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ABSTRACT:  

 

 

 

 

 

 

 

 

In many jurisdictions, policy makers are seeking to decentralize the electric power system while also promoting deep 

reductions in emissions of greenhouse gases (GHG). We examine the potential roles for residential energy storage (RES), 

a technology thought to be at the epicenter of these twin revolutions. We model the impact of grid-connected RES operation 

on electricity costs and GHG emissions for households in 16 of the largest United States utility service territories under 

three plausible operational modes. Regardless of operation mode, RES mostly increases emissions when users seek to 

minimize their electricity cost. When operated with the goal of minimizing emissions, RES can reduce average household 

emissions by 2.2 – 6.4%, implying a cost equivalent of $180 to $5,160 per metric ton of carbon dioxide avoided. While 

RES is costly compared with many other emission control measures, tariffs that internalize the social cost of carbon would 

reduce emissions by 0.1 – 5.9% relative to cost-minimizing operation. Policy makers should be careful about assuming that 

decentralization will clean the electric power system, especially if it proceeds without carbon-mindful tariff reforms. 
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INTRODUCTION 1 

The world must move to a deeply decarbonized energy system over the next several decades to avert the worst 2 

consequences of climate change.(1)-(2) Energy system analysts have laid out several potential pathways along 3 

which this transition might unfold,(3) and most suggest that cost-effective decarbonization will require massive 4 

electrification.(4)-(5) To provide this low-carbon electricity, many studies have focused on the role that renewable 5 

energy might play.(6)-(8) Policy makers have followed suit, promoting renewable energy as a strategy for 6 

decarbonization.(9)  7 

   At the same time, analysts have explored the benefits of an electric power system that is more decentralized, 8 

and policy makers in some jurisdictions, such as California and New York, are now actively promoting that 9 

future.(10)-(11) Many different political and technological forces are motivating interest in decentralization, such as 10 

the desire to empower consumers with greater control over their energy choices,(12) to create competition in a 11 

sector traditionally structured around regulated monopolies,(13) to defer costly investments in transmission 12 

infrastructure,(14) and to create conditions favorable to deployment of more rooftop solar photovoltaics (PV).(15)  13 

   Here we focus on the intersection of these two broad areas of academic and policy attention—the potential for 14 

simultaneous decarbonization and decentralization of the electric power system. We assess the role of behind-15 

the-meter battery energy storage in the residential sector, which we refer to as residential energy storage (RES). 16 

While there has been significant and growing research on the economics and technical benefits of energy 17 

storage(16)-(17)—in particular in the context of decarbonized and decentralized power grids(18)—our study is 18 

focused squarely on the environmental issue: if consumers on their own or in response to policy pressure adopt 19 

these systems, will greenhouse gas emissions from the electric power system go down and at what economic cost? 20 

Here most analysis of the effects of energy storage on emissions has focused on the role of large-scale (megawatt) 21 

systems.(19)-(26) While a couple of these studies find emissions impacts of energy storage case dependent,(19)-(20) 22 

several report that revenue-maximizing energy storage operation tends to increase emissions of CO2 and other 23 

pollutants in today’s power systems.(21)-(23) On the other hand, several others report that system-wide integration 24 

of energy storage could reduce CO2 emissions; by improving capacity utilization of renewable generators,(24) by 25 
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enabling a shift from coal-fired to gas-fired generation and reducing wind curtailment,(25) and if some form of 26 

carbon pricing framework can be established.(26) Beyond assessment of large-scale systems, several studies have 27 

also investigated the emissions effects of deploying storage technologies at the grid edge, notably in the 28 

commercial and industrial (C&I) sector.(27)-(28) Similar to the case in large-scale systems, increased CO2 emissions 29 

from the grid have been observed when customers in the C&I sector operate energy storage under current tariff 30 

conditions for cost minimization.(27) However, certain C&I implementations of energy storage, e.g. when coupled 31 

with a combined power generation unit and an organic Rankine,(28) could potentially achieve emissions 32 

reductions. While the case for C&I customers deploying storage is strong under certain tariff regimes—notably 33 

when customers use these systems to reduce demand charges (29)—the vision of full grid decentralization hinges 34 

on more pervasive deployment of storage, including in residential settings. Assessing how RES systems would 35 

impact emissions is crucial since, in comparison to C&I customers, residential households have different power 36 

consumption behavior, they are subject to different electricity prices, and they own much smaller systems. Yet 37 

the analytical literature in this domain has lagged far behind the visions for grid transformation. Existing research 38 

has assessed how different residential tariff structures might affect energy bills (30) or energy consumption,(31) and 39 

associated CO2 emissions. A couple of other studies has examined how RES might impact emissions when 40 

operated in modes that maximize self-consumption of PV generation in Texas, the United States (U.S.),(32) and at 41 

two locations in the United Kingdom.(33) Currently there is a lack of analysis on how the wider range of possible 42 

RES operation modes could affect emissions. There is also a lack of geographical coverage generally among 43 

studies. This study aims to fill these gaps. 44 

   This study offers the first comparative analysis of the emissions impact of RES under three realistic modes of 45 

operation that span the range of plausible near-future options: demand shifting, PV self-consumption, and energy 46 

arbitrage. The analysis samples 16 of the largest U.S. electric utilities in all eight of the regional grids in the 47 

continental U.S. Using real electric tariff and marginal emissions data, we calculate the emissions effects from 48 

RES deployment in these different modes. We also calculate what households would need to be paid to shift RES 49 

operation from a goal of minimizing electricity costs to one of minimizing emissions—a calculation that reveals 50 

the shadow level of carbon pricing that can then be compared against the cost of other mitigation options.  51 
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DATA AND METHODS 52 

We formulate a convex optimization problem that determines optimal operation for RES that minimizes either 53 

household electricity costs or emissions. Solving these problems requires information about local electricity 54 

prices, household load profiles, and solar PV generation. Solving the emission minimization problem also requires 55 

knowing grid marginal emissions factors. To address these daunting data challenges, we first build a 56 

representative sample of a large cross-section of U.S. retail customers covering all eight of the major grid regions 57 

in the U.S., known as North America Electric Reliability Corporation (NERC) regions (see Table S-1 for region 58 

abbreviations). We select the two utility service territories that are largest by customer size within each of the 59 

eight NERC regions(34) (herein called region-territories)—for a total of 16 region-territories. 60 

