
Lawrence Berkeley National Laboratory
LBL Publications

Title
Low Mach number fluctuating hydrodynamics model for ionic liquids

Permalink
https://escholarship.org/uc/item/35n3q246

Journal
Physical Review Fluids, 5(9)

ISSN
2469-9918

Authors
Klymko, Katherine
Nonaka, Andrew
Bell, John B
et al.

Publication Date
2020-09-01

DOI
10.1103/physrevfluids.5.093701
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35n3q246
https://escholarship.org/uc/item/35n3q246#author
https://escholarship.org
http://www.cdlib.org/


A Low Mach Number Fluctuating Hydrodynamics Model For Ionic Liquids

Katherine Klymko, Andrew Nonaka,∗ and John B. Bell

Center for Computational Sciences and Engineering,

Lawrence Berkeley National Laboratory

Sean P. Carney

Department of Mathematics, The University of Texas at Austin

Alejandro L. Garcia

Department of Physics and Astronomy, San Jose State University

(Dated: September 29, 2020)

Abstract

We present a new mesoscale model for ionic liquids based on a low Mach number fluctuating hydro-

dynamics formulation for multicomponent charged species. The low Mach number approach eliminates

sound waves from the fully compressible equations leading to a computationally efficient incompressible

formulation. The model uses a Gibbs free energy functional that includes enthalpy of mixing, interfacial

energy, and electrostatic contributions. These lead to a new fourth-order term in the mass equations and a

reversible stress in the momentum equations. We calibrate our model using parameters for [DMPI+][F6P-],

an extensively-studied room temperature ionic liquid (RTIL), and numerically demonstrate the formation of

mesoscopic structuring at equilibrium in two and three dimensions. In simulations with electrode boundaries

the measured double layer capacitance decreases with voltage, in agreement with theoretical predictions and

experimental measurements for RTILs. Finally, we present a shear electroosmosis example to demonstrate

that the methodology can be used to model electrokinetic flows.
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I. INTRODUCTION

An ionic liquid (IL) is a liquid salt with dissociated cations and anions such as molten NaCl.

Unlike conventional electrolyte solutions (e.g., seawater), an ionic liquid does not require a po-

lar solvent. Of particular interest are ionic liquids composed of complex hydrocarbons that are

high-viscosity liquids at room temperature. These room temperature ionic liquids (RTILs) ex-

hibit intriguing physical properties such as high charge density [1, 2] and extremely low vapor

pressures [3]. Such properties make them attractive for energy technology applications such

as super-capacitors [4], batteries [5], and dye-sensitized photoelectrochemical cells [6]. RTILs

also have technological applications as designer solvents in areas such as lubrication of micro-

electromechanical machines [7, 8].

Room temperature ionic liquids exhibit a number of interesting physical features. Capacitance

measurements with RTILs show different behavior as a function of applied voltage than conven-

tional electrolytes, which reflects overcrowding at the electrode surfaces resulting from the large

size of the ions [9]. At low voltages, short-range Coulomb interactions also lead to overscreening

in which the layer next to an electrode has excess charge relative to the electrode, resulting in the

formation of a subsequent, weaker layer of opposite charge [10]. Molecular dynamics simula-

tions [11–13] and experimental evidence [14–16] show that RTILs are heterogeneous at nanoscale

levels, exhibiting segregation of anions and cations on scales of a few nanometers.[17]

Strong inter-ionic correlations and structure render classical models such as Nersnt-Planck used

to describe dilute electrolytes inapplicable. Kornyshev and co-workers [9, 18] address the im-

pact of ion size and enthalpy of mixing on the structure of the electrical double layer (EDL) in

an ionic liquid. Their model gives a diffuse double-layer capacitance that extends the classical

Guoy-Chapman theory and is in agreement with experimental measurements [19]. Bazant, Story,

and Kornyshev [20] develop a Landau-Ginzburg-like model that includes effects of ion size and

overscreening that is able to predict the structure of the EDL, and improves the prediction of the

capacitance. Limmer [21] introduces a mean-field model that incorporates short range repulsion

between cations and anions. The interplay of this short-range repulsion with electrostatic forces

then determines the morphology of the ionic liquid. Gavish and Yochelis [22] construct a model by

adding a Flory-Huggins-like term and an electrostatic term to the free energy of an ideal fluid. The

resulting system is similar to the Ohta-Kawasaki model [23, 24] for diblock co-polymers coupled
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to an electric field. They solve the resulting diffusion equation coupled to the electrostatic equation

to study structure in the bulk and how the structure couples to the electric double layer.

Simulation models for ionic liquids generally fall into two categories: coarse-grained lattice

models [9, 21, 25] and detailed microscopic models such as molecular dynamics [11, 12] and den-

sity functional theory methods [26, 27]. The former have the advantage of capturing qualitative

features of an ionic liquid while being computationally efficient. They have the disadvantage of

omitting many physical details required for quantitative predictions. On the other hand, micro-

scopic models capture molecular detail but they are computationally demanding and additionally

require delicate tuning of the potentials for the complex molecules in an ionic liquid.

This paper introduces a new mesoscopic simulation model for ionic liquids. Specifically, given

the success of fluctuating hydrodynamics (FHD) for modeling mesoscale fluid phenomena [28–

32] we develop a low Mach number FHD model that is similar to the work of Lazaridis et al.

[33]. Their model is based on a compressible isothermal formulation that has a more comprehen-

sive description of the fluid than in Gavish and Yochelis [22], albeit with a somewhat idealized

thermodynamic representation. The deterministic component of the model here is similar to the

quasi-incompressible Cahn-Hilliard fluid model of Lowengrub and Truskinovsky [34] coupled to

an electric field. The incorporation of stochastic terms allows our mesoscopic model to capture the

effects of thermal fluctuations which cannot be neglected at the nanometer scale, the length scale

at which typical structures form in ionic liquids.

There are two significant advantages to this mesoscale model over microscopic methods such

as molecular dynamics or density functional theory methods. The first is computational efficiency.

The low Mach number formulation analytically removes sound waves from the model equations

based on the assumption that they do not significantly affect the system dynamics. This eliminates

the acoustic time step restriction allowing for time steps that are two or more orders of magni-

tude larger than the comparable compressible formulation, and significantly more computationally

efficient than MD simulations of a similar size. In molecular dynamics the numerical time step

is typically on the order of femtoseconds while our simulations’ time step was about a picosec-

ond. Second, microscopic methods require accurate models for molecular potentials, which have

to be fine-tuned for each ionic liquid and further adjusted for mixtures of liquids. There are many

thermodynamic and transport properties of interest (e.g., permittivity, chemical potential, diffusion

coefficient, viscosity) and models for molecular potentials rarely reproduce all of these accurately.
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On the other hand, these physical properties are input parameters for mesoscopic models thus allow

direct use of experimental measurements for RTILs.

