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Quantum Trajectory Surface Hopping: Theory and its Inner Workings
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Quantum trajectory surface hopping (QTSH) is a trajectory surface hopping method that

is rigorously derived from the quantum-classical Liouville equation, developed to study non-

adiabatic molecular dynamics of multistate systems. This work explores the unique features

of QTSH - energy conservation on the ensemble level without the imposition of ad hoc

momentum rescaling, and its rigorous derivation in both the diabatic and adiabatic rep-

resentations - that distinguish it from the widely used fewest switches trajectory surface

hopping method (FSSH). We show that in the limit of complete and localized population

transfer in the adiabatic representation, the work done by the quantum force that charac-

terizes QTSH is akin to the strict classical energy conserving momentum ‘jumps’ of FSSH.

Our numerical results show that the feedback between nuclear and electronic degrees of free-

dom, mediated by the quantum forces that work to conserve the quantum-classical energy

on average, is well-incorporated in QTSH. By transforming the QTSH results for the ele-

ments of the Wigner distribution and forces from one representation to another, we conclude

that QTSH is representation invariant. By analyzing the classical and quantum forces for

non-adiabatic processes in both the diabatic and adiabatic representations, we found that

highly non-classical processes in the adiabatic representation are, conversely, highly classi-

cal in the diabatic representation. Since errors due to inconsistencies in surface hopping are

larger when significant population transfers occur, it allows us to conclude that QTSH results
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for the highly non-classical processes in the adiabatic representation are less accurate than

for the corresponding more classical processes in the diabatic representation. We exploit

the representation invariance of QTSH to obtain more accurate results for the population

dynamics in the adiabatic representation.
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Chapter 1

Introduction to the Dissertation

A complete quantum mechanical description of molecular dynamics can only be obtained

by solving the time-dependent Schrödinger equation with all nuclear and electronic degrees

of freedom. Solving the problem exactly has, however, proven to be an intractable problem

due to its high computational cost [4].

A fundamental approximation that has greatly reduced the complexity of the problem is

the Born-Oppenheimer approximation [5, 6] - also known as the adiabatic approximation.

Within the framework of the adiabatic approximation, the fast electronic degrees of freedom

are assumed to depend only parametrically on the slow nuclear degrees of freedom [7], and

the electronic and nuclear states are not coupled. However, in regions where the energy gap

between many-body electronic potential energy surfaces (PESs) approaches the scale of the

inverse of the time scale of nuclear motion [8, 9], non-adiabatic processes that involve the

coupling of the nuclear and electronic degrees of freedom occur [9], resulting in the breakdown

of the adiabatic approximation.

Many chemical applications involve chemical processes that require electronic transitions

between electronic states. Some of these processes include light emission [10–14], charge
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separation [15–18], non-radiative relaxation [19–21], intersystem crossing [22–24], and pho-

toisomerization [25–28]. Non-adiabatic molecular dynamics (NAMD) is involved in the study

of these processes.

Modeling NAMD involves two important aspects. The first, an electronic structure method

that allows for the calculation of the ground state and excited state electronic potential

energy surfaces (PESs) to reasonable chemical accuracy. The second, a molecular dynamics

algorithm that accounts for non-adiabatic occurrences while propagating trajectories.

As quantum trajectory surface hopping (QTSH) - the focus of this dissertation - is a molec-

ular dynamics algorithm used in modeling NAMD, we will now provide a brief account of

the molecular dynamics algorithms used to model NAMD. In particular, those that utilize

classical trajectories for computational tractability.

1.1 Modeling Non-Adiabatic Molecular Dynamics

The development of NAMD algorithms that utilize classical trajectories fall under two broad

categories - semiclassical, and mixed quantum-classical methods. Some approaches are tra-

jectory surface hopping [1, 29, 30], mapping Hamiltonians [31–34], ring polymer methods [35],

symmetrical windowing of quasiclassical trajectories [36, 37], and quantum-classical Wigner

function-based approaches [38–47]. These computationally feasible methods reproduce the

key quantum features of complex systems within the framework of classical mechanics.

1.1.1 Trajectory Surface Hopping

Owing to its simple implementation and fast convergence [8], the most popular mixed

quantum-classical NAMD algorithm, where the nuclear degrees of freedom are treated clas-
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sically, and the electronic degrees of freedom are treated quantum mechanically [4, 48], is a

trajectory surface hopping method [1, 49] called the fewest switches surface hopping (FSSH)

method [1].

In trajectory surface hopping, the nuclear wavepacket is represented by swarms of inde-

pendent classical trajectories that evolve on single electronic PESs, where non-adiabatic

transitions are represented by hops between electronic PESs. Although each trajectory in

phase space is analogous to a localized wavepacket, the actual non-locality of nuclear dy-

namics in electronic and phase space is accounted for by running an ensemble of trajectories

[1, 8].

In FSSH, the trajectories evolve in nuclear phase space according to Newton’s classical

equations of motion [50], with each trajectory experiencing the force of the single PES that

it is evolving on, interrupted only by instantaneous hops from one PES to another [1].

An approximate time-dependent Schrödinger equation is also solved for each trajectory, with

each trajectory possessing a ‘proxy’ density matrix and finite hopping probabilities from one

PES to another.

The FSSH [1] probability of each trajectory hopping from PES L toK utilizes the populations

and coherences obtained from the ‘proxy’ density matrix of each trajectory. The hopping

probability for each trajectory calculated using the fewest switches algorithm [1] is given by

the ratio of the population increment on PES K due to the flux from PES L during the

timestep to the population on PES L [50].

A stochastic algorithm that utilizes the hopping probability of each trajectory is then used

to determine whether, and to which state a trajectory hops. When a hop occurs, motivated

by the Pechukas force [51], the momentum is rescaled in the direction of the non-adiabatic

coupling vector d (q) [50, 51] to allow for strict conservation of energy on the trajectory level,

with the sign of the momentum ‘jumps’ assigned by physical arguments [29, 30]. These
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momentum ‘jumps’ are ad hoc in nature and reflect strict classical energy conservation that

fail to account for the non-locality of electronic transitions in phase space.

When a trajectory ‘hop’ dictated by the stochastic algorithm does not occur due to the tra-

jectory possessing insufficient kinetic energy, the ‘hop’ is aborted and considered frustrated.

These frustrated hops contribute to the breakdown of surface hopping consistency in FSSH

that is defined as the agreement between the state occupancy statistics of the converged

trajectory ensemble and the average populations of the proxy density matrix [50].

As important quantum effects that arise from the interdependence of members of the tra-

jectory ensemble [39–41, 52–58], the treatment of trajectories as independent from other

members of the trajectory ensemble gives rise to the well-documented lack of decoherence in

FSSH that contributes to the lack of internal consistency in FSSH [59].

The question of whether FSSH in the adiabatic representation, in which FSSH was derived

[1] can be transformed to the diabatic representation [60, 61], has been a longstanding one,

with no straightforward answers. A rigorous trajectory surface hopping method should be

representation invariant.

In quantum trajectory surface hopping (QTSH) [62, 63], the quantum-classical description

of systems are derived rigorously from quantum-classical limit of the multistate Liouville

equation [38–40, 64], in the context of the independent trajectory approximation, QTSH can

be derived rigorously, and performed in both the diabatic and adiabatic representations.

Before introducing the quantum-classical Liouville equation (QCLE) [38–40] that underpins

the QTSH method, and the QTSH formalism [62, 63], we introduce the local diabatic [65]

and adiabatic representations and the unitary transformation between them. For berevity,

we will refer to the local diabatic representation [65] as the diabatic representation for the

rest of this dissertation.
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1.2 Diabatic and Adiabatic Representations

Systems in the diabatic and adiabatic representation are related by a unitary transformation.

The unitary transformation of an n× n unitary matrix of operators of an n-state system in

the diabatic representation ÂD gives the corresponding operator of an n-state system in the

adiabatic representation ÂA given by the expression

ÂA = U†(q)ÂDU(q), (1.1)

and the inverse unitary transformation of ÂA gives ÂD given by the expression

ÂD = U(q)ÂAU†(q), (1.2)

where U(q) represents the n× n unitary matrix, of an n-state system.

We now present the unitary transformation of the 2× 2 Hamiltonian of a two-state system

from the diabatic representation to the adiabatic representation.

The Hamiltonian of the a multielectronic state system Ĥ is given by the sum of the nuclear

kinetic energy T̂, and the electronic potential V̂,

Ĥ = T̂+ V̂. (1.3)

In the diabatic representation, the Hamiltonian of a two-state system ĤD is given by a 2× 2

matrix that consists of a kinetic energy operator T̂D and electronic potential energy operator

V̂D.
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The kinetic energy operator is given by

T̂D =

 p̂2

2m
0

0 p̂2

2m
,

 (1.4)

where p̂ = −iℏ∇q. The kinetic energy operator is diagonal since any nuclear momentum

coupling terms vanishes in the diabatic representation [66, 67].

The potential energy operator is given by

V̂D =

V̂11 V̂12

V̂21 V̂22,

 (1.5)

where V̂11 = V1(q), V̂22 = V2(q), and V̂12 = V̂21 = V12(q). Note that V12(q) ∈ R.

In the diabatic representation, the off-diagonal terms in the Hamiltonian are present in the

potential energy operator V̂D in the form of the coupling potential V12(q) that couples the

electronic states in the diabatic representation, |1⟩ and |2⟩.

Applying the unitary transformation given by Eqn 1.1 to the the Hamiltonian of the two-

state system in the diabatic representation ĤD gives the corresponding Hamiltonian in the

adiabatic representation ĤA.

The 2 × 2 unitary matrix that relates the diabatic representation of a two-state system to

its corresponding system in the adiabatic representation is given by

U(q) =

cos ϕ(q)
2
− sin ϕ(q)

2

sin ϕ(q)
2

cos ϕ(q)
2

 , (1.6)

where ϕ(q) is the transformation angle between the diabatic and adiabatic representation.
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The transformation angle ϕ(q) in terms of the diagonal diabatic potentials V1(q) and V2(q),

and the off-diagonal diabatic potential V12(q), is given by the following relations

tanϕ(q) =
2V12(q)

V1(q)− V2(q)
, (1.7)

where

sinϕ(q) =
2V12(q)√(

V1(q)− V2(q)
)2

+ 4V12(q)2
, (1.8)

and

cosϕ(q) =
V1(q)− V2(q)√(

V1(q)− V2(q)
)2

+ 4V12(q)2
. (1.9)

Applying the unitary transformation given in Eqn 1.1 on T̂D (Eqn 1.4) and V̂D (Eqn 1.5),

separately, we obtain the kinetic energy and potential energy operators in the adiabatic

representation.

The kinetic energy operator in the adiabatic representation is given by

T̂A =

 p̂2

2m
+ ℏ2d (q)2

2m
−i ℏ

2m

(
p̂ · d (q) + d (q) · p̂

)
i ℏ
2m

(
p̂ · d (q) + d (q) · p̂

)
p̂2

2m
+ ℏ2d (q)2

2m

 , (1.10)

where d (q) represents the non-adiabatic coupling vector.

The off-diagonal terms in the Hamiltonian in the adiabatic representation are present in the

kinetic energy operator T̂A (Eqn 1.10). These terms arise because the nuclear momentum

operator p̂ = −iℏ∇q acts on the electronic states that parametrically depend on the nuclear

coordinate q in the adiabatic representation, |+⟩ and |−⟩.
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This couples the nuclear and electronic degrees of freedom in the form of the non-adiabatic

coupling vector d (q) = ⟨+| ∇q |−⟩. In terms of the ϕ(q), d (q) = −∇qϕ(q)

2
.

The potential energy operator in the adiabatic representation is given by

V̂A =

V̂++ 0

0 V̂−−

 , (1.11)

where the V̂++ = V+(q) and V̂−− = V−(q).

The adiabatic potentials for a two-state system V±(q) can be expressed in terms of the

diabatic diagonal potentials V1/2(q), and the diabatic off-diagonal potential V12(q) as

V±(q) =
V1(q) + V2(q)

2
±

√(
V1(q)− V2(q)

)2
+ 4V12(q)2

2
. (1.12)

In the diabatic representation, the density matrix of a two-state system ρ̂D is given by a

2× 2 matrix that is given by

ρ̂D =

ρ̂11 ρ̂12

ρ̂21 ρ̂22

 , (1.13)

where the diagonal ρ̂11 and ρ̂22 operators represent the electronic populations, and the off-

diagonal ρ̂12 and ρ̂12 operators represent the coherences.

In the adiabatic representation, the corresponding density matrix of a two-state system ρ̂A

is given by a 2× 2 matrix that is given by

ρ̂A =

ρ̂++ ρ̂+−

ρ̂−+ ρ̂−−

 , (1.14)
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where the diagonal ρ̂++ and ρ̂−− operators represent the electronic populations, and the

off-diagonal ρ̂+− and ρ̂−+ operators represent the coherences.

The coherence is a quantum feature that arises due to the correlation of electronic states as

a result of quantum superposition [68].

As QTSH [62, 63], was derived from the quantum-classical Liouville equation (QCLE) [38],

the quantum-classical limit of the Liouville-Von Neumann equation [69, 70], we will now

introduce the quantum-classical limit of quantum mechanics.

1.3 Quantum-Classical Limit of Quantum Mechanics

In the quantum-classical limit, a quantum mechanical operator Â can be expressed as the

Weyl function [71, 72]

A(q,p) =

∫ 〈
q +

y

2

∣∣∣ Â ∣∣∣q − y

2

〉
e−i

p·y
ℏ dy. (1.15)

The QTSH method was derived in the quantum-classical limit, where the quantum operators

are represented by Weyl functions given by Eqn 1.15.

The product of quantum mechanical operators ÂB̂ in the quantum-classical limit can be

expressed as the Moyal/star product [73] that is represented by the ⋆ symbol

A(q,p) ⋆ B(q,p) = A(q,p)e
iℏ
2

←→
Λ B(q,p), (1.16)

where ⋆ ≡ e
iℏ
2

←→
Λ and

←→
Λ =

←−
∇q

−→
∇p −

←−
∇p

−→
∇q.
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The Taylor expansion of e
iℏ
2

←→
Λ can be expressed as

e
iℏ
2

←→
Λ =

∑
n

(
iℏ
2

←→
Λ

)n

=
∑
n

(
iℏ
2

)n←→
Λ n. (1.17)

The time-dependent density operator ρ̂(t) that represents the state of the system is expressed

as the Wigner distribution ρ(q,p, t) [73, 74] - a quasiprobability distribution in phase space

- in the quantum-classical limit, obtained by performing a partial Wigner transformation

[74, 75] only on the nuclear degrees of freedom, given by Eqn 1.18.

The Wigner distribution [74] that represents an n-dimensional system that is described by

the density matrix ρ̂ is given by

ρ(q,p, t) =
1

(2πℏ)n
∫ 〈

q +
y

2

∣∣∣ ρ̂(t) ∣∣∣q − y

2

〉
e−i

p·y
ℏ dy. (1.18)

For a two-state system, the Wigner distribution in the diabatic representation is given by

ρD(q,p, t) =

ρD11(q,p, t) ρD12(q,p, t)

ρD21(q,p, t) ρD22(q,p, t)

 , (1.19)

where Re
(
ρD12(q,p, t)

)
= Re

(
ρD21(q,p, t)

)
= αD(q,p, t), and

Im
(
ρD12(q,p, t)

)
= − Im

(
ρD21(q,p, t)

)
= βD(q,p, t), and the Wigner distribution in the adia-

batic representation is given by

ρA(q,p, t) =

ρA++(q,p, t) ρA+−(q,p, t)

ρA−+(q,p, t) ρA−−(q,p, t)

 , (1.20)

where Re
(
ρA+−(q,p, t)

)
= Re

(
ρA−+(q,p, t)

)
= αA(q,p, t), and

Im
(
ρA+−(q,p, t)

)
= − Im

(
ρA−+(q,p, t)

)
= βA(q,p, t).
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The relationship between the Wigner distribution in the diabatic and adiabatic representa-

tion is non-trivial and is reported in Ref [76].

A more exact relationship can be obtained by applying the Moyal/star product as given in

Eqn 1.16 in place of a matrix product. This will be presented in Chapter 3 of this dissertation.

The elements of the Wigner distribution [74] in the adiabatic representation in terms of that

in the diabatic representation, for the two-state system as reported in Ref [76] are

ρA++(q,p, t) =
ρD11(q,p, t) + ρD22(q,p, t)

2
+

ρD11(q,p, t)− ρD22(q,p, t)

2
cosϕ(q)

+αD(q,p, t) sinϕ(q), (1.21)

ρA−−(q,p, t) =
ρD11(q,p, t) + ρD22(q,p, t)

2
− ρD11(q,p, t) + ρD22(q,p, t)

2
cosϕ(q)

−αD(q,p, t) sinϕ(q), (1.22)

αA(q,p, t) = −ρD11(q,p, t)− ρD22(q,p, t)

2
sinϕ(q) + αD(q,p, t) cosϕ(q), (1.23)

βA(q,p, t) = βD(q,p, t), (1.24)

equivalent to dropping any O(ℏ) or higher terms in the Moyal/star product that will be

presented in Chapter 3.

We will now introduce the time evolution of the state of the system represented by the

density matrix ρ̂(t) in the Schrödinger picture, and the quantum-classical Liouville equation

(QCLE) [38].
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1.4 Electronic Nuclear Dynamics

The time evolution of the density matrix that describes the coupled electronic-nuclear dy-

namics of a multi-electronic state system is described by the Liouville-von Neumann equation

[69, 70] given by

iℏ
dρ̂D(t)

dt
=
[
ĤD, ρ̂D(t)

]
(1.25)

in the diabatic representation, and given by

iℏ
dρ̂A

dt
=
[
ĤA, ρ̂A

]
, (1.26)

in the adiabatic representation.

1.4.1 Quantum-Classical Liouville Equation

Expressing the nuclear degrees of freedom in the Wigner-Moyal representation [74, 75, 77]

and taking the semi-classical limit, where the approximation involves neglecting the O(ℏ2)

or higher terms in the Taylor expansion of Moyal product (⋆) [73] as given in Eqn 1.17,

the quantum-classical Liouville equation (QCLE) [38] - the quantum-classical analog to the

Liouville-von Neumann equation (Eqns 1.25-1.26) - for the two-state system can be expressed

as follows.
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In the diabatic representation, the QCLE [38] for the two-state system is

∂ρD11(q,p, t)

∂t
=

{
HD

11(q,p), ρ
D
11(q,p, t)

}
+
{
V12(q), α

D(q,p, t)
}

−2V12(q)

ℏ
βD(q,p, t), (1.27)

∂ρD22(q,p, t)

∂t
=

{
HD

22(q,p), ρ
D
22(q,p, t)

}
+
{
V12(q), α

D(q,p, t)
}

+
2V12(q)

ℏ
βD(q,p, t), (1.28)

∂αD(q,p, t)

∂t
=

{
HD

11(q,p) +HD
22(q,p)

2
, αD(q,p, t)

}
+ ωD(q)βD(q,p, t)

+
1

2

{
V12(q), ρ

D
11(q,p, t) + ρD22(q,p, t)

}
, (1.29)

∂βD(q,p, t)

∂t
=

{
HD

11(q,p) +HD
22(q,p)

2
, βD(q,p, t)

}
− ωD(q)αD(q,p, t)

+
V12(q)

ℏ
(
ρD11(q,p, t)− ρD22(q,p, t)

)
, (1.30)

where ωD(q) = V1(q)−V2(q)
ℏ , Re{ρ12}(q,p, t) = Re{ρ21}(q,p, t) = αD(q,p, t), and

Im{ρ12}(q,p, t) = − Im{ρ21}(q,p, t) = βD(q,p, t). Since the higher order terms in ℏ have

been dropped, only the most essential non-classical corrections [78] are captured in the above

equations.
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In the adiabatic representation, the QCLE [38] for the two-state system is

∂ρA++(q,p, t)

∂t
=

{
HA

++(q,p), ρ
A
++(q,p, t)

}
− ℏ

{
d (q) · v, βA(q,p, t)

}
−2d (q) · vαA(q,p, t), (1.31)

∂ρA−−(q,p, t)

∂t
=

{
HA
−−(q,p), ρ

A
−−(q,p, t)

}
− ℏ

{
d (q) · v, βA(q,p, t)

}
+2d (q) · vαA(q,p, t), (1.32)

∂αA(q,p, t)

∂t
=

{
HA

++(q,p) +HA
−−(q,p)

2
, αA(q,p, t)

}
+ ωA(q)βA(q,p, t)

+d (q) · v
(
ρA++(q,p, t)− ρA−−(q,p, t)

)
, (1.33)

∂βA(q,p, t)

∂t
=

{
HA

++(q,p) +HA
−−(q,p)

2
, βA(q,p, t)

}
− ωA(q)αA(q,p, t)

−ℏ
2

{
d (q) · v, ρA++(q,p, t) + ρA−−(q,p, t)

}
, (1.34)

where ωA(q) = V+(q)−V−(q)
ℏ , Re{ρ+−}(q,p, t) = Re{ρ−+}(q,p, t) = αA(q,p, t), and

Im{ρ+−}(q,p, t) = − Im{ρ−+}(q,p, t) = βA(q,p, t).

The nuclear velocity is represented by v = q̇. It is important to note that in the adiabatic

representation, the kinematic momentum pkin = mq̇, not the canonical momentum p. While

the canonical momentum appears in the diagonal kinetic energy, the velocity appears in the

non-adiabatic coupling terms, which differs from the equations present in the previously

published papers that first introduced quantum trajectory surface hopping (QTSH) [62, 63].

Note that the QCLE in the adiabatic representation that is presented here was derived by

performing the Wigner transformation as given in Eqn 1.18 after the unitary transformation

of the Hamiltonian and density operators in the diabatic representation to the adiabatic

representation [38]. Another approach that involves performing the Wigner transformation

on the diabatic density operator before the unitary transformation to the adiabatic repre-

sentation has also been reported [64].
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Having provided the requisite background, we now provide a brief overview of the quantum

trajectory surface hopping (QTSH) [62, 63] method - the focus of this dissertation - and

provide insight on the unique and distinguishing features that set it apart from the FSSH

method [1] that was discussed in Section 1.1.1.

1.5 Quantum Trajectory Surface Hopping (QTSH)

Here we give a brief overview of the quantum trajectory surface hopping (QTSH) [62, 63],

the method that is the focus of this dissertation. The full formalism of QTSH can be found

in Ref [62].

In QTSH [62, 63], the quantum-classical description of multistate systems are derived rigor-

ously from the QCLE [38–40], in the context of the independent trajectory approximation.

As such, QTSH can be derived rigorously, and performed in both the diabatic and adiabatic

representations. This is in contrast to FSSH [1] that was derived by solving the approximate

time-dependent Schrödinger equation in the adiabatic representation.

We now introduce the framework of independent trajectories that the QTSH method utilizes

to make the method computationally tractable [62, 63, 76]. A trajectory j represents a

localized wavepacket in phase space, represented by the delta function δ
(
q − qj(t)

)
δ
(
p −

pj(t)
)
. Just as in FSSH, the non-locality of nuclear dynamics in electronic and phase space

is accounted for in QTSH by running an ensemble of trajectories [1, 8].

1.5.1 Time Evolution of Electronic State

The propagation of the elements of the Wigner distributions of a two-state system in both the

diabatic and adiabatic representations in the QTSH [62, 63] involves solving the QCLE [38]
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given by Eqns 1.27-1.30 in the diabatic representation, and Eqns 1.31-1.34 in the adiabatic

representation using an ensemble of independent trajectories.

Similar to FSSH [1], a ‘proxy’ density matrix amn,j that represents the approximate electronic

state of the system [62, 63] is computed for each trajectory j. The fewest switches algorithm

[1] was also used to compute the hopping probabilities and to decide whether, and to which

state the trajectory j hops.

Under the framework of independent trajectories, the elements of the Wigner distributions

[74] for each trajectory j in the diabatic representation are

ρD11,j(q,p, t) = σD
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
(1.35)

αD
j (q,p, t) = αD

j (t)δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
(1.36)

βD
j (q,p, t) = βD

j (t)δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
(1.37)

ρD22,j(q,p, t) =
(
1− σD

j (t)
)
δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.38)

and the elements in the adiabatic representation are

ρA++,j(q,p, t) = σA
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
(1.39)

αA
j (q,p, t) = αA

j (t)δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
(1.40)

βA
j (q,p, t) = βA

j (t)δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
(1.41)

ρA−−,j(q,p, t) =
(
1− σA

j (t)
)
δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.42)

where the binary integer parameters σD
j (t) = {0, 1}, and σA

j (t) = {0, 1}.
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In the diabatic representation, σD
j (t) = 1 indicates that the trajectory j is on the diabatic

surface V1(q), and σD
j (t) = 0 indicates that the trajectory j is on the diabatic surface V2(q).

In the adiabatic representation, σA
j (t) = 1 indicates that the trajectory j is on the upper

adiabatic surface V+(q), and σA
j (t) = 0 indicates that the trajectory j is on the lower

adiabatic surface V−(q).

The elements of the Wigner distribution for the two-state represented by the ensemble of

independent trajectories are then represented as

ρD11(q,p, t) =
1

N

∑
j

σD
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.43)

αD(q,p, t) =
1

N

∑
j

αD
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.44)

βD(q,p, t) =
1

N

∑
j

βD
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.45)

ρD22(q,p, t) =
1

N

∑
j

(
1− σD

j (t)
)
δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.46)

in the diabatic representation, and

ρA++(q,p, t) =
1

N

∑
j

σA
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.47)

αA(q,p, t) =
1

N

∑
j

αA
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.48)

βA(q,p, t) =
1

N

∑
j

βA
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.49)

ρA−−(q,p, t) =
1

N

∑
j

(
1− σA

j (t)
)
δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
, (1.50)

in the adiabatic representation.
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The time evolution of the elements of the ‘proxy’ density matrix aik(t) for the two-state

system that represent the quantum electronic state of each trajectory j, are given by [62, 63]

ȧD11,j(t) = −2V12(qj)

ℏ
βD
j (t), (1.51)

ȧD22,j(t) =
2V12(qj)

ℏ
βD
j (t), (1.52)

α̇D
j (t) = ωD(qj)β

D
j (t), (1.53)

β̇D
j (t) = −ωD(qj)α

D
j (t) +

V12(qj)

ℏ
(
aD11,j(t)− aD22,j(t)

)
, (1.54)

in the diabatic representation, where αD
j (t) = Re(aD12,j(t)) = Re(aD12,j(t)),

and βD
j (t) = Im(aD12,j(t)) = − Im(aD21,j(t)), and

ȧA++,j(t) = −2d (qj) · vj(t)α
A
j (t), (1.55)

ȧA−−,j(t) = 2d (qj) · vj(t)α
A
j (t), (1.56)

α̇A
j (t) = ωA(qj)β

D
j (t) + d (qj) · vj(t)

(
aA11,j(t)− aA22,j(t)

)
, (1.57)

β̇A
j (t) = −ωA(qj)α

D
j (t) (1.58)

in the adiabatic representation, where αA
j (t) = Re(aA+−,j(t)) = Re(aA−+,j(t)),

and βA
j (t) = Im(aA+−,j(t)) = − Im(aA−+,j(t)).

We note that equations representing the elements of the ‘proxy’ density matrix for the two-

state system in QTSH [62, 63] in the adiabatic representation are identical to that of FSSH

[1].

18



The continuous populations represented by aD11,j(t) in the diabatic representation, and aA++,j(t)

in the adiabatic representation are related to the average of the stochastic occupation inte-

gers
〈
σD
j (t)

〉
in the diabatic representation and

〈
σA
j (t)

〉
in the adiabatic representation at

the point (qj,pj) in phase space when trajectories in the ensemble interact with each other

as in the consensus surface hopping reported in Ref [79].

The relations that describe the consistency of surface hopping are given by

aD11,j(t) =
〈
σD
j (t)

〉
, (1.59)

and

aA++,j(t) =
〈
σA
j (t)

〉
, (1.60)

in consensus surface hopping [79].

In the limit of independent trajectories where the trajectories do not interact the surface

hopping consistency condition can be rewritten as the ensemble averages [50]

〈
aD11(t)

〉
=
〈
σD(t)

〉
(1.61)

and

〈
aA++(t)

〉
=
〈
σA(t)

〉
. (1.62)

While the electronic state of the system in QTSH [62, 63] is propagated similarly to FSSH

[1], the classical motion of the nuclei in QTSH [62, 63] varies greatly from FSSH [1].
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1.5.2 Time Evolution of Nuclear Motion

Each trajectory j that can be mathematically described by the delta function δ
(
q−qj(t)

)
δ
(
p−

pj(t)
)
that represents a localized nuclear wavepacket in phase space (qj(t),pj(t)). The mo-

tion of the ensemble of independent trajectories in phase space describes the nuclear dy-

namics of the system. The QTSH trajectory phase space equations of motion were obtained

by ensuring that the phase space partial differential equations evolve in accordance to the

QCLE [38] for the total nuclear density ρD(q,p, t) in the diabatic representation,

∂ρD(q,p, t)

∂t
=

∂ρD11(q,p, t)

∂t
+

∂ρD22(q,p, t)

∂t

=

classical evolution︷ ︸︸ ︷{
HD

11(q,p), ρ
D
11(q,p, t)

}
+
{
HD

22(q,p), ρ
D
22(q,p, t)

}
+2

{
V12(q), α

D(q,p, t)
}︸ ︷︷ ︸

quantum evolution

(1.63)

and the QCLE [38] for the total nuclear density ρD(q,p, t) in the adiabatic representation

∂ρA(q,p, t)

∂t
=

∂ρA++(q,p, t)

∂t
+

∂ρA−−(q,p, t)

∂t

=

classical evolution︷ ︸︸ ︷{
HA

++(q,p), ρ
A
++(q,p, t)

}
+
{
HA
−−(q,p), ρ

A
−−(q,p, t)

}
−2ℏ

{
d (q) · v, βA(q,p, t)

}︸ ︷︷ ︸
quantum evolution

. (1.64)

With reference Eqns 1.63 and 1.64, we find terms that resemble the classical Liouville equa-

tion [80] for the ensembles on each state and an additional quantum component in the

diabatic and adiabatic representations.
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By solving Eqns 1.63 and 1.64 within the framework of independent trajectories, we obtain

the QTSH equations of motion for the phase space variables for each trajectory j in the

diabatic and adiabatic representations.

In the diabatic representation, the equations of motions [62] are

q̇j(t) =
pj

m
, (1.65)

ṗj(t) = −σD
j (t)∇qjV1(qj)−

(
1− σD

j (t)
)
∇qjV2(qj)︸ ︷︷ ︸

classical force

quantum force︷ ︸︸ ︷
−2∇qjV12(qj)α

D
j (t), (1.66)

and in the adiabatic representation, the equations of motions [62, 81] are

q̇j(t) =

kinematic momentum pkin,j︷ ︸︸ ︷
pj − 2ℏβA

j (t)d (qj)
m

, (1.67)

ṗj(t) = −σA
j (t)∇qjV+(qj)−

(
1− σA

j (t)
)
∇qjV−(qj) +

2ℏ
m

βA(t)
(
pj · ∇qj

)
d (qj), (1.68)

ṗkin,j(t) = −σA
j (t)∇qjV++(qj)−

(
1− σA

j (t)
)
∇qjV−−(qj)︸ ︷︷ ︸

classical force

+

quantum force︷ ︸︸ ︷
2ℏαD

j (t)d (qj) . (1.69)

On closer examination of the equations of motion for the generalized position q̇j(t) in the

diabatic (Eqn 1.66) and the adiabatic representation (Eqn 1.68), we find that while the

canonical momentum pj is equal to the kinematic momentum pkin,j(t) = mq̇j(t) [37] in the

diabatic representation, the kinematic momentum

pkin,j(t) = mq̇j(t) = pj − 2ℏβA
j (t)d (qj), (1.70)

in the adiabatic representation differs from the canonical momentum pj.
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We have reported the equation of motion of the kinematic momentum ṗkin,j(t) in Eqn 1.69

without derivation. The derivation can be found in Ref [81].

The QTSH momentum equations of motion with which independent trajectories are propa-

gated in the diabatic representation and in the adiabatic representation are, Eqn 1.66 and

Eqn 1.69, respectively. In contrast to FSSH where only the classical force component is

present, we find that a quantum force component that depends on the off-diagonal terms of

the Hamiltonian is also present in the QTSH momentum equations of motion [62, 63] for

both the diabatic and adiabatic representations.

In the diabatic representation, the quantum force acting on the trajectory j was

FD
quant(qj) = −2∇qjV12(qj)α

D
j (t), (1.71)

making contributions when the off-diagonal diabatic potential V12(qj) and the real part of

the coherence αD
j (t) are present. The off-diagonal coupling and coherence are manifestly

non-classical in nature.

In the adiabatic representation, the quantum force acting on the trajectory j was

F A
quant(qj) = 2ℏωA(qj)α

A
j (t)d (qj), (1.72)

making contributions when the non-adiabatic coupling vector d (qj), which couples the elec-

tronic and nuclear motion, and the real part of the coherence αA
j (t) are present. The quan-

tum force in the adiabatic representation resembles the off-diagonal Hellman-Feynman force

[82, 83].
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While strict energy conservation is imposed on each trajectory in FSSH [1], by means of

ad hoc momentum ‘jumps’ that take place when the trajectory hops, these strict classical

energy conservation rules are relaxed in QTSH [62, 63]. In QTSH, the quantum-classical

energy is conserved on the independent trajectory ensemble average level [62, 63], reflecting

a more probabilistic ‘quantum’ picture of reality.