   Electricity is supplied to the majority of households in the U.S. by investor-owned or publicly-owned utilities 61 

at prices approved by state regulatory commissions. Supplied electricity differs by price, which varies by utility, 62 

as well as bulk grid emissions, which vary by NERC region. Within each region-territory, we collect utility 63 

electricity prices as reported in time-of-use (TOU) tariff schedules and applicable adjustments, allowing us to 64 

model households’ electricity costs depending on time of day, season, and location. In two NERC regions (TRE 65 

and RFC), the largest utilities do not offer a TOU tariff, so we choose the next largest utility in the region that 66 

does (see Table S-2).  67 

   Emissions due to electricity generation vary with location and time as the type of power plants activated to 68 

supply the marginal amount of energy needed changes. We take seasonal hourly grid marginal emissions in 2016 69 

from real-world conditions reported in the literature.(35)-(36) These emissions estimates are based on an analysis of 70 

hourly historic emissions and generation data from the Environmental Protection Agency’s (EPA) Continuous 71 

Emissions Monitoring System (CEMS). We use these estimates to calculate changes in emissions caused by RES 72 

systems as they alter demand (and thus the emissions intensity of electricity generation that is needed to meet that 73 

demand). 74 

   We use prototypical residential load profiles provided by the U.S. Department of Energy(37) which are publicly 75 

available. Household consumption is reported as load profiles—i.e., annual consumption with one-hour time 76 
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step—that are the simulated electrical consumption of an archetypal house model built to the 2009 International 77 

Energy Conservation Code (IECC) as well as other standards related to domestic appliances, lighting and 78 

miscellaneous electric loads(38). Load profiles are simulated considering different climatic conditions at typical 79 

meteorological year version 3 (TMY3) weather station locations(39) across the U.S.. These characterize hourly 80 

meteorological conditions from data collected over several decades. We use the subset of TMY3 sites—and 81 

associated unique household load profiles—available within each region-territory (220 in total; see Table S-3).  82 

   TMY3 data also underlie PV generation estimation for households with solar PV systems. The power output of 83 

each PV system is determined using a PV performance model(40) that calculates power generation as a function 84 

of solar irradiance, ambient air temperature, and wind speed data. Typical system parameters (Table S-4) are 85 

determined using the National Renewable Energy Laboratory’s PVWatts tool (http://pvwatts.nrel.gov). Each PV 86 

system, regardless of household location, has a 5.35 kW rating, which is the average capacity installed across the 87 

region-territories under consideration (see Table S-5). 88 

   We calculate optimal RES dispatch profiles for a full year of operation (8760 hours) with two different objective 89 

functions. First, households operate RES systems to minimize household electricity costs, which is the 90 

economically rational choice. With this same goal to minimize cost, we further model a variant that adds the 91 

social cost of carbon (SCC) to the electricity cost, estimated today at $46 in 2017 dollars per emission of metric 92 

ton of CO2
(41). Adding the SCC to electricity prices reveals the behavioral response of customers that internalize 93 

the carbon costs of their energy choices—independent of whether that carbon is emitted locally or from the grid. 94 

Under the second objective function, customers use RES to minimize emissions regardless of cost—which reveals 95 

the maximum potential for emissions reductions via RES. 96 

Three modes of operation for households.  The cost and effect on emissions of achieving these two goals 97 

depends on how households operate their RES devices. We look at three modes of operation (Figure 1). These 98 

modes of operation are treated as constraints on RES systems regardless of the objective functions we describe 99 

above. First, households can use their RES as demand shifting systems, in which RES systems shift the time of 100 

household electricity demand and minimize electricity costs under a variable TOU tariff. In this mode, households 101 

find the lowest cost for purchasing power, but they do not sell electricity back to the grid. This form of demand 102 
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management is currently available in every state and utility with a TOU tariff program. Residential households 103 

have historically been charged via flat volumetric rates and thus have had no incentive to shift demand. Though 104 

some utilities have offered opt-in TOU tariffs, few households have made the move(42). That is now changing as 105 

regulators consider mandatory TOU tariffs as part of an attempt to better capture the time-varying costs of 106 

electricity generation. In California, for example, the default residential tariff will switch to TOU for all 107 

households served by the major investor owned utilities beginning in 2019(43). Furthermore, our survey on 108 

residential tariff options among 562 utilities in 2017 shows that TOU tariffs are currently being offered to 109 

residential customers in 46 of the 48 contiguous U.S. even though their uptake across states varies. 110 

   In the second mode of operation, which we term the PV self-consumption mode, households that have installed 111 

PV systems use RES to maximize the self-consumption of their solar PV electricity. At present, there is little 112 

incentive to use batteries in this way because nearly all states have net metering programs that credit excess power 113 

sent to the grid at retail rates. However, new proposals to alter compensation schemes for excess generation(44)-114 

(45), or prohibit net metering altogether(46), would erode or eliminate the benefits of energy sales, which could 115 

encourage RES deployment in households with PV systems and also encourage these households to operate their 116 

RES devices to maximize PV self-consumption. We compare RES operated in this mode against a baseline 117 

without RES but that includes a PV system that is net metered, the default mode of operation today in the U.S. 118 

for most solar PV system owners. 119 

   Finally, in the third mode of operation, households with RES systems engage in two-way energy arbitrage, 120 

buying and selling electricity at retail rates to maximize revenue. This mode, while futuristic and quite demanding 121 

of local infrastructure and control systems, reflects the vision of advocates of decentralized energy management. 122 

Several U.S. states are currently exploring whether to allow households to exploit RES systems in this way(47)-123 

(49). The logic for this mode is also reflected, partly, in proposals for distributed locational marginal prices that 124 

are designed to encourage more local arbitrage and demand response(50). Logically, that same kind of arbitrage  125 

could extend to residential customers, albeit at a smaller scale. 126 
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   We assume each household adopts RES with a capacity of 10 kWh and a charging/discharging limit of 5 kW. 127 

This is in alignment with capacities typically offered by RES vendors, such as in the Tesla Powerwall, 128 

sonnenBatterie eco, and Evolve RES system (websites accessed April 2018). The 5-kW rating is sufficiently large 129 

to absorb peak solar PV generation or deliver maximum electricity demand for all modes considered in this study. 130 

In other words, RES system size is not a limiting factor in energy storage system scheduling, whether operation 131 

is intended to shift demand, self-consume PV generation, or engage in energy arbitrage (Sensitivity of the results 132 

to different system sizes is provided in the Supplementary Information). 133 

Household energy balance.  We model the household, RES, and, when present, solar PV system, at a single 134 

node behind the electricity meter of the customer. The power balance equation for household net demand p(k) at 135 

the electricity meter is given by 136 

p(k) = l(k) − g(k) + c(k) − u(k)                       (1) 137 

 

 

 

Figure 1 | Modes of operation for residential energy storage (RES) at households: (a) demand shifting, 

(b) PV self-consumption, and (c) energy arbitrage. Arrows indicate direction of power flow. Demand shifting 

is the simplest mode. PV self-consumption extends demand shifting by adding a PV system to the household. 

