
UCLA
Papers

Title
Distributed Techniques for Area Computation in Sensor Networks

Permalink
https://escholarship.org/uc/item/35f5c8sh

Authors
Greenstein, Ben
Kohler, Eddie
Culler, D E
et al.

Publication Date
2004-05-05
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35f5c8sh
https://escholarship.org/uc/item/35f5c8sh#author
https://escholarship.org
http://www.cdlib.org/


Distributed Techniques for Area Computation in Sensor Networks

Ben Greenstein
†

Eddie Kohler
†

David Culler
‡

Deborah Estrin
†

†UCLA, Department of Computer Science

‡UCB, Department of Computer Science
†
{ben,kohler,destrin}@cs.ucla.edu,

‡
culler@cs.berkeley.edu

Abstract

We study four distributed techniques for comput-

ing the area of a region in a sensor network. Area

calculation is a fundamental sensor network prim-

itive, and distributed, in-network approaches prove

more scalable than centralized collection in terms of en-

ergy consumption. The four techniques—Delaunay

triangulations, Voronoi diagrams, and two new, sim-

pler algorithms, inverse neighborhood and inverse

neighborhood with location—vary in computational com-

plexity, communication cost, and information required

from the sensor network. We conclude that when sen-

sors know their physical locations, our simple and

efficient inverse-neighborhood approach performs com-

parably to more systematic, but more expensive, com-

putational geometry algorithms. We also analyze the

effects of radio range and deployment density on accu-

racy, and show that topologies derived from real testbeds

behave quite differently from commonly seen ran-

dom topologies with unit disk connectivity.

1. Introduction

Several extant sensor networks, including deploy-
ments at Great Duck Island [14] and James Reserve
and the TinyDB [11] and Tiny Diffusion projects, col-
lect sensor data and return it to an external gateway
to be analyzed offline. In the logical next step, sen-
sor networks will detect and evaluate distributed phe-
nomena and react to properties of those phenomena
in situ, without ever involving a gateway to an ex-
ternal network or a human user. In-network evalua-
tion can clearly detect phenomena faster. More impor-
tantly, in-network evaluation can require less commu-
nication than external evaluation. Communication in
sensor networks is a primary energy cost, and energy

can limit how long a network survives. In an offline-
evaluation system, all data must be sent to the col-
lection point for later processing. The costs of com-
municating high-resolution data through the network
would quickly deplete any battery-powered device. An
in-network-evaluation system, in contrast, can decide
when data is interesting and deliver only that data to
the external gateway. In-network evaluation also allows
different kinds of deployments, and can support in-
network actuation, where the sensor network detects
a phenomenon (such as a fire) and then acts accord-
ingly (such as by turning on a fire extinguisher).

But deciding when data is interesting is harder
than it might seem. How can a set of loosely coupled,
energy-poor sensors decide what shape some sensed
phenomenon covers? Or how large that phenomenon is?
Or how acute it is, or how long it lasts? For instance, a
fire might become “interesting” only if it covers a large
area, in a roughly linear “fire-front” shape, and its av-
erage temperature is above 800◦. Each of these ques-
tions requires that sensors cooperate on some algorithm
and that cooperation should not take more communi-
cation than sending all data off the network.

This paper evaluates four techniques for the in situ
determination of a homogenous region’s area. Our tech-
niques complement other current techniques for in-
network evaluation, such as distributed edge detec-
tion [3, 16], hierarchical multiresolution storage [6], dis-
tributed databases [10, 7], and data modeling.

The first two techniques are derived from traditional
computational geometry methods, namely Delaunay
triangulation and Voronoi polygonization. They parti-
tion the sensed environment into disjoint sectors, each
of which is “owned” by one or more nodes; the sensed
region’s area equals the sum of the areas of the sec-
tors whose owners are in the region. The techniques can
provide very low error bounds, at the expense of signif-
icantly more computation and communication; for in-
stance, the best results are obtained when all nodes in



the network agree on the division into parts, and this
agreement may require global communication.

