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Abstract

Rule Representation in Explicit Categorization
by

Stella Sophia von Meer

One defining characteristic of human behavior is the ability to select an appropriate
action in an entirely novel situation. How abstract rules are represented in the brain, and
how these representations operate on internal models of the world to generate flexible
rapidly optimized behaviors remains an open question in neuroscience as well as computer
science. The hallmark of quickly optimized flexibility inherent to explicit behavioral rules
has lead to the assumption that these rules are based on high level abstractions. In the
recent past, behavioral measurements in the human psychophysics literature were linked
to predictions at the processing level and the convenient mathematical construct of a
decision criterion has precipitated in several cognitive process models. However, the
assumption that higher order decision processes involve comparisons to some internal
criterion is not trivial and was investigated. This thesis provides evidence to falsify the
criterion as a processing component in human decision making and offers fundamental
insights to reverse engineer decision processes in the brain. Cognitive flexibility and rule
guided behavior appear to rely on phylogenetically advanced extrapolation processes that
are mediated by dynamic feed-forward and feed-back circuits, which continually update

internal and external information to support goal directed behavior.
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Chapter 1

Introduction

1.1 Statement of Significance

The representation of explicit abstract rules in the human brain remains an enigma
that continues to be explored from many differing perspectives including single-unit
recordings, electroencephalography, functional magnetic resonance imaging, neurophar-
macology, transcranial magnetic stimulation, near infrared spectroscopy, and mathemat-
ical psychology. The computational rules underlying the neurobiology that supports
rule-guided behavior remain elusive. Most cognitive models viewed through the lens
of Marr’s [I] levels of analysis are computational rather than algorithmic, and theories
merely scratch the surface of an accurate implementation. Countless popular cognitive
models are based on the notion of a criterion, despite the lack of neurobiological evidence
that support such computations in decision making. While criterion based models have a
high degree of utility in the realm of data analysis, these models may be less informative
at the process level where the criterion may not find a specific biological correlate. Is
the criterion an epiphenomenon or does it hold implementational credence? This thesis

contributes evidence towards a more complete picture of explicit rule representation and
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Introduction Chapter 1

challenges the criterion relic inherent to many cognitive theories.

1.2 General Background

One defining characteristic of the human being is the ability to select an appropri-
ate action in an entirely novel situation. This remarkable cognitive ability appears to
rely on phylogenetically advanced extrapolation processes. Categorization behavior rep-
resents an instance where available perceptual and cognitive information is integrated
to generate an appropriate response. Behavioral rules are grossly classified as implicit
and explicit. Implicit behavioral rules are inflexibly optimized to one particular data set
via time consuming trial-by-trial reinforcement learning. While explicit rules appear to
operate flexibly on any new data space with incredibly small optimization times. The
hallmark of quickly optimized flexibility inherent to explicit behavioral rules has lead to
the assumption that these rules are based on high level abstractions. However, it remains
a mystery how explicit rules are encoded and learned. For instance, the discovery of the
optimal abstract rule occurs suddenly, as if all the available information converges to one
realization at one instance, commonly known as the AHA! moment. How explicit rules
are represented in the brain, and how these representations operate on internal models of
the world to generate flexible rapidly optimized behaviors remains an open question that
continues to boggle minds of scientists in the fields of neuroscience as well as computer
science.

Reverse engineering decision making processes in the brain has lead to the devel-
opment of several cognitive models. The majority of these models generate an output
(response) after a comparison to some criterion. Dominant models include stochastic
diffusion type models [2] and accumulator/counter models [3]. Most of these cognitive

models differ in their underlying processing assumptions, however, one striking similar-
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Introduction Chapter 1

ity is that a response is generated only once a particular criterion has been reached or
breached. The criterion discussed here is different from systematic tendencies in decision
making, e.g. decision bias [4] or decision criteria [5]. Rather the criterion here references
a processing component in cognitive models. The assumption that higher order informa-
tion processes involve comparisons to some criterion is not trivial and may find its roots
in signal processing. Abstractly, decision making can be dissected into perceptual and
decisional processes. These have been studied extensively using one of the most influen-
tial frameworks: signal detection theory (SDT), which separately estimates perceptual
sensitivity and a decision criterion [6]. SDT has a long tradition in the field of psychol-
ogy and has been applied to almost all tasks in which two stimuli must be discriminated,
including yes/no tasks, rating tasks, and forced-choice tasks [7, 8]. Twenty years after
SDT was formalized, it was generalized to multidimensional perceptual spaces by general
recognition theory (GRT; [9]). Both GRT and SDT assume the perceptual effect of a
stimulus is subject to variability resulting from external and internal measuring noise.
Therefore, the perceptual effect is associated with a multivariate probability density in
perceptual space [10], although it can occur anywhere within that space.

GRT can account for multidimensional perceptual experiences and provides several
other advantages over SDT: 1. in its most general form no distributional assumptions
are made about the perceptual effects, 2. dimensional interactions in the perceptual
space are rigorously defined (e.g. varieties of perceptual independence; [9]), and 3. the
decision criterion in GRT generalizes from a point in unidimensional perceptual space
to a continuous curve in two-dimensional space or a hyperplane in n-dimensional per-
ceptual space [I1]. Each response region is deterministically associated with a particular
response. One prominent special case of GRT assumes the perceptual distributions to
be Gaussian, and therefore the most popular form of (unidimensional) SDT is contained

in GRT. Kadlec and Townsend [I1] developed a rigorous set of mathematical relations
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Introduction Chapter 1

between this Gaussian version of GRT and SDT, and provide decision trees to test for
varieties of perceptual independence (e.g. perceptual independence, sampling indepen-
dence, perceptual separability, decisional separability, and marginal response invariance).
Since the development of GRT, it has been applied to a variety of perceptual phenomena
[12] frequently under the Gaussian assumption [13, [14] [15], although exceptions certainly
exist [9] [16].

An excellent overview of GRT can be found in Ashby and Soto [12]. Briefly, in GRT
a stimulus is defined as a collection of components or features, with each represented
by a dimension in perceptual space. The perceptual effect of a particular stimulus at
a particular instance in time is a random sample from a multivariate joint probability
density function in perceptual space. From the relation of the probability density to the
marginal projections onto each perceptual axis, it can be deduced whether the percep-
tual dimensions are perceived integrally or separably. Perceptual processes are related
to similarity judgments that separate the perceptual space into recognition regions [13].
It is assumed that recognition regions are partitioned into response regions according to
some decision boundary that can be defined in several ways [17, [18 19]. In the absence
of bias, the decision boundary is assumed to be equivalent to an optimal partition [20]
that is represented by the likelihood ratio [19], and the mapping from recognition regions
to response regions is deterministic (i.e. one-to-one; [2I]). Importantly, the mapping
between the physical stimulus components and the dimensions of the hypothetical per-
ceptual space is likely monotonic, but not linear, e.g. as assumed by Fechner’s law, or
Stevens law [22]. Furthermore, the form of this ordered relationship is assumed to be
preserved under the dimensional stretching or shrinking that is used to model cognitive
top-down control operations such as attention [13].

GRT provides methods to test three fundamental properties of perception: perceptual

independence (statistical independence between perceptual components of one stimulus,
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Introduction Chapter 1

i.e. distribution axes are parallel to the perceptual axes), perceptual separability (per-
ceptual invariance of one component relative to another for a group of stimuli), and
decisional separability (decision bounds that are orthogonal to the perceptual axes). Un-
der decisional separability, the decision boundary intersects the relevant perceptual axis
orthogonally and can simply be described by the intercept or criterion value. In this
case, the decision depends only on information on the relevant perceptual axis (i.e. the
marginal probability density). Note, the decision bound that operates on stimulus space
is not equivalent to the decision boundary in perceptual space. Even though monotonic-
ity may be preserved when mapping representations from one space onto the other, the
covariance matrices associated with representation in either space are likely different and
so the shape of the boundary is subject to change [19]. In many applications of GRT the
decision bound represents a fundamental construct.

According to Marr’s levels of analysis, both SDT and GRT are computational mod-
els [1] that have multiple algorithmic implementations, and despite the success of both
theories, the GRT decision boundary or SDT criterion may not have actual psychological
meaning. Nonetheless, the idea of a decision boundary has shaped our interpretation of
neurobiological data in a non-trivial way (e.g. rule neurons [23, 24]. Furthermore, SDT
and GRT are both static models that were developed with respect to accuracy, and as
such required no further processing assumptions [9]. The fact that computational-level
models are associated with multiple process interpretations becomes evident with the
possibilities in which a decision boundary can be estimated. For instance, the decision
rule that maximizes accuracy could be in the form of a likelihood ratio, discriminant
function, or Boolean algebra.

However, in 2000 Ashby published a dynamic version of GRT, where the point percept
from static GRT is replaced with a multivariate diffusion process that generates predic-

tions at the level of response time (RT) [25]. Here, the drift rate is proportional to the
5



Introduction Chapter 1

distance between the mean percept and the decision bound. Under the assumption that
the dynamic percept has time invariant intra-trial variance-covariance matrices, the drift
rate formalized a process for the RT-distance hypothesis, which predicts a monotonic
decrease of RTs with increasing distance between the percept and the decision bound
[16]. A stronger version of the RT-distance hypothesis predicts marginal invariance, that
is, RTs times are symmetrically distributed about the criterion. Although the stochastic
GRT model predicts violations in the RT-distance hypothesis when some infinitesimal
variance-covariance matrices (of the independently sampled perceptual effects during a
trial) are unequal [25], the existence of a decision boundary continues to be assumed.

The question remains: does the brain represent abstract rules via a criterion?

1.3 Experimental Evidence

In the realm of categorization [26], an armamentarium of invasive animal and hu-
man neuroimaging studies including neuropsychiatric disease have established the exis-
tence of several disparate learning systems that cater to different environmental demands
[27, 28, 29]. For instance, Ashby and Waldron [30] found that human categorization
performance data was best explained by non-parametric rather than parametric mod-
els and introduced a neurobiological model called the striatal pattern classifier which
is mediated by connectivity within the striatum. However, in their experiments deci-
sional separability was violated, such that their results describe the implicit procedural
system only. The representation of computational rules that support nonparametric
information-integration strategies inherent to the procedural system has been character-
ized extensively. A neurobiological model of procedural memory describes highly specific
stimulus-category label and category label-response associations that are learned via a

sharp temporal precision dopaminergic reinforcement signal at cortico-striatal synapses
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[31, B2, 28, 33]. One defining feature of procedural memories is the lack of generalizabil-
ity. For example, specific implicit associations learned during information-integration
tasks do not generalize to responses associated with a different region in space, e.g.
switching response locations [34] or areas of stimulus space for which associations have
not been trained, even if the decision bound that partitions the new stimulus space is
a linear extension of the previously learned associations, e.g. analogical transfer [35].
In contrast, explicit memories generalize to new response goals and performance during
analogical transfer that affected irrelevant stimulus dimension only was nearly perfect in
a rule-based task.

The representation of abstract generalizable behavioral rules in the explicit system
has not been modeled successfully at the neurobiological level. Instead, models rely on
abstract computations themselves (i.e. parametric decision bound estimation, discrim-
inant functions, and logical rules). In the current model of explicit category learning,
the core process has been characterized by a hypothesis testing mechanism that is imple-
mented via a criterion based discriminant function [36], B7]. The logical rules underlying
hypothesis testing are easily verbalizable [36] and operate on perceptual dimensions inde-
pendently, given that these satisfy the assumption of independence [13]. Tt is noteworthy
that the verbal description rarely refers to a comparison to a decision criterion, rather the
operational rule references response regions (e.g. respond A if the relevant feature is large,
and respond B if the relevant feature is small). When perceptual separability is satisfied
general abstractions are learned via working memory and executive attention processes
that recruit a prefrontally mediated explicit decision network [38, 39, 37, 28, 40]. Given
that explicit categorization relies on working memory and attention, the learned associ-
ations are subject to capacity and perceptual complexity limits [41 42 [43] [44], [12] 26].
Furthermore, the working memory traces that support the decisions process are assumed

to be unstable, which has been associated with trial-by-trial variability in the represen-
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tation of the criterion [39].

An often overlooked consequence of multivariate decision bound models is that linear
and quadratic bounds, once estimated, ought to result in similar accuracy and RT results.
However, quadratic bounds are more difficult to learn than linear bounds. These perfor-
mance differences, although long established, did not suffice to overrule the assumption
of parametric classification in category learning [30]. Furthermore, Ashby and Ell [45]
showed that the amount of category overlap fundamentally affected decision strategy in
information-integration tasks. Specifically, more than half of the participants were best
fit by the suboptimal unidimensional rule throughout the experiment, when the optimal
procedural strategy would outperform the suboptimal rule by 12% accuracy but the feed-
back was not deterministic (high category overlap). Interestingly, monetary incentives
biased towards a procedural strategy slightly increased the number of explicit strategy
users. Their results suggest that category environments with moderate uncertainty such
as probabilistic classification tasks provoke explicit strategies if these are nearly optimal
at maximizing accuracy. This suggests that successful performance of the procedural
system is sensitive to reward uncertainty and confirm the previous finding that effective
procedural learning requisites consistent category-response mappings [34]. Thus, the ex-
plicit system appears to withstand reward uncertainty, such that probabilistic feedback
is not sufficient to interfere with successful categorization performance. The fact that
consistent category-response associations are not necessary for successful performance
appear to favor a criterion model or a potentially complex alternative. However, the

experiments presented in the following contribute to resolve this issue.
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1.4 Experimental investigation

To my knowledge there has not been an investigation on the validity of the decision
boundary as a component of the decision process. There are two candidates that could
support the decision process: 1. the decision boundary, and 2. the perceptual regions
partitioned by the decision boundary. Since our investigation is focused on the case
in which decisional separability holds, i.e. the perceptual regions are assumed to be
separated by a decision bound that is orthogonal to the relevant categorization dimension
and can be fully described by the intercept, we will refer to the decision bound model
as the criterion model. The two candidates give rise to the criterion and the direct-
mapping models, which make very different and easily testable predictions at the level
of accuracy and RT. Experiment 1 explores the nature of rule representation by testing
predictions of the criterion model against the predictions of the direct-mapping model
with a speeded unidimensional rule-based task. Experiment 2 seeks to characterize rule
representation further by exploring neuroelectric correlates using the non-invasive electro-

encephalography neuroimaging technique.



Chapter 2

Behavioral Rule Region Experiment

2.1 Introduction

The notion of a response criterion is ubiquitous in cognitive science, in part because of
the widespread influence of signal detection theory. For example, the standard model of
rule use assumes decisions are based on a comparison of the stimulus to some remembered
criterion. In the field of category learning, simple rules such as respond A if the stimulus
18 large on dimension X, and B if it is small could be implemented either by comparing
the stimulus to a criterion value that separates large and small values, or by mapping
large values directly to an A-response and small values directly to a B-response. While
the criterion approach has proven fruitful in post-experiment data analysis, its validity
as process model in decision making remains unchallenged.

The criterion model (CM) builds on distance-based similarity measures that find suc-
cess in the stimulus space, but may not translate into perceptual space despite the enticing
term psychological distance [I7]. The criterion represents the optimal partition between
stimulus distributions, and is assumed to be placed at the estimated mid-point between

stimulus category means and variances. The CM is a decisional reduction of GRT and
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Behavioral Rule Region Experiment Chapter 2

assumes the RT-distance hypothesis. The CM assumes a decision rule is implemented
by comparing the current stimulus to an internal criterion and relies on trial-by-trial
comparisons. Hence to sort large and small stimuli, the criterion model assumes people
learn the value of an intermediate stimulus to which each sample stimulus is compared.
The relationship between perception and decision is typically modeled by some function
plus noise. The CM contains two sources of noise: perceptual noise and criterial noise. If
the noise is ignored, the relationship between perception and decision is ordinal. Adding
perceptual and criterial noise will decrease accuracy and increase RT for stimuli close to
the decision boundary. One major limitation of the CM is that the optimal placement
of the criterion depends on correctly inferring the form of the underlying category dis-
tributions [9, [19]. This is nearly impossible because the participant does not know the
location of every exemplar in the distribution, nor the true parameters of the perceptual
noise distributions. Furthermore, imperfect memory prevents robust a priori estimation
of the expected distributions (‘expected’ because this is before a sufficient stimulus sam-
ple was seen) and makes noiseless memory of the criterion impossible. At first glance, the
CM model appears parsimonious and well suited to describe the algorithmic level of the
underlying neural machine. At second glance, the estimation procedure the CM requires
reveals itself to be quite laborious and subject to several sources of error. For instance,
for a single criterion, one needs to estimate the category distributions up to the second
moment as well as the mid-distance point between the estimated category distributions.
These limitations make the CM less attractive and intractable at the implementational
level [I]. An alternative to the criterion model is the direct mapping model in which
the perceptual regions are highlighted and the decision boundary has no psychological
meaning.

The CM predicts that response accuracy will increase monotonically [46] and response

time (RT) will decrease monotonically [16], 25] as the distance of the presented stimulus to
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the criterion increases. These predictions were tested with a speeded unidimensional rule-
based categorization task [40] for which perceptual separability and decisional separability
are assumed [12]. Following Sternberg’s observation that the selection of a response
requires the use of information that is in memory, the latency of the response will reveal
some thing about the process by which the information is retrieved [47], RT information
is a valuable behavioral parameter that allows a glimpse at the underlying process and
carries strong empirical weight in the assessment of process models. The RT results
presented here falsified the predictions of the criterion model and are consistent with a

direct-mapping model.

2.2 Method

2.2.1 Participants

In this experiment participants were 50 (24 males, 26 females; age range: 19-24) and
61 (28 males, 33 females; age range: 19-23) healthy UC Santa Barbara undergraduate
students in likelihood and control conditions, respectively. The participants had no

previous exposure to the stimuli prior to the experiment.

2.2.2 Categorization Stimuli

The stimuli were gray-scale circular sine-wave gratings that varied across trials on two
dimensions: spatial frequency (cycles per degree of visual angle; CPD) and orientation
(radians of counterclockwise rotation from horizontal). All stimuli subtended 7° of visual
angle and were displayed against a gray background. The stimuli in each category were
generated according to the randomization technique (e.g. [I7]) explained in the follow-

ing. First, a 100 x 100 stimulus space was defined in which perceptual salience in both
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(e.g. CPD and orientation) dimensions was approximately equal. The two categories
were defined by bivariate normal distributions and parameter values specified in Table
2.1} Next, 400 random samples were selected from each bivariate normal to generate two
categories. To minimize distributional overlap, any outlier more than 3 standard devi-
ations from the distribution mean (identified via Mahalanobis distance) were discarded
and replaced during the sampling procedure. The sample values on both dimensions
were linearly transformed so that the sample statistics exactly matched the population
parameter values listed in Table . Specifically, each [0, 100] value for spatial frequency
(i.e., ¥) was converted to cycles per degree of visual angle (i.e., f) via f = 35 4+ 0.25
and each [0, 100] value for orientation (i.e., y) was converted to radians of counterclock-
wise rotation from horizontal (i.e., 0) via 0 = g5y + 5. During the experiment, each
(f,0) coordinate pair was used to create a sine-wave grating using Brainard’s [48] Psy-
chophysics Toolbox. All participants in each condition were presented with the same

stimuli. However, presentation order was randomized across participants.

