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Abstract

We present a novel, o�-line approach for evaluating incident detection algorithms. Previous evalua-
tions have focused on determining the detection rate versus false alarm rate curve | a process which
we argue is inherently fraught with di�culties. Instead, we propose a cost{bene�t analysis where
cost mimics the real costs of implementing the algorithm and bene�t is in terms of reduction in
congestion. We argue that these quantities are of more practical interest than the traditional rates.
Moreover, these costs, estimated on training data, can be used both as a mechanism to �ne{tune a
single algorithm as well as a meaningful quantity for direct comparisons between di�erent types of
incident detection algorithms. We demonstrate our approach with a detailed example.
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1 Introduction

The cost of delay on freeways caused by non-recurring incidents is signi�cant. Some estimate that
the cost will be $35 billion/year by the year 2005 [J. A. Lindley, 1986]. To reduce the impact
of an incident, a tra�c management center (TMC) needs to quickly detect and remove it from
the freeway. A large literature of automatic incident detection algorithms (AID's) has emerged
to address the problem of quick detection. AID's which can operate on data collected by ubiq-
uitous inductance loop detectors include simple �ltering [Stephanedes and Chassiakos, 1993], pat-
tern recognition [Payne et al., 1976, Payne and Tignor, 1978, Tsai and Case, 1979], catastrophe the-
ory [Persaud and Hall, 1989], and more recently neural networks [Ritchie and Cheu, 1993, Hsiao et al., 1994]
and genetic algorithms [Abdulhai and Ritchie, 1997].

�Funding for this research was provided in part by NSF-DMS 9313013 to NISS and California PATH MOU-353.
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Faced with such a large literature, practitioners have a sizeable task in determining which | if
any | AID to implement. Adding to the di�culty is the fact that most algorithms are presented
alone in the literature and in such a way that meaningful, literature{based comparisons between
AID's are nearly impossible. Further, most AID's depend on a set of parameters that must be set
(\tuned") by the practitioner. Unfortunately, setting parameters can be very di�cult in practice,
and performance can be very sensitive to these settings. Since poor performance usually translates
into an unacceptably high rate of false alarms, many practitioners �nd AID's too problematic for
implementation in large urban environments [Balke, 1993]. We present a methodology that will
enable practitioners to both tune algorithms and make meaningful, direct comparisons between
AID's.

Standard evaluation of AID's is in terms of detection rate (DR) versus false alarm rate (FAR)
curves | where the higher the curve, the better the algorithm. We feel that this approach has
several major di�culties, of which we now list but two. First, to discuss these rates requires an a
priori judgement by the researcher as to what constitutes an incident and what is detectable. This
subjectiveness can lead to separate studies classifying di�erent events as incidents on the same data
set. Consequently, fair comparisons between di�erent algorithms are nearly impossible from the
literature alone.

A second problem is that DR-FAR curves treat all incidents with equal importance. That
is, failing to detect a low{impact breakdown on the shoulder contributes equally towards the the
false alarm rate as missing a major accident that causes hours of congestion. From a practical point
of view, this is a fundamental 
aw. Similarly, all detections, regardless of the delay in the time
to detection, count equally in the detection rate. Practically speaking, this too is nonsense. Since
average time to detection is usually reported separately from the DR-FAR curve (if it is reported at
all), the trade-o� between the DR-FAR curve and the average time to detection is seldom clear.

Our approach to evaluating AID's attempts to solve these problems by abandoning DR-FAR
curves in favor of a more natural cost function. Namely, to evaluate a speci�c AID we estimate the
cost that would be incurred from delay experienced if that AID were actually implemented. To this
cost we add the cost of implementing the AID (dispatching tow trucks, etc.). Both of these costs are
based on some assumptions and estimated from training data. By holding these assumptions �xed,
however, the costs are directly comparable across di�erent algorithms and can be used in tuning an
individual algorithm. Moreover, by dealing with congestion/implementation costs instead of DR-
FAR curves, the severity of the incidents and time to response are automatically factored into the
analysis.