The outline of the paper is as follows: first, the Gibbs free energy functional is defined and the

fluctuating hydrodynamic equations of motion are outlined in Section II. In particular the free en-

ergy contains “excess” and nonlocal contributions that model repulsive forces between cation and

anion and interfacial tension, respectively. These contributions are calibrated to roughly match the

feature size of a typical RTIL as determined from a stability analysis of the concentration equation.

After a description of the numerical methods used to discretize the equations of motion in Section

III, numerical results are presented in Section IV. First we show the bulk morphology in both two

and three dimensions. Then we discuss the dependence of capacitance on voltage, comparing with

the theoretical predictions of Goodwin et al.[18]. We show that the structure of the electric double

layer at the electrodes changes significantly if thermal fluctuations are omitted, as previously ob-

served by Lazaridis et al.[33]. Finally, we demonstrate the capability of modeling electrokinetic

flows with a simulation of electroosmotic shear. Section V concludes with a discussion of the

results and their implications for future work.

II. FORMULATION

Our goal here is to develop a low Mach number model for room temperature ionic liquids. We

introduce a free energy functional similar to Gavish and Yochelis [22] that includes enthalpy of

mixing, interfacial energy, and electrostatic contributions. Based on that free energy functional

we then develop a low Mach number FHD model for ionic liquids by extending the methodology

developed in a series of papers [32, 35–38] for multispecies mixtures of charged ionic fluids. For

simplicity, we adopt an isothermal two-species approximation and assume that the two species,

the cation and the anion, have the same molecular mass m and equal but opposite charge. We

assume each species is incompressible and has the same density; hence, the velocity field satisfies

an incompressibility constraint.

We write the Gibbs free energy as

G(c,∇c,φ ,∇φ) =
∫ [

ρ g(c,∇c)+ρz(2c−1)φ − 1
2

ε|∇φ |2
]

dr (1)

where c denotes the cation concentration, φ is the electric potential, ε is the (constant) static per-

mittivity, ρ is the density and z is the charge per mass of cation. The non-electrical contribution to
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the specific free energy is given by

g(c,∇c) =
kBT
m

[
gid(c)+gex(c)+

κ

2
|∇c|2

]
(2)

where T is temperature, kB is Boltzmann’s constant, and κ is an interfacial parameter, which is

assumed to be constant. The entropy of mixing contribution is

gid(c) = c log(c)+(1− c) log(1− c) (3)

and gex is an excess free energy due to the enthalpy of mixing. Note that Lazaridis et al. [33]

include a contribution to the free energy G that depends on ∇ρ; however, the resulting term will

vanish in the low Mach number flow limit

For systems in which the characteristic fluid velocity is asymptotically small relative to the

sound speed, we can obtain the low Mach number equations from the fully compressible equations

by asymptotic analysis [39, 40]. Taking density, ρ0, as constant the equations of motion are

(ρ0c)t +∇ · (ρ0uc) = ∇ ·F

(ρ0u)t +∇ · (ρ0uu)+∇π = ∇ · τ +∇ ·σ +∇ ·R

∇ ·u = 0

−ε∇
2
φ = q f ≡ ρ0z(2c−1), (4)

where u is the fluid velocity, π is a perturbational pressure, and q f is the charge density. Here,

F , τ , σ and R are the species flux, viscous stress tensor, Maxwell stress tensor, and the interfacial

reversible stress, respectively.

In the fluctuating hydrodynamics model, the dissipative fluxes, F and τ , contain both determin-

istic and stochastic terms, e.g., F = F + F̃ . The deterministic species flux can be represented in

Onsager form as [41]

F = L
∇T µ

T
(5)

where µ is the difference in electro-chemical potential between cations and anions, ∇T refers to

the gradient with T held fixed, and L is an Onsager coefficient. Differentiation of the specific free

energy with respect to c yields

µ(c) =
kBT
m

[
log(c)− log(1− c)+

∂gex(c)
∂c

+κ∇
2c
]
+2zφ . (6)
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Inserting (6) into (5) then gives

F = L
[

kB

m

(
1
c
+

1
1− c

+
∂ 2gex(c)

∂c2

)
∇c+

kBκ

m
∇∇

2c+2z∇φ

]
. (7)

For a two component mixture, the Onsager coefficient is given by [42]

L =
ρ0m
kB

Dc(1− c) (8)

where D is the Fickian binary diffusion coefficient. The species flux expressed in terms of D then

is

F = ρ0D
(

∇c+ c(1− c)
∂ 2gex(c)

∂c2 ∇c+ c(1− c)κ∇∇
2c+

2zmc(1− c)
kBT

∇φ

)
. (9)

The amplitude of the noise satisfies a fluctuation dissipation relation [43, 44]

F̃ =
√

2kBL Z =
√

2ρ0mDc(1− c) Z (10)

where Z(r, t) is standard, uncorrelated Gaussian white noise.

The viscous stress tensor is given by τ = τ + τ̃ where the deterministic component

τ = η [∇u+(∇u)T ] (11)

and η is viscosity. Here, bulk viscosity is neglected because it does not appear in the low Mach

number equations. The stochastic contribution to the viscous stress tensor is modeled as,

τ̃ =
√

ηkBT (W +W T ), (12)

where W (r, t) is a standard Gaussian white noise tensor with uncorrelated components,

〈Wi j(r, t)Wkl(r′, t ′)〉= δikδ jlδ (r− r′)δ (t− t ′), (13)

and, again, the amplitude of the noise satisfies a fluctuation dissipation relation [43, 44].

To complete the specification of the model we need to define σ and R. In the absence of a

magnetic field [45], the Maxwell stress is

σi j = εEiE j−
1
2

εE2
δi j, (14)

where E = −∇φ . Assuming a constant static permittivity, ε∇ · E = q f , so the resulting force

density on the fluid is,

∇ ·σ = q f E =−q f
∇φ , (15)
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which is simply the Lorentz force. The interfacial reversible stress

R =
ρ0kBT κ

m

[
1
2
|∇c|2I−∇c⊗∇c

]
(16)

is derived from a variational principle as detailed in Appendix A; see also [33, 34, 46]. Note that

since both σ and R are non-dissipative fluxes, they have no corresponding stochastic fluxes.

