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Abstract: A variety of canopy metrics were extracted from the snow-off airborne light detection and1

ranging (lidar) measurements over three study areas in the Sierra Nevada, Providence and Wolverton2

from the southern Sierra and Pinecrest in the central Sierra. More than 40 snow-depth sensors were3

deployed at Providence and Wolverton since 2008 and about 10 sensors were deployed at Pinecrest4

since 2014 for long-term snowpack measurements. At Wolverton, hemispherical-view images were5

captured and the sky-view factors were derived from the images at each individual zenith angle. We6

extracted the snow accumulation characteristics for each sensor measurements over multiple years. As7

the sensors were deployed under various canopy-cover conditions, we studied the variation of snow8

accumulation across landscape and found they are controlled by the canopy-cover conditions. We used9

regularized regression model Elastic Net to model the normalized snow accumulation with canopy10

metrics as independent variables, and found that about 50% of snow accumulation variability at each11

site can be explained by the canopy metrics from lidar.12

1. Introduction13

The snowpack in California’s Sierra Nevada has long been served as the primary water resources for14

agricultural and urban uses [1]. For seasonal forecasts of flood peaks following the onset of snow melt,15

the estimation methods are turning from statistical estimates that use historical records to spatio-temporal16
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water-balance estimates with integrated data sources [2,3]. Quantifying the spatio-temporal distribution17

of snow accumulation allows more accurate forecast of snow melt and streamflow, but it is also18

a long-standing challenge in snow hydrology [4,5]. In the high Sierras, orographic effect drives19

solid-phase precipitations falling over mid-to-high elevation regions, where most areas are covered with20

heterogeneous densities and different types of vegetation [6,7]. During the snow accumulation period,21

the vegetation intercepts snowfall, causing snowpack distribute unevenly under canopy. As much as 60%22

of cumulative snowfall may be intercepted by forest in mid-winter and annual sublimation losses can be23

30− 40% of annual snowfall [8]. Being able to accurately quantify the canopy interception of snowfall24

is the foundation to estimate the total snow melt with higher accuracy and precision during the Spring25

season.26

The canopy interception of snowfall can be quantified as the snow storage capacity of the canopy27

and interception efficiency (interception/snowfall). The snow storage capacity is the maximum amount28

of snowfall that can be intercepted by the canopy. It is determined by the leaf area, tree species, and initial29

canopy snow load [9]. The interception efficiency is found to decrease with increasing snowfall, initial30

canopy snow load and temperature. It increases with increasing leaf-area index and canopy coverage31

[8,10].32

The coniferous canopies interception on snowfall is difficult to measure and quantify. Previous33

studies designed special weighing devices such that the weight of the intercepted snow accumulated34

snow can be measured at the same time. The total snow interception is found to be correlated with the35

accumulated snowfall [8,9]. Thus, several process models have incorporated this statistical finding and36

account canopy-cover effect on snow accumulation [11–14].37

To calculate canopy interception, using canopy metrics that are highly correlated with the total38

snow accumulations is a common solution. Retrieving canopy metrics has advanced in recent39

years. The technology has been advancing from the traditional plant canopy analyzer [12,15–18],40

to hemispherical-view camera [19,20], and recently, to lidar [21,22]. The plant canopy analyzer was41

commonly used for retrieving the LAI in the forest. By using the hemispherical-view camera, the42

pixels of the taken images can be classified as either canopy-cover or clear, thus the percentage of43

clear view for each zenith angle can be quantified as sky-view factor, which was also found to be a44

statistically significant predictors for parameterizing snowfall interception in the process models [19,23].45

The point-cloud data collected using lidar can be used for reconstructing the 3-dimensional canopy46

structures if the point-cloud has enough density. Algorithms have been developed for deriving LAI from47
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the lidar point clouds and it will be interested to develop new canopy metrics from lidar for quantifying48

the snowfall interception.49

In addition to canopy-metric retrieval from lidar, the canopy effect can also be quantified by using50

statistical models, with dense spatial measurements of snow depth or snow water equivalent (SWE) [22,51

