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A B S T R A C T

Altered vitamin B6 metabolism due to pathogenic variants in the gene PNPO causes early onset epileptic en-
cephalopathy, which can be treated with high doses of vitamin B6. We recently reported that single nucleotide
polymorphisms (SNPs) that influence PNPO expression in the brain are associated with genetic generalized
epilepsy (GGE). However, it is not known whether any of these GGE-associated SNPs influence vitamin B6
metabolite levels. Such an influence would suggest that vitamin B6 could play a role in GGE therapy. Here, we
performed genome-wide association studies (GWAS) to assess the influence of GGE associated genetic variants
on measures of vitamin B6 metabolism in blood plasma in 2232 healthy individuals. We also asked if SNPs that
influence vitamin B6 were associated with GGE in 3122 affected individuals and 20,244 controls. Our GWAS of
vitamin B6 metabolites reproduced a previous association and found a novel genome-wide significant locus. The
SNPs in these loci were not associated with GGE. We found that 84 GGE-associated SNPs influence expression
levels of PNPO in the brain as well as in blood. However, these SNPs were not associated with vitamin B6
metabolism in plasma. By leveraging polygenic risk scoring (PRS), we found suggestive evidence of higher
catabolism and lower levels of the active and transport forms of vitamin B6 in GGE, although these findings
require further replication.

1. Introduction

Treatment with vitamin B6 can control seizures in a subset of
children with early-onset intractable seizures [1]. Such vitamin B6-re-
sponsive epilepsy can be caused by mutations in a number of genes,
particularly pyridoxal-5′-phosphate oxidase (PNPO [2–5]), which is
essential to convert pyridox(am)ine-5′-phosphate into the active form
of vitamin B6, pyridoxal-5′-phosphate (PLP). In mammals, PLP is a
cofactor for> 160 different enzymatic reactions, including the meta-
bolism of the neurotransmitters glutamate and GABA [6].

Interestingly, PLP levels are also reduced in some patients with
common forms of epilepsy [7,8], possibly due to the effects of anti-

epileptic drugs [9,10]. Moreover, dietary depletion of PLP can induce
seizures and epileptiform EEG abnormalities in healthy individuals
[11,12]. PLP treatment can reduce seizure frequency in some refractory
epilepsy patients without documented pathogenic variants [7,13].

Our recent genome-wide association study (GWAS) of genetic gen-
eralized epilepsy (GGE) confirmed and strengthened a genome-wide
significant association between GGE and a haplotype containing PNPO
as the most likely causal gene [14]. We found that GGE-associated SNPs
alter expression of PNPO in the dorsolateral prefrontal cortex [14],
suggesting that altered vitamin B6 metabolism might be involved in the
pathophysiology of GGE. If so, metabolic pathways involving vitamin
B6 might be a therapeutic target. However, it is unknown whether SNPs
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that influence metabolite levels in blood also predispose to GGE.
Likewise, it is not known if GGE associated SNPs are associated with
changes in vitamin B6 levels in blood. We sought to answer both of
these related questions.

Here, we assessed the genetic association of vitamin B6 metabolites
with GGE, utilizing data from two independent large studies, one which
compared genetic variants between people with and without epilepsy
[14] and the other which evaluated genetic influences of blood vitamin
B6 metabolites in healthy individuals [15]. Our previously reported
GWAS on 2232 healthy individuals assessed the influence of genetic
variants on three different pyridoxine metabolite concentrations mea-
sured in blood: PLP, the cell-membrane transport form pyridoxal (PL),
and the catabolite pyridoxic acid (PA) [15]. To fully capture genetic
contribution to vitamin B6 metabolism, we repeated these genome-
wide analyses with imputed genotypes and examined two additional,
derived markers of pyridoxine metabolism [6]: the ratios PLP

PL
(“PLP:PL”)

and
+

PA
PLP PL

(“PAr index”). We then used two approaches to determine
whether genetic contribution to vitamin B6 metabolism or GGE might
be reciprocally informative. First, we assessed whether the GGE-asso-
ciated SNPs that alter PNPO expression are associated with these 5
measures of pyridoxine metabolism. Second, we utilized polygenic risk
scoring (PRS) to assess whether the SNPs that influence pyridoxine
metabolism are also associated with GGE by comparing PRS for the five
measures of pyroxidine metabolism between 3122 people with GGE and
20,244 controls.