For boundary conditions, in this paper we consider two types: periodic boundaries and no-slip

impermeable electrode walls. In the latter case, the velocity at the wall is zero and the electric po-

tential satisfies a Dirichlet condition. For concentration, we specify that both the normal derivative

and the total flux vanish at walls. Spatial discretization details for these boundary conditions are

described in Section III A.

III. NUMERICAL METHOD

The equations of motion (4) consist of species transport and momentum evolution with an

incompressibility constraint on the velocity field coupled to a Poisson equation for the electric

potential. The system is discretized in a structured-grid finite-volume approach with cell-averaged

concentrations and face-averaged (staggered) velocities. Integration in time is performed with a

predictor-corrector scheme. Below we summarize our spatial and temporal discretization, noting

that we are building off the explicit electrodiffusion approach used in Donev et al.[32], except here

we do not consider reactions. Here, the two primary additions are the inclusion of the excess free

energy and interfacial terms in the deterministic mass flux (9) and the reversible stress tensor in

the momentum equation (16).

A. Spatial Discretization

As detailed in [35, 47], the spatial discretizations of the equations for mass and momentum

transport are based on standard second-order stencils for derivatives and spatial averaging to ensure

a discrete fluctuation-dissipation balance. The electrodiffusion term in the species fluxes and the

Lorentz force in the momentum equation are computed from the electric potential. This potential

is obtained by solving Poisson’s equation with a cell-centered multigrid solver [38]. The multigrid

solver uses standard second-order stencils, and supports user-specified Dirichlet conditions on the

potential for electrode wall boundary conditions. For velocity we set the velocity field to zero on
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walls and use one-sided approximations to evaluate the viscous stress. The random numbers for the

stochastic contribution to the viscous stress tensor are generated on shifted control volumes about

each cell face. We note that for tangential velocities adjacent to no-slip walls, there is a stochastic

flux on the wall itself; this noise term has twice the variance of the noise in the bulk [48].

Since the interfacial tension term in (2) introduces a new, third-order term in the species flux F

and a reversible stress tensor in the momentum equation, their discretization is described in detail

here. The center of the cells in two dimensions are indexed by (i, j) and the faces along x,y as

(i+ 1
2 , j),(i, j+ 1

2), where i = 1, ...,Nx, j = 1, ...,Ny. The species diffusion fluxes are computed on

the faces of the grid based on (9) and (10), and the divergence of the flux is approximated with

(∇ ·F)i, j ≈ ∆x−1
[

F(x)
i+ 1

2 , j
−F(x)

i− 1
2 , j

]
+∆y−1

[
F(y)

i, j+ 1
2
−F(y)

i, j− 1
2

]
. (17)

The new third order term in the species flux equation (9) (i.e., the term proportional to κ∇∇2c) is

computed by first approximating ∇2c at cell centers. Here, nine and twenty-one point stencils in

two and three dimensions, respectively, are used so that the discrete Laplacian is more isotropic

numerically and hence reflective of the isotropic contribution κ/2|∇c|2 to the free energy density.

Specifically, if the undivided difference operator in two dimensions is defined as

δ
2
x ci, j = ci+1, j−2ci, j + ci−1, j

(with δ 2
y defined analogously), then the Laplacian is approximated by

∇
2ci, j ≈

[(
I +

δ 2
y

6

)
δ 2

x
∆x2 +

(
I +

δ 2
x
6

)
δ 2

y

∆y2

]
ci, j. (18)

The generalization to three dimensions is then:

∇
2ci, j,k ≈

[(
I +

δ 2
y

6

)(
I +

δ 2
z

6

)
δ 2

x
∆x2 +

(
I +

δ 2
x
6

)(
I +

δ 2
z

6

)
δ 2

y

∆y2 +

(
I +

δ 2
y

6

)(
I +

δ 2
z

6

)
δ 2

z

∆z2

]
ci, j,k.

(19)

Discrete gradients of the Laplacian are then computed at cell faces and added to the other terms in

the deterministic species diffusion flux. For cells adjacent to the boundary, the evaluation of the

Laplacian reflects the vanishing of the normal derivative of concentration. At impermeable walls

we also set the total species concentration fluxes to zero; i.e., the sum of deterministic flux and the

stochastic mass fluxes on walls is set to zero.
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The other new term in the low Mach model is the reversible stress tensor (16) in the momentum

equation. The discretization here is somewhat more complex because of the use of staggered

velocities; terms appearing in the x velocity need to be evaluated a x faces, etc. The first step is to

compute the gradients of ci, j at grid nodes–in two dimension these are

(Gn
xc)i+ 1

2 , j+
1
2
=

1
2∆x

(
ci+1, j− ci, j + ci+1, j+1− ci, j+1

)
(20)

(Gn
yc)i+ 1

2 , j+
1
2
=

1
2∆y

(
ci, j+1− ci, j + ci+1, j+1− ci+1, j

)
. (21)

The nodal gradients are then averaged to cell centers

(Gcc
x c)i, j =

1
4

[
(Gn

xc)i+ 1
2 , j+

1
2
+(Gn

xc)i− 1
2 , j+

1
2
+(Gn

xc)i+ 1
2 , j−

1
2
+(Gn

xc)i− 1
2 , j−

1
2

]
(22)

(Gcc
y c)i, j =

1
4

[
(Gn

yc)i+ 1
2 , j+

1
2
+(Gn

y)ci− 1
2 , j+

1
2
+(Gn

yc)i+ 1
2 , j−

1
2
+(Gn

yc)i− 1
2 , j−

1
2

]
. (23)

From this one can define a second order approximation to ∇ ·R by using conservative differences

of the nodal and cell averaged gradients as:

(∇ ·R)x,i+ 1
2 , j
≈ −ρ0kBT κ

m
1

∆y

[
(Gn

xc)i+ 1
2 , j+

1
2
(Gn

yc)i+ 1
2 , j+

1
2
− (Gn

xc)i+ 1
2 , j−

1
2
(Gn

yc)i+ 1
2 , j−

1
2

]
+

ρ0kBT κ

m
1

∆x

[
1
2
(
(Gcc

y c)2
i+1, j− (Gcc

x c)2
i+1, j

)
− 1

2
(
(Gcc

y c)2
i, j− (Gcc

x c)2
i, j
)]

(24)

(∇ ·R)y,i, j+ 1
2
≈ −ρ0kBT κ

m
1

∆x

[
(Gn

xc)i+ 1
2 , j+

1
2
(Gn

yc)i+ 1
2 , j+

1
2
− (Gn

xc)i− 1
2 , j+

1
2
(Gn

yc)i− 1
2 , j+

1
2

]
+

ρ0kBT κ

m
1

∆y

[
1
2
(
(Gcc

y c)2
i, j+1− (Gcc

x c)2
i, j+1

)
− 1

2
(
(Gcc

y c)2
i, j− (Gcc

x c)2
i, j
)]

.