23]. Most previous studies were conducted using lidar measurements, either airborne or terrestrial. Both52

the airborne and terrestrial lidar can provide dense spatial snow-depth measurements (> 10pts/m). With53

extensive footprint provided by airborne lidar scans, the canopy effect on snowpack spatial distribution54

can be quantified with large samples. The terrestrial lidar has a much smaller footprint comparing to55

airborne lidar [24], however, it is able to provide multiple scans per season. Thus the temporal variation56

in canopy effects can also be determined.57

One short-coming in using lidar is it lacks temporal completeness, especially during the precipitation58

season, when it is difficult to take measurements. Lidar requires clear sky condition to take measurements59

to prevent the laser pulse intensity from attenuating because of rain drops and snow flakes [25].60

A dense cluster of snow-depth sensors can compensate the weakness of lidar in terms of temporal61

consistency. Combining the vegetation structures derived from lidar measurements and continuous62

snow-depth measurements, there is potential that the spatial variation of snow accumulation can be63

accurately quantified. In our study, we used long-term spatially dense snow measurements in the Sierra64

Nevada, together with the lidar-derived canopy metrics, to study the canopy effect on seasonal snow65

accumulations.66

The general objective of the work reported here is to explore the possibility of studying the spatial67

variability of snow accumulation by using lidar-derived canopy metrics and clustered snow-depth sensor68

measurements. We address two major question. First, to what extent can one use lidar-derived canopy69

metrics to predict the snow accumulation spatially. Second, for all developed lidar-derived canopy70

metrics, what is the relative importance between them.71

2. Methods72

2.1. Study areas and snow-depth sensor data73

The study was conducted over three areas in the Sierra Nevada: Pinecrest in the Central Sierra,74

and Providence and Wolverton in the Southern Sierra (Figure 1(a)). For each study area, snow-depth75

sensors (Judd Communications) are instrumented and they are placed into clusters (Figure 1(b, c)), with76

topographic characteristics (elevation, aspect) varying between clusters and canopy-cover conditions77
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varying within each cluster. Pinecrest is the lowest in elevation and also flat in terms of elevation gradient.78

The lower site of Providence has similar elevation range as Pinecrest and the upper site is 200-m higher.79

Wolverton is the highest of the three study areas, with elevation around 2200 m at the lower site and 260080

m at the upper site. The sensors in Pinecrest were installed in 2014 and the sensors in both Wolverton and81

Providence were installed back in 2008 (Table 1).82

Figure 1. (a) The study areas locations in the Sierra Nevada. Snow-depth sensor locations around the (b)
lower met stations and (c) upper met stations in the Providence site.

2.2. Lidar data83

The point-cloud lidar data were used for generating raster data sets. The raw point-cloud files were84

divided into 250×250-m tiles using LAStools lidar processing software. We extracted the ground points85

from each tile and interpolated them into a 0.5-m resolution digital elevation model (DEM) by using a86

simple kriging model with a spherical covariance function. The 250×250-m DEM tiles were mosaicked87
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Table 1. Elevation information of each site and time-series data availability

Site Sub-site Elevation, m Data availability

Pinecrest Upper 1808 - 1834 WY2014-WY2017
Lower 1748 - 1778 WY2014-WY2017

Providence Upper 1975-1984 WY2008-WY2016
Lower 1730-1740 WY2008-WY2016

Wolverton Site1 2225-2227 WY2008-WY2016
Site2 2250-2266 WY2008-WY2016
Site3 2590-2602 WY2008-WY2016
Site4 2630-2648 WY2008-WY2016

together to form a single DEM of the study area. Digital surface model (DSM) was generated from all first88

returns of the lidar point cloud. Subtracting the DEM from the DSM produces the canopy-height model89

(CHM). Individual tree was segmented out from the CHM using a watershed segmentation algorithm90

implemented in SAGA GIS software. Over each snow-depth sensor location, canopy metrics such as91

canopy height mean, standard deviation, and canopy density were extracted at searching radius from 292

m to 40 m with 1-m increment. Also, the distance from the sensor location to the closest tree trunk is also93

calculated.94

2.3. Canonical-view images95

The canonical-view images were taken below each individual sensor node, facing straight-up to the96

sky. The sky-view factors f at each individual zenith angle θ were derived from the raw image and the97

sky-view factor of the entire image is also estimated using the equation below,98

ftot =

∫ θ=90
θ=1 sin(θ) f (θ)∫ θ=90

θ=1 sin(θ)
(1)