The second two techniques use a much simpler idea,
new to this work. Inverse neighborhood techniques keep
track of the number of neighbors accessible within one
hop from each sensor in the network. Each sensor then
“owns” an area inversely proportional to its neighbor
count, since assuming identical radios, more neighbors
indicates a denser deployment. Inverse neighborhood
techniques are susceptible to error when location in-
formation is not known and when density is not con-
stant over the network. However, in realistic simulation
scenarios, they perform surprisingly well, while requir-
ing significantly less communication and computation
than the computational geometry approaches. In fact,
in one realistic simulation scenario, inverse neighbor-
hood with location performs better than any other al-
gorithm. When the average connectivity degree is at
and above 20, the inverse neighborhood technique per-
forms with an error of two percent. Voronoi polygo-
nization yields an error between 12 and 21 percent for
the same connectivity degrees.

The contributions of this work are the inverse neigh-
borhood algorithms, cheap techniques for area mea-
surement accurate enough for many purposes; a com-
parison of these algorithms with more precise compu-
tational geometry techniques; detailed descriptions of
the tradeoffs between these algorithms; and evaluation
of all the techniques in the context of real connectiv-
ity and topology data derived from a deployed network.

The paper is organized as follows: Section 2 discusses
other work in this area. Section 3 describes the compo-
nents of area evaluation and Section 4 covers various
distributed algorithms for computing area. In Section
5 we analyze the tradeoffs of using the various tech-
niques. We conclude in Section 6 and discuss future
work in Section 7.

2. Related Work

There have been a number of developments by the
sensor network community related to the efficient de-
tection and evaluation of distributed phenomena.

Applications including boundary estimation and
edge detection have also been developed and an-
alyzed. The problem of boundary estimation of
homogenous regions is considered in [13]. They ex-
plore the tradeoff between MSE and energy con-
sumption as functions of node density and develop
a boundary estimation algorithm based on multi-
scale partitioning methods. Chintalapudi et al. [3]
investigate techniques for distributed edge detec-
tion in sensor networks. They describe and compare

a statistical approach, an image processing ap-
proach and a classifier-based approach and show that
the last of these performs the best.

Delaunay triangulation and Voronoi polygonization
are common computational geometry algorithms and
researchers have recently found use for them in sensor-
nets. Meguerdichian et al. [12] investigate minimum ex-
posure paths in sensor networks. As part of their work
they argue that the best a target can do to avoid be-
ing sensed is to walk along the edges of a Voronoi di-
agram. Ganeriwal et al. [5] partition a sensor netork
into a Voronoi diagram and weigh nodes’ sensor values
by the size of their respective enclosing Voronoi poly-
gons to effectively compute the average sensor value
taken over all space as opposed to over all nodes.

Finally, efforts are underway to make operations
over spatial data first order elements of high-level sen-
sornet languages. Welsh, for example, develops the no-
tion of abstract regions, a family of spatial operators
that capture local communication within regions of the
network. One such region is an approximate planar
mesh based on a pruned Yao graph [17].

3. System Design

Communication is often the primary consumer of en-
ergy in sensor network deployments [15]. Thus, every
effort should be taken to locally compute as much of
a partial result as possible before sending information
along to a collection sink. In the context of homogenous
region area calculation, a straightforward approach to
minimizing communication is to have each node in a re-
gion estimate its contribution to the total area and to
add these estimates together en route to a sink. This re-
quires (1) testing region membership; (2) setting up an
maintaining a routing tree; (3) locally generating par-
tial estimates of the area; and (4) adding these esti-
mates together. We briefly describe each of these.

For the purpose of this work, a sensor is said to be-
long to a homogenous region iff it reads a value above
a user-defined threshold. Two sensors, s0 and sk, are
said to be in the same homogenous region iff there
exists a communication path {s0, ..., sk} such that all
si,0≤i≤k are above this threshold. Thus inclusion in a
region can be determined by a local test of sensor value
and a one-hop connectedness evaluation.