Energy arbitrage extends demand shifting by allowing energy back-flow to the grid. Table S-6 shows the 

baseline configurations for each mode of operation. 
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where the time step k ϵ {1, … , s} and s is the number of time steps in a day-long charging schedule. If Δt is the 138 

time-interval between consecutive time-steps k, then s = 24h/Δt. The average demand of the household over a 139 

period Δt is l(k). Similarly, the average solar generation is g(k), the average curtailed solar PV generation is c(k), 140 

and the average RES charge/discharge is u(k). All units are in kW. The variable u is positive while discharging. 141 

Net demand p(k) is the demand seen by the utility and is positive when power is flowing from the grid to the 142 

household. Similarly, curtailment c(k) is positive. 143 

   We modify variables in Equation 1 depending on the mode of operation. For modes without a solar PV system, 144 

solar generation g(k) and curtailed solar generation c(k) are zero for all time steps. For the energy arbitrage mode, 145 

net demand p(k) may be negative or positive, but for the demand shifting and the PV self-consumption modes, 146 

net demand p(k) is constrained to be nonnegative for all time steps because energy sales are prohibited in these 147 

modes. For the PV self-consumption mode, curtailed solar generation c(k) is equivalent to the excess solar 148 

generation that would have ordinarily been injected into the grid. In this case, it does not result in financial 149 

compensation to the customer. 150 

   In all scenarios, we use the observed data to be the day-ahead forecasts for demand l(k) and solar generation 151 

g(k) of each household, which is an assumption of perfect information. Though in practice real forecasts with 152 

some error would be used operationally, in this study we assume perfect forecasts to model the upper limit of 153 

RES performance, as is commonly done in the literature(32). 154 

RES model.  The rated energy capacity of the RES is represented by C in kWh. We set the initial state of charge 155 

(SOC) χ(0) to 50% of the rated energy capacity C. We define the minimum allowed SOC and the maximum 156 

allowed SOC of the RES in kWh as χ and χ, where χ ∶= 0 and χ ∶= C. We assume here that degradation is 157 

negligible to model the upper limit of RES performance (Sensitivity to degradation is provided in the 158 

Supplementary Information). The relation governing SOC is then given by χ(k) =  χ(0) −  ∑ u(k)Δts
k=1 . The 159 

RES charge/discharge u(k) consists of uchg(k) and udchg(k). The RES charge uchg(k) is constrained by 0 ≤160 

 |uchg(k)| ≤  u and the RES discharge 0 ≤  udchg(k)  ≤  u, where u and u are the discharge and charge power 161 

limit of RES, respectively. Following the literature(21),(26), we consider storage inefficiencies ηrt by dividing the 162 
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total energy lost during charging and discharging equally between the charge and discharge cycles. Whenever the 163 

RES charges, we assume that its SOC increases by ηrt
1/2 uchg(k). Similarly, when the RES discharges, its SOC 164 

decreases by ηrt
−1/2 udchg(k). 165 

RES scheduling.  A convex optimization approach is taken to determine the optimal RES scheduling for each 166 

household. We code the scripts for the optimization problem using MATLAB (Version 2016b) and solve it using 167 

the convex modeling framework CVX (Version 2.1) and the solver Gurobi (Version 7.0.2). The formulation of 168 

the optimization problem builds on previous work(51). In the following formulation, we denote vectors in bold. 169 

RES is dispatched daily following the convex optimization problem: 170 

min
𝐩ϵℝs

∆t𝛟𝐩 (2) 171 

where p is the household net demand and 𝛟 is the cost factor that is dependent on the objective under 172 

consideration. The objectives and associated cost vectors are defined as: (1) Minimizing household electricity 173 

cost 𝛟 = 𝚲, where 𝚲 is the TOU tariff that consists of pricing blocks; (2) Minimizing household electricity cost 174 

while internalizing the social cost of carbon 𝛟 = 𝚲 + λc ∙ 𝐌𝐄, where λc is the current social cost of carbon 175 

estimate and 𝐌𝐄 is hourly marginal emission estimates of each day; and (3) Minimizing emissions 𝛟 = 𝐌𝐄. The 176 

social cost of carbon λc is taken as $46 in 2017 dollars per metric ton of CO2, which equates to $38.4 in 2007 177 

dollars per metric ton of CO2. We use an inflation rate of 1.67% per year to determine the estimates for 2017. 178 

   The optimization problem is subject to an inequality constraint that describes the RES charge and discharge 179 

limits, capacity constraints, the SOC dynamics, and to an equality constraint that prevents energy-shifting between 180 

days. The inequality constraint 𝐀𝐮 ≤  𝐛 represents the dynamics of the energy storage model described above. 181 

Its definition follows the derivation given in the literature(52) except here we also consider storage inefficiencies 182 

as described earlier. The equality constraint 𝟏𝐮 = 0, where 1 is the all-1 row vector, ensures that χ(s), the final 183 

SOC at the end of each day (at time s∆t), equals the initial SOC χ(0) and hence prevents the RES from passing 184 

energy from one day to the next. The optimization horizon is one day, and RES are scheduled to minimize the 185 

objective over that horizon (See Figure S-1 and S-2). 186 
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Estimating RES impacts on cost and emissions.  To estimate the impact of deploying RES on operating 187 

costs and emissions we first calculate a baseline (see Table S-6) where households neither own RES nor PV (with 188 

the exception of PV self-consumption). For that baseline, electricity costs and emissions are a function solely of 189 

the hourly household electricity consumption. Each household is billed monthly based on their kWh electricity 190 

consumption via TOU pricing. Similar to the literature(21),(26),(32) we estimate the cost impact of RES by comparing 191 

the baseline electricity bill of each household (i.e., without RES) with their electricity bill with RES. Whenever 192 