Table 2.1: Mean and Variance of Experimental Stimulus Distributions

Category Stim N puy p, of o) cov

o

Acons 360 275 50 40 251 O
Beons 360 72.5 50 40 251 O
Adisp 40 725 50 1 251 O
Baisp 40 215 50 1 251 O

In the control condition each category was generated from sampling only one bivariate
normal, such that all stimuli were region consistent. While in the likelihood condition
each category consisted of 90% region consistent (cons) and 10% region disparate (disp)
stimuli. I chose these proportions to generate a sufficient sample size (40 samples) for

the disparate stimuli and rule out a memorization strategy while keeping the likelihood
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of stimulus membership region consistent (i.e. an ideal observer would respond A if the
stimulus falls into the A region). The stimulus distributions along with the equal likeli-
hood contours (concentric ellipses) are shown in Figure The likelihood ratio between
the region consistent and region disparate stimuli equals 1.988, while the likelihood ra-
tio at the distribution means equals 2.321. The marginal stimulus distribution densities
along the relevant CPD dimension and their response likelihoods are shown in Figure
2.2 The figure shows that the stimulus space can be divided into a decision space with
corresponding A- and B-regions, and the vertical line on the x-axis at x = 50 synonymous
with the decision criterion denotes the equal likelihood-response-contour between the two

distributions separated by d' = 2.4338.
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* ' ' * ' ' -
* *
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Figure 2.1: Stimulus distributions for likelihood and control conditions with equal
probability category contours located at Bar Width coordinate 50.

2.2.3 Procedure

The experiment took place in a dimly lit room that can hold up to eight participants.
Each participant sat in front of a computer screen with a keyboard for responding,
and was provided with headphones for individual auditory feedback. Participants were

informed that they would be categorizing novel circular sine-wave gratings (stimulus)
14
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Marginal PDFs

A Region B Region
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Figure 2.2: Marginal stimulus distribution densities (top) and their response log-like-

lihoods (bottom).
belonging either to category A or B, and that category membership would become ap-
parent through feedback. Each trial began with crosshairs centered on a gray background
shown for 300ms. Followed by the stimulus centered on the same gray background at
a visual angel of approximately 7°. The stimulus remained on screen until a response
was recorded. The response keys were labeled “A” and “B” on the keyboard letters “d”
and “k”. Participants were told that the maximum time to respond was 2 seconds and
that feedback was given together with a point total that were displayed for 800ms. All
incorrect categorizations were followed by a low-pitched sound and a red -1, whereas all
correct categorizations were followed by a cash-register sound (“ka-ching”) and a green
+1. The feedback points were shown in the center of the screen and a total score was
shown below in white (Score: #). Participants were instructed to respond as quickly as

possible without sacrificing accuracy.
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Since participants were asked to categorize up to 800 trials, we assigned a goal score
of 800 points to ensure participants were motivated to maintain high accuracy and short
response times throughout the experiment. Previous research in our lab has shown that
participants are motivated to maintain high accuracy when given a goal score at the
beginning of the experiment together with the information that once that goal score was
reached participants were free to leave the experiment. Furthermore, to ensure stable
performance parameters, short-term goals were provided: 5 correct responses in a row
would result in +2 points accompanied by the cash-register sound on the fifth correct
response. Failure to respond within 2 seconds after the onset of stimulus presentation
resulted in the auditory error feedback of a buzzer paired with the text “Too slow!”
and pressing a key unrelated to the experimental set-up led to the same auditory error
feedback paired with the text “Incorrect key pressed!” both were shown for 1 second in
the center of the screen. Completion times and completion trial were subject to variation
due to the fact that achieving the goal score would terminate the experiment at that

trial.

2.2.4 RT Analysis Methods

Since RT distributions tend to be positively skewed and subject to large inter-subject
variability [49], several non-parametric analyses were chosen to omit strong assumptions

about the RT distributions.

Vincentizing

The Vincent averaging technique allows for group averaging without distorting the
underlying functional form [50]. RTs for each subject were organized in ascending order,

quantiles were calculated per participant, and then aggregated into group quantiles. In
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this way, information about the shape at the level of the individual subject was preserved
in the group average. It is noteworthy that in this technique, midpoints between quantiles
were estimated, such that the resulting quantiles were not in one-to-one correspondence

to the percentiles, instead the percentiles described the quantile midpoints.

RT Smoothing

To gather a companion picture to accuracy as a function of the distance to the cat-
egory boundary, RT distributions were estimated with respect to the equal likelihood-
contour using the Parzen kernel estimator [51]. First, all RT samples, assumed to be
1.1.d., were collected across all participants separately for control and likelihood con-
ditions. Second, the samples in each vector were sorted according to their associated
x-coordinate (the relevant categorization dimension), such that the resulting vector con-
tained RT samples ordered with respect to increasing x-values. Thirdly, the shape of this

distribution was estimated using the following Gaussian kernel estimator:

exp —=z°, (2.2)

where n represents the total number of observations, and h,, > 0 represents the smoothing
parameter equal to the standard deviation of the Gaussian distribution. For any value ¢,
the estimate of the density at that point is given by the Gaussian density centered at that
point, so that each RT observation in the sample contributes an amount to the estimate

that is proportional to the height of the Gaussian at the point of the estimate. In other
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words, this method is a more sophisticated version of the relative frequency histogram,
where the estimate is proportional to the sum of the height of the Gaussian densities at
that point. The choice of the Gaussian width parameter is arbitrary. However, there

exists a trade-off between smoothness and functional form of the estimated RT function.

2.3 Results

All subsequent analyses are focused on the last 500 trials as these guaranteed sta-
ble performance parameters (accuracy and RT) and enough data points for robust RT

analyses.

2.3.1 Decision Bound Regression

Decision bound regression was performed to determine whether participants employed
decision bounds alternative to the equal likelihood-response-contour shown in the top
panel of Figure 2.2 All but two participants in each condition were best fit by a uni-
dimensional linear classifier near the optimal equal likelihood-response-contour shown in
Figure [2.3] Responses from the divergent four participants that were best fit by the gen-
eral linear classifier were analyzed in more detail. Scatter plots revealed that these partic-
ipants did not employ an alternative strategy to the simple one-dimensional rule, instead
the distribution of errors was not balanced with respect to the equal likelihood-response-
contour and consequentially favored the general linear classifier over the unidimensional
bound during model fitting. This result was likely to occur, given that participants were
not error-less in 500 consecutive trials. Importantly, the RTs that these four subjects

produced were within or below the group average for their condition.
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Figure 2.3: Estimated unidimensional linear decision bounds for likelihood (blue) and
control (red) conditions.

2.3.2 Accuracy Analyses

Mean and minimum completion trial numbers for the control and likelihood conditions
were: Mo = 763.74, 00 = 38.37;munc = 710, and M, = 777.98, 0, = 27; min; = 699,
respectively.

Figure top panel shows the forward learning curves for proportion correct and
corresponding RTs, it is evident that performance on both parameters stabilized after
block 8 (200 trials). The steep transition in the forward learning curves from the first
25-trial block to the next is characteristic of rule-based learning [52]. Specifically, the
steep transition suggests that participants were testing explicit hypotheses during the
first few trials and converged onto a single hypothesis, such as narrow bars belong to

category A, and thick bars belong to category B, during the ensuing trials.
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Figure 2.4: Top panel: forward learning curves for control (red) and likelihood (blue)
conditions. Each point represents the mean across participants for a 25-trial block.
Bottom panel: RTs matching the forward learning curves for control (red) and like-
lihood (blue) conditions. Each point represents the mean across participants for the
median RT's per 25-trial block.

Next, accuracy analyses to explore performance as a function of distance to the hypo-
thetical category boundary were conducted. In that light, accuracy across participants
for each sample point along the relevant dimension was computed to maintain the high-
est resolution, since the perceptual granularity for thickness is unknown. First, trials
were sorted in ascending order with respect to the x-axis (relevant category dimension).
Second, the mean across participants for each x-value was computed. The results are
shown in Figure [2.5] A two sample t-test shows there was no significant difference com-

paring proportion correct for likelihood (M = .93) and control (M = .94) conditions
[£(392) = 1.8179, p = 0.07,d = 2].
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Figure 2.5: Accuracy as a function of distance to the hypothetical category bound-
ary. Each point represents the mean across participants per x-coordinate (relevant
categorization dimension).

2.3.3 RT Analyses

Vincent cumulants

To calculate the Vincent quantiles, quantile RTs over 25 equally spaced bins for
ne = 30561 and n; = 25050 samples in the control and likelihood conditions were
estimated. A two-sample Kolmogorov-Smirnof test indicated that the RTs from the con-
trol and likelihood conditions belonged to different underlying distributions D(55609) =
0.015,p < 0.01. Since the alternative hypothesis for this statistical comparison stated

that RT samples from the control condition were drawn from a smaller distribution, this
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result implies an ordering at the level of the cumulants. The results for the Vincent quan-
tiles are depicted in Figure 2.6l The Figure does not show an ordering of the Vincent
cumulants. However, a clear crossing of functions can be seen at 395ms. The absence
of a clear ordering of the two functions rules out a speed-accuracy trade off due to any

alternative influence not considered here.
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Figure 2.6: Vincent cumulants for control (red) and likelihood (blue) data. Each point
represents the midpoint of the RT Vincent estimates computed over 25 bins.

Smoothed RT with respect to relevant x-dimension

For RT smoothing with respect to the relevant categorization dimension, RT samples
were collected across all subjects for control and likelihood conditions, resulting in vectors

of lengths vo = 30501 and vy, = 25001, respectively. The RT samples were sorted
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with respect to increasing x-coordinates and convolved with a Gaussian kernel to get a
smoothed picture of RT behavior with respect to the relevant categorization dimension
(or distance to the hypothetical criterion). Since the underlying data vectors differed in
size, Gaussian kernels were scaled by 1/6 of the data vector lengths resulting in kernels
with No = 5083.5, 0 = 635.31, and Ny, = 4166.8, o, = 520.73 for control and likelihood
conditions, respectively. Finally, the smoothed RT estimates were truncated on both
ends at 2% of the length of the original RT vector to approximately remove estimates

that were denatured by the kernel. The smoothed RT estimates are depicted in Figure
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Figure 2.7: Smoothed RT estimates across all subjects for control and likelihood
conditions. The vertical solid lines mark the means of the marginal distributions on
the stimulus axis relevant to the categorization task.
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2.4 Discussion

The data presented above provide evidence that falsify the criterion model as process
model in explicit categorization. Furthermore, the data highlight contrasting utility for
accuracy and RT measures. Accuracy is sufficient to differentiate whether participants
were using procedural or explicit strategies. The steep transition from the first 5-trial
block to the next shown in Figure is characteristic of rule-based learning [52], and
suggested that participants were testing hypothesis during the first few trials before
rapidly converging onto the correct categorization rule in ensuing trials. This confirms
that participants were, in fact, using explicit strategies in both task conditions. As seen in
Figure |2.5] accuracy was monotonically increasing with distance to the equal likelihood-
contour dividing stimulus space. This result was consistent with the prediction by the
criterion model. However, accuracy is subject to a stark ceiling effect and performance
had clearly reached asymptote for the last 500 trials that were analyzed. Therefore, it was
not possible to conclusively determine whether accuracy was higher for mean centered
stimuli that were associated with a response more frequently than the remaining stimuli.
These results imply that the performance parameter accuracy may not suffice to reliably
differentiate between process models. In contrast, RT offered a far richer perspective.

For the RT analyses, Vincent cumulants depicted in Figure did not show a clear
ordering which supports general equivalence between the tasks. In other words, alter-
native explanations for the effects observed above based on a speed-accuracy trade off
can be ruled out. Nonetheless, a two-sample Kolmogorov-Smirnof test indicated that the
RT cumulants for the control condition were significantly smaller than the RT cumulants
from the likelihood condition. It is noteworthy that a comparison at the distributional
level is more powerful than comparisons of first moments [49] and that an ordering at

the level of the cumulative density function implies the same ordering at the level of the
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probability density, and the mean [3, [53]. To gather a more complete picture, smoothed
RT functions with respect to the relevant stimulus axis, i.e. as a function of distance to
the equal likelihood contour, were depicted in Figure[2.7] Consistent with the significance
test above, the functions clearly show that participants in the likelihood condition took
longer to respond.

The results presented here falsify the criterion model. First, the criterion model pre-
dicts similar RTs in both conditions because category judgements are solely based on
comparisons between the sample and a criterion and should ignore the disrupting effects
of region inconsistent feedback in the likelihood condition. In contrast, participants in
the likelihood condition produced significantly longer RT's than participants in the con-
trol condition. Second, the criterion model predicts monotonically decreasing RTs with
increasing distance to the criterion. The Figure clearly shows that the prediction of
monotonicity for RTs is violated. Furthermore, this violation persists for all participants
individually. In contrast to the criterion model, these results support a direct-mapping
model which highlights the regions separated by the criterion. Interestingly, the RT's for
all stimuli in the likelihood condition were longer compared to the control condition, even
though the disparate feedback was spatially constrained. There are two possible expla-
nations for this observation. One possibility is that perceptual noise associated with the
stimuli that received disparate feedback spatially smeared across the entire perceptual
space. Another possibility is that a cognitive system which is sensitive to probabilistic
feedback such as the procedural system bootstraps the representations in the explicit
system. A final possibility is that the disparate feedback increased interference from a
cognitive system that monitors prediction errors. The slowing in RTs may have resulted

from either of these possibilities or a combination.
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2.4.1 Perceptual categorization models

Perceptual processing strategies are associated with different decision models. Two
major decision models are independent decision models and information integration mod-
els [I7]. Independent decision models assume a two-stage process in which decisions are
made on each perceptual dimension separately according to some criterion before a re-
sponse is selected. While information integration models assume a one-stage process
that combines all available perceptual information in order to select a response. Evi-
dence from patients with neurologic disorders, e.g. amnesia [54], as well as behavioral
[40] and neuroimaging [55] experiments support the notion that implicit [56] and explicit
memory are mediated by distinct memory systems [57, [58], which are subject to different
constraints [59, [43], and that implement disparate reinforcement strategies [2§].

In the field of category learning a neurobiological hybrid model of these decision pro-
cesses named COVIS has been developed [37]. COVIS assumes two interacting memory
systems [36]: a procedural system that gradually learns to associate the information inte-
gration decision process with a motor response, and a rule-based system which utilizes a
hypothesis testing mechanism in the form of a discriminant function that is constructed
around a decision criterion. The procedural system, centered about the basal ganglia
[60], is governed by a dopaminergic reinforcement learning algorithm [28] that maximizes
accuracy with an implicit similarity-based strategy. The prefrontal connected rule-based
system depends on declarative memory and recruits executive attention and working
memory processes [30, 42, 43]. One hallmark of explicit decision processes is that the
applied rule is verbalizable [36], and individual participants begin rule-based tasks with
large discrete jumps of the hypothetical rule boundaries that become incremental at later
stages of learning [61]. To date, no complete theories exist of how the explicit system

quickly learns and flexibly switches between behaviors in rule-based tasks.
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Rule-based tasks involve at least two cognitive operations: rule selection and crite-
rion learning [37]. Rule selection concludes the hypothesis testing phase during which
different hypotheses that include one or more perceptual dimensions are tested. Thus,
rule selection is synonymous with selecting the relevant stimulus dimension. Criterion
learning is assumed to ensue from the rule selection phase. Criterion learning describes
convergence onto the partition of perceptual space that maximizes accuracy, however, no
neurobiological account of this process exists. The COVIS explicit system generates a
trial-by-trial discriminant value that globally quantifies the output. COVIS pre-selects
the rule (discriminant function on the relevant dimension) and absorbs the criterion learn-
ing phase into the selection process. In 2015, Helie and colleges developed a biologically
inspired criterion learning circuit, e.g. HICL [62]. HICL proposes a heterosynaptic circuit
that modulates input of the lateral PFC rule-cells in a global fashion. Interestingly, their
model implies that the criterion is an epiphenomenon, i.e. it is not explicitly represented
at the neurobiological level. Our results presented above are consistent with this predic-
tion. While the HICL can account for extra- and intra-dimensional shifts of relevance
during categorization, it remains an open question of how rules are actually represented
and selected [63].

The results presented here violate the criterion assumption and discredit models in
which participants parametrically estimate a decision criterion to make category judge-

ments in explicit rule-based tasks.

2.4.2 Direct-Mapping Model

The direct mapping model builds on prototype theory or category typicality (e.g. cat-
egory representations are continuous structures in which category membership is graded

by degree of similarity of the entire object or object features [64] and relies on trial-by-
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trial confusion-based judgments that depend on response-region-specific mappings. These
mappings and their strength are contingent on the similarity between the current stimulus
and previously seen stimuli and whether that judgment receives positive feedback. For
stimuli from bivariate normal distributions, where samples cluster around the mean, the
mean of the bivariate stimulus distribution becomes the category-prototype and the mean
of the marginal distributions on each stimulus dimension becomes the category-feature-
prototype. Rosch et al. [64] showed that category members with an increasing degree
of typicality are classified with monotonically increasing accuracy and monotonically de-
creasing RT. Thus, category members that are more similar to the category-prototype or
category-feature-prototype are classified more accurately and faster than category mem-
bers that are less similar. Additionally, Rosch et al. [64] predicted that frequency (i.e.,
stimulus repetition) should have an effect equivalent to typicality, and that frequency
effects may not always be separable from category structure such that the frequency of
features could become a structural variable. The direct-mapping model predicts that ac-
curacy should be highest and RT lowest for highly practiced stimuli that are consistently
associated with the same response. Specifically, response-region inconsistent feedback
should interfere with mapping strength and result in increased RTs. The results pre-
sented here are consistent with the direct-mapping model, which favors a more region
based account. However, the nature of the representation remains elusive. In the next
chapter, electroencephalography correlates of explicit category learning in humans were

explored.
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Chapter 3

EEG Correlates of Rule Based

Decision Making

3.1 Introduction

It is well known that visual information of object perception underlies a hierarchical
processing structure, which supports the idea that tuning of individual neurons increases
in complexity when moving upward through the processing hierarchy [65]. Visual cate-
gorization is a complex process that involves: perception, attention, working memory, a
decision about which category label to associate with the stimulus, and a response. Dur-
ing decision making, sensory representations serve as inputs to a computational machine
that converges onto a decision output on a sub-second scale [66]. Electroencephalogra-
phy (EEG) provides high temporal resolution metrics of information processing that may
be sensitive enough to explore feature selective modulations underlying decision making
processes during categorization tasks, and provide insight beyond population level infer-
ences that can be drawn from voxel-level functional magnetic resonance imaging analyses
[67]. However, this temporal sensitivity comes at a cost: EEG has a hefty limitation in
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the spatial domain due to non-negligible volume conduction of the head [68].

Recent evidence from EEG experiments in the field of spatial visual working memory
and attention have provoked the following experiment. Several independent studies have
discovered that spatial mental representations can be reconstructed from the topography
of EEG oscillations in the alpha band (8-12Hz) [69, [70]. More specifically, induced alpha
was found to track spatial location in visual working memory representations during
a delay working memory task [69]. Traditionally, the working memory literature has
focused on direct measures, such as quantifying capacity [41} [71], 72, [73], rather than
characterizing the representational medium itself. More recently, however, the quest to
discover some fundamental capacity limit has shifted to characterize working memory
as a dynamic process of limited storage [44] that is subject to internal noise [74] [75].
One mechanistic explanation suggests that activity in the alpha frequency band reflects
a visual working memory coordination mechanism that depends on the synchrony of
neural populations within that frequency band [76]. However, detailed descriptions of
working memory representations remain a topic for debate [73, [77].

The field of category learning has very recently expanded to include EEG experi-
ments. In 2015, an EEG experiment was conducted to establish EEG correlates in the
form of event related potential that dissociate procedural from rule-based categorization
tasks [78]. Even more recent, event related potentials were used to compare simple uni-
dimensional categorization rules to conjunctive rules [79]. They found differential mean
amplitudes in ERP components when comparing a simple unidimensional to a more com-
plex conjunction rule in frontal and fronto-central electrodes. These experiments are only
beginning to scratch the surface of the intersection between EEG and category learning.
To my knowledge, the experiment presented here is the first EEG experiment to investi-
gate the nature of rule representation during a unidimensional explicit categorization task

using an exploratory approach including spectral analyses of alpha and theta frequency
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bands.