The system phase space average total energy is given by the trace of the product of the Weyl

function [71] of the Hamiltonian and the Wigner distribution [74, 75] that in terms of the

ensemble of independent trajectories is given by

⟨Etot(t)⟩ =
1

N

N∑
j

Etot,j. (1.73)

In the diabatic representation, the total energy of a trajectory j, ED
tot,j computed in QTSH

is

ED
tot,j(t) =

classical energy︷ ︸︸ ︷
p2
j

2m
+ σD

j (t)V1(qj) +
(
1− σD

j (t)
)
V2(qj)+ 2V12(qj)α

D
j (t)︸ ︷︷ ︸

non-classical/quantum energy

. (1.74)

In the adiabatic representation, the total energy of a trajectory j, EA
tot,j computed in QTSH,

neglecting the diagonal Born-Oppenheimer term
ℏ2d2(qj)

2m
is

EA
tot,j(t) =

classical energy︷ ︸︸ ︷
p2
j

2m
+ σA

j (t)V+(qj) +
(
1− σA

j (t)
)
V−(qj) −2ℏβA

j d (qj) ·
pkin,j

m︸ ︷︷ ︸
non-classical/quantum energy

. (1.75)

The non-classical/quantum energy present in QTSH is not present in FSSH, and arises from

the off-diagonal terms in the Hamiltonian and the coherence of the Wigner distribution.
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Since the off-diagonal terms of the Hamiltonian are potential energy terms in the diabatic

representation, we combine the non-classical/quantum energy component with the classical

potential energy to give the phase space averaged potential energy

〈
V D(t)

〉
=

1

N

N∑
j

σD
j (t)V1(qj) +

(
1− σD

j (t)
)
V2(qj) + 2V12(qj)α

D
j (t). (1.76)

The phase space averaged kinetic energy
〈
TD(t)

〉
in the diabatic representation is simply the

classical kinetic energy given by

〈
TD(t)

〉
=

1

N

N∑
j

p2
j

2m
. (1.77)

The phase space averaged potential energy
〈
V A(t)

〉
in the adiabatic representation is simply

the classical potential energy given by

〈
V A(t)

〉
=

1

N

N∑
j

σA
j (t)V+(qj) +

(
1− σA

j (t)
)
V−(qj). (1.78)

In contrast, to the diabatic representation, the off-diagonal terms of the Hamiltonian in the

adiabatic representation are kinetic energy terms. As such, we combine the non-classical/quantum

energy component with the classical kinetic energy to give the phase space averaged kinetic

energy

〈
TA(t)

〉
=

1

N

N∑
j

p2
j

2m
− 2ℏβA

j d (qj) ·
pkin,j

m
≈

p2
kin,j

2m
, (1.79)

where the approximation to
p2
kin,j

2m
involves neglecting a term that is proportional to ℏ2βA2

j d 2(qj).

This ensures consistency since the neglected term is of the same order as the neglected O(ℏ2)

diagonal Born-Oppenheimer term.
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If the consistency of surface hopping is assumed in the framework of independent trajectories

in QTSH, where

σ̇D
j ≈ ȧ11,j (1.80)

in the diabatic representation, and

σ̇A
j ≈ ȧ++,j (1.81)

in the adiabatic representation, is assumed and substituted into the R.H.S. of time derivative

of Eqn 1.73, we find that the system phase space averaged total energy is zero in both the

diabatic and adiabatic representations. The procedure is given in Ref [62].

This shows that QTSH conserves the quantum-classical energy on average [62, 63], without

imposing the ad hoc momentum jumps of FSSH. The quantum forces that arise naturally

from the derivation of QTSH [62, 63] from the QCLE [38], related to the off-diagonal terms of

the Hamiltonian and coherences incorporates feedback between the electronic degrees of free-

dom and the nuclear degrees of freedom [3]. If the feedback between the classically treated

nuclear degrees of freedom and the quantum mechanically treated electronic degrees of free-

dom is properly incorporated in QTSH, the action of the quantum force would necessarily

act to conserve energy on average.

Having presented the QTSH method [62, 63], and how it is different from FSSH [1], we will

now introduce the modified Tully 1D model systems [1] that will be used in this dissertation.

We will also explain the chemical relevance of these model systems.
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1.6 Modified Tully 1D Systems

The Tully one-dimensional systems [1] have long been used as a benchmark for testing non-

adiabatic molecular dynamics.

In this dissertation we will modify Tully’s simple avoided crossing and dual crossing systems

[1] to investigate the inner workings of QTSH. The potential energy surfaces as a function

of the reaction coordinate for each model are illustrated in Figs 1.3 (a) and (b), respectively.

The diabatic potentials for Tully’s original simple avoided crossing system [1] are

V1(q) = A[1− eBq]Θ(−q)− A[1− e−Bq]Θ(q), (1.82)

V2(q) = −A[1− eBq]Θ(−q) + A[1− e−Bq]Θ(q), (1.83)

V12(q) = Ce−Dq2 , (1.84)

where the numerical values of the potential parameters, in atomic units, are A = 0.01,

B = 1.6, C = 0.005, and D = 1.0. The mass is m = 2000 a.u.

The size of the diabatic potential coupling will be changed by varying the constant C =

0.0005, 0.001 and 0.002 in Eqn 1.84 for the modified simple avoided crossing systems [1].

With reference to Figure 1.1, as the diabatic coupling constant C is increased, the maximum

adiabatic coupling d peak becomes stronger, with a more negative value, and more localized

with a smaller width at half height w0.5. The energy gap where the non-adiabatic coupling

is strongest ℏω(qdpeak) also gets larger as C increases. The values of these parameters are

summarized for the modified simple avoided crossing models are summarized in table 1.1.
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The diabatic potentials for Tully’s original dual avoided crossing system [1] are

V1(q) = −Ae−Bq2 + E0, (1.85)

V2(q) = 0, (1.86)

V12(q) = Ce−Dq2 , (1.87)

where the numerical values of the potential parameters, in atomic units, are A = 0.10,

B = 0.28, C = 0.015, D = 0.06, and E0 = 0.05. The mass is m = 2000 a.u.

The size of the diabatic potential coupling will be changed by varying the constant C =

0.0015, 0.003 and 0.006 in Eqn 1.87 for the modified dual avoided crossing systems [1].

With reference to Figure 1.2(b), the maximum adiabatic couplings in the two regions of

strong non-adiabatic coupling d peak1 and d peak2 becomes stronger, with a larger magnitude,

and more localized with a smaller widths at half height w0.5,peak1 and w0.5,peak2. With reference

to Figure 1.2(a), the energy gap where the adiabatic couplings are strongest, ℏω(qdpeak1
) and

ℏω(qdpeak1
) increase as C increases. The values of these parameters are summarized for

Tully’s modified dual avoided crossing models are summarized in Tables 1.2 and 1.3.

Table 1.1: Summary of the parameters maximum strength of the adiabatic coupling d peak,
the width of the non-adiabatic coupling at half maximum w0.5,peak, the position of strongest
non-adiabatic coupling qdpeak

, and the size of the energy gap where non-adiabatic coupling is
strongest ℏω(qdpeak

) for the simple avoided crossing system [1] for the values of the diabatic
coupling constants C = 0.0005, 0.001 and 0.002.

C d peak(a.u.) w0.5(a.u.) qdpeak
(a.u.) ℏω(qdpeak

)(a.u.)

0.0005 -16 0.06 0.0 0.001

0.0010 -8 0.10 0.0 0.002

0.0020 -4 0.16 0.0 0.004
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Figure 1.1: The grey shaded region spans the region of strong adiabatic coupling. The
inset image shows an enlarged image of the grey shaded region. The dotted, dashed, and
dashdotted lines in the inset images correspond to the diabatic coupling constants of C =
0.0005, C = 0.001, and C = 0.002, respectively. (a) Adiabatic potential energy surfaces
(PESs) for the modified Tully’s simple avoided crossing model. The upper surface is labeled
V+(q) and the lower surface is labeled V−(q). The parameter ℏω(qdpeak

) shows the size of the
energy gap where the adiabatic coupling is strongest. The inset shows the the energy gap
increases with the strength of the diabatic coupling. (b) Non-adiabatic coupling d (q) for the
modified Tully’s simple avoided crossing model. The parameter d peak indicates the maximum
strength of the adiabatic coupling, and w0.5,peak indicates the width of the adiabatic coupling
at half maximum.
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Table 1.2: Summary of the parameters maximum strength of the adiabatic coupling d peak1,
the width of the non-adiabatic coupling at half maximum w0.5,peak1, the position of strongest
non-adiabatic coupling qdpeak1

, and the size of the energy gap where non-adiabatic coupling
is strongest ℏω(qdpeak1

) for the dual avoided crossing system [1] for the values of the diabatic
coupling constants C = 0.0015, 0.003 and 0.006.

C
Peak 1

d peak(a.u.) w0.5,peak(a.u.) qdpeak
(a.u.) ℏω(qdpeak

)(a.u.)

0.0015 -8.50 0.12 -1.57 0.0026

0.0030 -4.25 0.22 -1.57 0.0052

0.0060 -2.13 0.47 -1.57 0.0104

Table 1.3: Summary of the parameters maximum strength of the adiabatic coupling d peak2,
the width of the non-adiabatic coupling at half maximum w0.5,peak2, the position of strongest
non-adiabatic coupling qdpeak2

, and the size of the energy gap where non-adiabatic coupling
is strongest ℏω(qdpeak2

) for the dual avoided crossing system [1] for the values of the diabatic
coupling constants C = 0.0015, 0.003 and 0.006.

C
Peak 2

d peak(a.u.) w0.5,peak(a.u.) qdpeak
(a.u.) ℏω(qdpeak

)(a.u.)

0.0015 8.50 0.12 1.57 0.0026

0.0030 4.25 0.22 1.57 0.0052

0.0060 2.13 0.47 1.57 0.0104
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Figure 1.2: The grey shaded region spans the two regions of strong adiabatic coupling.
The inset image shows an enlarged image of the grey shaded region. The dotted, dashed,
and dashdotted lines in the inset images correspond to the diabatic coupling constants of
C = 0.0015, C = 0.003, and C = 0.006, respectively. (a) Adiabatic potential energy surfaces
(PESs) for the modified Tully’s dual avoided crossing model. The upper surface is labeled
V+(q) and the lower surface is labeled V−(q). The parameters ℏω(qdpeak1

) and ℏω(qdpeak2
)

show the size of the energy gap where the adiabatic couplings are strongest. The inset shows
that the energy gaps increase with increasing diabatic coupling strength. (b) Non-adiabatic
coupling d (q) for the modified Tully’s dual avoided crossing model. The parameters d peak1

and d peak2 indicate the maximum strengths of the non-adiabatic coupling, and w0.5,peak1 and
w0.5,peak2 indicate the width of each region of strong adiabatic coupling at half maximum.
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1.6.1 Chemical Relevance

The Tully 1D systems [1], while simple, are chemically relevant, and the performance of

QTSH [62, 63] for these systems will inform us of whether QTSH would be a suitable pre-

dictive model to study the on-the-fly dynamics of various molecules with one or two avoided

crossings.

Figure 1.3: Schematic depiction of the potential energy curves as a function of a one-
dimensional reactive coordinate for the (a) Tully simple avoided crossing model, and the
(b) Tully dual avoided crossing model, and the time traces of the potential energies for tra-
jectory surface hopping for Ibele-Curchod molecular models for (c) ethene that corresponds
to the simple avoided crossing model, and (d) 4-N,N-Dimethylaminobenzonitrile (DMABN).
The path described by the one-dimensional particle (circle and arrow) exemplifies a possible
outcome of the dynamics probed by each model. Lower panel: Time traces of the potential
energies along a trajectory surface hopping trajectory for ethylene (d), DMABN (e), and
fulvene (f). The excited-state dynamics for each molecular Tully model mimics the particle
dynamics of the corresponding one-dimensional Tully models depicted in the upper panel.
Reproduced from L. M. Ibele and B. F. E. Curchod, Phys. Chem. Chem. Phys., 2020,
22, 15183 DOI: 10.1039/D0CP01353F (Ref [2]), with permission from the PCCP Owner
Societies.
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The molecular equivalent of Tully’s simple one-dimensional systems, also known as the Ibele-

Curchod (IC) systems have recently been proposed by Ibele et al. [2], and have been used as

a benchmark to study on-the-fly direct dynamics variational multi-configuration Gaussian

(DD-vMCG) method [84]. The potential energy time trace of ethene, the IC-1 system,

illustrated by Fig 1.3(c) imitates Tully’s simple avoided crossing system (Fig 1.3(a)), and that

of 4-N,N-Dimethylaminobenzonitrile (DMABN), the IC-2 system, illustrated by Fig 1.3(d)

imitates the potential energy surfaces for the dual avoided crossing system (Fig 1.3(b)).

We expect that if QTSH [62, 63] is accurate for Tully’s simple avoided crossing and dual

avoided crossing systems [1], that QTSH would also, by extension, produce accurate on-the-

fly molecular dynamics results for molecules like ethene and DMABN.

1.7 Dissertation Outline

This dissertation explores the unique features of QTSH - energy conservation on the en-

semble level without the imposition of ad hoc momentum rescaling and its independence of

representation - that distinguishes it from the most popular [50] trajectory surface hopping

method, FSSH [1]. We utilize the modified Tully 1D systems, as described in Section 1.6 to

do so. This dissertation is organized as follows.

Chapter 2 explores the role of quantum forces - that arise naturally in QTSH from the

inclusion of quantum effects in its derivation from the QCLE [38–40] - in energy conservation

on the ensemble level. Here, we show the relation between the work done by the quantum

force during electronic transitions that act to conserve energy at the ensemble level, and

the ad hoc momentum ‘jumps’ to conserve classical energy on the trajectory level in FSSH.

We also analyze the feedback between the classical nuclear degrees of freedom and quantum

electronic degrees of freedom [3] that are mediated by quantum forces in QTSH.
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Chapter 3 explores the representation invariance of QTSH. Here we perform the the diabatic-

to-adiabatic (d2a) and adiabatic-to-diabatic (a2d) transformations of the Wigner distribution

[74, 75] and the forces, both classical and quantum, in the quantum-classical limit, and

within the independent trajectory framework. In doing so, we derive the expressions for

transforming the system phase space averages of these quantities from one representation

to another. We then test the representation invariance of QTSH by utilizing the derived

equations to perform the d2a transformation of QTSH results in the diabatic representation,

and the a2d transformation of QTSH results in the adiabatic representation, and comparing

its results.

Chapter 4 shows how a highly non-classical system in the adiabatic representation can be

highly classical in the diabatic representation. We show this by providing a simple deriva-

tion to show that the total force in the adiabatic representation in the limit of localized

and complete population transfer is in fact equal to the classical force on a single diabatic

PES. We then present QTSH results to demonstrate its validity. Finally, we show how the

representation invariance of QTSH, as presented in Chapter 3 can be utilized to improve the

accuracy of QTSH results in the adiabatic representation.

Chapter 5 is a standalone chapter that outlines how the relation between chemical work [85],

Gibbs free energy changes, and spontaneity can be introduced in a chemically relevant yet

accessible way to students in Introductory Chemistry classes.
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Chapter 2

Role of Quantum Forces in QTSH

This chapter contains verbatim excerpts from Dorothy Miaoyu Huang, Austin T. Green,

Craig C. Martens; A first principles derivation of energy-conserving momentum jumps in

surface hopping simulations. J. Chem. Phys. 7 December 2023; 159 (21): 214108. Copyright

(2023) AIP Publishing.

2.1 Introduction

The quantum forces in QTSH arise naturally from its derivation from the quantum-classical

Liouville equation [38] using an independent trajectory ensemble ansatz [62, 63]. The quan-

tum force couples the electronic transitions to the evolution of trajectories, making their

evolution non-classical, and is responsible for the conservation of the quantum-classical en-

ergy on the ensemble level [62, 63].

In this chapter, we explore the role of quantum forces in energy conservation during electronic

transitions in the limit of complete localized population transfer. By analyzing the quantum-

classical energy budget of QTSH in this limit, we provide a simple but rigorous derivation
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of the ad hoc FSSH momentum jumps. We also use QTSH in this limit to explain the

frustrated hops in FSSH, and to illustrate the implied self-consistency between the classically

treated nuclear degrees of freedom and the quantum mechanically treated electronic degrees

of freedom, due to the inclusion of the quantum forces in QTSH (Fig 2.1).

We use a localized wavepacket/trajectory undergoing a non-adiabatic transition from the

upper adiabatic state to the lower adiabatic state, and a localized wavepacket/trajectory

undergoing a non-adiabatic transition from the lower to the upper adiabatic state at an

avoided crossing in modified Tully’s simple avoided crossing system [1] (As introduced in

Section 1.6) to perform this analysis.

Finally, we test the aspect of energy conservation, and the feedback between nuclear and

electronic degrees of freedom [3] (Fig 2.1) numerically with QTSH [62, 63] simulations in the

adiabatic representation. Although conceptually derived from the modified simple avoided

crossing systems [1], the derived results should also hold for other systems with avoided

crossings. As such, we provide QTSH results for both the modified simple avoided crossing,

and dual avoided crossing systems [1], as described in Section 1.6.

Figure 2.1: Self-consistency between the classical nuclear and quantum electronic subsys-
tems as a result of the quantum backreaction that occurs following an electronic transition.
Reprinted from John C. Tully; Perspective: non-adiabatic dynamics theory. J. Chem. Phys.
14 December 2012; 137 (22): 22A301. (Ref [3]), with the permission of AIP Publishing.
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2.2 Derivation of FSSH Momentum Jumps

A simple two state model of a localized non-adiabatic transition is considered. We consider a

system that is initially on the upper adiabatic surface and experiences an electronic transition

that occurs in a localized region around it to the lower adiabatic state.

The initial adiabatic density matrix for this process is of the form

ρA(t0) =

ρ(t0) 0

0 0

 , (2.1)

with all probability on the upper state, while the final density matrix is

ρA(tf) =

0 0

0 ρ(tf)

 , (2.2)

with complete population transfer to the lower state. Here t0 and tf are the initial and final

times, respectively. We take the quantity ρ(q,p, t) to be a localized state in phase space

evolving under coupled electron-nuclear dynamics. In the limit of complete localization, one

can consider

ρ(q,p, t) = δ
(
q − q(t)

)
δ
(
p− p(t)

)
, (2.3)

in other words, a single trajectory.

In the diabatic representation, the initial and final density matrices correspond to the same

diabatic state being populated, so ρD(t) can be written throughout the process as

ρD(t) =

ρ(t) 0

0 0

 . (2.4)
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We assume this form holds approximately for all t ∈ (t0, tf). In this limit, the adiabatic

density matrix can, to a good approximation, be written as

ρA(tf) =

1
2

(
1 + cosϕ(t)

)
−1

2
sinϕ(t)

−1
2
sinϕ(t) 1

2

(
1− cosϕ(t)

)
 ρ(t), (2.5)

where the angle ϕ(t) is evaluated at the center of the localized state ρ(q,p, t). Here we have

employed the transformation given in Eqns 1.22-1.24 and the diabatic state ansatz (Eqn 2.4).

Similarly, the initial adiabatic density matrix for the same two state model of a localized non-

adiabatic transition where the system starts on the lower adiabatic surface and experiences

an electronic transition that occurs in a localized region around it to the upper adiabatic

state gives the initial adiabatic density matrix

ρA(t0) =

0 0

0 ρ(t0)

 , (2.6)

with all probability on the lower state, and the final density matrix

ρA(tf) =

ρ(tf) 0

0 0

 , (2.7)

with complete population transfer to the upper state.

In the diabatic representation, ρD(t) can be written throughout the process as

ρD(t) =

0 0

0 ρ(t)

 , (2.8)
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allowing us to write the approximate adiabatic density matrix

ρA(tf) =

1
2

(
1− cosϕ(t)

)
1
2
sinϕ(t)

1
2
sinϕ(t) 1

2

(
1 + cosϕ(t)

)
 ρ(t). (2.9)

Note that the real part of the off-diagonal coherence changes sign in comparison to Eqn 2.5.

In Fig 2.2, we depict schematically the non-adiabatic transition of a localized state in one

dimension. The system begins on the upper adiabatic state potential V+(q) and evolves until

it encounters an avoided crossing with the lower adiabatic state at q∗ = 0. At this point,

the population transfers to the lower adiabatic potential V−(q), indicated by the grey arrow,

where it resumes its evolution. The motion is in the positive q direction, indicating that the

kinematic momentum pkin is positive. During the transition, we expect the value of pkin to

become larger and the kinetic energy
p2
kin

2m
to increase by a quantity equal to the energy gap

ℏω(q∗). The state is localized in coordinate space (and in momentum space) throughout the

process. Fig 2.3 shows the corresponding process in the diabatic representation, where the

system evolves along the same diabatic potential V1(q) throughout.

Depicted in Fig 2.4, the reverse process with the system starting on the lower adiabatic state

potential V+(q) and evolving until it encounters the avoided crossing at q∗ = 0 where the

population transfers to the upper adiabatic potential V+(q) where it continues its evolution.

The change in pkin is expected to be negative, decreasing by a quantity equal to the energy

gap ℏω(q∗). We assume that the localized state has sufficient energy for the non-adiabatic

transition to take place. The corresponding process in the diabatic representation is depicted

in Fig 2.5, where the system evolves along the same diabatic potential V2(q) throughout.

The details of the systems depicted in Figures 2.2-2.5 will be described in Section 2.3.1.
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Figure 2.2: Schematic representation of a localized quantum state/trajectory undergoing a
non-adiabatic transition from the upper to the lower adiabatic state at the avoided crossing.
Diabatic potentials for the simple avoided crossing system are given in Eqns 1.83-1.84.

Figure 2.3: Schematic representation of a localized quantum state/trajectory traveling along
the diabatic potential V1(q), corresponding to the process in Fig 2.2. Diabatic potentials for
the simple avoided crossing system are given in Eqns 1.83-1.84.
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Figure 2.4: Schematic representation of a localized quantum state/trajectory undergoing a
non-adiabatic transition from the lower to the upper adiabatic state at the avoided crossing.
Diabatic potentials for the simple avoided crossing system are given in Eqns 1.83-1.84.

Figure 2.5: Schematic representation of a localized quantum state/trajectory traveling along
the diabatic potential V2(q), corresponding to the process in Fig 2.4. Diabatic potentials for
the simple avoided crossing system are given in Eqns 1.83-1.84.
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In Fig 2.2, we show (a) the non-adiabatic mixing angle ϕ(q), (b) the non-adiabatic coupling

vector d (q), (c) the real part of the coherence α(q), and (d) the quantum force Fquant(q) =

2ℏω(q)d (q)α(q) given by the modified potentials, with varying diabatic coupling constant

parameters C = 0.0005, 0.001 and 0.002 for the process depicted in Fig 2.2. The coupling,

coherence, and quantum force are non-zero in a relatively localized region around the avoided

crossing, in qualitative agreement with the limit considered analytically here. The coupling

d (q) and the coherence α(q) are both negative for this process. The localized quantum

force, on the other hand, is a positive impulsive term, consistent with its role in increasing

the momentum and kinetic energy of the nuclear motion.

Figure 2.6: (a) The non-adiabatic mixing angle ϕ(q), (b) the non-adiabatic coupling vector
d (q), (c) the real part of the coherence α(q), and (d) the quantum force Fquant(q) for the
process shown in Fig 2.2, as described in text. The dotted, dashed, and dashdotted lines
represent the models where C = 0.0005, C = 0.001, and C = 0.002, respectively.

While ϕ(q) and d (q) as depicted in Figs 2.6(a) and (b) are specific to the modified simple

avoided crossing as described by the diabatic potentials given by Eqns 1.83-1.84, and remain

unchanged for the reverse process of a non-adiabatic transition from the lower to the upper
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adiabatic state as depicted in Fig 2.4, α(q) (Fig 2.7(a)) and consequently, the quantum force

Fquant(q) (Fig 2.7(a)) changes sign. In this process, α(q) is positive, and the localized quan-

tum force is a negative impulsive term, consistent with its role in decreasing the momentum

and kinetic energy of the nuclear motion due to the upward electronic transition.

Figure 2.7: (a) The real part of the coherence α(q), and (b) the quantum force Fquant(q) for
the process shown in Fig 2.4, as described in text. The dotted, dashed, and dashdotted lines
represent the models where C = 0.0005, C = 0.001, and C = 0.002, respectively.

The total energy of the state of the system is given by E(t) = Tr
(
HA(q,p)ρA(q,p, t)

)
. Using

the Hamiltonian and density matrix, this becomes

E(t) =

canonical classical energy︷ ︸︸ ︷
p2

2m
+ V (q, σ(t)) −2ℏβ(t)d (q) · pkin

m︸ ︷︷ ︸
coherence/quantum energy

, (2.10)

where
(
q(t),p(t)

)
is our trajectory and V (q, σ(t)) = σ(t)V+

(
q
)
+ (1− σ(t))V−

(
q
)
. (Our

ensemble here has reduced to a single trajectory, and so we have dropped the subscript j.)

The canonical classical energy in the first two terms is augmented by a coherence energy

Ecoh(t) = −2ℏβ(t)d (q) · pkin

m
.

As noted above, the energy can be written more simply in terms of the kinematic momentum

pkin = p− 2ℏβ(t)d
(
q
)
. We find

E(t) =
p2
kin

2m
+ V (q, σ(t)) =

p2
kin

2m
+ σ(t)ℏω

(
q
)
+ V− (q) , (2.11)
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where ℏω (q) = V+ (q)− V− (q).

Using the kinematic momentum, we can separate the energy into two terms: the electronic

state-dependent potential energy

Eelec(t) = V (q, σ(t)) , (2.12)

and the classical kinetic energy

Ekin(t) =
p2
kin

2m
, (2.13)

that depends only on the nuclear motion. In this representation, the coherence energy does

not appear in the energy budget. Quantum effects are nonetheless still present.

In the Born-Oppenheimer approximation, the electronic parameter σj(t) is constant, assum-

ing values of 0 or 1. In this limit, the nuclear dynamics of a single trajectory ∆σj(t) = 0

are governed by purely classical motion on the appropriate adiabatic potential, V+ (qj(t)) or

V− (qj(t)), for σj(t) = 1 or σj(t) = 0, respectively. Note that we have included the subscript

j to emphasize that these equations are applied for a single trajectory j. The equations of

motion for the classical variables and electronic state parameters in the Born-Oppenheimer

limit are

q̇j(t) =
pkin,j(t)

m
, (2.14)

ṗkin,j(t) = −∇qjV
(
qj(t), σj(t)

)
, (2.15)

σ̇j(t) = 0, (2.16)

α̇j(t) = ω
(
qj(t)

)
βj(t), (2.17)

β̇j(t) = −ω
(
qj(t)

)
αj(t). (2.18)
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When non-adiabatic transitions occur, however, non-classical forces appear, as described by

the QTSH formalism. The equations of motion for a single trajectory, assuming complete

and localized population transfer are generalized to

q̇j(t) =
pkin,j(t)

m
, (2.19)

ṗkin,j(t) = −∇qjV
(
qj(t), σj(t)

)
+ 2ℏω

(
qj(t)

)
d
(
qj(t)

)
αj(t), (2.20)

σ̇j(t) = −2
d
(
qj(t)

)
· pkin,j(t)

m
αj(t), (2.21)

α̇j(t) = ω
(
qj(t)

)
βj(t) +

d
(
qj(t)

)
· pkin,j(t)

m
(2σj(t)− 1), (2.22)

β̇j(t) = −ω
(
q(t)

)
αj(t). (2.23)

As in presenting the equations of motion in the Born-Oppenheimer limit, we have included

the subscript j to emphasize that these equations are applied for a single trajectory j.

Here, we have made the substitution of the stochastic integer parameter σ for the continuous

electronic population a++. In the limit of complete and localized population transfer, the

electronic of a single trajectory j would result in ∆σj(t) = 1 or ∆σj(t) = −1, justifying the

assumption that σj(t) = a++,j(t) that we have made here.

The consistency of surface hopping is equivalent to assuming that the average σ is equal to

the continuous population parameter across a trajectory ensemble: ⟨σ(t)⟩ ≈ ⟨a++(t)⟩. For

localized transitions resulting in complete population transfer, both of these quantities are

integers except during a brief excursion, where their values change by unity. We now drop

the subscript j to make derived expressions more concise.

Such transitions occur at a localized crossing time t = t∗, or equivalently, around a localized

configuration q(t∗) = q∗. We shall calculate the changes in the constituents of the total
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energy as well as the work done by the quantum forces that the electronic and nuclear

degrees of freedom exert on each other during that transition.

The electronic transition from the upper (σ = 1) state to the lower (σ = 0) state - as

depicted in Fig 2.2 - is assumed to be localized within a short time interval of duration 2ϵ

that is symmetric around t = t∗. During this interval, we assume that the classical forces

and dynamics leave q and pkin unchanged. The change in σ(t) during this interval is given

by

∆σ(t∗) = −1. (2.24)

For a fixed nuclear coordinate q(t∗) = q∗, the change in electronic energy during the transi-

tion is

∆Eelec(t
∗) = ℏω(q∗)∆σ(t∗) = −ℏω(q∗). (2.25)

This change in electronic energy for the transition from the upper to lower state as shown in

Eqn 2.25 is negative. To conserve energy, the classical kinetic energy must increase by the

same amount,

∆Ekin(t
∗) = −∆Eelec(t

∗) = +ℏω(q∗). (2.26)

The FSSH method imposes this conservation in an ad hoc manner by artificially rescaling

the momentum by a “jump,” chosen to satisfy

(
pkin(t

∗) + ∆pkin(t
∗)
)2

2m
=

pkin(t
∗)2

2m
+ ℏω(q∗). (2.27)
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Similarly, for the electronic transition from the lower (σ = 0) state to the upper (σ = 1)

state - as depicted in Fig 2.4 - change in σ during the short time interval that is symmetric

about t = t∗ is ∆σ = +1, with the change in electronic energy for a fixed nuclear coordinate

q(t∗) = q∗ during the transition is

∆Eelec(t
∗) = ℏω(q∗), (2.28)

the corresponding change in kinetic energy is

∆Ekin(t
∗) = −∆Eelec(t

∗) = −ℏω(q∗), (2.29)

and the ad hoc momentum “jump” imposed by the FSSH method would be chosen satisfy

(
pkin(t

∗) + ∆pkin(t
∗)
)2

2m
=

pkin(t
∗)2

2m
− ℏω(q∗). (2.30)

The momentum jump ∆pkin(t
∗) is chosen to solve the quadratic equations Eqns 2.27 for

the transition corresponding to ∆σ(t∗) = −1 and 2.30 for the transition corresponding to

∆σ(t∗) = +1, in the direction parallel to the non-adiabatic coupling vector d (q∗) [50].

Practical implementations have rules for selecting which root to choose, and what to do if no

solution can be be found due to insufficient energy or directional constraints (a “frustrated”

hop). [29, 86]

We now analyze the energy budget from the QTSH perspective. From the equations of

motion, we have

ṗkin(t) = −∇qV
(
q(t), σ(t)

)
+ 2ℏω

(
q(t)

)
d
(
q(t)

)
α(t), (2.31)
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where the classical force is represented by

Fclass(t) = −∇qV
(
q(t), σ(t)

)
, (2.32)

and the quantum force is represented by

Fquant(t) = 2ℏω
(
q(t)

)
d
(
q(t)

)
α(t). (2.33)

The change in kinematic momentum results from two contributions: the classical force de-

rived from the currently occupied adiabatic potential and a quantum force resulting from

the electronic energy transition. This change of electronic states does work in what follows.

During the localized transition, the classical force does not have an appreciable effect on

the nuclear dynamics. We consider only the impulsive quantum force during the transition.

Here, we can take the coordinate q = q∗ to be constant. The integrated effect of this force

on the momentum during this transition can be computed as

∆pkin = 2ℏω(q∗)d (q∗)
∫ t∗+ϵ

t∗−ϵ
α(t)dt. (2.34)

The only time-dependent quantity during this transition is the electronic coherence, which

is rapidly created and then dispersed by the flow of electronic population.

For the flow of electronic population from the upper to the lower state, we showed above

that this coherence can be described simply in terms of the non-adiabatic mixing angle,

α(t) = −1

2
sinϕ(t), (2.35)

and for the flow of electronic population from the lower to the upper state, we showed above
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that this coherence can be described simply in terms of the non-adiabatic mixing angle,

α(t) =
1

2
sinϕ(t). (2.36)

The value of ϕ transitions rapidly from ϕ = 0 for t < t∗ to ϕ = π for t > t∗. To simplify the

integral, we change integration variables from t to ϕ. We note that

dϕ = ϕ̇dt. (2.37)

We write ϕ̇ as

ϕ̇ = ∇qϕ · q̇ = ∇qϕ ·
pkin

m
. (2.38)

Using the definition of the non-adiabatic coupling vector

d (q∗) = −1

2
∇qϕ (2.39)

then gives

dt = −
(

m

2d (q∗) · pkin

)
dϕ. (2.40)

For the flow of electronic population from the upper to the lower state, the momentum jump

can be expressed as

∆pkin =
1

2
ℏω(q∗)d (q∗)

(
m

2d (q∗) · pkin

)∫ π

0

sinϕ dϕ, (2.41)
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and for the flow of electronic population from the lower to the upper state,

∆pkin = −1

2
ℏω(q∗)d (q∗)

(
m

2d (q∗) · pkin

)∫ π

0

sinϕ dϕ. (2.42)

Noting that
∫ π

0
sinϕ dϕ = 2, we obtain the final result for the flow of electronic population

from the upper to the lower state,

∆pkin = ℏω(q∗)d (q∗)
(

m

2d (q∗) · pkin

)
, (2.43)

and for the flow of electronic population from the lower to the upper state,

∆pkin = −ℏω(q∗)d (q∗)
(

m

2d (q∗) · pkin

)
. (2.44)

The explicit expressions for the momentum jumps for the downward electronic transition

(Eqn 2.43) or the upward electronic transition (Eqn 2.44) resolves any ambiguity of the

quadratic equation root choice inherent in the FSSH methodology [1, 29, 30].

