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Faster and more efficient hardware is needed to handle the rapid growth of big data

processing. Applications such as multimedia, computer vision, and machine learning can

be parallelized and accelerated using General-Purpose Computing on Graphics Processing

Units (GPGPUs). GPUs are power intensive, so novel approaches are needed to improve their

efficiency. Many applications that run on GPUs are tolerant to error. Approximate computing is

a design strategy in which improvements in performance and energy savings can be achieved

at the expense of accuracy. This thesis proposes a number of methods to enable approximate

computing GPUs.

We first examine a number of approaches for approximating operations at the instruction
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level. Floating point arithmetic, specifically multiplies, make up the majority of instructions

computed on GPUs. In this dissertation we propose a configurable floating point unit (CFPU)

which eliminates the costly manitassa multiply by copying one of the input mantissa directly to

the output. For applications with a higher amount of temporal similiarity we propose adaptive

lookup (ALook) to use small dynamic tables to store recently computed operations. This low

power look up table provides nearest distance match for obtaining results rather than computing

on the exact hardware, enabling significant energy savings.

GPUs issue threads to cores in groups called warps. Cores in a warp run the same

instructions in lock-step. Every instruction within a warp must be accelerated to provide

performance improvement. To ensure sufficient accuracy, some instructions run on the exact

hardware. Bottlenecks can arise as some threads in a warp spend time computing exact results

while others use approximate solutions. We propose AWARP to handle this problem. First, we

use warp pass through to target warps in which a very small fraction of threads must be computed

exactly. To handle warps with a larger percentage of exact computations, we utilize warp value

trading (WVT). Under WVT, operations are traded between warps prior to running on the same

multiprocessor to create uniform groups of either exact or approximate operations, providing

significant speedup.

Finally, we focus on application specific approximation. We show approximation can be

used to accelerate neural networks during training and inference using DRAAW. Early stages of

training tolerate more error than later ones, so we adjust the level of approximation per epoch. To

accelerate inference, we approximate larger operations less than smaller ones to increase ALOOK

hit rate. DRAAW increases speedup of neural network training by 3.2× and EDP by 4.8× with

less than 1% decrease in classification accuracy. For inference we automatically predict error

control parameters from user accuracy requirements. DRAAW improves inference speedup by

2.9× speedup and EDP by 6.2× of inference with less than 1% decrease in prediction accuracy.
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Chapter 1

Introduction

A little over a decade ago computing was revolutionized by the introduction of GPGPU

(General-Purpose Computing on Graphics Processing Units) support by Nvidia. The ability

to parallelize applications across thousands of cores opened avenues of research previously

unattainable outside of the realm of super computing. GPGPU computing allows advances in

applications such as computational mechanics, design automation, image processing, computer

vision, medial analysis, language recognition and possibly most importantly the rapid exploration

and deployment of machine learning. With the rise of big data, these applications have grown to

utilize the available computing power while demanding more cores and faster computation. How-

ever, with Dennard scaling [6] long past and Moore’s law [7] slowing, improving performance is

no longer trivial.

New computing paradigms and novel architectures are needed to further advance com-

puting. One such paradigm is approximate computing, in which application accuracy is traded

for speedup and energy savings. Many applications do not need highly accurate computation,

so accepting slight inaccuracy, instead of doing all computation precisely, results in significant

energy and performance improvements [8–15]. Researchers have proposed different strategies

for approximate computing, but these approach fail to address several key problems in order to

work on GPUs. First, they target integer arithmetic instead of floating point. Floating point units

(FPU) are the cornerstone of GPU processing. New strategies must be employed to optimize
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for them. Second, prior approximate hardware is tied to the FPU pipeline and does not provide

acceleration. They can achieve energy savings by clock gating operations, but otherwise offer

no speedup. Finally, they are not designed around a major aspect of GPU architecture, warps,

also known as wave fronts. Instructions on GPUs are issued in groups of threads which remain

in lockstep. In most applications, approximating every operation and providing low error is

not feasible, so some portion of the operations must be run on exact hardware. In warps, this

can lead to a single thread bottlenecking the entire warp which 10s of threads, and remove any

speedup approximation may provide.

In this dissertation, we propose an approximate computing architecture for GPUs which

allows high energy savings, computation speedup, and fine grained error control. To improve

performance of applications with high levels of temporal redundancy, we develop novel compu-

tational reuse methods to provide energy savings and speedup computation. We target floating

arithmetic, which make up the bulk of many GPU workloads, and design an approximate FPU

to simplify multiply and multiply add operations by removing the energy intensive mantissa

computation. GPUs issue instructions in group of threads known as warps which must remain in

lockstep. To control accuracy, we split computation between exact and approximate hardware.

Our design is capable of accelerating applications at a warp level by avoiding bottlenecks and pre-

emptively reordering operations. We propose a software framework for utilizing our approximate

hardware to accelerate machine learning tasks. Neural networks can tolerate a significant amount

of well selected approximation while still providing sufficient accuracy. Our approximation

provides 4.8× EDP improvement and 3.2× speedup over the unmodified GPU for training

neural networks with only a 1% decrease in prediction error. Our work automatically select error

control parameters based on user prediction requirements for neural networks inference quality

and improves speedup by 2.9× and EDP by 6.2× with only a 1% drop in classification accuracy.
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1.1 Approximate Computing

Approximate computing is one method to improve performance and reduce energy

consumption at the expense of output accuracy. There are many applications where the accuracy

is less important than efficiency including multimedia, data analysis, and machine learning [16–

18]. Media applications benefit from limitations in human senses, allowing audio and visual

renderings to have small amounts of error without being noticeable to a viewer. Approximating

portions of media can potentially result in major energy savings on phones or other mobile

devices, while GPU approximation can increase framerate in video games. In data sensing, many

sensors, such as those found in embedded devices, have error tolerances up to or exceeding

10% [19–22]. Processing the sensor data with extreme precision does not improve output

accuracy compared to faster and more energy efficient methods. Devices such as these weather

sensors can be placed in areas with limited sunlight and expected to function on batteries for

long periods at a time, so it is critical to avoid unnecessary energy waste.

While approximate computing at first appears to be a promising method for improving

performance it should be noted that it is not a catchall optimization. First, not all applications

can make use of approximation. Cryptography and other highly exact applications are not viable

candidates for approximation [23]. Even in approximate applications, not all code regions can

safely be approximated. Errors may lead to critical failures such as segmentation faults, invalid

jump addresses, or memory out of bounds [24]. These concerns require careful planning and

solutions to ensure systems are getting the most out of approximate computing.

1.2 Floating Point Arithmetic

Floating point multiplication is a major component of many GPU workloads. In floating

point notation, a number consists of three parts: a sign bit, an exponent, and a fractional value.

In IEEE 754 floating point representation, the sign bit is the most significant bit, bits 31 to 24

hold the exponent value, and the remaining bits contain the fractional value, also known as the
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mantissa. The exponent bits represent a power of two ranging from -127 to 128. The mantissa

bits store a value between 1 and 2, which is multiplied by 2exp to give the decimal value.

Floating point multiply follows the steps shown in Figure 1.1. First, the sign bit of

A×B =C is calculated by XORing the sign bit of the A and B operands. Second, the effective

value of the exponential terms are added together. Finally, the two mantissa values are multiplied

to provide the result’s mantissa. Because the mantissa ranges from 1 to 2, the output of the

multiplication always falls between 1 and 4. If the output mantissa is greater than 2, it is

normalized by dividing by 2 and increasing the exponent by 1. The multiplication of the

mantissas is the most costly operation, taking over 80% of the total energy of the multiply

operation [25].

N Tuning bits
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Ai

Ai+1 Ai+N+1A: Ai+N A1An-1

Bn Bi-1 Bi Bi+1 B1Bn-1

+

+
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=
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B:

C:

An Ai-1 Ai+1 Ai+N+1A: Ai+N A1An-1
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+

Ai
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C:

=

Floating Point Multiply Approximate Multiply

Figure 1.1. Floating Point Multiplication

Multiplication is one of the most common and costly floating point operations, slowing

down the computation in many applications such as signal processing, neural networks, and

stream processing [26–30]. Approximate arithmetic can improve application efficiency at the

computational level. Utilizing the existing structure of floating point arithmetic units can allow

for fast efficient approximation, while still allowing exact computation when needed.
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1.3 GPU Architecture

GPUs use hundreds to thousands of cores to process data in parallel. Certain tasks, such

as vector or matrix operations, can readily be mapped across many cores to compute orders of

magnitude faster than CPUs [31]. Figure 1.4 diagrams an Nvidia Titan GPU based on the Kepler

GK110 architecture [32]. The GPU has 14 streaming multiprocessors (SMs), each with 192

single precision and 64 double precision floating point units. Cores within SMs have access to

shared resources such as memory. Each SM contains a register file and shared L1 cache between

the cores. The GPU shares the L2 cache between all streaming multiprocessors. Threads are

grouped together and issued as warps across cores with the same SM. Each SM has has four

warp schedulers which allows multiple warps to be issued simultaneously. Warps are dispatched

to cores which contain both floating point and integer ALU units. Once cores are assigned

instructions to the dispatch port, they collect operands for the instruction needed to execute.

GPUs cores are optimized perform graphics operations such as vertex and geometry shading,

rasterization, and tessellation. These operations require computation of floating point operations

such as add, multiply, multiply-accumulate, and square-root [33]. GPGPU applications use

these FPU units to accelerate their performance, but often FP32 and FP64 precision provided is

unnecessary and requires too much power. Approximate computing offers flexible trading of

accuracy for energy savings.
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Figure 1.2. Overview Nvidia Kepler GPU Architecture

Figure 1.3 shows the architecture of a traditional floating point multiply accumulate
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Figure 1.3. Overview floating point multiply accumulate unit [1]

unit [1]. Over 80% of the FPU power is dedicated to the multiplication of the mantissa value [25].

Floating point multiply requires 4× more energy than floating point addition [34] which makes

it a good candidate for optimization. We focus on techniques which simplify multiplication or

bypass it altogether in order to save power.

As shown in Figure 1.4, in GPUs, instruction threads run in groups, traditionally of 32,

called warps or wavefronts. The threads within a warp are issued to an identical number of

cores with shared memory. Each core is assigned the same instruction and all operations must

6



complete before processing the next instruction. The threads are tied in lockstep computation

and all must be accelerated or none can be.

Core

…

… … …

Core Core Core
…

Core Core Core
…

Core Core Core
…

Core Core Core
…

Thread

Warp

Grid

Streaming Multiprocessor

Whole GPU

Executed by

Executed by

Executed by

Figure 1.4. Overview of how instructions are issued on GPUs

This creates a problem for approximate computing where cores running in exact mode

may prevent the entire warp from accelerating that instruction. A single thread will bottleneck

the other 31. In many workloads we find a substantial number of warps are throttled by this issue.

This must be addressed in order to maximize the benefits of approximate computing for GPUs.

1.4 Machine Learning

Machine learning is another area where approximation can provide significant benefits to

energy and performance. Many machine learning applications are stochastic in nature and exhibit

inherent error. They are error-tolerant and can be improved by simplifying some computations

without having a significant impact on the final results. As machine learning algorithms con-

tinue to gain traction, approximate computing promises to optimize their computation without

sacrificing output accuracy.

A pillar of modern machine learning is the neural network (NN). Loosely inspired by

the neural structure of the biological brains, NNs utilize groups of neurons to solve complex

non-linear problems. These tasks include image classification tasks, language translation, market

predictions and more [13, 35, 36]. NNs exploit learned knowledge to deal with data which they
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have not previously encountered. Although NNs can outperform many other machine learning

models, they require enormous resources to be executed. The development of ResNets [37]

opened new possibilities for networks dozens or hundreds of layers deep and training times

grew with the increase in network size. The combination of speed and programming flexibility

makes GPUs strong candidates for neural network prototyping and training. Many applications

require NNs to be executed on embedded devices. NN applications need to update their model at

run-time in order to adapt to the environment or enable a personalization. For instance, in speech

recognition, NNs personalize as a function of the user’s context or accent [38]. Energy saving

optimizations must be made to hardware, such as GPUs, on embedded systems to allow training

and testing despite limited power budgets. These same energy saving techniques can be applied

to larger discrete GPUs.

Most current computing systems deliver only exact solutions at high energy cost, while

neural networks do not require exact answers, due to their stochastic nature [14, 39, 40]. Slight

inaccuracy due to enabled HW approximation in neural networks often results in little to no

quality loss. Neural networks tolerate significant noise to their computation before prediction

accuracy degrades significantly. However, once accuracy begins to decrease, it falls sharply.

Inputs to neurons are summed together so approximation error in larger values impacts the

output more drastically. Large portions of neural networks can accelerated with little change in

prediction accuracy by approximating larger inputs less than smaller inputs.

1.5 Dissertation Contributions

This dissertation enhances a GPU architecture with the ability to approximate many

applications. We explore a variety of GPGPU workloads to identify data and computation trends

which can be exploited for approximation. We present an approximate floating point unit which

uses computational reuse and approximate arithmetic techniques to accelerate GPU warps. We

also evaluate the the impact and propose enhancements for neural network training and inference
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on GPUs. Figure 1.5 shows the design to support approximate computing on a GPU. This

dissertation will cover the following contributions:

Figure 1.5. Overview of approximate hardware on GPU

Figure 1.6. Warp acceleration overview

• We propose a tiered approximate floating point multiplier, called CFPU, which significantly

reduces energy consumption and improves the performance of multiplication at a slight

cost in accuracy. The floating point multiplication is approximated by replacing the costly

mantissa multiplication step of the operation with lower energy alternatives. We process

the data by using one of the three modes: a basic approximate mode, an intermediate

approximate mode, or on the exact hardware, depending on the accuracy requirements.
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CFPU avoids mantissa multiplication in one of two ways. First CFPU finds and discards

the mantissa which results in the lowest error, then uses the other directly as the output.

When the mantissa discarding cannot produce results with the error below a user-specified

requirement, we run the operation in a more accurate approximate mode. We shift the saved

mantissa based on the discarded one and add it saved value to the create the new mantissa

for the result. If neither of these approaches produces an output with an acceptable error,

our design can control the level of output accuracy by identifying the inputs that result

in the highest output error and assigning them to compute precisely. Our results show

that CFPU can offer 4.1× EDP improvement, compared to an unmodified FPU, for less

than 10% error. In addition, our results show that the proposed CFPU can achieve 2.8×

EDP improvement for multiply operations as compared to state-of-the-art approximate

multipliers. CFPU is detailed in Chapter 2.

• We develop an adaptive look-up based approximate computing approach, called ALOOK,

which uses a dynamic update policy to maintain a set of recently used operations in

associative memory. ALOOK updates with values computed by floating point units at

runtime to adapt to the workload and matches the stored results to avoid recomputing

similar operations. To accelerate applications, ALOOK duplicates the first stage of the

floating point unit (FPU) pipeline enabling processing and computational reuse of two

inputs simultaneously. Our evaluation shows that ALOOK provides 3.6× EDP (Energy

Delay Product) and 2.7× performance speedup, compared to an unmodified GPU, for

applications accepting less than 5% output error. ALOOK does not account for warps

and many become bottlenecked by exact computation. The design and implementation of

ALOOK is presented in Chapter 3.

• We present AWARP, an approximate computing technique capable of accelerating GPGPU

warps. A single lookup miss may negate any possible acceleration of the accompanying

threads by bottlenecking the operation. We examine warps as a whole to prevent a small
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number of threads from bottlenecking speedup. Figure 1.6 shows our two techniques to

avoid warp bottlenecks. Warp passthrough allows groups of threads with a large majority

of hits to be accelerated with a minor penalty to output accuracy. To handed warps with

a more even mix of operations, we apply warp value trading to ensure approximate

operations are preemptively reordered into uniform approximate warps which can then be

sped accelerated. We show our design improves performance throughput by up to 32.8%

and improves EDP by 5.3× compared to the unmodified GPU while maintaining less than

5% output error. Details of AWARP are presented in Chapter 4.

• We propose DRAAW, a method for accelerating neural networks in both training and

inference phases. DRAAW is able to approximate over 90% of operations within neural

networks by using our proposed hardware. For training, we propose a Gradual Training

Approximation (GTA) which significantly accelerates neural network computation, while

providing a desirable quality of service. GTA starts training from deep approximation,

and gradually reduces the level of approximation as a function of NN internal error, until

the accuracy is sufficient. For inference, we provided a methodology to automatically

select approximation controls for neural networks. We profile the layers of each neural

network to identify output distributions which can then be used to maximize the operations

approximated with minimal impact on prediction accuracy. We use this to predict safe

approximation values for neural networks which can automatically be set at run time based

on user selected maximum prediction accuracy loss. Our experimental evaluation shows

that GTA achieves up to 4.84× energy savings and 3.22× speedup when running four

different neural network applications with 1% quality loss as compared to baseline GPU.

Our work accelerates inference of tested neural networks by 2.1× and improves energy

savings by 4.6× for a 1% decrease prediction accuracy. Our method for accelerating neural

networks is described in Chapter 5.
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Chapter 2

Approximate Floating Point Arithmetic

2.1 Introduction

Running machine learning algorithms or multimedia applications on general purpose

processors, e.g. GPUs, requires high energy consumption. Many applications do not need highly

accurate computation, so accepting slight inaccuracy, instead of doing all computation precisely,

results in significant energy and performance improvements [4, 5, 8–15, 41]. While there are a

number of proposed approximate solutions, they are limited to a small range of applications

because they cannot control the error rate of their output.

Several data processing applications use a large range of values and require high precision.

Therefore, computations in many traditional and state-of-the-art computing systems use floating

point units (FPUs) [13, 36, 42, 43]. For example, on GPUs, frame rendering or high-performance

scientific computations require many FPU operations and use a large amount of power. We

observed over 85% of floating point arithmetic involved multiplication in the general OpenCL

applications we tested. To cover the same dynamic range as with floating point, the fixed point

unit must be five times larger and 40% slower than a corresponding floating point [44, 45].

Multiplication is one of the most common and costly FP operations, slowing down

the computation in many applications such as signal processing, neural networks, and stream

processing [26–30]. There are a number of approximate multiplication units designed to save

power through different techniques. Several prior publications truncate the operands of the
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multiplication or use different sized blocks to enable approximate multiplication [4, 5, 46].

However, a lack of accuracy controls and large area overhead reduce the advantages provided by

these approximate designs.

In this chapter, we propose a configurable floating point multiplication, called CFPU,

which significantly reduces the floating point multiplication energy consumption by trading off

accuracy. CFPU avoids the costly multiplication when calculating the fractional part of a floating

point number in one of two ways:

1) Mantissa Discarding - In floating point multiplies, the bottom 23 bits represent the mantissa.

To calculate the result of a multiply operation, the mantissa from each operand are multiplied

together, a step which consumes the majority of the total power and bottlenecks the operation. A

substantially faster and lower energy approach is to discard one of the input mantissa and use the

second one directly. Using one mantissa directly has the potential to generate high error rates for

individual multiplies, so we provide two modifications that increase the final output accuracy.

• Adaptive operand selection finds and discards the mantissa which results in the lowest error.

Minimizing individual operation error allows us to increase the number of calculations

performed on the CFPU while maintaining the same output error.

• Tuning examines the first N bits of the discarded mantissa to predict error in the output

result.