The experiment was a within subjects design consisting of three sessions. In session 1,
participants performed a two alternative forced choice unidimensional explicit categoriza-
tion task [26]. During rule learning each participant developed an unbiased categorization
strategy, and rule application over the course of 600 trials established robust rule rep-
resentations. The purpose of the other sessions was to provide intra-individual EEG
correlates that would mimic region (session 2) and criterion (session 3) based decision
processes. In session 2, participants performed a five alternative forced choice absolute
identification task on stimuli drawn from the same stimulus space used in session 1. In
session 3, participants performed a two interval forced choice rotation discrimination
task. This task is a spin off from the Sternberg memory scanning task [47] with the
memory set size reduced to one. All tasks included a delay period of 1 second that was

inserted between the stimulus presentation and the categorization response.

3.2 Method

3.2.1 Participants

In this experiment participants were 16 healthy UC Santa Barbara undergraduate and
graduate students (8 females; age range: 19-31). All participants self-reported normal
or corrected-to-normal visual acuity and provided written informed consent for the three
session experiment in accordance with the human participants Institutional Review Board
at UCSB and were monetarily compensated for their participation. The sample size is in
line with previous studies that investigated the role of induced alpha in visual working

memory [69]. All participants had normal or corrected to normal vision.
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3.2.2 Categorization Stimuli

The stimuli were gray-scale circular sine-wave gratings that varied across trials on two
dimensions: spatial frequency (cycles per degree of visual angle; CPD) and orientation
(radians of counterclockwise rotation from horizontal; rad). All stimuli subtended 7° of

visual angle and were displayed against a gray background.

Session 1: Categorization Experiment Stimuli

In session 1, the categorization experiment (e.g. two alternative forced choice task),
the two categories were defined by three orientation locked distributions each. The ori-
entation parameters are specified in Table The orientation distributions for each
category were separated by 0.14 rad (8°) and both categories were separated by 0.28 rad
(16°) centered about the criterion located at 0.4555 rad (26.1 deg). The exact orientation
bins were chosen arbitrarily with the only constraint that no generic orientation rule (e.g.

45°) could be used as criterion to partition the two categories.

Session 2: Identification Experiment Stimuli

In session 2, the identification experiment (e.g. five alternative forced choice task),
five orientation locked distributions were separated by 0.2121 rad (12°) measured from
the horizontal. The center distribution is set at 0.4555 rad (criterion location of the
categorization experiment in session 1) and the the two distributions at either end (e.g.
0.0314 rad and 0.8796 rad) had identical orientation coordinates as in the categorization

experiment session 1.
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Session 3: Memory Delay Rotation Discrimination Experiment Stimuli

In session 3, the memory comparison experiment (e.g. two interval forced choice
rotation discrimination task), the orientation distributions from session 1 were used,
including the distribution located at the criterion. This experiment included memory
probe stimuli that shared the same CPD coordinate (2.6334). Five memory probes were
selected corresponding to the five orientation distributions used as stimuli minus the two
distributions at either end.

Stimulus values for the orientation dimension are shown in table B.Il For all session
stimuli, the values along the CPD dimension were transformed using a non-linear trans-
form (e.g. 2 = 53 — 15 Tnew = 27 [80]) with minima and maxima set at 3.2490 and
0.6156, respectively. The minima and maxima were chosen to reduce the variability in
the CPD dimension and control for unintended stimulus driven activity for extremely
large or extremely small CPD values. During the experiment, each (C'PD,rad) coor-
dinate pair was used to create a sine-wave grating using Brainard’s [48] Psychophysics

Toolbox. All participants in each session were presented with the same stimuli. However,

presentation order was randomized.

Table 3.1: Orientation Parameters of Experimental Stimulus Distributions in radians (rad)

Session 1 Session 2 Session 3 & Probe

As 0.0314 Y 0.0314 0.0314

Ay 0.1728 0.1728 0.1728
Ay 03142 2 0.2435 0.3142 0.3142

Crit 3) 0.4555 0.4555 0.4555
By 05969 % 0.6676 0.5969 0.5969
By 0.7383 0.7383 0.7383

B; 0.8796 9 0.8796 0.8796
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3.2.3 Procedure

Each participant took part in three experimental sessions that took place in a dimly
lit room. Participants sat in front of a computer screen with a keyboard or mouse for
responding. The stimulus distributions and task flow for all sessions are shown in figure

[3.1 The procedure for each session is described in detail in the following.

Session 1: Categorization Experiment Procedure

Prior to session 1, participants were informed that they would be categorizing circular
sine-wave gratings belonging either to category A or B, and that category membership
would become apparent through feedback. Each trial began with a blue fixation dot
at a visual angle of approximately 0.2° centered on the screen, together with a green
circle at a visual angle of approximately 0.4° which signified the participant’s gaze. In
order to initiate the trial the participants had to align their gaze (green circle) with the
blue fixation dot and press the space bar. Once the trial was initiated, a circular sine-
wave grating was displayed at fixation at a visual angle of approximately 7° on the same
gray background for 500ms. Next, a 1000ms retention interval accompanied by a gray
screen followed. After the retention interval a display with the response options “A”
and “B” appeared centered vertically on right and left sides on the screen corresponded
to marked keyboard letters “d” and “k” at a visual angle of approximately 10°. The
response options appeared in randomized order to prevent participants from anticipating
a response location and generating a preparatory motor signal. If a wrong key was
pressed, “Wrong key pressed!” was displayed in red for 1000ms, the trial was aborted
and added to the end of the block. This session included 600 stimuli that were partitioned

into 24 blocks 4 25 trials.
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Session 2: Identification Experiment Procedure

Prior to session 2, participants were informed that they would identify circular sine-
wave gratings numbered 1 through 5 based on their orientation. The distributions were
numbered in increasing order with increasing angle from the horizontal. Each trial began
with the same trial initiation screen, followed by a 500ms display of the stimulus and
a 1000ms retention interval as before. After the retention interval a display with the
response options, numbers 1 through 5 at a visual angle of approximately 10° were shown.
Again, the response options appeared in randomized order to prevent participants from
anticipating a response location and generating a preparatory motor signal. Participants
had to select the response by moving a cursor over the desired response and eliciting a
mouse-click. If the cursor was not clearly placed on a number, “Click out of bound!”
was displayed in red for 1000ms and that trial was added to the end of the block. This

session included 600 stimuli that were partitioned into 24 blocks & 25 trials.

Session 3: Memory Delay Rotation Discrimination Experiment Procedure

Prior to session 3, participants were informed that they would compare a second sine-
wave gratings to a previously shown one. Participants had to initiate the display of the
first stimulus, the memory probe, which was shown for 500ms. Subsequently the trial
initiation screen appeared again and participants initiated the trail as in the sessions
before. The stimulus was shown for 500ms, followed by a 1000ms retention interval,
and then the response options “Up” and “Down” appeared centered vertically on right
and left sides on the screen corresponded to marked keyboard letters “d” and “k” at a
visual angle of approximately 10°. Participants had to judge whether the second stimulus
shown was rotated up or down relative to the memory probe that was shown first. The

response options appeared in randomized order. If a wrong key was pressed, “Wrong key
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pressed!” was displayed in red for 1000ms and that trial was added to the end of the

block. This session included 595 trials that were partitioned into 17 blocks a 35 trials.
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Figure 3.1: Stimulus distributions and task flow for all sessions. Categorization session
1 (row A), identification session 2 (row B), and memory delay session 3 (row C).

In all sessions, participants were told that the maximum time to respond was 2
seconds. Feedback was given together with a point total and displayed for 500ms. All
incorrect categorizations were followed by a red -1, whereas all correct categorizations
were followed by a green +1. The feedback points were shown in the center of the
screen and a total score was shown below in white (Score: #). Participants were told

that all trials would be gaze contingent and that blinking before initiating the trial
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is recommended. The scripts that oversaw the experiments were created on MATLAB
(version 2015b, Massachusetts, TheMathWorks Inc.) using Brainard’s [48] Psychophysics
Toolbox.

3.2.4 EEG Neurophysiology

EEG measures neuro-electric waveforms produced by the brain’s dynamic behavior
at multiple spatial and temporal scales. The first human measurements were conducted
by Hans Berger in the 1920s [81]. Although the neurobiological underpinnings of EEG
including event related potentials are not entirely known, it continues to be accepted
that EEG as well as intra-cranially recorded local field potentials arise from postsynaptic
activity of neural ensembles that manifest as extracellular ion fluxes between extracellular
fluid and the pyramidal neurons (and other participating cells such as glial cells) in the
vicinity [68] [82].

In order to be able to measure the electric potentials generated by postsynaptic po-
tentials, a phalanx of cells have to be active simultaneously and their geometry relative to
the recording electrode is highly constrained, e.g. dipoles with perpendicular orientation
in close proximity to the electrode generate voltage fluctuations that are detectable [6§].
Since electro-magnetic fields are instantaneous with respect to the sampling frequency
of the electrode, the EEG signal has remarkable temporal resolution. However, it is vir-
tually impossible to estimate the number and location(s) of the underlying dipole(s) (or
neural generators) that contribute to the measures voltage fluctuations [83]. For instance,
the electrical artifacts caused by saccadic eye movements produce voltage fluctuations
of 16 Volts per degree of saccade that can be picked up by electrodes on the back of
the head. Furthermore, volume conduction of the anisotropic layers of the skull (eg.

bone - cerebrospinal fluid - bone) cause current shunting due to the favorable conductive
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properties of the cerebrospinal fluid. For instance, one scalp electrode measures space
averaged potentials from 10° neurons [68].

Neocortex represents the largest contributor to scalp EEG recordings: excitatory con-
nections occur in superficial layers, while inhibitory connections occur in deeper layers of
cortex. Cognitive functions are associated with cell assemblies that spontaneously form,
disconnect, and re-connect on timescales ranging from 10—100ms. These cell assemblies
are embedded in and interact with global fields to form global networks. EEG recordings
are biased to global field activity due to volume conduction and the organization of corti-
cal layers resulting in large amplitude low frequency and small amplitude high frequency
recordings. Therefore, oscillations in lower frequency bands, such as alpha and theta, are

more robust to noise [68].

Relevant Brain Oscillations

In the following relevant brain oscillation are briefly introduced (for review see Klimesch
[84]). A more comprehensive review of oscillatory phenomena can be found in Nunez and
Srinivasan [68].

Alpha rhythms (8 — 12Hz) occur ubiquitously and dominate scalp EEG recordings
of healthy adults. These oscillations are spontaneously enhanced during relaxation with
closed eyes and are more pronounced in posterior electrode locations. Alpha amplitude
typically ranges from 15-45 V' at posterior recording sites while amplitudes at frontal
recording sites are considerably lower. Interestingly, adults show larger anterior alpha
amplitudes and anterior-posterior coherence compared to children. While moderate alpha
amplitudes are reported in frontal electrodes of healthy relaxed adults, large amplitudes
may co-occur with pathologies such as trauma, disease, and anesthetics. Some alpha
activity is blocked by the opening of the eyes, drowsiness, and when a task is experienced

as difficult. For instance, Klimesch [85] reports a story about the EEG recordings of
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Albert Einstein: ”Einstein produced continuous alpha waves during the solution of com-
plex mathematical tasks which he was skilled and trained to solve. When his alpha-band
activity suddenly disappeared, he was asked what had happened, he replied that he had
just become aware of a mistake in the calculations he had recently done.”

In general, alpha activity is thought to reflect a superposition of global activity from
large dipole layers that are measured at most electrode sites, and smaller dipole layers at
more local electrodes [68]. People tend to display an individual alpha peak frequency that
is modulated by age and neurological disease [84]. Importantly, scalp EEG recordings of
alpha rhythms are ubiquitous and result from spatial averages over an unknown number
of underlying components. It is therefore impossible to identify which component(s)
are active in synchrony over which superficial cortical area at a particular instance in
time. What further complicates inference about an underlying physiological process is
the existence of large individual differences.

Alpha activity has been associated with perception [86], working memory [87], and
attention [85]. Furthermore, the finding that posterior alpha power is proportional to
working memory load [87] and the inverse relationship between alpha power and fMRI
blood-oxygen-level dependent (BOLD) activity [88] have inspired the conclusion that
alpha activity is ubiquitously related to inhibition and information selection processes
[85].

The alpha rhythm has been described as a quasi-stable and bi-modal phenomenon
as some frequencies are differentially modulated by activity and have approximately dis-
parate scalp topographies. Low alpha (8 — 9Hz) was found to decrease in amplitude
with mental activity, while high alpha (10 — 12H z) and theta activity (discussed below)
showed increased amplitudes at frontal electrodes. Again, large variance between indi-
viduals has been observed in the alpha band such that inter-individual differences can be

as large as age-related differences [84]. For instance, some people show distinct bi-modal
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alpha peaks in frontal electrodes while other do not [68]. These large inter-individual
differences further complicate robust inferences about an underlying mechanism of these
oscillations.

The result that inspired the experiment presented here describes a correlation between
working memory related memoranda and induced brain activity in the alpha frequency
band (8 — 12Hz) [69, BI]. Induced activity is defined as a correlate of the experimental
task that is not strictly phase-locked to any task variable, in contrast to evoked activity
which is related to specific task variables [90]. To characterize induced alpha activity
presented here, the total activity (e.g. evoked plus induced) in the alpha frequency band
was extracted in two disparate approaches presented below. The analyses were computed
separately for individual participants because non-negligible individual differences exist,
particularly in the alpha frequency band [84].

Theta rhythms (44—7H z) are much less prominent in the human scalp EEG, however,
these rhythms are strongly represented in the hippocampus of animals and increases
in animals as well as humans with memory demands [84]. Theta is enhanced during
deep relaxation and sleep. These oscillations are important during brain development in
early childhood and decrease throughout puberty, while they increase in late adulthood
[84]. Neurological disease such as dementia has been associated with increased theta
power during wakefulness, while theta power increases during deep sleep and with the
administration of Melantonin [84].

Decreased theta and increased upper alpha power together with increased theta and
decreased upper alpha coherence have been observed in anterior electrodes during mental
activity [68] and coherence during encoding predicted successful recall [84]. Intriguingly,
task performance could be inferred from resting state because large pre-stimulus alpha
power predicted a large decrease in coherence during the task, while small pre-stimulus

theta correlated with a large increase in coherence [91]. Further, coupling between theta
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and gamma (40 > Hz) bands correlate with short-term memory processing [68]. Theta
frequency covaries with alpha frequency [84] and together frequencies in the alpha ( 10H 2)
and theta ( 7Hz) range have been associated with attentional sampling to support a
cyclic perceptual parsing mechanism in vision [86]. Both theta and alpha band activity
has been associated with memory and attention processes, however, the exact purpose
of these oscillations remain unknown. It is likely that cognitive activity associates with
multiple alpha and theta frequency networks, whose measurements are biased to the

global synaptic fields that dominate the scalp EEG [6§].

3.2.5 EEG Acquisition

EEG data were recorded for each participant using a Brain Products ActiCHamp
system (Brain Vision LLC, Morrisville, NC) with 64 Ag-AgCl sintered active electrodes
that were uniformly distributed in an actiCAP (Electro-Cap, USA) elastic cap and placed
in accordance with the 10/20 System [92]. The TP9 and TP10 reference electrodes were
adhered directly to the right and left mastoids. Data were sampled at 1000 Hz. At the

beginning of each session, all impedances were 15 k.

3.2.6 Eye Tracking

Gaze contingent eye tracking accompanied the trial from initiation until the response
options appeared. Trials on which the participants broke their gaze by blinking or moving
their gaze farther than 3° from fixation were aborted and added to the end of the block
to ensure that every participant saw the same stimuli. Aborted trials were followed by
the trial initiation screen with the blue fixation dot. During the task, participants were

positioned in a chin rest at approximately 120cm from the monitor (19-in. ViewSonic

E90f CRT). The eye-tracker (Eyelink 1000 plus, SR Research Ltd. Mississauga, Ontario,
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Canada) was positioned approximately 60 cm from the right eye (monocular tracking @

1000Hz, mean error j1°).

3.2.7 EEG Data Pre-processing

EEG data analyses were performed offline in MATLAB (version 2015b, Massachusetts,
TheMathWorks Inc.) with the EEGLAB v. 14.1.1 toolbox [03]. First, the HEOG and
EKG channels were removed and all electrodes were referenced to the average of the left
and right mastoid electrodes. Next, noisy channels were identified via visual inspection
of the raw data in temporal space as well as their representation in frequency space. The
noisy channels were then removed and replaced using spherical interpolation.

Then the pre-processing pipeline to select the relevant frequencies and task sections
diverged depending on the analysis that followed. For ERP analyses the continuous EEG
recording was bandpass filtered with cutoffs of 0.1 and 30 Hz using Eeglab ’firws’ filter
function, which implements a zero-phase FIR filter of order 200 and tapers the data
with a hamming window prior to convolution with the filter kernel. After filtering the
continuous signal was dissected into 700ms epochs ranging from 200ms before stimulus
onset throughout the 500ms of stimulus presentation. For session 3, ’stimulus onset’
describes the test stimulus shown after the memory probe.

For the spectral and autocorrelation analyses the continuous EEG recording was fist
separated into condition specific 1 second memory delay intervals (or epochs) and tapered
using a Hamming window to alleviate edge artifacts in the small data sample. For the
spectral analysis, the epochs were Fourier transformed and power values were retrieved
via the periodogram (see details in section Fourier Analysis). For the autocorrelation
analysis, the epochs were filtered using an FIR filter that was designed using the Matlab

"designfilt’ function. To isolate alpha frequencies the following parameters were selected:
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a passband of 8 — 12H z, stopband frequencies set at 7 and 13H z with 60dB equal ripple
stopband attenuation. For theta the 60dB equal ripple stop-band cutoff was set at 3H z
and 8H z, while the passband was 4 — THz. These parameter setting showed the best
results for the trade-off between passband ripple and transition band roll-off.

In general, baseline corrected epochs with voltage fluctuations beyond -75 and 75
Volts at any electrode were rejected to exclude prominent myogenic and occulo-muscular
artifacts. Since brain activity of interest is typically contained in scalp EEG amplitudes
between 0 and 45 Volts [90, 68] no cerebral EEG activity of interest was removed. Further-
more, small muscular artifacts that bypassed this thresholding procedure and remaining
artifacts with sharp transitions were identified via visual inspection of the raw as well as
filtered signals and removed. Any potentially remaining myogenic and occulo-muscular
artifacts are of little concern because these affect higher frequencies (e.g. 20 - 300 Hz)

[90, [94].

3.3 Analysis Methods

3.3.1 Analysis of Evoked Event Related Potentials

When event related potentials (ERPs) were introduced, EEG correlates of cognitive
processes became popular around the 1970s. ERPs quantify neuro-electric responses
that are evoked by a sensory stimulus. However, events in the external environment that
provoke characteristic evoked potentials are confounded with the spontaneous background
noise of the brain. Therefore, several trials need to be averaged to generate ERPs with
robust components. An ERP was defined as [82]: scalp-recorded neural activity that is
generated in a given neuroanatomical module when a specific computational operation is

performed. The overall ERP waveform shape consists of consecutive peaks and throughs
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that reflect sums over several independent components. In this sense, amplitude and
timing of observed maxima and minima are relatively meaningless. The amount of trials
necessary to generate reliable representations depends on the ERP components of interest
and their associated sensory modality.

For instance, the visual N1 component describes a large negative Voltage deflection
that typically peaks in anterior electrode sites around 100 — 150ms post stimulus, while
two posterior components observed in parietal and occipital electrode sites follow the
anterior peak with a delay of approximately 50ms. The N1 component is thought to
be associated with visual discrimination, perceptual processing, and expert recognition
[95]. Since the number of trials necessary to estimate robust N1 components takes ap-
proximately 300-1000 trials [95], any analysis with less than that should be interpreted
with great caution. The largest problem in ERP analysis is the confident association
between ERP component and experimental manipulation since the EEG recording at
any point in time represents a sum over several processes and components that overlap
in space and time. For instance, the two hemispheres may contribute differentially to an
ERP component of interest [82]. Fortunately, intra-subject variability of ERP waveforms
is small compared to inter-subject variability. Nonetheless, ERP component analysis is
further complicated by an intra-trial additive effect due to component overlap and that
ERP activity does not follow the same time course across trials and subjects. These
unavoidable sources of variance result in grand group averages with smaller amplitudes
in which waveforms are smeared in time [95]. Therefore, to confidently separate ERP
components that arise from feed-forward or feed-back processing is virtually impossible.
However, some ERP components occur early enough that it is likely that they result from
feed-forward processes, while the later components are likely a mixture of feed-forward
and feed-back processing.