The sky-view factors data are available for Wolverton only. We included the total sky-view99

factor and the sky-view factors at each zenith angle as independent variables for modeling the snow100

accumulations observed at each sensor location. The results are compared with the modeled results that101

use lidar-derived canopy metrics as predictors, but over Wolverton only.102

2.4. Snow accumulation events detection103

The data availability over time for each site is shown in Table 1. To study the canopy effect on snow104

accumulation, we extracted all events when most precipitation is in solid form. This kind of events can105

be extracted from the time-series snow-depth data through the following procedure.106
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1. Get the moving average of each snow depth time-series with a window size of 2. Then calculate the107

1st order gradient of time-series. This will make the following estimation invulnerable from high108

frequency noise in the snow depth data.109

2. The 1st order gradients over all sensors are used to calculate the x% quartile of the gradient. The110

quartile statistic was then compared with a pre-configured threshold to determine if most sensors111

observed snow accumulation. And the neighboring accumulating days were grouped together to112

form a single event.113

3. Quartile thresholds for snow precipitation and melting events are different. We set the quartile for114

snow accumulation as 30%. It means that if 30% of sensors show an ascending trend in one day, we115

can classify this day as an accumulation day.116

4. The daily gradient thresholds also need to be optimized, so do the gap length between two adjacent117

snow accumulation dates. The optimized threshold for snow accumulation events is 0.1 cm. And if118

two snow accumulation events were temporally close, we used the following rule to determine if the119

two neighboring events can be merged together or not.120

For snow accumulation events, the optimized way to combine two neighboring events together is to121

first judge if the length of gaps between two events are shorter than one third of the sum of length of122

two events. Then, if the snow depth data in most sensors doesn’t show a descending trend during the123

gap period, the two closed events can be combined into one.124

2.5. Statistical analysis125

All extracted accumulation events are used for statistical modeling with features derived from the126

lidar data and the sky-view factors derived from the canonical-view camera images. We conducted127

regression analysis to study if canopy metrics can be used as predictors for estimating snow accumulating128

at various canopy-covered conditions. For each individual accumulation event, the total snow129

accumulation at each sensor node was estimated as ∆H = Hk − H1 where Hk is the snow-depth at the130

last time step and H0 is the snow-depth at the initial time step. Considering the topographic effects131

on precipitation along the elevation gradient, we offset the total solid precipitation for each individual132

event at each site using topographic variables. The offset results are standardized to the range of 0− 1.133

The detrended target values are regressed using Elastic Net, which is a regularized regression method134

that linearly combines both L1 and L2 penalties in the regression model. Assuming we have a linear135

regression problem defined as,136
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y = Xβ + ε (2)

where y is the target value and X is the matrix of all covariates. The estimates of the regression137

coefficients β̂ is defined as,138

β̂ = arg min
β

(‖y− Xβ‖2 + λ2‖β‖2 + λ1‖β‖1) (3)

The Elastic Net was chosen than other regularized regression approaches for its ability of addressing139

correlated covariates and when the number of covariates is high. In our case, the canopy metrics can be140

highly correlated when the searching radii are close and the number of covariates included in our analysis141

is more than 100.142

In order to have representative estimate of how much variability that can be explained by the Elastic143

Net model. We used bootstrap to resample the data for 20 iterations and we estimated the cross-validated144

coefficient of determination (R2) within each iteration. The distribution of the R2 can be estimated from145

multiple bootstrapping results.146

We also applied correlation analysis to explore the most informative radius of lidar-derived canopy147

features and the most informative zenith angle of the sky-view factors from the canonical view images.148

We correlated the snow accumulation from each individual event with the lidar-derived mean canopy149

height at various searching radii and at various zenith angles. The correlation coefficients Rs are150

compared at various radii and angles for selecting the optimal radius and zenith angle. Considering151