2) Shift and Add - When the mantissa discarding cannot produce results with the error below

a user-specified requirement, we run the operation in a more accurate approximate mode. We

examine the discarded mantissa to find the location of the first ’1’ bit. We shift the non-discarded

mantissa based on this bit’s position and add it to itself to create the new mantissa for the result

value. This approach requires more energy and computation time compared to the first stage but

is more accurate. An operation run in the second stage has at least 50% lower error than one run

in the first stage for the same input operands. If neither of these approaches produces an output

with an acceptable error, our design can control the level of output accuracy by identifying the
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inputs that result in the highest output error and assigning them to compute precisely on the

CFPU.

We evaluate the efficiency of the proposed technique on AMD Southern Island GPU

architecture by replacing the traditional FPUs with the proposed CFPU. We test OpenCL

workloads and our results show that using first stage CFPU approximation results in 3.5×

energy-delay product (EDP) improvement, compared to an unmodified GPU, while ensuring less

than 10% average relative error. Adding the second stage further increases the EDP improvement

to 4.1× for the same level of accuracy. Comparing the proposed CFPU with previous state-of-

the-art multipliers [5, 39, 46, 47] shows that our design can achieve 2.8× higher energy-delay

product with lower error.

We also examine the impact of CFPU on several machine learning algorithms. With these

algorithms becoming increasingly popular, there is a strong need to improve their performance

without sacrificing output error. They are often naturally stochastic, allowing them to accept an

error in their output. We use our design to run three Rodinia [48] machine learning benchmarks:

K-Nearest Neighbor (KNN), Back Propagation and K-means. K-means and K-nearest neighbor

are used in data mining applications and involve dense linear algebra computation, while Back

Propagation is used for training weights in neural networks. For machine learning algorithms

CFPU design can achieve 2.4× energy saving and 2.0× speedup compared to an unmodified

GPU while ensuring less than 1% average relative error. These benchmarks have 50% energy

savings and 40% speedup when running on CFPU with two stages rather than the previously

proposed one stage design [3].

2.2 Related Work

There are several commonly examined approaches to approximate computing: voltage

over scaling (VOS), use of approximate hardware blocks, and use of approximate memory units.

VOS involves dynamically reducing the voltage supplied to a hardware component to save energy,
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but at the expense of accuracy. Error rates for VOS can be modeled to determine the trade-off

between energy and accuracy for applications, allowing voltage to be lowered until an error

threshold is reached [43, 49–53]. The circuit is sensitive to any variations, and if the operating

voltage of a circuit is decreased too far, timing errors begin to appear which are too large to

correct. A configurable associative memory was proposed by [9] which can relax computation

by using VOS on the TCAM rows/bitlines to trade between energy and output accuracy. These

techniques suffer because they are bound by GPU pipeline stages and therefore cannot improve

computation performance. Because they make use of Hamming distance, a metric which does

not consider bit position’s impact on error, output accuracy is difficult to predict.

Another recently emerged strategy is the application of non-volatile memories (NVM) to

create approximate memory units, for energy efficient storage and computing purposes [54–57].

In computing, the goal of this approach is to store common inputs and their corresponding

outputs. This style of associative memory can retrieve the closest output for given inputs in

order to reduce power consumption [58, 59]. This approach does not work well in applications

without a large number of redundant calculations. Associative memory can be integrated into

FPUs to reduce these redundancies. Resistive CAMs have been used in order to accelerate

application level computation as shown in [60]. This work uses the bit position insensitive metric

of hamming distance resulting in poor accuracy in GPU usage.

Finally, approximate hardware involves redesigning basic component blocks to save

energy, at the cost of accurate output [5,39,40,61]. Liu et al. utilize approximate adders to create

an energy efficient approximate multiplier [39]. Hashemi et al. designed a multiplier that selects

a reduced number of bits used in the multiplication to conserve power [5]. Speculative designs

are a recently explored route. Work in [62] proposed a speculative adder with error recognition to

perform approximate operations. These types of adders can be utilized in approximate multipliers.

Camus et al. propose a speculative approximate multiplier combines gate-level pruning and

inexact speculative adders to lower power consumption and shrink FPU area [61]. Deep neural

networks can tolerate approximate hardware, as shown in [63], which examines the use of
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variable fixed point in deep neural networks.

Compared to the previous work [5, 46, 47], we focus on optimizing floating point mul-

tiplication by eliminating mantissa multiplication. Our design computes common power of 2

multiplies exactly. Our configurable approximate floating point multiplier predicts accuracy

based on the incoming inputs and runs high error operations on exact hardware rather than

correcting results after computation. We extend our previous design [3] to offer two levels,

instead of just one, of approximation to a tradeoff between approximation error and energy

benefits. The first stage approximately multiplies two values by using the mantissa from one

operand directly in the output. If the first stage error is too high, in the second stage the kept

mantissa is shifted based on the position of the first ’1’ bit of the discarded mantissa and added

to itself to produce an approximate result. If the second stage error is also too high, operations

can be computed on exact hardware. For the same level of application accuracy, our modified

multiplier reduces application energy by up to 45% compared with our work in [3] and shows a

2.8× EDP improvement for multiply operations when compared to state of the art approximate

multipliers [5, 46, 47].

2.3 Approximate FPU Multiplier

Compared to integer computing units, FPUs are usually costly and energy-hungry com-

ponents, due to the complex way floating point numbers are stored. Multiplication based

components are inefficient and slow down many current applications including multimedia,

streaming, neural networks, and other machine learning applications [5, 8]. GPU applications

show a high prevalence of multiply and multiply-add (muladd) operations compared to addi-

tions. Horowitz et al [34] estimates in 45nm a floating point multiply consumes 3.7pJ of energy

compared to a floating point add which consumes 0.9pJ. A floating point multiply consumes

only 20% more energy than an integer multiply, so performing all operations as fixed point does

provide significant energy savings. Based on these power estimates, the floating point multiply

17



Inputs A & B
Discarded CoSB 

greater than THR?

Yes

Check first 2 

‘1’ bit 

positions

OutputNo

Copy 

kept 

mantissa 

to result

Discard mantissa 

with longest CoSB
No

Distance between

 first and second ‘1’

 bit greater than

 THR?

Yes

Shift and 

Add

Compute 

on Exact 

Hardware

2
nd

 Stage

Adaptive Operand 

Selection

1
st

 Stage Tuning 2
nd

 Stage Tuning

1
st

 Stage

CoSB – Chain of same bits

THR – Threshold (# of bits)

Figure 2.1. CFPU operating flow including 1st and 2nd stage approximation

and muladd operations consume over 90% of the ALU energy for the Sobel application, making

these operations good targets for energy optimization based on these values.

In order to make multiplication more efficient, we propose a two-stage floating point

multiplier. The first stage optimizes mantissa multiplication by reusing one of the input mantissa

directly in the output. The second stage seeks to reduce error further by shifting and adding the

retained mantissa to itself.

2.3.1 IEEE 754 Floating Point Multiply

In floating point notation, a number consists of three parts: a sign bit, an exponent, and a

fractional value. In IEEE 754 floating point representation, the sign bit is the most significant bit,

bits 31 to 24 hold the exponent value, and the remaining bits contain the fractional value, also

known as the mantissa. The exponent bits represent a power of two ranging from -127 to 128.

The mantissa bits store a value between 1 and 2, which is multiplied by 2exp to give the decimal

value.

FPU multiply follows the steps shown in Figure 2.2. First, the sign bit of A×B =C is

calculated by XORing the sign bit of the A and B operands. Second, the effective value of the

exponential terms are added together. Finally, the two mantissa values are multiplied to provide

the result’s mantissa. Because the mantissa ranges from 1 to 2, the output of the multiplication

always falls between 1 and 4. If the output mantissa is greater than 2, it is normalized by dividing

by 2 and increasing the exponent by 1.
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Figure 2.2. Floating Point Multiplication

2.3.2 CFPU Usage

CFPU is highly transparent to the application. A user running an error-tolerant application

specifies the maximum error for any given multiply operation, Errormax, prior to execution.

CFPU uses this value to ensure operations producing error greater than the value are sent to

either a more accurate approximation mode or the exact hardware.

The flow chart for the proposed design is shown in Figure 2.1. Adaptive selection checks

for a mantissa which, when discarded, produces an exact output when possible. The selector

controls a multiplexer (MUX) between the two inputs A and B, and copies the selected mantissa

to the output while discarding the other. Tuning utilizes the first N bits from the discarded

mantissa to check against a threshold value and, if the threshold is not exceeded, the computation

is complete. If the threshold is exceeded, the operation is run in the second stage which uses shift

and add to increase accuracy. If the error of the second stage still exceeds the specified Errormax,

the output is computed on the exact FPU hardware. We further explain the modifications in the

following sections.
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2.3.3 First stage Approximation

Mantissa Discarding

The multiplication of the mantissas is the most costly operation, taking over 80% of the

total energy of the multiply operation [25], so the first stage approximation removes it entirely.

Rather than multiplying the two mantissas, the unmodified mantissa from one of the input

operands (e.g. input B) is used for the output value.

The error of any approximate multiply is Mantissadiscarded − 1. In the case where an

operand is a power of 2, the mantissa is 1 and there is no error in the result.

Error =
n−1

∑
i=0

2−((n−i)An−i−1). (2.1a)

MaxError =
n−1

∑
i=0

2−(n−i) = 0.999..9. (2.1b)

Because the largest value a mantissa can be multiplied by is 2, the deviation from the kept

mantissa and the correct answer is at most 100%. However, the maximum error can be reduced

down to 50% by adding the first bit of the discarded mantissa to the sum of the exponent values.
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When the discarded mantissa is greater than 1.5 (the first mantissa bit is 1), the error is less than

50% if the kept mantissa is multiplied by 2 instead of 1. This is the functional equivalent of

increasing the exponent by 1. By doing this, the error range is shifted to be -50% to 50% instead

of 0% to 100% as shown in Eq 2.

MaxError = abs(
n−1

∑
i=0

2−((n−i)An−i−1)−0.5). (2.2)

The additional logic needed to perform approximate floating point multiplication is shown

in Figure 2.2. The B mantissa is used directly as the output mantissa, and the first bit of the

discarded mantissa A is added with the two exponent values.

Figure 2.3 shows the flow for approximation. The sign bit for the result is computed by

XORing the two input sign bits. The exponent for the result is computed by adding the two

input exponents and the MSB of the discarded mantissa. CFPU ensures all operations compute

their results below the user specified Errormax through the use of adaptive selection and tuning.

In the first level of approximation, Adaptive selection identifies the best mantissa to use in the

output and discards the other. The upper N bits of the discarded mantissa are used to predict

error and select between copying the other mantissa directly to the output, using the second level

of approximation, or multiplying the two mantissas together.

Adaptive Operand Selection

Choosing which mantissa should be used for the result can significantly impact the

accuracy of the CFPU output. For example, if the values 2.0 and 3.0 are multiplied, the result

will be either 6.0 (exact) or 8.0 (33% error) depending on which mantissa is discarded.

In [3], we only use adaptive operand selection to identify mantissa values of zero. We

improve adaptive operand selection to find the best mantissa to discard for all operations. This

approach increases hit rate as more operations can be approximated, and reduces error for

individual operations.
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We compare the two mantissa values to determine the value which produces the lowest

error when discarded. The output result uses the best mantissa. The benefits of this approach

are twofold: 1) error for individual operations decreases and 2) the percentage of operations run

in the first stage approximate mode increases because more operations are below the Errormax.

The worst case error occurs when the discarded mantissa is closest to 1.5, so the preferred

mantissa can be identified by detecting the longest continuous series of identical bits starting

from the MSB. The mantissa with the longest series of either ’1’s or ’0’s gives a lower error

when discarded. If all mantissa bits are ’0’, the error is 0. If both mantissas have an identical

length series of bits, mantissa A is discarded.

2.125 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ...0 

1 0 1 0 1 0 0 0 ... 3.3125 0 1 0 0 0 0 0 0 0

1 bit series

3 bit series

A:

B:

Figure 2.4. Comparison of first mismatch position. Using adaptive selection mantissa A is
discarded as it results in lower error. Exact answer: 7.039, Approx discarding A mantissa: 6.625,
Approx result discarding B mantissa: 8.5

Figure 2.4 illustrates the distance calculation. If the mantissa from A is discarded, the

resulting approximate multiply produces a value of 6.625 with an error of 5.9%. By comparison,

if the mantissa from B is discarded instead, the output value is 8.5 with an error of 20.7%.

Mantissa A has a series of 3 ’0’s compared to the single ’1’ of B, so discarding A results in a

lower error.

Tuning Control

It is possible that neither mantissa produces output lower than Errormax when discarded.

CFPU automatically detects cases where the error exceeds the specified requirement and com-

putes the result in the more accurate second stage. For example, if the maximum desired error is

5%, then the multiplication of A and B in Figure 2.4 cannot be computed using the first stage
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mantissa drop approximation.

The N bits after the MSB of the discarded mantissa are checked to tune the level of

approximation. The case of maximum error occurs when the discarded mantissa is furthest from

a power of 2, which occurs when its value is ’1’ followed by all ’0’s. When tuning, the goal is to

ensure values over Errormax are selected to run in the second stage, so the hardware must change

its selection depending on the value of the first bit of the discarded mantissa. If the first bit of the

discarded mantissa is ’1’, the first N tuning bits are checked for ’0s’, where N is selected based

on Errormax.

N = log2(
1

ErrorMax
)−1. (2.3)

If a ’0’ is found, the hardware runs in exact mode. Similarly, when the first bit is ’0’, the

first N tuning bits are checked for ’1’s instead. For each guaranteed bit in the Ai−1 to 1st indexes,

the maximum error is reduced by half. Checking only one bit corresponds to a maximum error

of 25%, two bits is 12.5%, etc.

MaxError =

∣∣∣∣∣n−1

∑
i=N

2−((n−i)An−i−1)−0.5

∣∣∣∣∣ . (2.4)

An example of CFPU multiplication is shown in Figure 2.5 for two 32-bit floating point

numbers in precise FPU and proposed CFPU with Errormax set to 12.5%. An Errormax of 12.5%

requires CFPU to check N=2 tuning bits. The conventional FPU finds the correct solution of

-510 by adding the exponents and multiplying the two mantissa, while XORing the sign bit to find

three parts of the output data. Our design first compares the mantissas, which both contain a

series of 3 identical bits, so operand A is selected for discarding. Next CFPU checks the first
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Figure 2.5. An example of 32-bit multiplication running on proposed CFPU first level approxi-
mation using N=2 tuning bits.

mantissa bit and the N tuning bits after that. In this case, the first mantissa bit is ’1’, so the next

two bits are checked for ’0’ to determine if the value is below the desired error rate. When two

tuning bits are checked, the maximum error is 12.5%. In this example, both tuning bits are ’1’,

so the calculation continues in approximate mode and the mantissa from the value 8.5 is copied

to the output value. The resulting output is -544, which deviates 6.67% from the correct value of

-510 and falls below the desired Errormax.

2.3.4 Second stage Shift and Add

If the first stage produces a result which has the error greater than Errormax, CFPU

activates the second stage instead. It has greater accuracy than the first stage but higher energy

cost. The energy draw of the second stage is less than that of the exact hardware.

Some applications when running with only a single level of approximation, they require

a high percentage of multiplies to be run in exact mode. FFT, MersenneTwister, and DwtHaar1D

require almost 50% of their operations to be run on the CFPU exact mode to maintain output error

below 10% as shown in Table 5.5. Running this high a percentage of operation in exact mode

limits potential energy savings, so the addition of the second level of approximation to CFPU

allows more of the multiply operations to be approximated and while maintaining acceptable

output error.
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Figure 2.6. Second stage shift and add in CFPU

Our 2nd stage approximation shifts and adds the kept mantissa with itself to produce

a value closer to the exact output. Our hardware detects the positions of the first two ’1’ bits

in the discarded mantissa. Figure 2.3 shows the overall flow of CFPU. The first level uses the

fractional bits directly, Frac 2, while the second level uses the shifted value of Frac 2 summed

with the original value of Frac 2. Frac 1 provides tuning bits to predict if the error for the first

level is too large. If it is, then the second level error is predicted. If this predicted error is also

too great, the two mantissa values are multiplied together to produce an exact result.

Figure 2.6 demonstrates the shift and add design. The first ’1’ bit position, P1, is detected

by hardware and determines S, the shift amount, where S is the number of mantissa bits minus the

bit position. The mantissa used in the output is shifted S positions right and added its unshifted

value. The second ’1’ bit is used for tuning and helps determine the maximum error between

the calculated result and the approximate result. The maximum error decreases the further the

first ’1’ bit is from the MSB because of the shift and added mantissa decreases relative to the

original mantissa. The closer the second ’1’ bit, P2, is relative to the first, the higher the error in

the result. If the two ’1’ bits are adjacent, the shift and add value will be up to 50% smaller than

necessary to reach an exact result.
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MaxError =
P1

∑
i=0

2−(BP1−i−1). (2.5)

The maximum error for the second level is based on the P1 within the discarded mantissa.

The further P1 is from the MSB, the lower the maximum error will be.
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× +
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1 1 1 1 1 1 1 0 ... -510 1

×

Sign Exponent Mantissa

=

Second Stage Functionality

1 0 0 0 0 0 1 0

1 0 0 0 0 1 1 1

1 1 1 0 ...14-bit shift

+Hidden 1

First 1 bit occurs in position 4

A:

B:

C:

Figure 2.7. Example of shift and add. Produces exact result, while first stage does not.

Figure 2.7 provides an example of the computation which the first stage design computed

with 6.67% error as shown in Figure 2.5. In this example, P1 is in the fourth MSB, so the shift

value is 4. Each mantissa contains a hidden ’1’ bit left of the MSB which must be accounted for

and shifted in. The mantissa from B is shifted left by 4 bits to create the value ’0001111...’ and

added the unshifted value ’1110000...’ to produce the approximate output. In this example, the

second stage design calculates the output exactly. The error decreases from 6.67% calculated by

the first stage to 0% from the second stage while consuming less energy than the exact multiply

operation.

In cases where there is only one ’1’ bit in the mantissa, the shift and add approach

produces exact results. In this case, the discarded mantissa is effectively a power of 2 and as
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such resolves to an integer value by which to shift the kept mantissa.

Running on Exact Hardware

The output error produced by the second stage approximation can still exceed Errormax,

so some of the computations must be run on the exact hardware. Similar to the mantissa

discarding approach, we use a threshold value to determine which values are run on the exact

hardware. We search the discarded mantissa for the second occurrence of a ’1’ bit, P2. The

position of P2 relative to the first bit, and P1 relative to the MSB determines the threshold value,

V . The threshold is calculated as V = S+(P1−P2), where S is the shift amount. The minimum

threshold occurs when P1 = 22 and P2 = 21, the upper MSBs, giving S = 1 and V = 2. V = 2

corresponds to a maximum output error of 25% on an individual operation. As V increases, the

maximum output error becomes 50%×2−V .

V > N = log2(
1

ErrorMax
−1). (2.6)

V must be greater than N, the number of tuning bits, in order to guarantee the result with produce

an error below Errormax If the output error still exceeds Errormax, the operation runs on exact

FPU hardware instead.

The shift and add approach is more complex and power intensive when compared to

the basic mantissa discard approach. The additional logical overhead and extra power draw

make it viable as an intermediate option to reduce output error without requiring the full power

consumption of the exact hardware. Shift and add is more accurate than mantissa drop, but if a

user requires even greater output accuracy, operands producing highly erroneous results are sent

to the exact hardware. The user can configure output accuracy by adjusting Errormax value for

both stages.
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Figure 2.8. Circuitry to support adaptive operand selector and tuning the level of approximation
in CFPU.