Reducing congestion is by no means the sole purpose of incident detection. Representing
an AID by a single number based on delay and the cost of responding can not possibly account
for all such purposes. Some important considerations may not be quanti�able at all. However,
congestion and implementation costs are important criteria, which can be evaluated to inform decision
making. A meaningful univariate criterion permits systematic exploration of tuning parameters
within algorithms and comparisons between algorithms | important, practical goals that seem
extremely di�cult, if not impossible, to achieve from the traditional methods of evaluation.

Finally, our approach allows 
exible formulations of cost; for example, the cost function could
re
ect increasing bene�t for responding promptly to injury accidents. Our method requires only that
the cost can be estimated from training data. Thus, the practitioner wishing to use his or her own
measures of cost can do so based on our generic approach.

In the next section we present our methodology for a generic cost function. This is done
intentionally as we feel that practitioners are best quali�ed for making the assumptions linking
congestion and utility which constitute a loss function. However, for concreteness we give an example
in Section 3 in which it is necessary to make some speci�c assumptions. Section 4 contains some

2



general remarks about cost functions and possible extensions.

2 Methodology

In this section we describe our approach in some generality. At this level the ideas are quite simple.
In Section 3 a speci�c example is presented which illuminates the details behind the following general
discussion.

We adopt an AID cost structure with two parts corresponding to delay and implementation.
As an AID is tuned to be more sensitive, the more it reduces delay through the quick detection of
incidents. On the other hand, greater sensitivity also translates into increased implementation cost,
since the AID is calling for more interventions. The goal is then to �nd a fully{tuned AID that
strikes a balance between these con
icting aims.

Let S be an AID which depends on a vector of parameters, �s. We seek a pair (S; �s) with
low total cost for a given freeway system. To estimate total cost, we use training data, D, which
is collected during a period in which AID interventions are not being made. D must contain two
things: a list of the locations and durations of all incidents1 (usually from probe vehicles) and the
data su�cient to implement the AID (usually inductance loop detector data). However, D could
also incorporate such data as highway patrol logs, cellular phone data, video data, and travel times
from vehicles with automatic toll collection tags. Such additional data would increase the precision
of the cost function estimates.

Let the functions f and g denote the delay and implementation cost functions, respectively.
The evaluation of f requires estimation of the delay if a certain (S; �s) were used. This is the subject
of Section 3.1. Also present in f is a conversion from delay (in vehicle{hours) to cost (in dollars). g
takes actions prescribed by (S; �s) (eg. \dispatch tow truck to location x at time t") and assigns a
cost to these actions. These functions can be anywhere from very simple (our example in Section 3)
to quite complex (see Section 4).

We �t parameters for a particular S by �nding

��s = argmin
�s

f(S; �s; D) + g(S; �s; D): (1)

If the dimension of the parameter space is not too large, an exhaustive search over a grid of values
can be used to �nd the minimum cost ��s . Otherwise, gradient search methods, like the Downhill
Simplex [Press et al., 1992], are applied. In the latter case the usual caveats of local minima apply.

De�ne h(S;D) = f(S; ��s ; D)+g(S; �
�

s; D), the lowest possible cost of S for dataD. To compare
AID's S1 and S2 we can then compare h(S1; D) to h(S2; D). To avoid over-�tting to the training
data, which would make an AID with a high{dimensional �s appear better than it otherwise would,
it is preferable to �nd ��si with one set of training data and h(Si; D) with another.

An important AID for comparison is the \do nothing" algorithm (ie. never dispatching a tow
truck), which we henceforth denote S0. Of course, S0 depends on no parameters, and g(S0; D) = 0
for all D. A minimal requirement for the viability of S is h(S;D) < h(S0; D). Sensitivity to the
underlying cost assumptions can be addressed in part by how persistent the relationship between
h(S;D) and h(S0; D) remains as the assumptions are altered.