Following the recent results from Rabi et al. [79], the N1 over frontal and fronto-
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central scalp sites were investigated. In their exploratory investigation comparing ERPs
of unidimensional and conjunctive rules during categorization, their results show mean
amplitude differences of the N1 component and late positive complex. The analysis pre-
sented here will focus on the mean amplitude of the N1 component over anterior (frontal
and fronto-central) electrode sites. The time-window for the N1 for each orientation bin
was empirically defined by the component zero-crossings in a grand average across all
subjects and conditions. The window size for the zero-crossings satisfy the recommended
minimum length of 40ms [82] and defining the window latency via grand averages is
recommended as alternative approaches based on individual subjects has been shown to
bias the significance tests [96]. Lastly, one important rule of ERP analysis is to never
assume a linear or even monotonic relationship between an ERP components’ amplitude

or latency and the quality or timing of an underlying cognitive process [82].

3.3.2 Frequency Domain Analyses of Induced Activity

Induced activity describes a neuroelectric correlate of the experimental task that is
not strictly phase-locked to any task variable. Spectral analysis decomposes temporal
waveforms into frequency components. Frequency representation has several advantages
over standard time representation in which the signal was recorded. The most obvious
benefit is the visualization of periodicities in the recorded signal that may correlate to
some underlying physical phenomenon. Spectral analysis of EEG data became popular

in the 1970s and replaced the traditional analysis method of counting zero crossings [68].

Theoretical Background and Assumptions

From the perspective of analytical mathematics, it is convenient to regard EEG mea-

sures as stochastic processes and sample EEG recordings as single realization of such a
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process [97, 68]. Assuming the underlying process is a bandlimited stationary random
process then it can be sampled without aliasing and filtered out [98]. Note the stochastic
nature of EEG shall not imply that the process has no statistical structure, rather it
implies that this structure has not been characterized. The following describes a mathe-
matical theory that provides the necessary framework for spectral analyses and is not to
be considered as a biophysical model of EEG.

A stochastic (or random) process is the ensemble of all the possible realizations (e.g.
sample functions) that the underlying stochastic phenomenon of study could have gener-
ated. Consider the stochastic process X (t) which represents a series of realizations, such
that they construct an ensemble. X (¢) follows a density that depends on time, and when
t is fixed, i.e. t = t, then X(¢,) becomes a random variable of the density f(x; ). Then
for some integer N, the random variables X7, ..., Xy are defined by the stochastic process
X(t) at times ty, ..., ty. If the joined density function of (X7, ..., X) does not depend on
time, then the stochastic process X (t) is stationary. It was pointed out that to gather
an ensemble of neuro-electric waveforms it would require the simultaneous acquisition of
an approximately infinite number of brains with identical statistical properties [99]. In
application this is clearly not possible and one realization is not sufficient to character-
ize the stochastic process. However, assuming the phenomenon under investigation is
a stochastic process and assuming that EEG recording samples are realizations of that
stochastic process provides the theoretical framework for investigating the phenomenon
of interest.

A further necessary assumption for the spectral analysis of the EEG sample data
is time-invariance (or signal stationarity). That is that the signal mean and variance
(e.g. power spectrum) are assumed to be independent of time. The assumption of sta-
tionarity is likely violated due to the neocortical source dynamics described above as

well as overall state changes in vigilance, caffeine effects, etc. However, the assumption
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of stationarity for induced or spontaneous activity becomes more viable when the time
window of interest is shrunk to 1 second [92]. In contrast, the assumption of stationar-
ity is clearly violated in evoked event related potentials that follow some sensory input
(see Section Event Related Potentials above), whereby one exception are steady state
evoked potentials [68]. The stationarity assumption precludes robust detection of tran-
sient information (for example synchronous inhibitory volleys that do not occur on every
oscillation cycle [100]). Finally, brain activity measured using EEG recordings can be
regarded as non-stationary stochastic processes in space and time whereby short sample
of EEG data, for instance an EEG epoch, may be thought of as one realization of some

underlying stochastic phenomenon that satisfies the stationarity assumption.

Fourier Analysis

Fourier analysis was developed by Jean Baptiste Fourier (1768-1830) and is essential
to the analytical armamentarium of mathematical, physical, and natural sciences. Since
the development of the efficient Fast Fourier Transform (FFT; [I01]) this analysis has
gained computational allure. The Fourier transform decomposes a real signal into a linear
superposition of sines and cosines at particular frequencies. Since most recorded signals,
including the EEG signal analyzed here, are discrete I will only present the discrete
Fourier Transform. For a signal represented by N discrete samples x(n) = z,, 1, ..., Ty _1

the discrete Fourier Transform is defined as:

N—1
X(k) = x(n)eﬂ%\’;kn,k =0,..,N—1 (3.1)
n=0
and its inverse is defined as:
1 3= )
12wkn
z(n) = N X(k)e v . (3.2)
k=0
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When the decomposed time series is real, the discrete frequencies are defined as: f; =
k/N. Thus, the frequency resolution depends on the frequency resolution of the original
signal and the length of the segment that is analyzed. There are two errors that can
occur when applying the discrete Fourier Transform: aliasing and leakage [102]. The
highest detectable frequency within a period of N samples is called the Nyquist frequency
and corresponds to fyyquist = IN/2. If the signal contains frequencies above the fnyquist,
these will be forced into the frequency range fi, < fnyquist causing spurious effects known
as aliasing. Leakage refers to a broad-band artifact at the window border. In general,
leakage artifacts are prevented by applying a windowing function, commonly a Hanning
window, to the signal before the Fourier Transform is computed [97].

The periodogram computes the power spectrum of the signal. The power spectrum

represents the signal variance at particular frequencies:

I(k) =X (k). (3-3)

Since the periodogram is not a consistent estimator [97], in order to gather a robust
statistical estimate of the power spectral density the periodograms of several EEG sample
realizations were averaged [68]. The power spectrum has been referred to as the Fourier
transform of the autocorrelation function [103].

For the spectral decomposition of the 1 second delay interval EEG epochs, the epochs
were first shortened to remove any evoked potentials. Specifically, the first 200ms were
removed since the stimulus disappearing from the screen usually results in evoked activ-
ity that continues until approximately 150ms after stimulus offset [90]. Next, a Hanning
windowing function was applied to each epoch before the Fourier Transform was com-
puted using the FFT algorithm. Since the EEG recordings commenced in an unshielded

environment and one wall was shared with an animal research laboratory, the sampling
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rate of the signal was kept at F's = 1000ms to omit potential aliasing due to unknown
high frequency sources. After computing the power spectra per epoch, all epochs for
each orientation bin were averaged per participant per condition and the relevant fre-
quencies in alpha (8 — 12Hz) and theta (4 — THz) bands were extracted resulting in a
4-dimensional matrix [participants x condition x EEG channel x frequency bins] for each

frequency band.

Autocorrelation Analysis

Assuming that the EEG epoch of interest resembles a zero mean stationary random
signal, the autocovariance C,, of that signal sampled at equally spaced intervals dt is
defined by [97]:

Coz(kot) = E[z(ndt)z((n + k)ot)]. (3.4)

When the signal is stationary, the right side depends on k£ only. And when k£ = 0, we
get the variance:

Cie(0) = E [z(ndt)?] . (3.5)
The autocorrelation function is the standardized autocovariance [97]:

Co (ko)

Ry (kdt) = o)

(3.6)

In contrast to the autocovariance the autocorrelation is scale independent. The caveats
associated with using the autocorrelation function on the known alpha and theta fre-
quency bands are: 1) alpha and theta activity itself is periodic, and 2) the onset of
induced alpha is likely not time-invariant across trials.

In oder to compute the autocorrelation functions, the 1 second delay EEG epochs were

first filtered to select the frequency band of interest. For each trial, the autocorrelation
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was computed over the last 800ms of the delay interval to reduce the presence of evoked
activity due to stimulus-offset. For alpha, autocorrelations were computed at 4 time-
lags, comparing 200ms intervals, which produced a 4-dimensional matrix [participants x
condition x EEG channel x time lag]. It is noteworthy, that 4 time lags is less than the
recommended number of 20 lags [102]. However, 4 time lags provided a time window
that should capture approximately two alpha-cycles and seemed appropriate given that

the frequency of the signal was known.

3.4 Results

The two interval forced choice rotation discrimination task and the similarity based
(A,notA) forced choice identification task provide the data for a presumed cognitive
process underlying orientation judgements relative to a previously shown criterion ori-
entation or relative to a previously established rule region, respectively. The similarity
between EEG correlates of these different tasks is quantified in the following. For all
analyses, the number of trials between conditions are subject to great variability. For
instance, in session 2, the five alternative forced choice identification task, motor noise
has contributed to trial loss. While in session 3, corrupted data files have largely con-
tributed to the stark difference in data loss between conditions. All analyses presented

in the following only include correct categorization trials.

3.4.1 ERP Analysis

After artifact rejection, the artifact free number of trials for each participant varied
between conditions and orientation bins. For session 1, the average number of trials for
orientation bin 1 were M = 54.0909 with ¢ = 15.5528, and for orientation bin 7 they

were M = 56.0909 with ¢ = 17.184. For session 2, the average number of trials for
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orientation bin 1 were M = 73 with o = 27.0592, and for orientation bin 7 they were
M = 52.6364 with ¢ = 20.9918. And for session 3, the average number of trials for
orientation bin 1 were M = 23.0909 with ¢ = 9.2136, and for orientation bin 7 they were
M = 16.2727 with o = 4.7136. Since the ERP results presented here were generated
from differential numbers of trials between conditions, the interpretation of results ought
to be approached with caution [82].

In accordance with Rabi et al. [79], the ERP analyses were restricted to frontal and
fronto-central electrodes (23 electrodes in total). The ERPs for grand averages across
participants and electrodes are depicted in figure for orientation bins 1 and 7. The
figure clearly shows the presence of pre-stimulus alpha in session 3 in contrast to session 1
and 2. With respect to ERPs, alpha activity not related to the stimulus event represents
the largest source of noise [95].

The N1 component mean amplitude was computed for each orientation separately.
The window latencies based on grand averages across subjects and conditions were 94 —
147ms and 87 — 151ms for orientation bin 1 and 7, respectively. The resulting window
size for orientation bin 1, w1l = 54ms, and for orientation bin 7, w7 = 65ms, satisfied the
length recommendation by Luck [82]. Figure shows topographic images for the grand
average maxima of orientation 1 (maximum at 119ms) and orientation 7 (maximum at
120ms). The 23 frontal and fronto-central electrodes were averaged prior to an overall
analysis of variance. The analysis showed no significant difference in mean amplitude
of the N1 component between conditions for orientation bin 1 (£(2,10) = 0.057,p =
0.945, 7% = 0.003), as well as orientation bin 7 (F(2,10) = 1.415, p = 0.266,n* = 0.066).
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Figure 3.2: Grand averages of frontal and fronto-central electrodes for orientation bin
1 (top) and orientation bin 7 (bottom). Abscissa shows the time in ms relative to
stimulus onset and ordinate references the amplitude in pV. Session 1 (blue trace),
session 2 (red trace), and session 3 (yellow trace).

3.4.2 Spectral Analysis

After artifact rejection, the trial numbers for the delay interval varied between con-
ditions and orientation bins. For session 1, the average number of trials for orientation
bin 1 were M = 86.18 with ¢ = 28.5, and for orientation bin 7 they were M = 89.64
with 0 = 29.65. For session 2, the average number of trials for orientation bin 1 were
M = 73.64 with o = 24.02, and for orientation bin 7 they were M = 55.46 with o = 23.94.
And for session 3, the average number of trials for orientation bin 1 were M = 22.82 with
o = 5.58, and for orientation bin 7 they were M = 16 with 0 = 5.75.

The power values are depicted in a topographic manner referenced to the electrode

position on the scalp. The results for alpha power are seen in figure|3.4, and the results for
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Figure 3.3: Topographic plots of ERPs at N1 maxima defined by grand average across
subjects and conditions. Orientation bin 1 (left column) orientation bin 7 (right
column), session 1 (top row), session 2 (middle row), and session 3 (bottom row).
The colorbar references V.
theta power are depicted in figure (3.5, Power was differentially distributed between the
two frequency bands, with alpha power being highest in posterior electrodes, and theta
power was highest in anterior electrodes. Although within frequency bands differences
between tasks and orientation bins were evident they were far less pronounced. Power
values across electrodes were averaged prior to all repeated measures analyses of variance.
The analysis of variance to investigate significance of the factor condition showed no
significant difference for alpha power averaged across all electrodes between conditions

for orientation bin 1 (F(2,10) = 0.741,p = 0.489, 7> = 0.005) as well as orientation

bin 7 (F(2,10) = 1.606,p = 0.226,7* = 0.020). To quantify significance separately for
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Figure 3.4: Topographic plots of alpha power averaged across participants and 800ms

delay periods. The columns depict alpha power for orientation bin 1 (left) and orien-

tation bin 7 (right), while the rows reference the tasks: session 1 (top row), session 2

(middle row), and session 3 (bottom row). The colorbar on the bottom right references

the power values in uV?/Hz.
selected topographic regions, electrode clusters in frontal, central, parietal, and occipital
regions were investigated. The analyses of variance did not reveal any significant effect
for condition for either orientation bin. Specifically, no significant difference for power
averaged across a subset of frontal electrodes (AFz, FCz, F1, F2) between conditions was
found for orientation bin 1 (F(2,10) = 0.772,p = 0.475,n* = 0.008), as well as orientation
bin 7 (F(2,10) = 1.987,p = 0.163,7*> = 0.028). No significant difference for power

averaged across a subset of central electrodes (CPz, FCz, C1, C2) between conditions was

found for orientation bin 1 (F(2,10) = 0.645, p = 0.536, n*> = 0.005), as well as orientation
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Figure 3.5: Topographic plots of theta power averaged across participants and 800ms

delay periods. The columns depict theta power for orientation bin 1 (left) and orien-

tation bin 7 (right), while the rows reference the tasks: session 1 (top row), session 2

(middle row), and session 3 (bottom row). The colorbar on the bottom right references

the power values in uV?/Hz.
bin 7 (F(2,10) = 3.089,p = 0.068,1> = 0.028). No significant difference for power
averaged across a subset of parietal electrodes (CPz, POz, P1, P2) between conditions
was found for orientation bin 1 (F(2,10) = 0.379,p = 0.689,7* = 0.003), as well as
orientation bin 7 (F(2,10) = 2.11,p = 0.147,7* = 0.015). No significant difference for
power averaged across a subset of occipital electrodes (POz, O1, O2) between conditions
was found for orientation bin 1 (F(2,10) = 0.926,p = 0.412,n*> = 0.007), as well as
orientation bin 7 (F(2,10) = 1.185,p = 0.326,1°> = 0.014). Since alpha frequencies

appear to be differentially modulated (see Section the analyses above were repeated to
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investigate high alpha (10 — 12Hz2). Non significance of all tests above was maintained
for high alpha.

The analysis of variance for theta power averaged across all electrodes showed a
marginal significant difference after sphericity corrections between sessions for orientation
bin 1 (F(2,10) = 4.251,p < 0.05,7? = 0.051). While a greater significant effect was found
for orientation bin 7 (F(2,10) = 5.391,p < 0.05,1*> = 0.043). For orientation bin 1, post-
hoc Bonferroni corrected paired comparisons showed a marginal non-significant difference
between theta power for session 1 (M = 290.78) and session 3 (M = 402.88;p = 0.052),
while a marginal significant difference between session 1 and session 2 (M = 359.48;p <
0.05,d = 0.36) was found. For orientation bin 7, post-hoc Bonferroni corrected paired
comparisons showed theta power differed significantly between session 1 (M = 293.26)
and session 2 (M = 383.11;p < 0.05,d = 0.41), as well as session 1 and session 3
(M = 412.81;p < 0.05,d = 0.34).

To quantify which topographic locations drove the significant effect, several subsets
of electrodes in frontal, central, and parietal regions were compared. The analysis of
theta power averaged across a subset of frontal electrodes (AFz, FCz, F1, F2) showed
a significant difference for power between conditions for orientation bin 1 (F(2,10) =
6.233,p < 0.01,1* = 0.06), as well as orientation bin 7 (F(2,10) = 3.714,p < 0.05,7* =
0.043). For orientation bin 1, post-hoc Bonferroni corrected paired comparisons revealed
a significant difference between session 1 (M = 435.57) and session 2 (M = 612.46;p <
0.05,d = 0.5), as well as session 1 and session 3 (M = 644.98;p < 0.05,d = 0.44), while
no significant difference was found between session 2 and session 3. For orientation bin 7
post-hoc Bonferroni corrected paired comparisons showed a significant difference existed
only between session 1 (M = 445.14) and session 2 (M = 729.22;p < 0.05,d = 0.54).

The analysis of theta power averaged across a subset of central electrodes (CPz, FCz,

C1, C2) showed a significant difference for power between conditions for orientation bin
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1 (F(2,10) = 6.445,p < 0.01,7* = 0.073), as well as orientation bin 7 (F(2,10) =
5.245,p < 0.05,n* = .047). Post-hoc Bonferroni corrected paired comparisons revealed a
significant difference between mean power across electrodes for orientation bin 1, between
session 1 (M = 402.95) and session 2 (M = 577.31;p < 0.05,d = 0.52), as well as session
1 and session 3 (M = 622.53;p < 0.05,d = 0.48). For orientation bin 7, post-hoc
Bonferroni corrected paired comparisons showed a significant difference between session
1 (M = 432.62) and session 2 (M = 646.23;p < 0.05,d = 0.48), and a marginally non-
significant difference between session 1 and session 3 (M = 687.48;p = 0.066,d = 0.37).

The analysis of theta power averaged across a subset of parietal electrodes (CPz,
POz, P1, P2) showed a marginal significant difference for power between conditions for
orientation bin 1 (F(2,10) = 4.202,p < 0.05,1*> = 0.072), and a significant effect for
orientation bin 7 (F(2,10) = 4.981, p < 0.05,7* = 0.045). Post-hoc Bonferroni corrected
paired comparisons revealed a significant difference between mean power across electrodes
for orientation bin 1, between session 1 (M = 329.87) and session 2 (M = 440.91;p <
0.05,d = 0.47), and a marginally non-significant difference between session 1 and session
3 (M =509.09;p = 0.055,d = 0.39). For orientation bin 7, post-hoc Bonferroni corrected
paired comparisons showed a marginally significant difference between session 1 (M =
349.18) and session 2 (M = 464.24;p < 0.05,d = 0.43), and a significant effect between

session 1 and session 3 (M = 482.79;p < 0.05,d = 0.41).

3.4.3 Autocorrelation Analysis

The number of trials per session are the same as for the spectral analysis above. To
investigate the evolution of the alpha frequency, autocorrelations for the last 800ms of
the delay interval were computed at 4 time lags. The condition specific autocorrelation

statistics were then averaged across trials. By its nature, the autocorrelation function
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decreases monotonically with increased time lag and averaging across participants and
electrodes did not produce a particularly interesting result between sessions. However,
autocorrelation statistics for each electrode evolved differentially, and thus, cross-sections
of the autocorrelation functions were investigated. The figure |3.6| shows the correlation
statistics on the ordinate plotted for each electrode on the abscissa averaged across partic-
ipants for the last two time lags. The figure clearly shows larger variance across electrodes
for session 2 and session 3 in comparison to session 1. In addition, two troughs corre-
sponding to occipital (Oz, O1, O2) and occipital-parietal (PO3, PO4, PO7, POS8, POz)

electrodes are evident. Both effects become more pronounced at the last time lag.
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Figure 3.6: Alpha autocorrelation cross-sections. Cross-sections at lag 3 (left) and
4 (right) for orientation bin 1 (top row) and orientation bin 7 (bottom row). The
ordinate references the autocorrelation statistic and the abscissa indexes electrodes.

