0, z > 0, 

M.(oo, Z, t) = 0, t> 0, Z > 0, 
I 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 

· (4.5e) 

(4.5f) 

where 'Jfi(t), i = 1, 2 express the general release at the repository. Dispersion in the fracture 

is neglected. This problem can be solved by considering the subsidiary problem where the 

boundary condition ( 4.5c) is replaced by 

Ni(O,t) = o(t-0) (4.6) 

We write the solutions of the subsidiary problem, N.g(z, t) and M.g(y, z, t), by setting N°
1 
= 

1 1 

N°
2 

= 1 in eqs. (2.28) to (2.31), as: 
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N
1
g(z, t) = W

1
(b, z, t), 

Mlg(y, Z, t) =Wl(y, z, t), 

N2g(z, t) = U2(b, z, t) + W2(b, z, t), 

M2 g(y, Z, t) = u 1 (y, z, t) + U2(y, z, t) + w 2(y, z, t), 

z ~ 0, t ~ 0, 

y ~ b, z > 0, t ~ 0, 

z ~ 0, t ~ 0, 

y ~ b, z > 0, t ~ 0, 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

where U
1
(y,z,t), U2(y,z,t), Wt<y,z,t), and W2(y,z,t) have been defined in Section 2.2. Then, 

solutions to the original problem can be obtained by applying the convolution theorem with 

respect to time: 
t 

N1(z, t)= Jv1Ct-'t)W1(b, z, 't)d't, 
0 

t 

~ (y, z, t) =I 'l't (t-'t)Wl (y, z, 't)d't, 
0 

t t 

N2(z, t) =I 'Vl (t-'t)U2(b, z, 't)dr +I '1'2(t-'t)W2(b, z, 't)dr, 
0 0 

t t 

~(y, z, t) = Iv1(t-'t){U1(y, z, 't)+U2(y, z, 't)}dr + Ivit-'t)W2(y, z, 't)d't, 
0 0 

To illustrate, we take the step release for two members for 'l'i(t): 

o -A} 
\jf

1
(t) =N

1
h(t)e , 

- '-i N°A h(t) 
'lf2(t) = ~h(t) e + 1 1 

A-2-\ 

4.2 Results and Discussions 

(4.11) 

(4.12) 

( 4.13) 

(4.14) 

(4.15) 

(4.16) 

In the previous report6 we showed the results of an approximate model neglecting 

radioactive decay in (4.2) and (4.4). It has been shown that for the mother nuclide of the 

three-member chain the approximation gives fairly good results for the concentration in the 
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fracture for long half-life mother nuclides such as 237Np and 234U. But there has been no 

demonstration of the accuracy of the results for the daughter nuclides. We compare the 

results obtained by the exact model, i.e., (4.11) and (4.13) with those of the approximate 

model. 

Figure 4.1 shows the concentration in the fracture for the 237Np ---7 
233U chain with a 

step release at t = 10,000 yr. Parameter values are shown in the figure. For 237Np the 

approximate and exact solutions give the almost same results, while for 233U the approxima­

tion has introduced considerable error at a distance from the source with the approximate 

results different from the exact ones by several orders of magniture. There is a discontinuity 

in the 233U profile at z = 100 m, which results from the two contributions: the 233U gener­

ated at the repository and the 233U generated in the medium. The former forms the near-field 

plateau and the latter the far-field plateau in the concentration profile. The neglected terms 

in the governing equation ( 4.4) for the concentration M
2 

would have given the positive 

contribution at far field because 

\Rp
1
M1 - A.2RP2M2 = 0.0000324M1 - 0.0642M

2 

and M
1 

is about 104 times larger than M
2

. The orders of M
1 

and M
2 

can be roughly esti­

mated from those of N 
1 

and N
2 

in the figure. Therefore, neglecting the decay chain in the 

rock matrix makes the concentration in the rock pores lower, resulting in the overestimated 

gradient and diffusion flow at the rock/fracture interface. Thus the concentration of 233U in 

the fracture has been underestimated by neglecting the decay in the rock matrix. 

Figure 4.2 shows the concentration in the fracture for the 234U ---7 
230Th chain with a 

step release at t = 10,000 yr. Parameter values are shown in the figure. Also in this case the 

approximation gives smaller results that the exact at far field. The neglected terms in the 

governing equation (4.4) for M
2 

would have given the positive contribution because 

\Rp
1
M

1 
- A.

2
Rp

2
M

2 
= 0.04215M

1 
- 0.433M2 

and M
1 

is about 30 times larger than M
2

. Then by the same argument it can be said that the 

concentration of 230Th in the fracture is underestimated by neglecting decay in the rock. 
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Fig. 4.1 Concentration profiles at t = 10,000 yr for 237Np ~ 234
U chain, from a step 

release. 
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1 

Fig. 4.2 Concentration profiles at t = 10,000 yr for 234U ~ 230Th chain, from a step 
release. 
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5. Concluding Remarks 

We presented in this report the analytical study of the radionuclide transport through 

fractured, porous rock. Based upon the previous studies, where radionuclide transport was 

intensively studied on the assumptions of a single planar fracture and no precursors, we 

studied the analytical methods to evaluate the time-space-dependent concentrations for 

multiply-fractured rock and a two-member decay chain. 

For multiply-fractured rock, we checked Sudicky and Frind's analytical solutions, 

and found apparently incorrect expressions. We gave the corrected versions of their 

solutions. The exact analytical solutions, however, require a summation of an infinite series 

and multiple integrations. The convergence of the infinite series is quite slow in case of 

shallow penetration into the rock matrix. We showed the superposition method to evaluate 

the concentration in the rock matrix. Solutions for multiply fractured rock are obtained by 

superposing two single-fracture solutions. The superposed solution gives fairly good 

approximation in case of shallow penetration into the rock matrix, for which numerical 

evaluation is difficult with the exact solutions. The constraint for valid superposition was 

given in terms of Fourier number. By this method we could extend the applicability of the 

single-fracture solutions. 

For a two-member decay chain, we showed the solutions for a general release 

mode in the form of the convolution integrals of the release characteristics functions and the 

Green's functions. Sudicky and Frind obtained the solutions for an impulse release, which 

contain apparent by incorrect expressions. We corrected their solutions, and derived the 

Green's functions for this problem from Sudicky and Frind's solutions. Numerical evaluation 

was performed for an exponentially decaying step release. The convolution integrals were 

numerically evaluated by Gauss quadratures. This results were compared with our previous 

numerical results approximated by neglecting decay in the rock matrix. We found that for 

the mother nuclide the exact and the approximate solutions give very close results, while for 
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the daughter nuclide, the approximation introduces considerable errors at far field from the 

repository. 
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