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Abstract 

 

 

Admati, Demarzo, Hellwig, and Pfleiderer (ADHP, 2018) note that static models of optimal leverage have 

assumed firms have no prior debt. In this case, the leverage that maximizes firm value also maximizes 

value to the initial equity owners.  However, using a simple two-period model with zero coupon debt and 

default possible only at maturity, ADHP prove two startling results: (i) when prior debt is extant, it will 

never benefit equity holders to retire debt, no matter how high the current leverage; and (ii) it will be in 

the equity owners’ interest to issue sequential rounds of additional debt, until all the tax advantages of 

debt are exhausted: the “Leverage Ratcheting Effect” (LRE). An immediate conclusion is that one-round 

(static) models of optimal debt issuance with no prior debt provide poor guidance as to a firm’s optimal 

leverage. We examine these contentions using an alternative model of debt, with rollover at a 

proportional rate m and average maturity = 1/m, introduced in Leland (1994a). We show that when the 

average maturity of debt is substantially longer than 5 years, considerable further debt will indeed be 

issued, although issuance ceases well before tax benefits are exhausted. With 5-year average maturity, 

very little additional debt is issued under reasonable calibrations. With 3-year average maturity, no 

additional debt is issued and it may actually be optimal for the firm to buy back debt, in contradiction to 

the LRE. We explain why our model gives differing results.   

Key Words:  Capital Structure, Leverage Ratcheting Effect, Debt Maturity, Dynamic Tax Tradeoff Model 

                                                             
1 The authors thank Patrick Greenfield and Matt Olfat for insights and assistance as this work has developed. The 
Editor, Pascal François, and Peter DeMarzo provided numerous useful comments.  Forthcoming in  Finance vol. 40, 
no. 3, pp. 13-44. 
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1.   Introduction 

 
In a recent article, Admati, DeMarzo, Hellwig, and Pfleiderer (2018, ADHP)) pose a challenge to  
 
“traditional” models of capital structure:  Whatever the current level of firm debt may be, it will never 

be in shareholders’ interests to reduce it through debt buyback at fair market value. Instead, 

shareholders will choose to increase leverage even if it reduces firm value, eventually to a level where 

the tax benefits of debt are totally exhausted. The authors term this the “leverage ratchet effect” 

(henceforth, LRE).   

 

This suggests that typical static or one-period models of optimal capital structure may have a serious 

flaw: while they indicate the leverage that optimizes equity value starting from an unleveraged initial 

situation, shareholders will issue further debt sequentially, perhaps in large amounts. This result holds 

even when the new debt must be junior to the initial debt issues. The authors conclude that “leverage 

choices based on static trade-off theory are therefore inherently unstable... the static trade-off theory of 

capital structure is unlikely to explain the capital structure of firms. The leverage ratchet effect implies 

that leverage begets more leverage.”  

 

The resistance to debt reduction on the open market has been noted previously by Black and Scholes 

(1973) and Leland (1994b, pp. 1246-7). But the impetus for equity holders to increase debt was not fully 

understood prior to ADHP. 

 

A question remains as to the generality of the ADHP results across a range of debt models. ADHP uses a 

simple 1-period model to motivate the no-buyback and LRE results. The firm issues zero-coupon debt 

with default possible only at maturity. Default occurs when end-period firm value is less than debt face 

value, similar to the Black Scholes (1973) and Merton (1974) approach. This framework is used to 
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motivate the key Propositions 1 (“Shareholder Resistance to Leverage Reduction”) and 4 (“The Leverage 

Ratchet Effect”). 2  

 

This paper examines the same problem, also in the context where the firm and investors have no 

foresight that current-round debt choices will be followed by further rounds of debt issuance, even 

though those may occur.3   We explore the magnitude of debt increases after the initial leverage choice 

is made, using the tools in Leland (1994a) where debt is committed (barring default) to be retired (and 

then replaced) at a constant rate that implies finite average maturity--a generalization of Leland (1994b) 

which considers infinite-maturity debt only.4 We conclude that the LRE is not very large for ranges of 

initial leverage and average maturity approximating those of investment-grade firms, when assuming 

exogenous parameter calibration consistent with empirical findings (e.g. Feldhütter and Schaefer 

(2018)).5 Indeed we even find that equity holders may voluntarily reduce debt, when debt has short 

maturity. Though the reductions are typically small, they nonetheless provide a counterexample to the 

assertion that it will never be optimal for equity holders to reduce debt. It also suggests the choice of 

shorter maturity, while typically costly in the Leland (1994a) model when there is a single debt issuance, 

may importantly protect bondholders from the LRE when subsequent debt issuance is possible. Our 

                                                             
2 In Section III, ADHP (2018) considers a model in which the firm has a constant earnings rate but is liquidated at a 

random time  governed by an exogenous arrival rate  (implying an average “maturity” of 1/ at a random value 

independent of .  Default probabilities in this approach are independent of the firm’s leverage choice, although 
liquidation value will depend on debt’s prior claim to principal value. DeMarzo and He (2016, DH) develops a 
model similar to Leland (1994a) but with no commitment to future debt retirement/issuance.  Their model rules 
out discontinuous changes in debt (including if the firm starts with no debt), and assumes that the coupon rate c is 
independent of the total debt principal F, i.e. independent of leverage. 
 

3 “No foresight” coincides with ADHP’s analysis through Section IIIA.  We later argue that assuming foresight would 
only reduce the likelihood of further debt issuance. 
 

4 By “initial” leverage choice, we mean the first-round issuance of debt when the firm has no prior debt, as 
considered in most capital structure models. 
 

5 Choi, Hackbarth, and Zechner (2018) find that average (median) debt maturity outstanding, 2002-2012, is 6.35 
(4.81) years, and when including loans average (median) maturity is 5.35 (3.91) years. 
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analysis complements that of Dangl and Zechner (2016) that shorter-maturity debt can allow possible 

debt reductions by incomplete rollovers, thereby reducing leverage.6 

 

While not identical, the LRE bears resemblance to the “asset substitution effect (ASE)” in which equity 

owners can raise the value of their claims by raising asset volatility once debt is in place, even when it 

reduces the total firm value. In both these cases, agency costs arise because the value of previously-

issued debt can be reduced by ex post decisions of the firm, creating a wedge between equity value-

maximizing decisions and firm value-maximizing decisions.7 It also bears resemblance to the “debt 

overhang problem” first elucidated by Myers (1977).8    

 

Agency problems may be reduced or eliminated by additional covenants or enforceable commitments in 

the debt contract. Terms prohibiting use of derivatives, for example, may ameliorate the ASE. As ADHP 

note, assigning absolute priority to pre-existing debt in default may reduce the LRE but not eliminate it, 

as our results below confirm for longer-term debt (only).9 DeMarzo (2019) also notes further restrictive 

covenants reducing operational or financial flexibility, relationship banking (where the preservation of 

                                                             
6 In the models of Dangl and Zechner (2016) and DeMarzo and He (2016), debt will at most be reduced 
continuously at rate m, when all maturing debt (at rate m) is refunded using equity rather than debt. There will 
never be discrete debt reductions in these models. 
 

7 The agency costs associated with the ASE are explored in Leland and Toft (1996) and Leland (1998). They show 
that shorter maturity debt reduces asset substitution benefits to equity, and results in smaller agency costs.  Our 
results below show that shorter maturity debt can also reduce (or eliminate) the incentive for sequential debt 
increases. 
 

8 Myers (1977) suggests shorter maturity can mitigate debt overhang costs. Diamond and He (2014) note that 
although shorter-term debt value is typically less sensitive to changes in asset value at time of issuance, the higher 
default boundary associated with refinancing shorter term debt can lead to greater debt overhang when cash 
flows deteriorate.  Here we include changes in the (endogenous) default boundary with maturity, but assume 
investment decisions are fixed. 
 

9 Earlier theoretical papers show that LRE can be eliminated by requiring that current debt be retired if new debt is 
introduced. However, as an empirical matter, such covenants are rarely if ever observed. Renegotiation of debt 
can also “solve” the LRE, as discussed both in Leland (1994b, Section VIII) and ADHP (2018, p.157). Mao and 
Tserlukevich (2015) show difficulties in renegotiation with multiple creditors.   
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previously-issued debts’ values may affect willingness to issue dilutive securities), and reputation 

building may limit additional debt issuance. 

 

Here, we show debt maturity reduction can reduce or eliminate the LRE. While we do not examine 

explicitly the tradeoff between agency costs of the LRE and the additional potential default costs from 

shorter maturity, our analysis points the way towards doing so. 

 

Our basic examination is quite rudimentary. Following ADHP (Sections II through IIIA), we first ask (in 

Round 1), “what is the optimal leverage when the firm starts with zero leverage,” assuming no foresight 

of further debt offerings. This will generate “first round” or initial leverage L1, the optimal leverage when 

there is no prior debt. This is identical to the optimal leverage considered in Leland (1994a, 1994b).  

Then, considering a second round of potential additional leveraging, we ask “what is the optimal 

leverage L2 when starting with L1?” We assume the first round happens immediately after the initial 

leveraging choice L1, and there is no change in the underlying parameters including asset value (we later 

consider alternatives). We continue this process through many rounds, or until the increase in equity 

value is less than 0.01%. In all our examples, we assume absolute priority: debt issued in any round has 

claims to default value senior (up to principal value) to any subsequent debt issues. 