Two-sample T-tests comparing the autocorrelation values of all electrodes between

sessions revealed a significant difference between session 1 (M = 0.9625) and session 2
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Figure 3.7: Theta autocorrelation cross-sections. Cross-sections at lag 3 (left) and
4 (right) for orientation bin 1 (top row) and orientation bin 7 (bottom row). The
ordinate references the autocorrelation statistic and the abscissa indexes electrodes.

(M = 0.9629;p < 0.01,d = 0.005), as well as session session 1 and session 3 (M =
0.9631;p < 0.001,d = 0.0048), while no significant difference was found between session
2 and session 3 (p = 0.121) for orientation bin 1. For orientation bin 7, a significant
difference was found only between session 1 (M = 0.9625) and session 3 (M = 0.9628; p <
0.05,d = 0.0067), while no significant differences were found between session 1 and session
2 (M = 0.9626;p = 0.419), as well as session 2 and session 3 (p = 0.076). It appears
that these differences are driven by the increased variance in autocorrelation statistics
across all electrodes in session 2 and session 3 compared to session 1. The significance
tests suggest a consistently greater difference between session 1 and session 3 in contrast

to the difference between session 1 and session 2.
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To investigate the evolution of the theta rhythm, autocorrelations for the last 800ms
of the delay interval were computed at 4 time lags. The condition specific autocorrelation
statistics were then averaged across trials. Again, cross-sections of the autocorrelation
functions were investigated. The figure [3.7] shows no clear trend to dissociate electrodes
by variance. Specifically, only two right posterior electrodes (P8 indexed by x=20, and
PO8 indexed by x=51), show a decreased correlation statistic that is consistent across
sessions and orientation bins. Two-sample T-tests comparing the autocorrelation values
of all electrodes between sessions revealed a significant difference between all sessions
for orientation 1. Specifically, session 1 (M = 0.9846) and session 2 (M = 0.9848;p <
0.001,d = 0.002), session 2 and session 3 (M = 0.9851; p < 0.0001,d = 0.003), and session
1 and session 3 (p < 0.001,d = 0.0032). For orientation bin 7, a significant difference was
found between session 1 (M = 0.9846) and session 2 (M = 0.9849, p < 0.0001,d = 0.003),
as well as session 2 and session 3 (M = 0.9847,p < 0.01,d = 0.0032). While no significant

difference was found between session 1 and session 3 (p = 0.1884).

3.5 Discussion

Since no clearly defined EEG correlates of rule representation during explicit cat-
egorization exist, this analysis was an exploratory endeavor. In the ERP analysis, no
significant differences were found comparing the mean amplitude of the N1 ERP com-
ponent between conditions. The N1 component has been associated with perceptual
processing, expert recognition, and visual discrimination [95]. For instance, Vogel and
Luck [104] found evidence that supports the hypothesis that the posterior N1 (which
peaked around 160ms) reflects some general visual discrimination process, that is not
modulated by temporal expectation [105]. In contrast, Vogel and Luck concluded that

the origin of the anterior N1 (which peaked around 100ms) is less clear although in their
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study the component appeared to be modulated by response-related activity. It is pos-
sible that the anterior N1 reflects an executive attention signal for a specific location in
space, however, this has not been established.

It is important to note that waveforms elicited by visual stimuli as well as motor
outputs can last up to 1 second [95], 82]. In the paradigm presented here, the inter-trial-
interval was short and each trial began with a button press that was immediately followed
by the visual stimulus. Therefore, waveforms elicited by previous activity are included
in the pre-stimulus baseline and are likely to overlap with the stimulus. Furthermore, if
the underlying phenomenon of interest is independent of the alpha rhythm, then alpha
represents the largest source of noise corrupting the ERP analysis [95]. In particular,
the strong presence of pre-stimulus alpha in session 3 may have resulted from the two
interval nature of the task where successful performance was contingent on the memory of
an immediately preceding stimulus. In this sense, the null result comparing the anterior
N1 is favorable because it may provide some control for task equivalence between sessions
1, 2, and 3.

The finding that induced alpha activity in posterior channels was sufficient to track
disparate spatial locations [69] could not be extended to characterize the categorization
rule. This result may in part be due to the fact that spatial locations are associated with
specific retinotopic mappings [68] and spatial attentional priority maps [106] that are
supported by a differential processing stream [107]. Differential topographic dominance
of alpha power (strongly represented in posterior electrodes) and theta power (strongly
represented in frontal electrodes) implicate theta as candidate for top-down control, while
alpha may reflect a more localized information selection mechanism. Although alpha
activity appears to be inversely related to the amount of available cortical resources
[T08], it has been assigned a prominent role in attention processes [85].

Strong inferences are cautioned since scalp recordings of alpha oscillations represent
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space averages of multiple processes that support cognitive operations including dynamic
long-range coherence between regions that carry relevant information and desynchroniza-
tion of regions that carry irrelevant information [68]. Therefore, it is likely that the tasks
in the three sessions were too complex to generate neuroelectric correlates of the ubiqui-
tous alpha rhythm to support robust dissociations. In addition, EEG spectra result from
a superposition of white (non-interesting activity due to artifacts), pink (underlying un-
structured component), and colored noise (task relevant activity in form of characteristic
spectral peaks) [97] that produce topographic measurements subject to variance. For
instance, the absence of theta measurements in posterior electrodes does not imply an
actual absence, rather it implies a strong alpha dominance at posterior electrode sites
[68]. Similarly, alpha rhythms may contribute to the cognitive task at hand without
producing outstanding alpha power measured at the scalp. Indeed, frontal alpha activity
may produce low amplitude measurements due to highly specialized and localized activ-
ity. This is consistent with the nonsignificant result for upper alpha in frontal electrodes.
It is possible that more localized activity at frontal electrodes did not have sufficient
power, or the localized activity was too similar to generate dissociations.

One intriguing finding is that alpha power did not differ significantly between sessions
while the autocorrelation comparisons at the last time lag did. Significance tests sug-
gested a greater difference between session 1 and session 3 for both orientations, while the
difference between session 1 and session 2 only existed for orientation 1. However, these
results ought to be interpreted with great caution since session 2 and session 3 were con-
structed from fewer trials than session 1 and will naturally be subject to larger variance
as a result. In addition, session 3 may have been subject to larger alpha-noise as was seen
in the presence of pre-stimulus alpha in the ERP analyses above. The different results
for the spectral and autocorrelation analyses for alpha could be explained by the finding

of Herrmann et al [I09] that total alpha power in a delay match to sample paradigm

62



EEG Correlates of Rule Based Decision Making Chapter 3

was differentially modulated early compared to late in the retention interval, such that
500ms after stimulus offset task specific differences were detectable. Their result is in line
with the finding that activity in the alpha band during the retention period of a working
memory task showed significant task dependent changes over posterior and central re-
gions only after 300ms from the onset of a 2.8 second retention interval [87]. Thus, total
alpha power computed over the last 800ms of a 1 second delay interval was not sufficient
to detect task dependent differences while the autocorrelation analysis comparing 200ms
intervals was sensitive enough. The results in the spectral and autocorrelation analyses
were not entirely different however, since the increased variance in occipital and occipital-
parietal electrodes corresponding to lower autocorrelation statistics matched the results
of the spectral analyses showing increased alpha power for the same electrode sites. Au-
tocorrelation statistics with respect to a particular frequency band may relate to phase
analyses, in that higher correlation values imply phase stability while lower values imply
phase shifts.

In that light, the finding that information processing is tied to the phase of oscillations
is in line with the idea of temporal attention where temporal regularities in the environ-
ment contribute to select relevant information [IT0], possibly via a cortical excitability
bias [105]. Specifically, a relationship between alpha oscillations and a temporal selection
mechanism have been established. At posterior recording sites alpha oscillations have
been associated with a perceptual inhibition timing mechanism [85], 111l [105]. Posterior
upper alpha activity was found to prioritize perceptual information in tandem with ac-
tivity in the gamma frequency band [112]. Further, a thalamo-cortical pathway via the
pulvinar [I13] was suggested to implement a top-down spatial attention mechanism [114].
And local cortico-cortical or corico-thalamic networks are thought to generate resonant
frequencies due to local or specific mono-synaptic neuronal delays [68]. Even though

the executive attentional pathway proposed by Jensen et al. [114] is thought to mediate
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spatial attention, the pulvinar has been shown to relay information traveling in dorsal as
well as ventral pathways [I15]. Finally, the frequency of alpha waves is faster at posterior
and slower at anterior recording sites [84], which may relate to differential information
selection strategies (supported by the finding of Bonnefond [I12] mentioned above) or an
anterior desynchronization mechanism to ablate interfering information/networks. It is
tempting to assume that spatial attention recruits a mechanism similar to feature based
attention, however, the latter is apparently more complex.

The analyses of theta power revealed a significant effect between sessions. Specifically,
comparisons between frontal, central, and parietal electrode sub-sets showed a consistent
difference between session 1 and session 2 for both orientations. While session 1 and
session 3 were significantly different in frontal and central electrodes for orientation 1
only, this difference vanished in the posterior subset. These results are consistent with
the finding that increased theta power in frontal electrodes and decreased theta power in
posterior electrodes tracked mental activity [68]. The mental activity in the anterior part
of the brain ought to be more similar in tasks that require visual working memory, such
as the categorization task (session 1) and the two interval forced choice task (session 3).
In contrast, the object identification task (session 2) that is more similar to an object
recognition task would be less likely to tax working memory to the same degree. One clear
difference between the tasks is that in the categorization and identification sessions the
stimulus was singular, while in the memory comparison session the stimulus represented
a pair of objects. Taken together, these results support the notion that category learning
and presumably rule representation require working memory.

The presence of theta power implies theta stationarity over the 800ms delay. The
idea of frequency dependent perception is thought to include theta frequencies. A meta-
analysis over several EEG and magneto-encephalography studies found a temporal pars-

ing mechanism was associated with alpha (peak around 10Hz) and theta (peak around
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7Hz) rhythms in the context of visual attentional sampling [86]. Specifically, alpha was
thought to relate to sensory information, while theta was thought to reflect attention
processes. The implication of theta in the context of executive attention (i.e. a top-
down mediated information selection process) matches the finding of increased power
at fronto-central electrode sites seen in all sessions. Furthermore, VanRullen [86] also
suggested that sensorimotor synchronizations are likely to produce theta band oscilla-
tions. Indeed, theta oscillations may provide a temporal gate essential to the formation
of multisensory associations in episodic memory. Specifically, small phase modulations
(approximately 125ms) between information feeding visual and auditory sensory modal-
ities strongly affected the associative multisensory memory [I116]. Taken together, cyclic
periodic information sampling mechanisms may pose a mechanistic solution to the per-
ceptual binding problem, and may inspire solutions to rule representation in explicit

categorization.

3.5.1 Alternative Accounts

It was noted that alpha frequency correlated with familiar, while theta frequency
correlated with novel stimuli [85]. The alternative explanation that stimulus novelty
drove the significant effect comparing theta frequencies can not be ruled out entirely,
since all participants first participated in session 1 to establish stable rule representations
that could be compared with sessions 2 3. In general, differences between orientation
bin 1 and orientation bin 7 could be explained by the similarity to a horizontal line of
orientation bin 1, which was rotated counter-clockwise 0.0314rad from a horizontal line.
In contrast, orientation bin 7 was more similar to an oblique line, that was shown to be
less accurately remembered than a horizontal line, e.g. oblique effect [117].

Alternative explanations for differences in the activity of the alpha frequency include
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global changes that could result from caffeine, fatigue, and stress, that could confound
the analyses of phasic changes that relate to a particular task when individual alpha
frequencies are considered [84]. Furthermore, it was shown that alpha activity was ap-
proximately stationary in a resting state, while peak frequency decreased and power
increased throughout the course of a mental task [I18]. The existence of individual dif-
ferences contribute a non-negligible confound that complicates straight forward inferences
from EEG data that translate into simple models of decision making. In this regard, it is
difficult to tease apart the contribution of sensory driven representations that travel up
the processing hierarchy in a potentially bayesian way [119] and top-down modifications
from executive attention and working memory processes that update internal mappings
between sensory and motor regions that may ultimately result in efficient optimized au-
tomatic behavior [120]. The isolation of processes and processing components is further
complicated by hemispheric lateralization, where the left hemisphere is thought to achieve
uncertainty reduction, while the right hemisphere integrates new information [121].

The results presented here are consistent with the categorization literature in that
categorization depends on attention and working memory processes. Finally, the small
sample size and trial loss paired with the individual difference confound and possible
stochasticity during delay make strong inferences about rule representation unfortunately

impossible, although these constraints inspire further experimental investigation.
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Chapter 4

General Discussion

In the recent past, predictions at the processing level were linked to behavioral mea-
surements in the human psychophysics literature [6]. The successful interface between
behavior and mathematical relationships in stimulus space have provoked extensive for-
malizations of perceptual processes with regard to categorization [9, [12]. The convenient
mathematical construct of a decision boundary has precipitated in several cognitive pro-
cess models, here collectively referred to as criterion model. The validity of categorization
models can be evaluated either by goodness-of-fit testing or by testing the axioms that
are used to build the models (e.g. [30]). Although the categorization literature has been
dominated by the former, this thesis focused on the latter and explored the validity of
the criterion as a processing component in models of decision making.

In chapter 2, predictions of the criterion model were challenged and falsified the cri-
terion as a processing component in rule-baed categorization. This result represents an
important first step away from a classic relic. An alternative direct-mapping model was
introduced towards a more parsimonious and intuitive approach of rule representation.
Chapter 3 put forth an attempt to characterize the nature of rule representation further

using EEG correlates. Even though, it was likely that the first EEG experiment con-
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ducted to characterize rule representation would not offer a panacea for abstract rule
representation in the human brain, a venture to the realm of local field potentials and
neuroelectric waveforms certainly marked an important step. Taken together, the find-
ings presented previously motivate a new neutrally inspired theory of rule representation.
In this chapter, the nature of rule representation in the form of direct maps with regard

to past models and recent findings across various neuroscience fields is explored.

4.1 Existing Models

In the past, scientists have asked questions that were limited to the algorithmic level
[1] and collected data to support or refute assumptions inherent to these models. For
example, the serial vs. parallel, exhaustive vs. self-terminating [3], and discrete stage vs.
continuous flow [122] type models are difficult to falsify when limiting assumptions are
made about the supporting architecture. For instance, Sternberg’s [47] memory scanning
experiment showed a linear increase in response time with the number of items to be
remembered. This evidence motivated Sternberg to propose a serial exhaustive search
model that assumes equal processing times for all items. Although this model produced
astonishing fits to the memory scanning (or visual search) data, it was not the only model
that could account for the linear increase in mean RTs proportional to added memory
items. A parallel capacity reallocation model that assumes limited capacity which is
equally (re)allocated between uncompleted items mimicked the serial exhaustive model
exactly. This example illustrates that goodness-of-fit testing by itself is necessary but
limited, such that evaluating the assumptions underpinning the axioms built into both
process models becomes a natural pursuit.

Categorization models that utilize a decision bound or criterion are parametric models

and require assumptions about the underlying category distributions. For instance, linear
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and quadratic decision bounds require multivariate normal category distributions [30].
In contrast, models that highlight associations between perceptual regions and a specific
response are equivalent to non-parametric classifiers. It has been suggested that only
linear bounds perpendicular to the category relevant dimension are permitted in explicit
models. However, in the absence of response bias, the GRT optimal classifier assumes
that accuracy is maximized when the participant computes the likelihood ratio of the
PDF's of the perceptual effects associated with each category (e.g. l(x) = ga(x) gp(x) ).

The equivocality contour h(z) is then defined by [19]:

h(z) = —log[l(x)] = 0. (4.1)

In most cases the equivocality contour will be nonlinear. Therefore, likelihood seems
to be an ill-chosen candidate for models of explicit categorization. However, assuming
the nonlinear bound can be approximated by the sum of smaller linear bounds that
satisfy the requirement of orthogonality to the relevant stimulus/perceptual dimension,
the perceptual space can be partitioned into rectangular regions that are deterministi-
cally (within the limits of perceptual noise and under a particular set of external task
requirements and internal goals) mapped to those response regions that maximize ac-
curacy. Note, even though the likelihood equivocality contour is valid in both, it is not
synonymous in stimulus and perceptual space. The RT results presented in Chapter 2
are consistent with a classification strategy that relies on the likelihood ratio. GRT as-
sumes sub-optimal performance is contingent on: perceptual noise, suboptimal decision
bounds, variability in the memory of the decision bound, and response bias [19]. Out of
these, perceptual and memory noise are explained by neurobiology, while the others are
related to individual differences [39] [15].

Explicit rule-learning is thought to be incompatible with pure exemplar theory [123,
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1241 [125]. Pure exemplar models can be thought of as non-parametric classifiers in which
category distributions are estimated using a Parzen kernel [126]. In contrast, explicit rep-
resentations have been associated with prototype models in which the participant makes
strong assumptions about the underlying category distributions to parametrically esti-
mate the decision criterion. Equivalence relations between parametric exemplar models
and GRT could only be established at the level of the decision boundary [19]. And a
rule-exemplar hybrid model was developed where discrete stimuli are independently rep-
resented in addition to the rule [123]. Their model assumes that stimulus presentation
frequency affects generalization (i.e. extrapolation in stimulus space). In an experi-
ment where participants had to learn four exceptions embedded in a rule-based category
structure the data showed a trend to partition stimulus space according to regions that
favored divisions parallel to the categorization bound [127]. This is important because it
highlights object or feature representation in a complete model of explicit categorization.
Although exemplar theory might be able to account for presentation frequency effects
[128], and adding a rule-module that resembles the verbalizable rules in COVIS by di-
viding the perceptual space according to some single dimensional value might allow to
fit accuracy data.

In the current model of category learning, the categorization rule is represented by a
criterion based discriminant function [36, 37]. In general, human categorization behavior
begins with a hypothesis testing mechanism supported by the explicit system, although
control over the response is maintained by this system only if decisional separability is
satisfied (i.e. the equal likelihood contour that separates perceptual space is orthogonal
to the relevant perceptual axis). The explicit categorization system relies heavily on
working memory and executive attention processes that have been formalized in a model
of working memory maintenance (FROST; [39]). FROST assumes that working memory

maintenance relies on top-down attentional control, which is implemented via a PFC
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mediated subcortical pathway that selects what information is maintained in parallel,
frontal cortical-thalamic reverberating loops between PFC and association cortex. Object
information is maintained via two types of reverberating loops: one between lateral
PFC and ventral infero-temporal cortex (ITC; high level visual representations) and the
other between lateral PFC and dorsal post-parietal cortex (PPC; spatial representation).
Although, FROST highlights the distributed nature of representations during working
memory maintenance by postulating a macro-circuit including PPC, thalamus, and the
basal ganglia that drives a micro-circuit within lateral PFC, these circuits maintain static
contents.

Finally, in a neurobiological model of automaticity, automatic cortico-cortical asso-
ciations between sensory input and motor output regions are learned slowly via a two
factor Hebbian learning rule (SPEED; [120]). The Hebbian connections are formed pas-
sively, while either the implicit procedural or explicit rule-based system actively controls
the behavior. For the procedural system where behavior is controlled via direct cortico-
striatal maps between visual input and motor output Hebbian learning is mediated by
the basal ganglia [129]. In contrast, the maps that train the Hebbian connections remain
elusive for the explicit system. Importantly, the process supporting explicit control of
behavior ought to be flexible enough to account for changes until a definite automatic
behavior is optimal. It appears that the uncharted holy grail of cognitive flexibility has
prevented a successful merger of COVIS, FROST, and SPEED. In an attempt to uncover
the mysterious computations underlying cognitive flexibility, rule-based categorization in

particular the integral processes of executive attention and working memory are revisited.
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4.2 Executive Attention and Working Memory

Rule-based categorization is supported by an explicit declarative memory system
[130], 55]. Declarative representational memories are flexible, accessible to conscious
awareness, and supported by medial temporal lobe structures [58, [131]. These memo-
ries become available through recollection or retrieval, which is associated with working
memory. Working memory has been defined as limited capacity process that temporarily
maintains information to support various cognitive functions by interfacing perception,
long-term memory, and actions [41] 42| [43] [44], 132]. Even though the exact biochemical
properties that support working memory and distinguish short-term memory memory
from other encoding stages are not clearly defined [133], pre-automatic retrieval may be
thought of as a decision process in itself where a stimulus is mapped to an action goal.
Specifically, the process of retrieval and re-consolidation represents a destabilization and
re-stabilization of the memory trace and influences long-term modifications [133]. At-
tention processes selectively modulate retrieval and encoding of representations. In this
way working memory and attention work in tandem to select relevant information and
mitigate information loss [134].