2.4 CFPU Hardware Support

Figure 2.8 shows the circuitry to enable CFPU adaptive operand selection and accurate

tuning. We implement adaptive operand selection by checking the mantissa bits in both input

operands. Our design compares the mantissas to determine which produces the lowest output

error. If one mantissa has bits which are all zero, the second mantissa is copied to the output to

produce an exact result. To ensure the mantissa which produces the greatest error is discarded,

the hardware must locate and discard the mantissa furthest from 1.5. The further the discarded

mantissa is from 1.5, the lower the output error. The circuit examines the two input mantissas and

detects the one with the longest chain of continuous 1s or 0s starting from the first bit. A chain

of zeros represents a mantissa close to 1, and similarly, a chain of ones is closer to a mantissa of

2. The mantissa with the longest consecutive chain of either zeros or ones is copied to the output

and the other discarded.

As Figure 2.8 shows, the detector circuitry is a simple transistor-resistor circuitry which
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Figure 2.9. Circuitry to support CFPU with two level approximation.

samples the match-line (ML) voltage to detect the Ai−1,Ai−2, ...,A0 input operand. In case of any

’1’ bit in a mantissa, the sense amplifier detects changes in the ML voltage (ML=1). However, if

all mantissa bits are zero, no current passes through Rsense and the B operand mantissa is selected

as the output mantissa. To detect the ’1’ bit on Ath
i−1, ..., Ath

0 indices on CFPU, the sense amplifier

Clk needs to be set to 250ps. Based on the results, we can dynamically change the sampling

time to balance the ratio of the running input workload on the approximate CFPU core. The

operand selection happens by using two multiplexers which are controlled with our detector

hardware signal. Similarly, to tune the level of approximation, our design uses N bits (after the

first mantissa bit) of the selected mantissa to decide when to perform mantissa multiplication or

approximate it. The number of tuning bits sets the level of approximation, with each additional

bit reducing the maximum error by half. The goal is to check the value of the Ai−1, ...,Ai−N to

make sure they are same as the Ai. For this purpose, the circuitry selects the original value or

inverted values of the tuning bits for the circuitry to search. To make the design area efficient,

we use the same circuitry for adaptive operand selection and tuning approximation. For each

application, sampling time can be individually set in order to provide target accuracy.

CFPU with two level approximation requires similar hardware to perform adaptive

operand section. The two leading ’1’ bits in selected input operand are detected and their position

used to calculate the maximum error. If the estimated error is less than Errormax, shift and add
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is used, otherwise the result is computed on exact hardware. Figure 2.9 shows the proposed

hardware supporting two level approximating. The adaptive operand selector identifies the best

mantissa for use in the result and the tuning bits of the discarded mantissa are examined. If

the error is low, the best mantissa is copied directly to the output. Otherwise, a leading ’1’ but

detector identifies the bit positions of the discarded mantissa to predict the 2nd stage error. If

the 2nd stage error meets the accuracy requirement, a shift block and an adder block compute

the result mantissa. If the error of the 2nd stage is too great, the standard mantissa multiplier

hardware computes the result.
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Figure 2.10. Framework to support tunable CFPU approximation.

Table 2.1. Energy and performance improvement and average relative error replacing GPU with
proposed floating point multiplications.

Applications Sobel Robert Mean Lapla-
cian Sharpen Prewit QuasiR Blacksc-

holes
Average Improv.

Energy savings 84% 83% 81% 76% 75% 69% 72% 53% 72%
Speed up 21% 24% 27% 16% 20% 22% 12% 10% 19%

EDP improvement 8.3× 7.7× 6.4× 4.7× 5.3× 4.2× 4.1× 2.7× 5.4×
Error (%) 9.02% 1.19% 1.36% 1.96% 0% 0% 0% 6.79% 2.54%

2.4.1 Experimental Setup

We integrated the proposed approximate CFPU in the floating point units of an AMD

Southern Island Radeon HD 7970 GPU. We modified Multi2sim, a cycle accurate CPU-GPU

simulator [64], to model the CFPU functionality in three main floating point operations in GPU

architecture: multiplier, multiplier-accumulator (MAC) and multiply-add (MAD). We evaluated
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(a) Sobel

43210
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Tuning Bits

N
o

rm
a
li

z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(b) Robert

43210
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Tuning Bits

N
o

rm
a
li

z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(c) Mean

43210
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Tuning Bits

N
o

rm
a
li

z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(d) Laplacian

43210
0

0.2

0.4

0.6

0.8

1

Number of Tuning Bits

N
o

rm
a
li

z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(e) FFT

43210
0

0.2

0.4

0.6

0.8

1

Number of Tuning Bits

N
o

rm
a
li

z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(f) Mersenne

43210
0

0.2

0.4

0.6

0.8

1

Number of Tuning Bits

N
o

rm
a
li

z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(g) DwtHaar1D

43210
0

0.2

0.4

0.6

0.8

1

Number of Tuning Bits

N
o

rm
a
li

z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(h) Blur

Figure 2.11. Normalized energy consumption of enhanced GPU with a tunable single stage
checking N tuning bits for application run.

energy of traditional FPUs using Synopsys Design Compiler and optimized for power using

Synopsys Prime Time for 1 ns delay in 45-nm ASIC flow [65]. The circuit level simulation of

the CFPU design, such as the adaptive operand selector, has been performed using HSPICE

simulator in 45-nm TSMC technology. We first test the efficiency of enhanced GPU on twelve

general OpenCL applications from AMD OpenCL SDK [66]: Sobel, Robert, Mean, Laplacian,

Sharpen, Prewit, QuasiRandom, FFT, Mersenne, DwHaar1D, Blur and Blackscholes. In these

applications, roughly 85% of the floating point operations involve multiplication.

Our design is then tested using machine learning applications. Machine learning algo-

rithms are often error-tolerant allowing them to be run more efficiently on approximate hardware.

We examine three OpenCL benchmarks from the Rodinia 3.1 machine learning suite [48]. These

benchmarks are K-Nearest Neighbor(KNN), Back Propagation and K-means.

• K-means - Highly parallelizable clustering algorithm used in many data mining applica-

tions.

• K-nearest neighbor - Calculates the K nearest neighbors from given data. Calculates

euclidean distance from many data points in parallel.
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• Backpropagation - Used to train the weights in a neural network. Error values are propa-

gated through the network to retrain nodes and reduce output accuracy.

We propose an automated framework to fine-tune the level of approximation and satisfy

required accuracy while providing the maximum energy savings. Figure 2.10 shows the proposed

framework, consisting of the accuracy tuning and accuracy measurement blocks. The framework

starts by putting the CFPU in the maximum level of approximation when no tuning bits are

checked. Then, based on the user accuracy requirement, it dynamically decreases the level of

approximation 1 tuning bit at a time until computation accuracy satisfies the user quality of

service. The tuning is adjusted using a custom assembly instruction to set the approximation

level of the CFPU. For each application, this framework returns the optimal number of CFPU

tuning bits checked, providing maximum energy and performance efficiency. In future runs,

the detected optimal configuration is set using the custom assembly instruction prior to running

approximable code and disabled using the same instruction after completion of the code.

2.4.2 First stage CFPU

We first look at approximate multiplication. The proposed modified FPU can run entirely

in approximate mode while providing a level of accuracy that is still acceptable for many

applications. Table 2.1 shows the computation accuracy, energy savings, and speedup of running

eight general OpenCL applications on the approximate GPU. These applications achieve error

below 10% while using only first stage approximation. The energy and performance of proposed

hardware are normalized to the energy and performance of a GPU using conventional floating-

point units. Our experimental evaluation shows that our approximate hardware can achieve

to 72% energy savings, 19% speedup, and 5.4× energy-delay product for these applications

compared to the traditional AMD GPU, while providing an acceptable output quality less than

10% average relative error.
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Table 2.2. Ratio of approximate to total CFPU operations and average relative error running
applications in CFPU with single level approximation.

Tuning bits Sobel Robert Mean Laplacian FFT Mersenne DwtHaar1D Blur
Approx/total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error

0 bit 100% 9.02% 100% 1.08% 100% 1.36% 100% 1.96% 100% 73% 100% 38% 100% 94% 100% 11.1%
1 bit 96% 2.70% 97% 0.35% 98% 1.04% 96% 0.50% 54% 9.8% 60% 13% 66% 31% 82% 3.7%
2 bits 94% 0.74% 95% 0.10% 85% 0.03% 94% 0.11% 32% 8.3% 43% 8% 55% 12% 76% 0.92%
3 bits 93% 0.07% 94% 0.03% 85% 0.01% 93% 0.02% 21% 4.1% 33% 5.2% 53% 8.3% 62% 0.36%
4 bits 92% 0.01% 94% ˜0% 84% ˜0% 92% ˜0% 15% 2.3% 29% 3.2% 47% 0.7% 53% 0.21%
Exact 92% 0% 93% 0% 84% 0% 92% 0% 10% 0% 23% 0% 45% 0% 53% 0%

Table 2.3. Ratio of approximate to total CFPU operations and average relative error running
applications on CFPU with two level approximation.

Tuning bits Sobel Robert Mean Laplacian FFT Mersenne DwtHaar1D Blur
Approx/total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error Approx/Total Error

0 bit 100% 6.02% 100% 0.9% 100% 1.1% 100% 1.2% 100% 27.4% 100% 26% 100% 35.3% 100% 7.4%
1 bit 98% 2.3% 99% 0.12% 99% 0.3% 96% 0.50% 72% 7.3% 78% 5.4% 81% 18% 91% 3.5%
2 bits 96% 0.34% 97% 0.03% 93% 0.01% 97% 0.06% 64% 3.5% 66% 4.7% 77% 8.4% 79% 1.3%
3 bits 96% 0.34% 96% 0% 95% ˜0% 96% ˜0% 50% 3.2% 54% 2.6% 75% 7.9% 71% 0.59%
4 bits 95% 0% 96% 0% 95% ˜0% 96% ˜0% 41% 2.8% 47% 1.8% 59% 2.5% 66% 0.71%
Exact 95% 0% 96% 0% 93% 0% 95% 0% 28% 0% 38% 0% 45% 0% 60% 0%

Adaptive Operand Selection

The approximate multiply uses both exponents in its calculation, but discards one of the

mantissas, making an operation effectively a multiply by a power of 2. Therefore, a multiplication

by a power of 2 always results in an exact answer on our hardware. It is possible to reduce error

by ensuring the value of the discarded mantissa is equal to 1. This occurs when all the mantissa

bits are 0. In the 11 OpenCL applications we tested an average of 52% of multiplies involved

at least one power of 2. Hardware intelligently checking both inputs and adaptively discarding

mantissas results in more exact computations and greatly reduced overall output error.

Figure 2.12a compares the portion of multiplications which runs precisely on the proposed

CFPU with and without adaptive operand selection for the evaluated applications. Figure 2.12b

shows the impact of the adaptive operand selection on the computation accuracy of the proposed

CFPU. In random operand selection, the mantissa of the first input is always selected for

the output without comparing the potential error of each mantissa. The result shows that

adaptive operand selection significantly improves computation accuracy such that for all shown

applications, the average relative error decreases to less than 7%. This improvement is due to

increasing the portion of multiplications which are run precisely on the CFPU. We verify this by

looking at the percentage of precise CFPU operations using the adaptive selection technique. For
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(a)

(b)

Figure 2.12. a) The portion of precise CFPU computation in different applications and b) the
impact of adaptive operand selection on the computation accuracy. (Applications run partially
on exact hardware).

example, in Sobel application, 82% of the outputs are calculated exactly, with an overall relative

error of 16% when using random operand selection, while adaptive selection shows 92% of the

outputs calculated exactly, at an overall relative error of 9%. All operations in Sharpen, Prewit,

and QuasiRandom contain a mantissa of zero, so CFPU computes all results exactly. The image

processing applications Sobel, Roberts, Blur, Mean, and Laplace also involve many operations

that can be computed exactly with CFPU. Using adaptive operand selection to only select and

discard zero mantissas improves application accuracy by up to 8×.

Our work in [3] only utilizes a zero mantissa selection policy, which does not reduce

error significantly for many applications. the computation accuracy by up to 13× (8×) compared

to random operand selection (zero mantissa only).
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(a) Sobel

43210
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Tuning Bits

N
o

rm
a
li
z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(b) Robert

43210
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Tuning Bits

N
o

rm
a
li
z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)

(c) Mean

43210
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of Tuning Bits

N
o

rm
a
li
z
e
d

 E
D

P
 a

n
d

 E
n

e
rg

y
 (

G
P

U
=

1
)
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Figure 2.13. Normalized energy and energy-delay product of enhanced GPU with tunable two
stage CFPU.

(a) Exact (b) Approx (c) Tuned

Figure 2.14. Output quality comparison for Blur application running on (a) exact computing,
(b) approximate mode (PSNR = 25dB), and (c) tuned computing with PSNR = 34dB and 13%
run on precise CFPU.

The application showing the best accuracy improvement, Roberts, decreases from 13.6%

application error using random operand selection to 1.85% using zero mantissa only selection [3].

The improved adaptive operand selection further decreases the output error to 1.08%. Excluding

the three applications that only contain zero mantissa operations and get the best possible results,

our evaluation for 12 different applications shows adaptive selection reduces average error by

2.2× more than our previous work [3].
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Tuning

We show the efficiency of the proposed CFPU by running different multimedia and

general streaming applications on the enhanced GPU architecture. We consider 10% average

relative error as an acceptable accuracy metric for all applications, verified by [67]. We tune

the level of approximation by checking the N bits of mantissa in one of the input operands.

If all N tuning bits match with the first mantissa bit, the multiplication runs in approximate

mode, otherwise, it runs precisely by multiplying the mantissa of input operands. For each

application, Table 5.5 shows the average relative error and portion of running multiplications in

each application on exact and on approximate CFPU, when the number of tuning bit changes

from 0 to 4 bits. Increasing the number of tuning bits improves the computation accuracy by

processing the far and inaccurate multiplications in precise CFPU mode. Increasing the number

of tuning bits slows down the computation because a larger portion of data is processed on precise

CFPU. Figure 5.8 shows the energy consumption and energy-delay product of a GPU enhanced

with tunable CFPU using different numbers of tuning bits. Our experimental evaluation shows

that running applications on proposed CFPU provides respectively 3.5× and 2.7× energy-delay

product improvement compared to a GPU using traditional FPUs, while ensuring less than 10%

(1%) average relative error.

2.4.3 Second stage CFPU

Although proposed first stage approximate multiplication provides high energy savings,

the accuracy of computation depends on the application. For some applications, with quantized

inputs, e.g., Sharpen filter, the proposed design can work precisely with no average relative

error. Other applications, such as recognition algorithms like motion tracking and detection

applications, quantify changes in the input data allowing them to tolerate small amounts of

error. An approximate multiplier must be able to control the level of output error to ensure

close to exact results are calculated for these applications. Figure 2.15 shows the distribution
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of error rates for each multiply operation of two applications. In the case of Sobel, almost 90%

of the multiplies are by a power of 2 and are handled exactly by our approximate solution. The

remaining 10% of operations have incorrect values with error rates ranging up to 50%. The

Mersenne Twister application, on the other hand, has a evener distribution of error rates. While

about 12% of the computations have no error, the error rates are too randomly distributed to

provide acceptable overall error without additional optimization. For this application, the first

stage approximation does not provide sufficient accuracy on its own, so over 50% of operations

must be run on exact hardware to keep error below 1%.

(a) Sobel (b) MersenneTwister

Figure 2.15. Error distribution for applications.

Table 2.3 lists the hit rate of approximate hardware and average relative error for different

applications running on hardware using two levels of approximation. The result shows that

CFPU using two-level approximation can provide significantly higher accuracy compared to

single level approximation. This efficiency comes from the ability of CFPU to assign input

data to an approximation hardware which better classifies input data. Figure 2.4.2 shows the

energy consumption and energy-delay product of CFPU using a two-level approximation. The

result shows that accepting 10% (1%) average relative error, CFPU can provide 4.1× (3.2×)

energy-delay product improvement as compared to a GPU using traditional FPUs.To ensure

the quality of computation, Figure 2.14 compares the visual results of Blur running on precise

and approximate hardware. Our result shows that approximate computing creates no noticeable

difference between the precise and approximate result images.
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Table 2.4. Impact of one level CFPU approximation on accelerating Rodinia applications.

Tuning bits
Backpro K-nearest neighbor K-means

Approx/
Exact Error Energy

Improv. Speedup Approx/
Exact Error Energy

Improv. Speedup Approx/
Exact Error Energy

Improv. Speedup

0-bit 100 25.3% 3.25 2.25 100.00 2.5% 2.91 2.21 100.00 2.1% 2.70 1.80
1-bit 80.3 22.7% 2.65 1.84 55.0 2.1% 1.59 1.43 51.6 0.9% 1.68 1.31
2-bits 73.6 22.5% 2.32 1.70 32.0 0.6% 1.32 1.23 26.1 0.3% 1.19 1.14
3-bits 71.6 16.9% 2.16 1.67 17.4 0.3% 1.15 1.11 13.8 0.1% 1.33 1.21
Exact 67.3 0% 1.87 1.60 0.6 0% 1.09 1.06 0.01 0% 1.00 1.00

Table 2.5. Impact of two level CFPU approximation on accelerating Rodinia applications.

Tuning bits
Backpro K-nearest neighbor K-means

Approx/
Exact Error Energy

Improv. Speedup Approx/
Exact Error Energy

Improv. Speedup Approx/
Exact Error Energy

Improv. Speedup

0-bit 100 25.3% 3.25 2.25 100.00 2.5% 2.91 2.21 100.00 2.1% 2.70 1.80
1-bit 98.7 7.89% 3.16 2.22 87.8 1.0% 2.36 1.93 90.2 0.7% 2.31 1.67
2-bits 93.5 3.35% 2.84 2.08 59.7 0.6% 1.65 1.49 61.9 0.1% 1.64 1.38
3-bits 87.7 0.1% 2.54 1.95 40.2 0.2% 1.35 1.28 40.0 0.1% 1.33 1.21
Exact 67.3 0% 1.87 1.60 3.8 0% 1.03 1.02 0.01 0% 1.00 1.00

Table 2.4 and Table 2.5 list the energy efficiency improvement, speedup, and average

relative error of running Rodinia applications on CFPU with one and two levels of approximation.

The results are listed when the number of tuning bits changes from 0-bits to 4-bits. For machine

learning algorithms, CFPU with a single stage achieves 1.6× energy savings and 1.4× speedup

while ensuring less than 1% average relative error. Enabling 2nd stage approximation increases

energy savings to 2.4× and speedup to 2.0×, 50% and 40% improvements respectively. Fig-

ure 2.16 shows the energy and accuracy improvements for each optimization to the CFPU. In the

first case, mantissa discarding is used for every operation, resulting in the highest energy savings,

but poor accuracy. Adaptive selection reduces error but adds a small additional overhead. Tuning

is used to reaching accuracy requirements, but energy savings is decreased drastically because a

large portion of operations run on exact hardware. Finally, the second stage shift and add are

used to reduce energy, while still maintaining accuracy. Our evaluation shows that the proposed

CFPU design can achieve 4.1× (3.2×) EDP improvement while ensuring less than 10% (1%)

average relative error. The tested algorithms performed well when coupled with approximate

hardware.
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(a)

(b)

Figure 2.16. Improvements from CFPU optimizations for (a) energy and (b) output error.