(25)

The reversible stress tensor in three dimensions is treated analogously.

B. Temporal Discretization

The basic temporal discretization is a predictor-corrector scheme for both concentration and

velocity. Given the values cn and un at the beginning of time step tn, the method consists of

a preliminary step to obtain the concentration and velocity at tn+ 1
2 . Using these values, the

concentration at tn+1 is then computed with a midpoint corrector, and the velocity un+1 is

determined from midpoint and trapezoidal source terms. More details can be found in [32], but the

main steps are summarized here; note the discretizations for the spatial gradients are not included
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for ease of presentation.

Step 1: Compute the predictor species fluxes as

Fn = ρ0D
[

∇c+ c(1− c)
∂ 2gex(c)

∂c2 ∇c+ c(1− c)κ∇∇
2c
]n

+

[
2zmc(1− c)

kBT

]n

∇φ
n

+

(√
2ρ0m
∆t∆V

Dc(1− c)

)n

Zn (26)

where Zn are the i.i.d. normal random variables and the electric potential is computed by solving

the Poisson equation

−∇ · (ε∇φ
n) =

(
q f
)n

(27)

with a cell-centered multigrid solver. Compute the predictor reversible stress tensor as

Rn =
ρ0kBT

m

[
κ

2
|∇c|2I−κ∇c⊗∇c

]n
. (28)

Step 2: Compute the predictor velocity and pressure, u∗,n+1 and π∗,n+
1
2 , by solving the linear,

saddle-point Stokes system [49]:

ρ0u∗,n+1−ρ0un

∆t
+∇π

∗,n+ 1
2 = −∇ · (ρ0uuT )n +

1
2
(
η∇

2un +η∇
2un+1,∗) (29)

+ ∇ ·
√

ηkBT
∆t∆V

(
W +W T)n

+[∇ · (ε∇φ)∇φ ]n +∇ ·Rn

∇ ·u∗,n+1 = 0, (30)

where ∆V is the volume of a grid cell.

Step 3: Compute the predictor concentration c∗,n+
1
2 from

ρ0c∗,n+
1
2 = ρ0cn +

∆t
2
(−∇ ·Fn)− ∆t

2
∇ ·ρ0cn

(
un +u∗,n+1

2

)
. (31)

Step 4: Compute the corrector species fluxes as

F∗,n+
1
2 = ρ0D

[
∇c+ c(1− c)

∂ 2gex(c)
∂c2 ∇c+ c(1− c)κ∇∇

2c
]∗,n+ 1

2

(32)

+

[
2zmc(1− c)

kBT

]∗,n+ 1
2

∇φ
∗,n+ 1

2 +

(√
2ρ0m
∆t∆V

Dc(1− c)

)∗,n+ 1
2
((

Z(1)
)n

+
(
Z(2)
)n

√
2

)
,
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where ∇φ∗,n+
1
2 comes from the multigrid solution to

−∇ ·
(

ε∇φ
∗,n+ 1

2

)
=
(

q f
)∗,n+ 1

2
, (33)

and compute the corrector reversible stress tensor as

R∗,n+
1
2 =

ρ0kBT κ

m

[
1
2
|∇c|2I−∇c⊗∇c

]∗,n+ 1
2

. (34)

Step 5: Compute the corrector concentration cn+1

ρ0cn+1 = ρ0cn +∆t
(
−∇ ·F∗,n+

1
2

)
−∆t ∇ ·ρ0c∗,n+

1
2

(
un +u∗,n+1

2

)
, (35)

Step 6: Finally, compute the corrector velocity and pressure, un+1 and πn+ 1
2 , by solving the Stokes

system

ρ0un+1−ρ0un

∆t
+∇π

n+ 1
2 = −1

2
∇ ·
[
(ρ0uuT )n +(ρ0uuT )∗,n+1]+ 1

2
(
η∇

2un +η∇
2un+1) (36)

+∇ ·
√

ηkBT
∆t∆V

(
W +W T)n

+[∇ · (ε∇φ)∇φ ]∗,n+
1
2 +∇ ·R∗,n+

1
2

∇ ·un+1 = 0. (37)

IV. SIMULATION RESULTS

A. Parameter Calibration

To calibrate the model parameters, we select a specific RTIL that has been studied extensively

both experimentally and with molecular dynamics, namely, 1-butyl-3-methylimidazolium hexaflu-

orophosphate or [DMPI+][F6P-]. Properties of [DMPI+][F6P-] (also known as [C4min+][PF−6 ])

are summarized in Table I. From the data in this table we can define the parameters needed by the

code as summarized in Table II.

To complete the specification of the model it remains to specify the excess Gibbs free energy,

gex(c) and the interfacial tension parameter, κ . Experimental measurements and molecular dy-

namics simulations show that the repulsive forces between cations and anions are strong enough to

overcome the electrostatic forces and induce structuring, where the morphological details depend

on the specific ionic liquid under consideration.[17] In the model, this repulsive force is represented
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TABLE I: RTIL properties of [DMPI+][F6P-] at standard conditions from NIST database

https://ilthermo.boulder.nist.gov/; ion diffusion coefficients from [50, 51].

PubChem CID CAS ID Mass Density

2734174 174501-64-5 284.19 (g/mol) 1.38 (g/cm3)

Viscosity Conductivity Relative Permittivity Sound speed

272 (cP) 1.5×10−10 (C s2 g−1 cm−3) 10.2 ± 0.4 144000 (cm/s)

Cation D Anion D Melting T Entropy

5.5×10−8 (cm2/s) 4.3×10−8 (cm2/s) 282 (K) 493 (J/(mol K))

TABLE II: Simulation parameters.

Density 1.38 (g/cm3)

Molecular mass (anion and cation) 2.4×10−22 (g)

Temperature 300 (K)

Charge per mass 6.8×102 (C/g)

Relative Permittivity 10.4

Binary diffusion coefficient 5.×10−8 (cm/s2)

Viscosity 270 (cP)

by the excess free energy. From a mathematical perspective, segregation corresponds to an insta-

bility of the system. To assess this instability, we consider the linearized form of the concentration

equation.