 

Our principal results, based on a reasonable range of model parameters, are as follows: 

 When the average maturity of debt is at least 10 years, the LRE is confirmed and may continue 

through many rounds of debt issuance.10 However: 

                                                             
10  Our examples seek to be consistent with the range of empirically estimated parameters for asset volatility, 
payout ratios, tax advantages to debt, and default costs. We consider different debt maturities, and seek final 
parameter choices to generate an optimal leverage ratio in the initial round of issuance close to the BBB-rated 
average of about 40% (e.g. Huang and Huang (2012), Feldhütter and Schaefer (2018)). 
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o Additional rounds of debt offer relatively small increments to equity value beyond 2-3 

rounds, and incur substantially higher borrowing costs (which may reduce the firm’s 

debt rating). 

o With reasonable cutoff points for further debt issuance (e.g. improvement of equity 

value of 0.01% or less), the ultimate total of debt issuance will be far from exhausting 

the net tax benefits of debt. 

o Given fixed maturity, the LRE is likely to be greater when parameters lead to larger 

initial leverage. The LRE is also greater when initial leverage is the same and default 

costs are lower.. 

 The benefits of further debt issuance fall rapidly as maturity falls, and in our base case there are 

no benefits to even one round of additional debt when maturities are 3.6 years or less.11 

 With the maturity of debt less than 3.6 years in the base case, it is advantageous for equity 

holders to reduce leverage from the original level through debt buybacks, contradicting the 

contention that it is never optimal to reduce debt. At the “neutral maturity” of 3.6 years, equity 

holders will not wish to change leverage from an initial leverage of 42%. 

 

These results challenge the conclusions of ADHP’s Propositions 1 and 4.  We do not disprove ADHP’s 

propositions, given their assumptions; but in our model of fully rolled-over debt, their Propositions 1 

and 4 do not hold at shorter maturities.   

 

An important difference in our models is that the firm is committed to maintaining a constant capital 

structure, barring endogenous default.  This implies full debt rollover so that debt principal remains 

                                                             
11 We observe in our examples that, in comparison with ADHP (Section III.A.2), the “time inconsistency” in our   
model with no foresight is substantially reduced, and virtually disappears as maturity shortens.    
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constant through time.12  .  In contrast with ADHP and DeMarzo and He (2016), but in common with 

Dangl and Zechner (2016) and many other studies, our model also constrains the coupon to be set so 

that debt initially sells at par value.  

  

2.   THE MODEL 

 

Following Merton (1974), Leland (1994a) and many others consider a firm whose underlying asset value 

V follows a risk-neutral geometric Brownian motion with   

𝑑𝑉𝑡 =     𝜇𝑉𝑡𝑑𝑡 +  𝜎𝑉𝑡𝑑𝑍𝑡,                                                                 (1) 

where 𝜇 = 𝑟 − 𝛿   is the risk-neutral drift of asset value,  r is the risk-free rate of interest, and  is the 

payout ratio of asset value to security holders, all assumed to be constant. Volatility is given by , and 

dZt is the increment to a standard Gauss-Wiener process. 

 

The firm issues debt at time t = 0 with principal P and coupon rate C. The coupon rate C is set so the 

bond initially sells at par. Debt has no explicit maturity date, but promises to retire extant debt principal 

at par at the continuous proportional rate m, similar to a “sinking fund.” As in Leland (1994a) we assume 

that m is given exogenously, implying an average debt maturity of 1/m. Also by assumption, debt is fully 

rolled over:  the debt retired at any future time s is continuously replaced with debt having equal 

principal and coupon. Thus total debt principal P and total coupon rate C remain constant through time, 

barring default. Debt issued at any time will have claims in future default proportional to its remaining 

principal. 

 

                                                             
12 Dangl and Zechner (2016) and DeMarzo and He (2016) consider the case where debt may not be fully rolled over 
by issuance of additional debt.  Upward (but not downward) restructuring of debt principal, as in Goldstein, Ju, and 
Leland (2001), would not change the nature of our results. 
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Let V0 denote asset value when the first round of debt is issued. The coupon rate C will be set so that the 

bond initially sells at par:  

𝐷(𝑉0, 𝑉𝐵 , 𝑃, 𝐶, 𝑚) = 𝑃       (3) 

where  𝐷(𝑉0, 𝑉𝐵 , 𝑃, 𝐶, 𝑚) is the market value of debt with parameters (P, C, m) when asset value V = V0.  

At future times t > 0, almost surely 𝑉 ≠   𝑉0 and future debt will be rolled over at a premium (or 

discount) to par. The deficit/surplus from full rollover, at rate 𝑚(𝑃 − 𝐷(𝑉, 𝑉𝐵, 𝑃, 𝐶, 𝑚)), will be borne 

entirely by shareholders. 

 

 2.1 Valuation of Debt and Equity 

 

Default occurs when asset value first falls to a (time-independent) value VB < V0. The default event 

triggers a proportional loss  of asset value 𝑉𝐵  at default. Recoverable value in default will therefore be 

(1 − 𝛼)𝑉𝐵. Upon default, this value (which will always be less than P) will go entirely to then-current 

debtholders through absolute priority. Equity will have zero value in default.13 

Leland (1994a) shows that the value of debt in this model is given by  

𝐷(𝑉, 𝑉𝐵, 𝑃, 𝐶, 𝑚) =  
𝐶 + 𝑚𝑃

𝑟 + 𝑚
 (1 − 𝑞1) + (1 − 𝛼)𝑉𝐵𝑞1                                          (4) 

  where      𝑞1 ≡  (
𝑉

𝑉𝐵
)

−𝑥1
      (4a) 

     and                                        𝑥1  =  
(𝑟−𝛿−

1

2
𝜎2)+((𝑟−𝛿−

1

2
𝜎2)

2
+2(𝑟+𝑚)𝜎2)

1
2

𝜎2                                                 (5) 

                                                             
13 Debtholders having prior claims to equity is standard in structural models. Violations of absolute priority are 
considered (when m = 0) in Leland (1994a). With multi-period debt issuances, we assume time priority of earlier 
issues, including their rollover obligations. 
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𝑞1 is expected present value (discounted at the riskless rate r, with V following the risk neutral asset 

value process (1))  of $1, exponentially declining through time at the rate m, received at the time of first 

passage from current value V to the default boundary VB. Thus the first term in (4) is the expected 

capitalized value of the cash flows to current debt, which decline exponentially through redemption at 

rate m, received until first passage time to the default boundary VB. The second term of equation (4) is 

the expected present value of the current debt’s claim to remaining asset value at default. We presume 

here that the default boundary is time independent, and later verify that it will indeed be so.  

 

Following Leland (1994a, b), total firm value v at time t is given by asset value V, plus the expected 

present value of the tax benefits to debt, less the expected present value of potential default costs: 

𝑣(𝑉, 𝑉𝐵, 𝑃, 𝐶, 𝑚) = 𝑉 +
𝜏𝐶

𝑟
(1 − 𝑞2) − 𝛼𝑉𝐵𝑞2                               (6)                     

where      𝑞2 = (
𝑉

𝑉𝐵
)

−𝑥2

                                                                      (6a) 

     and                                         𝑥2  =  
(𝑟−𝛿−

1
2

𝜎2)+((𝑟−𝛿−
1
2

𝜎2)
2

+2𝑟𝜎2)

1
2

𝜎2  .                                                     (7)  

 

𝑞2 is expected present value of $1 (discounted at the riskless rate r but not declining exponentially), 

received at the time of first passage from V to VB. The value of tax benefits is given by the second term 

in equation (6), and the value of potential default costs is given by the third term. These are invariant to 

debt maturity, except through the effects of maturity on VB observed subsequently. Note that when m = 

0 (“infinite” life debt),  𝑞1 =  𝑞2 ceteris paribus.   

Firm value equals debt value plus equity value. Therefore equity value is given by 

𝐸(𝑉, 𝑉𝐵) =  𝑣(𝑉, 𝑉𝐵) −  𝐷(𝑉, 𝑉𝐵)                     (8) 
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where we have suppressed the debt parameter arguments  (P, C, m) and the exogenous parameters              

(𝑟, 𝛿, 𝜎). 

 2.2  The Endogenous Default Boundary  

The endogenous default boundary VB is assumed chosen by equity holders to maximize equity value, 

given the debt in place with parameters ( P, C, m). As in Leland (1994a), it satisfies the smooth-pasting 

condition  

                                                            𝜕𝐸(𝑉, 𝑉𝐵)/𝜕𝑉|𝑉=𝑉𝐵
= 0                                   (9) 

with solution in Leland (1994a) given by 

𝑉𝐵 =
(𝐶+𝑚𝑃)𝑥1

𝑟+𝑚
− 

𝜏𝐶𝑥2
𝑟

1+𝛼𝑥2+(1−𝛼)𝑥1
.     (10) 

3. Extension to Multiple Debt Issues:  Sequential 1-period Optimal Decisions 

 

The “static” model described above assumes that there is only one issuance of debt, the “initial debt.”  

But the analysis is easily extended to sequential debt issuances, such as considered by ADHP.14 Let z = 

(1,…) index sequential rounds of debt issuance. The initial round 1 starts with no prior debt outstanding, 

but subsequent rounds start with all prior debt issues remaining. While we could allow equal priority for 

all issues, we choose to assign priority to claims in default to by order in the sequence. Thus round 1 

debt must be fully repaid up to its principal value before any remaining assets (net of default costs) are 

paid to round 2 debt, which in turn has priority over subsequent issues. In all our examples, only the 

initial debt will recover positive amounts in default. 

 

                                                             
14 Alternative dynamic models, where prior debt must be retired before new debt is issued, are considered by 
Fischer, Heinkel, and Zechner (1989) and by Goldstein, Ju, and Leland (2001). 
 



11 
 

We focus the analysis on the situation where investors and the firm assume that each round of issuance 

is the last, and do not foresee that the firm may subsequently choose to issue additional debt. While 

clearly restrictive, this assumption is consistent with the sequential one-period analysis of ADHP and 

their development through Section IIIA. 

 

In each round z, new debt is issued with principal value 𝑃𝑧  ≥ 0, coupon 𝐶𝑧  ≥ 0, and rollover rate 𝑚𝑧.  