2.4.4 Overhead & Comparison

The first stage adds a 3.4% area overhead to the FPU, while the second stage adds an

extra 6.2% area overhead. The energy overhead of a multiply operation when running on CFPU

in exact mode is 2.7%, which is negligible compared to efficiency and tuning capability that

CFPU can provide. In order to outperform the standard FPU, our design needs to run at least

4% of the data in the 1st or 2nd stage. We observed significantly higher percentages in all of the

applications tested on the proposed CFPU.

To understand the advantage of the proposed design, we compare the energy consumption

and delay of the proposed CFPU with the state-of-the-art approximate multipliers proposed in [5,

46, 47]. Previous designs are limited to a small range of robust and error-tolerant applications, as

they are not able to tune the level of accuracy at runtime. In contrast, our CFPU dynamically

predicts the inaccurate results and processes them in precise mode. CFPU tunes the level of
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Table 2.6. Comparing the energy, and performance of the CFPU using 3 tuning bits and previous
designs ensuring acceptable level of accuracy.

Power(mW) Delay(ns) EDP (pJs) Max Multiply Error Tunable
CFPU (3 Bits) 0.17 1.6 0.44 6.3% Yes
DRUM6 [5] 0.29 1.9 1.04 6.3% No
ESSM8 [46] 0.28 2.1 1.2 11.1% No

Kulkarni [47] 0.82 3.5 10.0 22.2% No

accuracy at runtime based on the user accuracy requirement. The ability to run CFPU in exact

mode and save power increases the range of applications that benefit from it. Table 2.6 lists the

power consumption, critical path delay, and energy-delay product of CFPU alongside previous

work in [5], [46] and [47] in their best configurations. We set CFPU to use 3 tuning bits, so the

maximum output error per operation is the same or less than the multipliers we compare against.

Tuning requires bit checks which increase energy consumption, so a CFPU configured to check 3

bits has slightly fewer energy savings than one configured to predict error. Our evaluation shows

that at the same level of accuracy, the proposed design can achieve 2.8× EDP improvement

compared to the state-of-the-art approximate multipliers for a multiply operation.

2.5 Conclusion

In this chapter, we proposed a configurable floating point multiplier which can approxi-

mately perform the computation with significantly lower energy and performance cost. CFPU

controls the level of approximation by processing the data in one of the three tiers: basic ap-

proximate mode, intermediate approximate mode, and on the exact hardware. The first stage

approximate mode discards one input’s mantissa and uses the second’s directly in the output to

save energy. Accuracy is tuned by examining the discarded mantissa to estimate output error.

When error exceeds a user-specified maximum, CFPU uses a 2ndlevel of approximation. This

mode uses a shift and add to increase accuracy. If the approximate output error is too high, the

multiply is run on exact hardware. Our results show that using first stage CFPU approximation

results in 3.5× energy-delay product (EDP) improvement compared to an unmodified FPU, while
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ensuring less than 10% average relative error [3]. Adding the second stage further increases

the EDP improvement, compared to the base FPU, to 4.1× for that same level of accuracy. In

addition, our results show the proposed CFPU achieves 2.8× EDP improvement for multiply

operations as compared to the state-of-the-art approximate multipliers.

CFPU is able to provide energy savings for many applications, but those with few powers

of two do not approximate well. Computational similarity within applications can be utilized to

save power. In the next chapter we discuss ALOOK, which exploits locality within applications

to avoid recomputing similar values.

Chapter 2 contains material from ”Runtime Efficiency-Accuracy Trade-off Using Config-

urable Floating Point Multiplier”, by Daniel Peroni, Mohsen Imani, and Tajana Rosing, which

appears in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

2018. The dissertation author was the primary instigator and author of this paper.
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Chapter 3

Approximate Computational Reuse

CFPU, described in the previous chapter, functions best in applications with many zero

bit mantissa values. Applications with randomly distributed mantissa values in the inputs, such

as neural networks, require an alternate approach. Many of these applications involve a large

number of redundant computations which can be exploited to save energy by using look-up

tables composed of associative memory [9, 28, 51, 59]. Commonly computed values are stored in

memory rather than recomputing the same result repeatedly. Computational look-up approaches

suffer from two main drawbacks. First, static tables can only cover a limited portion of small

applications that do not deviate significantly from the profiling dataset. Based on our testing, in

the Sobel application up to 75% of operations are redundant, however, a large static table with

can only avoid recomputing 40% of them. Second, existing computational reuse architectures

perform lookup sequentially and are tied to the GPU pipeline. These designs only improve power

efficiency, not performance.

In this chapter we propose an adaptive computational reuse approach, called ALOOK,

which dynamically updates values stored in associative memory at runtime to improve the energy

efficiency of GPGPU applications. To control the energy cost of ALOOK updates, we reduce

the number of writes by only replacing values in ALOOK intermittently. In addition, to the

best of our knowledge, we propose the first GPU-based computational reuse approach which

significantly exploits associative search to improve the GPU performance. ALOOK duplicates
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the first stage of the floating point unit (FPU) pipeline enabling processing and computational

reuse of two inputs simultaneously. Doubling the first stage adds less than 4.5% area overhead

to a conventional FPU. Using this architecture, ALOOK can parallelize the FPU computation,

unless ALOOK cannot match a stored value with either operation.

We examine the proposed techniques for a range of OpenCL GPGPU applications,

as well as several machine learning benchmarks from the Rodinia benchmark suite. We test

the efficiency of ALOOK by integrating it beside FPUs in an AMD Southern Island GPU.

Our evaluation shows that ALOOK provides 3.6× EDP (Energy Delay Product) and 32.8%

performance speedup, compared to an unmodified GPU, for applications accepting less than 5%

output error. The proposed ALOOK architecture improves the GPU performance by 2.0× as

compared to state-of-the-art computational reuse methods [2, 58] for the same level of output

error.

3.1 Related Work

Approximate memory based accelerators store common inputs and output pairs to imple-

ment computational reuse. The associative memory searches for the nearest distance value in

the table to return as the result for the given inputs [9, 53, 58, 59]. This method is effective at

saving power in applications with many identical or similar computations. Associative memory

is placed adjacent to FPUs to store commonly occurring data. In these designs, developers

must identify and profile key regions of approximable code for common inputs and outputs to

load into a static table. In [9], the authors propose a configurable associative memory which

relaxes computation by applying VOS to the non-volatile associative memory to trade accuracy

for energy savings. Work in [2] designed a novel associative memory based on non-volatile

memory which supports searches for nearest absolute distance, rather than Hamming distance

similarity. All existing work provide low hit rate on practical applications because their stored

values are static and cannot change to adapt to a running application. Work in [58] proposed a
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method which is capable of updating associative memory through online training. However, this

approach suffers from high overhead and energy cost.

We propose ALOOK, a dynamic lookup table capable of improving GPGPU performance

and reducing power use. ALOOK does not require code sampling and profiling prior to runtime

and reduces energy consumption by searching associative memory for previously computed

results. Unlike existing approaches in which GPU performance is bound by pipeline stages,

ALOOK is the first design which exploits the redundant GPU computation to improve the

computation performance.

3.2 Background

Resistive CAM accelerators can perform faster and more energy efficient computations

compared to general purpose floating point units. In order to have computation capability, lookup

tables need to have the capability of searching for closest distance row. However, conventional

CAMs do not have the ability to search for the nearest row. They can only determine a row

which exactly matches with the input pattern (if there is any). Implementing a fully digital

CMOS-based design, which can search for nearest row, is very inefficient in term of power and

area because it needs (i) bit level comparison of the input pattern and store values, (ii) to count

the number of matches in each row, and (iii) finally finding a row with the minimum distance.

To enable the nearest distance search capability, we design an Invert CAM (InvCAM) and then

exploit analog characteristic of the NVM-based CAM to efficiently search for nearest data.

3.2.1 InvCAM Cell

Figure 3.1 shows the structure of crossbar memristive CAM in normal and inverse (In-

vCAM) functionalities. In a conventional cell, the memristor devices and select lines are set such

that the ML stays charged during the exact matching. In a match, there is no leakage current

between the ML and ground, since the select line which stored 0 is connected to high resistance

(H). The ML current also cannot discharge from the cell with the select line of 1 because of
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same voltage across the memristor devices (even though the device is in low resistance mode).

In the case of a mismatch in conventional cells, the select lines bias with inverse values, where

the select line of a cell with low resistance (L) connects to the 0 and the high resistance to 1.

Therefore, the ML discharges using the L resistance. We change functionality of CAM such that

the ML counts the number of discharging cells in each row. InvCAM stores the opposite values

on memristor devices. In case of a match, a cell with low resistance discharges the ML, while in

case of mismatch the ML stays charged (as shown in Figure 3.1).

ML
S S

InvCAM

ML
S S

Match Mismatch

ML
S S

Conv. CAM

ML
S S

Figure 3.1. Conventional and InvCAM cell in match and mismatch operations.

In InvCAM rows (consisting of several InvCAM cells), each matched cell adds a new

discharging current component to the ML. So, during the search operation in InvCAM, all rows

start discharging, except a row where all bits are mismatched with input operands. However, all

InvCAM rows do not discharge at the same speed. In other word, in rows with more bit matches,
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Table 3.1. ML hit/sampling time in 4-bit InvCAM having different number of mis-
matches/Hamming distances (HD) and different CAM sizes

.

InvCAM
Mode

Number
of Matches

128
rows

256
rows

512
rows

1024
rows

2048
rows

Exact 4 0.7ns 0.9ns 1.5ns 2.1ns 2.8ns
1-HD 3 0.9ns 1.1ns 1.8ns 2.4ns 3.4ns
2-HD 2 1.1ns 1.4ns 2.2ns 2.8ns 4.1ns
3-HD 1 1.4ns 1.7ns 2.6ns 3.3ns 4.6ns
4-HD 0 1.8ns 2.3ns 3.2ns 3.9ns 5.2ns

the cells will discharge ML faster. We exploit this analog characteristic of memristor devices to

design a CAM which has the capability of searching for the nearest distance row. For robustly

detecting the closet row, InvCAM needs to have a limited number of cells in the bitline, because

a ML discharging current/time does not change linearly with the number of matches in a line.

For example, in a 16-bit InCAM, rows with 15 or 16 matches have very similar discharging

characteristics. In other words, to distinguish a row with the fastest discharging time, we require

an ultra-fast sense circuitry (˜ps delay). To address this issue, we limit the bitline size in each

CAM to <8-bits and use memristive devices with large ON resistances for search operations.

Short bitlines of InvCAMs help us to identify the difference between the number of mismatches

with reasonable detector circuitry delay. Table 3.2.1 shows the ML discharging current for a 4-bit

InvCAM with different numbers of matching bits and different InvCAM sizes. When all four

cells match the input operand, the ML has the maximum discharging current, which means it has

fastest discharging speed. Having a fewer number of matches results in slower ML discharging

current. In our design, rows with different number of matches have obvious discharging time

distances. We exploit this characteristic to design a CAM with the capability of finding nearest

hamming distance. This functionality is not easily implementable on conventional CAMs where

ML stay charged in the case of a match. However, here we could provide this functionality by

designing a circuity which can detect a row with the fastest discharging current.
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3.2.2 InvCAM Architecture

To find an appropriate nearest neighbor row, we consider hamming distance between input

data and stored values on a CAM. However, hamming distance metric is an aggressive metric

for finding the nearest row, since hamming distance does not consider the impact of each bit

indices in calculating the distance. In real computation, the most significant bits (MSBs) usually

have higher impact on computation when compared to the least significant bits (LSBs). We

exploit this feature to design a lookup table with lower power consumption and better accuracy.

Figure 3.2 shows the overview of proposed design. In our design, we split the R-row*N-bit

CAM block to m small size stages (i.e. B1,B2,Bm) where each stage contains N/m-bits. Partial

blocks search for input data in serial stages. The search operation starts from the block with

the most significant bit. Each block has the capability of configuring as a CAM or memory

block. In memory configuration, it uses sense amplifiers at the tail of vertical bitline to read the

memory rows. In CAM mode, each stage can find the nearest hamming distance row(s) using

the sense circuitry in the horizontal MLs. The sense amplifier finds the row with the fastest ML

discharging current. The nearest row corresponds to data with the maximum matching bits with

the input operand. After the sense amplifier, we have analog detector circuitry which can sense

the number of active rows in each CAM. As soon as the detector block senses an active row, it

stops the search on the current CAM stage and selectively activates the rows of the next stage

CAM. During the next cycle, a similar search on the second stage starts, but only in the selected

rows. This search operation continues until our design reaches the last stage with a row with

nearest distance to input operand.

For applications with multiple input operands, the first stage stores the first m-bits

corresponding to all input operands and then uniformly searches for the stored data with the

closest distance to the input key. All existing bits in the first stage have similar weight in our

nearest distance search. Based on the rows activated by this first stage, the search on the next

stages continues selectively.
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Figure 3.2. The overview of ALOOK structure using InvCAM blocks.
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Figure 3.3. Details of the sense amplifier, detector and buffer circuitries of ALOOK block.

Figure 3.3 shows peripheral circuitry which supports the nearest distance search. For

each CAM stage, we use three layers of peripheral circuitry to support nearest distance search.
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Figure 3.4. Example to show ALOOK search functionality in 4 stage search.

First, the sense amplifier reads the value of match lines (MLs) to find a row which matches with

the input data. Based on our cell design, a row with more matched cells will start discharging

the ML first. The matching results in a hit on the output of the sense amplifier. A detector

circuitry, shown in Figure 3.3, checks for hits in CAM rows. In the case of any active rows, (i) it

activates the access transistors to selectively activate the rows of the next CAM stage, and (ii)

sends signals to the sense amplifier of the current CAM stage to stop the search operation from

hitting additional rows. As our sense amplifier circuitry does not use a clock in its structure,

so the delay of the buffer stage has an important rule on the correct functionality of our design.

Because the detector circuitry is not an ideal circuit, and has a long delay, it may not be able to

immediately sample the active rows. This delay can result in several matched rows and missing

the rows which do not have minimum distance.

To better clarify the functionality of proposed multistage lookup, Figure 3.4 shows an

example of search operation on a 4 stage, 8 row table. The search operation starts from the

first stage, which is the most significant block, by searching for nearest Hamming distance row.

The hit rows on the first stage selectively activate rows of the second stage. The second TCAM

searches for the row nearest to 0010 on the three activated rows. The rows of the next TCAM

stage activate serially, such that the design has a single active row in the final stage.
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To guarantee the functionality of the proposed design, we add a buffer stage which has

two main rules: (i) The block needs to delay the sense amplifier hits while the detector senses

any active rows. In order to have stable detection, the delay of the buffer stage should be higher

than the delay of the detector circuitry. To set the size of the buffer and detector circuitry, we

consider 10% process variation on the transistors size and threshold voltage [68]. We designed

our circuity for the worst-case scenario where there is only a single hit row on the CAM rows

(maximum detector latency) and when CAM has a row with all matched cells and a row with a

single mismatch. As we explained before, the ML discharging current starts saturating with an

increase of the matched cells in each row. A row with all matched cells and a row with a single

mismatch have fastest ML discharging speed. (ii) The second rule of buffer is to sample the

activated rows (output of buffer stage) in case of a hit in detector circuitry.

The number of TCAM rows in the InvCAM structure depends on the precision of the

detector circuitry. The detector circuitry should be able to identify a single activated row in

CAM architecture. TCAMs with many rows suffer from large amounts of leakage currents

through the sense circuitry output, resulting in a wrongly identified matching row by the de-

tector. To have enough ratio between the leakage and matching currents, we need to have

IMatching >> N ∗ ILeakage, where the matching and leakage currents are the ON and OFF currents

of sense amplifier output respectively. We use a diode connected transistor beside the detector

resistance to control the OFF current (ILeakage) of different rows.

3.2.3 Tunable Approximation

ALOOK, as a stand-alone processing unit, can provide enough accuracy for several appli-

cations. As we explained, there are large amounts of redundant input operands in computation.

For example, in images, a large portion of background pixels are usually similar. Processing

these high frequency patterns provides enough computation accuracy even using small sized

and fast tables. However, uncommon/infrequent part of the workloads (with low data locality)
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cannot run accurately. To provide high computation accuracy for general workloads, we need to

store a large set of data in the tables, which results in high energy and performance overhead. To

address this issue, we use both the existing exact FPU and ALOOK partially for each workload’s

computation. For the majority of data, which has close distance to stored values, our design uses

approximate results to perform computation fast and efficiently, while the other part of input

data with large distance to the stored values, can run on a precise hardware. Our goal is to have a

hybrid computation which can set the level of accuracy by partially running the data on an exact

processor and ALOOK. When the input data is far from the stored values in ALOOK, the data is

sent to GPU pipeline to process.

ALOOK should have the ability of detecting the distance of input data to store values. As

shown in Figure 3.5, the first CAM stage uses different sense circuitry, compared to the other

stages, which can detect the ML discharging voltage corresponding to h-bit matching. Based on

the h value, we set the sampling pulse of the sense circuitry (THR) to find the rows which have

less than h-bit distance with pre-stored value. A detector circuitry checks the sense amplifier

output of all rows and activates the row driver of next CAM stage accordingly. However, in case

of missing data in detector circuitry, the EnL signal sends a signal to start running this data on

exact processor instead. Based on desired accuracy, changing the clock time of the sense circuitry

gives us different THR values. Using a late THR period, corresponds to deep approximation,

while fast sampling means precise computation on the existing processor.

3.2.4 Early search termination

Our evaluation shows that in several cases we do not need to go through all CAM stages

to find a nearest row. Instead, we can stop the search operation when the number of active rows

in a block becomes one. Going further to InvCAM stages is unnecessary when we already found

the row with the minimum distance, thus resulting in improved energy efficiency for the proposed

design. We also observed that this condition occurs frequently. Even in a CAM with many
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Figure 3.5. The sense circuitry of the first stage InvCAM in ALOOK structure

rows, searching a few stages of CAMs is enough to find the closest row. Therefore, our design

exploits Early Search Termination (EST) detector circuitry (shown in Figure 3.6) which can

identify a case that single CAM row is activated. EST is designed using an analog comparator

circuitry [69], which samples the same current that the detector is sampling and can identify the

case that a single row of a CAM is matched. Obviously, using ETS in more stages can accelerate

the search operation, however, it increases the energy and area of the CAM. Therefore, for all

tested applications in this paper we use EST circuitry in one of the middle stages to check the

number of row activations once and then stop further search operations. The best stage can be

found based on the configuration using profiling results from training mode.

Our design considers the impact of each bit indices on the computation accuracy by

searching for a closest input data starting from most significant blocks. In addition, serial search

operation reduces the number of active rows in TCAM block, since the rows of each can be

activated by the hit of the previous stage. This reduces the number of active rows stage by stage,

until we achieve a single row at the last stage. The energy savings achieved by selective row
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Figure 3.6. Early search termination technique using analog comparator block

activation depends on the InvCAM block size. InvCAM with smaller blocks reduces the overall

number of active rows through CAM stages. However, this requires a larger number of sense

amplifier and detector circuitries. The tradeoff between the size and energy consumption also

impacts the computation performance.

3.3 Adaptive Lookup Design

Many GPGPU workloads show large amounts of computational data locality with identi-

cal or highly similar operations recomputed repeatedly. In these applications, inputs and output

pairs for frequently used operations can be stored in associative memory. Inputs for operations

are used to search the memory to find the nearest distance match and return the associated output.