For the case considered here, where the cations and anions are of equal mass, the concentration

equation linearized around c = 1
2 must be unstable for segregation to occur. The equation for a

perturbation δc about one half is

δct = D
[(

1+
1
4

∂ 2gex(c)
∂c2 |c= 1

2

)
∇

2
δc− 1

4
κ∇

4
δc+

zm
2kBT

∇
2
φ

)
(38)

Observing that

− ε∇
2
φ = 2ρ0zδc (39)

we then obtain

δct = D
[(

1+
1
4

∂ 2gex(c)
∂c2 |c= 1

2

)
∇

2
δc− 1

4
κ∇

4
δc− ρ0z2m

εkBT
δc
]
. (40)

12



Taking the Fourier transform of (40) gives

δ̂ct = D
[
−
(

1
4

∂ 2gex(c)
∂c2 |c= 1

2
+1
)

k2− 1
4

κk4− ρ0z2m
εkBT

]
δ̂c. (41)

where k is the magnitude of the wave vector. From this equation, one sees that both the electric field

and the fourth-order term inhibit the growth of perturbations and hence act to inhibit segregation.

For the system to be unstable, the coefficient of δ̂c on the right hand side must be positive. In

general, this requires that the second derivative of gex be sufficiently negative and κ be sufficiently

small for there to be a range of unstable k. The gex term will then set the larger scale of the features,

while the k4 term will regularize finer scale features.

The excess Gibbs free energy can be expressed in polynomial form [52]; here we use,

gex(c) = α [c(1− c)]n (42)

Experimental data indicates that the characteristic feature size of [DMPI+][F6P-] is approximately

2-3 nm [17, 53]. Accordingly, gex and κ are chosen so that wavelengths λ = 2π/k in the 4-

6 nm range (twice the feature size) are in the unstable range. From the parameters describing

[DMPI+][F6P-], we can estimate the electric force term in (41) to be approximately 4×1016 cm−2.

We choose α = 4.0× 103 cm−1 s−1 and n = 2 in (42) so the coefficient of k2 in (41) is approx-

imately 1124 cm−1 s−1, so that, ignoring interfacial tension, wavelengths shorter than approxi-

mately 10 nm are unstable. Finally, for κ = 1×10−11 cm−2 wavelengths between 3.3 and 9.4 nm

are stable so we take this value as our baseline. It should be noted that we experimented with differ-

ent forms for gex (different values of α and n) while maintaining the value of the second derivative

at c = 1
2 and found that the specific form did not change the qualitative structure significantly.

B. Bulk Morphology

First we consider quasi-two-dimensional systems with periodic boundary conditions. All quasi-

two-dimensional simulations in this paper use 192× 192× 1 cells with grid spacings ∆x = ∆y =

∆z = 0.5 nm and time step ∆t = 0.2 ps. As discussed in Section IV A, we take κ = 1×10−11 cm−2

for our baseline case; see Table II for other parameters. Figure 1 shows the development of patterns

that form in a simulation of the RTIL starting from a homogeneous initial condition of c = 1
2 . By

t = 5 ns, the morphology nearly reaches the final configuration we show at t = 10 ns. In fact, at
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a later time of t = 50 ns (not pictured), the morphology is nearly identical to the t = 10 ns frame.

This stable feature size reflects the competition between electrostatic and short-ranged enthalpic

forces as discussed in Section IV A.

FIG. 1: Time evolution of cation concentration profiles illustrating structural pattern formation at t = 1,2,5,

and 10 ns for κ = 1×10−11 cm−2. (Multimedia view [54])

In Figure 2 we show the analogous spinodal decomposition as in Figure 1 but for the case of

uncharged species (z = 0); here the patterns coarsen quickly and increasingly with time. We repeat

FIG. 2: Time evolution of pattern formation as in Figure 1 with uncharged species (z = 0) at t = 1,2,5, and

10 ns. In this case the regions will continue to coarsen.

the simulations, but in three dimensions (see Figure 3) using a cubical domain of 192×192×192

cells with the same mesh spacing and time step as before. As in two dimensions, the case with

charges evolves to a pattern with fixed feature sizes and then stabilizes whereas the uncharged case

coarsens quickly and continues to coarsen over time.

Next we examine how the morphology depends on the interfacial tension parameter, κ . Figure 4

shows the patterns formed at four additional values of κ . As κ increases, the dynamic range of con-

trast in concentration decreases. For the largest value shown (κ = 2.5×10−11 cm−2) segregation

is almost completely suppressed.
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FIG. 3: Cation concentration profiles from three-dimensional simulations (interior cut-out image). The left

panel shows the stable pattern (t = 10 ns) reached by the RTIL; compare with the last frame in Figure 1. The

other two panels show the evolution of pattern formation of the cation concentration in three dimensions for

the uncharged case at t = 2 ns and t = 5 ns; compare with the second and third frames in Figure 2.

FIG. 4: Cation concentration profiles illustrating spinodal decomposition for the t = 50 ns configuration for

κ = 0.5,1.5,2.0, and 2.5×10−11 cm−2, respectively. Compare to final image in Figure 1. We note that the

colorbar for the κ = 2.5×10−11 cm−2 case only has been changed to range from 0.4 to 0.6 in order to see

the structure.

In addition, as κ increases, the feature size in these patterns becomes larger. To quantify this

observation we measured the static structure factor, which is the Fourier transform of the equal

time covariance of the concentration,

S(k) =
〈(

δ̂ck
)(

δ̂ck
)∗〉

, (43)

where the brackets 〈 〉 denote an equilibrium average over time and

δ̂ck(t) =
∫

δc(x, t) e−ik·xdx. (44)

In each case, we capture statistics for the structure factor by sampling at every time step for 1 ns
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beginning at t = 50 ns. Figure 5 shows the structure factor for the κ = 1.× 10−11 cm−2 and

κ = 2.× 10−11 cm−2 cases. For each value of κ , the structure factor has a maximum at a radius

of |k| = kr. We note that for κ = 2.× 10−11 cm−2, we see only a partial ring that reflects the

fact that most of the stripes in Figure 4 are oriented in the same direction. The corresponding

patterns feature a length scale (i.e., the width of the red or blue structures) that can be found using

`= π/kr. We compute kr by considering S(k) to be a probability density function and computing

its expected value,

kr =
∑kx ∑ky

√
k2

x + k2
y S(kx,ky)

∑kx ∑ky S(kx,ky)
, (45)

where we only include points in the sum where S(k) is above 1% of the peak value, which effec-

tively acts as a white noise filter.