We assume here that mz = m for all z, which assures that 𝑥1 in equation (5) is the same for all rounds 

given the time independence of the riskfree rate r, payout rate , and volatility .15 In determining 

optimal debt issuance in each round z, previous debt issuances are taken into account in the default 

boundary VBz, and the fraction of remaining value (if any) that the new debt will receive if default occurs, 

given debt priority rules. Consistent with sequential one-period maximization (and ADHP through 

Section IIIA), no anticipation of rounds beyond the current round z will affect the current leverage 

decision. We also assume initially that the underlying asset value is  unchanged at each issuance round, 

i.e. 𝑉𝑧 = 𝑉0, where 𝑉𝑧  is the asset value when debt is issued in round z, also as initially assumed in ADHP.  

Later, this assumption is relaxed.   

 

 3.1  Debt Values with Sequential 1-Period Optimization 

Similar to the single-period debt value in (4) debt issued in the zth round will have value given by 

𝐷𝑧(𝑉, 𝑉𝐵𝑧 , 𝑃𝑧 , 𝐶𝑧, 𝑚) =  
𝐶𝑧 + 𝑚𝑃𝑧

𝑟 + 𝑚
 (1 − 𝑞1𝑧) + 𝑤𝑧(1 − 𝛼)𝑉𝐵𝑧𝑞1𝑧              (11) 

for arbitrary asset value V, where Pz and Cz are the principal and coupon rate paid by debt issued in 

round z. 𝑉𝐵𝑧  is the optimal default boundary given all debt up to and including the zth round, and  𝑤𝑧 is 

the fraction of assets after default that is commanded by debt issued in the zth round. 𝑞1𝑧 is given by 

                                                             
15 x2 in equation (7) is also independent of m.  However, q1 and q2 will typically depend upon m through VB. 
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equation (4a) when 𝑉𝐵 = 𝑉𝐵𝑧. Note 𝑤𝑧 will depend on the amount of debt issued in round z and, 

through priority rules, on the debt previously issued in rounds s = (1, …, z - 1). Because investors do not 

anticipate subsequent debt offerings, they do not anticipate further change in their default claims, even 

though those claims may well be diluted by future issues. 

  

In each round, the coupon Cz is chosen so that the bond sells at par. Let V = Vz be asset value when Dz is 

issued. Then for each z, Cz satisfies the condition 

𝐷𝑧(𝑉𝑧 , 𝑉𝐵𝑧 , 𝑃𝑧 , 𝐶𝑧, 𝑚) = 𝑃𝑧 .     (12) 

As noted earlier, for the moment we assume that 𝑉𝑧 = 𝑉0, for all 𝑧.  

 

Note that debt issued in any prior round 𝑠, 1 ≤  𝑠 < 𝑧, will retain its coupon and principal 

(𝐶𝑠, 𝑃𝑠) reduced by retirement at rate m through time. For simplicity and consistency with ADHP, we 

assume that rounds pass instantaneously, so there is effectively no reduction in coupon and principal of 

previously-issued debt between rounds and thus 𝑉𝑧 = 𝑉0, for all 𝑧. But even with asset value 𝑉  constant 

between rounds, debt value of prior rounds will have changed from its when-issued market value (and 

principal value) because in general  𝑉𝐵𝑧 ≠ 𝑉𝐵𝑠 and  𝑤𝑠
𝑧  ≠   𝑤𝑠, where 𝑤𝑧

𝑠 is the fraction of liquidation 

value (1 – ) VBz received in round z by the debt issued in round s < z.16 Depending upon priority rules, 

𝑤𝑠
𝑧 may differ from 𝑤𝑠 because of additional debt issued in the subsequent rounds.   

Debt issued at round s < z will have subsequent value at time z  

𝐷𝑠
𝑧(𝑉, 𝑉𝐵𝑧 , 𝑃𝑠 , 𝐶𝑠, 𝑚) =  

𝐶𝑠+𝑚𝑃𝑠

𝑟+𝑚
 (1 − 𝑞1𝑧) + 𝑤𝑠

𝑧(1 − 𝛼)𝑉𝐵𝑧𝑞1𝑧.                     (13) 

Observe that in general, 𝐷𝑠
𝑧(𝑉, 𝑉𝐵𝑧 , 𝑃𝑠 , 𝐶𝑠, 𝑚) ≠ 𝑃𝑠 for all s < z. 

 

We use the following notation for aggregate principal, aggregate coupon, and aggregate shares in 

default after z rounds of issuance:  

                                                             
16 For simplicity, we write 𝑤𝑠

𝑠 as 𝑤𝑠.  
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𝑃𝑧
∗ =  ∑ 𝑃𝑠

𝑧
𝑠=1 ;         𝐶𝑧

∗  = ∑ 𝐶𝑠
𝑧
𝑠=1 ;    𝐷𝑧

∗  =  ∑ 𝐷𝑠
𝑧; 𝑧

𝑠=1   𝑤𝑧
∗  = ∑ 𝑤𝑠

𝑧𝑧
𝑠=1 = 1      (14) 

where the last equality follows from the fact that debt collectively at round z will have claim to the 

remaining asset value after default, (1 − 𝛼)𝑉𝐵𝑧. 

  

It follows directly  from equations (13) and (14) that aggregate debt value 𝐷𝑧
∗ at round z will have value 

 𝐷𝑧
∗(𝑉, 𝑉𝐵𝑧, 𝑃𝑧

∗, 𝐶𝑧
∗, 𝑚) =  

𝐶𝑧
∗+𝑚𝑃𝑧

∗

𝑟+𝑚
 (1 − 𝑞

1𝑧
) + (1 − 𝛼)𝑉𝐵𝑧𝑞

1𝑧
                             (15)   

Again, we note that in general,  𝐷𝑧
∗(𝑉, 𝑉𝐵𝑧, 𝑃𝑧

∗, 𝐶𝑧
∗, 𝑚)  ≠  𝑃𝑧

∗ even when 𝑉 =  𝑉𝑧, since in general 

 𝑉𝐵𝑧  ≠   𝑉𝐵𝑠 , 𝑠 < 𝑧,  and only the most recent debt issuance will sell at par. 

 

3.2   Equity Value and Default Boundary at each Round 

We can extend the single-round model of firm and equity value in a straightforward manner. At each 

round z, given V and VBz, the value of the firm is given by asset value plus the expected present value of 

tax benefits less default costs 

𝑣𝑧(𝑉, 𝑉𝐵𝑧, 𝑃𝑧
∗, 𝐶𝑧

∗, 𝑚) = 𝑉 +
𝜏𝐶𝑧

∗

𝑟
(1 − 𝑞2𝑧) − 𝛼𝑉𝐵𝑧𝑞2𝑧                   (16) 

where  (𝑥2, 𝑃𝑧
∗, 𝐶𝑧

∗) are given in equations (7) and (14) respectively, and 𝑞2𝑧 is given by equation (6a) 

with 𝑉𝐵 =  𝑉𝐵𝑧 . 

Equity value in round z is now given by 

 𝐸𝑧(𝑉, 𝑉𝐵𝑧, 𝑃𝑧
∗, 𝐶𝑧

∗, 𝑚) =  𝑣𝑧(𝑉, 𝑉𝐵𝑧, 𝑃𝑧
∗, 𝐶𝑧

∗, 𝑚) −  𝐷𝑧
∗(𝑉, 𝑉𝐵𝑧, 𝑃𝑧

∗, 𝐶𝑧
∗, 𝑚)  (17) 

Parallel to equations (9) and (10), the smooth pasting condition  

  𝜕𝐸𝑧(𝑉, 𝑉𝐵𝑧)/𝜕𝑉|𝑉=𝑉𝐵𝑧
= 0                                       (18) 

gives the default boundary 𝑉𝐵𝑧  in round z: 

𝑉𝐵𝑧 =
(𝐶𝑧

∗ +𝑚𝑃𝑧
∗)𝑥1

𝑟+𝑚
− 

𝜏𝐶𝑧
∗ 𝑥2
𝑟

1+𝛼𝑥2+(1−𝛼)𝑥1
                             (19) 
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For our subsequent analysis it is useful to separate out the current debt (Pz, Cz) in the equations above.  

From (14), it follows immediately that 

𝑃𝑧
∗ = 𝑃𝑧−1

∗ + 𝑃𝑧;    𝐶𝑧
∗ = 𝐶𝑧−1

∗ + 𝐶𝑧;      𝐷𝑧
∗ = 𝐷𝑧−1

∗ + 𝐷𝑧  

Substituting these relationships into equation (17) yields the value of equity after zth round debt 

issuance Pz: 

    𝐸𝑧(𝑉, 𝑉𝐵𝑧, 𝑃𝑧−1
∗ + 𝑃𝑧 , 𝐶𝑧−1

∗ + 𝐶𝑧, 𝑚) =  𝑣𝑧(𝑉, 𝑉𝐵𝑧 , 𝑃𝑧−1
∗ + 𝑃𝑧 , 𝐶𝑧−1

∗ + 𝐶𝑧, 𝑚) 

                                                                         − 𝐷𝑧−1
∗ (𝑉, 𝑉𝐵𝑧 , 𝑃𝑧−1

∗ , 𝐶𝑧−1
∗ , 𝑚)  −  𝐷𝑧(𝑉, 𝑉𝐵𝑧, 𝑃𝑧 , 𝐶𝑧, 𝑚)         (20) 

where we recall current debt has value that depends only on its principal and coupon from (12). 

Similarly, we may express (19) as 

𝑉𝐵𝑧 =
(𝐶𝑧−1

∗ +𝐶𝑧+𝑚(𝑃𝑧−1
∗ +𝑃𝑧))𝑥1

𝑟+𝑚
− 

𝜏(𝐶𝑧−1
∗ +𝐶𝑧)𝑥2

𝑟

1+𝛼𝑥2+(1−𝛼)𝑥1
      (21) 

Note the value of previously-issued debt 𝐷𝑧−1
∗ (𝑉, 𝑉𝐵𝑧, 𝑃𝑧−1

∗ , 𝐶𝑧−1
∗ , 𝑚) does not depend directly on the 

current debt’s principal and coupon (𝑃𝑧  , 𝐶𝑧), but does depend indirectly via the default boundary 𝑉𝐵𝑧 as 

seen in (21). 