RES shifts the net demand seen by the bulk grid, the associated change in grid emissions is calculated by 193 

multiplying the consumption increase or decrease by the applicable marginal emissions at that hour. 194 

RESULTS 195 

We first evaluate the maximum potential impact on emissions and costs from RES systems by considering 196 

idealized lossless RES systems, which is a helpful benchmark before adding real-world operational considerations 197 

in the next section.  198 

   Figure 2 shows the emissions reduction potential for RES systems deployed across the 16 region-territories 199 

under each of two goals: minimizing electricity cost (bold bars) and minimizing emissions (light bars). Regional 200 

variation in emissions reduction potential reflects the variation in marginal emissions across the eight different 201 

national grids. For instance, achievable emissions reductions within Texas (TRE), where marginal generators 202 

have higher emissions during morning hours when coal is a significant source of marginal generation, are roughly 203 

double that in the Northeastern U.S. (NPCC), where temporal variations in emissions throughout the day are much 204 

smaller since gas-fired generators are always dominant on the margin (see Figure S-5).  205 

   There is also a substantial difference between objective functions that minimize costs and emissions. Though 206 

lossless RES systems are almost always capable of reducing emissions when they are operated in ways that 207 

minimize cost, that reduction is relatively small. On the other hand, when RES systems are configured to minimize 208 

emissions via energy arbitrage (pink bars), they have, on average, about an eight-fold higher reduction potential 209 

than when configured to reduce cost. 210 
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Figure 2 | Potential annual household emissions reductions with a lossless RES system in different modes 

of operation. NERC regions are shown along the top, with the two selected utilities in each region shown along 

the bottom. The bars show mean of maximum annual emissions reductions achieved by all households in each 

region-territory under each of three modes of operation. For each mode of operation, we model two distinct 

objectives: minimizing electricity cost (dark bars) or minimizing emissions (light bars). Even when RES is 

assumed lossless (as shown here), two cases (in WECC) still lead to emissions increases when households 

minimize electricity cost. Such cases become more common when the same calculations are repeated 

considering battery inefficiencies (see Figures S-3 and S-4). 

   At least two implications follow from the analysis of the maximum potential impact on emissions. First, while 211 

much policy attention has focused on promoting PV self-consumption mainly for reasons of managing reverse 212 

power flows, this mode has the lowest effect on emissions reductions in every region-territory. Our work suggests 213 

that energy arbitrage could be most effective at reducing emissions. Second, variation in the tariff structure within 214 

a single NERC region (that is, interconnected grids with common marginal emissions) has a strong impact on 215 

emissions under different RES modes. Each pair of region-territories within a given NERC region has an identical 216 

potential to reduce emissions from energy arbitrage (see light pink bars). In contrast, where tariff structures differ 217 

across the utilities within a given NERC region, the expected emissions reductions if customers minimize 218 

electricity costs (see dark bars) differ significantly—most saliently for Texas (TRE) and the Midwest (MRO). 219 

Another striking example is observed in the Midwest (MRO) among households using RES for demand shifting, 220 
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where the emissions reductions achieved in Wisconsin (WEP) are over eight times higher than in Minnesota 221 

(NSP). This is driven by differences in tariff structures, including the duration, timing, and seasonality of peak 222 

pricing. Ultimately, it shows that reduction potentials are maximized when tariffs align favorably with marginal 223 

emission rates. 224 

Cost of using residential energy storage to reduce emissions. We now transition from an analysis 225 

of maximum potentials, which assumes that RES systems are lossless, to more realistic conditions that assume 226 

90% battery round-trip efficiency, typical of top-performing lithium-ion battery systems deployed today(53). The 227 

main effect of adding battery inefficiencies is to increase emissions; losses increase energy consumption that 228 

mainly comes from fossil fuels(36). 229 

   Figure 3 shows the change in annual household emissions when households operate RES systems under each 230 

of the three operating modes to minimize electricity costs (orange bars), minimize electricity costs that embed the 231 

social cost of carbon (blue bars), or minimize emissions regardless of cost (green bars). Within each bar lies the 232 

annual change in emissions estimates reported for each household. Orange bars further report the full range of 233 

possible annual change in emissions when RES systems are operated to minimize electricity. There is considerable 234 

variation in cost minimal operation (orange bars) because utility TOU tariffs are built on pricing blocks—i.e., 235 

periods of constant pricing—that last several hours. RES systems can operate along multiple different pathways 236 

within pricing blocks that minimize costs equally. Since marginal emissions vary within those TOU pricing 237 

blocks, each potential pathway has a different emissions footprint. Absent incentives to lower emissions, a large 238 

range of emissions can result from RES operation—as denoted by the orange bars. Different meteorological 239 

conditions contribute further variability for different households in a region-territory, albeit to a lower degree. 240 

   Three points emerge from the analysis in Figure 3. First, in each of the three modes, nearly the full range of 241 

possible outcomes for cost minimization (orange bars) involves an increase in emissions. That range of emission 242 

impacts is larger, slightly, in energy arbitrage mode—reflecting a wider range of possible outcomes when 243 

households can move power in both directions with the grid. More importantly, while maximizing 244 
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Figure 3 | Impact on annual household emissions of using RES for (a) demand shifting, (b) PV self-

consumption, and (c) energy arbitrage. For each mode of operation, we model three different objectives: 

minimizing electricity costs (orange bars), minimizing electricity costs that include the social cost of carbon 

(blue bars), and maximizing emissions reductions regardless of cost (green bars). Top (a) and bottom (c) charts 

show change in emissions relative to average household electricity emissions without a PV or RES system. In 

the PV self-consumption mode (b), change in emissions is determined relative to equivalent households 

equipped with a net-metered solar PV system without a RES system. Blue and green bars show the range of 

estimates while orange bar shows all possibilities in emissions impact during a cost-minimal energy storage 

operation by all households in each region-territory. 
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PV self-consumption, no household is able to reduce emissions compared to an equivalent household that lacks 245 