From the perspective of the energy budget, the quantum force Fquant does work We→n [87]

on the nuclear degrees of freedom, which changes the kinetic energy by an amount ∆Ekin,

We→n = ∆Ekin =

∫ t∗+ϵ

t∗−ϵ
Fquant(t) · q̇ dt. (2.45)

In our localized approximation, this becomes

We→n = ∆Ekin =
pkin

m
·∆pkin. (2.46)

For the flow of electronic population from the upper to the lower state, the change in the
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kinetic energy in the localized approximation is

∆Ekin = ℏω(q∗), (2.47)

and for the flow of electronic population from the lower to the upper state,

∆Ekin = −ℏω(q∗). (2.48)

We have recovered the energy conservation expected on physical grounds: The electronic

energy change −ℏω(q∗) that accompanies the downward electronic transition, or the elec-

tronic energy change ℏω(q∗) that accompanies the upward electronic transition, appears or

disappears as kinetic energy of the classical nuclear motion, respectively. The quantum force

Fquant that accompanies the loss or gain of electronic energy does work on the nuclear de-

grees of freedom and quantitatively transfers this energy into a gain or loss of nuclear kinetic

energy, respectively.

2.2.1 Frustrated Hops

We now incorporate the consideration of available energy in examining upward electronic

transitions.

As shown above, the momentum jump ∆pkin associated with the upward transition is given

by Eqn 2.44, with the boundary conditions of ϕ = 0 for t < t∗ and ϕ = π for t > t∗.

For upward transitions, an additional consideration of available energy enters the analysis. In

particular, there has to be sufficient nuclear kinetic energy available to make the transition

to the upper state. This corresponds to the positive kinetic energy before the transition

p2
kin

2m
to be at least as large in magnitude as the negative ∆Ekin accompanying the electronic
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excitation. Otherwise the hop is “frustrated,” as previously discussed.

We can examine frustrated hops from the context of our analysis based on QTSH. In order

for ϕ to fully transition from ϕ = 0 to ϕ = π, there must be enough kinetic energy to keep

the nuclear motion proceeding in the initial positive direction. If this is not the case, the

sign of pkin will reverse before complete population transfer will be a change in the sign of

ϕ̇, so that ϕ has the time history 0→ ϕmax → 0 rather than 0→ π for a successful upward

transition, where ϕmax is the value reached by the mixing angle when the momentum reversal

occurs. The total work done by the quantum force in this case is ∆Ekin = 0, the expected

accompaniment for the ∆σ = 0 failed transition. Correspondingly, the electronic degrees of

freedom do zero net work on the nuclear motion for frustrated hops.

For the model of a localized and complete transition, employed here, one can show that the

adiabatic plus quantum force, Eqn 2.31, is identical to the diabatic force F1 = −∇qV1(q)

for the downward transition, and F2 = −∇qV2(q) for the upward transition. This will be

discussed in Section 4.2.3 in Chapter 4.

From this perspective, the trajectory must have enough energy to reach the crossing point

of the diabatic potentials and, further, to leave the region of transition, to avoid its motion

being stopped and reversed.

We note that our analysis suggests that the correct way to treat frustrated hops in FSSH is

to reverse the momentum when a frustrated hop is encountered (at least in one-dimensional

systems).

In the general QTSH method, frustrated hops are not imposed externally. Electronic tran-

sitions occur solely based on the stochastic hopping algorithm with no attention paid to the

energetics. The quantum forces of QTSH act in the manner described above to guide the

trajectories and, if insufficient energy is available, will redirect the motion back through the

interaction region. The reversal of momentum changes the sign of the hopping probability,
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increasing the likelihood of a second downward transition. However, as we have emphasized,

individual trajectories do not conserve energy, nor are the state residencies necessarily con-

sistent with their classical motion. It is at the ensemble level that consistency of population

energetics is achieved.

2.2.2 Energy Conservation & Quantum Backreaction

The change in electronic energy associated with the electronic transition is completely coun-

terbalanced by the change in kinetic energy associated with the momentum jump of the

nuclear degrees of freedom initiated by the quantum force. The quantum force can be said

to work to conserve energy as a result of an electronic transition.

The quantum backreaction (Fig 2.1) describes the self-consistency between the classically

treated nuclear degrees of freedom and the quantum mechanically treated electronic degrees

of freedom. The nuclear dynamics that gives rise to changes in the electronic Hamiltonian

induces electronic transitions that as a result produces a quantum force that alters the

nuclear motion in the form of a momentum jump when transitions are localized.

The work done on the electronic degrees of freedom by the nuclear degrees of freedom Wn→e

can be expressed as the change in the electronic energy ∆Eelec, represented by the expression

Wn→e(t) = ∆Eelec(t). (2.49)

Since the change in the electronic energy ∆Eelec occurs as a result of electronic transitions

that results in ∆σ, ∆Eelec can be expressed as

∆Eelec(t) = ℏω(q(t))∆σ(t). (2.50)
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By using the equation of motion for σ(t), Eqn 2.22, the change in σ during a transition that

takes 2ϵ time can be found by solving the differential equation σ̇(t) with respect to time

∆σ(t) =

∫ tf

ti

σ̇(t) dt = −2
∫ t∗+ϵ

t∗−ϵ

d (q) · pkin

m
α(t)dt, (2.51)

from the time before the transition ti = t∗ − ϵ to the time after the transition tf = t∗ + ϵ.

We note here that we have omitted the subscript j that indicates that that the above calcula-

tions are for a single trajectory. Under the assumption of localized and complete population

transfer, each trajectory has ∆a++,j(t) = +1 for a hop from − → +, or ∆a++,j(t) = +1 for

a hop from +→ −, implying that ∆a++,j(t) = ∆σj(t), or ȧ++,j(t) = σ̇j(t).

We note that ∆σ(t) in Eqn 2.51 is more generally ∆a++(t) when the assumption of complete

and localized population transfer is not made.

By substituting Eqn 2.51 into Eqn 2.50, the change in the electronic energy ∆E∗elec can be

expressed as

∆Eelec = −2ℏω(q)
∫ t∗+ϵ

t∗−ϵ

d (q) · pkin

m
α(t)dt. (2.52)

Given that q̇ = pkin

m
and the quantum force, Eqn 2.33, the change in the electronic energy is

represented by

∆Eelec = −
∫ t∗+ϵ

t∗−ϵ
Fquant(q) · q̇ dt. (2.53)

Since the work done on the electronic degrees of freedom by the nuclear degrees of freedom

Wn→e is equal to the change in electronic energy during an electronic transition (Eqn 2.49),

Wn→e = −
∫ t∗+ϵ

t∗−ϵ
Fquant(q) · q̇ dt. (2.54)
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The above expression is the negative of the work done on the nuclear degrees of freedom by

the electonic degrees of freedom We→n (Eqn 2.45), where

Wn→e = −We→n. (2.55)

Rearranging the above gives

Wn→e +We→n = 0, (2.56)

implying self-consistency between the classically treated nuclear degrees of freedom and the

quantum mechanically treated electronic degrees of freedom. The nuclear dynamics that

gives rise to changes in the electronic Hamiltonian induces electronic transitions that as a

result produces a quantum force that alters the nuclear motion in the form of a momentum

jump when transitions are localized. This is also known as the quantum backreaction (Fig

2.1).

2.3 Methods

2.3.1 Systems

Simple Avoided Crossing System

We consider a two-state system of a single localized adiabatic transitions. We will consider

the process where the system starts on the upper adiabatic state and experiences an electronic

transition to the lower adiabatic surface (Fig 2.2), and the process where the system starts

on the lower adiabatic state and experiences an electronic transition to the upper adiabatic

surface (Fig 2.4). In both of these processes, the electronic transition is accompanied by
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nuclear dynamics. We made the assumption that the electronic transitions occurs in a

localized region where the population transfer is complete, and that the population continues

to evolve on the lower adiabatic or upper adiabatic state, respectively.

The potentials used to produce Figures 2.2-2.5 are the potentials for Tully’s simple avoided

crossing system given in Eqns 1.83-1.84.

These potentials are as given in Tully’s original simple avoided crossing system [1], with

modifications made to the off-diagonal diabatic coupling by reducing the size of the constant

C. We vary the value of the potential parameter C = 0.0005, C = 0.001, and C = 0.002,

which changes the strength of the diabatic coupling V12(q). These modifications give rise to

a stronger and more localized non-adiabatic coupling in our systems, in comparison to the

original system by Tully which has the value of C = 0.005. The effect of these modifications

to the simple avoided crossing system [1] are illustrated in Fig 1.1.

Dual Avoided Crossing System

We also consider a more complex two state system of two localized adiabatic transitions

where the system starts on the lower adiabatic state and experiences an electronic transition

to the upper adiabatic surface that is accompanied by nuclear dynamics. We assume that

the transition occurs in a localized region where the population transfer is complete. The

system then continues on the upper adiabatic surface before experiencing a second electronic

transition to the lower adiabatic surface (Fig 2.8).

The corresponding process in the diabatic representation is given by Fig 2.9, where the

population remains on the horizontal diabatic surface 1 throughout the process.

The potentials used to produce Figures 2.8-2.9 are the potentials for Tully’s dual avoided

crossing system [1] given in Eqns 1.86-1.87.
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Figure 2.8: Schematic representation of a localized quantum state/trajectory undergoing a
non-adiabatic transition from the lower to the upper adiabatic state at the avoided crossing,
traveling on the upper adiabatic surface, and finally undergoing another non-adiabatic tran-
sition from the upper to the lower adiabatic state. Diabatic potentials for the dual avoided
crossing system are given in Eqns 1.86-1.87.

Figure 2.9: Schematic representation of a localized quantum state/trajectory traveling along
the diabatic potential V2(q), corresponding to the process in Fig 2.8. Diabatic potentials for
the dual avoided crossing system are given in Eqns 1.86-1.87.
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These potentials are as given in Tully’s original dual avoided crossing system [1], with mod-

ifications made to the off-diagonal diabatic coupling by reducing the size of the constant

C. We vary the value of the potential parameter C = 0.0015, C = 0.003, and C = 0.006,

which changes the strength of the diabatic coupling V12(q). These modifications give rise to

a stronger and more localized non-adiabatic coupling in our systems, in comparison to the

original system by Tully which has the value of C = 0.015. The effect of these modifications

to the simple dual crossing system [1] are illustrated in Fig 1.2.

We note that the approximate adiabatic density matrix in terms of the non-adiabatic mixing

angle ϕ(t), by virtue of the same diabatic state being populated throughout the process (Fig

2.9), is Eqn 2.9.

The definition of the adiabatic matrix at different times and the derivation of 2.9 can be

found in the Appendix A.

2.3.2 Simulation Details

The numerical results for the QTSH simulations for each of the systems described above were

obtained with 2000 trajectories (N = 2000) randomly sampled from a minimum uncertainty

phase-space Gaussian distribution width σq = 1.0. The mean initial positions were q0 = −6.0

for the simple avoided crossing systems, q0 = −10.0 for the dual crossing systems.

The results of the quantum wavepacket simulations that the QTSH results were compared

against were performed using the split operator method by Kosloff [88, 89]. The initial

wavepacket for the two-state system was a Gaussian wavepacket centered around q0 = −6.0

for the simple avoided crossing systems, and q0 = −10.0 and for the dual crossing systems.

The initial mean momenta p0 = ℏk0 used for the simple avoided crossing system [1] was

ℏk0 = 15 a.u., and for the dual crossing system [1], ℏk0 = 40.3 a.u.. The initial mean
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momenta ℏk0 = 15 for the simple avoided crossing system [1] was chosen to ensure that there

would be sufficient kinetic energy for complete transition to take place between adiabatic

states. The initial mean momenta ℏk0 = 40.3 for the dual avoided crossing system [1] was

chosen since almost complete population transfer from the lower to upper adiabatic state

takes place, leaving a significantly small population on the lower adiabatic state to interfere

with the population transferring from the upper to lower adiabatic state during the second

transition.

The QTSH and quantum simulations were run with timesteps ∆t = 0.5 a.u. long, and for

a total length of 8533 a.u. and 1588 a.u. for the simple avoided crossing and dual avoided

crossing systems, respectively.

The phase space averaged values of the elements of the Wigner distribution were computed

at every timestep of the QTSH simulation were calculated with the following expressions

⟨ρ++(t)⟩ =
1

N

N∑
j

σj(t), (2.57)

⟨ρ−−(t)⟩ =
1

N

N∑
j

(1− σj(t)) , (2.58)

⟨α(t)⟩ =
1

N

N∑
j

αj(t), (2.59)

⟨β(t)⟩ =
1

N

N∑
j

βj(t). (2.60)

The phase space averaged accumulated work done on the nuclear degrees of freedom by the

electronic degrees of freedom We→n in QTSH was calculated with

⟨We→n(t)⟩ =
1

N

N∑
j

∫
Fquant,j ·

pkin,j

m
dt. (2.61)
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The phase space averaged accumulated work done on the electronic degrees of freedom by

the nuclear degrees of freedom were calculated in two ways

⟨W σ
n→e(t)⟩ =

1

N

∑
j

ℏω(qj)∆σj(t) dt, (2.62)

where ∆σj(t) = σj(t)− σj(t−∆t), and

⟨W a
n→e(t)⟩ =

1

N

∑
j

∫
ℏω(qj)ȧ++,j(t) dt, (2.63)

where ȧ++,j(t) is defined in Eqn 1.56. Note that we have not used σ̇j(t) as in Eqn 2.22 since

we have assumed that ȧ++,j(t) = σ̇j(t) in the limit of localized and complete population

transfer/single trajectory in Eqn 2.22. As QTSH utilizes an ensemble of independent trajec-

tories, the nuclear dynamics is non-local in electronic and phase space [1, 8], and we can no

longer assume that σ̇j(t) = ȧ++,j(t).

2.4 Results & Discussion

We now present numerical QTSH results for the modified simple avoided crossing system [1]

given in Figs 2.2 and 2.4, and the modified Tully dual avoided crossing system [1] given in

Fig 2.8.

2.4.1 Wigner Distribution Dynamics

Here we present the QTSH results of the dynamics of the phase space averaged elements

of Wigner distribution against the exact quantum results. The Eqns 2.58-2.60 were used to

obtain the plots presented in this section.
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In Figs 2.10 and 2.11, we present the comparison of QTSH results with exact quantum results

for the simple avoided crossing system [1], with the process starting on the upper adiabatic

surface with trajectories hopping to the lower adiabatic surface (Fig 2.2), and the process

starting on the lower adiabatic surface with trajectories hopping to the upper adiabatic

surface (Fig 2.4), respectively.

In Fig 2.12, we present the comparison of QTSH results with exact quantum results for the

dual avoided crossing system [1], with the process starting on the lower adiabatic surface

with trajectories hopping to the upper adiabatic surface (Fig 2.2), and then with trajectories

hopping from the upper adiabatic surface to the lower adiabatic surface (Fig 2.8).

With reference to Figs 2.10 and 2.11, we observed that the transfer of population that occurs

during the time interval between t ≈ 10 fs and t ≈ 30 fs, is almost complete. The size of the

population transfer is largest when the non-adiabatic coupling d (q) is strongest and most

localized (i.e. smallest C).

With reference to Figs 2.10 and 2.11, we observed that QTSH results for the real part of the

coherence ⟨α(t)⟩ and the the imaginary part of the coherence ⟨β(t)⟩ are in good agreement

with the quantum result, with the best agreement when the non-adiabatic coupling d (q) is

strongest and most localized (i.e. smallest C).

In Fig 2.10, we observe an increase in ⟨ρ−−(t)⟩ between t ≈ 10 fs and t ≈ 30 fs as a result of

trajectory hops from + → −, before an asymptotic value is reached. The asymptotic value

of the QTSH results for ⟨ρ−−(t)⟩ deviates from the exact quantum results the most when

C = 0.002 and the least when C = 0.0005. We observe the same trend in Fig 2.11 for the

⟨ρ++(t)⟩ results instead of ⟨ρ++(t)⟩, since the trajectory hops occur from + → − instead.

The largest asymptotic value of the QTSH result for ⟨ρ−−(t)⟩ and ⟨ρ++(t)⟩ were found in

Figs 2.2 and 2.4, respectively, when C = 0.0005, and smallest when C = 0.002.
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Figure 2.10: Comparison of the phase space averaged populations on the upper adiabatic
PES ⟨ρ++(t)⟩ and the lower adiabatic PES ⟨ρ−−(t)⟩, and the real and imaginary parts of the
coherence, ⟨α(t)⟩ and ⟨β(t)⟩, respectively, obtained from QTSH with exact quantum results
for the modified Tully’s simple avoided crossing system with a starting population on the
upper adiabatic state at an initial average momentum ℏk0 = 15 a.u., and C = 0.0005, 0.001
and 0.002.

Figure 2.11: Comparison of the phase space averaged populations on the upper adiabatic
PES ⟨ρ++(t)⟩ and the lower adiabatic PES ⟨ρ−−(t)⟩, and the real and imaginary parts of the
coherence, ⟨α(t)⟩ and ⟨β(t)⟩, respectively, obtained from QTSH with exact quantum results
for the modified Tully’s simple avoided crossing system with a starting population on the
lower adiabatic state at an initial average momentum ℏk0 = 15 a.u., and C = 0.0005, 0.001
and 0.002.
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Figure 2.12: Comparison of the phase space averaged populations on the upper adiabatic
PES ⟨ρ++(t)⟩ and the lower adiabatic PES ⟨ρ−−(t)⟩, and the real and imaginary parts of the
coherence, ⟨α(t)⟩ and ⟨β(t)⟩, respectively, obtained from QTSH with exact quantum results
for the modified Tully’s dual avoided crossing system with a starting population on the lower
adiabatic state at an initial average momentum ℏk0 = 40.3 a.u., and C = 0.0015, 0.003 and
0.006.

With reference to Figs 2.12, we observed that the transfer of population from the lower

adiabatic surface to the upper adiabatic state that occurs during the time interval between

t ≈ 7.5 fs and t ≈ 11.4 fs, is significantly large, followed by an almost complete transfer from

the upper adiabatic surface to the lower adiabatic surface during the time interval between

t ≈ 12 fs and t ≈ 17.5 fs. The size of the initial population transfer is largest when the

non-adiabatic coupling d (q) is strongest and most localized (i.e. smallest C).

In Fig 2.12, we observe an increase in ⟨ρ++(t)⟩ between t ≈ 7.5 fs and t ≈ 11.4 fs as a result

of trajectory hops from − → +. During the time interval between t ≈ 11.4 fs and t ≈ 12 fs

where the quantum result for ⟨ρ++(t)⟩ shows no change, the QTSH result exhibits as slight

decrease, indicating that the second population transfer due to trajectory hops from +→ −

occurs at a slow rate in this region. A decrease of the QTSH result for ⟨ρ++(t)⟩ to close to

zero, as in the case for the exact quantum result occurs during the time interval between
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t ≈ 12 fs and t ≈ 17.5 fs The QTSH results for ⟨ρ++(t)⟩ deviates from the exact quantum

results the most when C = 0.006 and the least when C = 0.0015.

With reference to Figs 2.12, we observed that QTSH results for the real part of the coherence

⟨α(t)⟩ and the the imaginary part of the coherence ⟨β(t)⟩ are in good agreement with the

quantum result, with the best agreement when the non-adiabatic coupling d (q) is strongest

and most localized (i.e. smallest C). The deviation of the QTSH results from the quantum

results also increases after the first transition.

From the observations we have made in Figs 2.10-2.12, we conclude that the stronger and

more localized d (q) is (i.e. the smaller the value of C), the more complete and localized the

population transfer, and the smaller the discrepancy the QTSH results for the populations

and coherence with the exact quantum result.

2.4.2 Feedback between Nuclear and Electronic Degrees of Free-

dom

We now examine the self-consistency between the classically treated nuclear degrees of free-

dom and the quantum mechanically treated electronic degrees of freedom using the analysis

of the quantum-classical energy budget of QTSH.

The phase space averaged work done by the electronic degrees of freedom on the nuclear

degrees of freedom ⟨We→n⟩ (Eqn 2.61) - in the form of work done by the quantum force

Fquant in QTSH to instantaneously change the kinetic energy due to trajectories hopping

⟨∆Ekin(t)⟩ - that are analogous to the ad hoc trajectory level momentum jump ∆pkin,j in

the limit of localized and complete population transfer.

Since the quantum forces Fquant in QTSH act to conserve energy when trajectories hop from

one adiabatic surface to another, ⟨We→n⟩ = ⟨∆Ekin(t)⟩.
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Under the assumption of localized and complete population transfer, each trajectory has

∆a++,j(t) = +1 for a hop from − → +, or ∆a++,j(t) = +1 for a hop from +→ −, implying

that ∆a++,j(t) = ∆σj(t), or ȧ++,j(t) = σ̇j(t).

As such, we have utilized both ȧ++,j(t) and ∆σj(t) to calculate the work done by the nuclear

degrees of freedom on the electronic degrees of freedom ⟨W a
n→e(t)⟩ (Eqn 2.63) and ⟨W σ

n→e(t)⟩

(Eqn 2.62), respectively.

Since the actual change in electronic energy due to the hopping of trajectories in QTSH

corresponds to ∆σj(t) rather than the change in the population of the proxy density matrix

∆a++,j(t), ⟨∆Eelec(t)⟩ = ⟨W σ
n→e(t)⟩.

If there was self-consistency between the classically treated nuclear degrees of freedom and

the quantum mechanically treated electronic degrees of freedom due to the effect of the

quantum backreaction

⟨We→n⟩+ ⟨W σ
n→e(t)⟩ = 0, (2.64)

conserving energy since

⟨∆Ekin(t)⟩+ ⟨∆Eelec(t)⟩ = 0. (2.65)

If the populations are perfectly localized and complete, we would expect that ⟨W a
n→e⟩ =

⟨W σ
n→e⟩ = ⟨∆Eelec(t)⟩.

In Figs 2.13 and 2.14 we present the plots for ⟨We→n⟩, ⟨W a
n→e⟩, and ⟨We→n⟩ + ⟨W a

n→e⟩ for

the simple avoided crossing system [1] for the process involving electronic transitions from

the upper to the lower adiabatic surface (Fig 2.2), and from the lower to the upper adiabatic

surface (Fig 2.4), respectively.
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In Fig 2.15 we present the plot for ⟨We→n⟩, ⟨W a
n→e⟩, and ⟨We→n⟩+⟨W a

n→e⟩ for the dual avoided

crossing system [1] with the trajectories initially populating the lower adiabatic surface, for

the process depicted in Fig 2.8.

With reference to Fig 2.13 we observe that during the time interval t ≈ 10 fs to t ≈ 30 fs,

when the trajectories hop from + → −, we find that ⟨W a
n→e⟩ ≈ ⟨∆Eelec(t)⟩ drops before

reaching an asymptotic value. This agrees with the decrease in electronic energy as a result

of the +→ − electronic transition. While ⟨W a
n→e⟩ is not the exact ⟨∆Eelec(t)⟩, we find that

⟨We→n⟩ = ⟨∆Ekin(t)⟩, the work done by the quantum force to reduce the kinetic energy to

conserve the quantum-classical energy, perfectly offsets ⟨W a
n→e⟩, where ⟨We→n⟩+⟨W a

n→e⟩ = 0.

We make the same observation in Fig 2.14 with the change in ⟨W a
e→n⟩ and ⟨W a

n→e⟩ changing

in opposite directions than in Fig 2.13 since the trajectories hop in the opposite direction

− → +.

With reference to Fig 2.15, we observe that ⟨W a
n→e⟩ ≈ ⟨∆Eelec(t)⟩ increases during the time

interval t ≈ 7.5 fs and t ≈ 11.4 fs as a result of an increase in electronic energy that occurs

as trajectories hop from − → +. As observed in Fig 2.12 where a very small number of

trajectories hop from + → − during the time interval between t ≈ 11.4 fs and t ≈ 12 fs,

⟨W a
n→e⟩ ≈ ⟨∆Eelec(t)⟩ decreases slightly during that time interval. Following which, a large

change in ⟨W a
n→e⟩ ≈ ⟨∆Eelec(t)⟩ corresponding to the large number of trajectories hopping

from + → −, was observed during the time interval between t ≈ 12 fs and t ≈ 17.5 fs. As

in Figs 2.13 and 2.14, we also observe that ⟨We→n⟩ = ⟨∆Ekin(t)⟩ perfectly offsets ⟨W a
n→e⟩,

where ⟨We→n⟩+ ⟨W a
n→e⟩ = 0.

The observation of ⟨We→n⟩+⟨W a
n→e⟩ = 0 in Figs 2.13-2.15 implies that the feedback between

the classical nuclear degrees of freedom and the quantum electronic degrees of freedom

[3] would be properly incorporated in QTSH, ensuring that the quantum-classical energy is

perfectly conserved on average, if surface hopping was consistent, where ⟨ρ++(t)⟩ = ⟨a++(t)⟩.

65



As expected, we also observed that |⟨We→n(tfinal)⟩| in Figs 2.13 and 2.14 were approximately

equal to the energy gap as summarized in Table 1.1, and the values of ⟨We→n(t)⟩ at t ≈ 11.4 fs

in Fig 2.15 were approximately equal to the energy gap as summarized in Tables 1.2 and 1.3,

for the various values of C. This agrees with our derivation of We→n in the limit of complete

and localized population transfer (Eqn 2.46).

We now explore the surface hopping consistency and its effect on the feedback between the

classical nuclear degrees of freedom and the quantum electronic degrees of freedom [3] that

are responsible for properly capturing energy conservation in QTSH.

In Figs 2.16(a) and 2.17(a) we present the plots for ⟨We→n(t)⟩, ⟨W σ
n→e(t)⟩, and ⟨We→n(t)⟩+

⟨W a
n→e(t)⟩, and in Figs 2.16(b) and 2.17(b), we present the corresponding plots for ⟨ρ++(t)⟩,

⟨a++(t)⟩, and the surface hopping consistency ⟨ρ++(t)⟩ − ⟨a++(t)⟩, for the simple avoided

crossing system [1] for the process involving electronic transitions from the upper to the

lower adiabatic surface (Fig 2.2), and from the lower to the upper adiabatic surface (Fig

2.4), respectively.

In Fig 2.18(a) we present the plot for ⟨We→n(t)⟩, ⟨W σ
n→e(t)⟩, and ⟨We→n(t)⟩+ ⟨W a

n→e(t)⟩, and

in Fig 2.18(b), we present the corresponding plots for ⟨ρ++(t)⟩, ⟨a++(t)⟩, and the surface

hopping consistency ⟨ρ++(t)⟩ − ⟨a++(t)⟩, for the dual avoided crossing system [1] with the

trajectories initially populating the lower adiabatic surface, for the process depicted in Fig

2.8.
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Figure 2.13: QTSH results for the phase space averaged work done by the electronic degrees
of freedom on the nuclear degrees of freedom ⟨We→n(t)⟩ and the work done by the nuclear
degrees of freedom on the electronic degrees of freedom calculated with ȧ++(t), ⟨W a

n→e(t)⟩,
and its sum ⟨We→n(t)⟩+ ⟨W a

n→e(t)⟩ for the modified Tully’s simple avoided crossing system
at an initial average momentum ℏk0 = 15, with the initial population on the upper surface.

Figure 2.14: QTSH results for the phase space averaged work done by the electronic degrees
of freedom on the nuclear degrees of freedom ⟨We→n(t)⟩ and the work done by the nuclear
degrees of freedom on the electronic degrees of freedom calculated with ȧ++(t), ⟨W a

n→e(t)⟩,
and its sum ⟨We→n(t)⟩+ ⟨W a

n→e(t)⟩ for the modified Tully’s simple avoided crossing system
at an initial average momentum ℏk0 = 15, with the initial population on the lower surface.
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Figure 2.15: QTSH results for the phase space averaged work done by the electronic degrees
of freedom on the nuclear degrees of freedom ⟨We→n(t)⟩ and the work done by the nuclear
degrees of freedom on the electronic degrees of freedom calculated with ȧ++(t), ⟨W a

n→e(t)⟩,
and its sum ⟨We→n(t)⟩+ ⟨W a

n→e(t)⟩ for the modified Tully’s dual avoided crossing system at
an initial average momentum ℏk0 = 40.3, with the initial population on the lower surface.

With reference to Fig 2.16(a), and Fig 2.17(a) we observed that the sum ⟨We→n(t)⟩ +

⟨W σ
n→e(t)⟩ deviate positively from zero, and negatively from zero, respectively. We also

observed that the deviation increases as C increases, with the smallest deviation when

C = 0.0005, and the largest deviation when C = 0.002. This shows that the feedback

between the classical nuclear degrees of freedom and the quantum electronic degrees of free-

dom [3] have not been properly incorporated, resulting in while good, less-than-perfect energy

conservation. The deviation begins at t ≈ 10 fs when the trajectories first start to hop, and

increases in size until t ≈ 30 fs, when the asymptotic value of ⟨ρ++(t)⟩ (t) is reached in Figs

2.16(b) and 2.17(b).
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Figure 2.16: QTSH results for the phase space averaged (a) work done by the electronic
degrees of freedom on the nuclear degrees of freedom ⟨We→n(t)⟩ and the work done by
the nuclear degrees of freedom on the electronic degrees of freedom calculated with ∆σ(t),
⟨W σ

n→e(t)⟩, its sum ⟨We→n(t)⟩+ ⟨W σ
n→e(t)⟩, and (b) population on the upper adiabatic PES

⟨ρ++(t)⟩, proxy population on the upper adiabatic PES ⟨a++(t)⟩, and the surface hopping
consistency ⟨ρ++(t)⟩ − ⟨a++(t)⟩ for the modified Tully’s simple avoided crossing system at
an initial average momentum ℏk0 = 15, with the initial population on the upper adiabatic
surface. The inset shows a magnified portion of the plot for the time interval between
t = 10 fs and t = 40 fs

.
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Figure 2.17: QTSH results for the phase space averaged (a) work done by the electronic
degrees of freedom on the nuclear degrees of freedom ⟨We→n(t)⟩ and the work done by
the nuclear degrees of freedom on the electronic degrees of freedom calculated with ∆σ(t),
⟨W σ

n→e(t)⟩, its sum ⟨We→n(t)⟩+ ⟨W σ
n→e(t)⟩, and (b) population on the upper adiabatic PES

⟨ρ++(t)⟩, proxy population on the upper adiabatic PES ⟨a++(t)⟩, and the surface hopping
consistency ⟨ρ++(t)⟩ − ⟨a++(t)⟩ for the modified Tully’s simple avoided crossing system at
an initial average momentum ℏk0 = 15, with the initial population on the lower adiabatic
surface. The inset shows a magnified portion of the plot for the time interval between
t = 10 fs and t = 40 fs

.
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Figure 2.18: QTSH results for the phase space averaged (a) work done by the electronic
degrees of freedom on the nuclear degrees of freedom ⟨We→n(t)⟩ and the work done by
the nuclear degrees of freedom on the electronic degrees of freedom calculated with ∆σ(t),
⟨W σ

n→e(t)⟩, its sum ⟨We→n(t)⟩+ ⟨W σ
n→e(t)⟩, and (b) population on the upper adiabatic PES

⟨ρ++(t)⟩, proxy population on the upper adiabatic PES ⟨a++(t)⟩, and the surface hopping
consistency ⟨ρ++(t)⟩ − ⟨a++(t)⟩ for the modified Tully’s dual avoided crossing system at an
initial average momentum ℏk0 = 40.3, with the initial population on the lower adiabatic
surface. The inset shows a magnified portion of the plot for the time interval between
t = 7.5 fs and t = 17.5 fs

.
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Comparing Fig 2.16(a) with Fig 2.16(b), and Fig 2.17(a) with Fig 2.17(b), we observe that

the deviation of the surface hopping consistency ⟨ρ++(t)⟩−⟨a++(t)⟩ from zero in Figs 2.16(b)

2.17(b) match the deviation of ⟨We→n(t)⟩+⟨W σ
n→e(t)⟩ from zero. This shows that the surface

hopping consistency of QTSH impacts the proper incorporation of the feedback between the

classical and quantum subsystems [3] that determines the quality of energy conservation on

average.

With reference to Fig 2.18(a) we observed that the sum ⟨We→n(t)⟩ + ⟨W σ
n→e(t)⟩ deviate

positively from zero from t = 10 fs onwards. We also observed that the deviation increases

as C increases, with the smallest deviation when C = 0.0005, and the largest deviation when

C = 0.002. This shows that the feedback between the classical nuclear degrees of freedom and

the quantum electronic degrees of freedom [3] have not been properly incorporated, resulting

in while good, less-than-perfect energy conservation. The deviation begins at t ≈ 10 fs when

the trajectories first start to hop, with fluctuations until t = 17.5 fs, when the asymptotic

value of ⟨ρ++(t)⟩ (t) is reached in Fig 2.18(b).

Comparing Fig 2.18(a) with Fig 2.18(b), we observed that the deviation of the surface

hopping consistency ⟨ρ++(t)⟩ − ⟨a++(t)⟩ from zero in Fig 2.18(b) match the deviation of

⟨We→n(t)⟩+ ⟨W σ
n→e(t)⟩ from zero. This shows that the surface hopping consistency of QTSH

impacts the proper incorporation of the feedback between the classical and quantum sub-

systems [3] that determines the quality of energy conservation on average.