1Our list di�ers importantly from that of the DR-FAR approach in that we do not pre-screen incidents for de-
tectability. Any abnormal event can be added to the list as a possible incident. Of course, the de�nition of \abnormal"
is subjective, but the same subjective list is used for each AID under evaluation. Moreover, if a particular event causes
no delay, then an AID will not be penalized for failing to detect it.
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3 An Example

In this section we demonstrate our method using data from the Freeway Service Patrol Evaluation
Project [Skabardonis et al., 1995, Skabardonis et al., 1997, Skabardonis et al., 1996, Petty et al., 1996]
collected from a seven mile section of freeway on I-880 in Hayward, California. This section of free-
way was instrumented with type 170 loop controllers spaced approximately 1/3 of a mile apart. Each
loop controller monitored eight to ten mainline, double-loop detectors. Flow, speed, and occupancy
data were aggregated over 30{second intervals for our analysis. The project also used rotating probe
vehicles to collect incident data. The interested reader can �nd more details in the cited references.

We compare three AID's: The \do-nothing" AID, S0, the Basic California AID [Payne et al., 1976,
Payne and Tignor, 1978], S1, and the Minnesota Algorithm [Stephanedes and Chassiakos, 1993], S2.
Brief descriptions of S1 and S2 are given in the Appendix.

Evaluating equation (1) requires three tasks for each algorithm and our training data: (i)
estimation of the delay that would have occurred using that algorithm and a given set of parameters
(ii) conversion of this delay to cost, and (iii) calculation of implementation cost. The next three sub{
sections address these points in order. The �nal sub{sections present results for our I-880 analysis.

3.1 Estimating Incident Delay

We now discuss the estimation of the counter-factual incident delay that would have been experienced
under AID (S; �s). The key assumptions will provide a link between a reduction in incident duration
and a reduction in delay. We begin by determining the actual delay associated with each incident
in our training data. This requires a list of incidents with corresponding time{space extent as well
as 
ow and speed data.2 We �rst determine the delay for a segment (link) of freeway based on the
di�erence in travel times between normal and incident conditions [Epps et al., 1994]. The de�nition
of delay is simply the extra time it takes to cross a freeway segment multiplied by the number of
vehicles on the segment:

di = fi

�
li
Vi
�

li
VT

�
; (2)

where i indexes link, di is the delay in vehicle-hours, li is the length of the link in miles, fi is the
link 
ow, Vi is the current link speed (mph), and VT is the typical link speed under incident{free
conditions for that time of day. Note that it is possible to determine this delay for each freeway
link at each time period from only loop detector data. Of course, if more precise data are available,
one should incorporate them to get better estimates in (2). Next, we compile this link-by-link
delay data into contour plots of delay. This allows us to associate buildups of delay with speci�c
incidents [Petty, 1997]. From this we can determine the actual delay for each incident. Denote the
delay from the kth incident by dk0.

We now turn to estimating the delay of incident k if (S; �s) were implemented. We denote this
hypothetical delay by dks . For S0, we already have dks0 = dk0 since D was collected under S0. For
other AID's, we �rst estimate the reduction in incident duration, and then we convert this reduction
in duration into a reduction in delay. If the incident is not detected, then it is again natural to take
dks = dk0.

To express delay as a function of incident duration we make the assumption that one can
model the incidents with a standard queuing model. Alternative assumptions are brie
y discussed
in Section (4). Figure 1 is a standard cumulative delay plot for a general incident [May, 1990] which

2For our analysis, an object (broken down vehicle, debris, etc.) appears on the incident list if it is witnessed by two
or more probe vehicles.
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Figure 1: Standard calculation of incident delay using a cumulative 
ow diagram (which is derived
from the standard queuing model). The line labeled fI is the capacity of the freeway during the
incident, fc is the discharge capacity of the freeway, fd is the demand on the freeway, and t is the
duration of the incident. The shaded area is delay.

corresponds to the standard queuing model. By this model dk0 is the shaded area inside the triangle,
and is given by:

dk0 =
t2

2

(fd � fI)(fc � fI)

(fc � fd)
: (3)

In equation (3) the actual incident duration, t, is known from our training data, and dk0 is known
from our previous calculations. The constants fd, fc, and fI are the demand, discharge capacity and
capacity during the incident, respectively. Suppose our AID calls for an intervention that reduces
the duration to t0 � t. Then, by (3)

dks = dk0

�
t0

t

�2
(4)

is the new delay. Thus, no assumptions on the values of fd, fc, or fI are necessary.
A �nal step to evaluate (4) is to express the new incident duration, t0, as a function of the time

of intervention | denoted by u | following a successful detection. Two components are needed:
the time, T , required for the tow truck to reach the incident, and the time � required to clear the
incident. Then,

t00 = min( t0; u+ T + �) (5)

In this example we make the simple assumption that T = � = 10 minutes for all incidents. See
Section 4 for other possibilities.