RES and has installed PV with traditional net metering. These results suggest that the outcome from tariff reforms 246 

aimed at boosting residential PV self-consumption—for example, the new settlement in Arizona(54) that 247 

introduces a self-consumption reimbursement rate that closely matches current export rates for excess PV 248 

generation—will be contrary to the emission impacts that PV advocates have been seeking. 249 

   Second, adding incentives to internalize the cost of emissions (here, in the form of a carbon price) significantly 250 

reduces variation in the range of potential emissions impacts (blue bars have on average, among all modes of 251 

operation, one-tenth of the variation compared to the orange bars). A carbon price mainly shifts RES operation 252 

within a TOU pricing block (at essentially no cost) to the times that are most beneficial for emissions. As higher 253 

carbon prices would be implemented, RES would be committed more to reducing emissions directly. But under 254 

the SCC,  the savings from minimizing electricity costs far exceed the gains from avoiding emissions: the largest 255 

average annual savings from reducing emissions—those of RES operating in energy arbitrage mode at the 256 

rightmost point of the orange bars in ET (Texas)—are less than $35 (i.e., the SCC multiplied by the emissions 257 

savings obtained by moving from the orange bars to the blue bars), whereas the average annual savings in 258 

electricity costs are more than $400. Nevertheless, if households responded to a carbon price equivalent to the 259 

SCC, average household emissions across all region-territories would decrease, on average, by 0.1 – 3.9% when 260 

demand shifting, 0.3 – 2.0% when maximizing PV self-consumption, and 0.1 – 5.9% when engaging in energy 261 

arbitrage compared with RES operation that ignores the cost of emissions (In effect, shifting from the orange bars 262 

to the blue bars) 263 

  Third, only when RES systems are forced to minimize emissions—in effect, when the carbon price is 264 

impractically high—do they succeed in reducing emissions across all regions. Compared to the baseline, 265 

reductions reach 1.0 to 3.0% while demand shifting, 2.2 to 6.4% during energy arbitrage, and up to almost 0.9% 266 

when they maximize PV self-consumption (see Figure S-6). RES used to maximize PV self-consumption still 267 

mostly increase emissions; the southeastern (SERC) and southern (SPP) parts of the U.S. are exceptions. This is 268 

because the baseline condition (residential PV with net metering) provides zero-emission solar energy to the grid 269 
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during relatively high emission hours in all other region-territories. For PV self-consumption, emissions only 270 

decline in grids with relatively low marginal emissions during peak solar hours. 271 

   Contrasting the two objectives—minimizing electricity cost and minimizing emissions—helps us evaluate the 272 

incentives that might be needed to encourage emissions reductions via RES. Figure 4 shows the annual total that 273 

utilities would have to pay households to reimburse economic losses they would experience when they operate 274 

with the goal of minimizing emissions instead of cost. These annual totals are derived by taking the difference in 275 

net revenue under both cost minimization and emissions minimization scenarios, then dividing this value by 276 

differences in net emissions under both cases. On average, this shift from cost minimization to emissions 277 

minimization allows households to reduce their annual emissions from electricity consumption by 6.8% or 460 278 

CO2-kg (the amount of CO2 emissions from about 52 gallons of gasoline consumed(55)), and in several regions 279 

(Texas and Florida—TRE and FRCC) annual reductions of more than 1,000 CO2-kg are achievable (See Figure 280 

S-7). Even where reductions are significant, the associated cost of shifting to this objective is extremely high, 281 

averaging $1,100 per metric ton of CO2 emissions reduced. 282 

 

 

Figure 4 | Carbon prices needed to achieve maximum emissions reduction under energy arbitrage. 

Shown are the range of prices that would need to be offered to households for operating their RES systems to 

minimize emissions rather than the cost of electricity during energy arbitrage. Under existing tariff structures, 

the cost of such interventions is high—much higher than current estimates for the social cost of carbon ($46 

per metric ton of CO2). 
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   Variation in the incentives needed to minimize emissions across region-territories is high—from $180 to 283 

$5,160—and mainly reflects variation in the ratio of on-peak and off-peak energy prices in each region-territory. 284 

Households with RES can achieve larger electricity cost reductions where that ratio is higher—because they can 285 

shift demand between larger price differences. For instance, there is a 10-fold difference in incentives needed 286 

between the utilities of CE and DTE (both in RFC) even though they implement the same peak pricing duration, 287 

timing, and seasonality (see Figure S-5). Households in DTE (where the ratio of on-peak to off-peak pricing per 288 

kWh is 23% greater than CE) gain more from operating their RES in an economically rational way, which makes 289 

it much costlier to implement incentives that encourage emissions reductions in this region-territory. We doubt 290 

that tariff planners intended these effects, but currently there is a huge imbalance in the cost of emission control 291 

through RES.    292 

    In Figure 5, we summarize annual cost savings and associated changes in annual CO2 emissions when 293 

households deploy RES systems to minimize their electricity costs. The energy arbitrage mode is most effective 294 

at achieving the dual benefits of reducing electricity cost and emissions: eight out of the 16 region-territories 295 

succeed in doing so. In the demand shifting mode, only four of the 16 region-territories achieve both cost and 296 

 

 

Figure 5 | Annual change in household savings and emissions when operating RES under demand 

shifting (a), PV self-consumption (b), and energy arbitrage (c).  Savings and the best-case emissions 

reduction (leftmost side of the orange bars in Figure 3) are averaged across all households in a region. 