Pinecrest has a relatively short record, most of which is during the heavy drought of California, we did152

not conduct the analysis for Pinecrest. Also, camera images are not available for Providence thus we153

only radius dependency analysis at that site. For the data at Wolverton, we selected a few near-optimal154

searching radii and zenith angles. We used these selected variables and conducted a step-wise linear155

regression process for exploring the relative importance between variables.156

3. Results157

3.1. Snow accumulation events extracted from snow-depth time-series158

We applied our snow accumulation events extraction algorithm on all snow-depth sensor clusters for159

all time periods when clean snow-depth data are available. The performance of the detection algorithm160

is similar to manual extraction that needs to be done by human. As is shown in Figure 2, the algorithm is161
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able to detect most major snow accumulation periods. And the summary of accumulation events detected162

for each site is shown in Table 2 and the distribution of the magnitude of the accumulation at each study163

area is shown in Figure 3.164

Figure 2. Snow accumulation events extracted using the accumulation detection algorithm, for Wolverton
in 2011.

Table 2. Number of events detected for each water year from the three different study sites

Water Year Providence Wolverton Pinecrest

2008 1 3 NaN
2009 6 8 NaN
2010 10 11 NaN
2011 7 10 NaN
2012 7 10 NaN
2013 7 5 NaN
2014 6 7 1
2015 5 8 3
2016 9 NaN 8
2017 NaN NaN 8

3.2. Statistical modeling results165

The variability that the Elastic Net model can explain over the three sites are shown as in Figure 4.166

The uncertainty range of the variability that can be explained by the Elastic Net model is much larger for167

the Pinecrest analysis than the other two areas. And the average of the explained variability decreases as168

the elevation becomes higher.169

At Providence and Wolverton, excluding the minor accumulation events (≤ 15 cm) can significantly170

increase the variability that can be explained by the Elastic Net model, with more than 50% explained at171

Providence and 40%−50% explained at Wolverton. Due to the fact that for minor accumulation events172

the signal strengths are not significantly greater than the uncertainty range of the snow-depth sensors,173
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Figure 3. Solid-form precipitations distributions observed from three sites over 10 years

including these data points will defect the performance of the Elastic Net model. At Wolverton, the174

spatial variability of snow accumulation can be explained reaches the maximum when the mean snow175

accumulation is between 15 cm and 30 cm. At Pinecrest, no particular trends can be observed as the176

amount of data points is limited. When including most of the data points, the variability explained177

stabilized around 40%−60%.178

Considering Wolverton is the only study area that both SVF and lidar are available and the trends179

observed in Figure 5. We constrained the valid mean precipitation in the range of 15−30 cm. We180

conducted three sets of analysis, including using lidar-derived canopy metrics as the predictors, using181

SVF as the predictors, and using both lidar and SVF as the predictors in the Elastic Net model. We182

did not observe much difference among the results from the three different sets of analysis. And the183

improvement of using both predictors is marginal (Figure 6).184
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Figure 4. R2 distribution over three sites

The correlation analysis (Figure 7(a)) show that the surrounding canopies have a stronger effect on185

the snow accumulation on the ground than the canopy right above. The canopy mean height within186

15-m radius at Providence is the most effect distance while the optimal radius is about 8 m at Wolverton.187

For sky-view factor, the optimal zenith angle is about 21◦ at Wolverton. In Figure 7(a), we identify each188

individual precipitation event by the transparency of each curve, from which we can see that heavier189

storms have more dominant weights on characterizing the canopy effects at different searching radii from190

lidar data and zenith angles from canonical view imageries. In addition, the step-wise regression analysis191

conducted on the selected optimal variables of lidar-derived and canonical view imagery features suggest192

that the canonical view imagery features are more important and the marginal information that lidar193

provides is limited comparing to the first canonical view imagery feature selected.194