2. Methods

2.1. Subjects

A sample of 2232 healthy individuals from the Trinity Student Study
(TSS) were studied to assess genetic variants that influence pyridoxine
metabolism. TSS participants are ethnically Irish people aged 18 to
28 years without any serious medical conditions [15,16].

A subset of 3122 non-related subjects with GGE and 20,244 controls
from the epilepsy GWAS of the ILAE Consortium on Complex Epilepsies
were studied for PRS analyses [14]. These consisted of a subset of the
subjects with European ancestry drawn from the more ethnically di-
verse subjects in the original GWAS. Moreover, the TSS, which served
as a control cohort for the original epilepsy GWAS, was excluded from
the current PRS analyses. Approval was obtained by all relevant in-
stitutional review boards and all study participants provided written
informed consent.

2.2. Measurement of pyridoxine metabolism

We collected non-fasting EDTA blood samples for measurement of
B6 vitamer concentrations in the TSS cohort. Samples were centrifuged
and plasma was frozen within 3 h of phlebotomy. Details of stability of
B6 vitamers under the conditions of collection have been determined
[17]. B6 vitamers were measured using liquid chromatography–tandem
mass spectrometry, as described previously [15]. The methodology
included measurements of the primary B6 vitamers (PLP, PL and PA)
plus the less abundant vitamers (pyridoxamine, pyridoxamine phos-
phate, pyridoxine, pyridoxine phosphate). These latter vitamers were
below the limit of detection in most samples and were not included in
the GWAS analysis. From the primary B6 vitamers, the ratios PLP

PL
(“PLP:PL”) and

+

PA
PLP PL

(“PAr index”) were calculated. The amount of
vitamin B6 intake from supplements and fortified foods was quantified
using a standardized questionnaire in which study participants reported
their recent intake from a list of commonly used vitamin supplements.
Active nutrient information was obtained for each supplement and
converted to μg of nutrient per day as previously described [15,16].

2.3. Genotyping and quality control

We performed genotyping, imputation and genotype quality control
for the TSS and the ILAE cohorts identically for both cohorts, as de-
scribed earlier [14]. In addition, we excluded related subjects from each
cohort. Genetic relatedness was calculated in the TSS with PLINK
[18,19] and in the ILEA using KING [20] and one individual from each
pair with 3rd degree or stronger relatedness (kinship coefficient >
0.0442) was retained.

2.4. Pyridoxine metabolite GWAS

We repeated the previously published GWAS on log-transformed
PLP, PL and PA levels [15]. In addition, we now used imputed genotype
data (~6 million SNPs instead of ~750 thousand) and quality control
procedures that were the same for TSS and the epilepsy GWAS. We also
performed a GWAS on PLP:PL and the PAr index. We performed linear-
mixed model association analyses with Emmax [21], and included age,
gender and log-transformed vitamin B6 supplement intake as covari-
ates. Genome-wide significance was defined as P < 5×10−8.

2.5. PNPO eQTL analyses

Summary statistics from the previously published GGE GWAS [14]
were used to specifically assess SNPs in the previously found genome-
wide significant PNPO locus. This locus was defined as the lead SNP
(SNP with the lowest P-value) and all SNPs that were in linkage dis-
equilibrium with the lead SNP (R2 > 0.2) and had a P-value<10−4.
We next used FUMA [22] to assess which of these variants is sig-
nificantly associated with PNPO expression in blood, using expression
quantitative trait loci (eQTL) data from the eQTLgen study (based on
RNA-sequencing data from 24,886 whole blood and n=4798 periph-
eral blood mononuclear cell samples [23]). Finally, we assessed the
association P-value of these SNPs in the 5 different pyridoxine meta-
bolism GWAS.

2.6. Polygenic risk score analyses

We used default settings of PRSice to perform PRS analyses to es-
tablish whether people with GGE have different pyridoxine metabolism
PRS scores compared to controls. In brief, every SNP was assigned a
weight according to its association in the 5 different pyridoxine meta-
bolism GWAS. Individual PRS were than calculated as the sum of
weighted effect alleles, standardized using a Z-transformation:

−PRS mean PRS
SD PRS

( )
( )

. Only high-quality SNPs with a genotype call-rate > 0.99
and a minor allele frequency > 0.01 were used. SNPs were pruned to a
subset of uncorrelated SNPs (R2 < 0.1) and PRS values were calculated
with a range of different P-value thresholds from 0.0001 to 0.5, in steps
of 0.0005 (default for PRSice). Logistic regression analyses were used to
assess whether pyridoxine metabolite PRS scores were significantly
different in people with GGE compared to controls, while controlling
for 10 principal components of ancestry. The ‘best-fit’ P-value threshold
was selected, defined as the PRS with the strongest association with
GGE. We corrected for multiple testing by using a conservative sig-
nificance threshold of P < .001, as recommended for PRSice [24]. We
calculated the explained variance (Nagelkerke's R2) by subtracting the
full logistic regression model (PRS+ covariates) with the null model
(covariates only).