 

4.  Sequential 1-round Equity Value Optimization 

Consistent with ADHP (through their Section IIIA), we assume equity holders will choose the amount of 

debt 𝑃𝑧  in each round z to maximize the sum of resulting equity value plus debt proceeds 𝑃𝑧, subject to 

constraints (12) and (21) at 𝑉 =  𝑉𝑧  and taking past debt obligations ( 𝑃𝑧−1
∗ , 𝐶𝑧−1

∗ )  as contractually fixed.  

Therefore equity holders in round z seek to 

     𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑃𝑧,𝐶𝑧
 {𝐸𝑧(𝑉, 𝑉𝐵𝑧, 𝑃𝑧−1

∗ + 𝑃𝑧 , 𝐶𝑧−1
∗ + 𝐶𝑧, 𝑚) +  𝐷𝑧(𝑉,  𝑉𝐵𝑧 , 𝑃𝑧 , 𝐶𝑧, 𝑚)},            (22) 
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subject to (12) and  (21), given 𝑉 = 𝑉𝑧 .   

Again, note that 𝑃𝑧−1
∗ , 𝐶𝑧−1

∗  are taken as given since they are determined in prior rounds.17 Substituting 

from (20) into (22) gives the equivalent optimization problem that in each round z, equity seeks to  

 

   𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝑧,𝐶𝑧
 { 𝑣𝑧(𝑉, 𝑉𝐵𝑧 , 𝑃𝑧−1

∗ + 𝑃𝑧 , 𝐶𝑧−1
∗ + 𝐶𝑧, 𝑚)  − 𝐷𝑧−1

∗ (𝑉, 𝑉𝐵𝑧 , 𝑃𝑧−1
∗ + 𝑃𝑧 , 𝐶𝑧−1

∗ + 𝐶𝑧, 𝑚)}    (23) 

subject to (12) and  (21), given 𝑉 = 𝑉𝑧 .   

The optimal debt issuance policy {𝐶𝑧, 𝑃𝑧}, and resulting {𝑃𝑧
∗, 𝐶𝑧

∗} are also given by the sequential 

maximization of (23), 𝑧 = {1, . . . }.18 Thus the optimal policy in each round maximizes the current value 

of the firm, less the value of total previously issued debt. 

 

In the first round (z = 1), there is no prior debt (by assumption), i.e. 𝐷0
∗ = 𝑃0

∗ =  𝐶0
∗ = 0.   Therefore the 

firm chooses to issue debt principal P1 that maximizes firm value 𝑣1, with coupon C1 chosen to make 

debt sell at par, and 𝑉𝐵1 satisfying equation (10). The optimal leverage results in the first round are 

identical to those in Leland (1994a).            

 

The firm no longer maximizes firm value in subsequent rounds, given positive debt issuance in the first 

round. Rather, it maximizes the sum of current firm value less the current value of previously issued 

debt. We follow this algorithm in constructing the examples below. 

 

5.  Examples of Sequential 1-Round Optimization:  Debt Issuance 

                                                             
17 The maximand in (22) is not the value of the firm in round z > 1, because it includes only the value of current 
round debt 𝐷𝑧  rather than total debt value 𝐷𝑧

∗. 
 

18 Note this depends on the assumption of no foresight. 
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We consider environments consistent with a firm issuing BBB-rated debt of different average maturities: 

10 years, 5 years, and 3 years. 19 We choose exogenous parameters within reasonable  

ranges suggested by previous empirical studies, as noted in Table 1.  

Table 1: Exogenous parameter ranges. 

Parameter High 
(Source) 

Low 
(Source) 

Asset volatility σ 28% 
Feldhütter and Schaefer 

(2018, Table 7) 

22% 
Schaefer and Strebulaev 

(2008) 
 
Payout rate δ 

 
5.0% 

Feldhütter and Schaefer 
(2018, Table 6) 

 
3.7% 

Feldhütter and Schaefer 
(2018, Table 7) 

 
Default cost α 

 
45% 

Glover 
(2016) 

 
10% - 20% 

Andrade and Kaplan 
(1998) 

 
Effective tax rate τ 

 
25% 

He and Milbradt 
(2014) 

 
15% 

Bhamra, Kuehn and Strebulaev 
(2010) 

 
Risk-free rate r 

 
5.60% 

Avg. 10-year Treasury yield 
1950-2017 

 
4.69% 

Avg. short-term riskless rate 
1866-2008* 

 

 * Giesecke, Longstaff, Schaefer and Strebulaev (2000, Table 4) 

 

In all our examples, we assume the risk-free rate 𝑟 = 5.00%,  asset volatility 𝜎 = 25% and a payout rate 

𝛿 = 4.00%. The risk-neutral asset value drift 𝜇 =  𝑟 − 𝛿 = 1.00%  in equation (1). We further normalize 

initial asset value V0 = 100 in all cases. 

                                                             
19 Choi, Hackbarth, and Zechner (2018) report an average (median) debt maturity of 5.15 (3.93) years, where 
average (median) bond maturity is 6.35 (4.81) years and average (median) loan maturity is 3.43 (2.92) years. Note 
that if a firm consistently issues debt with 10 year maturity and redeems and replaces it upon maturity, the 
average maturity of its outstanding debt will be 5 years (see e.g., Leland and Toft (1996)). While we could use the 
latter model in this analysis, the calculations are considerably more tedious.  
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Optimal first-round leverage depends on the chosen average debt maturity as well as the other 

exogenous parameters specified in Table 1. We choose the two remaining exogenous “tax tradeoff” 

parameters, the tax rate  and the default cost (loss fraction of asset value at default)  to generate an 

initial (first-round) leverage of about 38%, for each different average debt maturity. 38% is close to the 

average maturity of BBB-rated debt based on previous empirical work.20  

 

For each example, we first consider 5 sequential rounds of debt issuance, using the algorithm in Section 

4. We assume the sequential rounds occur with (essentially) zero time lag, and the asset value remains 

unchanged (𝑉𝑧 =  𝑉0 = 100 for all 𝑧) between rounds. As previously noted, we follow ADHP in assuming 

that, at each round, the firm and investors do not anticipate further debt issuances or retirements.  

 

While debt issuance in the current round is always assumed at par, because the default boundary will 

typically increase with additional debt issuance, the endogenous default boundary will typically increase 

and prior debt will sell below par. This is the agency problem noted in the introduction: prior obligations 

can be reduced in value by subsequent debt issuance. However, this is not the whole story: the increase 

in the endogenous default boundary caused by additional debt will also affect the present value of tax 

shields and default costs. Given the assumptions underlying the Leland (1994a) model, this dependence 

will importantly change the results derived by ADHP. In all our examples, we assume “absolute priority”:  

debt issued in any round has claim to value in default that is senior (up to principal value) to any 

subsequent debt issue. 

 

 

                                                             
20 Estimates of BBB-rated firms’ leverage include 38% by Feldhütter and Schaefer (2018), 43% by Huang and Huang 
(2012) and 28% by Rauh and Sufi (2010).   



18 
 

EXAMPLE 1:  10 year average maturity debt (𝑻 = 𝟏𝟎 ↔ 𝒎 = 𝟎. 𝟏)  

We choose tax rate 𝜏 = 20% and default cost (loss of asset value upon default) 𝛼 = 35%. In turn with 

our other parametric assumptions (common to all examples) of 𝑟𝑓 = 5.00%, 𝜎 = 25% and 𝛿 = 4.00%, 

the Leland (1994a) optimal leverage solution is given by Round 1 of the following table. Note that initial 

leverage is close to the target 38% for BBB-rated debt, as found empirically by Feldhütter and Schaefer 

(2018), and the net benefits to leverage are 3.91%, bracketed by van Binsbergen, Graham, and Yang’s 

(2010) estimate of 3.5% and Korteweg’s (2010) estimate of 3.6% - 4.0%. 

 

 

We observe that the LRE effect is alive and well in this example, even though initial debt has absolute 

priority. Leverage rises from 38.5% in the first round to 54.5% after five rounds. After 10 rounds rounds), 

leverage rises further to 57.1%, and by the 50th round leverage reaches 60.5%, where it remains through 

the 100th round. At that limiting leverage, the net benefits to leverage are reduced from the initial level 

of 3.91% to 1.57%, but clearly are not reduced to zero.   

 

Although the incremental leverage is quite large, the gains to equity from the leverage increases are 

small. The 6% growth in leverage in round 2 increases equity value (including current debt issuance) by 

less than 0.25%. The increment falls to 0.030% by round 5, and to 0.003% by round 10. 

 

Tax Rate  20.0% Default Cost  35.0%

New Debt New Debt

Issued New Debt Spread Total Debt Total Debt % change in Leverage Equity Prior Equity Change to % change Tax Default Net Debt

Round (at Par) Coupon (bps) Principal Value Firm Value Firm Value (market) Value plus new debt Equity to equity Benefits Costs Benefits

1 40.04 2.324 80 40.04 40.04 103.91 3.910% 38.53% 63.87 103.91 3.9104 3.9104% 6.65 2.74 3.91

2 6.87 0.485 206 46.91 46.51 103.66 -0.237% 44.86% 57.16 64.03 0.1548 0.2417% 7.47 3.80 3.66

3 4.20 0.316 251 51.11 50.34 103.36 -0.296% 48.71% 53.01 57.22 0.0602 0.1052% 7.92 4.56 3.36

4 2.84 0.223 286 53.95 52.88 103.08 -0.270% 51.30% 50.20 53.04 0.0285 0.0538% 8.20 5.12 3.08

5 2.04 0.166 313 56.00 54.67 102.84 -0.231% 53.16% 48.17 50.22 0.0152 0.0303% 8.38 5.54 2.84

EXAMPLE 1:  10 Year Debt
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 With each round, the required spread on additional debt rises rapidly from its initial 80 bps. Round 2 

requires a spread of 206 bps, suggesting a substantial fall in debt rating if the firm issues even one round 

of additional debt. The spread rises to 389 bps in round 10, and reaches a limit of 445 bps. Whether 

firms would consider the issuance of additional debt in light of the small benefits to equity value and 

possible reputational costs is open to question.   