Attentional templates held in working memory operate on object representations and
motor plans to resolve resource competition and guide behavior [I07]. In primates two
visual processing streams that maintain an attentional bias in working memory have been
identified. The dorsal stream maintains a visuospatial bias via a loop between the dIPFC
and PPC, and the ventral stream maintains object or feature selective bias via a loop
between the vIPFC and ITC [107]. Both streams involve the pulvinar nucleus as thalamo-
cortical relay during top-down control [I15]. Clearly, top-down signals are essential during
the learning phase to bias recognition toward features of interest, however. Riesenhuber

& Poggio [135] assert that object discrimination results from a bottom-up process in
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which activation patterns of population codes that represent prototypes are compared.
Indeed, there are two opposing attentional forces that are mediated by segregated fronto-
parietal networks [I36]. The internally driven dorsal fronto-parietal network controls
goal directed visuospatial attention, while the right lateralized ventral fronto-parietal
network involuntarily responds to unexpected salient stimuli in the external environment
[136]. This is consistent with data that found the ventro-lateral PFC associated with
implementing previously learned associations, while the dorso-lateral PFC was associated
with internally guided rule selection and working memory [137]. Both networks interact
via the medial frontal gyrus to select and filter task relevant information [13§].

The fronto-parietal network represents complex visual stimuli and task manipulations
[139] and supports a perceptual updating mechanism for working memory representations
[T40]. A meta analysis of differential working memory manipulations revealed consistent
activations of brain regions involved in the fronto-parietal network [I41]. Finally, there
are two sources for attentional top-down control signals that update working memory rep-
resentations. One is the dorsal fronto-parietal network (intra-parietal sulcus and frontal
eye field), and the other is the PFC (ACC and dIPFC) [138]. Taken together, the maps
that connect visual object representations to behavioral goals are a mixture between
bottom-up stimulus driven representations and top-down feature and response selection
mechanisms. How do these interact to support flexible goal directed behaviors?

General representations in PFC result from an interplay between top-down filtering
of information and recursive cortico-ganglia networks to generate predictions and action
plans [142] [143] that are guided by reward and uncertainty reduction [I44]. The PFC
receives considerable input from the basal ganglia which supports the idea that these
structures collaborate to support behavior via cortico-striatal-thalamic loops [145] asso-
ciated with category learning [36], working memory [39], and selective attention [146].

Seger [147] proposed four primary interacting [148] cortico-striatal-thalamic loops (visual,
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motor, motivational, and executive) that support category learning.

Visual and motor networks show sensitivities to reward prediction and support cat-
egory learning via loops through posterior caudate and putamen, respectively [120, [37].
The visual loop relays input information to the executive and motor loops for response
selection, in return these influence the visual loop to refine the selection of the relevant
stimulus component. Recent evidence supports a bi-directional influence between stria-
tum and PFC, however, striatal LFPs were found to exert a greater influence on PFC
LEPs than vice versa [149]. While this result is consistent with the hypothesis that the
ganglia train representations in PFC [142] [143], no changes in the directional influence
between striatum and PFC was observed as a result of learning [149]. Instead these
results are consistent with the idea that stimulus driven representations are relayed to
PFC, who in turn refines the representations to emphasize task relevant information.
The reverberating loop actively relays object representations such that new information
about changing environmental demands or internal goals can be integrated. Lastly, the
motor loop was found to provide response information to the executive loop such that
the success of the response can be integrated with future action goals, and both motor
and executive loops were found to interact with the motivational loop, possibly providing
information regarding reward history [150] 148].

The motivational and executive loops support feedback processing and intersect at the
anterior caudate, which is largely innervated by Dopamine [147]. Feedback from the envi-
ronment is integrated to update internal goals via ventro-medial PFC (anterior-cingulate
and orbito-frontal cortices) and the anterior caudate. The executive loop integrates re-
ward information with action goals via dIPFC and PPC through subcortical relays that
meet in the anterior caudate, and updates working memory representations throughout
category learning. Interestingly, the motivational loop was found to correlate with pre-

diction errors in general, while the executive loops was specific to reward prediction error
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[150]. In addition to the basal ganglia, PFC also forms a loop with the medial temporal
lobe, which is thought to store and provide stimulus specific category representations
[27], which can be uploaded into working memory [133]. Taken together, category learn-
ing is supported by a complex network of subsequently evolved components that process
information via dynamically interacting cortico-ganglia loops. But where exactly are
categorization rules represented?

The PFC is a powerful integrator of information and plays a central role in the
coordination of goal directed behaviors [I51], [152]. The PFC is heavily interconnected
with higher associations areas rather than with primary sensory or motor cortices and
acts as global attention controller by relaying task information to posterior brain systems
[142]. The PFC is thought to maintain information about the overall structure of the
task and track performance [153, 143] via a wide variety of cellular activity profiles [I54].
The PFC is a top candidate for reward processing since it receives the highest density of
dopaminergic innervation of with respect to the rest of frontal cortex [155].

Lateral PFC appears to be a critical actor in rule learning, patients with damage
to the lateral PFC are incapable to switch behavioral control to more appropriate as-
sociations and have to rely on automatic associations [I56]. Specifically, medial frontal
gyrus is thought to store maps connecting visual stimuli and motor goals while the lat-
eral PFC oversees and mediates behavioral performance. The medial frontal gyrus is
associated with a hierarchical processing gradient where posterior regions associate mo-
tor function, central regions correlate with cognitive control and pain, while the anterior
region integrates reward and episodic memory [157].

An adaptive coding model was introduced where PFC neurons are suggested to mul-
titask (e.g. involved in working memory, selective attention, and cognitive control; [158]).
Given that PFC neurons appear to multitask, deterministic neurons by themselves are

most likely insufficient to generate flexible rule representation. After reviewing some
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evidence that executive attention and working memory operate via complex networks
centered around the PFC, the prefrontal representations are explored in more detail to

characterize the rule maps that support behavior [151].

4.2.1 Dynamic Population Codes

The evidence presented in the following shows that rule representation at the neu-
robiological level is a conglomeration of electro-chemical signals that is integrated over
several neurons in PFC. Although the emphasis of category relevant visual features of
complex objects occurs in ITC [159, [160], the process of pooling stimulus features into
an explicit category associated with a particular behavioral response relies on PFC [161].
Neurons in PFC increase category selective activity throughout a memory delay while
the number of neurons in ITC is pruned [162]. It is noteworthy that half of the PFC
neurons encoded category specific response selection, while a smaller number of PFC neu-
rons encoded actions independent of the visual category. Furthermore, representations in
PFC are strongly modulated by behavioral goals and mediate a temporary enhancement
of task related feature representations in ITC [160], suggesting that increased category
selectivity in ITC was at least in part contingent on PFC mediated top-down informa-
tion biasing [163], 164], 162], that is consistent with the aforementioned cottico-ganglia
feedback selection mechanism [I50} [I48]. In addition, parietal cortex was found to be
sensitive to categorical representations [165], [166], that represent another source of be-
haviorally relevant input to complete our world view with location specific information
[167, [168]. Consistent with the aforementioned fronto-parietal control of visuospatial at-
tention and cortico-striatal integration mechanisms, stimulus specific representations fed
forward from PPC in tandem with executive feed-back biasing signals from PFC prepared

the cortical environment to process expected incoming stimuli in a robust goal-directed
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manner [167]. Interestingly, stimulus identity was encoded in PPC although to a lesser
degree than location specificity, likely due to large interconnectivity at every stage along
the processing hierarchy between ventral and dorsal streams to support robust represen-
tations. These findings support the idea that several maps between PFC and association
cortices support robust sensory integration with behavior.

How do these maps support flexible cognition? Recordings from the frontal eye field
(an area of PFC involved in coordinating saccadic eye movements, visuo-spatial atten-
tion, and visuo-motor decisions) of primates showed that population representations were
sufficient to separate dynamically evolving sensory representations while single cell ac-
tivity was not [169]. The task required flexible selection and integration of superimposed
color and motion information towards a saccade. Specifically, population trajectories
(where each point in the trajectory represented a unique pattern of activity across the
population) in neural state space (constructed from principal component analysis and
linear regression to identify four task relevant orthogonal axes) followed a dynamic path
towards a choice that maintained inter- and intra-dimensional separability of motion or
color information regardless which context was relevant. Importantly, entirely different
parts of state space were occupied depending whether motion or color was relevant.

In another experiment where two orthogonal category schemes were mapped onto the
same stimuli, most neurons ( 30%) in lateral PFC were selective for one category scheme,
while some neurons ( 7%) were selective for both category schemes [I70]. This finding
is expected when the same perceptual regions are mapped to both categories. Further-
more, selectivity for stimuli close to the boundary was enhanced regardless whether the
preferred scheme was relevant, and category selective populations followed a dynamic
generalization from stimulus to category representation during the delay when the pre-
ferred category scheme was relevant; presumably to resolve competition between maps

and support robust behavioral performance. Importantly, Roy et al. [I70] observed a
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reduction in selectivity when the encoded category scheme was irrelevant that did not
result from a suppression of overall activity, rather the decreased selectivity may have
been contingent on pre-synaptic inputs from other parts of PFC (e.g. frontopolar cortex
[1560]).

Finally, Meyers et al. [I71] used a decoding approach to reveal dynamic population
codes of category relevant information in PFC neurons of primates performing a delayed
match-to-category task. While a small subset of eight neurons sufficiently encoded cat-
egory information at the time of the response, a non-negligible amount of redundant
information was contained in a sparse code of approximately 64 PFC neurons at any
moment throughout the task. These studies support that PFC actively selects and in-
tegrates relevant information using dynamic populations codes, rather than passively
biasing sensory information via pure a priori top-down filtering approach that is imple-
mented by the same few neurons. Consistent with the complex network of reverberating
loops, these findings provoke the hypothesis that selection and integration processes ex-
ist on a dynamic continuum that begins with recruiting a sufficient sample of neurons
to reliably represents the sensory evidence that is subsequently pruned to select a ro-
bust subsample which is subsequently connected with a response. The idea that PFC
constantly integrates sensory information via recurrent loops such that representations
evolve to converge onto a reliable subset of sensory input and response neurons is con-
sistent with a selection process that supports the evolution of cortico-cortical Hebbian

synapses underlying automatic behavior [120, 172].

4.3 Time Consoles

PFC serves two fundamental purposes: the selection and maintenance of behaviorally

relevant information, and the integration of information across remote brain regions that
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encode relevant information. In continuance with the idea that selection and integration
processes exist on a continuum, these complex functions are supported by a dynamically
evolving heterogeneous network of neurons. How these complex population codes could
be implemented in a parsimonious model may become more apparent when they are
viewed with regard to the temporal structure that supports them.

Different remote brain areas are though to communicate through coherence where
effective connectivity occurs during windows of rhythmic synchronization that tempo-
rally focuses neuronal output and sensitivity to inputs [173]. This communication is
constrained by non-negligible temporal signaling delays that differentially affect feed-
forward and feedback transmission depending on the frequency band [I74]. Attention
processes have been associated with activity in several frequency bands that support a
controlled top-down temporal selection mechanism to selectively gate relevant informa-
tion [175) [85) [ITT) 105] 86, 112]. For instance, top-down prioritization and bottom-up
stimulus salience were found to correlate with beta/alpha and gamma band coherence, re-
spectively [112, [174]. Cortical theta phase was found to modulate the strength of gamma
coherence, thereby offering a frequency mediated attentional sampling mechanism [86].
This mechanism is related to capacity, since it has been shown that an attentional sam-
pling process around 7-8 Hz is divided over one to three objects [I74]. Similarly, working
memory processes that maintain attention selected information appear to utilize oscilla-
tions to disentangle information [176], 177, 178, [179]. The continuous information selec-
tion supported by the ongoing exchange between brain areas provides a mechanism to
counterbalance noise [75].

Category learning and performance were associated with increased phase locking be-
tween LFPs in striatum and PFC during a delay prior to the response during correct
trials and a decrease in synchrony during error trials, while no changes in power were

observed [149]. In another experiment, coherence between PPC spikes and PFC LFPs
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during a delay period revealed that both stimulus selective and non-selective parietal neu-
rons were synchronized with pre-frontal LFPs, and that several PPC-PFC pairs showed
selectivity for multiple locations and/or objects [167]. These findings are consistent with
a pre-frontal temporal attention gating mechanism. In addition, it has been suggested
that a functional role between LFPs and spike timing of individual neurons exists [100].
For example, in visual cortex perceptual grouping is achieved via synchronized initial
spikes of cells that code for related features and that this temporal precision increases
with viewing frequency [180]. The idea that spike timing adjustment is a fundamental
cortical mechanism that supports a coherent world view has been shown across a variety
of oscillation frequencies [105], 112, [86], [116].

Oscillations allow for activity dependent coupling of sparsely connected ensembles
that support rapid stimulus-response associations of novel stimuli with goal driven re-
sponses. Thereby offering a mechanism to support perceptual binding as well as cogni-
tive flexibility. The empirically supported hypothesis that PFC dynamically integrates
sensory information with behavioral context via synchronous cell assemblies could be

implemented using oscillations.

4.4 Direct Mapping Model Revisited

At the coarsest level the human brain can be characterized by a gradient from de-
pictive (new sensory input) to propositional (internal model) representations that are
weighted differentially across hemispheres [I121]. The decision making process underlying
categorization is highly complex and involves many sub-processes that include selecting
relevant while suppressing irrelevant sensory information, making a category judgement
according to the current rule, and eliciting a response.

Goal directed stimulus representations result from a combination of activity in pre-
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existing neural circuits that respond to stimulus salience, and biasing activity from the
dorsal fronto-parietal network that integrates visual information with behavioral goals
(possibly by predicting the location of the target), as well as other parts of the PFC
that oversee successful performance and update response goals [1306, 138, 150, [148]. Per-
ceptual representations are temporarily modulated by attention and can bootstrap per-
manent changes. For instance, perceptual separability of novel category dimensions can
be trained [I8T]. The attentional networks that select stimulus driven and goal directed
representations dynamically co-evolve task relevant perceptual representations.
Multiple potential maps between stimulus specific (identity and location) information
and category labels or action goals are modulated by context [I60], and are separable
only at the population level in PFC [170] [169]. The observed population dynamics in
PFC are clearly contingent on the task: competitive associations between the overlapping
regions in perceptual space are resolved by dynamic recruitment of the entire category
map [I70], superimposed sensory inputs are represented by unique neural codes [169],
and deterministic stimulus-category associations converge onto a sufficient sample of
neurons [I71]. The emergence of one map as dominant controller of behavior depends
on dynamic processes that recursively integrate stimulus inputs with reward and action
goals [147), 150, 148] until robust representations that support behavior and inform future
scenarios are generated. It is therefore not the resulting map, but the previous complex
integration process via subcortical loops and the precise orchestration of feedforward and
feedback loops [167, 149, [174] that marks the holy grail of cognitive flexibility. As a
result, the nature of rule representation is not static but rather a dynamic process that is
mediated by a complex cortico-ganglia network of reverberating feedforward and feedback
connections. Under this framework, the suggestion that differences between ITC and
PFC during visual categorization in primates are a matter of degree rather than a strict

division of labor [162], likely refers to one snapshot of the dynamic process that is taken at
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the culmination point just before the response. In this way, dynamically refined category
relevant (stimulus-response) associations eventually converge onto a deterministic map,
which supports behavior and trains automatic associations.

In the direct mapping model explicit rules are mediated by prefrontal cortical pop-
ulation codes that select relevant information via executive attention that operates on
higher visual representations and connects these to context dependent behavioral goals in
a transient electrical working memory space. Accordingly, the current model of working
memory maintenance, FROST, is revisited with regard to a rule representation mod-
ule. FROST highlights the distributed nature of representations during working memory
maintenance by postulating a macro-circuit including PPC, thalamus, and the basal gan-
glia that drives a micro-circuit within lateral PFC. FROST relies on cortical interneurons
to connect the cortical layers in lateral PFC. These interneurons interface the cortico-
thalamic reverberating loop with the information carrying loops to association cortices
(e.g. PPC and ITC), and allow for additional regulating inputs from other frontal regions.

Laminar differences provide the framework for microcircuits that integrate feedfor-
ward and feedback information within PFC and between PFC and subcortical as well
as other cortical areas. Microcircuits in PFC are organized into a laminar structure of
five layers, where layer 2/3 support horizontal communication between neocortical areas
as well as local processing in layers 4 to 6 within PFC microcircuits [I82]. Further-
more, cortico-thalamic macrocircuits are driven by deeper layers that connect parallel
cortico-thalamic loops in addition to the connections in layer 2/3 [I83]. This laminar
organization offers a doorway to integrate afferent pre-synaptic bias from many sources.
The electrical stimulus-response maps formed in lateral PFC may be flexibly modulated
by pre-synaptic biasing signals from medial PFC [150, [157]. In particular, orbitofrontal
cortex mediates stimulus-reward associations (current stimulus value) while anterior cin-

gulate cortex is a likely source for a pre-synaptic bias of response selection [147, [137].
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These areas are heavily interconnected with lateral PFC [184].

The microcircuits in PFC that drive the cortico-thalamic macrocircuits result from
a complex network between excitatory pyramidal cells and inhibitory GABAergic in-
terneurons. Furthermore, neocortical interneurons show large morphological diversity
that occur in differential proportions throughout the cortical laminar layers and show
divergent spiking behaviors [I85], which might complicate micro-to-macro-circuit maps.
However, temporal gating offers a signaling mechanisms via local field potentials that
may provide implementational solutions beyond the electrochemical level of individual
neurons. In particular, superficial cortical layers that receive anatomical forward projec-
tions preferentially show gamma band activity, while deeper cortical layers that are the
primary source of feedback projections show strong coherence in the alpha/beta band
[186]. These findings inspire categorization models at the level of LFPs that could poten-
tially generate predictions that are testable at the level of human EEG. The challenge to
implement these models is beyond the scope of this thesis and offers a largely uncharted

territory for neurocomputational models of rule-based category learning.

4.5 To Consider

Creating models of stochastic neurobiological processes is at the very least challenging.

In the following a final note on the topic of noise is presented.

4.5.1 Is all Noise Equal?

An important distinction between biological phenomena is whether they were gener-
ated by a stochastic process of a deterministic process with chaotic dynamics. Assump-
tions about the mechanics of the underlying biological process determine how to analyze

data describing the process and how a model ought to be constrained, and should be
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made prior to either endeavor. For instance, stochastic and deterministic systems are
indistinguishable at the level of the Fourier generated power spectrum [I87]. In the case
of neurobiological data, one group concluded that EEG time series, 1 second long, were
not generated by deterministic processes [I88]. Often, the stochastic nature of processes
in the brain is modeled by adding Gaussian white noise [189, 190, [33].