We note that researchers without probe vehicle data may bene�t from simulated loop detector
and incident data. To do so, one generates incidents of various types and calculates the delay for
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each incident by plugging baseline values for fI , fd, and fc into (3). The incident capacity, fI , should
depend on the incident type. Using highway patrol incident data is another alternative to deploying
probe vehicles.

3.2 Converting Delay into Cost

Having estimated the kth incident's hypothetical delay under (S; �s), we now convert this delay into
cost. One simple assumption is that each vehicle-hour of delay costs KD dollars. Thus,

f(S; �s; D) = KD

X
k

dks (6)

where the sum is over incidents. Section 4 discusses other possibilities.

3.3 Cost of implementation

Next, we assign an implementation cost to (S; �s) based on our training data. A signi�cant portion of
this cost is the cost of responding to the incidents detected by the AID. A reasonable simpli�cation
is to charge KT dollars for every tow truck dispatched by the AID. Let D(x; t) = 1 if a tow truck is
dispatched to link x at time interval t, and D(x; t) = 0 otherwise. Then

g(S; �s; D) = KT

X
x;t

D(x; t) (7)

Again, generalizations are discussed in Section 4.

3.4 Dispatching Tow Trucks

A �nal detail for evaluating (7) is the translation of the output of (S; �s) into tow truck dispatches,
D(x; t). Recall, (S; �s) produces a sequence of points (or \calls") in space{time for which an incident
is believed to exist. Naively taking D(x; t) = 1 at every call can result in sending several (sometimes
dozens) of tow trucks to the same point in space at consecutive time intervals. Therefore, it is
necessary to incorporate some common sense into the �nal dispatching decision.

We refer to this map from the calls of an AID to tow truck dispatches as the dispatcher.
After some initial trial{and{error, we settled upon a dispatcher that follows the following rule: If
D(x0; t0) = 1, then D(x; t) = 0 for all (x; t) 2 [x0 � b1; x0 + b2] � (t0; t0 + b3]. This space{time
black{out region discourages an AID from sending out multiple tow trucks to the same incident. In
principal the b's could be added as parameters to the vector �s, embedding the dispatcher inside
(S; �s) completely. However, to reduce the dimension of the search in (1), we �x b1 = b2 = 1 link
and b3 = 10 minutes. We attach this same proxy for a human dispatcher to all algorithms.

3.5 Tuning the California Algorithm

In this section, for expository purposes, we tune the California algorithm, S1, on data from a single
day, February 18, 1993. This turns out to be a good day for both detection and expository purposes
since we can clearly see incidents taking place that have well de�ned congestion. In Section 3.7 we
make a more appropriate analysis based on a collection of days.

Figure 2 is a contour plot of delay (cf. equation (2)) for this day. The boxes on the contour plot
represent the location and duration of the incidents as witnessed by the probe vehicles. The number
in the lower left-hand corner of each box is the incident number in our database. So, for example,
incident #117 occurred near loop detector #4 around 8:50am and lasted until around 9:15am. The
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Southbound AM contour: 2/18/93
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Figure 2: Contour plot of delay with incidents. Tra�c 
ows upwards in the picture (the vertical axis
is the loop detector number). Incidents are shown by boxes. Within a box, the position of the bar(s)
code(s) the type and location of that incident: bottom{left means accident, bottom{right means
breakdown, top means in{lane, and left (right) means it took place on the left{ (right{) hand side
of the freeway. For example, incident #116 was a breakdown on the right{hand side of the freeway.

congestion from this incident �nally cleared around 9:40am. The widths of the incident boxes have
no meaning. Of the eight incidents on this day, half had no visible impact on delay.