 

EXAMPLE 2A:  5 year average maturity debt (𝑻 = 𝟓 ↔ 𝒎 = 𝟎. 𝟐)  

We now consider optimal sequential debt issuance when the average debt maturity (barring default) is 5 

years.  In Example 2A, we keep the tax rate and default cost fraction the same as in Example 1. 

 

 

Here, we observe the LRE is played out almost completely after 5 rounds. The gains to additional 

leverage essentially are complete after 4 rounds, with even Round 3 producing a gain to equity value of 

less than 1 basis point. But perhaps this is due to the lower initial leverage in this example, considerably 

less at 28.9% than our “target” BBB-rating leverage of 38%. The lower initial leverage provides less debt 

to exploit by increasing subsequent leverage. Therefore we alter the tax and default cost parameters in 

Example 2B to generate a first round leverage close to the target of 38%. 

 

 

 

Tax Rate  20.0% Default Cost  35.0%

Debt

Issued New Debt New Debt Total Debt Total Debt % change in Leverage Equity Prior Equity Change to % change Tax Default Net Debt

Round (at Par) Coupon Spread (bps) Principal Value Firm Value Firm Value (market) Value plus new debt Equity to equity Benefits Costs Benefits

1 29.72 1.583 33 29.72 29.72 102.79 2.7904% 28.91% 73.07 102.79 2.7904 2.7904% 4.79 2.00 2.79

2 1.20 0.069 74 30.91 30.89 102.77 -0.0186% 30.06% 71.88 73.08 0.0040 0.0039% 4.93 2.16 2.77

3 0.18 0.011 75 31.10 31.07 102.77 -0.0038% 30.23% 71.70 71.88 0.0001 0.0001% 4.95 2.18 2.77

4 0.028 0.002 75 31.13 31.10 102.77 -0.0006% 30.26% 71.67 71.70 0.0000 0.0000% 4.96 2.19 2.77

5 0.004 0.000 75 31.13 31.10 102.77 -0.0001% 30.26% 71.66 71.67 0.0000 0.0000% 4.96 2.19 2.77

EXAMPLE 2A:  5 Year Debt
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EXAMPLE 2B:  5 year average maturity debt (𝑻 = 𝟓 ↔ 𝒎 = 𝟎. 𝟐), initial leverage preserved.  

We raise the effective corporate tax rate from 20% to 25%. We also slightly reduce the default costs 

from 35% to 33%. These changes lead to initial Round 1 leverage of 38.0%, the average of BBB-rated 

firms found by Feldhütter and Schaefer (2018), and close to Round 1 leverage in Example 1. 

 

 

As expected, the higher initial leverage than in Example 2A implies somewhat greater amounts of 

additional debt issuance. But the differences are not large, and again the LRE is almost entirely played 

out after 5 rounds. The leverage ratio grows only from 38.0% to 40.5%, and equity increases in value by 

less than 2 bps. As in Example 1, there is a significant rise in the spread of subsequent debt issuances vs. 

the initial spread, again suggesting some reputational risk of a lower debt rating for the firm undertaking 

further leverage. 

EXAMPLE 3A:  3 year average maturity debt (𝑻 = 𝟑 ↔ 𝒎 = 𝟎. 𝟑𝟑), non-negative issuance 

To keep initial leverage at about 38% with shorter maturity, we assume (as in the prior example) a tax 

rate of 25%, but reduce default costs to 25%. Optimal leverage in Round 1 is 38.3%. Optimal debt 

issuance is given below when we restrict 𝑃 ≥ 0, 𝐶 ≥ 0: 

Tax Rate  25.0% Default Cost  33.0%

New Debt New Debt

Issued New Debt Spread Total Debt Total Debt % change in Leverage Equity Prior Equity Change to % change Tax Default Net Debt

Round (at Par) Coupon (bps) Principal Value Firm Value Firm Value (market) Value plus new debt Equity to equity Benefits Costs Benefits

1 39.73 2.244 65 39.73 39.73 104.51 4.508% 38.02% 64.78 104.51 4.5078 4.5078% 7.68 3.17 4.51

2 2.03 0.132 153 41.76 41.68 104.44 -0.067% 39.91% 62.76 64.79 0.0091 0.0087% 7.94 3.50 4.44

3 0.43 0.028 157 42.18 42.08 104.42 -0.018% 40.30% 62.34 62.76 0.0004 0.0006% 8.00 3.58 4.42

4 0.09 0.006 158 42.27 42.17 104.41 -0.004% 40.39% 62.24 62.34 0.0000 0.0000% 8.01 3.59 4.41

5 0.02 0.001 158 42.29 42.19 104.41 -0.001% 40.41% 62.22 62.24 0.0000 0.0000% 8.01 3.60 4.41

EXAMPLE 2B:  5 Year Debt, 38% initial leverage
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Here, we see that it is never optimal to issue additional debt. The optimal issuance in Round 2 is strictly 

zero. Because Round 3’s optimization problem is exactly the same as Round 2’s, the firm will also issue 

zero additional debt, and by induction the firm will never increase leverage. This will be true for any set 

of (constant) initial parameters in which the firm does not increase leverage in Round 2. 

In contrast with the earlier examples having longer maturities, the non-negativity constraint is strictly 

binding in this example. This raises the question of whether the firm would actually prefer to reduce 

leverage if it could. 

EXAMPLE 3B:  3 year average maturity debt (𝑻 = 𝟑 ↔ 𝒎 = 𝟎. 𝟑𝟑), negative issuance allowed 

Simply removing the non-negativity constraint and optimizing sequentially generates the following 

results: 

 

 

Indeed, we see that it is optimal to reduce debt in the second round. Thereafter there are mild 

fluctuations (issuance and reduction) in subsequent rounds, with the further adjustments fluctuating in 

Tax Rate  25.0% Default Cost  25.0%

New Debt New Debt

Issued New Debt Spread Total Debt Total Debt % change in Leverage Equity Prior Equity Change to % change Tax Default Net Debt

Round (at Par) Coupon (bps) Principal Value Firm Value Firm Value (market) Value plus new debt Equity to equity Benefits Costs Benefits

1 40.06 2.178 44 40.06 40.06 104.47 4.468% 38.35% 64.41 104.47 4.4676 4.4676% 7.22 2.75 4.47

2 0.00 0.000 N/A 40.06 40.06 104.47 0.000% 38.35% 64.41 64.41 0.0000 0.0000% 7.22 2.75 4.47

3 0.00 0.000 N/A 40.06 40.06 104.47 0.000% 38.35% 64.41 64.41 0.0000 0.0000% 7.22 2.75 4.47

4 0.00 0.000 N/A 40.06 40.06 104.47 0.000% 38.35% 64.41 64.41 0.0000 0.0000% 7.22 2.75 4.47

5 0.00 0.000 N/A 40.06 40.06 104.47 0.000% 38.35% 64.41 64.41 0.0000 0.0000% 7.22 2.75 4.47

EXAMPLE 3A:  3 Year Debt

Tax Rate  25.0% Default Cost  25.0%

New Debt New Debt

Issued New Debt Spread Total Debt Total Debt % change in Leverage Equity Prior Equity Change to % change Tax Default Net Debt

Round (at Par) Coupon (bps) Principal Value Firm Value Firm Value (market) Value plus new debt Equity to equity Benefits Costs Benefits

1 40.06 2.178 44 40.06 40.06 104.47 4.468% 38.35% 64.41 104.47 4.4676 4.4676% 7.22 2.75 4.47

2 -1.17 -0.071 N/A 38.89 38.91 104.49 0.024% 37.24% 65.58 64.41 0.0024 0.0023% 7.08 2.59 4.49

3 0.17 0.010 103 39.05 39.07 104.49 -0.003% 37.39% 65.42 65.58 0.0000 0.0001% 7.10 2.61 4.49

4 -0.02 -0.001 N/A 39.03 39.05 104.49 0.000% 37.37% 65.44 65.42 0.0000 0.0000% 7.10 2.61 4.49

5 0.00 0.000 103 39.03 39.05 104.49 0.000% 37.37% 65.44 65.44 0.0000 0.0000% 7.10 2.61 4.49

EXAMPLE 3B:  3 Year Debt  (negative issues OK)
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sign but leverage converging to a slightly lower amount than in the initial round. This clearly is in 

contrast with ADHP’s result that, in their model, debt will never be reduced by equity holders.   

 

Before explaining the reasons for the different conclusions, we first note that the debt reduction 

postulated here—while symmetric with debt issuance—is difficult to square with the typical means used 

to retire debt. Here the firm reduces both debt principal and coupon, but not in the same proportion.  

The coupon in this example makes the market value of the debt reduction equal to the principal 

reduction.21 We now turn to a more traditional way of reducing leverage, using debt buybacks. 

 

6. Reducing Leverage Through Debt Buybacks 

 

Rather than assume that debt reduction can take place consistent with the modelling in Example 3B, we 

consider a more realistic debt reduction method. In this approach, the firm simply repurchases some of 

its currently outstanding debt, reducing both principal and coupon in the same proportion. The 

fractional debt rollover at rate m will continue for the debt that remains outstanding. The default 

boundary will decrease with this debt reduction, leading to an increase (per unit principal) in the market 

value of the remaining debt. The buyback price per unit principal of the debt must equal the higher 

market price of the post-buyback debt. This is consistent with ADHP’s repurchasing assumption.   