FIG. 5: Structure factor in logscale for the cation concentration, S(k) for κ = 1× 10−11 cm−2 (left) and

κ = 2×10−11 cm−2 (right). The radius of the ring, kr, is inversely proportional to the morphological feature

size as ` ∼ π/kr. The anisotropic ring in the right panel is consistent with the striped features favoring a

single orientation in physical space, as seen in the third panel in Figure 4.

Table III lists the values of kr and ` for all five values of κ that we consider (the cases not

pictured in Fig. 4 have rings similar to the κ = 1.× 10−11 cm−2 case). We note that the results

for the baseline κ = 1.×10−11 cm−2 case with `= 2.9 nm are consistent with experimental mea-

surements [53, 55, 56] and molecular dynamics simulations [57, 58] for the RTIL discussed in

Section IV A; for a review see [17]. As κ increases, the associated ` increases as well, which is
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consistent with the patterns in Figures 1 and 4. Finally, our three-dimensional simulations using

κ = 1.× 10−11 cm−2 show a spherical structure factor (not pictured) with kr ∼ 1.1× 107 cm−1,

which matches the two-dimensional case.

TABLE III: The radius corresponding to the maximum value of the structure factor, kr, and the associated

pattern feature scale, `= π/kr as a function of κ .

κ [10−11 cm−2] kr [nm−1] ` [nm]

0.5 1.35 2.33

1.0 1.14 2.76

1.5 1.03 3.05

2.0 0.96 3.27

2.5 0.92 3.41

C. Double Layer Capacitance

Consider a charged fluid, either an electrolyte solution or an ionic liquid, confined in a parallel

plate capacitor with electrodes at y = 0 and y = L. The specific differential capacitance of the

double layer is defined as C = dσs/dV where σs is the surface-charge density and V is the overall

potential drop between the bulk of electrolyte and the electrode surface. By Gauss’ law, for the

electrode wall at y = 0,

σs =−ε
dφ

dy

∣∣∣∣
wall

(46)

With this,

C(V ) =−ε
d

dV
dφ

dy

∣∣∣∣
wall

(47)

From Gouy-Chapman theory, for a 1:1 electrolyte solution,

Ce =
ε

λD
coshΦ where Φ =

eV
2kBT

(48)

and

λD =

√
εkBT
z2mρ0

(49)
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is the Debye length.

To account for steric effects in ionic liquids Kornyshev [9] formulated a lattice model with a

lattice saturation parameter γ defined as the ratio of the total number of ions to the number of

available sites (0≤ γ ≤ 1). This formulation was improved [18] by accounting for the enthalpy of

mixing contribution to the free energy, which adds another parameter, α , to the model (0≤ α ≤ 1).

For this model the capacitance of the double layer for an ionic liquid with equal size ions is

C =
ε

λD

√
α cosh(αΦ)

1+ f

√
f

ln(1+ f )
where f = 2γ sinh2(αΦ) (50)

This reduces to the Gouy-Chapman result for α = 1 in the limit γ → 0. Qualitatively the capaci-

tance C(V ) has the so-called “bell” curve shape for large γ while for small γ the capacitance shows

a dip near V = 0 (“camel” shape). The former case is typical of ionic liquids for which the double

layer thickness increases with voltage. The latter case corresponds to dilute electrolyte solutions,

where dC/dV > 0 for small voltages and the thickness decreases with voltage until steric effects

become significant.

We measure the differential capacitance using a series of quasi-two-dimensional simulations.

Our simulations use a parallel plate capacitor geometry with no-slip, impermeable, fixed voltage

walls in the y direction, and periodic in the x direction. For each simulation, the voltage at the

top and bottom walls are equal in magnitude but opposite in sign; otherwise the parameters used

were identical to those used in the periodic simulations in Section IV B. We performed simulations

using ±1, 2, 4, 8, 16, 32, 64, and 128 V at the walls for the baseline case of κ = 1.0×10−11cm−2.

FIG. 6: Cation concentrations for capacitance simulations. Electrode wall voltages (top and bottom) are±2,

8, 32, and 128V.

Figure 6 shows the cation concentration after equilibration for several of the cases with vary-

ing electrode voltages. The equilibration time depends on the voltage at the walls, with smaller
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electrode voltages taking longer to fully form the double layer structure, which is why for most of

the simulations the voltage was above the typical electrochemical window of 4.5-6.0 V for RTILs

[59]. The simulations ran until equilibration, where the patterns had reached a steady configuration

(80 ns for runs with |V | ≥ 16 V, up to 400 ns for the |V |= 1 case). Note that for the largest voltage

presented (128V), the morphology features a vertical striped pattern parallel to the strong electric

field.

To calculate the capacitance from the simulation data we computed the surface charge density

−εdφ/dy by horizontally averaging φ and then approximating the normal derivative at the wall

using a second-order finite difference approximation using the boundary potential and two interior

values. In Figure 7 we show plots of the horizontally-averaged electric potential for the cases

depicted in Figure 6. First, we see that the normal derivative of φ steepens with increasing voltage.

The double layer thickness also clearly increases with voltage. We also observe that the amplitude

of the patterns a few nanometers away from the wall is similar for all voltages.

FIG. 7: Horizontally-averaged potential for the capacitance cases in Figure 6.

From these simulations we compute the differential capacitance using (47) by estimating the

derivative of the surface charge density with respect to voltage using a second-order finite differ-

ence approximation. The measured differential capacitance as a function of electrode voltage is

shown in Figure 8. The simulation data was curve fit to (50) and the parameter values for the
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FIG. 8: Differential capacitance as a function of electrode potential compared to theory (50).

optimal fit were γ = 1.0 and α = 1.0; the corresponding curve is also shown in Figure 8. For larger

voltages we are able to recover the predicted differential capacitance. For smaller potentials our

simulations under-predict the differential capacitance.

Next we illustrate the effect of the thermal fluctuations in the fluctuating hydrodynamic model

of the RTIL. We consider two cases in which the simulations were performed with the stochastic

fluxes turned off: a deterministic simulation with a random initial perturbation (first running one

time step of the full stochastic algorithm and then turning off the noise terms); and a fully deter-

ministic simulation with a homogeneous initial condition. For the periodic systems considered in

Section IV B we found little difference between the fully stochastic and the randomly perturbed

deterministic simulations. However, if we consider the steady state cation concentration in capac-

itance simulations with ±8 V electrode potentials as shown in Fig. 9, we see that the results for

the two deterministic cases are very different from the results for the fully stochastic simulation.