Once a node determines that it is in a region, a rout-
ing tree must be formed over the region to aggregate
partial estimates. Nodes form a spanning tree and elect
an arbitrary node in that tree to serve as root. Then,
using one of the techniques described in the paper, each
node estimates a local contribution to that area. These
estimates are transmitted to the root of the tree. To



minimize communication, instead of forwarding each
estimate individually, each node forwards the sum of
its estimate and its children’s estimates. Finally, the
root receives these aggregate estimates and adds them
together; the result is the area of the region.

In this paper, we consider several techniques for dis-
tributed calculation of area. Regardless of technique,
however, the other steps in processing (i.e., member-
ship, routing, and aggregation) remain the same.

4. Techniques

The distributed computation of the area of a re-
gion amounts to estimating how much each node con-
tributes to this area and summing these contributions
over all nodes in the region.

In this section we discuss four methods for estimat-
ing a node’s local contribution to a region’s area. The
first two rely on well-known algorithms from compu-
tational geometry: the Delaunay triangulation and its
dual, the Voronoi diagram. The last two rely on neigh-
borhood information to estimate local node density.

We discuss the potential communication and com-
putation costs for each technique.

4.1. Delaunay Triangulation

Both computational geometry techniques partition
the space covered by the sensor network into disjoint
sectors. Then the area of a sensed region equals the
sum of the areas of the sectors determined to be in
the region. In a triangulation of the space, each sec-
tion is a triangle whose vertices are sensors. A trian-
gle is considered to be in the region if and only if all
its sensor-vertices are in the region. This method will
underestimate most regions’ areas, since it essentially
computes the area of a polygon inscribed inside the re-
gion. For the best results, we clearly prefer compact tri-
angulations, where the three vertices of each triangle
tend to be located close to one another; if the three ver-
tices are unnecessarily far apart, the triangle will tend
to be left out of most regions.

The well-known Delaunay triangulation is both the
most compact triangulation and by far the most com-
mon in the computational geometry literature. Let A,
B, and C be vertices in a graph. Then triangle 4ABC

is in the graph’s Delaunay triangulation if no other ver-
tex exists inside the circle passing through A, B, and
C. At the very least, Delaunay triangulations require
that each sensor know its location and has the facility
to beacon that location. Calculating a Delaunay trian-
gulation and its dual, the Voronoi diagram, using the
Guibas–Stolfi divide-and-conquer algorithm [8] or For-

tune’s plane-sweep algorithm [4] have a reasonable time
complexity of O(n log n).

Unfortunately, a correct triangulation might require
the locations of every sensor, since adding one sen-
sor could change every existing triangle. In practice,
such degeneracy will not commonly arise, but informa-
tion about nodes more than one hop away may be re-
quired to get a good result. To demonstrate this, Fig-
ure 1 characterizes the accuracy of a triangulation us-
ing at most k hops of neighbor information. We sim-
ulate a randomly deployed network of 100 nodes in a
square field; the nodes have isotropic disk communi-
cation, meaning each node can communicate with all
nodes within a radius r of its location, and with no
nodes outside that radius. Each node calculates an in-
dependent triangulation, using only the locations of
nodes within a k-hop neighborhood; k is plotted on
the x axis. The plot shows how the total area of the
triangulation, obtained by summing all triangles’ ar-
eas, changes as we increase k. Each node i performs
a triangulation in its k-hop neighborhood, then adds
the areas of all triangles whose lowest-ID vertex is i to
the total. The result, the area of the full triangulation,
should be about 90% of the area of the square field.
The communication radius r is set to achieve two dif-
ferent average node degrees, or equivalently, one-hop-
neighborhood sizes. The higher degree plot reaches a
point of diminishing returns at around 3 hops. The
lower degree plot, however, improves its estimate with
each successive hop of location knowledge, out to nine
hops. We conclude, therefore, that it is only feasible to
use Delaunay-based techniques when graphs are dense.