 

With such a proportional debt decrease, the value of tax benefits and default costs will be affected—not 

only because the total coupon and principal are reduced, but also because the endogenous default 

boundary changes. The value of the firm after debt repurchase (from equation (16)) will thus be altered, 

                                                             
21  One might imagine such a debt reduction as the firm purchasing fairly-priced debt (that would bear the coupon 
and principal of the proposed debt reduction). The resulting debt service (coupon and principal) would be the 
netting of the new debt principal and coupon from the original debt. But that purchased debt would then have to 
default under exactly the same circumstances as the firm, a rather bizarre proposition. 
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and surprisingly may actually increase. This is because while tax benefits will fall, default costs may fall 

even more. With short term debt, the potential increase in debt benefits may outweigh the increase in 

prior debt value. Later, we explain why the firm would not have decreased its initial round 1 debt if a 

lower debt amount would raise firm value. 

 

Example 4A finds an optimal proportional buyback of 3.39%, reducing the original principal of 40.06 to 

38.70—somewhat less than in Example 3B. This buyback maximizes the resulting value of equity after 

the cost of the buyback, at a price debtholders will demand when recognizing the higher value of debt 

per unit principal after the buyback. The coupon paid on this reduced amount of debt will fall by an 

equal percentage, from 2.18 to 2.10. The effects of the buyback are detailed in the Example 4A Buyback 

Summary below: 

 

3.39%

Round 1 Principal  Repurchased 1.357

Lowering Coupon by 0.074

Debt Principal 40.060 38.703

Debt Coupon 2.178 2.104

Default Boundary VB 32.602 31.497

Debt Value 40.060 38.748

V0 90.000 V1 90.000

Debt Value/Principal 1.000 1.0012

Cost of Buyback 1.359

Spread (bps) on Market value 43.59 Spread (bps) on Market value 39.02

Tax Benefits 7.216 Tax Benefits 7.088

Default Cost 2.749 Default Cost 2.568

Firm Value 104.468 Firm Value 104.520

Equity Value 64.408 Equity Value 65.772

Market leverage 38.3% 37.1%

Net Equity after Buyback Cost 64.413

Buyback Net Benefit to Equity 0.0053

Net Benefit (% of Round 1 Equity) 0.008%

q1 0.0284 q1 0.0254

q2 0.3372 q2 0.3262

ROUND 1 AFTER BUYBACK

Percent Buyback

EXAMPLE 4A:  BUYBACK SUMMARY      V = 100
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With the lower coupon and principal, the default boundary will fall from 32.60 to 31.50, also by 3.39%, 

using equation (10) (or (19)). The market value of the remaining debt will fall to 38.75, using equation 

(4) with the new 𝑃, 𝐶, and 𝑉𝐵, a fall of only 3.27%. Thus there is a rise in the market value of debt per 

unit principal P, from 1.0000 in Round 1 (reflecting debt selling at par) to 1.0012. This increase results 

from the decreased likelihood of default (lower) and is consistent with ADHP’s observation that debt can 

only be repurchased at a price reflecting its ex post value per unit principal—which will be higher since 

default is less likely. Reflecting this higher cost, we multiply the principal reduction of 1.357 by the cost 

per unit principal (1.0012) to determine the buyback cost of 1.359. 

 

After repurchase, the value of tax benefits will fall from 7.22 to 7.09, but default costs will fall by a larger 

amount, from 2.75 to 2.57.  Firm value actually increases by 0.0526—again raising the interesting 

question, addressed in Section 7, as to why this lower amount of debt wasn’t chosen in round 1.  

Obligations after the buyback include the remaining debt value plus the cost of the buyback, which  

exceed the former debt liability by 0.0473. The result is an increase in equity value of 0.0053, 

contradicting ADHP’a Proposition I. While the buyback benefits are quite small in this case (as were the 

further issuance benefits in Examples 2A and 2B), we can explore whether buybacks would be larger if 

the asset value of the firm had fallen between the initial round and the buyback.22   

Example 4B considers the optimal buyback when the initial debt is again determined when asset value 

V0 = 100 (and initial leverage is therefore the same as in Example 4A), but asset value V falls immediately 

to V1 = 90 after the initial issuance. This results in lower Round 1 debt value, firm value, and equity value 

as can be seen in the Round 1 column. We assume buyback then occurs at this lower asset value.   

                                                             
22 For simplicity, we assume that virtually no time passes between initial round and buyback, despite the drop in 
asset value. 
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The optimal debt buyback of 11.54% in Example 4B is considerably greater than in Example 4. The 

buyback increases firm value by 0.270, whereas the incremental cost of remaining debt plus buyback 

increases by 0.206, resulting in the buyback benefiting equity holders by 0.064. The buyback raises the 

increment to equity value by a factor of 12 relative to Example 4A. This again contradicts ADHP’s 

Proposition 1, which claims even when asset value falls and the firm becomes over-leveraged, it will 

never benefit equity to buy back debt. In fact, in Example 4B not only is leverage reduced, but reduced 

to 37.1%, a slight over-adjustment relative to the optimal leverage of 38.3%.23 That is, optimal buybacks 

not only may occur, but imply leverage reversion back towards (and perhaps slightly beyond) the 

                                                             
23 Note 38.3% is the optimal initial leverage in Example 4A, and optimal initial leverage (as a percent) is invariant to 
the initial value of the firm when there is no prior debt. If there were a subsequent Round 3, it can be shown 
equity value now requires a small issuance of debt (0.029) with resulting leverage 37.4% and eventually (after 
small oscillations) converges to 37.3%.   

11.54%

Round 1 Principal  Repurchased 4.624

Lowering Coupon by 0.251

Debt Principal 40.064 35.440

Debt Coupon 2.178 1.927

Default Boundary VB 32.605 28.842

Debt Value 39.883 35.461

V0 90.000 V1 90.000

Debt Value/Principal 0.995 1.0006

Cost of Buyback 4.627

Spread (bps) on Market value 43.61 Spread (bps) on Market value 41.25

Tax Benefits 6.822 Tax Benefits 6.438

Default Cost 3.045 Default Cost 2.391

Firm Value 93.777 Firm Value 94.046

Equity Value 53.894 Equity Value 58.585

Market leverage 42.5% 37.7%

Net Equity after Buyback Cost 53.958

Buyback Net Benefit to Equity 0.0640

Net Benefit (% of Round 1 Equity) 0.119%

q1 0.0397 q1 0.0269

q2 0.3736 q2 0.3317

ROUND 1 AFTER BUYBACK

Percent Buyback

EXAMPLE 4B:  BUYBACK SUMMARY      V = 90
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original target leverage. Future exploration of this “leverage reversion to initial target” property seems 

warranted, but we do not consider it here. 

 

7.  What’s going on?  

Our analysis raises several questions: 

1) Why do we get different answers than ADHP to the importance of the LRE, and to the existence 

of debt buybacks? 

2) Why are the differences between predictions more pronounced for short-run debt than for 

long-run debt?  

3) Why would a firm buy back debt (with no change in V) when first round debt is optimally 

chosen? 

1) We first note that the ADHP and Leland (1994a) models differ in several important ways. ADHP 

(through Section II) assumes a single period model with zero coupon debt with exogenously fixed 

maturity and no continuation.24 With zero coupon debt, there is no possibility of default prior to 

maturity. At maturity, default occurs if the (random) asset value at maturity is less than face value.  

In default, there is a cost that is quite generally specified. In contrast, default in our model is 

triggered only when the firm’s asset value falls to the endogenous default boundary 𝑉𝐵, at a random 

future time. Our default costs are assumed proportional to asset value  𝑉𝐵  at default.25 

                                                             
24 Recent work by DeMarzo and He (2016) considers a model with a constant coupon and redemption rate, 
without commitment to full rollover of debt levels (although there is commitment to coupon and debt redemption 
rates). There is always a loss to total firm value from leverage in their equilibrium model (DeMarzo and He 
(2016),p. 34). 
 
 

25 We have also considered default triggered by asset value falling to 𝑉𝑏 = 𝑘𝑃, a fraction 𝑘 ≤ 1 of the principal of 

currently outstanding debt.  The debt recovery rate in default would then be (1 - )k. Scaling k = 0.7, default costs 

 = 35%, and tax rate   = 20% yields initial leverage of 38.0% and a recovery rate of 45.5%, very close our Example 
4A. Allowing buybacks with this amended default trigger leads to an optimal buyback of 3.27%, slightly less than 
the buyback of 3.39% when the default trigger satisfies the smooth-pasting condition in equation (10). 
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Unlike in the ADHP approach, the default boundary in equation (10) depends not only on debt 

principal (face value), but also on the debt coupon—determined so debt sells at par—and on debt 

maturity. The default boundary in turn affects the value of both tax benefits and default costs in 

equation (6), and therefore the net benefits of debt. While in ADHP a decrease in debt (face value) 

always lowers net leverage benefits to equity, in our model the opposite can occur at short debt 

maturities. While tax savings will be reduced, default costs will fall more than proportionately, and 

equity will capture some of this gain as explained below.  

 

Key to ADHP’s conclusion that debt buyback will never benefit equity holders is the following 

contention: “All the benefits produced by the debt buyback, which in our model thus far come from 

reduced bankruptcy costs, accrue to existing debt holders.” (ADHP, p. 156). While true in their single 

period framework which terminates when debt matures, it is not true in the full debt rollover model 

in Leland (1994a).  From equation (4) we see that the present value of recovery of assets after 

default costs by current debtholders is given by (1 − 𝛼)𝑉𝐵𝑞1, where 𝑞1 is given by (4a) and 𝑥1 is 

given by (5). Recovery is reduced by the default cost fraction , implying current debtholders bear a 

default cost burden  𝛼𝑉𝐵𝑞1. 