3. Results

3.1. Genetic variants that influence vitamin B6 metabolite levels

Our GWAS analyses on vitamin B6 measures (Fig. 1) replicated the
genome-wide significant signal at 1p36.12, implicating the ALPL gene
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C Trait: PA

E Trait: PAr Index

D Trait: PLP:PL

A Trait: PLP

B Trait: PL

Fig. 1. Manhattan plots for each genome-wide association analysis of the five measures of vitamin B6 metabolism. Each genome-wide association analysis was
performed using an imputed SNP set and log10-transformed values. A) pyridoxal 5′-phosphate (PLP), B) pyridoxal (PL), C) pyridoxic acid (PA), D) PLP:PL ratio, E) PAr
index. X-axis: Tested SNPs according to chromosomal position. Y-axis: Negative log10-transformed p-values. Red line: Genome-wide significance (p < 5×10−8).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 1A). This signal was significantly associated with PLP concentra-
tions as well as the PLP:PL ratio (p=7.4*10−16 and p=1.1*10−8,
respectively). In addition, we found a novel PLP:PL locus at 10q24.2
(Fig. 1D), which includes a missense variant of the gene pyridine nu-
cleotide disulfide oxidoreductase domain 2 (PYROXD2, rs2147896;
p=3.7*10−8; Fig. 2). We note an additional locus associated with PLP
(Fig. 1A) in an intergenic region on chromosome 7 that is just under the
threshold for genome-wide significance (lead SNP rs61295180,
p=5.6*10–8). Last, there is a single imputed SNP on chromosome 12
associated with PL (rs4765900, Fig. 1B), but there is no LD signature
and this singleton is likely to be a spurious signal.

3.2. Effect of PNPO SNPs on vitamin B6 metabolite levels in blood

A genome-wide significant locus identified in the GGE GWAS im-
plicated 84 SNPs around the gene PNPO [14]. To assess whether these
SNPs influence vitamin B6 levels in blood, we leveraged an eQTL da-
tabase including data from 29,684 subjects and found that all 84 SNPs
are associated with PNPO expression in blood (eQTL p-values between
1.6*10−85 and 8.5*10−8; see Supplementary Table 1).

We tested these 84 SNPs for association with vitamin B6 metabolites
levels and found that only 20 of these SNPs reached nominal sig-
nificance (p < .05) for association with any of the 5 measures of vi-
tamin B6 metabolism (Supplementary Table 2). None survived correc-
tion for multiple comparisons, suggesting that GGE-associated variants
that influence PNPO expression are not associated with concentrations
of vitamin B6 metabolites in blood.

3.3. Polygenic association of vitamin B6 metabolite SNPs with GGE

To assess whether vitamin B6 metabolism is different in GGE, we
first assessed whether the genome-wide significant SNPs from the
pyridoxine metabolite GWAS showed an association with GGE. Two out
of 44 SNPs from the ALPL locus and none from the PYROXD2 locus
from the PLP and PLP:PL GWAS showed a nominally significant asso-
ciation with GGE, but these did not survive correction for multiple
testing (Supplementary Table 3).

At just over 2000 individuals, the vitamin B6 metabolite GWAS had
limited power to detect associations at the stringent genome-wide sig-
nificance threshold. It is likely that there are additional, undetected
genetic variants with smaller effect sizes than we had the power to
detect that influence vitamin B6 metabolite levels. Therefore, we next
used PRS analyses to leverage the full distribution of SNPs from the
pyridoxine metabolite GWAS, to assess whether people with GGE have
a genetic predisposition for different metabolite levels compared to
controls. Briefly, polygenic risk scores were generated by determining
which genomic SNPs collectively contribute to vitamin B6 metabolite
measures in the TSS above a set threshold. These SNPs were used to
generate PRS scores in GGE participants and controls to ask whether
genetic contribution to vitamin B6 metabolism differs in these groups.