In addition, we compared the correlation coefficient between different types of lidar-derived195

canopy-related features and the snow accumulation over different sensor nodes. The features include196

mean canopy height over the searching radius, standard deviation of the height, maximum canopy197

height, and canopy coverage. As is shown in Figure 8, the amount of data points at Pinecrest is198

not enough to draw solid conclusions. At Providence and Wolverton, the correlation coefficient, is199

a concave shaped function of both canopy-height mean and canopy coverage at various searching200

radii. The maximum canopy height at the smallest searching radius correlates the most with the snow201
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Figure 5. R2 distribution over three sites vs. mean accumulation across sensors

accumulation. The standard deviations of the canopy heights at various searching radii show contrast202

trends at Providence and Wolverton.203
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Figure 7. (a) Correlation coefficients estimated by correlating

4. Discussion204

4.1. Canopy effect at different elevations205

Among the three sites studied, the variability of snow accumulations that the canopy-related206

variables can explain vary from site to site and also depend on the mean cumulative precipitation207

over the entire event. The difference between sites can be attributable to different elevations as the208
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Figure 8. The correlation coefficient estimated between search radius and

canopy-cover density decreases as elevation increases and the solid phase precipitation increases with209

elevation. For example, the instrumentation locations at Pinecrest and Providence are at much lower210

elevations comparing to Wolverton. About 40% of snow-accumulation variability is attributable to the211

canopy effects at these two sites however only 25% can be explained over Wolverton. This suggests that212

at higher elevations, where precipitations are heavier, the canopy effects can be diluted by the heavy213

snowfall, which is similar to [10] has found, which stated that total interception of snowfall will saturate214

when the total precipitation reaches certain thresholds for different tree species. In addition, we observed215

some noise introduced by the low precipitation events in the regression analysis. Figure 5 suggests that216

the spatial variability of precipitation is less explainable by the canopy-related variables when the total217

precipitation is small.218

4.2. Optimal variables characterizing canopy effects on snow accumulation219

The canopy related variables derived from lidar and canonical-view images are compared. Based220

on Figure 6, the coefficient of determination calculated from 20 bootstrapping runs of predicting the221

snow accumulation suggests that the trained models are in lack stability in predicting the total snow222

accumulation at the unobserved sensor locations if using lidar-derived variables because the variability223

of the R2 is larger than that using the sky-view factors. Also, the third box-plot of this figure suggests224

that the lidar-derived variables and sky-view factors are complementary and using both types variables225

can improve both R2 and stability of prediction.226
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The snow-cover information is slightly more important than canopy metrics, including tree heights227

and tree-height standard deviations. This was verified by correlation coefficients in the regression228

analysis between snow accumulation and both tree height at increment searching radius and SVF at229

increment zenith angles. The SVFs are more correlated with snow accumulation than tree height in230

general. The step-wise regression analysis also suggested that sky-view factor at optimal zenith angle231

is more important than tree height at optimal searching radius. Although the tree height is an important232

metric characterizing trees in the forest but it does not necessarily represent the density and interception233

capacity of the canopy. Even sky-view factor only represents the canopy-cover condition at the lowest234

layer of canopy, it still explain partial variability in the interception capacity of the entire tree crown,235

which is the reason that it can be more important than lidar-derived canopy metrics.236

Comparing within lidar-derived canopy metrics at increment radius, Figure 8 suggests that the most237

important canopy structures may not be the canopy layers right above the measured locations. The238

canopy surrounding within a few meters could be even more important as the interception capacity can239

be larger when the trees are clustered together than a single tree stand.240

5. Conclusions241

We found correlation between the lidar-derived canopy attribute and the snow accumulation242

extracted from the multi-year time-series snow-depth measurements. The correlation is stronger when243

the precipitation event has higher snow accumulation. And the correlation is also much stronger244

at a lower elevation because of denser vegetation. Although the lidar-derived canopy attributes are245

complementary to sky-view factor in explaining the snow-accumulation variability, the SVF is more246

important than lidar-derived variables when analyzing based on the step-wise regression. The canopy247

surrounding the snow surface within 8-m radius is more important than canopy structures within either248

smaller radius or larger radius, indicating clustered canopy effect is stronger than a single tree. The above249

findings suggest great potential of using lidar and ground measurements for studying canopy effect on250

mountain snowpack.251
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