While not perfect, there is sufficiently good feedback between the nuclear and electronic

degrees of freedom in QTSH.

These results demonstrate the essentially quantitative accuracy of the QTSH method for

these simple systems that involve one or two non-adiabatic transitions. We note that for

these systems and initial conditions, FSSH give results that are essentially indistinguishable

from the QTSH observables. Differences occur between the trajectory approaches when
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processes are more non-classical, and the more “quantum” treatment of the energy budget

allows QTSH to simulate such processes where the strict classical energy conservation of

FSSH leads to significant errors [63].

2.5 Conclusions

In this chapter, we have investigated the energetics of mixed quantum-classical systems from

the perspective provided by QTSH, where energy is conserved by the action of the quantum

forces on an ensemble level. This is in contrast to FSSH where energy conservation is imposed

on the trajectory level in the form of momentum jumps.

We have shown that QTSH, in the limit of complete and localized population transfer repro-

duce the momentum jumps of FSSH, further validating that the quantum forces in QTSH

act to conserve energy on an average ensemble level. This more accurately reflects reality

since quantum effects arise naturally as a result of the relaxation of strict classical constraints

on individual trajectories [53, 54, 79]. From the perspective of the foundations of quantum

mechanics, trajectories are hidden variables, and as Bell’s theorem established [90], a faith-

ful hidden variable theory must be non-local. The non-locality shows up in QTSH as the

relaxation of individual trajectory energy conservation.

In the limit of localized non-adiabatic transitions, where the physical assumptions behind

the FSSH algorithm becomes quantitatively valid, the momentum jumps should emerge from

an exact theory. We established this connection by deriving the FSSH algorithm from the

QTSH equations of motion.

For general non-adiabatic transitions that are not localized in time and space, the FSSH

momentum jumps are no longer rigorously valid. Finally, we have found that the feedback

between nuclear and electronic degrees of freedom, while not perfect, is well-incorporated in
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QTSH, mediated by the quantum forces that work to conserve the quantum-classical energy

on average without artificial external momentum rescaling. Improving the surface hopping

consistency of QTSH would result in the improvement of the feedback between nuclear and

electronic degrees of freedom, and as a result energy conservation.
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Chapter 3

An Investigation of the

Representation Invariance of QTSH

3.1 Introduction

In quantum trajectory surface hopping (QTSH) [62, 63], the quantum-classical description

of multistate systems is derived rigorously from the quantum-classical limit of the multistate

Liouville equation, the quantum-classical Liouville equation (QCLE) [38–40], within the

framework of the independent trajectory approximation. QTSH in contrast to FSSH, is

well-defined in both the diabatic and adiabatic representations [62, 63].

If implemented correctly, QTSH should, in principle, be representation invariant. We should

be able to transform the results obtained from QTSH from one representation to another.

In this chapter, we derive the unitary transformation between the diabatic and the adia-

batic representations, in terms of the populations, coherences, and forces (both classical and

quantum) at the quantum-classical limit, within the framework of independent trajectories.
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In doing so, we find the transformation between QTSH results for these quantities in the

diabatic and adiabatic representations.

Finally, we perform QTSH simulations on the modified Tully’s simple avoided crossing and

dual avoided crossing systems [1] to test the representation invariance of QTSH [62, 63]. We

will do so by running QTSH in both the diabatic and adiabatic representations, utilizing the

derived equations for phase space averaged quantities to convert the QTSH results in one

representation to the other representation at every timestep (Fig 3.1). We will then compare

the transformed QTSH results with the results obatined directly in the representation of

interest to test its invariance.

Figure 3.1: Two sets of data can be obtained to test the representation invariance of Quantum
Trajectory Surface Hopping (QTSH). Running QTSH in the adiabatic representation and
converting the results to the diabatic representation (a2d QTSH), and running QTSH in
the diabatic representation and converting the results to the adiabatic representation (d2a
QTSH).
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3.2 Transformation Theory in the Quantum-Classical

Limit

In this section, we derive the diabatic-to-adiabatic (d2a) unitary transformation, and the

inverse adiabatic-to-diabatic (a2d) unitary transformation of the Wigner distribution [74, 75],

and the Weyl functions [71] for forces - both classical and quantum.

We then incorporate the framework of independent trajectories to find the system phase space

averages of the populations and coherences, and the forces - both classical and quantum, to

obtain equations that can be used to transform QTSH results from one representation to

another.

3.2.1 Wigner Distribution

The Wigner distribution [74, 75] in the adiabatic representation ρA(q,p, t) and the diabatic

representation ρD(q,p, t) are related by the Weyl functions [71] of the transformation ma-

trices U(q) and U †(q), similar to operators as given in Eqns 1.1-1.2, but taking the star

product (Eqn 1.16) [91], in place of the matrix product, between the Weyl functions [71] and

the Wigner distribution [74, 75].

This can be expressed as the diabatic-to-adiabatic (d2a) transformation,

ρA(q,p, t) = U †(q) ⋆ ρD(q,p, t) ⋆U (q), (3.1)

and the adiabatic-to-diabatic (a2d) transformation,

ρD(q,p, t) = U(q) ⋆ ρA(q,p, t) ⋆U †(q). (3.2)
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For the two-state system as described in Eqn 1.20, the star product as given in Eqn 3.1

was computed to obtain the populations/diagonal elements of the d2a transformed Wigner

distribution [74, 75] in the adiabatic representation ρA(q,p, t), to O(ℏ2), in terms of elements

of ρD(q,p, t).

The population/diagonal elements of the d2a transformed ρA(q,p, t) were found to be

ρA++(q,p, t) =
ρD11(q,p, t) + ρD22(q,p, t)

2
+

ρD11(q,p, t)− ρD22(q,p, t)

2
cosϕ(q)

+αD(q,p, t) sinϕ(q)− ℏd (q)∇pβ
D(q,p, t)

−ℏ2

4
∇qd (q)

(∇2
p

(
ρD11(q,p, t)− ρD22(q,p, t)

)
2

sinϕ(q)−∇2
pα

D(q,p, t) cosϕ(q)

)
+
ℏ2

2
d 2(q)

∇2
p

(
ρD11(q,p, t) + ρD22(q,p, t)

)
2

+O(ℏ3), (3.3)

ρA−−(q,p, t) =
ρD11(q,p, t) + ρD22(q,p, t)

2
− ρD11(q,p, t)− ρD22(q,p, t)

2
cosϕ(q)

−αD(q,p, t) sinϕ(q)− ℏd (q)∇pβ
D(q,p, t)

+
ℏ2

4
∇qd (q)

(∇2
p

(
ρD11(q,p, t)− ρD22(q,p, t)

)
2

sinϕ(q)−∇2
pα

D(q,p, t) cosϕ(q)

)
+
ℏ2

2
d 2(q)

∇2
p

(
ρD11(q,p, t) + ρD22(q,p, t)

)
2

+O(ℏ3). (3.4)

The coherence/off-diagonal elements of the d2a transformed ρA(q,p, t) were found to be

ρA+−(q,p, t) = −ρD11(q,p, t)− ρD22(q,p, t)

2
sinϕ(q) + αD(q,p, t) cosϕ(q)

−ℏ2

4
∇qd (q)

(∇2
p

(
ρD11(q,p, t)− ρD22(q,p, t)

)
2

cosϕ(q) +∇2
pα

D(q,p, t) sinϕ(q)

)
+iβD(q,p, t)− iℏd (q)

∇p

(
ρD11(q,p, t) + ρD22(q,p, t)

)
2

+i
ℏ2

2
d 2(q)∇2

pβ
D(q,p, t) +O(ℏ3), (3.5)
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ρA−+(q,p, t) = −ρD11(q,p, t)− ρD22(q,p, t)

2
sinϕ(q) + αD(q,p, t) cosϕ(q)

−ℏ2

4
∇qd (q)

(∇2
p

(
ρD11(q,p, t)− ρD22(q,p, t)

)
2

cosϕ(q) +∇2
pα

D(q,p, t) sinϕ(q)

)
−iβD(q,p, t) + iℏd (q)

∇p

(
ρD11(q,p, t) + ρD22(q,p, t)

)
2

−iℏ
2

2
d 2(q)∇2

pβ
D(q,p, t) +O(ℏ3), (3.6)

where Re
(
ρA+−(q,p, t)

)
= Re

(
ρA−+(q,p, t)

)
= αA(q,p, t), and

Im
(
ρA+−(q,p, t)

)
= − Im

(
ρA−+(q,p, t)

)
= βA(q,p, t).

The details of this Wigner-Moyal [91] transformation are documented in Appendix B.1. To

O(ℏ0), the results agree with the findings in Ref [76].

With reference to Eqns 3.1 and 3.2, we observed that the unitary transformation for the

adiabatic-to-diabatic (a2d) transformation was the inverse of the of diabatic-to-adiabatic

(d2a) transformation.

Since the unitary matrix for the two-state system given by Eqn 1.6 consists of sines and

cosines of half the transformation angle ϕ(q)
2
, the a2d transformation of the Wigner distribu-

tion [74, 75] was performed by replacing the transformation angle ϕ(q) in the d2a equations

(Eqns 3.4-3.6) with the negative of the transformation angle −ϕ(q).

Since cosine is an even function, and sine is an odd function,

cos
(
− ϕ(q)

)
= cosϕ(q), (3.7)

sin
(
− ϕ(q)

)
= − sinϕ(q). (3.8)
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Utilizing the above, we found the population/diagonal elements of the a2d transformed

Wigner distribution [74, 75] in the diabatic representation ρD(q,p, t) to O(ℏ2), in terms of

elements of ρA(q,p, t) to be

ρD11(q,p, t) =
ρA++(q,p, t) + ρA−−(q,p, t)

2
+

ρA++(q,p, t)− ρA−−(q,p, t)

2
cosϕ(q)

−αA(q,p, t) sinϕ(q)− ℏd (q)∇pβ
A(q,p, t)

+
ℏ2

4
∇qd (q)

(∇2
p

(
ρA++(q,p, t)− ρA−−(q,p, t)

)
2

sinϕ(q) +∇2
pα

A(q,p, t) cosϕ(q)

)
+
ℏ2

2
d 2(q)

∇2
p

(
ρA++(q,p, t) + ρA−−(q,p, t)

)
2

+O(ℏ3), (3.9)

ρD22(q,p, t) =
ρA++(q,p, t) + ρA−−(q,p, t)

2
−

ρA++(q,p, t)− ρA−−(q,p, t)

2
cosϕ(q)

+αA(q,p, t) sinϕ(q)− ℏd (q)∇pβ
A(q,p, t)

−ℏ2

4
∇qd (q)

(∇2
p

(
ρA++(q,p, t)− ρA−−(q,p, t)

)
2

sinϕ(q) +∇2
pα

A(q,p, t) cosϕ(q)

)
+
ℏ2

2
d 2(q)

∇2
p

(
ρA++(q,p, t) + ρA−−(q,p, t)

)
2

+O(ℏ3). (3.10)

The coherence/off-diagonal elements of the a2d transformed Wigner distribution [74, 75]

in the diabatic representation ρD(q,p, t), to O(ℏ2), in terms of elements of ρA(q,p, t) were

found to be

ρD12(q,p, t) =
ρA++(q,p, t)− ρA−−(q,p, t)

2
sinϕ(q) + αA(q,p, t) cosϕ(q)

−ℏ2

4
∇qd (q)

(∇2
p

(
ρA++(q,p, t)− ρA−−(q,p, t)

)
2

cosϕ(q)−∇2
pα

A(q,p, t) sinϕ(q)

)
+iβA(q,p, t)− iℏd (q)

∇p

(
ρA++(q,p, t) + ρA−−(q,p, t)

)
2

+i
ℏ2

2
d 2(q)∇2

pβ
A(q,p, t) +O(ℏ3), (3.11)
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ρD21(q,p, t) =
ρA++(q,p, t)− ρA−−(q,p, t)

2
sinϕ(q) + αA(q,p, t) cosϕ(q)

−ℏ2

4
∇qd (q)

(∇2
p

(
ρA++(q,p, t)− ρA−−(q,p, t)

)
2

cosϕ(q)−∇2
pα

A(q,p, t) sinϕ(q)

)
−iβA(q,p, t) + iℏd (q)

∇p

(
ρA++(q,p, t) + ρA−−(q,p, t)

)
2

−iℏ
2

2
d 2(q)∇2

pβ
A(q,p, t) +O(ℏ3), (3.12)

where Re
(
ρD12(q,p, t)

)
= Re

(
ρD21(q,p, t)

)
= αD(q,p, t), and

Im
(
ρA12(q,p, t)

)
= − Im

(
ρA21(q,p, t)

)
= βD(q,p, t).

As QTSH is carried out within the framework of independent trajectories, the phase space

averages of a quantity for each trajectory were found at every timestep, and the average of

its sum was taken to be system phase space average of the quantity.

The phase space averaged elements of the Wigner distributions [74, 75] for each independent

trajectory ⟨ρik,j(t)⟩ were found by taking the integral over phase space given by

⟨ρik,j(t)⟩ =

∫ ∫
ρik(qj,pj, t)dqdp

=

∫ ∫
ρik,j(t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
dqdp, (3.13)

and the phase space averaged elements of the Wigner distributions [74, 75] for the system

⟨ρik(t)⟩ were found by taking the average of the trajectory averages,

⟨ρik(t)⟩ =
1

N

N∑
j

⟨ρik,j(t)⟩ . (3.14)
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To O(ℏ0), the trajectory phase space averaged element
〈
ρA++,j(q,p, t)

〉
for the element

ρA++(q,p, t) of the d2a transformed Wigner distribution given by Eqn 3.4, in terms of the

elements of the Wigner distribution of the trajectories in the diabatic representation given

by Eqns 1.36-1.38 was found to be

σA
j (t) =

〈
ρA++,j(t)

〉
=

∫ ∫ (
1

2
+

2σD
j (t)− 1

2
cosϕ(q) + αD

j (t) sinϕ(q)

)
δ
(
q − qj(t)

)
δ
(
p− pj(t)

)
dqdp+O(ℏ)

=
1

2
+

2σD
j (t)− 1

2
cosϕ(qj) + αD

j (t) sinϕ(qj) +O(ℏ). (3.15)

Similarly, to O(ℏ0) the trajectory phase space averages of the other elements of the d2a

transformed Wigner distribution in the adiabatic representation were found to be

1− σA
j (t) =

〈
ρA−−,j(t)

〉
=

1

2
−

2σD
j (t)− 1

2
cosϕ(qj)− αD

j (t) sinϕ(qj) +O(ℏ), (3.16)

αA
j (t) =

〈
ρA+−,j(t) + ρA−+,j(t)

2

〉

=
2σD

j (t)− 1

2
sinϕ(qj) + αD

j (t) cosϕ(qj) +O(ℏ), (3.17)

βA,j(t) = −i

〈
ρA+−,j(t)− ρA−+,j(t)

2

〉
= βD

j (t) +O(ℏ). (3.18)
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The system phase space average of the d2a transformedWigner distribution element ρA++(q,p, t)

in the framework of independent trajectories,
〈
ρA++(t)

〉
was the average over all trajectories,

〈
ρA++(t)

〉
=

1

N

N∑
j

σA
j (t)

=
1

N

N∑
j

(
1

2
+

2σD
j (t)− 1

2
cosϕ(qj) + αD

j (t) sinϕ(qj)

)
+O(ℏ). (3.19)

The same procedure was performed on the other elements of the d2a transformed Wigner

distribution in the adiabatic representation. The system phase space averages of the other

elements of the d2a transformed Wigner distribution were found, to O(ℏ0), to be

〈
ρA−−(t)

〉
=

1

N

∑
j

(
1

2
−

2σD
j (t)− 1

2
cosϕ(qj)− αD

j (t) sinϕ(qj)

)
+O(ℏ), (3.20)

〈
αA(t)

〉
=

1

N

∑
j

(
−

2σD
j (t)− 1

2
sinϕ(qj) + αD

j (t) cosϕ(qj)

)
+O(ℏ), (3.21)

〈
βA(t)

〉
=

1

N

∑
j

βD
j (t) +O(ℏ). (3.22)

By substituting Eqns 3.7-3.8 into Eqns 3.19-3.22, we found the system phase space averages

of the a2d transformed Wigner distribution [74, 75], to O(ℏ0), to be

〈
ρD11(t)

〉
=

1

N

N∑
j

(
1

2
+

2σA
j (t)− 1

2
cosϕ(qj)− αA

j (t) sinϕ(qj)

)
+O(ℏ), (3.23)

〈
ρD22(t)

〉
=

1

N

∑
j

(
1

2
−

2σA
j (t)− 1

2
cosϕ(qj) + αA

j (t) sinϕ(qj)

)
+O(ℏ), (3.24)
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〈
αD(t)

〉
=

1

N

∑
j

(
2σA

j (t)− 1

2
sinϕ(qj) + αA

j (t) cosϕ(qj)

)
+O(ℏ), (3.25)

〈
βD(t)

〉
=

1

N

∑
j

βA
j (t) +O(ℏ). (3.26)

In performing these derivations, we have assumed that the trajectories in both the diabatic

and adiabatic representations are represented by the same delta functions δ
(
q−qj(t)

)
δ
(
p−

pj(t)
)
. Making this assumption does not impact the transformed Wigner distribution [74, 75]

to O(ℏ0), but does not hold when higher order terms are included in the transformation.

Preliminary work done on the transformation theory of independent trajectories by Martens

[92] will be briefly introduced in Section 3.6.

3.2.2 Forces

The classical forces in QTSH [62, 63] are related to the negative gradient of the diagonal

elements of the Weyl functions [71] for potential energy, and the quantum forces in QTSH

[62, 63] are related to the coupling of the nuclear and electronic degrees of freedom that

are associated with the off-diagonal elements of the Hamiltonian and the off-diagonal ele-

ments/coherences of the Wigner distribution [74, 75].

We first perform the d2a unitary and the inverse a2d unitary transformation on the Weyl

functions [71] for potential energy, before taking its negative gradient to obtain the Weyl

functions [71] for is corresponding force.

84



The 2× 2 Weyl function [71] for the potential energy of the two-state system in the diabatic

representation V D(q), can be represented in terms of diabatic potentials as

V D(q) =

 V1(q) V12(q)

V12(q) V2(q)

 . (3.27)

Since V D(q) only depends on q, the star product (Eqn 1.16) [91] of the d2a unitary trans-

formation of the Weyl function [71] given by Eqn 3.1 was equivalent to the matrix product

V A(q) = U †(q)V D(q)U(q) =

V+(q) 0

0 V−(q)

 , (3.28)

where

V±(q) =
V1(q) + V2(q)

2
±
(
V1(q)− V2(q)

2
cosϕ(q) + V12 sinϕ(q)

)
, (3.29)

and

V+−(q) = V−+(q) = −
V1(q)− V2(q)

2
sinϕ(q) + V12(q) cosϕ(q) = 0. (3.30)

As in the case of V D(q), V A(q) only depends on q. Consequently, the star product (Eqn

1.16) [91] of the inverse a2d unitary transformation of the Weyl function [71] given by Eqn

3.2 was the matrix product

V D(q) = U †(q)V A(q)U(q) =

 V1(q) V12(q)

V12(q) V2(q)

 , (3.31)
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where

V1/2(q) =
V+(q) + V−(q)

2
± V+(q)− V−(q)

2
cosϕ(q), (3.32)

and

V12(q) =
V+(q)− V−(q)

2
sinϕ(q). (3.33)

Having found the d2a and a2d transformed Weyl functions [71] for the potential energy in

the adiabatic and diabatic representations, V A(q) and V D(q), respectively, we now find the

corresponding d2a and a2d transformed Weyl functions [71] for the classical, quantum and

total forces in the adiabatic and diabatic representations.

The d2a transformed Weyl function [71] for the classical force F A
class(q) for the two-state

system in the adiabatic representation was obtained by taking the negative gradient of the

d2a transformed Weyl function [71] of the diagonal adiabatic potential V A(q) as given in

Eqn 3.28

F A
class(q) = −∇qV

A(q) =

F+(q) 0

0 F−(q)

 , (3.34)

where F±(q) = −∇qV±(q).

Since V A(q) for the two-state system is diagonal, only the classical force in the adiabatic

representation F A
class(q) is related to V A(q).
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The d2a transformed elements of the Weyl function F A
class(q) in terms of diabatic potentials

was obtained by taking the negative gradient of the adiabatic potential given by Eqn 3.29,

giving the expression

F A
± (q) = −∇qV1(q) +∇qV2(q)

2

∓
(
∇qV1(q)−∇qV2(q)

2
cosϕ(q) +∇qV12(q) sinϕ(q)

)
. (3.35)

Since Weyl function of the adiabatic potential (Eqn 3.28) is diagonal, the adiabatic quantum

force arises from the off-diagonal elements of the Weyl function [71] for kinetic energy in

the adiabatic representation, which is closely related to the momentum in the adiabatic

representation pA(q,p).

The Weyl function [71] for momentum in the adiabatic representation pA(q,p) can be split

into its diagonal and off-diagonal components

pA
diag + pA

off-diag, (3.36)

where

pA
diag =

p 0

0 p

 , (3.37)

and

pA
off-diag =

 0 −iℏd (q)

iℏd (q) 0

 . (3.38)
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We note that the off-diagonal elements of the Weyl function [71] for momentum in the

adiabatic representation pA
off-diag contains the non-adiabatic coupling vector d (q) that couples

the electronic and nuclear degrees of freedom.

The trajectory phase space averaged off-diagonal momentum within the independent trajec-

tory framework was found to be

pA
off-diag,j(t) = Tr

(
pA
off-diagρ

A(qj,pj, t)
)

= −2ℏd (qj)β
A
j (t), (3.39)

where ρA(qj,pj, t) = ρA
j (t)δ

(
q − qj(t)

)
δ
(
p− pj(t)

)
, and ρA

j (t) =
(

σA
j (t) αA

j (t)+iβA
j (t)

αA
j (t)−iβA

j (t) 1−σA
j (t)

)
.

Since force is the time-derivative of momentum, the time-derivative of the off-diagonal mo-

mentum associated with the coherence terms of the Wigner distribution ρA(q,p, t) [74, 75]

gave the quantum force F A
quant. The phase space averaged quantum force for the trajectory

j,
〈
F A

quant,j(t)
〉
was obtained by taking the time derivative of

〈
pAoff-diag,j(t)

〉

〈
F A

quant,j(t)
〉

=
〈
ṗA
off-diag,j(t)

〉
= −2ℏd (qj)β̇

A
j (t), (3.40)

noting that the non-adiabatic coupling vector d (q) can be expressed in terms of the diabatic

potentials and ℏωA(q) = V++(q)− V−−(q) as

d (q) =
−∇qV12(q)

ℏωA(q)
cosϕ(q) +

∇qV1(q)−∇qV2(q)

2ℏωA(q)
sinϕ(q). (3.41)
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When β̇A
j (t) in Eqn 2.23 was substituted into the above Eqn 3.40, the trajectory phase space

average quantum force for the system in the adiabatic representation

〈
F A

quant,j(t)
〉

= 2ℏd (qj)ω
A(qj)α

A
j (t). (3.42)

The derived expression is congruous with our previous result given in Eqn 2.33.

Substituting Eqns 3.18 and 3.41, into Eqn 3.42, the d2a transformed trajectory phase space

average quantum force for the system was found to be

〈
FA
quant,j(t)

〉
= −2αA

j (t)

(
∇qjV12(qj) cosϕ(qj)−

(
∇qjV1(qj)−∇qV2(qj)

)
sinϕ(qj)

)
= ∇qjV12(qj)

((
2σD

j (t)− 1
)
sinϕ(qj) cosϕ(qj)− 2αD

j (t) cos
2 ϕ(qj)

)
−
∇qj

(
V1(qj)− V2(qj)

)
2

((
2σD

j (t)− 1
)
sin2 ϕ(qj)

)
+
∇qj

(
V1(qj)− V2(qj)

)
2

(
2αD

j (t) sinϕ(qj) cosϕ(qj)

)
. (3.43)

The Weyl function [71] for force in the adiabatic representation has both a classical and

quantum component. The classical component was derived from the negative gradient of the

potential energy V A(q), and the quantum component was derived from the time derivative

of the off-diagonal terms of the kinetic energy pA
off-diag(q).
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Similarly, the Weyl function [71] for force in the diabatic representation FD
cons(q) for the

two-state system was obtained by taking the negative gradient of the Weyl function [71] of

the adiabatic potential V D(q) as given in Eqn 3.31, and found to be

FD
cons(q) = −∇qV

D(q) =

FD
class(q)︷ ︸︸ ︷F1(q) 0

0 F2(q)

+

 0 F12(q)

F12(q) 0


︸ ︷︷ ︸

FD
quant(q)

, (3.44)

where F1/2(q) = −∇qV1/2(q) and F12(q) = −∇qV12(q).

Since V D(q) for the two-state system has off-diagonal terms, FD(q) can be broken down

into a classical component FD
class(q) with only diagonal terms, and a quantum component

FD
quant(q) with only off-diagonal terms.

The elements of the a2d transformed Weyl function FD(q) in terms of adiabatic potentials

were obtained by taking the negative gradient of the diabatic potentials in Eqns 3.32-3.33

giving the expressions

FD
1/2(q) = −∇qV+(q) +∇qV−(q)

2

∓
(
∇qV+(q)−∇qV−(q)

2
cosϕ(q) +

(
V+(q)− V−(q)

)
d (q) sinϕ(q)

)
, (3.45)

and

FD
12(q) =

∇qV1(q)−∇qV2(q)

2
sinϕ(q) +

(
V+(q)− V−(q)

)
d (q) sinϕ(q), (3.46)
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where

FD
class =

F1(q) 0

0 F2(q)

 , (3.47)

and

FD
quant =

 0 F12(q)

F12(q) 0

 . (3.48)

We now compute the system phase space averaged classical and quantum force components

for the adiabatic and diabatic representations, obtained by performing the d2a and a2d

transformations, respectively. These equations were used to obtain the d2a and a2d QTSH

numerical results in Section 3.4.2.

The classical component of the d2a transformed Weyl function for force F A
class(q) associates

with the population/diagonal terms of the d2a Wigner distribution [74, 75]. The d2a phase

space averaged classical force was found to be represented by

〈
FA
class(t)

〉
= Tr

(
FA
class(q)ρ

A(q,p, t)
)

=
1

N

N∑
j

F+(qj)σ
A
j (t) + F−(qj)

(
1− σA

j (t)
)

=
1

N

N∑
j

(
−
∇qj

(
V1(qj) + V2(qj)

)
2

−
∇qj

(
V1(qj)− V2(qj)

)
2

((
2σD

j (t)− 1
)
cos2 ϕ(qj) + 2αD

j (t) sinϕ(qj) cosϕ(qj)

)
−∇qjV12(qj)

((
2σD

j (t)− 1
)
sinϕ(qj) cosϕ(qj) + 2αD

j (t) sin
2 ϕ(qj)

))
. (3.49)
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Taking the ensemble average of the d2a transformed trajectory phase space averaged quan-

tum force
〈
F A

quant,j(t)
〉
in terms of diabatic potentials given by Eqn 3.43, the expression for

the d2a transformed system phase space averaged quantum force in the adiabatic represen-

tation,
〈
F A

quant(t)
〉
was found to be

〈
FA
quant(t)

〉
=

1

N

N∑
j

〈
FA
quant,j(t)

〉
=

1

N

N∑
j

(
∇qjV12(qj)

((
2σD

j (t)− 1
)
sinϕ(qj) cosϕ(qj)− 2αD

j (t) cos
2 ϕ(qj)

)

−
∇qj

(
V1(qj)− V2(qj)

)
2

((
2σD

j (t)− 1
)
sin2 ϕ(qj)

)
+
∇qj

(
V1(qj)− V2(qj)

)
2

(
2αD

j (t) sinϕ(qj) cosϕ(qj)

))
. (3.50)

The d2a transformed phase space averaged total force was found by taking the sum of the

d2a transformed phase space averaged classical (Eqn 3.49) and quantum force (Eqn 3.50)

〈
F A

tot(t)
〉

=
〈
F A

class(t)
〉
+
〈
F A

quant(t)
〉

=
1

N

N∑
j

(
−
∇qj

(
V1(qj) + V2(qj)

)
2

−
∇qj

(
V1(qj)− V2(qj)

)
2

(
2σD

j (t)− 1
)

−2∇qjV12(qj)α
D
j (t)

)
. (3.51)

With reference to Eqn 1.66, where the equation of motion for momentum is the force for

a trajectory in the diabatic representation, we find that the expression for
〈
F A

tot(t)
〉
in Eqn

3.51 is in fact the phase space averaged total force in the diabatic representation
〈
FD

tot(t)
〉
,

〈
F A

tot(t)
〉
=
〈
FD

tot(t)
〉
. (3.52)
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Since the classical component of the a2d transformed Weyl function for force FD
class(q) as-

sociates with the population/diagonal terms of the a2d transformed Wigner distribution

[74, 75], the a2d transformed phase space averaged classical force was represented by

〈
FD
class(t)

〉
= Tr

(
FD
class(q)ρ

D(q,p, t)
)

=
1

N

N∑
j

F1(qj)σ
D
j (t) + F2(qj)

(
1− σD

j (t)
)

=
1

N

N∑
j

(
−
∇qj

(
V+(qj) + V−(qj)

)
2

−
∇qj

(
V+(qj)− V−(qj)

)
2

((
2σA

j (t)− 1
)
cos2 ϕ(qj)− 2αD

j (t) sinϕ(qj) cosϕ(qj)

)
−ℏωA(qj)d (q)

((
2σA

j (t)− 1
)
sinϕ(qj) cosϕ(qj)− 2αA

j (t) sin
2 ϕ(qj)

)
, (3.53)

where ℏωA(qj) = V+(qj) + V−(qj).

Since FD
quant(q) only has off-diagonal elements that associates with the coherence/off-diagonal

terms of the a2d transformed Wigner distribution [74, 75], the a2d transformed phase space

averaged quantum force was represented by

〈
FD
quant(t)

〉
= Tr

(
FD
quant(q)ρ

D(q,p, t)
)

=
1

N

N∑
j

2F12(qj)α
D
j (t)

=
1

N

N∑
j

(
−
∇qj

(
V+(qj)− V−(qj)

)
2

(
2σA

j (t)− 1
)
sin2 ϕ(qj)

−
∇qj

(
V+(qj)− V−(qj)

)
2

2αA
j (t) sinϕ(qj) cosϕ(qj)

+ℏωA(qj)d (q)
((

2σA
j (t)− 1

)
sinϕ(qj) cosϕ(qj) + 2αA

j (t) cos
2 ϕ(qj)

)
. (3.54)
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The a2d transformed phase space averaged total force in the diabatic representation in terms

of the adiabatic potentials was found by taking the sum of the a2d transformed phase space

averaged classical (Eqn 3.53) and quantum force (Eqn 3.54)

〈
FD
tot(t)

〉
=

〈
FD
class(t)

〉
+
〈
FD
quant(t)

〉
=

1

N

N∑
j

(
−
∇qj

(
V+(qj) + V−(qj)

)
2

−
∇qj

(
V+(qj)− V−(qj)

)
2

(
2σD

j (t)− 1
)

+2ℏωA(qj)α
A
j (t)d (q)

)
. (3.55)

With reference to Eqn 1.69, where the equation of motion for the kinematic momentum is the

force for a trajectory in the adiabatic representation, we find that the expression for
〈
F A

tot(t)
〉

in Eqn 3.51 is equal to the phase space averaged total force in the adiabatic representation〈
F A

tot(t)
〉
, recovering the derived Eqn 3.52.

While the same system are apparently different in the adiabatic and the diabatic representa-

tion, the total forces acting on the trajectories in each representation are identical, although

the classical force components and quantum force components, given by Eqns 3.49 and 3.50

in the adiabatic representation, and Eqns 3.53 and 3.54 in the diabatic representation, re-

spectively, are vastly different.

While a non-adiabatic process in each representation can involve differing degrees of classical

or non-classical effects of forces, the trajectories in either representation experience the same

phase space averaged force at any given time.

We will explore the classical and non-classical effects of forces and representation in Chapter

4.
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3.3 Computational Details

The description of the systems used and the simulation details are as given in Section 2.3 of

Chapter 2, with the following additions.

In this chapter, we ran QTSH in both the adiabatic and diabatic representations.

We utilized the derived d2a and a2d equations for the phase space averaged Wigner dis-

tribution [74, 75], and forces in Section 3.2 to transform the QTSH results in the diabatic

representation to the adiabatic representation (d2a QTSH), and to transform the QTSH

results in the adiabatic representation to the diabatic representation (a2d QTSH).

3.4 Results & Discussion

In this section we compare the adiabatic QTSH and d2a QTSH results, and the diabatic

QTSH and a2d QTSH results for the elements of the Wigner distribution [74, 75] and the

forces. We also show that, as derived in Section 3.2.2, while the system is apparently different

in the diabatic and adiabatic representations, the total forces acting on trajectories are the

same in both representations (Eqn 3.52).

3.4.1 Wigner Distribution

We first examine the dynamics of the elements of the Wigner distribution [74, 75].

To obtain the d2a QTSH and a2d QTSH results for the elements of the Wigner distribution

[74, 75] in the adiabatic and diabatic representations, respectively, we applied Eqns 3.19-3.22

to the diabatic QTSH results, and applied Eqns 3.23-3.26 to the adiabatic QTSH results,

respectively.
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We now present the d2a and a2d QTSH results for the populations and coherence for the

processes in the simple avoided crossing and the dual avoided crossing systems [1].

We first consider the populations/diagonal elements of the Wigner distribution [74, 75].