In the rest of this paper, we will consider Delau-
nay triangulations that use location information from
the whole network. This provides the best case for De-
launay triangulation’s performance, since a real Delau-
nay deployment would probably use less information.

4.2. Voronoi Diagram

Voronoi diagrams, like Delaunay triangulations, par-
tition the sensed space into disjoint sectors. Voronoi di-
agrams, however, consist of one polygonal sector per
sensor; every point in a sector is closer to its sensor
than to any other sensor. The application to estimat-
ing a sensed region’s area is obvious: Add a polygon’s
area to the sum if and only if its sensor detects the phe-
nomenon under study.

Area calculation using Voronoi diagrams offers sev-
eral advantages over Delaunay triangulation. First, the
result is likely to be more accurate; a Voronoi cover-
ing, unlike Delaunay triangulation, has no tendency
towards underestimation. Second, assuming the dia-
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Figure 1. Effects of incomplete location informa-
tion on Delaunay area estimates. 100 randomly
distributed nodes with isotropic disk communi-
cation. Average of 5 trials.

gram is precomputed, each sensor in the region in-
stantly knows how much area to contribute to the to-
tal. Contrast this to the Delaunay technique, where a
triangle’s area is included only if all three of its ver-
tices are in the region.

The drawback relative to Delaunay triangulation is
that where computing area from a triangulation only
requires communication between nodes in the region,
the polygonization technique requires communication
with sensors at least k hops out of the region, to calcu-
late the correct polygon sizes for sensors on the region’s
border. As discussed earlier, small k may lead to trian-
gulation errors, and therefore Voronoi diagram errors.
To demonstrate this disadvantage, Figure 2 shows, for
a range of region sizes, the ratio of the number of sen-
sors in an extended region (the region plus 1–3 hops)
to the number of sensors in the original region.

4.3. Inverse Neighborhood

Put off by the high costs of these computational
geometry techniques, we investigated a much simpler
technique that trades less accuracy for less computa-
tion. This area estimator relies on a derivation of lo-
cal density. Assume that a node can guess its cover-
age area (the area over which it can hear all nodes that
are transmitting), and that it keeps track of its 1-hop
neighbors (the nodes in that coverage area). It can then
estimate the area for which it is responsible by divid-
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Figure 2. The ratio of sensor count in a region ex-
tended by 1, 2, or 3 hops to sensor count in the
original region. 500 node random topology in a
1000 × 1000 network; isotropic disk communi-
cation with radius 50.

ing the coverage area by its neighbor count plus one.
We call this technique inverse neighborhood.

Clearly, inverse neighborhood has significantly less
communication and computation overhead than the
computational geometry techniques. The sensors must
simply keep track of their one-hop neighbors, either
through periodic beaconing or through beaconing trig-
gered by a sensed event. The problem is that if the
guess of coverage area is bad, the area estimate is bad.
Even with a bad estimate of coverage area, however,
the technique can still be useful for comparing the rel-
ative sizes of two or more regions.

How can we estimate the right coverage area? In
the simpler technique, we simply pick a number. Per-
haps the radios are configured pre-deployment to trans-
mit robustly within a user-specified range; the area of
that range is used for the coverage area. Of all our tech-
niques, only this simple inverse neighborhood measure-
ment does not require that nodes know their locations.

In addition to simple inverse neighborhood, we con-
sider a variant called inverse neighborhood with location,
where the nodes know their own locations and the lo-
cations of their one-hop neighbors. Then each node can
make an estimate of its deployed coverage area. For in-
stance, supposing isotropic disk communication, the ra-
dius of the coverage disk can be approximated with the
distance to the farthest neighbor. Figure 3 shows how
this technique can incorrectly calculate the area due
to a given sensor. However, while individual nodes can
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have serious error, the sum of all nodes will tend to-
wards less error; nodes in sparse portions of the graph
will underestimate their area, but nodes in dense por-
tions of the graph will overestimate their area.