We propose ALOOK, a dynamic lookup table capable of adapting to short-term data

locality, thus improving GPGPU performance and reducing power use by eliminating redundant

computations. Our design provides three major improvements over previous work. First, we

eliminate the need to profile the application before runtime for common operations to store in

the table. Second, ALOOK updates data entries dynamically to adapt to changes within the
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Figure 3.7. The process flow for a) the static lookup table [2] and b) the dynamic ALOOK.

application over time. Third, ALOOK uses multiple small lookup tables perform multiple parallel

checks and speed up applications, unlike prior designs which only offer energy improvements.

3.3.1 Lookup Overview

Placing a small lookup table next to each floating point unit enables approximate com-

putational reuse [2, 54]. Figure 3.7a) shows the pre-run and profiling stage of a static table [2].

During the pre-run stage, the user must flag the section of OpenCL code they wish to approxi-

mate. Then, the application is profiled with a training data set and the input and outputs of each

arithmetic operation is recorded. Each unique I/O pair is counted and the pairs are sorted by

frequency. Prior to a non-profiling run, the top N most common pairs are loaded into the lookup

table, where N is the number of entries the table can store. At run-time, the lookup table searches

for each operation’s input values and returns the corresponding output. The table returns the
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nearest distance match rather than recomputing the result. The nearest distance match is not

guaranteed to be an exact match, so the final application accuracy is managed through error

control. Error for a match grows as the difference between the input values and the closest match

increases. Error control identifies matches with a large distance from the inputs and assigns them

to hardware to compute exact results, while close matches are used directly as output, saving

power.

Figure 3.7b) shows the improvements, in green, ALOOK offers over previous work.

ALOOK entirely eliminates the prerun profiling steps required for static designs. The user must

still flag code safe for approximation, but no longer needs to sample the application for I/O

pairs and identify the most common ones. At run-time ALOOK searches for the nearest distance

match to each input within the table. To speed up applications while still allowing accuracy

control, two incoming operations are run in parallel. Parallel data lookup searches two duplicate

tables simultaneously, then a reorder buffer ensures results are output in the order they arrived

in the pipeline. The output values associated with the nearest match is used as the result for

the operation rather than running on the FPU. Accuracy checks are made on each operation

using error control, shown in Figure 3.7 in light blue, to ensure close matches for operations.

ALOOK supports the closest distance search within a user set maximum error. If the input

data has distance larger than the specified distance, it will not match any entries. Instead of

using poor matches, the results are computed on exact hardware and the newly computed values

replace stored entries in the table using an LRU policy. Rewriting on every miss is unnecessary,

so rewrite control is added improve the energy efficiency of ALOOK. Updating the entries

with recently computed values increases the search hit rate, reducing energy consumption and

accelerating a wide range of applications.

3.3.2 Multi-Table Parallel Lookup

A critical drawback of prior lookup based designs is the lack of application acceleration.

Placing a lookup table within the FPU saves power, but is tied to the pipeline [2]. Approximated
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Figure 3.8. Implementation of ALOOK alongside FPU within AMD Southern Island Architecture

the pipeline stages for operations are clock gated to save power, but these stages are not utilized.

Only one operation is searched for at a time, rather than checking several operations simultane-

ously. We place multiple tables outside the FPU to check several instructions concurrently. For

each search that returns a usable result, the operation is removed from the input buffer avoiding

the FPU altogether and accelerating the application.

Figure 3.8 shows ALOOK integrated into a GPU. We place ALOOK within each GPU

core immediately after the operand collector, ensuring the values are available for lookup. To

build the lookup tables for ALOOK, we use CAM, proposed in [2]. ALOOK provides nearest

distance match using the inputs from each arithmetic operation run on the GPU core. The

number of bit mismatches between the match and the input values predicts the output error. A

better match has a lower error, while further distances lead to worse approximation. To control

application accuracy, the operations are split between using results from ALOOK and running on

exact FPU based on the match distance. Users set the maximum allowed error for individual
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matches to trade off between accuracy and performance/energy. Higher error tolerance results in

better acceleration and energy savings.

Figure 3.9(a) shows associative memory used to reduce energy consumption of an

FPU [2]. This configuration places the lookup table adjacent to the first stage of the FPU as the

search operation takes one cycle. When a match is detected, the FPU stages for the operation are

clock gated to save power and the output is used rather than recomputing the value. This approach

only checks one operation at a time, preventing application acceleration. ALOOK uses multiple

lookup tables before the FPU pipeline to search incoming instructions in parallel. Figures 3.9(b)

shows the implementation of ALOOK. To accelerate applications, we use multi-table parallel

lookup, an architecture which compares multiple inputs in lookup tables simultaneously. The

lookup table is placed outside the FPU. Incoming operations are stored in a queue before the

FPU. Up to five of the inputs are searched for in the lookup table at the same time. The state of

matches can be one of the following. (i) If one or more searches results in a hit, the stored value

associated with the match is output by ALOOK. All matched operations are removed from the

queue and the remaining ones are moved to the checked queue. (ii) If no matches are detected,

values that received the passthrough signal are removed from the queue and the rest are moved to

the checked queue. Values in the queue are processed sequentially. As the queue fills, we disable

lookup tables to avoid overflows.

The lookup table hit rate has a substantial impact on the performance of ALOOK. Hit

rate is impacted by the level of approximation allowed and the size of the lookup table (LUT). If

three values are processed in parallel and two can be approximated, the performance increases

by 3×. However, if the hit rate is low and all three miss, the performance remains the same, but

the search operation increases overall energy consumption. The number of lookup tables enabled

is adjustable. Each core has multiple tables, but the exact number represents a design trade-off.

Additional tables improve acceleration but increase power draw. One method we use to improve

our energy savings is to utilize multiple tables, but disable some during periods of low hit rate.

As the number of good matches decreases, the checked queue will become full and additional
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Figure 3.9. (a) Computational reuse in conventional FPU within GPU [2] (b) ALOOK architec-
ture integrated lookup tables outside of FPU.

tables are disabled. For example, for an application with 80% hit rate, we need to enable all five

lookup tables, where four inputs (out of five) on average will be bypassed with a match from

the table. Input which misses, runs on the exact GPU pipeline. If on average more than one of

the inputs misses, a queue of operations pending to be computed forms. A table cannot perform

another search after a miss until the inputs enter the FPU pipeline. For example, if two tables

miss, only the three which hit can be checked in the next step. Therefore, the number of active

lookup tables is roughly based on the recent average hit rate. The lookup tables are mirrors of

each other, so increasing them does not impact hit rate. However, as each incoming operation is

only searched for in a table once, adding additional tables primarily impacts area overhead.
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Figure 3.10. Increase in hitrate for a dynamic table over a static table [2] for exact matches and
approximate matches with less than 5% error

3.3.3 Rewrite Control

Developers can adjust the level of accuracy for individual operations for each section of

code, with the default setting only providing exact matches. In this way, even applications with

high precision requirements benefit from ALOOK. If the error of the closest match is greater

than a user-specified error max, the output is run on exact hardware instead. Error control selects

which of the two possible results to output. When a search match exceeds the maximum error,

the tables must be updated, adding additional overhead due to write costs. Rewrite control

determines when and how often to rewrite data in the table. We show reducing rewrite rate

decreases overhead without significantly impacting hitrate, resulting in higher energy savings.

We reduce the frequency of ALOOK rewrites in order to improve energy efficiency.

Decreasing the rewrite rate saves energy, but also results in fewer hits. During periods of high

hit rates, rewriting on misses can remove common operations prematurely. ALOOK replaces

infrequently used entries with a least recently used (LRU) replacement policy. When a close

match is found for given inputs, the counter is set to zero and the other counter values are

incremented. When a miss occurs in ALOOK, the value with the highest count is evicted and

replaced with the result computed on exact hardware. To enable LRU policy we use m bits, based
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Figure 3.11. Operation hitrate and energy improvement over unmodified GPU for a static lookup
table [2] compared to ALOOK.

on the number of entries in the table, to keep track of the values in the dynamic lookup table.

When two misses occur during parallel data lookup, only the furthest distance miss is used to

update the tables to ensure consistent values.

For a hardware implementation, we used a Content Addressable Memory (CAM) using

Non-Volatile Memory (NVM) [70, 71]. In particular, we used memristor CAM with 2 transistors

and 2 resistors (2T-2R) for our implementation. Write speeds in CAM memory are slower and

consume more energy than reads. When processing code sections with low data locality, the

cost of constantly rewriting data becomes high and penalizes energy savings. We decrease the

number of writes by only replacing values in ALOOK once for every 8 misses as determined by

our experimental results. In Section 3.4.4 we examine the trade-off between energy efficiency

and update frequency.

A dynamically updating table can handle larger and more varied data sets than static

designs. Static profiled data may not accurately represent the runtime data. A training set

needs to be varied enough to cover a wide variety of inputs, but this generalization can provide

sub-optimal hit rates and accuracy. The profiling data set may not accurately reflect all use

cases and contain gaps for some real-world cases. In many workloads, the data locality changes
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significantly over time. The more distinct regions a data set has, the harder it is for a small static

lookup table to cover the changes over time.

3.4 Experimental Results

3.4.1 Experimental Setup

The proposed ALOOK is implemented beside each floating point unit on an AMD

Southern Island architecture GPU, Radeon HD 7970 device. We use Multi2sim, a cycle accurate

CPU-GPU simulator and modify the kernel code for profiling and runtime simulation [64]. We

test the design using 8 OpenCL applications: 5 from AMD APP SDK v2.5 [66] and 3 from

the Rodinia 3.1 machine learning benchmark suite [48]. From AMD APP SDK we test Sobel,

Roberts, Sharpen, MersenneTwister, and BlackScholes. From Rodinia we test Knn, K-means,

and BackProp. We use the Caltech 101 computer vision dataset [72] for image processing

applications. For other applications, we use application specific data sets. For image processing,

we define PSNR as the accuracy metric. For general applications working with numbers, the

average relative error is defined as the accuracy metric. For each machine learning algorithm,

we define a unique accuracy metric to test the impact of approximation. We extract frequent

patterns of four GPU floating point units; adder (ADD), multiplier (MUL), multiply accumulator

(MAC) and square root (SQRT). To estimate core performance we use a 6-stage balanced FPU

generated by FloPoCo [73] optimized using Synopsys Design Compiler [65]. The circuit level

simulation of TCAM design performs using HSPICE simulator on 45nm technology. We use

the Vdd=0.85V for blocks without accepting any computation error. To guarantee the impact of

variation on circuit level design, we consider 10% process variation on the size and threshold

voltage of transistors by running 10,000 Monte Carlo simulations.
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3.4.2 Static vs Dynamic

ALOOK adapts to previously unseen applications by updating the values over time.

Figure 3.10 shows the improvement a dynamic table provides over a same sized static table [2].

The dynamic table updates when it cannot provide a match, replacing old entries with values

computed on exact hardware based on an LRU policy. On average the dynamic table improves

the hit rate of exact matches for the tested applications by 6% compared to an identical static

design. When matches are guaranteed to less than 5% error, the hit rate improvement increases

to 44.8%. The adaptability of ALOOK allows fewer entries to produce the same or better results

than static memory, resulting in significantly less area overhead and search power. In our testing,

static tables require up to 8× more entries to provide comparable hit rates to ALOOK. The

MersenneTwister application has temporal locality but exhibits drastic changes in computational

values over its run. As shown in Figure 3.10, a static design using approximate matching provides

5% hit rate, while ALOOK can approximate 70% of operations. Despite 65% difference in hit

rate, our adaptive approach produces less than 10% overall output error.

Figure 3.11 shows the hit rate and efficiency improvement of a GPU enhanced with

a static table [2, 59] compared to ALOOK as the number of entries increases from 16 to 128

rows. We allow up to 5% error on individual matches. Before the application is run, the static

table loads N pre-profiled pairs and these values remain fixed for the run duration. ALOOK

does not require pre-profiled data, instead of updating entries on search misses allowing it to

provide higher hit rates. Based on our results the best average energy improvement occurs

when ALOOK has 32 rows, with an average energy improvement of 2.7× for the eight tested

applications. The higher activation rate of larger tables is negated by the increased energy needed

to search the additional rows. Our evaluation shows that for same sized tables with similar

computational accuracy, ALOOK provides an average of 2.1× better energy savings compared to

a static table [2].
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3.4.3 Multi-Table Parallel Lookup

Using more than one table allows CFPU to accelerate applications. We examine the

trade-offs associated with increasing the number of lookup tables. More tables increase the area

overhead and power consumption of CFPU. Figure 3.12 shows acceleration as the number of

tables increases for the MatrixMultiply application with less than 5% error. The application using

one table has an overall hit rate of 86%. If five tables are used, 49% of checks result in all five

tables identifying a close match, while the remaining have 4 matches or fewer. Each miss must

be computed on exact hardware and prevents speedup. Additional tables provided decreased

benefits to performance as the percentage of operations making use of all tables decreases.

3.4.4 Variable Rewrite

When a good match is not detected in ALOOK, the value must be computed on exact

hardware and written to the CAM. Our design needs to have enough data entries so the effective

hit rate overcomes the energy overhead for write operations. Increasing the number of entries

shows diminishing returns for hit rate improvement and also raise the energy and time required to

search the table. Figure 3.13 shows ALOOK hit rate and energy saving for decreased rewrite rates.
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(a) Sobel Hitrate (b) Sobel Energy

(c) Backprop Hitrate (d) Backprop Energy

Figure 3.13. Hitrate and energy improvement as rewrite rate is decreased for Sobel and Backprop
applications

Initially, a write occurs for every search resulting in a poor match. As rewrite rate decreases, the

energy savings levels out and then begins to rise slightly. Decreasing rewrites past a point results

in the energy savings from decreased matches impacting energy more than saving energy from

fewer writes. Based on our results, then it is most efficient to rewrite once for every 8 misses,

roughly 12% of misses.

3.4.5 Accuracy-Energy Trade-off

In this section, we discuss the impact of hardware approximation when trading accuracy

for energy savings. In section 3.3.3 we discuss that ALOOK has the capability to control

maximum match distance to control the level of approximation. Accuracy is controlled by setting

the maximum acceptable distance of input data to the stored value in ALOOK. If the closest

distance match error is more than the specified maximum, the input data is sent to precise FPUs

to process. We adjust the maximum error distance to trade energy and accuracy in different

applications. Figure 3.14 shows the energy-delay product (EDP) and performance speedup

64



which each application can achieve when running different applications using an ALOOK with

32 rows. As the error distance increases, more values are computed using ALOOK resulting in

better speed up and more energy savings. The overall error is represented by the red line. In

the eight tested applications, ALOOK provides 3.6× EDP (Energy Delay Product) and 32.8%

performance speedup, compared to an unmodified GPU, with less than 5% output error.

(a) Sobel (b) Roberts

(c) NN (d) Kmeans

Figure 3.14. Normalized EDP and performance speedup of ALOOK enhanced GPU for increas-
ing maximum error distances.

Figure 3.15 shows the accuracy of the K-means application when the ALOOK is in exact

and approximate modes. For clustering algorithms, the accuracy is determined by identifying

the number of incorrectly grouped points. The points wrongly classified by the approximate

hardware occur at the boundaries of two clusters.

3.4.6 Comparison

We compare the efficiency of the ALOOK with two state-of-the-art approaches enabling

computational reuse in GPU architecture. First, ReCAM [9], which utilizes a static but config-

urable table to enable approximation, and second ACAM [58] which uses online learning to

fill the lookup table values during runtime. We have implemented both ReCAM and ACAM
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approaches in their best configurations which results in maximum energy saving. All evaluations

have been performed using 32-row table and with 5% maximum quality loss. Table 3.2 com-

pares the energy-delay product improvement of different designs as compared to conventional

GPU architecture. Our evaluation shows that ALOOK can achieve 2.9× and 2.0× higher EDP

improvement as compared to ReCAM and ACAM respectively. The higher ALOOK efficiency

comes from (i) the low hit rate of the static table in ReCAM and the significant cost of the

online learning algorithm to update the lookup table values in ACAM. (ii) ALOOK is capable of

speeding up the GPU computation, while ReCAM and ACAM work with the same performance

as conventional GPU.

3.4.7 Overhead

We modify four main floating point units in GPU architecture by duplicating their first

stage and adding an associative memory next to them. The tested FPUs utilize deep pipelines

with 23 stages, so the duplication of the first stage adds less than 4.5% area overhead to a

conventional FPU. In this chapter, we exploit a crossbar lookup table that can be integrated at

the top of FPUs with minor area overhead. Our evaluation shows that the peripheral circuits

which enable the nearest search operation adds an extra 0.3% area overhead to the FPU (for a

table with 32 rows).

The ALOOK search operations happen in a single cycle and in parallel with the FPU’s

computation, thus ALOOK does not add any performance overhead to the GPU. However, a miss

in ALOOK adds 5.7% energy overhead to FPU operations, since we still need to pay the cost

of FPU to process such data. To ensure no energy overhead of a particular GPGPU application,

ALOOK needs to produce a hit rate of 17%. This hit rate is much lower than the numbers we saw

in the tested applications.
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(a) Exact (b) Approx

Figure 3.15. Output quality comparison for K-means application running on (a) exact hardware,
(b) ALOOK in approximate mode resulting in 2.9% error.

Table 3.2. EDP improvement of ALOOK and other approximate approaches on GPGPU with
5% maximum quality loss.

ReRAM [9] ACAM [58] Alook ReRAM [9] ACAM [58] Alook
Sobel 1.1× 1.3× 2.6× BlackScholes 0.9× 1.6× 3.8×
Robert 1.2× 1.6× 4.0× NN 1.6× 1.9× 3.5×

Sharpen 1.4× 1.9× 6.3× Kmeans 1.2× 2.6× 5.9×
Merrnse 0.9× 1.3× 2.7× Bakcpropag 1.7× 2.4× 3.5×

3.5 Conclusion

Associative memory in form of lookup table can decrease the energy consumption of the

parallel processor by exploiting data locality and reducing the number redundant computation.

We propose an adaptive associative memory, called ALOOK, which accelerates GPGPU compu-

tation by searching for the nearest distance value for incoming FPU operations. ALOOK consists

of a small dynamic lookup table which adapts over time to an application. Our evaluation shows

that ALOOK provides 3.6× EDP (Energy Delay Product) and 32.8% performance speedup,

compared to an unmodified GPU, for applications accepting less than 5% output error. When

both ALOOK and CFPU are used in conjunction, average EDP improves to 5.6×.

Both ALOOK and CFPU can be used to reduce energy of many applications. While

ALOOK provides speedup, in many applications over 50% of the warps have threads running in

both approximate and exact mode. The cores within the warp must remain in lockstep, so these
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mixed warps are not accelerated. The next chapter addresses methods for avoiding bottlenecks

and accelerating warps within GPUs.

Chapter 3 contains material from ”ALook: Adaptive Lookup for GPGPU Acceleration”,

by Daniel Peroni, Mohsen Imani, and Tajana Rosing, which appears in Asia and South Pacific

Design Automation Conference (ASP-DAC), 2019. The dissertation author was the primary

instigator and author of this paper.

Chapter 3 contain material from ”Resistive CAM Acceleration for Tunable Approximate

Computing”, by Mohsen Imani, Daniel Peroni, and Tajana Rosing, which appears in IEEE

Transactions on Emerging Topics in Computing (TETC), 2016. The dissertation author was a

primary instigator and the second author of this paper.