Only rarely do RES systems simultaneously achieve cost reductions and emissions reductions 

(graphically, the upper left quadrant). 
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emissions reductions. Meanwhile, the PV self-consumption mode is unable to reduce emissions and costs 297 

simultaneously in any of the locations. 298 

DISCUSSION 299 

 Energy storage is widely expected to play an integral role in efforts to deeply decarbonize the electric power 300 

system. It is expected that energy storage will help integrate distributed renewable energy resources like rooftop 301 

solar PV systems, while also providing substantial operational flexibility for grid operators. Most households 302 

adopting energy storage are likely to choose equipment vendors and operation modes that allow them to minimize 303 

electricity costs. We show that, indeed, the deployment of energy storage in the residential sector can help reduce 304 

household electricity bills, but that RES will also generally lead to higher emissions. Encouraging households to 305 

temper this increase in emissions could be relatively inexpensive if done with a carbon tax but operating RES for 306 

the goal of reducing emissions is exceptionally costly. There may be good reasons to decentralize the grid through 307 

ubiquitous installation of small RES, but cost-effective emissions control is not one of them at the moment.  308 

   An especially helpful way for policy-makers to encourage RES adoption while reducing its adverse impacts on 309 

emissions lies with reform of utility tariff structures, which are the primary reason emissions reductions do not 310 

typically follow cost reductions. Tariffs that better reflect wholesale electricity prices and the cost of emissions 311 

could prompt simultaneous emissions and cost reductions. In grids with low penetration of renewables, the effect 312 

of these tariff reforms could be minimal, but in grids where penetration is much higher, the impacts could be 313 

significant and merit analysis. More work is needed to understand whether such alignment could be implemented 314 

and at what cost. 315 

   Absent substantial tariff reform, policy-makers could still encourage environmentally beneficial RES operation 316 

by ensuring that system developers and equipment vendors favor clean energy use by tracking and adjusting to 317 

variations in marginal emissions of the bulk grid. Some of this work is already underway by third-party groups(56). 318 

   There is much interest and enthusiasm for transformation of the electric power grid—and with that, 319 

transformation of the whole energy system(57). Enthusiasm, however, is no substitute for analysis, and there could 320 

be many unintended consequences from rapid large scale technological changes(21),(27),(32). Decentralization of the 321 
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grid could become a cauldron of unintended consequences—including for emissions of the gases that cause 322 

climate change. It will be the role of policy-makers and regulators to put in place mechanisms, like new tariffs, 323 

that ensure that this transformation benefits both households and society in terms of cost savings and emissions 324 

reductions. 325 

ASSOCIATED CONTENT  326 

Supplementary Information.  327 

Detailed information about electric utilities, utility rate codes and applicable riders, TMY3 weather sites 328 

considered in the study, schematics explaining each mode and baseline configuration, sample RES 329 

dispatch figures, figures showing sensitivity on battery round-trip efficiency, battery degradation, battery 330 

system size, and solar PV system size, figures showing relative impact on annual household emissions, 331 

figures showing mean hourly emissions estimates and peak electricity pricing periods. 332 

AUTHOR INFORMATION 333 

Corresponding Author 334 

* O. Babacan. Email: oybabacan@ucsd.edu 335 

ORCID 336 

Oytun Babacan: 0000-0001-9141-8872 337 

Author contributions 338 

O.B. formulated the problem with contributions from all authors. O.B. wrote codes, conducted simulations, and 339 

created illustrations. All authors contributed to analyzing data and writing the manuscript. 340 

Notes 341 

The authors declare no competing financial interests. 342 

ACKNOWLEDGMENTS  343 

We thank E. Wilson (NREL) for his feedback on the residential load profiles data set. 344 

mailto:oybabacan@ucsd.edu
https://orcid.org/0000-0001-9141-8872


 19 

REFERENCES 345 

(1) Bruckner, T.; Bashmakov, I. A.; Mulugetta, Y.; Chum, H.; Vega Navarro, A. de la; Edmonds, J. ; Faaij, A.; 346 

Fungtammasan, B.; Garg, A.; Hertwich, E.; Honnery, D.; Infield, D.; Kainuma, M.; Khennas, S.; Kim, S.; Nimir, 347 

H. B.; Riahi, K.; Strachan, N.; Wiser, R.; Zhang, X. Energy Systems. In: Climate Change 2014: Mitigation of 348 

climate change. contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel 349 

on Climate Change (IPCC). Cambridge University Press, 2014. 350 

(2) Peters, G. P.; Andrew, R. M.; Solomon, S.; Friedlingstein, P. Measuring a fair and ambitious climate 351 

agreement using cumulative emissions. Environmental Research Letters 2015, 10, 105004; DOI 10.1088/1748-352 

9326/10/10/105004. 353 

(3) Sisternes, F. J.; Jenkins, J. D.; Botterud, A. The value of energy storage in decarbonizing the electricity sector. 354 

Applied Energy 2016, 175, 368 – 379; DOI 10.1016/j.apenergy.2016.05.014. 355 

(4) Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; 356 

Brunner, S.; Eickemeier, P.; Kriemann, B.; Savolainen, J.; Schlömer, S.; von Stechow, C.; Zwickel, T.; Minx J. 357 

C. (Eds.) Summary for Policymakers. In: Climate Change 2014: Mitigation of climate change. contribution of 358 

Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). 359 

Cambridge University Press, 2014. 360 

(5) U.S. National Electrification Assessment; Report No. 3002013582; Electric Power Research Institute: Palo 361 

Alto, CA, 2018; http://mydocs.epri.com/docs/PublicMeetingMaterials/ee/000000003002013582.pdf. 362 

(6) Denholm, P.; King, J. C.; Kutcher, C. F.; Wilson, P. P. H. Decarbonizing the electric sector: Combining 363 

renewable and nuclear energy using thermal storage. Energy Policy 2012, 44, 301-311; DOI 364 

10.1016/j.enpol.2012.01.055.  365 

(7) Attia, S. Net Zero Energy Buildings (NZEB). Concepts Frameworks and Roadmap for Project Analysis and 366 

Implementation; Butterworth-Heinemann: Oxford, U.K., 2018. 367 

(8) Raghavan, S. V.; Wei, M.; Kammen, D. M. Scenarios to decarbonize residential water heating in California. 368 

Energy Policy 2017, 109, 441-451; DOI 10.1016/j.enpol.2017.07.002. 369 



 20 

(9) 2019 Standards Notice of Proposed Action; Docket Number 17-BSTD-02; California Energy Commission: 370 

Sacramento, CA, 2018; http://www.energy.ca.gov/.  371 

(10) Proceedings on Motion of the Commission in Regard to Reforming the Energy Vision; Case Number 14-M-372 

0101; New York State Department of Public Service: New York, NY, 2014; https://www.dps.ny.gov/. 373 

(11) Order Instituting Rulemaking Regarding Policies, Procedures and Rules for the California Solar Initiative, 374 

the Self-Generation Incentive Program and Other Distributed Generation Issues; Rulemaking 12-11-005; 375 