In general, noise has had a reputation for corrupting the relationship between input
and output of a system or for corrupting measurement accuracy. In the field of control
engineering, models with superimposed noise assume that noise and input to a system
are independent and that this corrupting noise is defined to be white, i.e. Gaussian with
i = 0 and some variance o2. Similarly, measurement noise in the filed of EEG has been
characterized by white noise, given that the brain filtered signals are defined as colored
noise [97]. Assuming the brain is a closed electro-chemical system that is not affected
by external electric, magnetic, electro-magnetic, or chemical disturbances other than the
sensory interpretations of these, the sensory inout signals may be viewed as pure inputs.
And the task is to extract the wanted noise from the unwanted background noise, it then
appears over-simplified that a noise variable in an implementational model shall be inde-
pendent with a Gaussian functional form. Furthermore, the brain follows computational
rules that show highly optimized tolerance and robustness to expected environments by
allocating processing resources according to specific design principles [191], , for instance
in primary visual cortex area V1 approximately 25% of cortex is devoted to processing
the central 2.5° of visual angle [192]. It may be reasonable to assume that most of these
design principles are either undiscovered or have not yet become widely known. Since
the relationship between sensory input and robust behavioral performance is not entirely
clear, it is even less clear what functional role is associated with white noise. So what
then is the purpose of noise in the brain and how should we model it?

Traditionally deterministic models of decision processes have been awarded stochastic
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character by adding Gaussian white noise to linear systems equations [I89]. The brain,
however, is a dynamic system where processes are inherently stochastic because they
are unpredictable with our current understanding. Therefore, what we view as white
noise from the perspective of determinism is likely related to the complex feedforward
and feedback networks that exist on several coupled levels of granularity, which are
fundamental to the phenomenon of cognitive flexibility. The solution of adding gaussian
noise to make deterministic systems look more like natural stochastic systems may at best
serve some cosmetic purpose but seems entirely too simplistic to capture the structural
nuances that are contained in the marginal or noisy contributions of information (e.g.
[1T7T), 170, 169]). In general, noise changes signal attributes such as peak frequency or
tuning curves [193], and it has been shown that correlated noise was sufficient to decode
uncertainty [194]. The brain is a noisy apparatus that has time and space to constrain
and separate particular operations. It could be a worthwhile venture to explore the
brain’s filter functions by comparing system outputs between deterministic inputs and

those where structured noise has been added.

4.6 In Closing

One essential element of human categorization behavior is generalization, or the abil-
ity to apply knowledge from past experience to novel situations. For instance, multi-
plication can be learned through serial addition. On the most superficial level, catego-
rization behavior can be divided into three components: perception, decision making,
and response generation. The nature of rule representation was explored with regard to
attention and working memory processes and how these modulate task relevant stimu-
lus response associations. This thesis contributes evidence against the popular criterion

as a processing component in rule-based decision making and proposed a neutrally in-
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spired direct-mapping model. In this model, the rules that support explicit decisions are
described by dynamic pre-frontal micro-to-macro circuits that flexibly integrate current
reward goals into this complex circuitry via pre-synaptic modulations.

Future work is required to implement these circuits. In the light that rule based cat-
egorization depends on a complex cortico-ganglia network that dynamically integrates
sensory information with reward and behavioral goals to support robust responses that
maximize accuracy, it might useful to begin with models based on functional connec-
tivity. Furthermore, dynamical system approaches might offer promising solutions for
population LFP models that may subsequently find relevance to new brain computer

interface applications.

86



Bibliography

1]

D. Marr, Vision: A computational approach. Freeman and Co San Francisco,
1982.

R. Ratcliff, A theory of memory retrieval., Psychological review 85 (1978), no. 2
59.

J. T. Townsend and F. G. Ashby, Stochastic modeling of elementary psychological
processes. CUP Archive, 1983.

D. R. King and M. B. Miller, Influence of response bias and internal/external
source on lateral posterior parietal successful retrieval activity, cortezr 91 (2017)
126-141.

R. M. Roe, J. R. Busemeyer, and J. T. Townsend, Multialternative decision field

theory: A dynamic connectionst model of decision making., Psychological review
108 (2001), no. 2 370.

D. M. Green and J. A. Swets, Signal detection theory and psychophysics, .

H. Stanislaw and N. Todorov, Calculation of signal detection theory measures,
Behavior research methods, instruments, € computers 31 (1999), no. 1 137-149.

Y. Jang, J. T. Wixted, and D. E. Huber, Testing signal-detection models of
yes/no and two-alternative forced-choice recognition memory., Journal of
Ezperimental Psychology: General 138 (2009), no. 2 291.

F. G. Ashby and J. T. Townsend, Varieties of perceptual independence.,
Psychological review 93 (1986), no. 2 154.

F. G. Ashby and W. W. Lee, Perceptual variability as a fundamental axiom of
perceptual science, Advances in Psychology 99 (1993) 369-399.

H. Kadlec and J. T. Townsend, Implications of marginal and conditional detection
parameters for the separabilities and independence of perceptual dimensions,
Journal of Mathematical Psychology 36 (1992), no. 3 325-374.

87



[12] F. G. Ashby and F. A. Soto, Multidimensional signal detection theory, Ozford
handbook of computational and mathematical psychology (2015) 13-34.

[13] F. G. Ashby and N. A. Perrin, Toward a unified theory of similarity and
recognition., Psychological review 95 (1988), no. 1 124.

[14] M. J. Wenger and E. M. Ingvalson, Preserving informational separability and
wolating decisional separability in facial perception and recognition., Journal of
Ezperimental Psychology: Learning, Memory, and Cognition 29 (2003), no. 6
1106.

[15] F. A. Soto, L. Vucovich, R. Musgrave, and F. G. Ashby, General recognition
theory with individual differences: a new method for examining perceptual and

decisional interactions with an application to face perception, Psychonomic
bulletin & review 22 (2015), no. 1 88-111.

[16] F. G. Ashby and W. T. Maddox, A response time theory of separability and
integrality in speeded classification, Journal of Mathematical Psychology 38
(1994), no. 4 423-466.

[17] F. G. Ashby and R. E. Gott, Decision rules in the perception and categorization
of multidimensional stimuli, Journal of Experimental Psychology: Learning,
Memory, and Cognition 14 (1988) 33-53.

[18] F. G. Ashby and W. T. Maddox, Complex decision rules in categorization:
Contrasting novice and experienced performance., Journal of Fxperimental
Psychology: Human Perception and Performance 18 (1992), no. 1 50.

[19] F. G. Ashby and W. T. Maddox, Relations between prototype, exemplar, and
decision bound models of categorization, Journal of Mathematical Psychology 37
(1993), no. 3 372-400.

[20] W. T. Maddox and C. J. Bohil, Base-rate and payoff effects in multidimensional
perceptual categorization., Journal of Experimental Psychology: Learning,
Memory, and Cognition 24 (1998), no. 6 1459.

[21] J. Balakrishnan, Decision processes in discrimination: fundamental
masrepresentations of signal detection theory., Journal of Experimental
Psychology: Human Perception and Performance 25 (1999), no. 5 1189.

[22] S. S. Stevens, To honor fechner and repeal his law, Science 133 (1961), no. 3446
80-86.

[23] J. D. Wallis, K. C. Anderson, and E. K. Miller, Single neurons in prefrontal
cortex encode abstract rules, Nature 411 (2001), no. 6840 953-956.

88



[24]

[25]

2]

[30]

[31]

[32]

[33]

[34]

[35]

L. Veit and A. Nieder, Abstract rule neurons in the endbrain support intelligent
behaviour in corvid songbirds, Nature communications 4 (2013) 2878.

F. G. Ashby, A stochastic version of general recognition theory, Journal of
Mathematical Psychology 44 (2000), no. 2 310-329.

F. G. Ashby and V. V. Valentin, The categorization experiment: Ezperimental
design and data analysis, The Stevens? Handbook of Fxperimental Psychology and
Cognitive Neuroscience (2017).

C. A. Seger and E. K. Miller, Category learning in the brain, Annual Review of
Neuroscience 33 (2010) 203-219.

F. G. Ashby, V. V. Valentin, and S. S. von Meer, Differential effects of
dopamine-directed treatments on cognition, Neuropsychiatric disease and
treatment 11 (2015) 1859.

J. D. Smith, A. C. Zakrzewski, J. J. Johnston, J. L. Roeder, J. Boomer, F. G.
Ashby, and B. A. Church, Generalization of category knowledge and dimensional
categorization in humans (homo sapiens) and nonhuman primates (macaca

mulatta)., Journal of Experimental Psychology: Animal Learning and Cognition
41 (2015), no. 4 322.

F. G. Ashby and E. M. Waldron, On the nature of implicit categorization,
Psychonomic Bulletin & Review 6 (1999), no. 3 363-378.

F. G. Ashby and M. J. Crossley, A computational model of how cholinergic
interneurons protect striatal-dependent learning, Journal of Cognitive
Neuroscience 23 (2011), no. 6 1549-1566.

V. V. Valentin, W. T. Maddox, and F. G. Ashby, A computational model of the
temporal dynamics of plasticity in procedural learning: Sensitivity to feedback
timing, Frontiers in Psychology 5 (2014), no. 643.

G. Cantwell, M. J. Crossley, and F. G. Ashby, Multiple stages of learning in
perceptual categorization: evidence and neurocomputational theory, Psychonomic
bulletin € review 22 (2015), no. 6 1598-1613.

F. G. Ashby, S. W. Ell, and E. M. Waldron, Procedural learning in perceptual
categorization, Memory €& Cognition 31 (2003), no. 7 1114-1125.

M. B. Casale, J. L. Roeder, and F. G. Ashby, Analogical transfer in perceptual
categorization, Memory €& Cognition 40 (2012), no. 3 434-449.

F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron, A
neuropsychological theory of multiple systems in category learning., Psychological
Review 105 (1998), no. 3 442-481.

89



[37]

[40]

[41]

[42]

[46]

[47]

[48]

[49]

F. G. Ashby, E. J. Paul, and W. T. Maddox, COVIS, in Formal approaches in
categorization (E. M. Pothos and A. Wills, eds.), pp. 65-87. Cambridge
University Press, New York, 2011.

K. R. Ridderinkhof, W. P. Van Den Wildenberg, S. J. Segalowitz, and C. S.
Carter, Neurocognitive mechanisms of cognitive control: the role of prefrontal
cortex in action selection, response inhibition, performance monitoring, and
reward-based learning, Brain and cognition 56 (2004), no. 2 129-140.

F. G. Ashby, S. W. Ell, V. V. Valentin, and M. B. Casale, Frost: a distributed
neurocomputational model of working memory maintenance, Journal of cognitive
neuroscience 17 (2005), no. 11 1728-1743.

F. G. Ashby and V. V. Valentin, Multiple systems of perceptual category learning:
Theory and cognitive tests, in Handbook of Categorization in Cognitive Science
(Second Edition), pp. 157-188. Elsevier, 2017.

S. J. Luck and E. K. Vogel, The capacity of visual working memory for features
and conjunctions, Nature 390 (1997), no. 6657 279.

W. T. Maddox, F. G. Ashby, A. D. Ing, and A. D. Pickering, Disrupting feedback
processing interferes with rule-based but not information-integration category
learning, Memory € Cognition 32 (2004), no. 4 582-591.

D. Zeithamova and W. T. Maddox, Dual-task interference in perceptual category
learning, Memory €& Cognition 34 (2006), no. 2 387-398.

P. M. Bays and M. Husain, Dynamic shifts of limited working memory resources
in human vision, Science 321 (2008), no. 5890 851-854.

S. W. Ell and F. G. Ashby, The effects of category overlap on
information-integration and rule-based category learning, Perception &
Psychophysics 68 (2006), no. 6 1013-1026.

F. G. Ashby and W. W. Lee, Predicting similarity and categorization from
identification., Journal of Experimental Psychology: General 120 (1991), no. 2
150.

S. Sternberg, High-speed scanning in human memory, Science 153 (1966),
no. 3736 652-654.

D. H. Brainard, The psychophysics toolbox, Spatial Vision 10 (1997) 433-436.
T. Van Zandt, Analysis of response time distributions, Stevens? handbook of

experimental psychology 4 (2002) 461-516.

90



[50] R. Ratcliff, Group reaction time distributions and an analysis of distribution
statistics., Psychological bulletin 86 (1979), no. 3 446.

[51] E. Parzen, On estimation of a probability density function and mode, The annals
of mathematical statistics 33 (1962), no. 3 1065-1076.

[52] J. D. Smith and S. W. Ell, One giant leap for categorizers: One small step for
categorization theory, PloS one 10 (2015), no. 9 e0137334.

[53] J. T. Townsend, Truth and consequences of ordinal differences in statistical

distributions: Toward a theory of hierarchical inference., Psychological Bulletin
108 (1990), no. 3 551.

[54] B. Gordon, Preserved learning of novel information in amnesia: Evidence for
multiple memory systems, Brain and Cognition 7 (1988), no. 3 257-282.

[55] E. Nomura, W. Maddox, J. Filoteo, A. Ing, D. Gitelman, T. Parrish, M. Mesulam,
and P. Reber, Neural correlates of rule-based and information-integration visual
category learning, Cerebral Cortex 17 (2007), no. 1 37-43.

[56] D. L. Schacter, Priming and multiple memory systems: Perceptual mechanisms of
implicit memory, Journal of Cognitive Neuroscience 4 (1992), no. 3 244-256.

[57] R. A. Poldrack and M. G. Packard, Competition among multiple memory systems:
converging evidence from animal and human brain studies, Neuropsychologia 41
(2003), no. 3 245-251.

[58] L. R. Squire, Memory systems of the brain: A brief history and current
perspective, Neurobiology of Learning and Memory 82 (2004), no. 3 171-177.

[59] W. T. Maddox and A. D. Ing, Delayed feedback disrupts the procedural-learning
system but not the hypothesis testing system in perceptual category learning,

Journal of Experimental Psychology: Learning, Memory, and Cognition 31
(2005), no. 1 100-107.

[60] F. G. Ashby and J. M. Ennis, The role of the basal ganglia in category learning,
Psychology of Learning and Motivation 46 (2006) 1-36.

[61] L. A. Alfonso-Reese, Dynamics of category learning, Unpublished doctoral
dissertation, University of California, Santa Barbara, 1996.

[62] S. Helie, S. W. Ell, J. V. Filoteo, and W. T. Maddox, Criterion learning in
rule-based categorization: Simulation of neural mechanism and new data, Brain
and cognition 95 (2015) 19-34.

91



[63]

[64]

[65]

[66]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

E. J. Paul and F. G. Ashby, A neurocomputational theory of how explicit learning
bootstraps early procedural learning, Frontiers in computational neuroscience 7
(2013) 177.

E. Rosch, C. Simpson, and R. S. Miller, Structural bases of typicality effects.,

Journal of Experimental Psychology: Human perception and performance 2
(1976), no. 4 491.

M. Riesenhuber and T. Poggio, Hierarchical models of object recognition in cortex,
Nature neuroscience 2 (1999), no. 11 1019.

J. O. Garcia, R. Srinivasan, and J. T. Serences, Near-real-time feature-selective
modulations in human cortex, Current Biology 23 (2013), no. 6 515-522.

T. C. Sprague and J. T. Serences, Using human neuroimaging to examine
top-down modulation of visual perception, in An introduction to model-based
cognitive neuroscience, pp. 245-274. Springer, 2015.

P. L. Nunez, R. Srinivasan, et. al., Electric fields of the brain: the neurophysics of
EEG. Oxford University Press, USA, 2006.

J. J. Foster, D. W. Sutterer, J. T. Serences, E. K. Vogel, and E. Awh, The
topography of alpha-band activity tracks the content of spatial working memory,
Journal of neurophysiology 115 (2015), no. 1 168-177.

J. Samaha, T. C. Sprague, and B. R. Postle, Decoding and reconstructing the
focus of spatial attention from the topography of alpha-band oscillations, Journal
of cognitive neuroscience 28 (2016), no. 8 1090-1097.

E. K. Vogel, G. F. Woodman, and S. J. Luck, Storage of features, conjunctions,
and objects in visual working memory., Journal of Exzperimental Psychology:
Human Perception and Performance 27 (2001), no. 1 92.

E. Awh, B. Barton, and E. K. Vogel, Visual working memory represents a fized
number of items regardless of complexity, Psychological science 18 (2007), no. 7
622-628.

W. Zhang and S. J. Luck, Discrete fized-resolution representations in visual
working memory, Nature 453 (2008), no. 7192 233.

P. Wilken and W. J. Ma, A detection theory account of change detection, Journal
of vision 4 (2004), no. 12 11-11.

P. M. Bays, Noise in neural populations accounts for errors in working memory,
Journal of Neuroscience 34 (2014), no. 10 3632-3645.

92



[76] P. Sauseng, W. Klimesch, K. F. Heise, W. R. Gruber, E. Holz, A. A. Karim,
M. Glennon, C. Gerloff, N. Birbaumer, and F. C. Hummel, Brain oscillatory

substrates of visual short-term memory capacity, Current biology 19 (2009), no. 21
1846-1852.

[77] P. M. Bays, N. Gorgoraptis, N. Wee, L. Marshall, and M. Husain, Temporal
dynamics of encoding, storage, and reallocation of visual working memory,
Journal of vision 11 (2011), no. 10 6-6.

[78] R. G. Morrison, P. J. Reber, K. L. Bharani, and K. A. Paller, Dissociation of
category-learning systems via brain potentials, Frontiers in human neuroscience 9
(2015) 389.

[79] R. Rabi, M. F. Joanisse, T. Zhu, and J. P. Minda, Cognitive changes in
conjunctive rule-based category learning: An erp approach, Cognitive, Affective, €
Behavioral Neuroscience 18 (2018), no. 5 1034-1048.

[80] B. Treutwein, I. Rentschler, and T. Caelli, Perceptual spatial
frequency—orientation surface: psychophysics and line element theory, Biological
Cybernetics 60 (1989), no. 4 285-295.

[81] H. Berger, Uber das elektrenkephalogramm des menschen, Furopean archives of
psychiatry and clinical neuroscience 87 (1929), no. 1 527-570.

[82] S. J. Luck, An introduction to the event-related potential technique. MIT press,
2014.

[83] H. v. Helmholtz, Ueber einige gesetze der vertheilung elektrischer strome in
korperlichen leitern, mit anwendung auf die thierisch-elektrischen versuche
(schluss.), Annalen der Physik 165 (1853), no. 7 353-377.

[84] W. Klimesch, Feg alpha and theta oscillations reflect cognitive and memory
performance: a review and analysis, Brain research reviews 29 (1999), no. 2-3
169-195.

[85] W. Klimesch, Alpha-band oscillations, attention, and controlled access to stored
information, Trends in cognitive sciences 16 (2012), no. 12 606-617.

[86] R. VanRullen, Perceptual cycles, Trends in cognitive sciences 20 (2016), no. 10
723-735.

[87] O. Jensen, J. Gelfand, J. Kounios, and J. E. Lisman, Oscillations in the alpha
band (9-12 hz) increase with memory load during retention in a short-term
memory task, Cerebral cortex 12 (2002), no. 8 877-882.

93



3]

[39]

[90]

[91]

[95]

[96]

[97]

[98]

[99]

R. Scheeringa, P. J. Koopmans, T. van Mourik, O. Jensen, and D. G. Norris, The
relationship between oscillatory eeq activity and the laminar-specific bold signal,
Proceedings of the National Academy of Sciences 113 (2016), no. 24 6761-6766.

M. J. Wolff, J. Jochim, E. G. Akytirek, and M. G. Stokes, Dynamic hidden states
underlying working-memory-guided behavior, Nature Neuroscience 20 (2017),
no. 6 864.

C. S. Herrmann, M. Grigutsch, and N. A. Busch, Feg oscillations and wavelet
analysis, Event-related potentials: A methods handbook (2005) 229.

M. M. Doppelmayr, W. Klimesch, T. Pachinger, and B. Ripper, The functional
significance of absolute power with respect to event-related desynchronization,
Brain topography 11 (1998), no. 2 133-140.

M. R. Nuwer, M. Aminoff, J. Desmedt, A. A. Eisen, D. Goodin, S. Matsuoka,
F. Mauguiere, H. Shibasaki, W. Sutherling, and J.-F. Vibert, Ifcn recommended
standards for short latency somatosensory evoked potentials. report of an ifcn

committee, Electroencephalography and clinical Neurophysiology 91 (1994), no. 1
6-11.