 

But the present value of expected total default cost (including future rollovers) is 𝛼𝑉𝐵𝑞2 from 

equation (6), implying equity holders bear the remaining cost 𝛼𝑉𝐵(𝑞2 − 𝑞1).26 Debtholders bear full 

                                                             
26 Recall that current debtholders from equation (4) receive  𝑒−𝑚𝑠(1 − 𝛼)𝑉𝐵  of recoverable assets when default 
occurs at the random future time s, and thus bear a fraction 𝑒−𝑚𝑠 of total default costs 𝛼𝑉𝐵 . The remaining 
fraction (1 -  𝑒−𝑚𝑠) of default costs are borne by subsequent debtholders as debt is rolled over. This remaining cost 
fraction will be passed along to equity holders when the debt that is redeemed at par is replaced by debt sold at 
the current market price, a price that reflects the default costs which the new debtholders will bear. The higher the 
rollover rate m (and lower the average maturity 1/m), the larger fraction of costs borne by the new debtholders 
and passed to equity holders through fair debt pricing. Hence, equity bears a larger fraction of default costs, the 
shorter the average maturity of debt being issued.   
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default costs in the Leland (1994a) model only when  𝛼𝑉𝐵𝑞1 = 𝛼𝑉𝐵𝑞2. But from (4a) and (6a), 𝑞1 =

𝑞2 only when m = 0 — the case of infinite life debt studied in Leland (1994a). When m > 0  and debt 

has finite average maturity,  𝑞1 < 𝑞2 and equity will bear a fraction  (𝑞2 − 𝑞1)/𝑞2 of the default 

costs. Leverage decisions that reduce these costs will benefit equity as well as debt holders. 

2) The shorter the maturity debt, the greater is (𝑞2 − 𝑞1)/𝑞2, the fraction of default costs that equity 

will bear, as can be observed from equations 4(a) and 6(a). 27 The larger this fraction, the more 

equity will benefit from a decline in debt and the resulting lower default costs. This explains why our 

results with short maturity debt differ from long maturity debt, and is a major difference between 

our approach and ADHP in which the role of maturity is not explicit.   

3) The coupon and principal of debt after the buyback in Example 4 do indeed yield a higher firm value, 

as can be seen in the output below.  

 

                                                             
27 Using the parameters and 𝑉𝐵 in Example 4, with 3 year debt (m=1/3), the percentage of default costs borne by 
equity is (𝑞2 − 𝑞1)/𝑞2 = 92%. With infinite life debt, this falls to zero for any set of parameters. 
 

Maturity T in yrs. (=1/m) round 1 3.00

Asset Volatility   σ 0.25

Riskless rate  rf 0.050

Payout ratio del () 0.040

Default cost fraction  α 0.25

Effective corp. tax rate  τ 0.250

Initial asset value V0 100

m = 1/T 0.333

asset value drift µ = rf - del 0.010

    DERIVED INPUTS

rf+m (defined as _z1) 0.38

rf (defined as _z3) 0.05

x1 (defined here as _yy1) 3.18

x2 (defined here as _yy3) 0.97

Principal P 38.703

Coupon 2.104

Calculations

Optimal default boundary VB 31.4972

Firm Value 104.5201

Equity 65.7192

Debt market value D 38.748
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So why isn’t this value-increasing debt structure chosen by equity in round 1? Importantly here, the 

bond is not selling at par, a constraint in our first-round maximization:  note the market value D of 

debt exceeds the principal value P.   

 

By assumption, the rate of debt rollover is mP.   When P  <  D,  the average rollover rate on debt 

with initial market value D is m(P/D) < m,  implying a greater average maturity by a factor of D/P > 1 

than when the bond sells at par.  As the default boundary falls with longer average maturity, it is not 

surprising that firm value is higher.28 The problem is resolved when debt is required to sell at par, 

and this constraint leads to the initial optimal leverage of 38.3% in Example 4A. In the debt buyback, 

however, both coupon and principal of the previously-issued debt are reduced in the same 

percentage, leading to prior debt value exceeding principal or par value. Observe that the opposite 

happens in the case when it is optimal to issue additional debt (e.g. Example 1), and the market 

value of previously-issued debt falls below par. 

 

8.  Some Comparative Statics 

 

At what maturity would equity holders choose neither to increase nor to buy back debt? For debt with 

maturity less than this “neutral maturity,” subsequent debt rounds will reduce leverage from its initial 

(Round 1) level. For maturities larger than the neutral maturity, leverage will be increased, consistent 

with the LRE. The higher in the sense that the LRE will be observed at all maturities greater than the 

neutral maturity, one can argue that parameter combinations with lower neutral maturities are more 

susceptible to leverage ratcheting. Although we do not consider optimal maturity here, concern with the 

                                                             
28 Maximizing firm value without the “sell at par” constraint gives the nonsense result that optimal debt principal 
should be zero and the coupon 51.7. Such an issuance is unlikely to find favor with firms, the IRS, and the 
accounting profession. 
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agency costs resulting from the LRE would induce firms with a lower neutral maturities to choose lower 

initial maturity, ceteris paribus.29   

 

For our base case parameters in Example 4, maturity of 3.6 years exactly produces this balance, with 

leverage 42.3% in all rounds. The initial parameters affect the neutral maturity. Table 2 calculates the 

neutral maturities and resulting stationary leverage levels for a range of default costs and tax rates. 

 

Table 2:  Neutral debt maturities (yrs.) / stationary leverage (%). 

  Default costs 

  15% 20% 25% 30% 

 15% 2.1 / 33.7 2.3 / 27.7 2.5 / 23.4 2.5 / 19.6 

Tax rate 20% 2.6 / 45.8 2.9 / 37.8 3.1 / 32.0 3.2 / 27.3 

 25% 2.7 / 61.8 3.2 / 49.4 3.6 / 42.3 3.7 / 35.8 

 

Several properties of the risk neutral debt maturity and resulting stationary optimal leverage can be 

observed. For any given default cost, the neutral debt maturity and the stationary optimal leverage 

increase with the tax rate. For any given tax rate, the neutral maturity increases and the stationary 

leverage falls as default costs rise. This supports the conclusion in Section 7 that default costs are an 

important determinant of the LRE: higher default costs lead to higher neutral maturities, and therefore 

the LRE is less significant.    

 

There is a relatively wide range of maturities about the neutral maturity for which Round 2 changes are 

small. In the case where both the tax rate and default costs are 25%, with neutral maturity of 3.6 years, 

                                                             
29 Of course, this agency cost (and perhaps others) would need to be balanced with the net tax benefits of 
alternative maturity choices. As is well known, the Leland (1994a) model implies maximum leverage benefits when 
maturity is infinite—exactly the case when agency costs of the LRE are likely to be highest. 
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optimal Round 2 issuance will be less than 5% of initial debt for maturities up to 4.1 years, and 

repurchases will be less than 4% for any debt maturity less than 3.6 years. 

 

With tax and default costs as above, but with asset volatility reduced from 0.25 to 0.20, the neutral 

maturity rises to 4.0 years, with constant leverage 45.8%. The higher (than 3.6) neutral maturity 

therefore implies the LRE is less pronounced for firms with lower asset volatility, ceteris paribus.30 

 

In the Appendix, we consider the impact of rollover, issuance, and buyback transactions costs. The 

former marginally reduce the LRE (subsequent debt issuance is smaller/buybacks larger when rollover 

costs rise). But surprisingly, larger issuance costs seem to marginally increase the LRE and reduce the 

magnitude of buybacks. Unsurprisingly, buyback transactions costs reduce their size and may eliminate 

them entirely. 

Clearly, we have only dipped into a full examination of parametric changes on subsequent debt issuance 

or buybacks. We leave this exploration for future work. 

 

9. Conclusion 

Using the model of debt with full rollover as in Leland (1994a), , we reach conclusions that differ from 

ADHP (2018)’s key Propositions 1 (“Shareholder Resistance to Leverage Reduction”) and 4 (“The 

Leverage Ratchet Effect”) as debt maturity shortens. For reasonable parameter calibrations and average 

debt maturities 5 years or less, we find little or no benefit for equity to ratchet up leverage to higher 

amounts. A firm sequentially maximizing equity value may even prefer to reduce leverage after initial 

                                                             
30 By reducing the tax rate to= 0.23, the “no change” maturity is 3.75 years, with constant leverage 42.4% (close 
to the original), further support for the conclusion that the LRE is less pronounced when volatility is lower.  
“Ceteris paribus” is clearly a delicate issue in performing our comparative static exercises. 
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issuance, when using short term debt. With longer term debt, the LRE does persist, but even after many 

rounds of sequential debt issuance the firm leverage does not converge to where all tax advantages to 

debt are exhausted.   

 

The reasons for the models’ divergent predictions are explained in Section 7, and are based on the 

differences in the models’ assumptions. A key difference is how default costs are shared between debt 

and equity. In the ADHP model, current debtholders realize all the benefits from reducing leverage and 

expected default costs. Equity holders resist buybacks in ADHP because debtholders fully realize these 

benefits. In the Leland (1994a) model, current debtholders realize all the benefits of lower default costs 

only when debt has infinite maturity—the case in Leland (1994b). As average debt maturity is shortened 

by a higher debt rollover rate m, current debtholders will bear a rapidly declining share of expected 

future default costs, with the remaining cost borne by future debtholders. But equity bears the cost of 

funding future debt through rollovers. Thus, as average debt maturity becomes shorter, equity bears an 

increasing share of future default costs. When maturity becomes short, equity can actually benefit from 

future buybacks which lower default costs.  

 

 

 

Our model assumes that the debt retirement rate m (with resulting average maturity 1/m) is exogenous 

and remains constant through all financing rounds.31 In the Leland (1994a) model without agency costs, 

optimal maturity is infinite. Finite maturity has been shown in Myers (1977), Leland and Toft (1996), 

Diamond and He (2014) and elsewhere to mitigate agency costs between debt and equity holders. This 

paper suggests that finite maturity may also serve to reduce the agency costs associated with the LRE. 