In Figs 3.2-3.4, we present (a) the comparison of the adiabatic QTSH and d2a QTSH re-

sults for the phase space averaged adiabatic population ⟨ρ++(t)⟩ against the exact quantum

results, and (b) the comparison of the diabatic QTSH and a2d QTSH results for the phase

space averaged diabatic population ⟨ρ11(t)⟩ against the exact quantum results, for the non-

adiabatic processes in the simple avoided crossing and dual avoided crossing systems [1].

Fig 3.2 shows the QTSH results for the non-adiabatic process in the simple avoided crossing

system [1] that involves the +→ − electronic transition in the adiabatic representation (Fig

2.2), and its corresponding process in the diabatic representation depicted in Fig 2.3. Fig 3.3

shows the QTSH results for the non-adiabatic process in the simple avoided crossing system

[1] that involves the − → + electronic transition in the adiabatic representation (Fig 2.4),

and its corresponding process in the diabatic representation depicted in Fig 2.5.

Fig 3.4 shows the QTSH results for the non-adiabatic process in the dual avoided crossing sys-

tem [1] that involves a non-adiabatic transition − → +, followed by a second non-adiabatic

transition +→ − in the adiabatic representation (Fig 2.8), and its corresponding process in

the diabatic representation depicted in Fig. 2.9.

We first provide a cursory analysis of the representation invariance of the phase space average

populations/diagonal terms of the Wigner distribution [74, 75] by comparing the adiabatic

QTSH results and d2a QTSH results for ⟨ρ++(t)⟩, and the diabatic QTSH results and a2d

QTSH results for ⟨ρ11(t)⟩.
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With reference to Figs 3.2(a), 3.3(a) and 3.4(a), and Figs 3.2(b), 3.3(b) and 3.4(b), the

agreement between the adiabatic QTSH results and d2a QTSH results for ⟨ρ++(t)⟩, and

the agreement between the diabatic QTSH results and a2d QTSH results for ⟨ρ11(t)⟩ are

essentially quantitative with slight deviations.

Since the d2a QTSH results and the adiabatic QTSH results in the adiabatic representation,

and the a2d QTSH results and the diabatic QTSH results, are in good agreement, the

system phase space averaged components of the diagonal/population elements of the Wigner

distribution [74, 75] computed by the QTSH method can be considered to be representation

invariant, with slight discrepancies.

We now provide a more in-depth analysis of the accuracy of the phase space average popula-

tions/diagonal terms of the Wigner distribution [74, 75] by comparing the adiabatic QTSH

results and d2a QTSH results for ⟨ρ++(t)⟩ with the exact quantum results, and the diabatic

QTSH results and a2d QTSH results for ⟨ρ11(t)⟩ with the exact quantum results.

We first examine the ⟨ρ++(t)⟩ results in the adiabatic representation.

With reference to Figs 3.2(a) and 3.3(a), we found that the population transfer from +→ −

and − → + occurs, observed in the plot as a change in ⟨ρ++(t)⟩, during the transition

time interval between t ≈ 10 fs and t ≈ 30 fs, before reaching an asymptotic value. The

magnitude of the change in ⟨ρ++(t)⟩ to the asymptotic value indicates the size/completeness

of the population transfer. The completeness of the population transfer increased when the

size of the diabatic coupling constant C was increased from C = 0.0005 to C = 0.002. The

observation is consistent with the non-adiabatic coupling vector d (qj) being broadest with

the smallest magnitude, for C = 0.002 (Fig 1.1(b)).
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Figure 3.2: Comparison of exact quantum result for (a) the phase space average population
⟨ρ++(t)⟩ with the adiabatic QTSH result and the transformed d2a QTSH result, and (b) the
phase space average population ⟨ρ11(t)⟩ with the diabatic QTSH result, and the transformed
a2d QTSH result, for the for the processes described in Figs 2.2 and 2.3 for the simple
avoided crossing system described by the diabatic potentials given by Eqns 1.83-1.84. The
inset shows the magnified plot between t = 10 fs and t = 40 fs.
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Figure 3.3: Comparison of exact quantum result for (a) the phase space average population
⟨ρ++(t)⟩ with the adiabatic QTSH result and the transformed d2a QTSH result, and (b) the
phase space average population ⟨ρ11(t)⟩ with the diabatic QTSH result, and the transformed
a2d QTSH result, for the for the processes described in Figs 2.4 and 2.5 for the simple
avoided crossing system described by the diabatic potentials given by Eqns 1.83-1.84. The
inset shows the magnified plot between t = 10 fs and t = 40 fs.
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Figure 3.4: Comparison of exact quantum result for (a) the phase space average population
⟨ρ++(t)⟩ with the adiabatic QTSH result and the transformed d2a QTSH result, and (b) the
phase space average population ⟨ρ11(t)⟩ with the diabatic QTSH result, and the transformed
a2d QTSH result, for the for the processes described in Figs 2.8 and 2.9 for the dual avoided
crossing system described by the diabatic potentials given by Eqns 1.86-1.87. The inset
shows the magnified plot between t = 7.5 fs and t = 17.5 fs.
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We also observed that the deviation of the adiabatic QTSH results and the d2a QTSH results

from the exact quantum results decreased as C increased from C = 0.0005 to C = 0.002,

in both Figs 3.2(a) and 3.3(a). This showed that the accuracy of QTSH in the adiabatic

representation increased with the completeness and locality of the population transfer for

both non-adiabatic processes occuring in the simple avoided crossing model [1].

With reference to Fig 3.2(a), we observed that the d2a QTSH result deviate from the exact

quantum result to a smaller extent than the adiabatic QTSH result. The improved accuracy

of the d2a QTSH result over the adiabatic QTSH result was most noticeable when C was

largest. This suggests that the d2a QTSH result was slightly more accurate than the adia-

batic QTSH result for the non-adiabatic process depicted by Fig 2.2 for the simple avoided

crossing system [1], and that the most appreciable difference in accuracy was observed when

population transfer was least complete and localized.

Since QTSH results in the adiabatic representation were less accurate than the d2a QTSH

results, the non-adiabatic process involving the + → − electronic transition, depicted by

Fig 2.2 for the simple avoided crossing system [1] is likely to be captured more accurately in

the diabatic representation.

With reference to Fig 3.3(a), the adiabatic QTSH result and d2a QTSH result were almost

identical for all systems. This suggests that QTSH performed in either representation was

likely to be similarly accurate for all values of C for the process depicted by Fig 2.4 for the

simple avoided crossing model [1].

With reference to Fig 3.4(a), we found that the first population transfer from the lower

adiabatic state V−(q) to the upper adiabatic state V+(q) occurs, observed in the plot as

a decrease in ⟨ρ++(t)⟩ over time, we find that the adiabatic QTSH and d2a QTSH results

are in almost perfect agreement with the quantum results until t ≈ 10 fs, with the highest

accuracy for when C is smallest. From t ≈ 10 fs to t ≈ 11.4 fs we find that both the
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adiabatic QTSH and d2a QTSH results are slightly higher than the quantum results. The

first population transfer was most complete for the dual avoided crossing system [1] with the

smallest C = 0.0015, and least complete for the dual avoided crossing system [1] with the

largest C = 0.006.

From t ≈ 11.4 fs to t ≈ 12 fs, where the quantum results are constant indicating that

no electronic transition occurred during that time period, the adiabatic QTSH and d2a

QTSH results deviated slightly from the quantum result, with the size of the deviation being

smaller for the d2a QTSH result than the adiabatic QTSH result. After t ≈ 12 fs, the

second population transfer from the upper adiabatic state V+(q) to the lower adiabatic state

V−(q) occurs with a decrease in the adiabatic QTSH and d2a QTSH results, almost perfectly

matching the quantum result to an asymptotic value close to zero, repopulating the initial

lower adiabatic state V−(q).

Since the deviation from the quantum result that occurs mainly during the t ≈ 10 fs to the

t ≈ 12 fs time period, with the d2a QTSH result being closer to the quantum result than the

adiabatic result, it is plausible that QTSH in the diabatic representation is more accurate

than in the adiabatic representation for the process depicted in Fig 2.8 for the dual avoided

crossing system [1].

The inverse relation between the accuracy of the adiabatic QTSH and d2a QTSH results

and the completeness of the population transfer, as observed in Figs 3.2(a) and 3.4(a) can

be explained as follows. A larger population remains on the initial adiabatic state, when

a smaller population transfer occurs. This makes the interference between the populations

on the upper adiabatic state V+(q) and lower adiabatic state V−(q) more significant. As

interference effects are poorly captured when independent trajectories are used [4], QTSH

that utilizes independent trajectories [62, 63] gives less accurate results when interference

effects are more significant.
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We now examine the ⟨ρ11(t)⟩ results in the diabatic representation.

With reference to Figs 3.2(b) and 3.3(b), a very small population transfer occurs from the

diabatic state V1(q) to the diabatic state V2(q), indicated by the change in ⟨ρ11(t)⟩ during

the population transfer time interval between t ≈ 10 fs and t ≈ 30 fs, before reaching an

asymptotic value. We found that converse to the corresponding process in the adiabatic

representation, the largest magnitude of population transfer occurred when the size of the

diabatic coupling constant was increased from C = 0.0005 to C = 0.002.

With reference to Fig 3.2(b), when C = 0.0005, the diabatic QTSH and a2d QTSH results

almost perfectly match the quantum results with almost no population transfer. For the

systems with C = 0.001 and C = 0.002, the diabatic QTSH and a2d QTSH results gave

good agreement with the quantum results with the diabatic QTSH results being slightly

more accurate than the a2d QTSH result in both systems.

This corroborates our earlier assertion that the process depicted by Fig 2.2 for the simple

avoided crossing system [1] is likely to be captured more accurately in the diabatic represen-

tation.

We will explore how the representation invariance of QTSH can be exploited to obtain more

accurate results in the representation of choice in Section 4.4.2 in Chapter 4.

With reference to Fig 3.3(b), the diabatic QTSH result and a2d QTSH result were almost

identical for all systems. This suggests that QTSH performed in either representation was

likely to be similarly accurate for all values of C for the process depicted by Fig 2.4 for the

simple avoided crossing model [1].

This corroborates our earlier assertion that QTSH performed in either representation was

likely to be similarly accurate for all values of C for the process depicted by Fig 2.4 for the

simple avoided crossing model [1].
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With reference to 3.4(b), we find that a small first population transfer from the diabatic state

V2(q) to the diabatic state V1(q) occurs with ⟨ρ11(t)⟩ increasing, with the largest population

transfer occurring when C was largest, during the time period between t = 0 fs to t ≈ 12 fs.

For the system with C = 0.0015, the population transfer was very close to zero, with the

diabatic QTSH result matching the exact quantum result almost exactly, while the a2d

QTSH result deviated slightly from the quantum result, between t ≈ 10 fs to t ≈ 11.4 fs,

reflecting inaccuracies in that time period found in the corresponding adiabatic QTSH result

in Fig 3.4(a), as described above. For the time period between t = 0 fs to t ≈ 12 fs, the

diabatic QTSH result almost perfectly agrees with the quantum results, while the a2d QTSH

results slightly deviates during this time period.

After t ≈ 12 fs, the second population transfer from the diabatic state V1(q) to the diabatic

state V2(q) occurs with a decrease in the diabatic QTSH and d2a QTSH results, almost

perfectly matching the quantum result to an asymptotic value close to zero, repopulating

the initial diabatic state V2(q).

Similar to the adiabatic representation, the deviation from the quantum result occurs mainly

in the t ≈ 10 fs to the t ≈ 12 fs time period, with the diabatic QTSH result being closer to

the quantum result than the a2d QTSH result.

This agrees with the earlier assertion that the QTSH in the diabatic representation being

more accurate than QTSH in the adiabatic representation for this process. This will be

further explored in Section 4.4.2 in Chapter 4.

Having examined the diagonal/population component of the Wigner distribution [74, 75],

we now examine the real and imaginary parts of the off-diagonal/coherence components of

the Wigner distribution [74, 75] for the same processes.

We will first examine the phase space averaged real part of the off-diagonal/coherence com-

ponents of the Wigner distribution [74, 75] in the adiabatic and diabatic representations
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〈
αA(t)

〉
and

〈
αD(t)

〉
.

In Figs 3.5 and 3.6, we present (a) the comparison of the adiabatic QTSH and d2a QTSH

results for the phase space averaged adiabatic population
〈
αA(t)

〉
against the exact quantum

results, and (b) the comparison of the diabatic QTSH and a2d QTSH results for the phase

space averaged diabatic population
〈
αD(t)

〉
against the exact quantum results for the non-

adiabatic processes occurring in the simple avoided crossing system [1] that involve the

+ → − electronic transition (Fig 2.2), and the − → + electronic transition (Fig 2.4)

in the adiabatic representation, respectively. The corresponding processes in the diabatic

representation are depicted in Figs 2.3 and 2.5, respectively.

In Fig 3.7, we present (a) the comparison of the adiabatic QTSH and d2a QTSH results for

the phase space averaged adiabatic population
〈
αA(t)

〉
against the exact quantum results,

and (b) the comparison of the diabatic QTSH and a2d QTSH results for the phase space

averaged diabatic population
〈
αD(t)

〉
against the exact quantum results, for the dual avoided

crossing system [1] that involves the non-adiabatic transition from the lower adiabatic state

to the upper adiabatic state − → +, followed by a second non-adiabatic transition from the

upper adiabatic state to the lower adiabatic state + → − in the adiabatic representation

(Fig 2.8). The corresponding process in the diabatic representation is depicted in Fig. 2.9.

We first provide a cursory analysis of the representation invariance of the phase space average

of the real part of the coherences/off-diagonal terms of the Wigner distribution [74, 75] by

comparing the adiabatic QTSH results and d2a QTSH results for
〈
αA(t)

〉
, and the diabatic

QTSH results and a2d QTSH results for
〈
αD(t)

〉
.

With reference to Figs 3.5(a), 3.6(a) and 3.7(a), and Figs 3.5(b), 3.6(b) and 3.7(b), we found

that the adiabatic QTSH results and d2a QTSH results for
〈
αA(t)

〉
, and the diabatic QTSH

results and a2d QTSH results for
〈
αD(t)

〉
, are in good agreement with slight deviations.
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Figure 3.5: Comparison of exact quantum result for (a) the phase space averaged real part
of the coherence

〈
αA(t)

〉
with the adiabatic QTSH result and the transformed d2a QTSH

result, and (b) the phase space averaged real part of the coherence
〈
αD(t)

〉
with the diabatic

QTSH result, and the transformed a2d QTSH result, for the for the processes described in
Figs 2.2 and 2.3 for the simple avoided crossing system described by the diabatic potentials
given by Eqns 1.83-1.84. The inset shows the magnified plot between t = 10 fs and t = 40 fs.
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Figure 3.6: Comparison of exact quantum result for (a) the phase space averaged real part
of the coherence

〈
αA(t)

〉
with the adiabatic QTSH result and the transformed d2a QTSH

result, and (b) the phase space averaged real part of the coherence
〈
αD(t)

〉
with the diabatic

QTSH result, and the transformed a2d QTSH result, for the for the processes described in
Figs 2.4 and 2.5 for the simple avoided crossing system described by the diabatic potentials
given by Eqns 1.83-1.84. The inset shows the magnified plot between t = 10 fs and t = 40 fs.
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Figure 3.7: Comparison of exact quantum result for (a) the phase space averaged real part
of the coherence

〈
αA(t)

〉
with the adiabatic QTSH result and the transformed d2a QTSH

result, and (b) the phase space averaged real part of the coherence
〈
αD(t)

〉
with the diabatic

QTSH result, and the transformed a2d QTSH result, for the for the processes described in
Figs 2.8 and 2.9 for the dual avoided crossing system described by the diabatic potentials
given by Eqns 1.86-1.87. The black box highlights the plot between t = 7.5 fs and t = 17.5 fs.
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Since the d2a QTSH results and the QTSH results in the adiabatic representation, and the

a2d QTSH results and the QTSH results in the diabatic representation are in good agreement,

the system phase space averaged components of the real part of the off-diagonal/coherence

elements of the Wigner distribution [74, 75] computed by QTSH is representation invariant,

with the slight discrepancies.

We now provide a more in-depth analysis of the accuracy of the phase space average real part

of the coherences/off-diagonal terms of the Wigner distribution [74, 75] by comparing the

adiabatic QTSH results and d2a QTSH results for
〈
αA(t)

〉
with the exact quantum results,

and the diabatic QTSH results and a2d QTSH results for
〈
αD(t)

〉
with the exact quantum

results.

With reference to Figs 3.5(a) and 3.6(a), and Figs 3.5(b) and 3.6(b), we also found that the

adiabtic QTSH and d2a QTSH results for
〈
αA(t)

〉
, and the diabatic QTSH and a2d QTSH

results for
〈
αD(t)

〉
, in comparison to the exact quantum results, were slightly displaced in the

positive direction and of larger magnitude after t ≈ 30 fs. This effect was most pronounced

for the systems with the largest diabatic coupling constant C. This overcoherence [1, 3]

observed is a consequence of utilizing independent trajectories. In order to correctly capture

the quantum coherence, trajectories have to be interdependent [39–41, 52–58].

With reference to Fig 3.7(a) and (b), we found that the adiabatic QTSH and d2a QTSH
〈
αA
〉

results and the we found that the diabatic QTSH and a2d QTSH
〈
αD
〉
results deviated more

significantly the exact quantum result, after t ≈ 12 fs, when the second transition from the

upper adiabatic state V+(q) to the lower adiabatic state V−(q) takes place. The results were

also slightly displaced in the positive direction and the oscillations are of larger amplitude

than the exact quantum results after 12 fs. This effect was most pronounced for the systems

with the largest diabatic coupling constant C.
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The observation of the increase in the amplitude of oscillations after the first transition

agrees with our understanding of the overcoherence of the QTSH method as a result of the

independent trajectory approximation made [1, 3].

We now examine the phase space averaged imaginary part of the off-diagonal/coherence

components of the Wigner distribution [74, 75] in the adiabatic and diabatic representations〈
βA(t)

〉
and

〈
βD(t)

〉
.

In Figs 3.8 and 3.9, we present (a) the comparison of the adiabatic QTSH and d2a QTSH

results for the phase space averaged adiabatic population
〈
βA(t)

〉
against the exact quantum

results, and (b) the comparison of the diabatic QTSH and a2d QTSH results for the phase

space averaged diabatic population
〈
βD(t)

〉
against the exact quantum results, for the simple

avoided crossing system [1] involving the non-adiabatic processes that include the + → −

electronic transition (Fig 2.2) and the − → + electronic transition (Fig 2.4) in the adiabatic

representation, respectively. The corresponding processes in the diabatic representation are

depicted in Figs 2.3 and 2.5, respectively.

In Fig 3.10, we present (a) the comparison of the adiabatic QTSH and d2a QTSH results

for the phase space averaged adiabatic population
〈
βA(t)

〉
against the exact quantum re-

sults, and (b) the comparison of the diabatic QTSH and a2d QTSH results for the phase

space averaged diabatic population
〈
βD(t)

〉
against the exact quantum results, for the non-

adiabatic process in the dual avoided crossing system [1] that involves the non-adiabatic

transition from the lower adiabatic state to the upper adiabatic state − → +, followed by a

second non-adiabatic transition from the upper adiabatic state to the lower adiabatic state

+→ − in the adiabatic representation (Fig 2.8). The corresponding process in the diabatic

representation is depicted in Fig. 2.9.

We provide a cursory analysis of the representation invariance of the phase space average of

the imaginary part of the coherences/off-diagonal terms of the Wigner distribution [74, 75] by
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comparing the adiabatic QTSH results and d2a QTSH results for
〈
βA(t)

〉
, and the diabatic

QTSH results and a2d QTSH results for
〈
βD(t)

〉
.

With reference to Figs 3.8(a), 3.9(a) and 3.10(a), and Figs 3.8(b), 3.9(b) and 3.10(b), the

adiabatic QTSH results and d2a QTSH results for
〈
βA(t)

〉
, and the diabatic QTSH results

and a2d QTSH results for
〈
βD(t)

〉
are in perfect agreement.

This proves the validity of the derived Eqns 3.22 and 3.26.

Since the d2a QTSH results and the adiabatic QTSH results for
〈
βA(t)

〉
, and the a2d QTSH

results and the diabatic QTSH results for
〈
βD(t)

〉
are in perfect agreement, the system phase

space averaged components of the imaginary part of the off-diagonal/coherence elements of

the Wigner distribution [74, 75] computed by the QTSH method is representation invariant.

We now provide a more in-depth analysis of the accuracy of the phase space average imagi-

nary part of the coherences/off-diagonal terms of the Wigner distribution [74, 75] by compar-

ing the adiabatic QTSH results and d2a QTSH results for
〈
βA(t)

〉
with the exact quantum

results, and the diabatic QTSH results and a2d QTSH results for
〈
βD(t)

〉
with the exact

quantum results.

With reference to Figs 3.8(a) and (b) we found that the adiabatic QTSH and d2a QTSH

results for
〈
βA(t)

〉
, and the diabatic QTSH and a2d QTSH results for

〈
βD(t)

〉
deviate from

the quantum results after 25 fs. The results exhibit oscillations that are slightly out-of-phase

with the quantum results.
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Figure 3.8: Comparison of exact quantum result for (a) the phase space averaged imaginary
part of the coherence

〈
βA(t)

〉
with the adiabatic QTSH result and the transformed d2a

QTSH result, and (b) the phase space averaged imaginary part of the coherence
〈
βD(t)

〉
with

the diabatic QTSH result, and the transformed a2d QTSH result, for the for the processes
described in Figs 2.2 and 2.3 for the simple avoided crossing system described by the diabatic
potentials given by Eqns 1.83-1.84. The inset shows the magnified plot between t = 10 fs
and t = 40 fs.
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Figure 3.9: Comparison of exact quantum result for (a) the phase space averaged imaginary
part of the coherence

〈
βA(t)

〉
with the adiabatic QTSH result and the transformed d2a

QTSH result, and (b) the phase space averaged imaginary part of the coherence
〈
βD(t)

〉
with

the diabatic QTSH result, and the transformed a2d QTSH result, for the for the processes
described in Figs 2.4 and 2.5 for the simple avoided crossing system described by the diabatic
potentials given by Eqns 1.83-1.84. The inset shows the magnified plot between t = 10 fs
and t = 40 fs.
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Figure 3.10: Comparison of exact quantum result for (a) the phase space averaged imaginary
part of the coherence

〈
βA(t)

〉
with the adiabatic QTSH result and the transformed d2a QTSH

result, and (b) the phase space averaged imaginary part of the coherence
〈
βD(t)

〉
with the

diabatic QTSH result, and the transformed a2d QTSH result, for the for the processes
described in Figs 2.8 and 2.9 for the dual avoided crossing system described by the diabatic
potentials given by Eqns 1.86-1.87. The black box highlights the plot between t = 7.5 fs and
t = 17.5 fs.
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With reference to Figs 3.9(a) and (b), we found that the adiabatic QTSH and d2a QTSH

results for
〈
βA(t)

〉
, and the diabatic QTSH and a2d QTSH results for

〈
βD(t)

〉
deviate from

the quantum results between t ≈ 18 fs and t ≈ 22 fs. After t ≈ 27 fs, we find that the d2a

QTSH and the adiabatic QTSH results for
〈
βA(t)

〉
, and the a2d QTSH and the diabatic

QTSH results for
〈
βD(t)

〉
have oscillations that are slightly out-of-phase in comparison to

the quantum results.

This overcoherence [1, 3] observed is a consequence of utilizing independent trajectories. In

order to correctly capture the quantum coherence, trajectories have to be interdependent

[39–41, 52–58].

With reference to Figs 3.10(a) and (b) we found that the adiabatic QTSH and d2a QTSH

results for
〈
βA(t)

〉
, and the diabatic QTSH and a2d QTSH results for

〈
βD(t)

〉
deviate sig-

nificantly from the quantum results after the first transition has taken place, after t ≈ 12 fs.

We also found that the adiabatic QTSH and d2a QTSH results for
〈
βA(t)

〉
, and the diabatic

QTSH and a2d QTSH results for
〈
βD(t)

〉
are slightly out-of-phase when compared with the

quantum results after t ≈ 17.5 fs.

The quantum interference effect in the dual avoided crossing system [1] that is not well-

captured in QTSH as a result of the independent trajectories used [4, 8] in QTSH [62, 63]

becomes significant after the first electronic transition, resulting in a decrease in the accuracy

after the first electronic transition.

115



3.4.2 Forces

We now examine the dynamics of the forces in QTSH. To obtain the d2a QTSH and a2d

QTSH results for the elements of the forces in the adiabatic and diabatic representations,

we applied Eqns 3.49-3.51 to the diabatic QTSH results, and applied Eqns 3.53-3.55 to the

adiabatic QTSH results, respectively.

We start by comparing the system phase space total force in the adiabatic representation〈
F A

tot(t)
〉
and in the diabatic representation

〈
FD

tot(t)
〉
to verify its equivalence as described

by Eqn 3.52.

Even though the simple avoided crossing and dual avoided crossing systems are apparently

different in the adiabatic and the diabatic representation, the total forces governing the

coupled electronic-nuclear dynamics in each representation should be identical.

In Figs 3.11 and 3.12, we compare
〈
FD

tot(t)
〉
and

〈
F A

tot(t)
〉
for the QTSH simulations of the

simple avoided crossing system [1] for the processes involving the + → − transition in the

adiabatic representation (Fig 2.2), and involving the − → + transition in the adiabatic repre-

sentation (Fig 2.4), respectively. The corresponding processes in the diabatic representation

are described by Figs 2.3 and 2.5, respectively.

In Fig 3.13, we compare
〈
FD

tot(t)
〉
and

〈
F A

tot(t)
〉
for the QTSH simulations of the dual avoided

crossing system [1] for the process that involves the non-adiabatic transition from − → +,

followed by a second non-adiabatic transition from + → − in the adiabatic representation

(Fig 2.8). The corresponding process in the diabatic representation is depicted in Fig. 2.9.

With reference to Figs 3.11 and Fig 3.12, we observed that
〈
F A

tot(t)
〉
≈
〈
FD

tot(t)
〉
for each

diabatic coupling constant C used, for the processes described by Figs 2.2 and 2.4 in the

adiabatic representation, and Figs 2.3 and 2.5 in the diabatic representation.
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With reference to Figs 3.13, we observed that
〈
F A

tot(t)
〉
and

〈
FD

tot(t)
〉
agreed in terms of

its overall shape - two peaks - a maximum during the time interval for the first − → +

electronic transition, and a minimum for the second + → − electronic transition in the

adiabatic representation (Fig 2.8).

The above observations verifies Eqn 3.52 for the simple avoided crossing and dual avoided

systems [1]. While imperfect, there is loose agreement between
〈
F A

total(t)
〉
and

〈
FD

total(t)
〉
for

the dual avoided crossing system [1].

From a practical standpoint, the accuracy of QTSH might not be the same in both represen-

tations, resulting in the discrepancy in the phase space averaged total force in the diabatic

and adiabatic representations. We will explore this further in Chapter 4.

With reference to Figs 3.11 and 3.12, we found that largest deviation occurred for
〈
F A

tot(t)
〉

and
〈
FD

tot(t)
〉
at t ≈ 20 fs, where the fastest rate of +→ − and − → + electronic transitions

occurred in the adiabatic representation, respectively. The best agreement was obtained for

C = 0.0005, and the worst for C = 0.002. The agreement was best when the non-adiabatic

coupling d (q), and consequently the population transfer was most localized and highest in

the adiabatic representation.

With reference to Fig 3.13, we found that deviation between
〈
F A

tot(t)
〉
and

〈
FD

tot(t)
〉
shows up

as a positive time shift of
〈
F A

tot(t)
〉
with respect to

〈
FD

tot(t)
〉
. This implies that the electronic

transitions in the adiabatic representation that occurs at a later time than in the diabatic

representation for C = 0.001 and C = 0.002. The positive time shift was smaller for the

dual avoided crossing system [1] with C = 0.001 than with C = 0.002. For the system

C = 0.0005, no distinct peaks were present for both
〈
F A

tot(t)
〉
and

〈
FD

tot(t)
〉
, appearing to

exhibit fluctuations in the time interval t = 7.5 fs to t = 17.5 fs.

We will explore this in Section 4.4.2 of Chapter 4.
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Figure 3.11: QTSH results for the phase space averaged total force in the diabatic and
adiabatic representation,

〈
FD

total

〉
and

〈
F A

total

〉
for the processes described in Figs 2.2 and 2.3

for the simple avoided crossing system described by the diabatic potentials given by Eqns
1.83-1.84.

Figure 3.12: QTSH results for the phase space averaged total force in the diabatic and
adiabatic representation,

〈
FD

total

〉
and

〈
F A

total

〉
for the processes described in Figs 2.4 and 2.5

for the simple avoided crossing system described by the diabatic potentials given by Eqns
1.83-1.84.
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Figure 3.13: QTSH results for the phase space averaged total force in the diabatic and
adiabatic representation,

〈
FD

total

〉
and

〈
F A

total

〉
for the processes described in Figs 2.8 and

2.9 for the dual avoided crossing system described by the diabatic potentials given by Eqns
1.86-1.87. The black box highlights the plot in the time interval t = 7.5 fs and t = 17.5 fs.

We now present the d2a and a2d QTSH for the classical, quantum and total forces for

non-adiabatic processes occurring in the simple avoided crossing system, and dual avoided

crossing system [1].

We first examine the adiabatic QTSH and d2a QTSH results for the system phase space

averaged classical force
〈
F A

class(t)
〉
, quantum force

〈
F A

quant(t)
〉
, and total force

〈
F A

tot(t)
〉
in

the adiabatic representation.

In Figs 3.14 and 3.15, we present the adiabatic QTSH and d2a QTSH results for
〈
F A

class(t)
〉
,〈

F A
quant(t)

〉
, and

〈
F A

tot(t)
〉
when (a) the most local and complete population transfer (C =

0.0005) and (b) the least local and complete population transfer (C = 0.002) occurs in

the simple avoided crossing system [1] for the process that involves the + → − electronic

transition (Fig 2.2), and the − → + electronic transition (Fig 2.4), respectively.
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In Fig 3.16, we present the adiabatic QTSH and d2a QTSH results for
〈
F A

class(t)
〉
,
〈
F A

quant(t)
〉
,

and
〈
F A

tot(t)
〉
when (a) the most local and complete population transfer (C = 0.0015) and

(b) the least local and complete population transfer (C = 0.006) occurs in the dual avoided

crossing system [1] for the process that involves an − → + electronic transition, and a

subsequent − → + electronic transition (Fig 2.8).

With reference to Figs 3.14(a) and (b), and 3.15(a) and (b), we observed that each force

component
〈
F A

class(t)
〉
,
〈
F A

quant(t)
〉
, and the total

〈
F A

tot(t)
〉
, was in almost perfect agreement

for the processes that occur in the simple avoided crossing system [1], for both the highly

local and complete, and the less local and complete population transfer.

With reference to Fig 3.16(a) and (b), we observed that the quantum force component〈
F A

quant(t)
〉
was in almost perfect agreement for the processes that occur in the dual avoided

crossing system [1], for both the highly local and complete (C = 0.0015), and the less local

and complete (C = 0.006) population transfer. On the other hand, the adiabatic QTSH

and d2a QTSH results for the classical force component
〈
F A

class(t)
〉
that depends on the

population on each surface deviated from each other, most noticeably in the time intervals

of electronic transition t ≈ 7.5 fs to t ≈ 11.4 fs, and t ≈ 12 fs to t ≈ 17.5 fs. Since the

resulting d2a QTSH result for the total force component
〈
F A

tot(t)
〉
shows a maximum and a

minimum where the extrema for
〈
F A

class(t)
〉
and

〈
F A

quant(t)
〉
are, while the adiabatic QTSH

results for
〈
F A

tot(t)
〉
results in a maximum and a minimum shifted in positive time from

where the extrema for
〈
F A

class(t)
〉
, QTSH in the diabatic representation is likely to produce a

better estimate of the forces involved in QTSH. This effect is more noticeable for the system

with less local and complete population transfer (C = 0.006). As discussed in Section 2.4.2

of Chapter 2, the reduced consistency of surface hopping is likely to explain the shift in the

adiabatic QTSH results for
〈
F A

tot(t)
〉
.
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Along with the differing degrees of classical or non-classical effects, from a practical stand-

point, the accuracy of QTSH might not be the same in both representations, resulting in the

discrepancy in the phase space averaged total force in the diabatic and adiabatic representa-

tions. The interference effect that is significant in the adiabatic representation for the process

occurring in the dual avoided crossing system [4, 8], exacerbates the impact of overcoherence

[1, 3] due to the lack of interdependence of trajectories [39–41, 52–58] in the ensemble in

QTSH. This overcoherence also presents itself in the breakdown of the consistency of surface

hopping [50].

With the assertion of QTSH being more accurate in the diabatic representation for the dual

avoided crossing model [1], we will explore this in Section 4.4.2 of Chapter 4.

We now consider the diabatic QTSH and a2d QTSH results for the system phase space

averaged classical force
〈
FD

class(t)
〉
, quantum force

〈
FD

quant(t)
〉
, and total force

〈
FD

tot(t)
〉
in

the diabatic represenation.

In Figs 3.17 and 3.18, we present the diabatic QTSH and a2d QTSH results for
〈
FD

class(t)
〉
,〈

FD
quant(t)

〉
, and

〈
FD

tot(t)
〉
when (a) the least population transfer in the diabatic representation

(C = 0.0005) and (b) the most population transfer in the diabatic representation (C = 0.002)

occurs in the simple avoided crossing system [1] for the process that involves the evolution

of the trajectories on diabatic surface 1 with little to no hopping (Fig 2.3), and the evolution

of the trajectories on diabatic surface 2 with little to no hopping (Fig 2.5), respectively.