�s1 is three dimensional, so (1) can be found by evaluating the objective function on a 1000
point grid with ten points per dimension. Evaluating, of course, means running (S1; �s1) on the loop
detector data to produce the incident detection calls and then following the steps in sections 3.1 {
3.4 to compute the costs.

Figure 3 superimposes the incident detection calls for a certain value of �s1 onto the delay
contour plot. Incident #117 is quickly and consistently detected. Incidents #104 and #108 are
also detected. However, #107 is completely missed, and we also have a large number of erroneous
detection points between loop detectors 16 and 3. A closer inspection of the data reveals that loop
detector 16 has extremely high occupancies | much higher than any of the other loops in this section
of freeway. This loop detector station appears to have been mis-tuned and was erroneously reporting
high occupancy values. This is especially damaging to the California Algorithm which is speci�cally
looking for di�erences in occupancy values. Nevertheless, to simulate realistic conditions we leave
these erroneous readings in our data.

These detection calls are then passed to our dispatcher algorithm (section 3.4). The resulting
dispatches are shown as boxes on Figure 4. The eleven dispatches at the bottom of the plot are false
alarms. It is clear that a better dispatching strategy might recognize this lengthy pattern of false
alarms and eventually ignore the calls between these faulty detectors. However, our naive dispatcher
leads to a conservative estimate of the cost of the AID.

Finally, the tow truck dispatch information is processed according to sections 3.1 { 3.3 with
KD = 10 and KT = 70 to arrive at the costs f(S1; �s1 ; D) and g(S1; �s1 ; D) for our particular value
of �s1 . Repeating this process for all 1000 parameters on our grid, we arrive at a four dimensional
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Southbound AM contour: 2/18/93

Figure 3: Delay contour plot with detection points (marked by \X"'s) for S1 and a particular Ts1 .
The detection points near the bottom result from faulty loop detector readings.

cost surface as a function of �s1 = (�1; �2; �3). Figure 5 is a graph of this surface holding �2 = 0:4
and letting �1 and �3 vary.

The corner of Figure 5 around �1 = 35 and �3 = 0:5 represents the region where the AID is
not dispatching any tow trucks at all | i.e. the do{nothing cost, h(S0; D). The parameters are set
so high that nothing is ever detected. As �3 and �1 decrease, the cost rises initially. This results
from the algorithm beginning to respond to the false alarms. The dips in the cost surface as the
parameters decrease are due to the algorithm detecting incidents and responding in time to reap
bene�t from the reduced delay. For the extreme lowest settings of the parameters, (S1; �s1) produces
a huge number of false alarms, blowing the cost up to about twice h(S0; D). The minimum total
cost of h(S1; D) = $3505 occurs at ��s1 = [19; 0:4; 0:3].

That h(S1; D) is considerably less than h(S0; D) | even using the faulty detector data |
suggests that ��s1 is a good set of parameters for this particular freeway and day. Of course, one day
is far from adequate to settle on parameters. We note that it is entirely plausible for a family of
detection algorithms to yield a cost that is no better than the do-nothing cost over the entire range
of reasonable parameters. In this case, the particular AID family may not be bene�cial (in terms of
our costs) for the given freeway.

3.6 Varying Cost Assumptions

The ratio of the cost of dispatching a tow truck, KT , to the cost per vehicle-hour of delay, KD, is
crucial in determining how S1 compares to S0. A low ratio means S has less to lose from dispatching
tow trucks. In the previous section we used KT =KD = 7, which may not be appropriate for all
regions. A natural performance curve is to plot h(S;D)=h(S0; D) as function of KT=KD. Figure 6
is an example of such a plot for S1 on our single day. Note that h(S1; D) occurs at a potentially
di�erent ��s1 for each value of KT=KD. From Figure 6 we learn that h(S1; D) < h(S0; D) whenever
KT=KD is below about 15.5. At KT=KD = 7, S1 reduces the total cost to approximately 80% of
the cost of S0. The curve is capped at 1.0 because the parameters can always be set high enough so
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Figure 4: Delay contour plot with dispatch points (marked by boxes) based on the calls from Figure 3.
While we dispatch correctly to incidents #104 and #117, the dispatch for incident #108 is too late
to be of bene�t. The eleven dispatches at the bottom are false alarms.

that no tow trucks are dispatched, in which case S0 and (S1; �s1) coincide.