Chapter 3 contains material from ”ARGA: Approximate Reuse for GPGPU Acceleration”,

by Daniel Peroni, Mohsen Imani, Hamid Nejatollah, Nikil Dutt, and Tajana Rosing, which

appears in IEEE Design Automation Conference (DAC), 2019. The dissertation author was the

primary instigator and author of this paper.
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Chapter 4

Warp level approximation

Our previous chapters described methods for approximating operations within GPU

cores, but do not consider how these cores work in conjunction with each other. Instructions

on GPUs are issued in groups called warps or wavefronts. In Nvidia and AMD architectures,

these groups must wait until all operations are completed before processing the next task. This

means individual operations can be sped up, but if a single operation must be computed using

the exact hardware, then there is no performance benefit. Prior work [?, 2, 74] offers reductions

to energy but their naive implementations lack the necessary load balancing required to improve

warp performance.

In this chapter, we propose AWARP, a novel approximate computing architecture for

accelerating warps run on GPUs. AWARP predicts the approximation error based on incoming

operations and assigns the most inaccurate to compute in exact mode. Warp passthrough allows

groups of threads with a large majority of hits to be accelerated with a minor penalty to output

accuracy. We apply warp value trading to ensure approximate operations are grouped together

in warps which can then be sped up. To estimate power we use a cycle-accurate simulator,

Multi2sim, to implement our design on an AMD Southern Island 7970 GPU. We test 6 GPGPU

applications and show our design speeds up the applications by an average of 1.8× and improves

EDP by up to 5.7× for less than 5% application error compared to the unmodified GPU. We also

test AWARP by modifying Tensorflow, then running LeNet and ResNet neural networks using
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approximation on an Nvidia 1080 GPU. AWARP speeds up the inference of the networks by up

to 2.4× with less than 1% loss in classification accuracy.

4.1 Related Work
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Figure 4.1. (a) The percentage of warps which are bottlenecked by exact operations during
approximation and (b) the theoretical and realized performance of a NN sped up by approximate
hardware

Many GPGPU applications, such as neural networks, involve many FPU multiplies. Float-

ing point involves several sub-computations, the most expensive being mantissa multiplication.

Our previous design, CFPU, proposes a floating point multiplier which avoids computing the

resultant mantissa by using one of the input mantissa directly and dropping the other. RMAC [4]

uses addition in order to achieve better accuracy. These designs add a small decision circuit to

the FPU to enable it to compute in an approximate or exact mode. The error for operations can

be predicted by examining the input values. This allows a tuning parameter to be set to control

computation accuracy by running a portion of results in the exact mode. Although the addition in
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Figure 4.2. Overview of how AWARP takes user settings and approximates warps

RMAC is more computationally expensive than copying a mantissa in CFPU, fewer operations

need to be run in exact mode. This results into better overall energy savings for the same level of

accuracy. While these approaches provide good energy improvements for GPGPU applications,

they do not accelerate applications well. The designs are implemented naively leading to warps

running both approximate and exact computations simultaneously. Instructions are issued in

warps of 32 threads, so a single operation run in exact mode bottlenecks the entire group. Prior

work has proposed approximate warps which disable some threads in warps and use results

from adjacent cores as output [75, 76]. This design does not speed up individual warps as it still

requires exact computation on the remaining cores.

In this work, we remedy the shortcomings of prior work for approximating GPU com-

putation. Our design, AWARP, is a framework which speeds up warps through approximate

computation. AWARP groups safe to approximate operations together to be issued together in

approximate warps allowing flexible accuracy control without sacrificing performance.
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4.2 AWARP Architecture

Our design, AWARP, is a framework for integrating approximate arithmetic units into

GPUs while enabling significant performance improvements at warp level. We propose a novel

method of balancing data between warps to allow improved performance while ensuring a high

level of user control over application accuracy.

4.2.1 AWARP Framework

Applications can have a wide range of accuracy requirements, so AWARP allows users to

adjust the approximation rates of applications with high granularity. AWARP identifies operations

with the highest error and runs them in exact mode.

When using an approximate multiplier, a GPU has several options for controlling accuracy.
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The first option is to approximate all operations equally. This is not optimal as approximation

error is not uniform for all inputs and can lead to high error in the final output. It also requires

hardware level accuracy adjustment which may be difficult or impossible at run-time. The

second method is to predict the most erroneous operations based on the inputs and run them

in an exact mode. The ratio of approximate to exact operations can be easily adjusted over the

course of an application for different sections of code based on user requirements. In theory,

computing the highest error operations exactly maximizes the energy savings and performance

improvements compared to output error. However, in GPUs operations are grouped into warps

and in a naive implementation, a thread selects approximation mode without considering its

peers in the warp. As shown in Figure 4.1a), many warps are throttled if a naive implementation

is used for state-of-the-art approximate multipliers. These applications have a high potential

for performance improvements based on the number of multiplies approximated, but these

gains are unrealized as the warps cannot be sped up as long as at least one runs in exact mode.

Figure 4.1b) shows the theoretical and actual performance improvements for the approximation

of a LeNet [77] neural network during inference.

Figure 4.2 provides an overview for how AWARP functions. A user controls accuracy by

adjusting Errormax value. The upper bits of incoming operands are checked to predict output

error. The more bits that are checked, the lower the error guaranteed by AWARP. Any operations

which are identified to produce outputs with error larger than Errormax are instead run in an

exact mode using the original FPU multiply. The accuracy check metric is selected based on

the approximate multiplier being used [3, 4]. After examining each set of operands the warp

determines if it can be run uniformly in exact or approximate mode. If not, it constructs a token

which is used to find other compatible warps with which operands can be rearranged. The

process continues until the warp can either be run in a uniform mode or cannot find another

compatible token.

Figure 4.3 shows the integration of our design within an Nvidia Pascal architecture.

The Nvidia 1080 contains 4 Graphics Processing Clusters (GPC) each with 20 Streaming
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Multiprocessors (SM). Each SM contains 128 computational cores grouped into sets of 32. The

SM contains the thread scheduler and dispatcher to assign warps to cores. We utilize several

modules in our design. First, AWARP is placed inside each GPC with communication to the SMs.

AWARP collects information about a warp through the warp scheduler and compares it to other

warps running the same instruction. The inputs for the multiplies which can be approximated are

traded through AWARP from the warp with the lowest number to the one with the most. After

each trade one of the two warps will be entirely approximate or entirely exact operations and

can be safely issued. At the lowest level, we utilize approximate floating point multipliers to

enable approximation. AWARP is not specific to a single approximate multiplier, and we test

implementations of three different designs [5] [3] [4].

Approximate Exact

Accelerated Slow

AWarp

Trade

Trade

After

Before

After

Before

Figure 4.4. Example of warp value trading. AWarp organizes operations to maximize speed up
in warps

4.2.2 Warp Passthrough

In GPU, instruction threads run in groups called warps. Each core is assigned the same

instruction and all operations run in lockstep on a warp. This creates a problem where a single

poor match in one of the cores may prevent the entire warp from accelerating that instruction.

This is highlighted in Figure 4.6a, where 3 of the 16 cores bottleneck the operation. Here,
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individual operations have a higher error than the rest in the warp, but the overall warp error

remains low. These operations are computed on exact hardware, increasing energy costs and

preventing application acceleration. In order to accelerate the entire warp, all operations must be

accelerated. In a tested application, ScalarProd, we find that although 86% of the operations are

approximated, 70% of the warps are bottlenecked and not accelerated.

We propose warp passthrough, a scheme which identifies warps with high overall match

rates and accelerates them in spite of a few poor matches. Figure 4.6b shows the same process

in which passthrough is enabled. Instead of waiting on a small number of threads to compute

on the FPU, all threads in the warp use the result produced by the approximate lookup. This,

combined with multi-table parallel lookup, enables AWARP to accelerate applications. As shown

in Figure 4.7 each core in a warp outputs a signal identifying the result produced by the lookup

table as either a good or bad match. If a majority of cores identified good matches, it outputs a

passthrough enable signal back to the cores. The cores with poor matches send the operation to

be computed on exact FPU. The results of the exact operations then update the lookup table using

an LRU policy to ensure the most recently computed values are populating the table. Finally, the

computed results are reordered and placed in the result buffer.
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Figure 4.6. Instructions approximated using a lookup table (a) without passthrough [2] and (b)
with the passthrough support.

4.2.3 Warp Value Trading

As previously explained, when attempting to control approximation accuracy on GPUs,

we ensure all values in a warp are approximated in order to gain performance improvements. We

address this through a process we call warp value trading (WVT) in which threads are grouped

and assigned to warps based on whether they can be run approximately or exactly. As shown in

Figure 4.4 AWARP preemptively reassigns operations across warps before they are issued. In the

example, each warp contains four operations to be run in approximate mode and four in exact

mode. AWarp rearranges the operands creating two uniform warps. Now, one of the warps can

be sped up, rather than both being bottlenecked by the exact computations.

AWARP identifies the warp with the most approximate operations and assigns it to send

swap exact inputs for the other approximate ones. In this way, the number of approximate threads

in the warp is maximized. After the trade, at least one of the two warps will have all 32 threads

set uniformly for approximate or exact mode. This warp is then issued to be run on hardware.
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4.2.4 Token Generation and Pooling

Prediction error of the operations is essential to ensuring AWARP minimizes application

error. We show three different approximate multipliers which can be used in AWARP: CFPU [3],

DRUM [5], and RMAC [4]. Each approximate multiplicatier can check a number of tuning bits

to predict error.

Floating point is represented in the IEEE 754 standard. In this notation, each FP value

has three components. The MSB is reserved for the sign bit, then the remaining bits are split

to cover the exponent and mantissa bits. In FP32, 8 bits are reserved for the exponent and 23

are reserved for the mantissa. During a multiply operation, each of the three components of the
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result is computed in a different way. The sign bits of the two inputs are XORed together and the

exponent values are added. The mantissa bits are multiplied together, which requires the majority

of the power and is the longest of the steps. In CFPU [3], the multiply avoided by copying a

mantissa directly to the output and discarding the other. This results in an error of up to 50%. In

RMAC [4], the multiply is replaced with an addition in order to approximate the result. RMAC

is slower than CFPU for individual operations, but achieves much better accuracy. Using this

method the error of the output is at most 11.1%. DRUM truncates the bottom bits of the multiply

to accelerate performance, but the truncated multiplication takes more time than the previous two

methods as shown in Table 4.2. Tuning bits are used to predict the output error of the different

multipliers. Up to N-bits are checked per input based on user accuracy requirements. The more

bits that are compared, the more strict the accuracy.

In order to enable warp value trading, two sets of warp instructions must be compared

in a lightweight manner. To do this, we generate a token for each group of inputs. The inputs

for each incoming operation is checked to determine whether it can be approximated based

on Errormax. Shown in Figure 4.5, AWARP builds a 32 bit token with 1 bit per thread in the

tentative warp. In the token, a ’1’ represents exact mode and ’0’ represents approximate mode.

The tokens also contain an instruction ID to ensure the same instructions are compared. When a

token is completed, it is sent to AWARP for processing.

4.2.5 AWARP

Before warps for a given instruction are issued, AWARP communicates with the warp

scheduler to collect the tokens into a pool to examine. Figure 4.8 shows the architecture of

AWARP. When a token arrives in AWARP, it is stored in a token pool to wait for comparison.

The pool is large enough for multiple tokens per streaming multiprocessor to be stored. AWARP

selects tokens from the pool and attempts to find another sharing the same instruction ID. If no

such match occurs, the token is returned and the warp is issued. When a compatible match is

found, the two are compared to identify the token with the highest number of approximate ops.
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Figure 4.8. Overview of AWARP trading

Then, in AWARP the warp value trader unit enables swaps of values with approximate values

migrating to the warp with the previously identified token. Swaps must occur within SM units

to utilize the shared memory, keeping overhead low and allowing AWARP to reassign values

quickly.

After warp value trading, the two tokens are updated. At least one will now contain

either 32 exact or 32 approximate threads that can be issued. The remaining token is returned to

the pool to be compared again. This process repeats until a single token with the instruction ID

remains and is issued as a warp with both exact and approximate computations. This warp runs

at the pace of the exact instructions, but will still save energy on any approximate operations it

performs. By comparing against all warps running the same instruction, AWARP ensures at most

1 warp will remain with a mix of both approximate and exact operations.
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4.3 Experimental Results

4.3.1 Experimental Setup

We simulate AWARP using Multi2sim [78], a cycle accurate CPU-GPU simulator.

Multi2Sim is configured to model an AMD Southern Island Architecture 7970 GPU. For

approximate multiplication, we use three approximate multipliers, CFPU [3], RMAC [4], and

DRUM [5] to test our approximate warp technique. While DRUM is an approximate integer

multiplier, we adapt it to FP by truncating the mantissa multiplier. Within the simulated GPU,

each FPU multiplier is modified to allow it to perform mantissa approximation or the exact

multiplication. To estimate power and performance we simulate AWARP using HSPICE in

45-nm process with a 1V supply voltage.

We test AWARP using 6 OpenCL GPGPU applications. Four of the applications are from

AMD APP SDK v2.5: FFT, Mersenne, BlackScholes and DwHaar1D. On average, over 80% of

these operations in these applications involve a floating point multiply. For the image processing

applications, we use Caltech 101 for our input data set, while others use randomized input. We

also test two applications from the Rodinia 3.1 machine learning benchmark suite [48]: K-nearest

neighbor and Kmeans. For all applications, we use average relative error as the accuracy metric.

We also test the impact of AWARP on CNNs, LeNet-5 [77] and a ResNet-20 [37], run on

an Nvidia 1080 Pascal GPU. We modify Tensorflow to enable approximate multiplication and

collect operation statistics to estimate AWARP performance and generate accuracy characteristics.

LeNet classifies 28x28 pixel images of hand-written digit characters from the MNIST dataset [79].

The LeNet-5 network is trained with 60K training images, and it provides an accurate clas-

sification for about 97% of 10K tested image samples. We test a ResNet-20 network using

the CIFAR-10 image dataset. The pretrained network exhibits a baseline 91.6% classification

accuracy when using a testing dataset of 10K images.
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4.3.2 Warp passthrough

We show the acceleration improvement provided by warp pass through. We start without

passthrough enabled and show the accuracy and performance improvements. Figure 4.9 shows

the bottleneck of threads for the ScalarProduct application. Considered individually, 84% of

the operations in the application can be approximated with less than 5% error. If no thread is

allowed to violate the error threshold only 30% can be accelerated. By allowing passthrough for

a single thread to return a poor match, we can accelerate 65% of threads. Although passthrough

violates the amount of accuracy which AWARP ensures, it can be used to significantly accelerate

the computation.
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Figure 4.9. Warps accelerated by AWARP using warp passthrough and the change in output
accuracy for ScalarProd

4.3.3 AWARP Performance

We test 6 different OpenCL applications on a simulated AMD GPU. Figure 4.10 shows

the performance for the 6 tests OpenCL applications. The application speedup is normalized

against an unmodified GPU and compared to a naive implementation which does not approximate

warps. The application error is less than 5%. We show the performance of the three tested

multipliers. RMAC can be accelerated more than the CFPU, but DRUM outperforms it in the
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FFT and DwTHaar1D benchmarks. The average speedup over the unmodified GPU is 1.45×

for CFPU, 1.8× for RMAC, and 1.6× for DRUM. AWarp improves speedup over the naive

implementation by 34% for CFPU, 54% for RMAC, and 50% for DRUM. On average RMAC

and DRUM approximate computations more accurately, allowing them to be used for a higher

percentage of operations than CFPU which provides better overall application speedup.
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Figure 4.10. The performance improvement from AWARP over naive implementation when
using a) CFPU [3] b) RMAC [4] and c) DRUM [5] for less than 5% application error
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4.3.4 AWARP Efficiency

AWARP also offers power reduction for the 6 tested applications. Compared to prior,

AWARP adds a small energy overhead of 1.4% on average to each operation over the naive

implementations. However, the increased speed up offsets this small penalty. Figure 4.11 shows

the EDP improvement for the three approximate multipliers across the tested applications. We

ensure the maximum relative output error for each application remains less than 5%. We compare

the optimization to the unmodified GPU. On average, CFPU has 5.7× EDP improvement, RMAC

has 5.1×, and DRUM has 3.1× when application error is less than 5%. While CFPU shows

less speedup improvement than RMAC or DRUM, its mantissa drop approximation requires

significantly less power.
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Figure 4.11. EDP improvement when using AWarp with approximate multipliers

4.3.5 AWARP & Neural Networks

Machine learning algorithms like neural networks have a high tolerance for noisy data.

Approximate computation can be used to greatly improve the performance of these networks.

We test our design on two networks. First, we examine a simple LeNet-5 network classifying the

MNIST dataset. We also test a larger Resnet-20 network classifying images from the CIFAR-10

dataset. For this approximation, we show results for the RMAC [4] multiplier. Table 4.1 shows
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the percentage of operations that are approximated and the impact on classification accuracy.

We adjust the Errormax for individual operations which determines the ratio of approximate to

exact multiplies. Increasing Errormax allows more approximate multiplies, but reduces overall

application accuracy. Figure 4.12 shows the speedup improvement as more multiplies are

approximated. The LeNet is smaller and tolerates noise better for classification. More operations

can be approximated with only a minor impact on accuracy. The ResNet, on the other hand,

appears to be more sensitive to noise and quickly degrades as Errormax increases. For the LeNet,

AWARP is able to achieve 2.4× speedup improvement with less than 1% classification accuracy.

AWARP can achieve 1.5× speedup for the ResNet with only 0.2% degradation in classification

accuracy.

Table 4.1. Percentage of multiplies approximated and classification accuracy in neural networks
using AWARP

Error Rate 0% 0.78% 1.61% 3.12% 6.25% 12.5%

LeNet Hitrate 65.9% 74.1% 77.8% 82.8% 90.0% 100%
Accuracy 97.4% 97.4% 97.4% 97.3% 96.9% 95.2%

ResNet Hitrate 45.8% 52.4% 61.7% 76.1% 82.4% 100%
Accuracy 91.6% 91.6% 91.4% 90.8% 84.2% 76.4%

Figure 4.12. Inference speedup for a LeNet-5 running MNIST and a ResNet-20 running CIFAR
on Nvidia 1080 GPU

4.3.6 Comparison

In this section we compare our results to state-of-the-art-work. There are several designs

which used computational reuse for improving energy efficiency of GPU, but these do not

speedup the computation because they check one operation per cycle. In the event of a hit,

these designs clock gate the pipeline saving power, but do not accelerate computation. In

contrast, our design not only accelerates the applications , but provides the improved power

efficiency. For example, comparing AWARP with A2M2 [80] and NNCAM [81] shows that

AWARP achieves significant energy savings. Figure 4.13 compares our results to these designs.
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Table 4.2. Specification of different approximate multipliers at 6.3% maximum error rate.

Multipliers Area(m2) Energy (pJ) Execution (ns)

DRUM [5] 7915.3 0.28 0.72
CFPU [3] 7951.4 0.09 0.34
RMAC [4] 7819.2 0.15 0.52
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Figure 4.13. EDP improvement provided by AWARP compared to prior work

For the tested benchmarks, work in [80] [81] achieve on average 1.5× and 2.2× energy-delay

product (EDP) improvements as compared to the unmodified GPU, while AWARP achieves an

5.6× improvement over baseline GPU. Overall, AWARP achieves an average of 2.5× higher

EDP improvement while allowing 5% overall error for the tested applications compared to the

prior state-of-the-art-work.

4.3.7 Overhead

Implementing AWARP requires two primary modifications to the GPU. First, the ap-

proximate multipliers increase the area of the FPU unit. Table 4.2 shows the overhead for each

multiplier. CFPU adds 3.4% area overhead to the conventional FPU, RMAC adds 1.7% area

overhead to the FPU and DRUM adds 2.9%. AWARP itself also increases the overhead of the

system. To implement, we require memory to store the tokens, along with comparator circuits to

check the tokens and enable warp value trading. The circuitry requires an area overhead of 1.2%

compared to the base GPU to be implemented. The AWARP unit increases energy overhead by
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1.4%.