In Fig 3.16, we present the diabatic QTSH and a2d QTSH results for
〈
F A

class(t)
〉
,
〈
FD

quant(t)
〉
,

and
〈
FD

tot(t)
〉
when (a) the least population transfer in the diabatic representation (C =

0.0005) and (b) the most population transfer in the diabatic representation (C = 0.002)

occurs in the dual avoided crossing system [1] for the process that involves the evolution of

the trajectories on diabatic surface 2 with little to no hopping (Fig 2.9).
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Figure 3.14: Comparison of the adiabatic QTSH and d2a QTSH results for the system phase
space averaged classical force

〈
F A

class(t)
〉
, quantum force

〈
F A

quant(t)
〉
, and total force

〈
F A

total(t)
〉

in the adiabatic representation for the non-adiabatic process in the simple avoided crossing
system depicted by Fig 2.2, with the diabatic coupling constants (a) C = 0.0005, and (b)
C = 0.002. The inset shows a magnified view of the plot in the time interval t = 10 fs and
t = 40 fs.
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Figure 3.15: Comparison of the adiabatic QTSH and d2a QTSH results for the system phase
space averaged classical force

〈
F A

class(t)
〉
, quantum force

〈
F A

quant(t)
〉
, and total force

〈
F A

total(t)
〉

in the adiabatic representation for the non-adiabatic process in the simple avoided crossing
system depicted by Fig 2.4, with the diabatic coupling constants (a) C = 0.0005, and (b)
C = 0.002. The inset shows a magnified view of the plot in the time interval t = 10 fs and
t = 40 fs.

123



Figure 3.16: Comparison of the adiabatic QTSH and d2a QTSH results for the system
phase space averaged classical force

〈
F A

class(t)
〉
, quantum force

〈
F A

quant(t)
〉
, and total force〈

F A
total(t)

〉
in the diabatic representation for the non-adiabatic process in the dual avoided

crossing system depicted by Fig 2.8, with the diabatic coupling constants (a) C = 0.0015, and
(b) C = 0.006. The inset shows a magnified view of the plot in the time interval t = 7.5 fs
and t = 17.5 fs.
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With reference to Figs 3.17(a) and (b), and 3.18(a) and (b), we observed that each force

component
〈
FD

class(t)
〉
,
〈
FD

quant(t)
〉
, and the total

〈
FD

tot(t)
〉
, was in almost perfect agreement

for the processes that occur in the simple avoided crossing system [1], for both the least

(C = 0.0005), and the most population transfer (C = 0.002), in the diabatic representation.

With reference to Fig 3.19(a) and (b), we observed that the quantum force component〈
FD

quant(t)
〉
was in almost perfect agreement for the processes that occur in the dual avoided

crossing system [1], for both the least (C = 0.0015), and the most (C = 0.006) population

transfer. We find that
〈
FD

quant(t)
〉
is very close to zero for C = 0.0015 since very little

population transfer occurs for this system. The diabatic QTSH and a2d QTSH results for

the classical force component
〈
FD

class(t)
〉
that depends on the population on each surface

deviated from each other.

With reference to Fig 3.19(a) observed that the diabatic QTSH and a2d QTSH results for

the classical force component
〈
FD

class(t)
〉
and the total force component

〈
FD

tot(t)
〉
differ from

each other, and exhibits small fluctuations from zero. For the dual avoided crossing [1]

with C = 0.0015, the lack of distinct extrema in the diabatic QTSH and a2d QTSH results

for
〈
FD

class(t)
〉
and

〈
FD

tot(t)
〉
loosely agrees with the process depicted in Fig 2.9 where the

trajectories evolving only on V2(q) = 0 would give
〈
FD

class(t)
〉
=
〈
FD

tot(t)
〉
= 0.

With reference to Fig 3.19(b) observed that the diabatic QTSH result for the classical force

component
〈
FD

class(t)
〉
and the total force component

〈
FD

tot(t)
〉
has a maximum and minimum

during the transition during the time intervals of electronic transition t ≈ 7.5 fs to t ≈ 11.4 fs,

and t ≈ 12 fs to t ≈ 17.5 fs, while the maximum in the a2d QTSH results for
〈
FD

class(t)
〉
and〈

FD
tot(t)

〉
falls outside of the t ≈ 7.5 fs to t ≈ 11.4 fs time interval. QTSH in the diabatic

representation is likely to produce a better estimate of the forces involved in QTSH than in

the adiabatic representation for C = 0.006.
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With the assertion of QTSH being more accurate in the diabatic representation for the dual

avoided crossing model [1], we will explore this in Section 4.4.2 of Chapter 4.

Since the adiabatic QTSH and d2a QTSH results, and the diabatic QTSH and a2d QTSH

results for all force components almost perfectly agree for the simple avoided crossing system

[1], making them representation invariant in QTSH for the processes depicted by Figs 2.2 and

2.4 in the adiabatic representation, and by Figs 2.3 and 2.5 in the diabatic representation,

for the simple avoided crossing system [1].

The adiabatic QTSH and d2a QTSH results, and the diabatic QTSH and a2d QTSH results

for the quantum force components almost perfectly agree with each other for the dual avoided

crossing system [1], making the quantum force component representation invariant in QTSH

for the process depicted by Fig 2.8 in the adiabatic representation, and by Fig 2.9 in the

diabatic representation, for the dual avoided crossing system [1].

The adiabatic QTSH and d2a QTSH results, and the diabatic QTSH and a2d QTSH results

for the classical force and total force components loosely agree with each other for the dual

avoided crossing system [1], making these force components representation invariant in QTSH

for the process depicted by Fig 2.8 in the adiabatic representation, and by Fig 2.9 in the

diabatic representation, for the dual avoided crossing system [1]. Since the classical force

component is highly dependent on the populations, the discrepancies are likely to be due to

inconsistencies in surface hopping that arises as a result of overcoherence [50, 59].

126



Figure 3.17: Comparison of the diabatic QTSH and a2d QTSH results for the system phase
space averaged classical force

〈
FD

class(t)
〉
, quantum force

〈
FD

quant(t)
〉
, and total force

〈
FD

total(t)
〉

in the diabatic representation for the non-adiabatic process in the simple avoided crossing
system depicted by Fig 2.3, with the diabatic coupling constants (a) C = 0.0005, and (b)
C = 0.002. The inset shows a magnified view of the plot in the time interval t = 10 fs and
t = 40 fs.
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Figure 3.18: Comparison of the diabatic QTSH and a2d QTSH results for the system phase
space averaged classical force

〈
FD

class(t)
〉
, quantum force

〈
FD

quant(t)
〉
, and total force

〈
FD

total(t)
〉

in the diabatic representation for the non-adiabatic process in the simple avoided crossing
system depicted by Fig 2.5, with the diabatic coupling constants (a) C = 0.0005, and (b)
C = 0.002. The inset shows a magnified view of the plot in the time interval t = 10 fs and
t = 40 fs.
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Figure 3.19: Comparison of the diabatic QTSH and a2d QTSH results for the system phase
space averaged classical force

〈
FD

class(t)
〉
, quantum force

〈
FD

quant(t)
〉
, and total force

〈
FD

total(t)
〉

in the diabatic representation for the non-adiabatic process in the dual avoided crossing
system depicted by Fig 2.9, with the diabatic coupling constants (a) C = 0.0015, and (b)
C = 0.006. The inset shows a magnified view of the plot in the time interval t = 7.5 fs and
t = 17.5 fs.
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3.5 Conclusions

Since the d2a QTSH and adiabatic QTSH results, and the a2d QTSH and diabatic QTSH

results, for the system phase space averaged components of the diagonal/population elements

and off-diagonal/coherence elements of the Wigner distribution [74, 75], and the forces, are

in good agreement - with the slight discrepancies - we conclude that the computation of

the system phase space averages of these quantities by the QTSH method is representation

invariant.

While the same system appears to be different in the adiabatic and the diabatic repre-

sentation, the coupled electronic-nuclear dynamics governed by total forces acting on the

trajectories in both representations are, as we would expect, to good approximation, the

same. We found this to be true even though the classical force components and quantum

force components, given by Eqns 3.49 and 3.50 in the adiabatic representation, and Eqns 3.53

and 3.54 in the diabatic representation, are vastly different. We will explore the interplay

between the classical and non-classical effects of these forces and representation in Chapter

4.

We note that the results for the quantum force component obtained from the d2a QTSH

and adiabatic QTSH simulations, and from the a2d QTSH and diabatic QTSH simulations,

are in perfect agreement. Any deviations in the total force were due to deviations in the

classical force components that are highly dependent on the potential energy surface that the

trajectories are on. As such, the discrepencies can be explained by inconsistencies in surface

hopping with QTSH in either representation. The breakdown of the consistency of surface

hopping in QTSH is due to overcoherence [1, 3, 59] that results from the use of independent

trajectories [62, 63].
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An improvement of the transformation between representations is likely to be observed if the

proper Wigner-Moyal [91] transformation of trajectories between representation was carried

out and utilized (See Section 3.6), instead of assuming that the trajectories in the diabatic

and adiabatic representations are equivalent.

3.6 Future Work

In ongoing work by Martens [92], it has been found that the trajectories in the diabatic and

adiabatic representation are different.

Performing the Wigner-Moyal transformation [73, 91] to the trajectories in the diabatic

representation results in the derivation of a different set of equations of motion, population

dynamics equations, and equations for energy, force, and populations.

This extends beyond the O(ℏ0) simplifications that we have made in the earlier part of this

chapter. Here we present the result of performing the Wigner-Moyal [91] transformation

[73, 91] on the diabatic trajectories to obtain the adiabatic trajectories.

In the semiclassical limit, the matrix representing the trajectory j, a localized state in phase

space for the two-state system in the diabatic representation can be expressed as

∆D
j (q,p, t) =

δ(q − qj)δ(p− pj) 0

0 δ(q − qj)δ(p− pj)

 , (3.56)

a diagonal matrix of delta functions in phase space.

The matrix representing the trajectory j in the adiabatic representation ∆A
j (q,p, t) derived

by performing the Wigner-Moyal [91] transformation given by Eqn 1.15 on ∆D
j (q,p, t) was
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found to be

∆A
j (q,p, t) =

 δqj
δpj−ℏd(qj)+δpj+ℏd(qj)

2
−i δqj

δpj−ℏd(qj)−δpj+ℏd(qj)

2

i δqj
δpj−ℏd(qj)−δpj+ℏd(qj)

2
δqj

δpj−ℏd(qj)+δpj+ℏd(qj)

2

 , (3.57)

where δqj , δpj−ℏd (qj), and δpj+ℏd (qj) are shorthand for δ(q − qj), δ
(
p − (pj − ℏd (qj))

)
, and

δ
(
p− (pj + ℏd (qj))

)
, respectively.

Utilizing the adiabatic trajectories ∆A
j (q,p, t), we go beyond the O(ℏ0) approximation we

have m a more accurate QTSH method for future use.
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Chapter 4

Classical and Non-classical Effects of

Forces and Representation

This chapter contains verbatim excerpts from Dorothy Miaoyu Huang, Craig C. Martens;

Nonclassical effects in molecular dynamics with electronic transitions (Unpublished).

4.1 Introduction

As introduced in Section 1.5.2 of Chapter 1, the QTSH forces in both the diabatic and

adiabatic representations have a classical and a quantum force component [62, 63].

The QTSH classical force, like the FSSH force drives the motion of the trajectories along

a single electronic potential surface in nuclear phase space [1, 50]. The quantum force

component that is absent from the FSSH method [1], as shown in Chapter 2, mediates

the feedback between the nuclear and electronic degrees of freedom, acting to conserve the

quantum-classical energy on the ensemble level, even as non-adiabatic transitions occur

[62, 63, 81] in QTSH. In the limit of complete and localized population transfer, we showed
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that the work done by the QTSH quantum force is akin to the ad hoc momentum ‘jumps’

imposed to conserve the classical energy on the trajectory level in FSSH [81]. In systems

where non-adiabatic transitions do not occur, the quantum force component should vanish,

with the classical force being the only driver of the coupled electronic-nuclear dynamics in

QTSH.

In this chapter, we will analyze the forces calculated by the QTSHmethod [62, 63], that act on

a localized wavepacket/trajectory in the limit of complete and localized population transfer

from one electronic state to another in the adiabatic representation. We also present a simple

derivation of its equivalent force in the above mentioned limit in the diabatic representation.

In doing so, we will demonstrate that non-adiabatic processes driven only by the classical

force on a single electronic state in the diabatic representation are highly non-classical in

the adiabatic representation, where both the classical and quantum force components play

a significant role in the dynamics of the system, as a result of electronic transition(s) that

take place.

We will then present numerical QTSH results in the diabatic and adiabatic representations

to demonstrate the validity of the assertions made for the modified Tully’s simple avoided

crossing, and dual avoided crossing systems [1].

Finally, we utilize the representation invariance of the QTSH phase space averaged popu-

lations, as found in Chapter 3, to obtain more accurate phase space averaged population

dynamics results for a highly non-classical process in the adiabatic representation. We do so

by performing the QTSH method in the diabatic representation, for which the corresponding

process is highly classical, before transforming the QTSH population dynamics results to the

adiabatic representation (i.e. QTSH d2a).
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4.2 Simple Derivation of Adiabatic Forces

In Chapter 3, we have shown that the phase space averaged total force in the adiabatic and

diabatic representations,
〈
F A

total(t)
〉
and

〈
FD

total(t)
〉
are equivalent (Eqn 3.52) and verified this

with QTSH results in both representations.

While we have shown the transformation theory of the forces in the diabatic and adiabatic

representations in greater detail in the Chapter 3, we made simplifications by taking the limit

of complete and localized population transfer - as we have done in the derivation of the FSSH

momentum jumps in Chapter 2 - in this chapter. Note that the subscript j that indicates that

the quantities derived in this section, are in fact trajectory phase space averaged quantities

for the phase space coordinates associated with trajectory j,
(
qj(t),pj(t)

)
, are dropped since

we are performing the analysis by utilizing a localized wavepacket/single trajectory.

In this limit, Eqn 3.52 can be rewritten as

F A
total(t) = FD

total(t). (4.1)

For the rest of this section, we make the assumption of complete and localized population

transfer in the adiabatic representation, unless otherwise stated.

4.2.1 Classical Force in the Adiabatic Representation

The adiabatic potentials for a two-state system V±(q) can be expressed in terms of the

diabatic diagonal potentials V1/2(q), and the diabatic off-diagonal potential V12(q) as in Eqn

3.29.
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Taking the negative gradient of V±(q) on both sides of Eqn 3.29, we obtain the adiabatic

classical force F A
class(t), where

F A
± (t) = −

∇qV1(q) +∇qV2(q)

2
∓
(
∇qV1(q)−∇qV2(q)

2
cosϕ(q)+∇qV12(q) sinϕ(q)

)
. (4.2)

4.2.2 Quantum Force in the Adiabatic Representation

Taking the gradient of both sides of Equation 1.7, and utilizing Equation 1.9, the non-

adiabatic coupling vector d (q) can be expressed in terms of the diabatic potentials as

d (q) =
−∇qV12(q)

(
V1(q)− V2(q)

)
+ V12(q)

(
∇qV1(q)−∇qV2(q)

)(
V1(q)− V2(q)

)2
+ 4V12(q)2

. (4.3)

Noting that the difference in the adiabatic potentials ℏωA(q) = V+(q)− V−(q) is

ℏωA(q) =

√(
V1(q)− V2(q)

)2
+ 4V12(q)2, (4.4)

the non-adiabatic coupling vector d (q) can be rewritten as

d (q) =
−∇qV12(q)

ℏωA(q)
cosϕ(q) +

∇qV1(q)−∇qV2(q)

2ℏωA(q)
sinϕ(q). (4.5)

Substituting the above into the expression for the quantum force in the adiabatic represen-

tation given by Eqn 2.33, we found that the quantum force

F A
quant(t) =

(
− 2∇qV12(q) cosϕ(q) +

(
∇qV1(q)−∇qV2(q)

)
sinϕ(q)

)
αA(t), (4.6)

depends on the real part of the coherence in the adiabatic represenation αA(t).
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4.2.3 Application to Tully’s 1D Systems [1]

In this section we will analyze the QTSH forces for the modified simple avoided crossing

and dual avoided crossing systems [1] in the adiabatic representation, where non-adiabatic

transitions are involved, and derive the equivalent forces in the diabatic representation.

We begin with a brief description of the processes studied in the adiabatic representation.

The processes involving the simple avoided crossing system [1] involve an electronic tran-

sition, either from the upper adiabatic state V+(q) to the lower adiabatic state V−(q) (Fig

2.2), or from the lower adiabatic state V−(q) to the upper adiabatic state V+(q) (Fig 2.4).

We will refer to these transitions in shorthand as +→ − and − → +, respectively.

The process involving the dual avoided crossing system depicted in Fig 2.8 involves a − → +

electronic transition, a short evolution on the upper adiabatic state V+(q) electronic state,

and a subsequent +→ − electronic transition (Fig 2.8).

For the simple avoided crossing system [1] in the diabatic representation, the processes

depicted in Fig 2.3, and Fig 2.5, involve no electronic transitions, with the trajectory evolving

along the single diabatic state V1(q), and along the single diabatic state V2(q), respectively.

This is equivalently expressed as the diabatic localized density matrix only having one term

throughout the processes, the diagonal population term ρD11(t) (Eqn 2.4) or ρD22(t) (Eqn 2.8).

For the dual avoided crossing system [1], the process in the diabatic representation depicted

in Fig 2.9 involves the trajectory evolving along the diabatic state V2(q) = 0. This is

equivalently expressed as the diabatic localized density matrix only having one term, the

diagonal population term ρD22(t) (Eqn A.6), and no coherence terms throughout the process.

This suggests that the total force in the diabatic representation FD
total(t) for the non-adiabatic

processes occurring in the simple avoided crossing and dual avoided crossing systems [1]
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described above has to be equal to the classical force associated with the diabatic surface

(V1(q) or V2(q)) that the trajectory is evolving on, FD
class,1(t) or F

D
class,2(t).

The total diabatic force for the simple avoided crossing system [1] is

FD
total(t) = FD

class,1(t), (4.7)

for the non-adiabatic process depicted in Fig 2.3, and

FD
total(t) = FD

class,2(t), (4.8)

for the non-adiabatic process depicted in Fig 2.5.

Similarly, the total diabatic force for the non-adiabatic process in the dual avoided crossing

system [1] depicted by Fig 2.9 is

FD
total(t) = FD

class,2(t). (4.9)

We now find the total adiabatic force F A
total(t) for the corresponding non-adiabatic processes

in the adiabatic representations by evaluating the classical and quantum force components of

the adiabatic force F A
class(t) and F A

quant(t) before, during, and after the electronic transition(s),

and show that the total force is the same in both the adiabatic and diabatic representations

as given in Eqn 4.1.

We first perform the analysis of QTSH forces for the processes in the simple avoided crossing

system with only one non-adiabatic transition, before performing a similar analysis for the

process in the dual avoided crossing system that involves two non-adiabatic transitions.
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Simple Avoided Crossing System

We now use the generalized expressions for the quantities αA(t) and F A
quant(t) for the processes

in the simple avoided crossing system system [1] (Figs 2.2 and 2.4).

For + → − in the adiabatic representation, the generalized expressions for the quantities

αA(t) and F A
quant(t) were

αA(t) = −1

2
sinϕ(q), (4.10)

and

F A
quant(t) = ∇qV12(q) sinϕ(q) cosϕ(q)−

(
∇qV1(q)−∇qV2(q)

)
2

sin2 ϕ(q). (4.11)

For − → + in the adiabatic representation, the generalized expressions for the quantities

αA(t) and F A
quant(t) were

αA(t) =
1

2
sinϕ(q), (4.12)

and

F A
quant(t) = −∇qV12(q) sinϕ(q) cosϕ(q) +

(
∇qV1(q)−∇qV2(q)

)
2

sin2 ϕ(q). (4.13)

Since the real part of the coherence αA(t) and the quantum force F A
quant(t) (Eqn 2.33) in

the adiabatic representation depends on the diabatic populations, αA(t) and F A
quant(t) were

found to have opposite signs for the electronic transitions +→ − and − → +. This agrees

with the Figs 2.6(d) and 2.7(b).

As observed in Fig 2.6(b), in general, the strength of the adiabatic coupling d (q) for the one-
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dimensional system becomes stronger and more localized as diabatic coupling constant C is

decreased. In the limit C → 0, the plot for the nonadiabatic mixing angle in one-dimension

ϕ(q) in Fig 2.6(a) becomes a step function as depicted in Fig 4.1.

Figure 4.1: Nonadiabatic mixing angle for the simple avoided crossing system given by the
diabatic potentials in Eqns 1.83-1.84, where the diabatic coupling constant C → 0. The
blue marker marks ϕ(0) = π

2
, ϕ(q) at the nuclear coordinate where the transition takes place

at q∗ = 0. The orange markers mark ϕ(q(t∗ − ϵ)) = 0 and ϕ(q(t∗ − ϵ)) = π, the nuclear
coordinates the instant ϵ right before and right after the transition, q(t∗ − ϵ) and q(t∗ + ϵ),
respectively.

We now find the adiabatic forces - both the quantum and classical - in terms of the diabatic

potentials at three time points, the time of the instantaneous electronic transition t = t∗,

the instant ϵ before the electronic transition t = t∗− ϵ, and the instant ϵ after the electronic

transition t = t∗ + ϵ.

For the processes depicted in Figs 2.2 and 2.4, in generalized coordinates q(t), the electronic

transition taking place is completely localized and complete at the nuclear coordinate q(t∗) =

0, where q∗ ≡ q(t∗). This corresponds to the vertical step in Fig 4.1. We took ϕ(q∗) = π
2
to

be the midpoint of the step at q∗.
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At the instant ϵ before and after the transition, where the generalized coordinates were

q(t∗ − ϵ) and q(t∗ + ϵ), respectively. The corresponding non-adiabatic mixing angles were

ϕ
(
q(t∗ − ϵ)

)
= 0 and ϕ

(
q(t∗ + ϵ)

)
= π.

The total force F A
total(t) in the adiabatic representation consists of a classical component

F A
class(t) and a quantum component F A

quant(t) that can be expressed as the sum

F A
total(t) = F A

class(t) + F A
quant(t). (4.14)

We proceed to compute classical forces F A
class(t) and quantum forces F A

quant(t), in the limit

C → 0.

At the instant before the electronic transition where t = t∗−ϵ, the classical force involves only

one adiabatic state, the upper adiabatic state V+(q) or the lower adiabatic state V−(q), for

the non-adiabatic process that involved the +→ − (Fig 2.2) or − → + (Fig 2.4) electronic

transitions, respectively.

Given that ϕ (q(t∗ − ϵ)) = 0,

cosϕ (q(t∗ − ϵ)) = 1, (4.15)

and

sinϕ (q(t∗ − ϵ)) = 0. (4.16)

Substituting Eqns 4.15-4.16 into the expression for the classical force in the adiabatic repre-

sentation (Eqn 4.2), for the process involving the +→ − electronic transition (Fig 2.2), the
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classical force was found to be

F A
class(t

∗ − ϵ) = F A
+ (t∗ − ϵ) = −∇qV1

(
q(t∗ − ϵ)

)
, (4.17)

and for the process involving the − → + electronic transition (Fig 2.4), the classical force

was found to be

F A
class(t

∗ − ϵ) = F A
− (t

∗ − ϵ) = −∇qV2

(
q(t∗ − ϵ)

)
. (4.18)

Performing the same procedure for the quantum force, Eqn 4.6 for the process involving

the + → − electronic transition (Fig 2.2), and Eqn 4.13 for the process involving the

− → + electronic transition (Fig 2.4), the quantum force at the instant before the electronic

transition in the adiabatic representation F A
quant(t

∗ − ϵ) was found to be

F A
quant(t

∗ − ϵ) = 0 (4.19)

for both processes. This is consistent with our picture of complete and localized popula-

tion transfer, where the quantum force is instantaneous and impulsive, vanishing when no

electronic transition takes place.

The classical force for each process at t = t∗ − ϵ, Eqn 4.17 for the process with the + → −

transition, and Eqn 4.18 for the process with the − → + transition, combines with the

corresponding quantum force (Eqn 4.19) to give the total force for each process in the

adiabatic representation.
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The total force in the adiabatic representation was found to be

F A
total(t

∗ − ϵ) = −∇qV1

(
q(t∗ − ϵ)

)
= FD

class,1(t
∗ − ϵ), (4.20)

the classical force associated with the evolution of a localized wavepacket/trajectory along

the diabatic surface V1(q), for the process involving the + → − electronic transition in the

adiabatic representation (Fig 2.2), and

F A
total(t

∗ − ϵ) = −∇qV2

(
q(t∗ − ϵ)

)
= FD

class,2(t
∗ − ϵ), (4.21)

the classical force associated with the evolution of a localized wavepacket/trajectory along

the diabatic surface V2(q), for the process involving the − → + electronic transition in the

adiabatic representation (Fig 2.4).

We now derive the forces during the instantaneous transition at t = t∗, where the nuclear

coordinate is q∗ = 0.

Given that ϕ(q∗) = π
2
,

cosϕ(q∗) = 0, (4.22)

and

sinϕ(q∗) = 1. (4.23)
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Regardless of whether the electronic transition was from + → − (Fig 2.2) or from − → +

(Fig 2.4) in the adiabatic representation, the localized wavepacket/trajectory experiences

both the upper and lower adiabatic potentials V+(q
∗) and V−(q

∗) equally at the instant of

the transition t∗.

The classical adiabatic force for both systems were found to be given by the same expression

F A
class(t

∗) = −
∇qV+

(
q∗
)
+∇qV−

(
q∗
)

2

= −
∇qV1

(
q∗
)
+∇qV2

(
q∗
)

2
. (4.24)

Substituting Eqns 4.22-4.23 into the expression of the quantum force, Eqn 4.6 for the process

involving the +→ − electronic transition (Fig 2.2), and Eqn 4.13 for the process involving

the − → + electronic transition (Fig 2.4), the quantum force at the instant of transition t∗

in the adiabatic representation F A
quant(t

∗) were found to be

F A
quant(t

∗) = −∇qV1(q
∗)−∇qV2(q

∗)

2
, (4.25)

for the process involving the +→ − electronic transition (Fig 2.2), and

F A
quant(t

∗) =
∇qV1(q

∗)−∇qV2(q
∗)

2
, (4.26)

for the process involving the − → + electronic transition (Fig 2.4). Note the opposite sign

of the quantum force for both processes. This is congruous with the acceleration of the

localized wavepacket/trajectory for the +→ − electronic transition, and the deceleration of

the localized wavepacket/trajectory for the − → + electronic transition.
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Combining F A
quant(t

∗), Eqn 4.25 for the + → − transition, and Eqn 4.26 for the − → +

transition with F A
class(t

∗) (Eqn 4.24), the total force in the adiabatic representation at the

instant of transition t∗ was found to be

F A
total(t

∗) = −∇qV1(q
∗) = FD

class,1(t
∗), (4.27)

the classical force acting on the localized wavepacket/trajectory along the single diabatic

potential energy surface V1(q
∗), as depicted in Fig 2.3 for the +→ − transition, and

F A
total(t

∗) = −∇qV2(q
∗) = FD

class,2(t
∗), (4.28)

the classical force acting on the localized wavepacket/trajectory along the single diabatic

potential energy surface V2(q
∗), as depicted in Fig 2.5 for the − → + transition.

Finally, we derive the forces at the instant after the transition t = t∗ + ϵ.

Given that ϕ (q(t∗ + ϵ)) = π,

cosϕ (q(t∗ + ϵ)) = −1, (4.29)

and

sinϕ (q(t∗ + ϵ)) = 0. (4.30)

Substituting Eqns 4.29-4.30 into Eqn 4.2, the expression for the classical force (Eqn 4.2) was

found to be

F A
class(t

∗ + ϵ) = F A
− (t

∗ + ϵ) = −∇qV1

(
q(t∗ + ϵ)

)
, (4.31)
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for the process involving the +→ − electronic transition, and

F A
class(t

∗ + ϵ) = F A
+ (t∗ + ϵ) = −∇qV2

(
q(t∗ + ϵ)

)
, (4.32)

for the process involving the − → + electronic transition.

Substituting Eqns 4.29-4.30 into the expression of the quantum force, Eqn 4.11 for the

system involving the + → − electronic transition (Fig 2.2), and Eqn 4.13 for the system

involving the − → + electronic transition (Fig 2.4), the quantum force at the instant after

the electronic transition in the adiabatic representation F A
quant(t

∗ + ϵ) was found to be

F A
quant(t

∗ + ϵ) = 0, (4.33)

for both processes. As previously observed at the instant before the transition t = t∗ − ϵ,

the adiabatic quantum force is instantaneous and impulsive, vanishing when no electronic

transition takes place at t = t∗ + ϵ.

The classical force for each process at t = t∗ + ϵ, Eqn 4.31 for the process with the + → −

transition, and Eqn 4.32 for the process with the − → + transition, combines with the

corresponding quantum force (Eqn 4.33) to give the total force for each process in the

adiabatic representation.

The total force in the adiabatic representation at t = t∗ + ϵ is

F A
total(t

∗ + ϵ) = −∇qV1

(
q(t∗ + ϵ)

)
= FD

class,1(t
∗ + ϵ), (4.34)
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the classical force acting on the localized wavepacket/trajectory evolving along the diabatic

potential energy surface V1(q
∗+ ϵ) for the process that involves the +→ − transition in the

adiabatic representation, and

F A
total(t

∗ + ϵ) = −∇qV2

(
q(t∗ + ϵ)

)
= FD

class,2(t
∗ + ϵ), (4.35)

the classical force acting on the localized wavepacket/trajectory evolving along the diabatic

potential energy surface V2(q
∗+ ϵ) for the process that involves the − → + transition in the

adiabatic representation.

We have now shown that before, during, and after the complete and localized population

transfer, the total adiabatic force F A
tot(t) is equivalent the classical diabatic force experienced

on a single electronic potential energy surface, reflecting the process occurring on a single

electronic potential energy surface in the diabatic representation.

For the process involving the + → − electronic transition in the adiabatic representation

(Fig 2.2). Throughout the process, the total adiabatic force

F A
tot(t) = FD

class,1(t), (4.36)

the classical force acting to evolve the localized wavepacket/trajectory along a single diabatic

surface V1(q), making the process in the diabatic representation (Fig 2.3) highly classical

since the quantum force vanishes when no electronic transitions take place.

A similar conclusion can be drawn for the process involving the − → + electronic transition

in the adiabatic representation (Fig 2.4). Throughout the process, the total adiabatic force

F A
tot(t) = FD

class,2(t), (4.37)
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the classical force acting to evolve the localized wavepacket/trajectory along a single diabatic

surface V2(q), making the process in the diabatic representation (Fig 2.5) highly classical

since the quantum force vanishes when no electronic transitions take place.

Due to the non-adiabatic transition from one adiabatic state to another that occurs as a result

of complete and localized electronic population transfer in the adiabatic representation, the

processes depicted by Figs 2.2 and 2.4 that occur in the simple avoided system [1] are

highly non-classical in the adiabatic representation, involving the quantum force that acts

to conserve the quantum-classical energy on the ensemble level [62, 63, 81].

Substituting Eqn 4.7 into Eqn 4.36, and Eqn 4.8 into Eqn 4.37, we find that F A
tot(t) = FD

tot(t).

While the non-adiabatic processes in the simple avoided crossing system [1] are apparently

different in the adiabatic and the diabatic representations, the nuclear motion driven by the

total forces in both representations was the same. While highly non-classical in the adiabatic

representation, the non-adiabatic process is highly classical in the diabatic representation.

We will demonstrate the validity of these conclusions for the simple avoided crossing system

[1] with QTSH results in Section 4.4.

Dual Avoided Crossing System

A similar procedure used to analyze the forces in non-adiabatic processes occuring in the

simple avoided crossing system [1] in Section 4.2.3 was used to analyze the non-adiabatic

process occurring in the dual avoided crossing system [1] (Fig 2.8).

Similar to the process depicted in Fig 2.4, the process outlined above for the dual avoided

crossing system [1] in the diabatic representation only involves dynamics only on the diabatic

state V2(q).
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This resulted in the same generalized expression for quantities αA(t) and F A
quant(t) given by

Eqn 4.12 and Eqn 4.13, respectively.

The adiabatic forces - both the quantum and classical - in terms of the diabatic potentials

were found at five timepoints, the time of the first instantaneous electronic transition t = t∗1,

the instant ϵ before the first electronic transition t = t∗1 − ϵ, and the instant ϵ after the first

electronic transition t = t∗1 + ϵ, the time of the second instantaneous electronic transition

t = t∗2, the time interval between the instant after the first electronic transition and before

the second electronic transition t = τ , and the instant after the second electronic transition

t = t∗2 + ϵ. We note that the nuclear coordinate during electronic transitions are denoted by

q(t∗1) ≡ q∗1 and q(t∗2) ≡ q∗2.

Figure 4.2: (a) The non-adiabatic mixing angle ϕ(q), (b) the non-adiabatic coupling vector
d (q), (c) the real part of the coherence α(q), and (d) the quantum force Fquant(q) for the
process shown in Fig 2.8, as described in text. The dotted, dashed, and dashdotted lines
represent the models where C = 0.0015, 0.003, and 0.006, respectively.