Disk connectivity is not a good assumption, how-
ever. Real world propagation over wireless channels is
unpredictable and usually only very loosely follows the
Raleign and/or Rician models. The conditions of the
deployment environment can make the coverage area
bigger or smaller; change its shape; change its signal-
to-noise ratio nonmonotonically with distance; intro-
duce connectivity holes; and so forth. We have found
in practice that coverage area is usually less than that
of a disk with radius equal to the distance to the far-
thest neighbor.

5. Results

We investigate the performance of the inverse neigh-
borhood and computational geometry techniques un-
der various node densities, homogenous region sizes,
and communication areas. We present two sets of sim-
ulations; the first uses an isotropic disk model of com-

munication while the second uses real-world connectiv-
ity data taken from a 55-node testbed.

We expected the computational geometry tech-
niques to handily beat our primitive inverse neigh-
borhood algorithms. Instead, to our surprise, inverse
neighborhood handily beat the computational ge-
ometry algorithms on the simulated topology. This
result should be interpreted not as a commenda-
tion of inverse neighborhood, but as an indictment of
the simplistic random topology/isotropic disk connec-
tivity model, which, though commonly used, is quite
far from reality. In simulations using real-world con-
nectivity, the computational geometry mechanisms
perform far better, but located inverse neighbor-
hood continues to do almost as well. We conclude that
a variant of located inverse neighborhood may be suf-
ficient for real sensor-network area measurements.

5.1. Methodology

In the first set of experiments, node locations were
chosen uniformly and at random over a 1000 × 1000
network. Five topologies were generated. Since com-
munication follows a disk model, a particular average
node degree (or, equivalently, one-hop neighborhood
size) could be set by adjustment of the disk radius.
The disk radii corresponding to average degrees of 5,
10, 15, 20, and 25 were generated for 100 node topolo-
gies and average degrees of 25, 50, 75, 100, and 125
were generated for 500 node topologies. In our simula-
tions, we compute the area of circular regions. Regions
were given radii of 50, 100, 150, 200, 250, 300, 350,
and 400, and were located randomly in the network.
Regions overlapping network boundaries were disqual-
ified from consideration.

The inverse neighborhood procedure requires an es-
timate of the communication area and a count of neigh-
bors. For the unit disk simulations without location in-
formation, the communication area is set to the area of
the communication disk. For the simulations without
location information that are based on experimentally
derived connectivity data, the communication area is
set to the area of a circle with a radius equal to the av-
erage distance from a node to its farthest neighbor.

When location information is available, in the disk
connectivity case, the communication area is set to the
area of a circle with a radius equal to the distance from
a node to its farthest neighbor. In the case using real-
world data, the communication area is set to the area of
a circle with a radius equal to the distance of the neigh-
bor that is at the 75th percentile of distances from a
node. The 75th percentile was found experimentally
to be a reasonable point in the distribution to charac-



terize the effective communication area of a real-world
MICA transmitting indoors.

Future work might apply similar empirically-
derived constant factors to the results of the com-
putational geometry techniques. This might improve
their already-good accuracy. Our goal here is dif-
ferent: we are looking for simple ways to get better
accuracy from computationally-inexpensive mecha-
nisms for area computation. Inverse neighborhood
won’t usually outperform the computational geome-
try techniques in terms of accuracy, but it will per-
form reasonably well while remaining simple in terms
of computational and message complexity.

The Delaunay triangulation of a region was per-
formed assuming complete knowledge of the locations
of all nodes in a region by all the nodes in that region.
Likewise, the Voronoi diagram is computed assuming
complete knowledge of the locations of all nodes in the
region under evaluation, and the locations of any nodes
outside the region’s border that are necessary to en-
close every region node with its Voronoi polygon.