3.7 Multiple Day Results

The performance curve given in Figure 6 is based on a single three hour period which, as previously
indicated, is well{suited for detection. In order to fully evaluate the performance of an algorithm,
we need to tune the algorithm with a larger and more varied data set. The results presented below
use eight days from the I-880 database. For each day we take four three{hour periods: northbound
and southbound for the AM and PM commutes. During these times there was recurrent congestion
in the southbound direction during the AM shift and in the northbound direction during the PM
shift.

These 96 hours of data contain a total of 76 incidents witnessed by at least two probe ve-
hicles. Figure 7 displays some key characteristics of these incidents, where delay is calculated as
in Section 3.1. Note that most incidents have zero delay, and consequently a cost{e�ective AID
would ignore them. Many traditional studies would screen out by hand these zero{delay incidents as
\undetectable" before attempting to estimate DR-FAR curves. In our approach no such screening is
necessary. Responding to a zero{delay incident simply incurs a cost without the bene�t of reduction
in delay.

The performance curve from training on all 96 hours is given in Figure 8. The break-even
point for the California Algorithm drops substantially to KT=KD � 8, and the reduction in cost
is slight at best over all values of KT=KD. The presence of recurrent congestion is likely to blame
for this diminished performance relative to our single-day results. Further, with eight times as
much data in our training set, the AID faces a greater range of conditions and incidents over
which to optimize its parameters. Also shown is the performance curve for the Minnesota Al-
gorithm [Stephanedes and Chassiakos, 1993] generated over the same eight days. The Minnesota
Algorithm appears to perform better than the California Algorithm for this data and the proposed
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Figure 5: Cost surface for California Algorithm holding second parameter �xed at 0.4. Global
minimum of $3505 occurs at �s1 = [19, 0.4, 0.3]. The nearest corner shows the \do-nothing" base
cost of $4355 for this day.

cost assumptions.

4 Discussion

The cost analysis we propose is quite 
exible and allows for building cost models appropriate for
particular problems. In this section we mention a few possibilities.

One major assumption is that T = � = 10 minutes for all incidents. That is, each incident is
reached ten minutes after its dispatch and is cleared exactly ten minutes later. A natural generaliza-
tion is to make T depend on location, time of day, and the speed and occupancy near the incident.
Also, � could depend on the type of incident (accident, breakdown, debris, mid{lane, shoulder, etc.).
Allowing random T 's and �'s with distributions depending on the above variables is possible as well.
In some rare circumstances, data may even exist on driving and/or clearing times for tow trucks that
actually arrived at the scenes of incidents. Such data could be used to estimate T 's and/or �'s.

The cost assumptions (6) and (7) could be generalized in a similar fashion. The cost of delay
could depend on time and space. For instance, delay during the AM commute could be made costlier
than delay during the PM, since the former reduces productivity by shortening the work day. Extra
components of cost could also be incurred for delay experienced during certain types of incidents
(eg. injury accidents). We then generalize (6) to

f(S; �s; D) =
X
k

dks

2
4KD(xk; tk) +

X
j

�jI(incident k is of type j)

3
5 (8)

where xk and tk are respectively the location and time of the kth incident. Here j sums over a set
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California Algorithm

Figure 6: h(S1; D)=h(S0; D) as a function of KT=KD. As dispatching becomes more expensive
relative to the cost of delay, the best{case bene�ts of S1 diminish relative to S0.

of incident types, and the �j are additional cost factors for delay experienced for the corresponding
type of incident. I(�) is an indicator function. This is by no means the most general form possible,
and cost need not even be a linear function of delay.

Likewise, a potentially useful generalization of (7) is

g(S; �s; D) = � +
X
x;t

D(x; t)

2
4KT (x; t) +

X
j


jI(incident k is of type j)

3
5 : (9)

Here the 
's play a similar role as the �'s in (8). This is quite sensible since certain types of incidents
may be costlier for a tow truck to remove than others. The constant � is overhead incurred even if
no dispatches are made. Resources for processing the loop data, additional infrastructure, and extra
labor are among the items that could be considered overhead. Note that if � > 0, then the ratios in
Figure 8 are no longer bounded by one.