As observed in Fig 4.2(b), in general, the strength of the adiabatic coupling d (q) for the one-

dimensional system becomes stronger and more localized as diabatic coupling constant C is
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decreased. In the limit C → 0, the plot for the nonadiabatic mixing angle in one-dimension

ϕ(q) in Fig 2.6(a) becomes a dual step function as depicted in Fig 4.3, with a step from

ϕ(q∗1) = 0 to ϕ(q∗1) = π at q∗1 = −1.57, and a step from ϕ(q∗2) = π to ϕ(q∗2) = 0 at q∗2 = 1.57.

Figure 4.3: Nonadiabatic mixing angle for the simple avoided crossing system given by the
diabatic potentials in Eqns 1.86-1.87, where the diabatic coupling constant C → 0. The blue
marker marks ϕ(−1.57) = π

2
and ϕ(1.57) = π

2
, where a complete and localized transition

from the lower to the upper adiabatic state takes place at q∗1 = −1.57, and from the upper
to the lower adiabatic state at q∗2 = 1.57 in the adiabatic representation given by Fig 2.8.

The details of this analysis can be found in Appendix C.

Having performed the analysis, we found that the adiabatic quantum force F A
quant(t) is only

non-zero at the two instants of electronic transitions t = t∗1 and t = t∗2, consistent with our

analysis of F A
quant(t) acting to create FSSH-like momentum ‘jumps’ in the limit of complete

and localized population transfer [81].

We also found that before, during, between, and after the two complete and localized pop-

ulation transfers, the total adiabatic force F A
tot(t) is equivalent the classical diabatic force

associated with the electronic diabatic potential energy surface V2(q).
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In the adiabatic representation (Fig 2.8), throughout the process, the total adiabatic force

F A
tot(t) = FD

class,2(t), (4.38)

the classical force acting to evolve the localized wavepacket/trajectory along diabatic surface

V2(q), making the process in the diabatic representation (Fig 2.9) highly classical since the

quantum force vanishes when no electronic transitions take place.

Due to the two complete and localized electronic population transfers, the non-adiabatic

process in the dual avoided crossing system [1] depicted by Fig 2.8 was highly non-classical in

the adiabatic representation, involving the quantum force that acts to conserve the quantum-

classical energy on the ensemble level when electronic transitions take place [62, 63, 81].

Substituting Eqn 4.9 into Eqn 4.38, we find that F A
tot(t) = FD

tot(t).

While the non-adiabatic processes in the dual avoided crossing system [1] are apparently

different in the adiabatic and the diabatic representations, the nuclear motion driven by the

total forces in both representations was the same. While highly non-classical in the adiabatic

representation, the non-adiabatic process is highly classical in the diabatic representation.

We will demonstrate the validity of these conclusions for the dual avoided crossing system

[1] with QTSH results in Section 4.4.

4.3 Computational Details

The description of the systems used and the simulation details are as in Section 2.3 of

Chapter 2, with the following changes.
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In this chapter, QTSH was run in both the diabatic and adiabatic representations [62, 63].

We also ran QTSH [62, 63] in the adiabatic representation, and QTSH d2a (as outlined

in Section 3.3 of Chapter 3) for the initial momenta condition p0 = ℏk0 = 8 a.u. for the

process starting on the lower adiabatic surface for the simple avoided crossing system [1] with

C = 0.001, and the initial momenta condition p0 = ℏk0 = 77.2 a.u. for the process starting

on the lower adiabatic surface for the dual avoided crossing system [1] with C = 0.0015.

4.4 Results & Discussion

4.4.1 Classical and Non-classical Forces

In this section, we show that while the processes in the simple avoided crossing system

[1] described by Figs 2.2 and 2.4, and the process in the dual avoided crossing system [1]

described by Fig 2.8 in the adiabatic representation are non-classical due to non-adiabatic

transitions that take place during the process, the corresponding processes for the simple

avoided crossing system [1] described by Figs 2.3 and 2.5, and the process in the dual avoided

crossing system [1] described in Fig 2.9 in the diabatic representation are highly classical.

We demonstrate that the quantum force component in the adiabatic representation F A
quant

becomes significant in the region where electronic transitions are taking place, and that

the quantum force component in the diabatic representation FD
quant makes minimal to no

contributions to the total force in the diabatic representation FD
total for the processes in the

modified simple avoided crossing and dual avoided crossing systems [1].

We then applied the derived equations, Eqns 4.36-4.37 to the processes occuring in the

modified Tully simple avoided crossing system [1], and Eqn 4.38 to the process occuring in

the modified dual avoided crossing system [1], and test its validity with QTSH [62, 63] results
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in the adiabatic and diabatic representations.

Finally, we show how we can utilize the representation invariance of QTSH [62, 63] as shown

in Chapter 3 to obtain more accurate QTSH population results in the adiabatic representa-

tion by running d2a QTSH as described in Section 3.3 of Chapter 3.

The results of the QTSH simulations in the adiabatic representation were used to obtain the

phase space averaged total adiabatic force that was computed as

〈
F A

total(t)
〉
=
〈
F A

class(t)
〉
+
〈
F A

quant(t)
〉
, (4.39)

where the phase space averaged classical adiabatic force was computed as

〈
F A

class(t)
〉
=

1

N

N∑
j

−σA
j (t)∇qjV+(qj)−

(
1− σA

j (t)∇qj

)
V−(qj), (4.40)

and the phase space averaged quantum adiabatic force was computed as

〈
F A

quant(t)
〉
=

1

N

N∑
j

2ℏωA
j d (qj)α

A
j (t). (4.41)

The results of the QTSH simulations in the diabatic representation were also used to obtain

the phase space averaged total diabatic force that was computed as

〈
F A

total(t)
〉
=
〈
FD

class(t)
〉
+
〈
FD

quant(t)
〉
, (4.42)

where the phase space averaged classical adiabatic force was computed as

〈
FD

class(t)
〉
=

1

N

N∑
j

−σD
j (t)∇qjV1(qj)−

(
1− σD

j (t)∇qj

)
V2(qj), (4.43)
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and the phase space averaged quantum diabatic force was computed as

〈
F A

quant(t)
〉
=

1

N

N∑
j

−2αA
j ∇qjV1(qj). (4.44)

The results of the QTSH simulations in the diabatic representation were also used to obtain

the phase space averaged classical diabatic force on separate single potential energy surfaces

V1(q) and V2(q) that were computed as

〈
FD

class,1(t)
〉
=

1

N

N∑
j

−σD
j (t)∇qjV1(qj), (4.45)

and

〈
FD

class,2(t)
〉
=

1

N

N∑
j

−
(
1− σD

j (t)
)
∇qjV2(qj), (4.46)

respectively.

From Fig 2.6(b), we observed that the non-adiabatic coupling vector d (q) was strongest

and most localized when the diabatic coupling constant C in the expression for the diabatic

coupling potential V12(q) given by Eqn 1.84, was C = 0.0005 for the simple avoided crossing

system [1]. We make a similar observation for the dual avoided crossing system [1], where the

value of the parameter C = 0.0015, associated with the diabatic coupling potential given in

Eqn 1.87, gives rise to a strong and localized adiabatic coupling at q = −1.57 and q = 1.57

as shown in Fig 4.2(b).

Since we have made the assumption of complete and localized population transfer in the

adiabatic representation, we only considered processes involving the simple avoided crossing

system [1] where C = 0.0005, and the process involving the dual avoided crossing system [1]

where C = 0.0015.
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For the simple avoided crossing system [1] in the adiabatic representation that involves the

processes with the + → − transition (Fig 2.2) and the − → + transition (Fig 2.4), Figs

4.4(a) and 4.5(a) show that the dynamics of the trajectories in each process are driven by a

phase space average classical force component
〈
F A

class(t)
〉
that act to accelerate or decelerate

the trajectories along the electronic potential surfaces V+(q) or V−(q), respectively. Upon

entering into the region of strong non-adiabatic coupling where trajectories begin to hop from

+→ − or from − → + during the transition time interval between t = 10 fs and t = 30 fs,

the trajectories experience a positive or negative system phase space averaged quantum force〈
F A

quant(t)
〉
, respectively. The

〈
F A

quant(t)
〉
acts to conserve the average quantum-classical

energy due to the non-adiabatic transitions [62, 63, 81].

For the dual avoided crossing system [1] in the adiabatic representation that involves an

initial − → + transition at q∗1 and a subsequent + → − transition at q∗2 (Fig 2.8), Fig

4.14(a) shows that the dynamics of the trajectories are driven by a phase space average

classical force component
〈
F A

class(t)
〉
as they move along V−(q) at constant velocity until they

enter the region of strong coupling when the hopping of trajectories from − → + begins

to take place at t∗ ≈ 10.5 fs. During the transition, the localized trajectories experience

a simultaneous acceleration and deceleration by the phase space averaged classical force

component
〈
F A

class(t)
〉
and the negative phase space averaged quantum force

〈
F A

quant(t)
〉
,

respectively. Shortly after, when the second non-adiabatic transition + → − takes place

at t∗ ≈ 13 fs, the trajectories experience a simultaneous deceleration and acceleration by〈
F A

class(t)
〉
and

〈
F A

quant(t)
〉
, respectively. The net effect of the oppositely acting

〈
F A

class(t)
〉

and
〈
F A

quant(t)
〉
gave rise to an approximately zero phase space averaged total force in the

adiabatic representation
〈
F A

total(t)
〉
, resulting in an approximately constant velocity of the

trajectories throughout the process.

The significant contribution of
〈
F A

quant(t)
〉
to the system phase space averaged total force〈

F A
total(t)

〉
as observed in Figs 4.4(a), 4.5(a) and 4.14(a), indicated that these processes
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in the adiabatic representation for the simple avoided crossing and dual avoided crossing

systems [1] are highly non-classical, with significant work being done by the quantum forces

to conserve the system average quantum-classical energy [62, 63, 81].

As the corresponding processes in the simple avoided crossing system [1] depicted in Figs 2.3

and 2.5, and the corresponding process in the dual avoided crossing system [1] in the diabatic

representation do not involve any electronic transitions, the trajectories evolve along a single

diabatic state.

With reference to Figs 4.4(b), 4.5(b) and 4.14(b), the dynamics of trajectories in the diabatic

representation is driven only by a phase space averaged classical force component
〈
FD

class

〉
with the quantum force

〈
FD

quant

〉
= 0 throughout the process.

While the processes occurring in the simple avoided crossing and dual avoided crossing

systems [1] in the adiabatic representation are highly non-classical due to the non-adiabatic

transitions that take place, the corresponding processes are highly classical in the diabatic

representation.

We have shown that the dynamics of trajectories of the non-adiabatic processes in the adi-

abatic representation are highly non-classical, with both the classical motion of trajectories

along the adiabatic electronic potentials and the average quantum-classical energy conserva-

tion during electronic transitions [62, 63, 81] that are driven by
〈
F A

class(t)
〉
and

〈
F A

quant(t)
〉
,

respectively.

We have also shown that the dynamics of trajectories of the corresponding non-adiabatic

processes in the diabatic representation are conversely highly classical, with only classical

motion of trajectories along the diabatic electronic potentials, driven by
〈
FD

class(t)
〉
.
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Figure 4.4: (a) Classical and quantum force components that make up the total force in
the adiabatic representation for the process in Fig 2.2. (b) Classical and quantum force
components that make up the total force in the diabatic representation for the process in
Fig 2.3. Diabatic potentials for the simple avoided crossing system [1] are given in Eqns
1.83-1.84, with the diabatic potential coupling constant C = 0.0005.
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Figure 4.5: (a) Classical and quantum force components that make up the total force in
the adiabatic representation for the process in Fig 2.4. (b) Classical and quantum force
components that make up the total force in the diabatic representation for the process in
Fig 2.5. Diabatic potentials for the simple avoided crossing system [1] are given in Eqns
1.83-1.84, with the diabatic potential coupling constant C = 0.0005.
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Figure 4.6: (a) Classical and quantum force components that make up the total force in
the adiabatic representation for the process in Fig 2.8. (b) Classical and quantum force
components that make up the total force in the diabatic representation for the process in
Fig 2.9. Diabatic potentials for the simple avoided crossing system are given in Eqns 1.86-
1.87, with the diabatic potential coupling constant C = 0.0015.
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We now show that as derived in Section 4.2.3, that the system phase space averaged total

force in the adiabatic representation
〈
F A

total(t)
〉
is in fact equivalent to the system phase

space averaged classical force on a single diabatic surface,
〈
FD

class,1(t)
〉
for the surface V1(q),

or
〈
FD

class,2(t)
〉
for surface V2(q) in the diabatic representation.

With reference to Fig 4.7, we found that for the non-adiabatic process in simple avoided

crossing system [1] that involves the +→ − electronic transition (Fig 2.2) that is driven by〈
F A

total(t)
〉
in the adiabatic representation, is equivalent to

〈
FD

class,1(t)
〉
, the classical force that

acts to evolve trajectories along the single diabatic surface V1(q) in the diabatic represention

(Fig 2.3). This agrees with Eqn 4.36 that we derived in Section 4.2.3.

With reference to Figs 4.8 and 4.9, we found that for the non-adiabatic process in simple

avoided crossing system [1] that involves the − → + electronic transition (Fig 2.4) and the

non-adiabatic process in dual avoided crossing system [1] (Fig 2.8) that is driven by
〈
F A

total(t)
〉

in the adiabatic representation, is equivalent to
〈
FD

class,2(t)
〉
, the classical force that acts to

evolve trajectories along the single diabatic surface V2(q) in the diabatic represention (Figs

2.5 and 2.9). This agrees with Eqns 4.37 and 4.38 that we derived in Section 4.2.3.

While the agreement between
〈
F A

total(t)
〉
and

〈
FD

class,2(t)
〉
in Fig 4.9 is not perfect, the devi-

ation is sufficiently small.
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Figure 4.7: Phase space averaged classical diabatic force associated with the localized quan-
tum states/trajectories traveling along the single diabatic potential energy surface V1(q),
and the phase space averaged total adiabatic force corresponding to the process in Fig 2.2.
Diabatic potentials for the simple avoided crossing system are given in Eqns 1.83-1.84, with
the diabatic coupling constant C = 0.0005.

Figure 4.8: Phase space averaged classical diabatic force associated with the localized quan-
tum states/trajectories traveling along the single diabatic potential energy surface V2(q),
and the phase space averaged total adiabatic force corresponding to the process in Fig 2.4.
Diabatic potentials for the simple avoided crossing system [1] are given in Eqns 1.83-1.84,
with the diabatic coupling constant C = 0.0005.
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Figure 4.9: Phase space averaged classical diabatic force associated with the localized quan-
tum states/trajectories traveling along the single diabatic potential energy surface V2(q),
and the phase space averaged total adiabatic force corresponding to the process in Fig 2.8.
Diabatic potentials for the dual avoided crossing system are given in Eqns 1.86-1.87, with
the diabatic coupling constant C = 0.0015.

Being highly classical in the diabatic representation, the non-adiabatic processes in the sim-

ple and dual avoided crossing systems [1] are much simpler, evolving only along one diabatic

electronic potential. This in contrast to the adiabatic representation where numerous tra-

jectories hop from one surface to another. The imperfect feedback between the nuclear and

electronic degrees of freedom as a result slight inconsistencies in surface hopping as found in

Section 2.4.2 of Chapter 2 manifests in QTSH [62, 63] due to the independence of trajectories

in QTSH [62, 63]. The quantum force as given in Eqn 2.33 is dependent on the real part

of the coherence that can only be captured accurately if the trajectories are interdependent

[39–41, 52–58].

QTSH [62, 63] results in the diabatic representation are likely to be more accurate for non-

adiabatic processes that are highly non-classical in the adiabatic representation, but highly

classical in the diabatic representation since any surface hopping inconsistencies that arise
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will be minimized when few to no hops occur in QTSH.

Since QTSH [62, 63] provides a quantum-classical description of systems that is derived rig-

orously from QCLE [38–40], QTSH can be derived rigorously, and performed in both the

diabatic and adiabatic representations, we can exploit its representation invariance, as dis-

cussed in Chapter 3 to perform QTSH d2a (as described in Section 3.3) for non-adiabatic

processes that are highly classical in the diabatic representation, thereby improve the accu-

racy of the results obtained in the adiabatic representation.

4.4.2 Exploiting Representation Invariance

In Section 4.4, we found that for the simple avoided crossing system and dual avoided crossing

systems [1], the dynamics in the diabatic representation was much more classical than that

in the adiabatic representation, as a result of little to no population transfer in the diabatic

representation.

Since QTSH [62, 63] is representation invariant, as shown in Chapter 3, we exploit this

property of representation invariance to obtain more accurate QTSH results in the adiabatic

representation by employing QTSH d2a.

We will demonstrate this with a process in the simple avoided crossing system [1] and a

process in the dual avoided crossing system [1].

Simple Avoided Crossing System

From Sec 4.4, we found that for the simple avoided crossing system [1], involving the − →

+ transition in the adiabatic representation, both the classical and quantum forces were

significant with the classical force acting to propagate trajectories along a single potential
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energy surface, and the quantum force acting to create momentum jumps when a non-

adiabatic transition takes place.

In reducing the initial momentum to p0 = ℏk0 = 8 a.u. for the simple avoided crossing

system [1], and starting on the lower adiabatic surface V−(q), we found that because not

trajectories that hop to the upper adiabatic surface V+(q) have sufficient energy to remain

there, and undergo a subsequent hop to the lower adiabatic state V−(q). In systems where

the same trajectory hops multiple times, the problem of overcoherence is more pronounced

[3] in the adiabatic representation.

In Fig 4.10, the adiabatic QTSH results are compared with the exact quantum result for

(a) the system phase space averaged population on adiabatic surface -, ⟨ρ−−(t)⟩ and (b) the

system phase space averaged population on diabatic surface V2(q), ⟨ρ22(t)⟩ for the simple

avoided crossing system [1].

In Fig 4.11, we present the various system phase space averaged classical force, quantum force

and total force (a) in the adiabatic representation, and (b) in the diabatic representation for

the simple avoided crossing system [1].

With reference to Fig 4.10(a), the phase space averaged population for the lower adiabatic

state, ⟨ρ−−(t)⟩ for QTSH was found to be in good agreement with the exact quantum results

for the non-adiabatic transition − → + from t = 0 fs to t ≈ 45 fs. A larger than expected

population transfer of to the upper adiabatic state V+(q) then occurs with QTSH result

between t ≈ 45 fs and t ≈ 50 fs. The population transfer due to the first non-adiabatic

transition was ∼ 0.9. A second non-adiabatic transition + → − then occurs at a rate in

agreement to the quantum results between t ≈ 50 to t ≈ 70 fs. Finally the rate of + → −

becomes increasingly slower that of the quantum results, giving rise to the asymptotic value

of ⟨ρ−−(t)⟩ ≈ 0.85 that is ∼ 0.1 lower than the asymptotic value for the exact quantum

results.
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Figure 4.10: Comparison of QTSH against quantum wavepacket results (a) for ⟨ρ−−(t)⟩ in the
adiabatic representation, for the process in the simple avoided crossing system with the initial
population on the lower adiabatic surface, (b) and for ⟨ρ22(t)⟩ in the diabatic representation,
for the corresponding process in the diabatic representation. The trajectories had an average
starting momentum of ℏk0 = 8.0, with the diabatic potential coupling constant C = 0.001.
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Figure 4.11: (a) Classical and quantum force components that make up the total force in the
adiabatic representation for the process in the simple avoided crossing system with the initial
population on the lower adiabatic surface. (b) Classical and quantum force components that
make up the total force in the corresponding process in the diabatic representation. The
trajectories had an average starting momentum of ℏk0 = 8.0, with the diabatic potential
coupling constant C = 0.001.
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Figure 4.12: Comparison of QTSH, and the QTSH diabatic to adiabatic transformed (QTSH
d2a) results against exact quantum results for ⟨ρ−−(t)⟩, for the simple avoided crossing
system with the initial population on the lower adiabatic surface. The trajectories had an
average starting momentum of ℏk0 = 8.0, with the diabatic potential coupling constant
C = 0.001.

With reference to Fig 4.10(b), the phase space averaged population for the diabatic state

V2(q), ⟨ρ22(t)⟩ for QTSH [62, 63] was found to be in good agreement with the exact quantum

results with non-adiabatic transitions 2 → 1 from t = 0 fs to t ≈ 45 fs. A larger than

expected population transfer to the diabatic state V1(q) then occurs with QTSH result

between t ≈ 45 fs and t ≈ 80 fs. After t ≈ 80 fs, the asymptotic value of ⟨ρ22(t)⟩ ≈ 0.8 is

reached, that is ∼ 0.025 lower than the asymptotic value of the exact quantum results.

Given that a large population transfer of ∼ 0.9 for the non-adiabatic transition − → +,

followed by a large population transfer of ∼ 0.75 for the subsequent + → − took place in

the adiabatic representation, we find that the phase space averaged quantum force
〈
F A

quant

〉
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- the force responsible for momentum jumps due to the non-adiabatic transitions - observed

in Fig 4.10(a) has two distinct peaks corresponding to the two population transfers. The

contribution of
〈
F A

quant

〉
to the total phase space averaged total force

〈
F A

total

〉
was significant.

This shows that the process in the adiabatic representation is significantly non-classical.

In contrast, in the diabatic representation, only one transition with a small population

transfer of ∼ 0.2 occurs from diabatic state 2 → 1 in the diabatic representation, we find

that the phase space averaged quantum force
〈
FD

quant

〉
observed in Fig 4.10(b) has a very

weak single peak. The contribution of
〈
FD

quant

〉
to the total phase space averaged total force〈

FD
total

〉
was negligible. The same process in the diabatic representation was largely classical

with
〈
FD

total

〉
acting mainly to evolve the trajectories along the potential energy surfaces.

Since the more classical process in the diabatic representation is much simpler with fewer

trajectory hops, the errors due to surface hopping inconsistencies [50] accumulated as a result

are much smaller in the diabatic representation, giving more accurate QTSH results in the

diabatic representation (Fig 4.11(b)) than in the adiabatic representation (Fig 4.11(a)).

With this reasoning, we used Eqn 3.4 to convert the results of the QTSH simulation in

the diabatic representation, to obtain ⟨ρ−−(t)⟩. With reference to Fig 4.12, we observed

that ⟨ρ−−(t)⟩ for the transformed QTSH (QTSH d2a) results of the second non-adiabatic

transition + → − between t ≈ 55 fs and t ≈ 70 fs exactly matches the quantum result.

While the QTSH results at the same time interval has the same rate as the quantum result,

⟨ρ−−(t)⟩ is lower than the quantum result.

Obtaining QTSH [62, 63] in the diabatic representation, where the process is highly classical,

and subsequently converting the QTSH result to the adiabatic representation (QTSH d2a)

improves the accuracy of the QTSH [62, 63] results in the adiabatic representation by reduc-

ing the errors that accumulate with the imperfect surface hopping inconsistencies associated

large population transfers in the adiabatic representation.
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Dual Avoided Crossing System

From Sec 4.4, we found that for the dual avoided crossing system [1], involving the − → +

transition followed by a subsequent +→ − transition in the adiabatic representation, both

the classical and quantum forces were significant with the classical force acting to propagate

trajectories along a single potential energy surface, and the quantum force acting to create

momentum jumps when non-adiabatic transitions takes place.

The initial momentum used was p0 = ℏk0 = 77.2 a.u. for the dual avoided crossing system

[1], starting on the lower adiabatic surface V−(q).

In Fig 4.13, the adiabatic QTSH results is compared with the exact quantum result for

(a) the system phase space averaged population on adiabatic surface -, ⟨ρ−−(t)⟩ and (b)

the system phase space averaged population on diabatic surface V2(q), ⟨ρ22(t)⟩ for the dual

avoided crossing system [1].

In Fig 4.14, we present the various system phase space averaged classical force, quantum force

and total force (a) in the adiabatic representation, and (b) in the diabatic representation for

the dual avoided crossing system [1].

With reference to Fig 4.13(a), the phase space averaged population for the lower adiabatic

state, ⟨ρ−−(t)⟩ for QTSH was found to be in good agreement with the exact quantum results

for the non-adiabatic transition − → + from t = 0 fs to t ≈ 6.5 fs, and the second non-

adiabatic transition + → − from t ≈ 6.5 fs to t ≈ 8 fs. After t ≈ 8, the rate of the second

non-adiabatic transition + → − becomes faster that of the quantum results, giving rise to

the asymptotic value of ⟨ρ−−(t)⟩ ≈ 1.0 that is ∼ 0.025 higher than the asymptotic value for

the exact quantum results.
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Figure 4.13: Comparison of QTSH against quantum wavepacket results (a) for ⟨ρ−−(t)⟩
in the adiabatic representation, for the process in the dual avoided crossing system with
the initial population on the lower adiabatic surface, (b) and for ⟨ρ22(t)⟩ in the diabatic
representation, for the corresponding process in the diabatic representation. The trajectories
had an average starting momentum of ℏk0 = 77.2 a.u., with the diabatic potential coupling
constant C = 0.0015.
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Figure 4.14: (a) Classical and quantum force components that make up the total force in the
adiabatic representation for the process in the dual avoided crossing system with the initial
population on the lower adiabatic surface. (b) Classical and quantum force components that
make up the total force in the corresponding process in the diabatic representation. Diabatic
potentials for the dual avoided crossing system are given in Eqns 1.86-1.87, with the diabatic
potential coupling constant C = 0.0015.
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Figure 4.15: Comparison of QTSH, and the QTSH diabatic to adiabatic transformed (QTSH
d2a) results against exact quantum results for ⟨ρ−−(t)⟩, for the dual avoided crossing system
with the initial population on the lower adiabatic surface. The trajectories had an average
starting momentum of ℏk0 = 77.2 a.u., with the diabatic potential coupling constant C =
0.0015.

With reference to Fig 4.13(b), the phase space averaged population for the diabatic state

V2(q), ⟨ρ22(t)⟩ for QTSH [62, 63] was found to be in good agreement with the exact quantum

results throughout, with non-adiabatic transitions 2 → 1 from t = 5 fs to t ≈ 10 fs, finally

giving the asymptotic value of ⟨ρ22(t)⟩ ≈ 0.975.

Given that a large population transfer of ∼ 0.9 for the non-adiabatic transition − → +,

followed by a large population transfer of ∼ 0.9 for the subsequent + → − took place in

the adiabatic representation, we find that the phase space averaged quantum force
〈
F A

quant

〉
- the force responsible for momentum jumps due to the non-adiabatic transitions - observed

in Fig 4.13(a) has two distinct peaks corresponding to the two population transfers. The
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contribution of
〈
F A

quant

〉
to the total phase space averaged total force

〈
F A

total

〉
was significant.

This shows that the process in the adiabatic representation is significantly non-classical.

In contrast, in the diabatic representation, only one transition with a small population

transfer of ∼ 0.025 occurs from diabatic state 2→ 1 in the diabatic representation, we find

that the phase space averaged quantum force
〈
FD

quant

〉
observed in Fig 4.13(b) has a very

weak single peak. The contribution of
〈
FD

quant

〉
to the total phase space averaged total force〈

FD
total

〉
was negligible. The same process in the diabatic representation was largely classical

with
〈
FD

total

〉
acting mainly to evolve the trajectories along the potential energy surfaces.

As in the case of the simple avoided crossing system [1], since the more classical process in

the diabatic representation is much simpler with a very small number of trajectory hops, the

errors accumulated as a result of surface hopping inconsistencies [50] are much smaller in the

diabatic representation, giving more accurate QTSH results in the diabatic representation

(Fig 4.14(b)) than in the adiabatic representation (Fig 4.14(a)).

With reference to Fig 4.15, we observed that ⟨ρ−−(t)⟩ for the transformed QTSH (QTSH

d2a) results of the rate of the second non-adiabatic transition +→ − after t ≈ 8 fs exactly

matches the quantum result. While the QTSH results at the same time interval had the

same rate as the quantum result, but a ⟨ρ−−(t)⟩ that is higher than the quantum result.

Similar to the case in Sec 4.4.2, obtaining QTSH results in the diabatic representation, where

the process is highly classical, and subsequently converting the QTSH [62, 63] result to the

adiabatic representation (QTSH d2a) improves the accuracy of the QTSH [62, 63] results

in the adiabatic representation by reducing the errors that accumulate with the imperfect

surface hopping inconsistencies associated with large population transfers in the adiabatic

representation.
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4.5 Conclusions

In the limit of complete and localized population transfer, non-adiabatic processes in the

adiabatic representation are highly non-classical, with quantum forces that act to create

‘momentum’ jumps associated with non-adiabatic transitions [81]. The corresponding non-

adiabatic processes in the diabatic representation are highly classical with classical forces

that act to evolve the trajectories along a single diabatic electronic surface. In the highly

classical corresponding process in the diabatic representation, the quantum force vanishes

since no adiabatic transitions take place.

When many trajectory hops occur and population transfer is incomplete, errors due to QTSH

surface hopping inconsistencies [62, 63] accumulate as the problem of overcoherence [3, 50]

becomes significant in QTSH. This makes QTSH [62, 63] results for highly classical non-

adiabatic processes in the diabatic representation, where few to no trajectory hops occur,

more accurate than the corresponding highly non-classical non-adiabatic processes in the

adiabatic representation, where numerous trajectory hops take place.

We conclude that applying the d2a transformation to QTSH results in the diabatic represen-

tation (i.e. d2a QTSH), where the process is highly classical, minimized the errors associated

with QTSH surface hopping inconsistencies, and improved the accuracy of the population

dynamics results for the corresponding highly non-classical process in the adiabatic repre-

sentation.
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Chapter 5

Chemical Work, Gibbs Free Energy

Change, and Spontaneity in

Introductory Chemistry - Chemical

Education

This chapter contains verbatim excerpts from Dorothy Miaoyu Huang, Ramesh D. Arasas-

ingham; A Case for Introducing Chemical Work in Introductory Chemistry Courses: A

Molecular Mechanics Point of View (Unpublished).

5.1 Motivation

In this chapter, we present a case for introducing chemical work [85] in an introductory

Chemistry course. In this chapter, we define chemical work [85] as the maximum ‘useful’

work [93] that can be extracted from a change in the chemical composition as a result of
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chemical reactions or phase changes, in the absence of external fields.

In traditional Introductory Chemistry courses that introduce thermodynamics, the form of

work that is explained in detail is pressure-volume (P -V ) expansion work. This fails to help

students appreciate how non-expansion work can be extracted from chemical reactions or

phase changes that are central to Chemistry.

In order to do so, the understanding of chemical potentials becomes important. As Introduc-

tory Chemistry courses do not necessarily have multivariable calculus as a prerequisite, the

definition of chemical potential of a chemical species i, µi in terms of the partial derivative

of the Gibbs free energy G with respect to the number of moles of the chemical species i, ni,

at constant pressure P and temperature T ,

µi =

(
∂G

∂ni

)
P,T

, (5.1)

would not be instructive to Introductory Chemistry students.

Giving Introductory Chemistry students a molecular perspective of what the standard chem-

ical potential of a chemical species is would aid them in understanding how changes in chem-

ical compositions - that occur due to a chemical reaction or phase change - can lead to a

change in the total chemical potential energy of the system, that can be converted to ‘useful’

work [93] at standard state.

In current Physical Chemistry textbooks, [94, 95] a statistical thermodynamics approach is

taken to the bridge properties on the molecular level to the macroscopic level. In statistical

thermodynamics, the macroscopic property, chemical potential of a species i in a chemical

system, accounting for both the chemical identity and phase, µi is associated with the ther-

mally accessible states, given by the molar canonical partition function. The complexity

of explaining statistical thermodynamics in Introductory Chemistry courses prohibits the
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explanation of chemical work [85] to students in such courses.

Introducing students to chemical potential from a molecular mechanics point of view would

help give students a diagrammatic and qualitative understanding of how chemical potential

arises from molecular motion and intermolecular interactions, allowing them to connect the

changes in these interactions to the change in the total chemical potential energy of the

system that can extracted as chemical work [85].

Introducing chemical work [85] to students in Introductory Chemistry courses also has the

added advantage of helping students to understand why the criteria for spontaneity and

equilibrium in terms of the Gibbs free energy change ∆G is

∆G = 0 (5.2)

for chemical equilibrium, and

∆G < 0 (5.3)

for spontaneous chemical reactions.

5.2 Theoretical Background

5.2.1 Pressure-Volume Expansion and ‘Useful’ Non-expansionWork

Most generally, work w is described as the action of a force F⃗ in a specified direction r⃗, given

by the general equation,

w = F⃗ · r⃗. (5.4)
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Perhaps since the effect of a force is most easily visualized in P − V expansion work, the

starting point for the discussion in General Chemistry and Physical Chemistry textbooks is

often pressure-volume (P -V ) expansion work [95–101].

We often express work as the sum of a pressure-volume expansion component wexp and

non-expansion component wnon-exp

w = wexp +

wuseful︷ ︸︸ ︷
wnon-exp . (5.5)

In Chemistry, the non-expansion component of work (Equation 5.5) is what we consider

‘useful’ work [93], since this is the work that can be extracted from the chemical system as

a result of a chemical reaction or phase change. One form of useful work often studied in

Chemistry is electrical work in a galvanic cell.

In this paper, we assume the absence of external fields. This limits our discussion of wexp to

P -V expansion work wPV , and wnon-exp to wuseful

w = wPV + wuseful. (5.6)

When work is maximized wmax, the maximum ‘useful’ work wmax
useful equates to chemical work

wchem, the maximum non-expansion work that can be extracted from a change in the chemical

composition as a result of chemical reactions or phase changes. This reduces work to the

sum of P -V expansion work wmax
PV , and chemical work wchem

wmax = wmax
PV + wchem. (5.7)
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Chemical Work

When the chemical composition of a chemical system changes as a result of a chemical

reaction or phase change, the total potential energy of the chemical system Epot is being

converted to kinetic energy with ‘useful’ non-expansion work as the form of energy transfer.