California Public Utility Commission: Sacramento, CA, 2012; http://www.cpuc.ca.gov/. 376 

(12) World Energy Trilemma: Changing Dynamics - Using Distributed Energy Resources to Meet the Trilemma 377 

Challenge; World Energy Council: London, U.K., 2017; https://www.worldenergy.org/wp-378 

content/uploads/2017/11/World-Energy-Trilemma-2017_Full-report_WEB.pdf. 379 

(13) A level playing field for local energy; Issues paper prepared for the City of Sydney; Institute for 380 

Sustainable Futures (UTS): Sydney, Australia, 2014; 381 

https://www.uts.edu.au/sites/default/files/ISF_Level%20playing%20field%20for%20Local%20Energy_Nov201382 

4.pdf. 383 

(14) Energy Storage for Transmission and Distribution Deferral; Navigant Research: Washington, DC, 2017; 384 

https://www.navigantresearch.com/reports/energy-storage-for-transmission-and-distribution-deferral. 385 

(15) Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California; 386 

NREL/TP-6A20-66595; National Renewable Energy Laboratory: Golden, CO, 2016; 387 

https://www.nrel.gov/docs/fy16osti/66595.pdf. 388 

(16) The Economics of Battery Energy Storage: How multi-use, customer-sited batteries deliver the most 389 

services and value to customers and the grid; Rocky Mountain Institute: Boulder, CO, 2015; https://rmi.org/wp-390 

content/uploads/2017/03/RMI-TheEconomicsOfBatteryEnergyStorage-FullReport-FINAL.pdf. 391 

(17) The Role of Energy Storage with Renewable Electricity Generation; NREL/TP-6A2-47187; National 392 

Renewable Energy Laboratory: Golden, CO, 2010; https://www.nrel.gov/docs/fy10osti/47187.pdf. 393 

(18) Development of decentralised energy and storage systems in the UK; KPMG LLP: U.K., 2016; 394 

http://www.r-e-a.net/upload/rea_storage_report-web_accessible.pdf. 395 



 21 

(19) Arbabzadeh, M.; Johnson, J. X.; Keoleian, G. A. Parameters driving environmental performance of energy 396 

storage across grid applications. Journal of Energy Storage 2017, 12, 11-28; DOI 10.1016/j.est.2017.03.011. 397 

(20) Lin, Y.; Johnson, J. X.; Mathieu, J. L. Emissions impacts of using energy storage for power system reserves. 398 

Applied Energy 2016, 168, 444-456; DOI 10.1016/j.apenergy.2016.01.061. 399 

(21) Hittinger, E. S.; Azevedo, I. M. L. Bulk energy storage increases United States electricity system emissions. 400 

Environmental Science & Technology 2015, 49 (5), 3203-3210; DOI 10.1021/es505027p.  401 

(22) Lueken, R.; Apt, J. The effects of bulk electricity storage on the PJM market. Energy System 2014, 5 (4), 402 

677-704; DOI 10.1007/s12667-014-0123-7. 403 

(23) Carson, R. T.; Novan, K. The private and social economics of bulk electricity storage. Journal of 404 

Environmental Economics and Management 2013, 66 (3), 404-423; DOI 10.1016/j.jeem.2013.06.002. 405 

(24) Khalilpour, K. R.; Vassallo, A. M.; Chapman, A. C. Does battery storage lead to lower GHG emissions? The 406 

Electricity Journal 2017, 30 (10), 1-7; DOI 10.1016/j.tej.2017.11.004. 407 

(25) Craig, M. T.; Jaramillo, P.; Hodge, B. Carbon dioxide emissions effects of grid-scale electricity storage in a 408 

decarbonizing power system. Environmental Research Letters 2018, 13, 014004; DOI 10.1088/1748-409 

9326/aa9a78. 410 

(26) Arciniegas, L. M.; Hittinger, E. Tradeoffs between revenue and emissions in energy storage operation. 411 

Energy 2018, 143, 1-11; DOI 10.1016/j.energy.2017.10.123. 412 

(27) Fisher, M. J.; Apt., J. Emissions and economics of behind-the-meter electricity storage. Environmental 413 

Science & Technology 2017, 51 (3), 1094-1101; DOI 10.1021/acs.est.6b03536. 414 

(28) Mago, P. J.; Luck, R. Potential reduction of carbon dioxide emissions from the use of electric energy storage 415 

on a power generation unit/organic Rankine cycle. Energy Conversion and Management 2017, 133, 67-75; DOI 416 

10.1016/j.enconman.2016.11.062. 417 

(29) Summerbell, D. L.; Khripko, D.; Barlow, C.; Hesselbach, J. Cost and carbon reductions from industrial 418 

demand-side management: Study of potential savings at a cement plant. Applied Energy 2017, 197, 100-113; 419 

DOI 10.1016/j.apenergy.2017.03.083. 420 

(30) Poullikkas A. A comparative assessment of net metering and feed in tariff schemes for residential PV 421 



 22 

systems. Sustainable Energy Technologies and Assessments 2013, 3, 1-8; DOI 10.1016/j.seta.2013.04.001. 422 

(31) Sun C.; Lin B. Reforming residential electricity tariff in China: Block tariffs pricing approach. Energy Policy 423 

2013, 60, 741-752; DOI 10.1016/j.enpol.2013.05.023. 424 

(32) Fares, R. L.; Webber, M. E. The impacts of storing solar energy in the home to reduce reliance on the utility. 425 

Nature Energy 2017, 2, 17001; DOI 10.1038/nenergy.2017.1. 426 

(33) McKenna, E.; McManus, M.; Cooper, S.; Thomson, M. Economic and environmental impact of lead-acid 427 

batteries in grid-connected domestic PV systems. Applied Energy 2013, 104, 239-249; DOI 428 

10.1016/j.apenergy.2012.11.016. 429 

(34) Electric power sales, revenue, and energy efficiency; Form EIA-861; U.S. Energy Information 430 

Administration: Washington, DC, 2016: https://www.eia.gov/electricity/data/eia861/. 431 

(35) Electricity Marginal Factor Estimates; Center For Climate and Energy Decision Making: Pittsburgh, PA 432 

2017; https://cedm.shinyapps.io/MarginalFactors/. 433 

(36) Siler-Evans, K.; Azevedo, I. L.; Morgan M. G. Marginal Emissions Factors for the U.S. Electricity System. 434 