5.2. Random Topology, Isotropic Disk

Connectivity

Figures 4(a) and 4(b) compare our four techniques
for networks of 100 and 500 uniformly randomly placed
nodes, respectively, using isotropic disk connectivity.
The radius of the region of interest varies from 200 to
400. The expected number of nodes per region is given
by this table:

100 nodes 500 nodes

Radius 200 12.6 62.8
Radius 400 50.3 251.3

In these simulations, all nodes have equal transmis-
sion radii. Even without location information, the un-
realistic connectivity model helps the inverse neighbor-
hood technique produce accurate results. So long as the
communication disk size is known and static across all
nodes, inverse neighborhood performs with error be-
low 15 percent. This is because the average density
over the area of the disk is known precisely, and, con-
sequently, so is the average contributing area of any
node in the disk.

The Delaunay triangulations are computed assum-
ing each node has knowledge of every region node’s lo-
cation. Triangulation performs well only when there are
many nodes in the region of interest. This is to be ex-
pected, since each included triangle must have all three
vertices in the region; when a region contains only 12
nodes, this leaves a lot of data out. Voronoi polygo-
nization performs well across region sizes, but tends to
overestimate area in these simulations.
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Figure 5. Accuracy in area calculation as a func-
tion of node density for various circular regions
of interest. Real-world topology and connectiv-
ity data from our testbed. Averages of 5 trials.

5.3. Real-World Topology and Connectiv-

ity

Disk connectivity is not realistic. Real-world connec-
tivity is probabilistic and noisy, and although it gener-
ally decreases with d2 to d4, obstacles and interference
make it very hard to predict. It is nonisotropic. Rather
than attempt to more accurately model the communi-
cation channel (which is a serious research effort unto
itself), we use real connectivity data from a 55-node
MICA testbed with TR1000 radios [1], configured to
cover a 1000 × 1000-unit area. The radius of the re-
gion of interest varies from 200 to 300 units. The ex-
pected number of nodes per region is given by this ta-
ble:

Radius 200 250 300

Nodes in Region 6.9 10.8 15.6

The connectivity data was collected using the fol-
lowing procedure: Each node in the topology sent 200
TOS Msg packets and the percentage of packets re-
ceived was collected for all pairs. This experiment was
repeated for various radio transmission powers. We set
a threshold percentage, such that two nodes A and B

are considered neighbors of each other if the minimum
reception percentage of A to B and B to A is greater
than or equal to that threshold. We vary the thresh-
old to generate topologies with varying average degrees
of connectivity. Each point in our results represents the
average of trials with different power levels and thresh-
olds, but the same average node degree.

Figure 5 shows the results, which differ dramatically
from the random topology/disk connectivity model. In-
verse neighborhood without location information does
particularly poorly. Recall that we assign connectivity
area based on a circle whose radius equals the aver-
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age longest distance between neighbors over the whole
network. This is a wild overestimate, since real connec-
tivity area is not a disk; for instance, nodes might have
much greater connectivity in a preferred direction than
in any other direction. This overestimate will be worse
at lower power rates or higher loss thresholds—for in-
stance, connectivity in the preferred direction might be
preserved, keeping the connectivity radius high, even
as connectivity in other directions drops, reducing the
connectivity area. Thus, the error in area is worse at
lower connectivity; but even at high connectivity, it is
a factor of three too high.

Inverse neighborhood with location does much bet-
ter. Calculating connectivity area on a per-node ba-
sis and using the 75th-percentile neighbor distance as
a connectivity radius both filters out topological ef-
fects, and reduces overestimation caused by unequal
connectivity. Given this good estimator of communi-
cation range, located inverse neighborhood performs
comparably to the computational geometry techniques.
Consider the plots in which the region radius is 250.
Again, inverse neighborhood’s overestimation problem
is worse at lower node degrees, and at average node
degree 5, the inverse neighborhood technique yields an
area that is 2.6 times the real area on average. However,
as node degree increases so too does area accuracy. At
degree 15, the area is only 1.26 times the true area; at
degree 20, it is almost exactly the true area, with an
overestimation factor of just 1.01. Voronoi polygonal-

ization, our most theoretically precise technique, does
appreciably better only for node degrees below 20. One
advantage of the Voronoi technique is that its accuracy
is independent of node degree; the overestimation fac-
tor hovers around 1.2 regardless of degree.