Defined as the maximum ‘useful’ work that can be extracted from a chemical reaction or

phase change in the absence of external fields, chemical work wchem can be defined in terms

of the change in the total potential energy of the chemical system ∆Epot as

∆Epot = wchem. (5.8)

Since heat can be dissipated due to the chemical reaction or phase change, the ‘useful’ work

extracted obeys the inequality

|wuseful| ≤ |wchem|.

The chemical potential of a chemical species i, µi in a chemical system can be defined as the

chemical potential energy that one mole of the chemical species i contributes to the mixture

in a chemical system.

It then follows that the infinitesimal change in the total chemical potential energy dEpot, can

be expressed as the sum of the product of the chemical potential of each chemical species i

by the infinitesimal change in the number of moles of each chemical species i, dni given by

the expression

dEpot =
∑
i

µidni. (5.9)
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Since the number of moles of each chemical species i changes in proportion the extent of the

reaction ξ, with its stoichiometric coefficient in the chemical equation νi as the proportionality

constant,

dni = νidξ. (5.10)

This reduces equation 5.9 to

dEpot =
∑
i

νiµi(ξ)dξ. (5.11)

When the chemical system changes from the initial state ξinitial to the final state ξfinal, the

change in the chemical potential energy of the system and using its relation to wchem (equation

5.8) gives,

wchem = ∆Epot =

∫ ξfinal

ξinitial

(∑
i

νiµi(ξ)

)
dξ. (5.12)

5.2.2 Chemical Work, Spontaneity and the Sign Convention for

Work

In much of Chemistry, the thermodynamic quantity, Gibbs free energy G is often used since

many chemical reactions take place under constant temperature T and pressure P conditions.

As such, the criterion for spontaneity at constant T and P conditions uses the Gibbs free

energy change ∆G as a reference.

The criterion for spontaneity and equilibrium at constant T and P conditions is often refer-
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enced in General Chemistry [98, 100, 101] as

∆G ≤ 0, (5.13)

and more precisely as dGrxn ≤ 0 in Physical Chemistry textbooks [96].

While Gibbs free energy change ∆G is often introduced as the maximum energy available

to do work in some General Chemistry textbooks [98, 100]. The Gibbs free energy change

is more specifically the maximum ‘useful’ work wmax
useful,[93] that can be done as a result of a

chemical reaction or phase change in the absence of external field, which we have defined as

chemical work wchem [85] in this chapter.

This is given by

∆G = wmax
useful = wchem, (5.14)

excluding pressure-volume expansion work wPV, the form of work that is introduced in detail

in Introductory Chemistry.

Fundamental Equation of Chemical Thermodynamics

In the absence of external fields, a thermodynamic function of T , P , and {ni}, that is

related to the internal energy U
(
S, V, {ni}

)
by a Legendre transform is the Gibbs’ free

energy G
(
T, P, {ni}

)
.

The resulting equation in its differential form is the fundamental equation of chemical ther-
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modynamics (Equation 5.15) [85, 96],

dG
(
T, P, {ni}

)
= V dP − SdT +

N∑
i

µidni = V dP − SdT +

dEpot=d̄wchem︷ ︸︸ ︷
N∑
i

νiµi(ξ)dξ . (5.15)

At constant T and constant P , where dT = 0 and dP = 0, the fundamental equation of

chemical thermodynamics reduces to

dG
(
T, P, {ni}

)
=

N∑
i

µidni =

dEpot=d̄wchem︷ ︸︸ ︷
N∑
i

νiµi(ξ)dξ, (5.16)

As the Gibbs free energy change of reaction ∆Grxn is the partial derivative,

∆Grxn =

(
∂G

∂ξ

)
T,P

, (5.17)

at constant T and P , ∆Grxn can be written in terms of chemical potentials µi as

∆Grxn =
N∑
i

νiµi(ξ). (5.18)

Combining equations 5.16 and 5.11, in the absence of any external fields, the Gibbs free

energy change ∆G at constant T and P when a chemical reaction or phase change occurs,

taking the chemical system from state ξinitial to ξfinal is,

∆G = ∆Epot = wchem =

∫ ξfinal

ξinitial

∆Grxndξ. (5.19)
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5.2.3 Molecular View of Chemical Potential: Current Approach

In Physical Chemistry textbooks [94–96], the idea of chemical work [85] is often not men-

tioned, and the molecular interpretation of chemical potential is made from a statistical

thermodynamics point of view.

While this approach addresses the molecular picture that Chemistry is concerned with, it

requires multivariate calculus that is often not a requisite for Introductory Chemistry courses.

In statistical mechanics the chemical potential of a species i in a chemical system, accounting

for both the chemical identity and phase, µi is associated with the thermally accessible

translational, rotational, vibrational, and electronic states, given by the molar canonical

partition functions Qtrans
m,i , Qrot

m,i, Q
vib
m,i, and Qelec

m,i , respectively.

The chemical potential µi at constant temperature T and pressure P is equivalent to the

molar Gibbs free energy[85, 96]1,

µi = −RT ln(Q trans
m,i Q rot

m,iQ
vib
m,iQ

elec
m,i ) +RTV

(
∂ln(Q trans

m,i Q rot
m,iQ

vib
m,iQ

elec
m,i )

∂V

)
T

, (5.20)

where the potential energy due to intermolecular interactions Eimf are accounted for in the

translational molar canonical partition function for species i, Qtrans
m,i [94].

This can be expressed as

Qtrans
m,i =

∫
e
−Eimf

kBT dτ1dτ2 · · · dτNA

NA!Λ3NA
, (5.21)

where NA and Λ represent Avogadro’s number and the thermal de Broglie wavelength,

respectively.

1This equation has been rewritten in a generalized form to allow for use with non-ideal fluids.
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5.3 Chemical Work: A Molecular Mechanics Perspec-

tive

We suggest an approach that make reduces the complexity of chemical work and chemical

potential using a molecular mechanics approach to make the concept of chemical work and

chemical potential possible at an introductory Chemistry level.

Chemical systems at a given extent of a chemical reaction or phase change ξ have chemical

potential energy in the form of bonds, and intermolecular interactions that occur between

reactant molecules, between product molecules, and between reactant and product molecules.

From a molecular mechanics point of view, the change in the total potential energy of the

system ∆Epot due to changes in chemical composition when the chemical system progresses

from its initial to final state ∆ξ, involves the change in the total chemical potential energy

associated with the molecular modes of motion are associated with bond stretching, angle

bending, bond twisting, intermolecular rearrangement (Fig 5.1), and the bond breakage and

formation that occurs between the reactant and product states.

It can then be said that the chemical potential of the chemical species i, µi is the average

potential energy that one mole of the species i contributes to the state of the chemical

system that exists as a mixture, due to the molecular modes of motions, and intermolecular

interactions, as seen in Fig 5.1.

These changes result in a change in the total potential energy ∆Epot that can be extracted

to perform work. The maximum amount of work that can be extracted from this change is

the chemical work wchem [85].

Presenting this picture to students gives them a more diagrammatic view of what happens

in chemical systems, helping them to better appreciate chemical thermodynamics.
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5.3.1 Suggestions for the Classroom

For introductory chemistry, adapting from equation 5.19, wchem can be presented as the

difference between the sum of the product of the chemical potential and the stoichiometric

coefficient of each product species, and sum of the product of the chemical potential and the

stoichiometric coefficient of each reactant species, taking the change in the extent of reaction

∆ξ into account,

wchem =

( total potential energy of products︷ ︸︸ ︷∑
products

νproductsµproducts −
∑

reactants

νreactantsµreactants︸ ︷︷ ︸
total potential energy of reactants

)
∆ξ. (5.22)

Presenting the equation in this manner provides a familiar form to the calculation of the stan-

dard Gibbs free energy change of reaction ∆G◦rxn from the standard molar Gibbs free energy

G◦m of products and reactants that students are introduced to in introductory textbooks.[95–

101]

This provides an opportunity to connect the standard molar Gibbs free energy of the chemical

species i, G◦m,i to the standard chemical potential µ◦i where the connection between the

standard Gibbs free energy change of reaction ∆G◦rxn is equal to the chemical work wchem

at constant T and P , since the reaction is assumed to go to completion, where ∆ξ = 1.

(Section 5.5)

Chemical Reaction Example

A diagrammatic example illustrating how these principles are applied can be illustrated with

the following reaction

H2(g) +
1

2
O2(g) −→ H2O(g). (5.23)
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Figure 5.1: Potential energy associated with intramolecular interactions associated with (a)
bond stretching, (b) angle bending, and (c) bond twisting. (d) Changes in potential energy
associated with changes in intermolecular interactions such as hydrogen bonding, as a result
of the rearrangement of molecules.

For this specific example, wchem can be written in the form of equation 5.22 as

wchem =

( total potential energy of product︷︸︸︷
µH2O −

(
µH2 +

1

2
µO2

)
︸ ︷︷ ︸

total potential energy of reactants

)
∆ξ. (5.24)

With reference to Fig 5.2, the difference in the molecular modes of motion and intermolecular

interaction for the reactants and products contribute to differences in the chemical potentials

for each chemical species and demonstrates how a change in the composition from the initial

to final state ∆ξ, results in a change in the molecular modes of motion and intermolecular

interactions.

Phase Change Example

A diagrammatic example illustrating how these principles are applied can be illustrated with

the vaporization of water given by

H2O(l) −→ H2O(g), (5.25)
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Figure 5.2: Molecular modes of motion that contribute the the chemical potentials of the
reactants, H2 and O2 include the bond stretching modes and rotational modes of H2 molecules
and O2 molecules. Molecular modes of motion that contribute the the chemical potential of
the product, H2O include the bond stretching modes, rotational modes, and angle bending
modes of H2O molecules (not all bond stretching modes are displayed.). Depending on
the extent of the reaction ξ, different intermolecular forces of attraction contribute the the
chemical potentials, as summarized in the table.
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when the phase change is irreversible at the given temperature and pressure conditions, and

H2O(l) ⇌ H2O(g), (5.26)

when the phase change is reversible at the given temperature and pressure.

For this vaporization of water, wchem can be written in the form of equation 5.22 as

wchem =
( product component︷ ︸︸ ︷

µH2O(g) − µH2O(l)︸ ︷︷ ︸
reactant component

)
∆ξ. (5.27)

The change in the structure of liquid water and water vapor is given in Fig 5.3, where the

hydrogen bonding in liquid water is more extensive than that of water vapor. At a various

temperature and pressure conditions, the different interactions that water molecules have

with each other in the liquid and vapor phases have varying contributions to the chemical

potential.

When the conditions under which the phase change occurs at a temperature and pressure

condition along the vaporization curve (Fig 5.4), the chemical potential of liquid water and

water vapor, µH2O(l) and µH2O(g), respectively are equal (i.e. µH2O(l) = µH2O(g)).

It follows that wchem along the vaporization curve (Fig 5.4) would be

wchem =
( µH2O(g)︷ ︸︸ ︷
µH2O(l)−µH2O(l)

)
∆ξ = 0. (5.28)

When the phase change occurs at any other temperature and pressure in the gas region (Fig

188



5.4), the phase change constitutes work done by the chemical system resulting in

wchem < 0. (5.29)

This example can be used to make the connection between reversibility in a chemical system

can be made by explaining that the relevant phase change is reversible at a given temperature

and pressure that exists along the lines of the phase diagram, where both phases coexist. A

phase change is not reversible when it takes place at a given temperature and pressure that

exists in the region of the phase diagram corresponding to the final state of the system.

Figure 5.3: Liquid water H2O(l) (in blue) has more extensive hydrogen bonding between
water molecules than water vapor H2O(g) (in orange). The chemical potential for the re-
actants side of the equations and the product side of the equation is µH2O(l) and µH2O(g),
respectively. Depending on whether the phase change is reversible or spontaneous at the
given temperature and pressure conditions, a double arrow or a single arrow is used to sep-
arate the reactant and product in the chemical equation.
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Figure 5.4: The vaporization of water occurs when liquid water H2O(l) is placed at a tem-
perature and pressure that lies along the vaporization curve (orange line) or within the gas
region (shaded orange region). When along the vaporization curve, the chemical potential
of liquid water and water vapour are equal.

5.4 Connecting Spontaneity and Sign Conventions for

Work in Chemistry

The definition of a spontaneous process as one that has a natural tendency to occur [96, 98,

100, 101], without the need for work to be done on the system [95, 96], or without the need

for an external force to be applied [100] sufficiently introduces the idea of spontaneity.

Restating the definition of spontaneity in terms of chemical systems, we can make the fol-

lowing statements. When no chemical work is done by a chemical system, the system is at

equilibrium since work is not done by or on the system. When chemical work is done by a

chemical system, the reaction is spontaneous since no external force is required to drive the
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chemical reaction.

Combining this with the sign conventions for work in Chemistry where work done is positive

when work is done by the surroundings on the system, and negative when work is done by

the system on the surroundings, we can restate the above statements about spontaneity in

terms of the maximum chemical work wchem, as

wchem = 0 (5.30)

for chemical equilibrium, and

wchem < 0 (5.31)

for spontaneous chemical reactions.

Combining the definition of ∆G at constant T and P in terms of chemical work (Equation

5.14) with the the criteria for equilibrium (Equation 5.30) and spontaneity (Equation 5.31)

in terms of wchem, the criteria for equilibrium (Equation 5.2) and spontaneity (Equation 5.3)

in terms of ∆G are recovered.

This helps students connect the capacity for a forward chemical reaction or phase change

to drive work, as a result of changes in the potential energy of the chemical system, with

spontaneity, the basis for the study of electrochemistry, and reaction coupling in Biology.
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5.5 Chemical Potential and the Standard Molar Gibbs

Free Energy

The relationship between the chemical potential of a chemical species under standard con-

ditions i, µ◦i and the standard molar Gibbs free energy of a chemical species i,

G◦m,i = µ◦i , (5.32)

can also be shown to students by simple comparison.

Combining equation 5.14 with equation 5.22, under standard constant T and P conditions,

we obtain the standard Gibbs free energy change of reaction ∆G◦rxn when ∆ξ = 1,

∆G◦rxn =
∑

products

νproductsµ
◦
products −

∑
reactants

νreactantsµ
◦
reactants. (5.33)

In current General Chemistry [97–101] and Physical Chemistry textbooks [95, 96], the stan-

dard Gibbs free energy change of reaction ∆G◦rxn is often given in terms of the standard

molar Gibbs free energies of formation G◦m as

∆G◦rxn =
∑

products

νproductsG
◦
m,products −

∑
reactants

νreactantsG
◦
m,reactants. (5.34)

Comparing equations 5.33 and 5.34, it follows that the relation in equation 5.32 holds.
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5.6 Conclusions

Presenting a molecular mechanics perspective of chemical potential provides students with

a diagrammatic view and qualitative understanding of how the chemical potential arises

from molecular motion and intermolecular interactions. This helps them appreciate how the

changes in chemical composition that arise from chemical reactions or phase changes would

contribute to a change in the total chemical potential energy, and as a result the maximum

amount of ‘useful’ work or chemical work that can be extracted from the chemical system

at constant temperature and pressure. This prompts students to think about what occurs

on a molecular level, while sidestepping the need for multivariate calculus and statistical

mechanics.

Since Gibbs free energy change is the maximum ‘useful’ work [93] or chemical work [85] at

constant temperature and pressure, combined with the conventions for work in chemistry

allows an intuitive understanding of the criteria of spontaneity as the chemical system doing

‘useful’ non-expansion work, and the criteria of equilibrium as the chemical system not doing

any ‘useful’ non-expansion work. This emphasizes the idea that a chemical reaction or phase

change can drive work, one that would aid in their understanding of electrochemistry or

coupled reactions in Biology.

The relation of the standard molar Gibbs free energy to the standard chemical potential of

a species can also be explained to students.
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Sergei Tretiak, André Schleife, and Amanda J. Neukirch. Influence of -conjugated
cations and halogen substitution on the optoelectronic and excitonic properties of
layered hybrid perovskites. Physical Review Materials, 2(10):105406, 2018. doi: 10.
1103/physrevmaterials.2.105406.

[16] Françoise Provencher, Nicolas Bérubé, Anthony W. Parker, Gregory M. Greetham,
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Appendix A

Approximate Diabatic Density Matrix

for Dual Avoided Crossing Model

We consider a two state model of two localized nonadiabatic transitions, assuming that the

transitions occur in a localized region where the population transfer is complete. We analyze

the case where the system starts on the lower adiabatic surface and experiences an electronic

transition to the upper adiabatic surface that is accompanied by nuclear dynamics. The

system then continues on the upper adiabatic surface before experiencing a second electronic

transition to the lower adiabatic surface.

In one-dimension, the Dual Avoided Crossing model depicted by Figure 2.8 is a simple

example of this.

The initial adiabatic density matrix for the process depicted by Figure 2.8 is of the form

ρA(t0) =

0 0

0 ρ(t0)

 , (A.1)

with all probability on the lower state V−(q) until the first electronic transition takes place
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at t = t∗1, and the intermediate density matrix is

ρA(τ) =

ρ(τ) 0

0 0

 , (A.2)

with complete population transfer to the upper state V+(q) where the population remains

for τ ∈ (t∗1, t
∗
2). A second electronic transfer takes place at t = t∗2, giving the final density

matrix

ρA(tf) =

0 0

0 ρ(tf)

 , (A.3)

with complete population transfer to the lower state V−(q).

In the diabatic representation, ρD(t) can be written throughout the process as

ρD(t) =

0 0

0 ρ(t)

 , (A.4)

allowing us to write the approximate adiabatic density matrix

ρadia(tf) =

1
2

(
1− cosϕ(t)

)
1
2
sinϕ(t)

1
2
sinϕ(t) 1

2

(
1 + cosϕ(t)

)
 ρ(t). (A.5)

In the diabatic representation, ρD(t) can be written throughout the process as

ρD(t) =

0 0

0 ρ(t)

 , (A.6)
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allowing us to write the approximate adiabatic density matrix

ρA(tf) =

1
2

(
1− cosϕ(t)

)
1
2
sinϕ(t)

1
2
sinϕ(t) 1

2

(
1 + cosϕ(t)

)
 ρ(t). (A.7)

205



Appendix B

Details of the Wigner-Moyal

Transformation

B.1 Wigner Distribution

For the two-state system as described in Equation 1.20, in terms of the star product as given

in Equation 3.1, the elements of the Wigner distribution in the adiabatic representation

ρA(q,p, t) in terms of elements of ρD(q,p, t) are given by

ρA++(q,p, t) = cos
ϕ(q)

2
⋆ ρD11(q,p, t) ⋆ cos

ϕ(q)

2
+ sin

ϕ(q)

2
⋆ ρD22(q,p, t) ⋆ sin

ϕ(q)

2

+ cos
ϕ(q)

2
⋆ αD(q,p, t) ⋆ sin

ϕ(q)

2
+ sin

ϕ(q)

2
⋆ αD(q,p, t) ⋆ cos

ϕ(q)

2

+i cos
ϕ(q)

2
⋆ βD(q,p, t) ⋆ sin

ϕ(q)

2
− i sin

ϕ(q)

2
⋆ βD(q,p, t) ⋆ cos

ϕ(q)

2
,(B.1)
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ρA+−(q,p, t) = − cos
ϕ(q)

2
⋆ ρD11(q,p, t) ⋆ sin

ϕ(q)

2
+ sin

ϕ(q)

2
⋆ ρD22(q,p, t) ⋆ cos

ϕ(q)

2

+ cos
ϕ(q)

2
⋆ αD(q,p, t) ⋆ cos

ϕ(q)

2
− sin

ϕ(q)

2
⋆ αD(q,p, t) ⋆ sin

ϕ(q)

2

+i cos
ϕ(q)

2
⋆ βD(q,p, t) ⋆ cos

ϕ(q)

2
+ i sin

ϕ(q)

2
⋆ βD(q,p, t) ⋆ sin

ϕ(q)

2
,(B.2)

ρA−+(q,p, t) = − sin
ϕ(q)

2
⋆ ρD11(q,p, t) ⋆ cos

ϕ(q)

2
+ cos

ϕ(q)

2
⋆ ρD22(q,p, t) ⋆ sin

ϕ(q)

2

− sin
ϕ(q)

2
⋆ αD(q,p, t) ⋆ sin

ϕ(q)

2
+ cos

ϕ(q)

2
⋆ αD(q,p, t) ⋆ cos

ϕ(q)

2

−i sin ϕ(q)

2
⋆ βD(q,p, t) ⋆ sin

ϕ(q)

2
− i cos

ϕ(q)

2
⋆ βD(q,p, t) ⋆ cos

ϕ(q)

2
,(B.3)

ρA−−(q,p, t) = sin
ϕ(q)

2
⋆ ρD11(q,p, t) ⋆ sin

ϕ(q)

2
+ cos

ϕ(q)

2
⋆ ρD22(q,p, t) ⋆ cos

ϕ(q)

2

− sin
ϕ(q)

2
⋆ αD(q,p, t) ⋆ cos

ϕ(q)

2
− cos

ϕ(q)

2
⋆ αD(q,p, t) ⋆ sin

ϕ(q)

2

−i sin ϕ(q)

2
⋆ βD(q,p, t) ⋆ cos

ϕ(q)

2
+ i cos

ϕ(q)

2
⋆ βD(q,p, t) ⋆ sin

ϕ(q)

2
.(B.4)

B.1.1 Star Products with Sines and Cosines

In this section we present the star products of the elements of the Wigner distribution [74, 75],

represented as ρij(q,p, t), with sines and cosines of half the transformation angle ϕ(q)
2
.

The corresponding functions are given by

cos
ϕ(q)

2
⋆ ρij(q,p, t) ⋆ cos

ϕ(q)

2
=

(
1 + cosϕ(q)

2

)
ρij(q,p, t)

−ℏ2

8
∇qd (q) sinϕ(q)∇2

pρij(q,p, t)

+
ℏ2

4
d 2(q)∇2

pρij(q,p, t) +O(ℏ3), (B.5)
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sin
ϕ(q)

2
⋆ ρij(q,p, t) ⋆ cos

ϕ(q)

2
=

sinϕ(q)

2
ρij(q,p, t)

+
ℏ2

8
∇qd (q) cosϕ(q)∇2

pρij(q,p, t)

−iℏ
2
d (q)∇pρij(q,p, t) +O(ℏ3), (B.6)

cos
ϕ(q)

2
⋆ ρij(q,p, t) ⋆ sin

ϕ(q)

2
=

sinϕ(q)

2
ρij(q,p, t)

+
ℏ2

8
∇qd (q) cosϕ(q)∇2

pρij(q,p, t)

+i
ℏ
2
d (q)∇pρij(q,p, t) +O(ℏ3), (B.7)

sin
ϕ(q)

2
⋆ ρij(q,p, t) ⋆ sin

ϕ(q)

2
=

(
1− cosϕ(q)

2

)
ρij(q,p, t)

+
ℏ2

8
∇qd (q) sinϕ(q)∇2

pρij(q,p, t)

+
ℏ2

4
d 2(q)∇2

pρij(q,p, t) +O(ℏ3). (B.8)

Working out the star products of each element of the adiabatic Wigner distribution, and

substituting Eqns B.5-B.8 into Eqns B.1-B.4, gives the diabatic-to-adiabatic transformed

equations for the Wigner distribution given by Eqns 3.4-3.6 reported in Section 3.2.1 of

Chapter 3.
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Appendix C

Adiabatic Forces on Trajectory in

Dual Avoided Crossing System

We now present a simple derivation of the adiabatic forces - both the quantum and classical

- in terms of the diabatic potentials at five timepoints, the time of the first instantaneous

electronic transition t = t∗1, the instant ϵ before the first electronic transition t = t∗1 − ϵ, and

the instant ϵ after the first electronic transition t = t∗1+ϵ, the time of the second instantaneous

electronic transition t = t∗2, the time between the instant after the first electronic transition

and before the second electronic transition t = τ , and the instant after the second electronic

transition t = t∗2 + ϵ.

Similar to the process depicted in Fig 2.4, the process outlined above for the dual avoided

crossing system in the diabatic representation only involves dynamics only on the diabatic

state V2(q).

This resulted in the generalized expression for αA(t) and F A
quant(t) being the same as Eqn

4.12 and Eqn 4.13, respectively.
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For the process depicted in Fig 2.8, in generalized coordinates q(t), the first population

transfer taking place is localized and complete at the nuclear coordinate q(t∗1) = −1.57,

where q∗1 ≡ q(t∗1). This corresponds to the first vertical step in Fig 4.3. We took ϕ(q∗1) =
π
2

to be the midpoint of the step at q∗1. The second population transfer is also complete and

localized at the nuclear coordinate q(t∗2) = 1.57, where q∗2 ≡ q(t∗2). This corresponds to the

second vertical step in Fig 4.3.

At the instant ϵ before the first transition, the time between the instant after the first

transition and before the second transition, and the instant after the second transition in

the adiabatic representation, the coordinates were q(t∗1− ϵ), q(τ), and q(t∗2+ ϵ), respectively.

The corresponding non-adiabatic mixing angles were ϕ
(
q(t∗1 − ϵ)

)
= 0, ϕ

(
q(τ)

)
= π, and

ϕ
(
q(t∗2 + ϵ)

)
= 0, respectively.

The total force F A
total(t) in the adiabatic representation consists of the sum of a classical

component F A
class(t) and a quantum component F A

quant(t) as given in Eqn 4.13.

We proceed to compute F A
class(t) and quantum forces F A

quant(t), in the limit C → 0 for the

five timepoints.

At the instant before the first electronic transition, where t = t∗1 − ϵ, the classical force

involves only one adiabatic state, the lower adiabatic state V−(q).

Given that ϕ (q(t∗1 − ϵ)) = 0,

cosϕ (q(t∗1 − ϵ)) = 1, (C.1)

and

sinϕ (q(t∗1 − ϵ)) = 0. (C.2)
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Substituting Eqns C.1-C.2 into the expression for the classical force in the adiabatic repre-

sentation (Eqn 4.2), the classical force was found to be

F A
class(t

∗
1 − ϵ) = F A

− (t
∗
1 − ϵ) = −∇qV2

(
q(t∗1 − ϵ)

)
. (C.3)

Performing the same procedure for the quantum force, given by Eqn 4.13 for the process

occurring in the dual avoided crossing system [1] in the adiabatic representation (Fig 2.8),

the quantum force at the instant before the first electronic transition in the adiabatic repre-

sentation F A
quant(t

∗
1 − ϵ) was found to be

F A
quant(t

∗
1 − ϵ) = 0. (C.4)

The classical force for each system at t = t∗1 − ϵ given by Eqn C.3 combines with the

corresponding quantum force (Eqn C.4) to give the total force in the adiabatic representation

for the process occuring in the dual avoided crossing system [1].

The total force was found to be

F A
total(t

∗
1 − ϵ) = −∇qV2

(
q(t∗1 − ϵ)

)
= FD

class,2(t
∗
1 − ϵ), . (C.5)

At an instant before the first transition t = t∗− ϵ, the corresponding process in the diabatic

representation (Fig 2.9) involves the evolution of the localized wavepacket/trajectory along

diabatic surface V2(q). The classical force acting to evolve the localized wavepacket/trajectory
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was FD
class,2(t

∗
1 − ϵ).

In deriving Eqn C.5, we found that the total force in the adiabatic representation F A
total(t

∗
1−ϵ)

is equivalent to FD
class,2(t

∗
1−ϵ), accurately portraying the evolution of the localized wavepacket/trajectory

along diabatic surface V2(q) before the first electronic transition takes place in the adiabatic

representation.

We derived the forces during the first instantaneous electronic transition at t = t∗1, where

the nuclear coordinate is q∗1 = −1.57.

Given that ϕ(t∗1) =
π
2
,

cosϕ(t∗1) = 0, (C.6)

and

sinϕ(t∗1) = 1. (C.7)

The localized wavepacket/trajectory experiences both the upper and lower adiabatic po-

tentials V+(q
∗
1) and V−(q

∗
1) equally at the instant of the first transition t∗1. The classical

adiabatic force was found to be given by the expression

F A
class(t

∗
1) = −

∇qV+

(
q∗1
)
+∇qV−

(
q∗1
)

2

= −
∇qV1

(
q∗1
)
+∇qV2

(
q∗1
)

2
. (C.8)

Substituting Eqns C.6-C.7 into the expression of the quantum force given by Eqn 4.13 for

the process (Fig 2.8), the quantum force at the instant of first − → + transition t∗1 in the
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adiabatic representation F A
quant(q

∗) was found to be

F A
quant(t

∗
1) =

∇qV1(q
∗
1)−∇qV2(q

∗
1)

2
. (C.9)

Combining F A
quant(t

∗
1) (Eqn C.9) with F A

class(t
∗
1) (Eqn C.8), the total force in the adiabatic

representation at the instant of first transition t∗1 was found to be

F A
total(t

∗
1) = −∇qV2(q

∗
1) = FD

class,2(t
∗
1), (C.10)

the classical force acting to evolve the localized wavepacket/trajectory on the diabatic po-

tential energy surface V2(q
∗
1) = 0, as depicted in Fig 2.9.

We now derive the forces at the time interval between the instant after the first transition

and before the second transition t = τ , where τ ∈ [t∗1 + ϵ, t∗2 − ϵ].

Given that ϕ (q(τ)) = π,

cosϕ (q(τ)) = −1, (C.11)

and

sinϕ (q(τ)) = 0. (C.12)

Substituting Eqns C.11-C.12 into Eqn 4.2, the expression for the classical force (Eqn 4.2)

was found to be

F A
class(τ) = F A

+ (τ) = −∇qV2

(
q(τ)

)
. (C.13)
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Substituting Eqns C.11-C.12 into the expression of the quantum force, Eqn 4.13 for the

system (Fig 2.8), the quantum force at during the time interval between instant after the first

electronic transition and the instant before the second electronic transition in the adiabatic

representation F A
quant(τ) was found to be

F A
quant(τ) = 0. (C.14)

The classical force at t = τ represented by Eqn C.13 for the system, combines with the

corresponding quantum force (Eqn C.14) to give the total force for each system in the

adiabatic representation.

The total force in the adiabatic representation at τ is

F A
total(τ) = −∇qV1

(
q(τ)

)
= FD

class,2(τ), (C.15)

the classical force acting on the localized wavepacket/trajectory on the diabatic potential

energy surface V2(q
∗) = 0, as depicted by Fig 2.9 in the diabatic representation.

Since ϕ(t∗1) = ϕ(t∗2) =
π
2
, at the time of the second instantaneous localized +→ − transition

in the adiabatic representation t = t∗2, the expressions for sinϕ(t
∗
2) and cosϕ(t∗2) are equivalent

to that for the first instantaneous localized − → + transition given by Eqns C.6-C.7, giving

an expression for the classical force in the adiabatic representation that is similar to Eqn

C.8,

F A
class(t

∗
2) = −∇qV+(q

∗
2) +∇qV−(q

∗
2)

2

= −∇qV1(q
∗
2) +∇qV2(q

∗
2)

2
. (C.16)
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The quantum force in the adiabatic representation when the second electronic transition

takes place takes the same form as that for the first electronic transition given by Eqn C.9,

F A
quant(t

∗
2) =

∇qV1(q
∗
2)−∇qV2(q

∗
2)

2
. (C.17)

Combining F A
quant(t

∗
2) (Eqn C.17) with F A

class(t
∗
2) (Eqn C.16), the total force in the adiabatic

representation at the instant of second transition t∗2 was found to be

F A
total(t

∗
2) = −∇qV2(q

∗
2) = FD

class,2(q
∗
1), (C.18)

the classical force acting on the localized wavepacket/trajectory evolving along the diabatic

potential energy surface V2(q
∗
2), as depicted in Fig 2.9.

At the instant of the second + → − transition, t = t∗2 in the adiabatic representation (Fig

2.8), the localized wavepacket/trajectory evolving along the diabatic surface V2(q) is driven

by the classical force FD
class,2

(
t∗2
)
in the corresponding process in the diabatic representation

(Fig 2.9).

In deriving Eqn C.18, we found that the total force in the adiabatic representation F A
total

(
t∗2
)

is equivalent to the classical force experienced along the diabatic surface V2(q) FD
class,2(t

∗
2),

accurately portraying the evolution of the localized wavepacket/trajectory along diabatic

surface V2(q) while the second electronic transition takes place in the adiabatic representa-

tion.

Finally, we derive the forces at the instant after the second transition t = t∗2 + ϵ.

Given that ϕ (q(t∗2 + ϵ)) = 0,

cosϕ (q(t∗2 + ϵ)) = 1, (C.19)
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and

sinϕ (q(t∗2 + ϵ)) = 0. (C.20)

Substituting Eqns C.19-C.20 into Eqn 4.2, the expression for the classical force was found

to be

F A
class(t

∗
2 + ϵ) = F A

− (t
∗
2 + ϵ) = −∇qV2

(
q(t∗2 + ϵ)

)
. (C.21)

Substituting Eqns C.19-C.20 into the expression of the quantum force, Eqn 4.13 for the sys-

tem, the quantum force at the instant after the second electronic transition in the adiabatic

representation F A
quant(t

∗
2 + ϵ) was found to be

F A
quant(t

∗
2 + ϵ) = 0. (C.22)

The classical force for the process at t = t∗2 + ϵ (Eqn C.21) for the system, combines with

the corresponding quantum force (Eqn C.22) to give the total force for each system in the

adiabatic representation.

The total force in the adiabatic representation at t∗2 + ϵ is

F A
total(t

∗
2 + ϵ) = −∇qV2

(
q(t∗2 + ϵ)

)
= FD

class,2(t
∗
2 + ϵ), (C.23)

the classical force acting on the localized wavepacket/trajectory along the diabatic potential

energy surface V2(q
∗
2), as depicted in Fig 2.9.
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