Environmental Science & Technology 2012, 46 (9), 4742-4748; DOI 10.1021/es300145v. 435 

(37) Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States; Office of 436 

Energy Efficiency & Renewable Energy: Washington, DC, 2013; https://openei.org/doe-437 

opendata/dataset/commercial-and-residential-hourly-load-profiles-for-all-tmy3-locations-in-the-united-states.  438 

(38) Building America House Simulation Protocols; TP-550-49426; Energy Efficiency & Renewable Energy: 439 

Washington, DC, 2010: https://www.nrel.gov/docs/fy11osti/49246.pdf. 440 

(39) National Renewable Energy Laboratory. National Solar Radiation Data Base: National Renewable Energy 441 

Laboratory: Golden, CO, 2015; http://rredc.nrel.gov/solar/old_data/nsrdb/ 442 

(40) Jamaly, M.; Bosch, J. L.; Kleissl, J. Aggregate Ramp Rates of Distributed Photovoltaic Systems in San Diego 443 

County. IEEE Transactions on Sustainable Energy 2012, 4 (2), 519-526; DOI 10.1109/TSTE.2012.2201966. 444 

(41) Current Technical Support Document (2016): Technical Update to the Social Cost of Carbon for Regulatory 445 

Impact Analysis under Executive Order 12866; Interagency Working Group on Social Cost of Greenhouse Gases, 446 



 23 

United States Government: Washington, DC, 2016; https://www.epa.gov/sites/production/files/2016-447 

12/documents/sc_co2_tsd_august_2016.pdf. 448 

(42) Customer Acceptance, Retention, and Response to Time-Based Rates from the Consumer Behavior Studies; 449 

Smart Grid Investment Grant Program; U.S. Department of Energy Electricity Delivery & Energy Reliability: 450 

Washington, DC, 2016; 451 

https://www.energy.gov/sites/prod/files/2016/12/f34/CBS_Final_Program_Impact_Report_Draft_20161101_0.452 

pdf. 453 

(43) Order Instituting Rulemaking on the Commission’s Own Motion to Conduct a Comprehensive Examination 454 

of Investor Owned Electric Utilities’ Residential Rate Structures, the Transition to Time Varying and Dynamic 455 

Rates, and Other Statutory Obligations; Rulemaking 12-06-013; California Public Utilities Commission: Palo 456 

Sacramento, CA, 2015; http://www.cpuc.ca.gov/. 457 

(44) In the matter, on the Commission's own motion, to implement the provisions of Sections 173 and 183(1) of 458 

2016 PA 342; Case Number U-18383; Michigan Public Service Commission: Lansing, MI, 2017; 459 

https://www.michigan.gov/mpsc/. 460 

(45) JEA Distributed Generation Policy; Jacksonville Electric Authority: Jacksonville, FL, 2017: 461 

https://www.jea.com/Environment/Net.../New_Distributed_Generation_Policy/. 462 

(46) Commission Rulemaking Amendments to Net Energy Billing Rule Chapter 313; Case Number 2016-00222; 463 

Maine Public Utilities Commission: Hallowell, ME, 2016; https://www.maine.gov/mpuc/. 464 

(47) Inquiry by the Department of Public Utilities on its own Motion into the eligibility of energy storage 465 

systems to net meter; Order Number 17-146; Massachusetts Department of Public Utilities: Boston, MA, 2017; 466 

https://www.mass.gov/orgs/department-of-public-utilities. 467 

(48) Report and Policy Statement on Treatment of Energy Storage Technologies in Integrated Resource 468 

Planning and Resource Acquisition; Dockets UE-151069 and U-161024 (Consolidated); Washington Utilities 469 

and Transportation Commission: Olympia, WA, 2017; https://www.utc.wa.gov. 470 



 24 

(49) Decision regarding net energy metering interconnection eligibility for storage devices paired with net 471 

energy metering generation facilities; Decision no. 14-05-033; California Public Utilities Commission: 472 

Sacramento, CA, 2014; http://www.cpuc.ca.gov/. 473 

(50) Application of San Diego Gas & Electric Company (U 902 E) For Approval of Distribution Resources 474 

Plan; Application A.15-07-003; San Diego Gas & Electric Co: San Diego, CA, 2015: 475 

https://www.sdge.com/regulatory-filing/23406/application-san-diego-gas-electric-company-u-902-e-approval-476 

its-2018-energy. 477 

(51) Babacan, O.; Ratnam, E. L.; Disfani, V. R.; Kleissl, J. Distributed energy storage system scheduling 478 

considering tariff structure, energy arbitrage and solar PV penetration. Applied Energy 2017, 205, 1384-1393; 479 

DOI 10.1016/j.apenergy.2017.08.025. 480 

(52) Ratnam, E. L.; Weller., S. R.; Kellett, C. M. An optimization-based approach to scheduling residential battery 481 

storage with solar PV: assessing customer benefit. Renewable Energy 2015, 75, 123-134; DOI 482 

10.1016/j.renene.2014.09.008.  483 

(53) Zhang, C.; Wei, Y.; Cao, P.; Lin, M. Energy storage system: Current studies on batteries and power condition 484 

system. Renewable and Sustainable Energy Reviews 2018, 82 (3), 3091-3106; 10.1016/j.rser.2017.10.030. 485 

(54) In the matter of the application of Arizona Public Service Company for a hearing to determine the fair value 486 

of the utility property of the company for ratemaking purposes, to fix a just and reasonable rate of return thereon, 487 

to approve rate schedules designed to develop such return; Docket no. E-01345A-16-0123; Arizona Corporation 488 

Commission: Phoenix, AZ, 2017; https://www.azcc.gov/. 489 

(55) Greenhouse Gas Equivalencies Calculator; United States Environmental Protection Agency: Washignton, 490 

DC, 2017; https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator/. 491 

(56) WattTime API for Automated Emissions Reduction; WattTime: San Francisco, CA, 2018; 492 

http://watttime.org/.  493 

(57) Transformation of the Global Energy System; REF 080118 - Case 00039936; World Economic Forum 494 

Global Future Council on Energy 2016-18: New York, NY, 2018; 495 

http://www3.weforum.org/docs/White_Paper_Transformation_Global_Energy_System_report_2018.pdf. 496 