Extending the Leland (1994a) model to include illiquidity costs that increase with maturity, which will 

                                                             
31 In the model introduced in ADHP (2018), Section III, debt also is issued with infinite maturity but the firm is 

liquidated at a random future date governed by an exogenous intensity parameter . Thus their model also implies 

an exogenous average maturity (=1/) that remains constant through financing rounds. 
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lead to endogenously-chosen finite maturity, is clearly necessary.32 Integrating optimal maturity choice 

into the model should provide a more complete understanding of the relation between maturity and the 

leverage ratcheting effect.  

 

While we have focused on examples of sequential debt issuance with no foresight, the model with 

foresight is likely to provide even fewer incentives to debt issuance beyond the initial (static) leverage 

choice: debtholders will demand higher interest rates when they foresee an increased likelihood of 

default from greater future debt.  

 

APPENDIX:  Transactions Costs 

We define 3 potential transactions costs :  

kR    rollover cost rate (applied to rollovers, continuous at rate mP)   
  
  kI     issuance cost rate (applied to debt principal issuance at each round, if any)  
  
  kB    buyback transactions cost rate  (applied to debt buybacks per unit principal, if any) 
  
We also define 
 

  𝐾𝑧
∗ = total issuance/buyback costs = ∑ (𝑘𝐼𝑠

𝑧
𝑠=1 + 𝑘𝐵𝑠), where 

 
  𝑘𝐼𝑠 = 𝑃𝑠𝑘𝑖  if  𝑃𝑠 > 0;  𝑘𝐵𝑠 = −𝑃𝑠𝑘𝐵  if  𝑃𝑠 <  0. 
   
The following formulas augment equations (16) and (19) for firm value and for the default boundary: 
 

𝑣𝑧(𝑉, 𝑉𝐵𝑧, 𝑃𝑧
∗, 𝐶𝐼𝑧

∗ , 𝑚, 𝑞𝑅 , 𝐾𝐼𝑧
∗ ) = 𝑉 +

(𝜏𝐶𝑧
∗−𝑚𝑃𝑧

∗𝑞𝑅)

𝑟
(1 − 𝑞2𝑧) − 𝛼𝑉𝐵𝑧𝑞2𝑧  − 𝐾𝐼𝑧

∗  (A.1) 

𝑉𝐵𝑧 =
(𝐶𝑧

∗ +𝑚𝑃𝑧
∗ )𝑥1

𝑟+𝑚
− 

(𝜏𝐶𝑧
∗ −𝑚𝑃𝑧

∗ 𝑞𝑅)𝑥2
𝑟

1+𝛼𝑥2+(1−𝛼)𝑥1
     (A.2) 

                                                             
32 Recent studies of debt liquidity and optimal maturity include He and Xiong (2012), Chen, Xu, and Yang (2013), He 
and Milbradt (2014), Bruche and Segura (2017), and Chen, Cui, He, and Milbradt (2018)). Empirical studies by 
Longstaff, Mithal, and Neis (2005) and others have shown that liquidity spreads increase with debt maturity. 
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Examples 

Below, we consider examples of how varying combinations of transactions costs affect the firm’s 

dynamic debt strategy. Parameters remain the same as in Examples 3 and 4 in the paper: riskless rate 

5%, payout rate 4%, effective corporate tax rate 25%, default costs 25%, and debt maturity of 3 years.  

Example 4C considers when rollover costs kR (only) are positive at 0.50% of principal value.  We note 

that, in comparison with Example 4A, initial leverage is lower at 35.0% and the optimal buyback 

percentage is slightly higher at 3.58% in Round 2. When rollover costs rise to 1.00%, initial leverage falls 

to 31.1%, but buyback remains almost unchanged (percentagewise) at 3.51%. More generally, an 

increase in rollover costs lowers initial leverage and marginally reduces subsequent issuance/increases 

buyback. 33  

Example 4D considers when issuance costs kI (only) are positive at 0.50% of the principal. Again, leverage 

is slightly decreased from Example 4A. There is a small buyback in Round 2. When issuance costs rise to 

1.00%, however, initial issuance in Round 1 drops to 36.3%. Because of lower initial leverage, no 

buybacks are optimal in Round 2.  

Example 4E examines when both rollover and issuance costs are 0.50% each. Initial leverage is further 

reduced, and the optimal buyback of 0.98% is minimal.   

When issuance costs now rise to 1%, no buyback in Round 2 is optimal, confirming the conclusion that 

issuance costs deter buybacks, and reduce subsequent debt issues when otherwise those would occur.   

Finally, we see in Example 4F that even small buyback costs will importantly reduce the magnitude of 

debt buybacks. With no transactions costs, the optimal buyback is 3.39% in all the examples below. 

When there are proportional buyback transactions costs of only 0.25%, the benefit to equity of buybacks 

is reduced by 65%. And buybacks cease entirely in this example when buyback costs reach 0.40%. 

 

 

 

                                                             
33 We note that higher rollover costs will likely lead to shorter maturity. We do not consider such feedback effects 
here. With the example 2B parameters and T = 5 years, 2nd round issuance falls from 1.85 to 1.26 when qR = 0.50%. 
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qR  = 0.50% qI  = 0.00% qB  = 0.00%

3.58%

Round 1 Principal  Repurchased 1.296

Lowering Coupon by 0.069

Debt Principal 36.209 34.913

Debt Coupon 1.926 1.857

Default Boundary VB 29.750 28.685

Debt Value 36.209 34.945

V0 100.000 V1 100.000

Debt Value/Principal 1.000 1.0009

Buyback cost w/o transactions costs 1.297

Buyback cost w/transactions costs 1.297

Spread 31.86 Spread (bps) on Market value 28.35

Tax Benefits 6.658 Tax Benefits 6.519

Default Cost 2.295 Default Cost 2.136

Rolling Cost 0.835 Rolling Cost 0.817

Issuance Cost Issuance Cost

Firm Value 103.528 Firm Value 103.566

Equity Value 67.319 Equity Value 68.621

Market leverage 35.0% 33.7%

Net Equity after Buyback Cost 67.324

Buyback Net Benefit to Equity 0.0047

Net Benefit (% of Round 1 Equity) 0.007%

ROUND 1 AFTER BUYBACK

Percent Buyback

EXAMPLE 4C:  BUYBACK with transactions costs 

qR  = 0.00% qI  = 0.50% qB  = 0.00%

1.17%

Round 1 Principal  Repurchased 0.456

Lowering Coupon by 0.025

Debt Principal 38.877 38.421

Debt Coupon 2.097 2.073

Default Boundary VB 31.624 31.253

Debt Value 38.877 38.436

V0 100.000 V1 100.000

Debt Value/Principal 1.000 1.0004

Buyback cost w/o transactions costs 0.456

Buyback cost w/transactions costs 0.456

Spread 39.49 Spread (bps) on Market value 38.02

Tax Benefits 7.053 Tax Benefits 7.009

Default Cost 2.589 Default Cost 2.529

Rolling Cost 0.000 Rolling Cost 0.000

Issuance Cost 0.194 Prior Issuance Cost 0.194

Firm Value 104.270 Firm Value 104.286

Equity Value 65.394 Equity Value 65.850

Market leverage 37.3% 36.9%

Net Equity after Buyback Cost 65.394

Buyback Net Benefit to Equity 0.0006

Net Benefit (% of Round 1 Equity) 0.001%

ROUND 1 AFTER BUYBACK

Percent Buyback

EXAMPLE 4D:  BUYBACK with transactions costs  T = 3 years

qR  = 0.50% qI  = 0.50% qB  = 0.00%

0.98%

Round 1 Principal  Repurchased 0.341

Lowering Coupon by 0.018

Debt Principal 35.002 34.660

Debt Coupon 1.850 1.832

Default Boundary VB 28.747 28.467

Debt Value 35.002 34.668

V0 100.000 V1 100.000

Debt Value/Principal 1.000 1.0002

Buyback cost w/o transactions costs 0.341

Buyback cost w/transactions costs 0.341

Spread 28.52 Spread (bps) on Market value 27.64

Tax Benefits 6.489 Tax Benefits 6.451

Default Cost 2.145 Default Cost 2.104

Rolling Cost 0.818 Rolling Cost 0.814

Issuance Cost 0.175 Prior Issuance Cost 0.175

Firm Value 103.350 Firm Value 103.358

Equity Value 68.348 Equity Value 68.690

Market leverage 33.9% 33.5%

Net Equity after Buyback Cost 68.349

Buyback Net Benefit to Equity 0.0003

Net Benefit (% of Round 1 Equity) 0.000%

ROUND 1 AFTER BUYBACK

Percent Buyback

EXAMPLE 4E:  BUYBACK with transactions costs  T = 3 years

qR  = 0.00% qI  = 0.00% qB  = 0.25%

1.21%

Round 1 Principal  Repurchased 0.485

Lowering Coupon by 0.026

Debt Principal 40.060 39.575

Debt Coupon 2.178 2.151

Default Boundary VB 32.602 32.207

Debt Value 40.060 39.592

V0 100.000 V1 100.000

Debt Value/Principal 1.000 1.0004

Buyback cost w/o transactions costs 0.485

Buyback cost w/transactions costs 0.487

Spread 43.59 Spread (bps) on Market value 41.92

Tax Benefits 7.216 Tax Benefits 7.171

Default Cost 2.749 Default Cost 2.683

Rolling Cost 0.000 Rolling Cost 0.000

Issuance Cost 0.000 Prior Issuance Cost 0.000

Firm Value 104.468 Firm Value 104.488

Equity Value 64.408 Equity Value 64.896

Market leverage 38.3% 37.9%

Net Equity after Buyback Cost 64.411

Buyback Net Benefit to Equity 0.0031

Net Benefit (% of Round 1 Equity) 0.005%

ROUND 1 AFTER BUYBACK

Percent Buyback

EXAMPLE 4F:  BUYBACK with transactions costs  T = 3 years
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