4.4 Conclusion

In this chapter, we present AWARP, a framework for approximating and accelerating

GPU warps. Reducing the complexity of multiply operations offers energy savings, but naive

implementations have many throttled warps. We use warp pass through to minimize single

threads bottlenecking warp acceleration. By using warp value trading, we are able to trade

operation inputs across warps before they execute to reduce computational bottlenecks. AWARP

can utilize different approximate multipliers to offer greater flexibility. We use a cycle-accurate

simulator, Multi2sim, to implement our design on an AMD Southern Island 7970 GPU. We test

6 GPGPU applications and show our design speeds up the applications by an average of 1.8×

and improves EDP by up to 5.7× for less than 5% application error compared to the unmodified

GPU. AWARP speeds up the inference of LeNet by 2.4× and ResNet by 1.5× with less than 1%

loss in classification accuracy.

AWARP, ALOOK, and CFPU combined provide both acceleration and energy savings

for many applications. Our approximate hardware provides flexible error control to allow users

to meet accuracy requirements. Further optimizations can be made to target specific classes

of applications. In the next section we apply our work to maximize approximation of neural

networks during both training and testing.

Chapter 4 contains material from ”ARGA: Approximate Reuse for GPGPU Acceleration”,

by Daniel Peroni, Mohsen Imani, and Tajana Rosing, which appears in IEEE Design Automation

Conference (DAC), 2019. The dissertation author was the primary instigator and author of this

paper.

Chapter 4 contains material from ”Data Reuse for Accelerated Approximate Warps”,

by Daniel Peroni, Mohsen Imani, Hamid Nejatollah, Nikil Dutt, and Tajana Rosing, which
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currently is being prepared for submission for publication. The dissertation author was the

primary instigator and author of this paper.

Chapter 4 contains material from ”Warp Level Approximation for GPU Acceleration”,

by Daniel Peroni, Mohsen Imani, and Tajana Rosing, which was submitted for publication. The

dissertation author was the primary instigator and author of this paper.
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Chapter 5

Approximating Neural Networks

5.1 Introduction

Certain applications, such as neural networks, can leverage additional optimizations to

maximize their utilization of approximate hardware. In this chapter, we utilize techniques from

chapters 2-4 to approximate neural networks (NNs) along with several further enhancements

specially for enhancing training and inference of NNs. Neural networks are very effective for

image processing, video segmentation, detection and retrieval, speech recognition, computer

vision, and gaming [13, 35, 36]. NNs exploit learned knowledge to deal with data which they

have not previously encountered. Although NNs can outperform many other machine learning

models, they require enormous resources to be executed. Many NN applications need to update

their model at run-time in order to adapt to the environment or enable a personalization. For

instance, in speech recognition, NNs personalize as a function of the user’s context or accent [38].

Due to limited processing resources and power budgets, training and testing NNs has not been

done on constrained embedded devices.

Most current computing systems deliver only exact solutions at high energy cost, while

many algorithms, such as neural networks, do not require exact answers, due to their statistical

nature [14,39,40]. Slight inaccuracy due to enabled HW approximation in neural networks often

results in little to no quality loss. Prior work attempted to accelerate neural network by enabling

approximation [11,36,82–87]. These prior designs are application specific, as the hardware could
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not adapt the level of approximation at run-time. Moreover, these designs enable approximation

on all input data regardless of their sensitivity to approximation, potentially yielding less accurate

overall results that might be possible otherwise.

In this chapter, we propose DRAAW, a configurable approximate computing platform

which significantly accelerates neural networks in both training and inference phases by ex-

ploiting their stochastic behavior. For training, we propose a Gradual Training Approximation

(GTA) which significantly accelerates neural network computation, while providing a desirable

quality of service. GTA starts training from deep approximation, and gradually reduces the level

of approximation as a function of NN internal error, until the accuracy is sufficient. We use a

hardware configurable floating point unit (FPU) which can tune the level of approximation at

runtime. We also discuss magnitude sensitive accuracy control. In applications such as neural

networks, larger computations impact accuracy more. We propose a novel error control scheme

which accounts for both magnitude and error distance to maximize the number of approximated

operations while minimizing the overall output error. Our accuracy control identifies match

quality by using the most significant bits of floating point mantissa values. We examine the

exponent bits of the inputs and increase accuracy strictness for larger values.

We provide a methodology to automatically select approximation controls for neural

network inference using DRAAW called neuron aware approximation. Neural networks tolerate

significant noise to their computation before prediction accuracy degrades significantly. However,

once accuracy begins to decrease, it falls sharply. Inputs to neurons are summed together so

approximation error in larger values impacts the output more drastically. We profile the neuron

activations of each layer to identify output distributions which can then be used to maximize the

operations approximated with minimal impact on prediction accuracy. We use this to predict

safe approximation values for neural networks which can automatically be set at run time based

on user selected maximum prediction accuracy loss.

We evaluate the accuracy and the efficiency of our design by integrating CFPU, AWARP,

and ALOOK together with our NN specific design proposed in this chapter into AMD’s Southern
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Island GPU architecture. Our experimental evaluation shows that GTA achieves up to 4.84×

(7.13×) energy savings and 3.22× (4.64×) speedup when running four different neural network

applications with 0% (2%) quality loss as compared to baseline GPU. DRAAW accelerates

inference of the tested neural networks by 2.9× and improves EDP by 6.2×.

5.2 Related Work

Neural networks can be adapted to run on a wide variety of hardware, including: CPU,

GPGPU, FPGA, and ASIC chips [14, 83, 88–90]. Because they benefit from parallelization, a

significant effort has been dedicated to utilizing multiple cores. On GPGPUs, neural networks get

up to two orders of magnitude performance improvement as compared to CPU implementations

[31].

Prior works attempted to leverage the stochastic properties of neural networks in order

to relax the computation accuracy and improve the implementation efficiency [26, 39, 83, 91].

As shown in [91], implementing neural networks in fixed-point quantized numbers improves

performance. Similarly, Lin et al. [82] also examined the use of trained binary parameters in

order to avoid multiplication altogether. However, not all applications can handle this approach.

Modifications of neural networks parameters during training require higher precision and have

difficulties with additive quantization noise [92]. Unlike these works, our design allows the use

of full floating point precision, giving it more flexibility when needed.

Han et al. [93, 94] investigated the use of model compression in NNs. They trained

sparse models with shared weights to compress the modelet al. [93]. The compressed parameters

of [93] are used to design ASIC/FPGA accelerators [94]. Compression fails to improve the

implementation in general purpose processors, which require the compressed parameters to be

decompressed into the original parameters. Our method is orthogonal to all this previous work,

as our design can further reduce power consumption and execution time by enabling gradual

and adaptive approximation. In addition, our proposed design uses a general hardware-software
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platform which accelerates neural network on CPU, GPU, FPGA, and even ASIC, by enabling

configurable FPU approximation.

5.3 Neural Network Acceleration

5.3.1 Neural Networks

Neural networks are computationally intensive. Figure 5.1 details the breakdown their

performance. The between 55 to 90% of time is spent within convolutional layers which are

primarily multiply adds. DRAAW is a good option for neural networks because they are tolerant

to noise [95, 96] and over 90% of the computational time spent involves multiply or multiply

add operations. While NNs show resilience to noise applied to the system, once they reach

a critical point, additional error compounds into exponential decreases in prediction accuracy.

It is necessary to offer fine grain approximation control to maximize benefits from DRAAW.

However, the design space to find the optimal network configuration is immense. For example, if

there were five error settings per layer, a ResNet152 would have 81 trillion possible accuracy

configurations. DRAAW offers far more error control settings, so identifying acceptable settings

is essential.

5.3.2 Neural Network in Training & Inference

Figure 5.2a shows the overall structure of a neural network consisting of input, output and

hidden layers. The input data dimension and the number of output classes determines the number

of neurons in the input and output layers respectively. The number and size of hidden layers

depends on the network topology. As Figure 5.2b shows, in neural networks, each neuron is a

small processing unit with one or more inputs and a single output. Each input has an associated

weight determining the strength of the input data. The neuron simply multiplies inputs with

their weights and adds them to calculate an output. Finally, the output value passes through an

activation function, which is historically a Sigmoid function. Neural networks have training
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Figure 5.1. Neural network performance breakdown

and testing phases. During the first training iterations, weights and biases are assigned random

values. The training phase finds the best weight values which result in maximum classification

accuracy. To find such weights, input data (from the training dataset) passes to the network in

a feed forward fashion. Based on the errors measured at the output stage, the network adapts

the weights and biases values in back propagation mode. When the network is trained, the

trained weights and biases can be used to classify the inputs in he dataset. Two fully connected

neural network layers have a huge number of multiplications between them. Figure 5.2c shows

that these operations can be modeled as matrix multiplication, where each row of the matrix

represents the weights corresponding to each neuron. The output of each neuron can be computed

as:

xi = f (∑
k

W i
k ∗ xi−1

k +bi) (5.1)

where multiplications exist between the output of neurons in i−1th layer and the weight matrix

in ith layer, W i, and f is an activation function. Each layer has its own bias vector, bi. This vector

adds to the output signal of each neuron. In back propagation, the ith neural network layer has N

inputs and M outputs. The error δ propagates backwards from the output to update the weights
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Figure 5.2. (a) Neural network structure with two hidden layers, (b) computing model of each
neuron and (c) matrix multiplication representation between two NN layers.

and the bias value. Here is the gradient descent equation for updating the weight and bias values:

∆W = η [δ �h
′
(W ∗ x+b)]xT (5.2)

∆b = η [δ �h
′
(W ∗ x+b)] (5.3)

where x is input to the layer, η is learning rate, and � shows the element-wise mul-

tiplication. After updating the weights and bias value, delta also needs to be updated using:

δ = (W T
δ )�h

′
(W ∗ x+b) (5.4)

In Equation 5.2, the outer product of h
′
(W ∗ x+b) and x is the main multiplication cost. The

input x has higher potential for bounding rather than h
′
(W ∗ x+ b), since the second term is

determined by the cost function and network parameter. The term (W ∗ x+b) is not computed

again in back propagation, as this term was previously calculated in the forward pass and can be
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Figure 5.3. (a) MNIST classification accuracy in different training iterations (b,c) GTA frame-
work to accelerate neural network training by enabling Adaptive approximation.

Algorithm 1. Gradual Training Approximation (GTA)
inputs: NN Parameters, Training Data, Itermax, Apxmin
outputs: NN Trained Model

Initialize weights and biases to random values
Initialize Approx-level

for iter = 1 . . . itermax do outiter= feed forward (input)
P=error estimation (out)
isConveraged(P) & isApprox(Apxmin) Break approx con f igurator(P, iter, itermax, Apxmin)
back propagate(∆W , ∆b, δl)

reused. Similar to other machine learning algorithms, neural networks are stochastic in nature,

meaning that they accept a part of inaccuracy in their computation. The goal of this chapter is to

exploit this scholastic behavior to accelerate both training and inference of a neural network by

enabling configurable approximation.

5.3.3 DRAAW Acceleration During Training

Uniform Training Approximation

It is essential to use the precision of floating point units (FPU) for neural network training,

as FPUs cover a wide range of numbers appearing during the back propagation. Training neural

networks on such approximate hardware accelerates the process while maintaining the desired

level of accuracy. The level of approximation is user and application dependent. For example,
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for an easy image classification task (e.g. MNIST Handwritten digits [77]), training on hardware

with deep approximation might provide the same quality of service that hardware with light

approximation can provide over more complex datasets (e.g. ImageNet [97]). Thus, there is

not a fixed optimal approximation level which is acceptable for all applications. In order to

generalize the existing core so it accelerates the neural network during the training phase, we

use our approximate configurable FPU. Depending on the running application and its accuracy

needs, our framework changes the level of hardware approximation to an optimal level.

Table 5.1 shows the impact of uniform approximation on the quality loss, energy con-

sumption, and execution time of a neural network when evaluating the MNIST Handwritten

digit dataset. This network consists of four fully connected layers with 784, 500, 500, and 10

neurons in each layer, respectively. The application classifies handwritten digitsinto ten different

classes, 0–9 . Quality loss is an additive error, defined as the classification error of neural network

training on full precision and approximate FPUs:

∆etrain = eApprox− eFPU

This result shows that increasing the level of hardware approximation does not automatically

imply a degradation in classification accuracy. For example, for this network, our design

works with the same accuracy as a full range 32-bit FPU, even when it trains with only four

configuration tuning bits. At this level of approximation the FPUs are running 33% of the time in

approximate mode (Hit-rate=33%), resulting in a training speedup of 2.2× and energy efficiency

improvement of 3.2× as compared to the hardware with full FPU precision. Increasing the level

of approximation to no tuning bits further accelerates the training by 5.1× and results in 7.9×

energy efficiency improvement with 3.2% quality loss.
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Table 5.1. Quality loss, normalized energy consumption and execution time of neural network
running on GPGPU with different level of approximation (tuning bits).

Approximation Exact 4-bit 3-bit 2-bit 1-bit 0-bit
Quality loss (∆etrain) 0% 0% 0.9% 1.3% 1.7% 3.2%

Norm.Energy 1 0.31 0.25 0.21 0.18 0.12
Norm. Execution 1 0.45 0.38 0.34 0.31 0.19

Gradual Training Approximation

Neural network training accuracy changes during the training phase. During the first

training iteration, the weights are assigned randomly, resulting in larger classification error. These

weights adapt during the training phase using stochastic gradient decent. Figure 5.3a shows the

error rate of the MNIST dataset over 1000 training iterations. The red line in this graph illustrates

the visual range of approximation that a network can accept during the training. The error reduces

significantly during early training iterations, but then saturates. Different error rates while training

suggests that uniform approximation is not the best method for approximation because all training

iterations do not have the same impact on the final network classification accuracy. During

the first iterations, the weights are fairly random, so accepting large approximation should not

impact the final classification accuracy. However, during the last iterations, the weights are close

to optimal, thus even small hardware approximation may degrade the classification accuracy

noticeably.

We propose a gradual training approximation framework, called GTA, which accelerates

the neural network training. Our framework, shown in Figure 5.3b, starts the training from the

hardware with maximum level of approximation (zero tuning bits). Then, it updates the level of

hardware approximation at each iteration, as the network converges. The convergence controls

when the slope of accuracy improvement is less than a threshold value, T HR. This T HR value

adaptively changes in our design to ensure that training completes with acceptable accuracy by

the final iteration (itermax). As Figure 5.3c shows, our framework updates the T HR value by

using four inputs: (i) the current training iteration iter, (ii) the maximum number of iterations
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Algorithm 2. Layer-based Inference Approximation
inputs: NN Parameters, Validation Data, Test Data, QoS
outputs: NN Layer Configuration

Initialize weights and biases based on trained model

for i = 1 . . .N do config(i)=approx[(l1 . . . li−1, li+1 . . . ln)=Apx0, li = Apxmax]
outi= feed forward (validation-data, config(i))
Ci=error estimation (outi)

for Apx( j) = Apxmax . . .Apxmin do S j=selective approx(Ci, Apx( j))
out j= feed forward (test-data, S j)
E j=error estimation (out j)

if (QoS ¿ E j) then save config(S j)
Break

(itermax), (iii) neural network error (δ ), and (iv) the maximum hardware precision (Apxmin).

Based on the updated T HR, GTA checks the convergence in each training iteration by measuring

the slope of classification accuracy over last 50 iterations. If the slope is smaller than a T HR

value, our framework reduces the level of approximation by a single step.

Algorithm 1 outlines the details of our gradual training approximation. The first steps

assign the weights and biases random values and set the hardware approximation to the maximum

level (Apxmax). The iterative training starts by feed forward (line 6), where input patterns pass

through NN and generate the output class. Our algorithm estimates the network error (line 7)

and checks for the convergence (line 8). If training converges and the hardware is at the most

precise level (Apxmin, defined by user), the algorithm terminates. Otherwise, it updates the level

of approximation (line 11) and performs back propagation for the next training iteration (line 13).

This iterative procedure terminates when either the network converges during the final hardware

approximation, or the iteration reaches the maximum (itermax).
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(a) Convolution (b) Linear

(c) Convolution (d) Linear

Figure 5.4. Distribution of multiply result magnitudes produced by convolutional and linear
layers within a LeNet network trained for MNIST

5.3.4 DRAAW Accuracy Control

Previously we controlled accuracy using a uniform error control scheme. For each

operation, the error is estimated by the number of bit mismatches. The computation is run on exact

hardware if more bit differences occur than a specified cutoff. Applying a uniform approximation

scheme to applications is not always optimal, especially in the case of neural networks. Each

neuron in a layer receives a series of inputs which are then multiplied by a weight. Neurons

sum the results of the multiplications, so larger values impact this summation more. Figure 5.4
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shows distributions of multiplication results in a neural network layer. Approximation error in

the largest values has a larger impact on the output accuracy. The tolerance for approximations

must be adjusted based on the distribution of operations within the neural network. Using a

magnitude sensitive accuracy control scheme, DRAAW is able to approximate more operations

without decreasing prediction accuracy.

Approximate computing techniques must be capable of providing reliably controllable

output accuracy. If the accuracy degrades too much, then the results may become unusable.

DRAAW offers the ability to adjust accuracy by setting the maximum error individual operations

may produce. In many GPU applications, floating point operations are the bulk of the computation

time and energy. As a result, determining match quality for these operations is relatively

straightforward. IEEE 754 floating point representation includes three components: the sign

bit, the exponent bits, and the mantissa bits. The exponent bits provide magnitude, while the

mantissa bits represent the value. When determining match quality, each additional bit match

starting from the most significant bits guarantees a maximum output error decrease of 50%. The

maximum possible result error can be predicted with the following equation where A is the input

value and N is the number of bits checked.

Error =
N−1

∑
i=0

2(((N−i)AN−i−1)). (5.5a)

A user selects the maximum error for an operation, ErrorMax, which is then used to

generate N, the number of tuning bits checked in the mantissa.

N = log2(
1

ErrorMax
). (5.6)

While uniformly setting the maximum error per operation ensures high error matches are
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Figure 5.5. Maximum error per operation at different result magnitudes using a) uniform error
control, b) magnitude cutoff, and c) magnitude scaling.

not used, it will not necessarily result in high utilization of DRAAW. As shown in Figure 5.4,

applications such as neural networks do not have a uniform distribution of output magnitudes.

There are exponentially more values closer to zero and the distribution of exponent values forms

a Gaussian distribution. If the larger values have a more significant impact on the output accuracy,

then an alternative accuracy control scheme may provide better results than the error distance

alone. We test two alternatives as shown in Figure 5.5. First, we show magnitude cutoff in

which a key exponent value is selected above which all values are computed exactly. Below this

threshold, values are approximated if DRAAW predicts they will fall below ErrorMax. In the

second case, magnitude scaling, we attempt to map the maximum error to the distribution of

values and gradually increase ErrorMax as the magnitude decreases. Based on our testing, we

are able to approximate more operations while maintaining application output accuracy than our

previous design [98].

5.3.5 Neuron Aware Approximation

To quickly and automatically select values for Magnitude sensitive accuracy control

in neural networks, we propose Neuron Aware Approximation. Testing many potential con-
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figurations of neural networks to find the optimal accuracy settings is time consuming, so we

attempt to estimate the accuracy control parameters based on neuron values within a network.