Another assumption is that of the standard queuing model which underlies our link between
duration and delay (3). However, other models are possible. For instance, one can postulate and
analyze a model in which an incident leads to a velocity drop which is eliminated after clearance.
With enough incident data and tow truck arrival data one might even try to establish an empirical
relationship between tow truck arrival times and durations for di�erent types of incidents. Whether
such modi�cations are important and/or worthwhile will require additional research.

One �nal generalization is worth mentioning; our method allows comparisons between an AID
and an incident management method that does not inherently have a performance curve. For exam-
ple, consider the Freeway Service Patrol (FSP) roving tow truck system [Skabardonis et al., 1995,
M. Morris, W. Lee, 1994]. We can still estimate implementation costs and delay costs using histor-
ical data and a few assumptions about how the FSP would operate. The common currency of cost
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Figure 7: Characteristics of the 76 incidents from the extended training set. Histograms show
incident duration, t, starting 
ow, fd, and delay, d0.

allows for direct comparisons with more standard AID's, even though the usual notions of detection
rate and false alarm rate do not make sense for FSP.

5 Conclusions

We have a presented a methodology for systematically tuning the parameters of an AID and for mak-
ing truly fair comparisons between di�erent types of AID's. This approach avoids several problems
inherent in the generation of the traditional DR-FAR curve. Namely, subjective pre-screening of in-
cidents for detectability is not necessary, and both the severity of an incident (in terms of congestion)
and the time to detect are factored into the analysis automatically.

While the cost assumptions underlying the analysis can never completely capture all of the
subtle aims of incident detection, our 
exible framework allows one to tailor the cost functions to the
problem at hand to produce a meaningful univariate cost. The advantage of this reduction is that
AID parameters can be set systematically by searching over the parameter space for the lowest cost
with respect to a given set of training data. Moreover, by mimicking the real costs of implementation
and congestion, our results have the advantage of being practically interpretable.
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Appendix: Description of Incident Detection Algorithms

The California Algorithm

The Basic California Algorithm [Payne et al., 1976, Payne and Tignor, 1978] compares three
functions of the occupancy at two adjacent stations to three parameters (�1; �2; �3) which must be
set by the practitioner. If we denote the occupancy at station i over time period t as oi(t), with j > i
being a station downstream, then the three functions are:

docci(t) = oi(t)� oi+1(t); (10)

drocci(t) =
oi(t)� oi+1(t)

oi(t)
; (11)

drtocci(t) =
oi+1(t� d)� oi+1(t)

oi+1(t� d)
; (12)
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An incident is declared to exist during time period t between stations i and i+1 if all three variables
exceed their respective parameters.

The Minnesota Algorithm

The Minnesota Algorithm [Stephanedes and Chassiakos, 1993] also looks at functions of occu-
pancy at adjacent stations. However it �rst takes temporal moving averages in order to �lter out
spurious di�erences that would produce false alarms. Four parameters must be set (m;n;  1;  2).
The integersm and n control the amount of averaging and are usually set such thatm�t = 5 minutes
and n�t = 3 minutes (where �t is the length of each time period). We follow these conventional
choices. The free parameters  1 and  2 are thresholds against which two functions of occupancy are
compared.

Using the notation from above, de�ne

Ki(t) = max

0
@ 1

m

mX
j=1

oi(t � j);
1

m

mX
j=1

oi+1(t� j)

1
A (13)

Then the two functions of occupancy are

ui(t) =
1

n

Pn�1
j=0 docci(t+ j)

Ki(t)
(14)

wi(t) =
1

n

Pn�1
j=0 docci(t+ j)� 1

m

Pm
j=1 docci(t � j)

Ki(t)
(15)

An incident is declared to have occurred during time period t between stations i and i + 1 if both
variables exceed their respective parameters. Notice that (14) and (15) can not be evaluated until
time period t + n.
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