The initially perturbed deterministic simulation has a similar morphology, except that horizontal

stripes are preferred in the vicinity of the walls. In the fully deterministic simulation, horizontal

stripes quickly form across the domain. These stripes do not have a consistent structure size; they

are thinner at the center of the domain and thickest near the walls.

In Figure 10 we show horizontally-averaged profiles of the electric potential for these same three
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FIG. 9: Cation concentrations for ±8 V capacitance simulations. (Left) Stochastic simulation, (Middle)

deterministic simulation with an initial stochastic perturbation, and (Right) purely deterministic simulation.

cases which further confirm these observations. The perturbed deterministic simulation shows a

slower decrease in the potential away from the wall due to the horizontal striping (constructive

interference in the horizontal averaging), and in the purely deterministic case the wavelength of

the oscillations is clearly smaller.

FIG. 10: Horizontally-averaged potential for the cases in Figure 9. The perturbed deterministic case has a

large amplitude near the walls due to the horizontal striping, but the same wavelength as the stochastic case.

The purely deterministic case has striping features with smaller wavelength.
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FIG. 11: Time evolution of the cation concentration in the RTIL under electroosmotic shear; images are at

t = 0,2,5, and 20 ns. (Multimedia view [60])

D. Electroosmotic shear flow

Electroosmotic flow occurs when an external electric field is applied parallel to the electric

double layer near an electrode wall. Since the double layer is not electroneutral the ions near the

wall experience a Lorentz force, which results in a body force on the fluid. For channel walls of

equal potential (or surface charge density) electroosmosis results in a plug flow for wide channels

(L� λD) and Poiseuille-type flow in narrow channels. For channel walls of equal potential (or

surface charge density) electroosmosis results in a plug flow when the channel width is much larger

than the double layer thickness. Here we consider electrode walls of opposite potential, as in the

parallel plate capacitor geometry described in the previous section, which results in electroosmotic

shear flow. Specifically we consider electrodes with potentials of ±8V and impose an external

electric field in the x direction corresponding to a 500V potential drop across the domain. The

double layer thickness is a few nanometers (see Fig. 7) and the channel width is 96 nm. The

resulting shear rate from the electroosmotic flow is about 0.4 ns−1.

The temporal evolution of the resulting sheared system is shown in Figure 11. For the strong

imposed electric field considered in this example, the shearing first destroys the serpentine patterns

and then structure is restored, developing a striated pattern parallel to the imposed electric field

with a few long-lived defects. Molecular dynamics studies also indicate that nanostructures in

RTILs persist in the presence of a strong shear.[61, 62]
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V. CONCLUSIONS

The computational model presented here is the first step towards a mesoscale simulation capa-

bility for room temperature ionic liquids that includes both hydrodynamics and thermal fluctua-

tions. The fluctuating hydrodynamics formulation for RTILs is a useful intermediary, mesoscale

theory bridging microscopic models, such as molecular dynamics, and macroscopic models. The

low Mach number formulation avoids the severe time step restriction associated with previous

compressible formulations. We have demonstrated in both two and three dimensions that result-

ing methodology reproduces the microscopic structuring observed in RTILs. We also used the

methodology to show that the differential capacitance decreases with applied voltage which is a

characteristic of ionic liquids. The morphology patterns observed in this capacitance geometry

were significantly different depending on whether the simulations included or excluded thermal

fluctuations. Finally, the shear electroosmosis example shows that the methodology can be used to

model electrokinetic flows.

The present model can be enhanced and extended in several important directions in the future.

In this paper we considered a two-component ionic fluid with symmetric ions; however, the RTIL

model can be generalized to arbitrary multi-component mixtures. (See [38] for a more general FHD

model of multicomponent electrolyte solutions.) This will allow us to consider RTILs composed of

dissimilar ions as well as investigate the effect of a polar solvent on the structural, thermodynamic,

and electrical properties.

As is commonly assumed in RTIL modeling we assumed the permittivity to be a constant. A

more realistic version of the model makes the permittivity a function of concentration, which is

important for the study of RTIL mixtures. The implementation requires modifying the calculation

of the Poisson equation and the Maxwell stress tensor; a greater challenge is determining an accu-

rate functional form of ε(c). A related extension is to include dielectric relaxation [63] by treating

the local permittivity (or equivalently, the local polarization density) as a stochastic quantity whose

dynamics are given by a Langevin equation.

The increased time step associated with the low Mach number FHD model makes it possible

to investigate long time dynamics and three dimensional effects. Many ionic liquids tend to have

glassy behaviors [64, 65] that make the equilibration of molecular dynamics simulations particu-

larly challenging. Our fluctuating hydrodynamics model permits numerical explorations of RTIL
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regimes with slow dynamics. The capability to perform three dimensional simulations is partic-

ularly important for future investigations of the structure and dynamics of the double layer. The

transitions between lateral arrangements of counter and co-ions at electrified interfaces greatly af-

fects the capacitance and dynamics of the double layers, and this is related to the three-dimensional

nature of the double layer in ionic liquids [66]. As part of this type of investigation, more phys-

ically realistic boundary conditions that can capture wetting effects at electrode-RTIL interfaces

will need to be introduced.

Generalization of the methodology to more complex boundary conditions and geometries would

allow us to explore capacitance enhancement in nanopores [67], which are important in the devel-

opment of supercapacitors based on nanostructured electrodes. The treatment of electrochemical

effects at electrode boundaries would be a topic for future work.

Finally, the FHD methodology presented here lays the foundation for hybrid, or “heteroge-

neous" methods [68–70] that couple a continuum hydrodynamic description to a more detailed

microscopic model, e.g., molecular dynamics. For these types of “Adaptive Algorithm” hybrids,

the continuum model needs to include thermal fluctuations in order to correctly capture the

behavior in the region being modeled with the microscopic model [71]. This type of hybrid model

would enable simulations to use a microscopic representation locally where molecular-level

accuracy is desired, such as near electrode surfaces, while using a less expensive continuum-based

model in the remainder of the domain.

The data that support the findings of this study are available from the corresponding author

upon reasonable request. The source code is publicly available on github at [72, 73].
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Appendix A: Derivation of Inviscid Hydrodynamic Equation

Here we derive the inviscid form of the momentum equation (4) using the calculus of variations.