When summing the inputs for each neuron, larger values will impact the result of the summation

more than smaller ones, so DRAAW attempts to approximate inputs producing larger outputs

more precisely. DRAAW profiles the network prior to inference and examines layer to identify

the absolute values of of the multiply operations. We sample each layer to generate scaling

approximation values to determine how much each operation can be approximated. We used

the following equation to estimate the floating point exponent value where we no longer check

the mantissa bits under scaled approximation. C represents magnitude constant to be identi-

fied through evaluation. M is the maximum magnitude allowed and σ is the layer’s standard

deviation.

M = f loor(log2(σ)+C)

Figure 5.6 shows our design. The user specifies the output accuracy requirement of the

system for neuron aware approximation to meet. The maximum output accuracy is given in the

form of ∆e the value representing the maximum percent drop in prediction accuracy allowable.

This value is keyed to a C value to find an appropriate setting. To find C, a pre-trained neural

network is run using the training data set. The distribution of operation magnitudes and standard

deviation for each layer in the network is found. The standard deviation determines the point

in which mantissa bits are not checked under the scaled error control scheme and the operation

distribution determines how the scaled error curve is mapped to the remaining magnitudes.

Neuron aware approximation uses a series of values based on profiling smaller networks to

extrapolate to larger networks. The accuracy settings are set on a layer by layer basis at run time.

For ResNets, the profiling can be performed at a block level as well. DRAAW provides a user-

friendly method of automatically approximating networks while meeting accuracy requirements.
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Figure 5.6. Neuron level approximation

5.4 Experimental Results

5.4.1 Experimental Setup

We integrate configurable FPUs on the AMD Southern Island GPU, Radeon HD 7970

device, a recent GPU architecture with 2048 streaming cores. We test our design by modifying

PyTorch [99] to approximate operations at runtime. We use Synopsys Design Compiler to

calculate the energy consumption of the balanced FPUs in GPU architecture in 45-nm ASIC

flow. We perform circuit level simulations to design configurable FPU using HSPICE simulator

in 45-nm TSMC technology. Neural networks are realized using OpenCL, an industry-standard

programming model for heterogeneous computing. We tested the application of proposed design

on four general neural network applications:Handwritten Image Recognition (MNIST) [77],

Voice Recognition (ISOLET) [100], Hyperspectral Imaging (HYPER) [101], Human Activity

Recognition (HAR) [102].

We test the following data sets as shown in Table 5.2. For ISOLET, UCIHAR, and

FACE we test using a fully connected network with two hidden layers. For MNIST, we test

using a CNN, LeNet-5 [77]. We evaluate neuron aware approximation using two deep networks,

AlexNet and ResNet20, running the CIFAR-10 dataset.

For each of the data sets, we compare the baseline accuracy of the train and inference

phases with those when using the proposed DRAAW framework. We compare the designs in

terms of run time and power consumption. Stochastic gradient descent with momentum [103] is
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used for training. The momentum is set to 0.1, the learning rate is set to 0.001, and a batch size

of 10 is used. Dropout [104] with drop rate of 0.5 is applied to hidden layers to avoid over-fitting.

The activation functions are set to “Rectified Linear Unit” clamped at 6. A “Softmax” function

is applied to the output layer.

Table 5.2. Datasets: (n = Features, K = Classes)

Application n K Train Set Size Test Set Size Description

ISOLET 617 26 6238 1559 Voice Recognition [100]
UCIHAR 561 6 7352 2947 Human Activity Recognition [105]

FACE 608 2 22441 2494 Facial Recognition [106]
MNIST 784 10 60000 10000 Handwritten digit classifier [79]

CIFAR10 3072 10 60000 10000 Image prediction [107]

Table 5.3. Network Configuration

Application Network Topology Test Accuracy (%) etest(%)

ISOLET 617→ 500→ 500→ 26 95.7% 4.3%
UCIHAR 561→ 500→ 500→ 6 94.6% 6.4%

FACE 608→ 500→ 500→ 2 97.0% 3.0%
MNIST LeNet-5 [77] 99.1% 0.9%

CIFAR10 AlexNet [97] 73.6% 26.4%
CIFAR10 ResNet20 [37] 93.8% 6.2%

Table 5.4. Configuration of different neural networks running on GPGPU with uniform and
GTA approximation, providing different quality of service.

Applications MNIST ISOLET HYPER HAR
Training Error (∆etrain) 0% 1% 2% 4% 0% 1% 2% 4% 0% 1% 2% 4% 0% 1% 2% 4%

GTA
Apxmin 5-bits 4-bits 1-bits 0-bits 7-bits 4-bits 2-bits 1-bit 8-bits 6-bits 5-bits 3-bits 8-bits 6-bits 3-bits 2-bits

Approx Hit Rate 56% 69% 88% 100% 52% 60% 79% 92% 23% 44% 56% 82% 38% 51% 72% 86%

Uniform
Tuning bits 4-bits 3-bits 1-bit 0-bits 5-bits 3-bits 2-bits 1-bit 8-bits 5-bits 4-bits 3-bits 6-bits 4-bits 2-bits 1-bit

Approx Hit Rate 33% 42% 54% 100% 29% 38% 51% 83% 6% 14% 27% 37% 11% 26% 47% 66%

5.4.2 Training Accuracy-Efficiency

Here we compare the classification accuracy of different NN applications training on

GPGPU with uniform and GTA approximation. In uniform mode, the hardware approximation
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is fixed during the training mode, while GTA changes the approximation adaptively depending

on the training error (explained in Section 5.3.3). Table 5.4 shows the configuration of different

applications training on uniform and GTA approximation, providing 0% to 4% quality loss

(∆etrain). For uniform approximation, the table shows the number of tuning bits in hardware

which provides the desired accuracy. For GTA, the level approximation is set by defining the

final level of hardware approximation. The table also shows the approximation hit rate, which

is the ratio of running FPUs in approximate mode to the total accesses, for each configuration.

For instance, for the MNIST application the uniform approximation provides 0% quality loss

using 4 tuning bits which results in a roughly 36% approximation hit rate. For the same quality

of service, GTA adaptively changes the tuning bits from 0 to 5 bits, resulting in average 70%

approximation hit rate.

Figure 5.7 shows the energy efficiency improvement and the speedup of different appli-

cations running on GPGPU with uniform and GTA approximation. The results are normalized

to GPGPU using exact 32-bit FPUs. Our experimental results shows that at the same level of

accuracy, the GTA always outperforms the efficiency of the uniform approximation. This higher

efficiency of comes from GTA ability to put the GPGPU in approximate mode for higher portion

of time (as compared to uniform approximation, as shown in Table 5.4). The result shows that

ensuring 0% additive error, GTA (uniform) design can achieve 3.86× (2.26×) energy efficiency

improvement and 2.62× (1.62×) speedup as compared to exact mode. For GTA (uniform)

design, this improvement increases to 4.84× and 6.11× (2.99% and 4.04%) in energy efficiency

and 3.23× and 4.01× (2.07× and 2.37×) in performance accepting 1% and 2% additive errors.

5.4.3 Magnitude sensitive accuracy control

Figure 5.8 shows the change output accuracy as hit rate increases under each of the

magnitude sensitive schemes. Cutoff and scaled error control approaches result in higher hit

rates with lower degredation in error. The networks are highly sensitive to approximation error

in the larger magnitude values, while smaller operations can safely be approximated. Table 5.5
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Figure 5.7. Energy efficiency improvement and speedup of different NN applications training
on GPGPU with uniform and GTA approximation.

compares the hit rate for the different applications based on the error control used. The scaled

approximation approach can approximate an average of 94.2% of operations during inference

with only 0.4% average decrease in prediction accuracy.

Neuron aware approximation

Table 5.6 shows the mean and standard deviation of the four smaller networks tested.

Figure 5.9 shows network prediction accuracy as the magnitude in which only exponent bits are

checked for scaled error control changes. The points where degradation begins are marked. The

mean values are close to zero and do not appear to impact the point where accuracy decreases,

so we focus on standard deviation. For the tested applications, face shows a rapid drop at 2−6,

ISOLET and UCIHAR at 2−5. This appears to correlate to the standard deviations presented in

Table 5.6 giving the predicted magnitude constant C as 1.38, 0.92, and 0.98 respectively. For

MNIST, the standard deviation gives 1.45 for the convolution layers and 0.82 for the linear layers.

We average the values to set our testing C to 1 as the cutoff where quality drops drastically and

estimate -2 to achieve less than 1% error based on the MNIST network results.

With a value of M selected, we can predict a viable configuration for larger neural
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Table 5.5. Hit Rate of DRAAW using different error control schemes for ∆etest of less than 1%.

Data set Uniform Cutoff Scaled
Hit Rate ∆ etest Hit Rate ∆ etest Hit Rate ∆ etest

ISOLET 36.9% 0.3% 85.5% 0.9% 94.2% 0.3%
UCIHAR 72.0% 1.0% 87.5% 0.4% 96.0% 0.7%

FACE 68.5% 0.9% 93.1% 1.0% 95.6% 0.2%
MNIST 61.8% 0.3% 81.7% 0.2% 90.8% 0.3%

Table 5.6. Network Neuron Magnitude Analysis

Application Linear µ Linear σ Conv µ Conv σ

ISOLET 0.001 0.033 NA NA
UCIHAR -0.001 0.035 NA NA

FACE -0.0005 0.012 NA NA
MNIST 0.0004 0.091 0.002 0.142

networks. Tables 5.7 and 5.8 show the predicted configuration values for the two larger networks

running CIFAR10. We examine the blocks within the ResNet for our prediction. DRAAW sets

the point where mantissa bits are not longer checked based on the predicted value, then uses

the distribution adjust the scaled error curve. For each layer or block, DRAAW sets the predict

configuration and we compare the performance neuron aware approximation to the networks

using uniform selection and scaled. Based on our results shown in Table 5.9 we improve hit

rate by 5% compared to the scaled performance. However, the primary benefit of neuron aware

approximation is an automated selection process based on user accuracy requirements. It is

not guaranteed to provide the optimal configuration for the network, but sets near maximum

approximation parameters for DRAAW running the network.

5.4.4 Energy Reduction and Acceleration

DRAAW provides significant improvements to both acceleration and energy reduction

for the tested applications. Figure 5.11 shows the speedup and energy savings for the tested

neural networks. Uniform error control provides an average of 2.9× EDP improvement and
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Figure 5.8. Neural network applications error as hitrate increases for three different error control
schemes
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Figure 5.9. Hit Rate as magnitude where mantissa bits are not checked for scaled error control
increases. Magnitude when prediction accuracy sharply drops is marked.

1.27× speedup over the baseline GPU for these networks. Enabling scaled approximation set by

neuron aware approximation increases the EDP improvement to 6.2× and speedup to 2.8×. We

show a 2.2× increase in speedup and 2.1× improvement to energy over our design in [98] while

maintaining less than 1% decrease in prediction accuracy.
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Table 5.7. Predicted Cutoffs for AlexNet convolution and fully connected layers

Layer C1 C2 C3 C4 C5 FC1 FC2 F3

Std Dev 0.11 0.018 0.0251 0.034 0.055 0.143 0.38 0.39
Predicted Cutoff -6 -8 -8 -7 -7 -5 -4 -4

Table 5.8. Predicted Cutoffs for ResNet blocks and layers.

Layer C1 B1 B2 B3 B4 FC1

Std Dev 0.129 0.011 0.005 0.003 0.001 0.066
Predicted Cutoff -5 -9 -10 -11 -12 -6

Table 5.9. Hit Rate of DRAAW using different error control schemes for ∆etest of less than 1%.

Data set Uniform Scaled Neuron Aware
Hit Rate ∆ etest Hit Rate ∆ etest Hit Rate ∆ etest

AlexNet 73.9% 0.9% 88.4% 0.5% 92.7% 0.2%
ResNet 71.0% 0.6% 89.2% 0.6% 95.8% 0.3%
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Figure 5.10. Speedup and EDP improvement provided by DRAAW for 6 GPGPU applications.

5.4.5 Scalability and Overhead

DRAAW is a general framework which can accelerate several supervised machine

learning algorithms which have iterative training procedure or layer-based inference structure.
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Figure 5.11. a) EDP improvement and b) speedup for neural networks with less than 1% ∆etest .

DRAAW is a scalable design in terms of the neural network size and supports the approximation

on both convolution and fully connected layers. If the number of neurons surpasses the number

of GPGPU cores, our design sequentially runs the network and configures the cores at run-time

accordingly. Our design is able to reconfigure all cores in a single GPU cycle with negligible

impact on the neural network training execution. In inference, DRAAW sensitivity analysis

and adaptive approximation performs just once at offline over all applications, which results in

a negligible overhead. In terms of area, our evaluation shows that the proposed configurable

FPU can be designed by adding less than 2.6% area overhead to the existing FPU. This area is

negligible considering 7.13× energy savings and 4.64× speedup that DRAAW can provide.

5.5 Conclusion

In this chapter we propose DRAAW, a novel framework to accelerate neural network

computation in both training and inference modes by enabling configurable approximation. We

utilize our previous techniques along with several new ones two maximize approximation of

neural network operations. DRAAW supports gradual approximate training which enables the

hardware approximation adaptively based on on the network accuracy. Our framework starts the
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training from deep approximation then changes this level adaptively based on the neural network

error rate. For inference, DRAAW proposes a layer-based approach which enables approximation

on neural network layers based on their sensitivity to approximation. Our experimental evaluation

shows that DRAAW 4.84× energy savings and 3.22× speedup when running four different

neural network applications with 1% decrease in classification accuracy. DRAAW automatically

selects parameters based on user prediction requirements for neural networks and improves

speedup by 2.9× speedup and EDP by 6.2× of inference across six neural networks. Through the

use of our approximate hardware we are able to provide significant performance improvements

and energy savings for GPGPU applications.

Chapter 5 contains material from ”CANNA: Neural Network Acceleration using Con-

figurable Approximation on GPGPU”, by Mohsen Imani, Max Masich, Daniel Peroni, Pushen

Wang, and Tajana Rosing, which appears in Asia and South Pacific Design Automation Con-

ference (ASP-DAC), 2018. The dissertation author was one of the primary instigators and a

secondary author of this paper.

Chapter 5 contains material from ”Data Reuse for Accelerated Approximate Warps”,

by Daniel Peroni, Mohsen Imani, Hamid Nejatollah, Nikil Dutt, and Tajana Rosing, which

currently is being prepared for submission for publication. The dissertation author was the

primary instigator and author of this paper.
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Chapter 6

Summary and Future Work

Alternative computing strategies are needed process the increasing amounts of data

being produced. GPUs accelerate applications which can be parallelized to a high degree, but

they require a lot of energy. Approximate computing provides a method of lowering energy

consumption and speeding up the applications which can tolerate small amounts of error. This

dissertation improved GPU energy efficiency and performance of many applications by using

approximate computing. We target arithmetic operations through the use of CFPU and use

ALOOK to improve performance of applications with high redundancy. The previous designs

provide energy savings, but to avoid bottlenecks and accelerate warps we use AWARP. Finally,

we show with application specific techniques specifically aimed at neural networks that our

design significantly improves training and inference energy consumption and performance.

6.1 Approximate Arithmetic

Floating point approximate multiplies make up the bulk of computation in many GPGPU

applications including machine learning. We propose a configurable floating point unit, CFPU,

to perform approximate multiplications. CFPU eliminates the most costly component of multi-

plication and replaces a much more energy efficient mantissa copy. Applications with a large

number of power of two values can utilize our design to a high degree as CFPU computes these

exactly. Our results in Chapter 2 show we are able to improved EDP (Energy Delay Product) by
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4.1× over the unmodified GPU while ensuring less than 10% accuracy loss.

6.2 Computational Reuse

For applications with a high amount temporal similarity we propose Alook. We use

small lookup tables to store frequently computed operations in order to avoid recomputing them.

Because we can reduce the size of the lookup tables compared to previous static implementations,

we can utilize more tables to perform lookup in parallel. Alook achieves a 3.6× EDP and 1.3×

performance speedup for less than 10% error compared to the unmodified GPU. Using ALOOK

along with CFPU results in a 5.6× average EDP improvement for the same amount of error, as

shown in Chapter 3.

6.3 Warp-level Acceleration

Warps are an integral part of how GPU instructions are executed, so they must be

accounted for when accelerating applications. While many instructions within the warps may be

approximated, in many cases bottlenecks occur and prevent acceleration. In the event a small

number of threads needs to compute in exact mode, we propose warp pass-through, which signals

all cores to use approximate results. To target warps with a larger number of exact operations,

we propose warp value trading in which we use the predicted error to map threads to uniform

approximate or exact warps. Using the two approaches increases speedup to 1.8× on average for

the tested applications, as shown in Chapter 4.

6.4 Approximating Neural Networks

Neural networks are popular for solving many machine learning tasks. However, as they

grow deeper in layers, they take more time to train and run. We apply approximate computing

to improve the performance of training and inference in Chapter 5. For training we show that

gradually reducing the maximum allowed error per operation results in 3.2× speedup and 4.8×
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EDP improvement with less than 1% drop in prediction accuracy. For inference we are able

to automatically select parameters based on user prediction requirements for neural networks

and improve speedup by 2.9× and EDP by 6.2× of inference with less than 1% decrease in

prediction accuracy.

6.5 Future Work

Approximate computing offers a potential solution to improving computation efficiency

in error tolerant applications. Our work has shown many energy and performance improvements

over state-of-the-art approximate units, however further work is needed to utilize these designs

more fully. Similar to neuron aware approximation, additional research is needed to explore

automated error control for a wider range of general purpose applications. Additionally, further

exploration of machine learning algorithms may yield improved information of redundant or

approximate optimizations.

6.5.1 Approximate Activation Functions

Recently, reinforcement learning has been used to find alternative neural network opti-

mizations to improve accuracy beyond increasing depth [108–110]. Each neuron in the network

takes activations which are multiplied by weights and summed together. This value is then passed

through an activation function to generate the next activation value. The activation function

is a fundamental core aspect of neural networks. Recent research has examined optimizing

these functions to improve classification accuracy on difficult tasks. Google showed replacing

ReLU activation functions with the Swish function [110] improved top-1 ImageNet classifi-

cation accuracy of two state of the art neural networks by almost 1%. The authors note that

the improvement from the Inception V3 to Inception-ResNet-v2 required a year of architecture

tuning and improvement resulting in only 1.3% top-1 accuracy improvement. Currently the most

commonly used activation function is rectified linear unit (ReLU). ReLU clamps negative values

to zero otherwise it outputs the input value. Alternative activation functions, such as swish,
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require more computation overhead compared to ReLU, limiting their adoption. Activation

functions such as sigmoid and tanh are often used in long short term memory (LSTM) units that

make up recurrent neural networks (RNNs). A majority of this work focused on approximating

multiply and multiply add operations. However, as these are accelerated, the computation such as

activation functions take a larger portion of the total time. Approximate computing may be able

to approximate these operations in order to provide fewer training iterations and classification

accuracy without incurring the additional computation time penalties.

6.5.2 Hyperdimensional computing

Hyperdimensional (HD) computing provides an alternative to neural networks which

offers faster training and inference [111–113]. HD computing encodes values into high dimen-

sional spaces and creates class hyper-vectors consisting of as many as 10,000 bits. HD computing

has high tolerance to noise which can be exploited by approximate computing. However, storing

the vectors during training requires a large memory footprint. It is necessary to explore methods

for optimizing encoding and training schemes to allow this computing method to scale to larger

and more difficult tasks. Approximate computing offers potential solutions to increasing the

efficiency of these algorithms.
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