A. Delorme and S. Makeig, Feglab: an open source toolbox for analysis of

single-trial eeg dynamics including independent component analysis, Journal of
neuroscience methods 134 (2004), no. 1 9-21.

S. Muthukumaraswamy, High-frequency brain activity and muscle artifacts in

meg/eeq: a review and recommendations, Frontiers in human neuroscience 7
(2013) 138.

G. F. Woodman, A brief introduction to the use of event-related potentials in
studies of perception and attention, Attention, Perception, ¢ Psychophysics 72
(2010), no. 8 2031-2046.

S. J. Luck and N. Gaspelin, How to get statistically significant effects in any erp
experiment (and why you shouldn’t), Psychophysiology 54 (2017), no. 1 146-157.

G. Dumermuth and L. Molinari, Spectral analysis of the eeg, Neuropsychobiology
17 (1987), no. 1-2 85-99.

A. V. Oppenheim, J. R. Buck, and R. W. Schafer, Discrete-time signal processing.
Vol. 2. Upper Saddle River, NJ: Prentice Hall, 2001.

J. Campbell, E. Bower, S. Dwyer, and G. Lago, On the sufficiency of
autocorrelation functions as eeq descriptors, IEEE Transactions on Biomedical
Engineering (1967), no. 1 49-52.

94



[100]

[101]

[102]

[103]
[104]

[105]

[106]

107]

[108]

[109]

[110]

[111]

[112]

K. Benchenane, P. H. Tiesinga, and F. P. Battaglia, Oscillations in the prefrontal
cortex: a gateway to memory and attention, Current opinion in neurobiology 21
(2011), no. 3 475-485.

J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of
complex fourier series, Mathematics of computation 19 (1965), no. 90 297-301.

G. E. Box and G. M. Jenkins, Time Series Analisis: Forescasting and Control.
Holden Day, 1970.

J. L. Semmlow, Biosignal and medical image processing. CRC press, 2008.

E. K. Vogel and S. J. Luck, The visual n1 component as an index of a
discrimination process, Psychophysiology 37 (2000), no. 2 190-203.

G. Rohenkohl and A. C. Nobre, Alpha oscillations related to anticipatory
attention follow temporal expectations, Journal of Neuroscience 31 (2011), no. 40
14076-14084.

T. C. Sprague and J. T. Serences, Attention modulates spatial priority maps in

the human occipital, parietal and frontal cortices, Nature neuroscience 16 (2013),
no. 12 1879.

R. Desimone and J. Duncan, Neural mechanisms of selective visual attention,
Annual review of neuroscience 18 (1995), no. 1 193-222.

A. Gevins, M. E. Smith, L. McEvoy, and D. Yu, High-resolution eeqg mapping of
cortical activation related to working memory: effects of task difficulty, type of
processing, and practice., Cerebral cortex (New York, NY: 1991) 7 (1997), no. 4
374-385.

C. S. Herrmann, D. Senkowski, and S. Rottger, Phase-locking and amplitude
modulations of eeq alpha: two measures reflect different cognitive processes in a
working memory task, Experimental psychology 51 (2004), no. 4 311-318.

A. C. Nobre and F. Van Ede, Anticipated moments: temporal structure in
attention, Nature Reviews Neuroscience 19 (2018), no. 1 34.

H. Van Dijk, J.-M. Schoffelen, R. Oostenveld, and O. Jensen, Prestimulus
oscillatory activity in the alpha band predicts visual discrimination ability,
Journal of Neuroscience 28 (2008), no. 8 1816-1823.

M. Bonnefond and O. Jensen, Gamma activity coupled to alpha phase as a
mechanism for top-down controlled gating, PloS one 10 (2015), no. 6 e0128667.

95



[113] Y. B. Saalmann, M. A. Pinsk, L. Wang, X. Li, and S. Kastner, The pulvinar
requlates information transmission between cortical areas based on attention
demands, Science 337 (2012), no. 6095 753-756.

[114] O. Jensen, M. Bonnefond, T. R. Marshall, and P. Tiesinga, Oscillatory
mechanisms of feedforward and feedback visual processing, Trends in
Neurosciences 38 (2015), no. 4 192-194.

[115] J. H. Kaas and D. C. Lyon, Pulvinar contributions to the dorsal and ventral
streams of visual processing in primates, Brain research reviews 55 (2007), no. 2
285-296.

[116] A. Clouter, K. L. Shapiro, and S. Hanslmayr, Theta phase synchronization is the
glue that binds human associative memory, Current Biology 27 (2017), no. 20
3143-3148.

[117] C. S. Furmanski and S. A. Engel, An oblique effect in human primary visual
cortex, Nature neuroscience 3 (2000), no. 6 535.

[118] C. S. Benwell, R. E. London, C. F. Tagliabue, D. Veniero, J. Gross, C. Keitel, and
G. Thut, Frequency and power of human alpha oscillations drift systematically
with time-on-task, NeuroImage 192 (2019) 101-114.

[119] K. Friston, The free-energy principle: a unified brain theory?, Nature reviews
neuroscience 11 (2010), no. 2 127.

[120] F. G. Ashby, J. M. Ennis, and B. J. Spiering, A neurobiological theory of
automaticity in perceptual categorization., Psychological Review 114 (2007), no. 3
632-656.

[121] B. O. Turner, N. Marinsek, E. Ryhal, and M. B. Miller, Hemispheric
lateralization in reasoning, Annals of the New York Academy of Sciences 1359
(2015), no. 1 47-64.

[122] F. G. Ashby, J.-Y. Tein, and J. Balakrishnan, Response time distributions in
memory scanning, Journal of Mathematical Psychology 37 (1993), no. 4 526-555.

[123] M. A. Erickson and J. K. Kruschke, Rules and exemplars in category learning,
Journal of Experimental Psychology: General 127 (1998), no. 2 107-140.

[124] J. N. Rouder and R. Ratcliff, Comparing exemplar-and rule-based theories of
categorization, Current Directions in Psychological Science 15 (2006), no. 1 9-13.

[125] F. G. Ashby and L. Rosedahl, A neural interpretation of exemplar theory.,
Psychological review 124 (2017), no. 4 472.

96



[126]

[127]

128]

129

[130]

[131]

[132]

[133]

[134]

[135]

[136]

137]

[138]

[139]

F. G. Ashby and L. A. Alfonso-Reese, Categorization as probability density
estimation, Journal of mathematical psychology 39 (1995), no. 2 216-233.

M. A. Erickson and J. K. Kruschke, Rule-based extrapolation in perceptual
categorization, Psychonomic Bulletin € Review 9 (2002), no. 1 160-168.

R. M. Nosofsky, Similarity, frequency, and category representations., Journal of
Ezperimental Psychology: Learning, Memory, and Cognition 14 (1988), no. 1 54.

S. Hélie, S. W. Ell, and F. G. Ashby, Learning robust cortico-cortical associations
with the basal ganglia: an integrative review, Cortex 64 (2015) 123-135.

B. J. Knowlton, J. A. Mangels, and L. R. Squire, A neostriatal habit learning
system in humans, Science 273 (1996), no. 5280 1399-1402.

L. R. Squire and A. J. Dede, Conscious and unconscious memory systems, Cold
Spring Harbor perspectives in biology 7 (2015), no. 3 a021667.

A. Baddeley, Working memory: looking back and looking forward, Nature reviews
neuroscience 4 (2003), no. 10 829.

E. R. Kandel, Y. Dudai, and M. R. Mayford, The molecular and systems biology
of memory, Cell 157 (2014), no. 1 163-186.

T. C. Sprague, S. Saproo, and J. T. Serences, Visual attention mitigates
information loss in small-and large-scale neural codes, Trends in Cognitive
Sciences 19 (2015), no. 4 215-226.

M. Riesenhuber and T. Poggio, Models of object recognition, Nature neuroscience
3 (2000), no. 11s 1199,

M. Corbetta and G. L. Shulman, Control of goal-directed and stimulus-driven
attention in the brain, Nature reviews neuroscience 3 (2002), no. 3 201.

M. J. Buckley, F. A. Mansouri, H. Hoda, M. Mahboubi, P. G. Browning, S. C.
Kwok, A. Phillips, and K. Tanaka, Dissociable components of rule-guided behavior

depend on distinct medial and prefrontal regions, Science 325 (2009), no. 5936
52-58.

M. Corbetta, G. Patel, and G. L. Shulman, The reorienting system of the human
brain: from environment to theory of mind, Neuron 58 (2008), no. 3 306-324.

A. M. Albers, P. Kok, I. Toni, H. C. Dijkerman, and F. P. de Lange, Shared
representations for working memory and mental imagery in early visual cortex,
Current Biology 23 (2013), no. 15 1427-1431.

97



[140]

141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

J. Coull, C. Frith, R. S. J. Frackowiak, and P. Grasby, A fronto-parietal network
for rapid visual information processing: a pet study of sustained attention and
working memory, Neuropsychologia 34 (1996), no. 11 1085-1095.

A. M. Owen, K. M. McMillan, A. R. Laird, and E. Bullmore, N-back working
memory paradigm: A meta-analysis of normative functional neuroimaging
studies, Human brain mapping 25 (2005), no. 1 46-59.

E. K. Miller and T. J. Buschman, Rules through recursion: how interactions
between the frontal cortex and basal ganglia may build abstract, complex rules
from concrete, simple ones, in Neuroscience of rule-guided behavior. Oxford
University Press, 2007.

T. J. Buschman and E. K. Miller, Goal-direction and top-down control,
Philosophical Transactions of the Royal Society B: Biological Sciences 369 (2014),
no. 1655 20130471.

J. Gottlieb, M. Hayhoe, O. Hikosaka, and A. Rangel, Attention, reward, and
information seeking, Journal of Neuroscience 34 (2014), no. 46 15497-15504.

G. E. Alexander, M. R. DeLong, and P. L. Strick, Parallel organization of
functionally segregated circuits linking basal ganglia and cortex, Annual review of
neuroscience 9 (1986), no. 1 357-381.

M. I. Posner and S. E. Petersen, The attention system of the human brain,
Annual review of neuroscience 13 (1990), no. 1 25-42.

C. A. Seger, How do the basal ganglia contribute to categorization? their roles in
generalization, response selection, and learning via feedback, Neuroscience €

Biobehavioral Reviews 32 (2008), no. 2 265-278.

D. Lopez-Paniagua and C. A. Seger, Interactions within and between
corticostriatal loops during component processes of category learning, Journal of
Cognitive Neuroscience 23 (2011), no. 10 3068-3083.

E. G. Antzoulatos and E. K. Miller, Increases in functional connectivity between
prefrontal cortex and striatum during category learning, Neuron 83 (2014), no. 1
216-225.

C. A. Seger, E. J. Peterson, C. M. Cincotta, D. Lopez-Paniagua, and C. W.
Anderson, Dissociating the contributions of independent corticostriatal systems to
visual categorization learning through the use of reinforcement learning modeling
and granger causality modeling, Neuroimage 50 (2010), no. 2 644-656.

E. K. Miller and J. D. Cohen, An integrative theory of prefrontal cortex function,
Annual review of neuroscience 24 (2001), no. 1 167-202.

98



[152]

[153]

[154]

[155]

[156]

[157]

158

159

[160]

[161]

[162]

[163]

164]

E. Koechlin and C. Summerfield, An information theoretical approach to
prefrontal executive function, Trends in cognitive sciences 11 (2007), no. 6
229-235.

N. D. Daw, Y. Niv, and P. Dayan, Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for behavioral control, Nature
neuroscience 8 (2005), no. 12 1704-1711.

J. M. Fuster, The prefrontal cortex: anatomy, physiology, and neuropsychology of
the frontal lobe, 2nd ed. New York: Raven Press, 1989.

P. S. Goldman-Rakic, C. Leranth, S. M. Williams, N. Mons, and M. Geffard,
Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex,
Proceedings of the National Academy of Sciences 86 (1989), no. 22 9015-9019.

S. A. Bunge, How we use rules to select actions: a review of evidence from
cognitive neuroscience, Cognitive, Affective, & Behavioral Neuroscience 4 (2004),
no. 4 564-579.

A. De La Vega, L. J. Chang, M. T. Banich, T. D. Wager, and T. Yarkoni,
Large-scale meta-analysis of human medial frontal cortex reveals tripartite
functional organization, Journal of Neuroscience 36 (2016), no. 24 6553-6562.

J. Duncan and E. K. Miller, Cognitive focus through adaptive neural coding in the
primate prefrontal cortex, Principles of frontal lobe function (2002) 278-291.

N. Sigala and N. K. Logothetis, Visual categorization shapes feature selectivity in
the primate temporal cortex, Nature 415 (2002), no. 6869 318.

J. L. McKee, M. Riesenhuber, E. K. Miller, and D. J. Freedman, Task dependence
of visual and category representations in prefrontal and inferior temporal cortices,
Journal of Neuroscience 34 (2014), no. 48 16065-16075.

D. J. Freedman, M. Riesenhuber, T. Poggio, and E. K. Miller, Categorical
representation of visual stimuli in the primate prefrontal cortex, Science 291
(2001), no. 5502 312-316.

D. J. Freedman, M. Riesenhuber, T. Poggio, and E. K. Miller, A comparison of
primate prefrontal and inferior temporal cortices during visual categorization,
Journal of Neuroscience 23 (2003), no. 12 5235-5246.

H. Tomita, M. Ohbayashi, K. Nakahara, I. Hasegawa, and Y. Miyashita,
Top-down signal from prefrontal cortex in executive control of memory retrieval,
Nature 401 (1999), no. 6754 699.

M. Riesenhuber and T. Poggio, Neural mechanisms of object recognition, Current
opinion in neurobiology 12 (2002), no. 2 162-168.

99



[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

S. K. Swaminathan and D. J. Freedman, Preferential encoding of visual categories
in parietal cortex compared with prefrontal cortex, Nature neuroscience 15 (2012),
no. 2 315.

J. K. Fitzgerald, D. J. Freedman, and J. A. Assad, Generalized associative
representations in parietal cortex, Nature neuroscience 14 (2011), no. 8 1075.

R. Salazar, N. Dotson, S. Bressler, and C. Gray, Content-specific fronto-parietal
synchronization during visual working memory, Science 338 (2012), no. 6110
1097-1100.

L. N. Katz, J. L. Yates, J. W. Pillow, and A. C. Huk, Dissociated functional
significance of decision-related activity in the primate dorsal stream, Nature 535
(2016), no. 7611 285.

V. Mante, D. Sussillo, K. V. Shenoy, and W. T. Newsome, Context-dependent
computation by recurrent dynamics in prefrontal cortex, nature 503 (2013),
no. 7474 78.

J. E. Roy, M. Riesenhuber, T. Poggio, and E. K. Miller, Prefrontal cortex activity
during flezible categorization, Journal of Neuroscience 30 (2010), no. 25
8519-8528.

E. M. Meyers, D. J. Freedman, G. Kreiman, E. K. Miller, and T. Poggio,
Dynamic population coding of category information in inferior temporal and
prefrontal cortex, Journal of neurophysiology 100 (2008), no. 3 1407-1419.

S. Helie and F. G. Ashby, A neurocomputational model of automaticity and
maintenance of abstract rules, in 2009 International Joint Conference on Neural
Networks, pp. 1192-1198, IEEE, 2009.

P. Fries, A mechanism for cognitive dynamics: neuronal communication through
neuronal coherence, Trends in cognitive sciences 9 (2005), no. 10 474-480.

P. Fries, Rhythms for cognition: communication through coherence, Neuron 88
(2015), no. 1 220-235.

G. G. Gregoriou, S. J. Gotts, H. Zhou, and R. Desimone, High-frequency,
long-range coupling between prefrontal and visual cortex during attention, science
324 (2009), no. 5931 1207-1210.

H. Lee, G. V. Simpson, N. K. Logothetis, and G. Rainer, Phase locking of single
neuron activity to theta oscillations during working memory in monkey
extrastriate visual cortex, Neuron 45 (2005), no. 1 147-156.

100



[177]

178]

[179]

[180]

181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

M. Siegel, M. R. Warden, and E. K. Miller, Phase-dependent neuronal coding of
objects in short-term memory, Proceedings of the National Academy of Sciences
106 (2009), no. 50 21341-21346.

N. Cashdollar, U. Malecki, F. J. Rugg-Gunn, J. S. Duncan, N. Lavie, and
E. Duzel, Hippocampus-dependent and-independent theta-networks of active

maintenance, Proceedings of the National Academy of Sciences 106 (2009), no. 48
20493-20498.

K. Benchenane, A. Peyrache, M. Khamassi, P. L. Tierney, Y. Gioanni, F. P.
Battaglia, and S. I. Wiener, Coherent theta oscillations and reorganization of

spike timing in the hippocampal-prefrontal network upon learning, Neuron 66
(2010), no. 6 921-936.

H. G. Rey, M. Ahmadi, and R. Q. Quiroga, Single trial analysis of field potentials
in perception, learning and memory, Current opinion in neurobiology 31 (2015)
148-155.

F. A. Soto and F. G. Ashby, Categorization training increases the perceptual
separability of novel dimensions, Cognition 139 (2015) 105-129.

M. Kritzer and P. Goldman-Rakic, Intrinsic circuit organization of the major
layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey,
Journal of Comparative Neurology 359 (1995), no. 1 131-143.

S. N. Haber and R. Calzavara, The cortico-basal ganglia integrative network: the
role of the thalamus, Brain research bulletin 78 (2009), no. 2-3 69-74.

J. M. Fuster, The prefrontal cortex, 2015.

H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and
C. Wu, Interneurons of the neocortical inhibitory system, Nature reviews
neuroscience 5 (2004), no. 10 793.

A. M. Bastos, R. Loonis, S. Kornblith, M. Lundqvist, and E. K. Miller, Laminar
recordings in frontal cortex suggest distinct layers for maintenance and control of

working memory, Proceedings of the National Academy of Sciences 115 (2018),
no. 5 1117-1122.

T. Schreiber and A. Schmitz, Surrogate time series, Physica D: Nonlinear
Phenomena 142 (2000), no. 3-4 346-382.

J. Jeong, J. C. Gore, and B. S. Peterson, A method for determinism in short time
series, and its application to stationary eeg, IEEE Transactions on biomedical
engineering 49 (2002), no. 11 1374-1379.

101



[189] J. T. Townsend and M. J. Wenger, A theory of interactive parallel processing:
new capacity measures and predictions for a response time inequality series.,
Psychological review 111 (2004), no. 4 1003.

[190] S. A. Oprisan and C. V. Buhusi, Modeling pharmacological clock and memory
patterns of interval timing in a striatal beat-frequency model with realistic, noisy
neurons, Frontiers in Integrative Neuroscience 5 (2011) 52.

[191] J. M. Carlson and J. Doyle, Highly optimized tolerance: Robustness and design in
complex systems, Physical review letters 84 (2000), no. 11 2529.

[192] K. Anton-Erxleben and M. Carrasco, Attentional enhancement of spatial
resolution: linking behavioural and neurophysiological evidence, Nature Reviews
Neuroscience 14 (2013), no. 3 188.

(193] D. A. Butts and M. S. Goldman, Tuning curves, neuronal variability, and sensory
coding, PLoS biology 4 (2006), no. 4 €92.

[194] R. van Bergen and J. F. Jehee, Modeling correlated noise is necessary to decode
uncertainty, Neuroimage 180 (2018) 78-87.

102



	Acknowledgements
	Curriculum Vitae
	Abstract
	Introduction
	Statement of Significance
	General Background
	Experimental Evidence
	Experimental investigation

	Behavioral Rule Region Experiment
	Introduction
	Method
	Results
	Discussion

	EEG Correlates of Rule Based Decision Making
	Introduction
	Method
	Analysis Methods
	Results
	Discussion

	General Discussion
	Existing Models
	Executive Attention and Working Memory
	Time Consoles
	Direct Mapping Model Revisited
	To Consider
	In Closing

	Bibliography