It will be useful below to introduce the notation

Du
t f := ft +u ·∇ f (A1)

for the advective derivative of scalar f with respect to the velocity field u. For the case when f is

a vector of functions, equation (A1) is understood component-wise, so that in Einstein notation

(Du
t f )i = ( fi)t +u j

∂ fi

∂x j
(A2)

Starting from the action

S =
∫

dt
∫

dr
1
2

ρ0|u|2−
(

ρ0g(c,∇c)+ρ0z(2c−1)φ − 1
2

ε|∇φ |2
)
, (A3)

which is simply the space-time integral of the kinetic energy of the fluid minus the time integral of

the free energy functional G (see eqn. (1)), we add the constraints that the flow u is divergence free

and that the concentration c is advected by the flow. The action then becomes

S =
∫

dt
∫

dr
1
2

ρ0|u|2−
(

ρ0g(c,∇c)+ρ0z(2c−1)φ − 1
2

ε|∇φ |2
)

+ρ0χ (∇ ·u)+ρ0λ (ct +∇ · (uc)) , (A4)

where χ and λ are the Lagrange multipliers. These extra constraints are necessary for nontrivial

dynamics for the velocity field; enforcing that the action S is stationary with respect to variations

in u results in

u = c∇λ +∇χ (A5)

after integrating by parts and assuming the space of trial functions is such that the boundary terms

vanish. This is the well-known Clebsch representation [74, 75]. Variations with respect to φ and χ

result in the Poisson equation of electrostatics and the divergence-free constraint

−ε∇
2
φ = ρ0z(2c−1) = q f (A6)

∇ ·u = 0. (A7)
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Variations with respect to λ and using (A7) result in the constraint

Du
t c = 0. (A8)

Consider now the advective derivative of the Clebsch representation (A5), and note that Du
t is a

linear operator that obeys the standard product rule of differential calculus Du
t ( f g)= gDu

t f + f Du
t g,

as well as the commutation relation

Du
t (∇ f ) = ∇(Du

t f )−∇u∇ f , (A9)

where the second term is a matrix-vector product and (∇u)i j is defined as ∂ui/∂x j. Hence

Du
t u = Du

t (c∇λ )+Du
t (∇χ) (A10)

= cDu
t (∇λ )+(Du

t c)∇λ +Du
t (∇χ) , (Eq. (A9) (A11)

= c∇(Du
t λ )− c∇u∇λ +∇(Du

t χ)−∇u∇χ (Du
t c = 0) (A12)

= c∇(Du
t λ )+∇

(
Du

t χ−|u|2/2
)

(u = c∇λ +∇χ) . (A13)

The term c∇(Du
t λ ) will be the source of the Lorentz force density (15) and the divergence of the

interfacial reversible stress (16).

It remains to consider variations of the action S with respect to the concentration c. Grouping

together the contributions to the specific free energy modeling the enthalpy and entropy of mixing

into a single term

gloc(c) :=
kBT
m

(
gid(c)+gex(c)

)
, (A14)

eqn. (2) becomes

g(c,∇c) = gloc(c)+
kBT
m

1
2

κ |∇c|2 . (A15)

Variations with respect to c then result in

Du
t λ =−∂gloc

∂c
+

kBT
m

κ∇
2c−2zφ (A16)

=⇒ c∇(Du
t λ ) =−c∇

(
∂gloc

∂c

)
+

kBT
m

κc∇
(
∇

2c
)
−2zc∇φ (A17)

After manipulating the three terms on the right hand side of (A17), we will insert them into (A13).
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The third term can be written as

−2zc∇φ =−z(2c−1)∇φ − z∇φ (A18)

=−
(

1
ρ0

)
q f

∇φ − z∇φ (A19)

=
1
ρ0

∇ ·σ − z∇φ (A20)

using the definition of the Maxwell stress tensor (15). The second term can be written by combin-

ing the two product rule identities:

c∇
(
∇

2c
)
= ∇

(
c∇

2c
)
−∇

2c∇c (A21)

and

∇
2c∇c = ∇ · (∇c⊗∇c)− 1

2
∇

(
|∇c|2

)
(A22)

= ∇ ·
(

∇c⊗∇c− 1
2
|∇c|2 I

)
(A23)

so that

kBT
m

κc∇
(
∇

2c
)
= ∇

(
kBT
m

κc∇
2c
)
− kBT

m
κ∇ ·

(
∇c⊗∇c− 1

2
|∇c|2 I

)
(A24)

= ∇

(
kBT
m

κc∇
2c
)
+

1
ρ0

∇ ·
(

ρ0kBT κ

m

[
1
2
|∇c|2−∇c⊗∇c

])
(A25)

= ∇

(
kBT
m

κc∇
2c
)
+

1
ρ0

∇ ·R (A26)

by definition of the interfacial reversible stress tensor (16). Lastly, the first term on the right hand

side of equation (A17) can be re-written using the Gibbs-Duhem relation of thermodynamics [41],

which says for our isothermal, two-component mixture

∇p = ρ1∇µ1 +ρ2∇µ2 (A27)

where p is the thermodynamic pressure and µk = ∂gloc/∂ck. Since ρk = ρ0ck, c = c1, and c2 =

1− c1,
∂gloc

∂c2
=−∂gloc

∂c1
, (A28)

and hence the Gibbs-Duhem relation reduces to

∇p = ρ0(2c−1)∇
(

∂gloc

∂c

)
(A29)

=⇒ −c∇

(
∂gloc

∂c

)
=−1

2
∇p
ρ0
− 1

2
∇

(
∂gloc

∂c

)
. (A30)
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Inserting the relations (A30), (A26), and (A20) into the c∇(Du
t λ ) term in (A13) then results in

Du
t u = c∇(Du

t λ )+∇
(
Du

t χ−|u|2/2
)

(A31)

=
1
ρ0

∇ ·R+
1
ρ0

∇ ·σ +∇

(
Du

t χ +
kBT κ

m
c∇

2c− 1
2
|u|2− 1

2
1
ρ0

p− 1
2

∂gloc

∂c
− zφ

)
, (A32)

and after identifying

π :=−
(

ρ0Du
t χ +

ρ0kBT κ

m
c∇

2c− 1
2

ρ0|u|2−
1
2

p− 1
2

ρ0
∂gloc

∂c
−ρ0zφ

)
(A33)

as a perturbational pressure, we arrive at the inviscid form of the momentum equation in (1)

(ρ0u)t +∇ · (ρ0uu)+∇π = ∇ ·σ +∇ ·R (A34)

as desired. �
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