The lowest lines are Delaunay triangulations. De-
launay triangulation of nodes within a region only per-
forms well when there are many nodes in the region. In
a 55-node network, this is never the case.

5.4. Larger Regions

Figure 6 depicts the influence of region area on ac-
curacy in simulations with real-world connectivity. We
constructed a 378-node graph from our 55-node grid ex-
perimental results using the following procedure: First,
we take a 6×7 node rectangular subset of the 55 nodes
and create nine 42-node tiles, which we place in a 3×3
arrangement. Connectivity between any of the 42 nodes
of a single tile is determined by the original experi-
mentally derived measurements. Connectivity between
nodes on adjacent tiles is assigned by mirroring con-
nectivity from within a tile. For example, if node A

is near the edge of a tile and node B is 1 meter in
from the edge, then the connectivity between A and B

would also be assigned to a node C that is in an adja-
cent tile and is 1 meter from A. Specifically, mirroring
is performed about the x-axis and about the y-axis.

As expected, the Delaunay triangulation technique
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significantly improves its estimate as the number of
nodes in a region increases. The other techniques’ es-
timate accuracies do not change significantly with re-
gion area.

6. Conclusions

In this paper, we investigated four algorithms for the
distributed computation of a region’s area.

Delaunay triangulation and Voronoi polygonization
are expensive in terms of communication cost, because
computation usually requires more than a single hop
of location knowledge. Furthermore, the Ω(n log n) al-
gorithms used involve floating point arithmetic and ex-
tensive manipulations of complicated data structures;
both could strain a mote.

We presented two simple inverse neighborhood al-
gorithms, which use the inverse of local density, com-
puted by taking the communication area of a node and
dividing it by the number of neighbors the node has, to
estimate a node’s covering area. Without location in-
formation, inverse neighborhood can only give a very
coarse indication of node area, but can be used to de-
termine the relative sizes of multiple phenomena. With
location information, inverse neighborhoood performs
well both under the unrealistic assumption of disk con-
nectivity as well as with real connectivity data. In fact,
and surprisingly, located inverse neighborhood can per-
form comparably to the best of the hugely more com-
plex computational geometry algorithms.

We conclude that variants of located inverse neigh-
borhood are sufficiently precise and robust for practical
use as inexpensive, distributed area estimators for sen-
sor networks.

We also ran experiments on two topologies, one de-
rived from common assumptions (uniformly randomly
distributed nodes with isotropic disk connectivity) and
one derived from real-world data. The results, while
not shocking, are significant: The real-world-based ex-
periments produced results dramatically different from
random topologies with disk connectivity. We recom-
mend the avoidance of such random topologies except
in exceptional circumstances.

7. Future Work

One strain of future work would be to move towards
even more realistic connectivity assumptions to eval-
uate the effects of non-uniform deployment densities
on accuracy; to study how location error and corre-
lation in location error contributes to area error; and
to study operation with non-circular regions of inter-
est.

It may be possible to improve the performance of our
inverse neighborhood algorithms without adding signif-
icant complexity. For example, the tendency to overes-
timate connectivity area might be addressed by chang-
ing the threshold for connectivity radius, or by moving
away from the circular-connectivity assumption.

We plan also to evaluate the performance of our al-
gorithms, and Welsh’s planar mesh code, when run-
ning on mote hardware. In particular, we seek to de-
rive bounds on minimum detection latency and on duty
period. Given the constrained resources of the target
platform, it would be beneficial to carefully character-
ize the performance of Voronoi polygonization, Delau-
nay triangulation, and inverse neighborhood in terms
of CPU cycles expended and bits transmitted.
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