These polygenic score analyses showed a trend towards lower scores
for PLP and PL, but higher scores for PA, PLP:PL and the PAr index in
GGE participants (Fig. 3; see Supplementary Table 4 for values).
However, these associations did not meet the stringent P < .001
threshold that is recommended for analyses with PRSice [24].

Fig. 2. Locusplot of the genome-wide significant locus associated with the PLP:PL ratio. This locus includes a missense variant of the gene PYROXD2 (rs2147896).
Chromosomal position including gene annotations are displayed on the X-axis and negative log10-transformed P-values are displayed on the Y-axis. SNPs are plotted
as circles whose colors represent the correlation (linkage disequilibrium) with the lead SNP rs942813.
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4. Discussion

In this study, we assessed the genetic association between vitamin
B6 metabolism and GGE. We previously found that all 84 GGE-asso-
ciated SNPs in the PNPO locus significantly influenced gene expression
of PNPO, which is essential to convert vitamin B6 into its active form
PLP. In this study, these SNPs were not associated with alterations in
vitamin B6 metabolite levels or ratios in blood plasma. However, we
cannot rule out the possibility that these SNPs influence vitamin B6
metabolism in the brain or other tissues, where it is needed to convert
pyridox(am)ine 5-phosphate to the active form PLP. Indeed, the cor-
relation of PLP as measured in CSF or plasma in children with an in-
tellectual disability was found to be significant but not complete [9],
indicating that genetic influence on PLP and the ability to detect it may
differ in CSF and plasma. It is possible that GGE-associated PNPO SNPs
specifically influence metabolism of vitamin B6 in the brain, which
could affect neurotransmitter metabolism and influence seizure sus-
ceptibility, without altering detectable levels in plasma. However, it is
not feasible to collect CSF samples at the scale required for GWAS
analyses to ask this more directly. Another caveat to consider is the
potentially reductive effect anti-epileptic drugs may have on PLP in the
GGE population. This potential influence may have reduced our ability
to detect contribution of genetic modifiers of vitamin B6 metabolism to
epilepsy in the GGE population.

We reproduced previous GWAS of vitamin B6 levels [15], which
confirmed the locus around the gene ALPL, which codes for the enzyme
that converts PLP into PL. In addition, by performing a GWAS on
PLP:PL, we found a new locus implicating the gene PYROXD2. The
same SNPs in this locus are associated with levels of several other
metabolites in blood (dimethylamine [25], unknown X-12092 [26,27],
caprolactam [28], asymmetric dimethylarginine [29]) and urine (tri-
methylamine [25,30]) but a role for PYROXD2 in vitamin B6 metabo-
lism has not been previously established. PYROXD2 was initially
identified for binding the X protein of human hepatitis B (HBx) in a
protein interaction assay [31]. It has been further characterized as
having tumor suppressor activity [32], although its exact function re-
mains unknown. Its protein sequence includes sequence conservation
with an NAD(P)-binding Rossman-like domain (HomoloGene [33]),
which may contribute to a reduction-oxidation activity. The association
of PYROXD2 with a measure of vitamin B6 metabolism in the current
study may be a helpful clue in elucidating its biological function.

Although we found that the genome-wide significant vitamin B6
metabolism loci were not significantly associated with GGE, we did find
suggestive evidence for an association by leveraging the full

distribution of SNPs with PRS analyses. These analyses suggested that
people with GGE have a genetic predisposition for higher vitamin B6
catabolism (higher PA and PAr index) and lower levels of PLP and PL in
blood. Moreover, PRS of PLP:PL was higher in GGE compared to con-
trols, suggesting relatively lower levels of the transport form PL, which
is required for delivery to the brain. However, these analyses were
limited by a relatively small sample size for the vitamin B6 GWAS
(n=2232) and did not meet the stringent P < .001 cutoff that is re-
commended for PRSice. Further studies with a larger sample size are
needed to confirm these findings.

In summary, our study did not find evidence for an influence of
GGE-associated PNPO SNPs on vitamin B6 metabolism in blood, al-
though these SNPs could still have a brain-specific influence on vitamin
B6. We found a novel locus that influences the PLP:PL ratio and we
found suggestive evidence for increased vitamin B6 catabolism in
people with GGE, which needs further replication. However, it is un-
likely that genetic differences in vitamin B6 metabolism described here
are sufficiently large to be causal in the pathophysiology of GGE or to
have direct therapeutic implications.
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