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Abstract of the Dissertation

Controlling Complex Systems

and Developing Dynamic Technology

by

Audrius Victor Avizienis

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2013

Professor James K. Gimzewski, Chair

In complex systems, control and understanding become intertwined. Following Ilya Pri-

gogine, we define complex systems as having control parameters which mediate transitions

between distinct modes of dynamical behavior. From this perspective, determining the na-

ture of control parameters and demonstrating the associated dynamical phase transitions

are practically equivalent and fundamental to engaging with complexity.

In the first part of this work, a control parameter is determined for a non-equilibrium

electrochemical system by studying a transition in the morphology of structures produced

by an electroless deposition reaction. Specifically, changing the size of copper posts used

as the substrate for growing metallic silver structures by the reduction of Ag+ from solu-

tion under diffusion-limited reaction conditions causes a dynamical phase transition in the

crystal growth process. For Cu0 posts ∼ 1µm, local forces promoting anisotropic growth

predominate, and the reaction produces interconnected networks of Ag0 nanowires. As the

post size is increased above ∼ 10µm, the local interfacial growth reaction dynamics cou-

ple with the macroscopic diffusion field, leading to spatially propagating instabilities in the

electrochemical potential which induce periodic branching during crystal growth, producing

dendritic deposits. This result is interesting both as an example of control and understanding

in a complex system, and as a useful combination of top-down lithography with bottom-up

electrochemical self-assembly.
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The second part of this work focuses on the technological development of devices fab-

ricated using this non-equilibrium electrochemical process, towards a goal of integrating a

complex network as a dynamic functional component in a neuromorphic computing device.

Self-assembled networks of silver nanowires were reacted with sulfur to produce interfacial

“atomic switches”: Ag0−Ag2S−Ag0 junctions, which exhibit complex dynamics (e.g. both

short- and long-term changes in conductivity) in response to applied voltage signals. Char-

acterization of these atomic switch networks (ASNs) brought out interesting parallels to

biological neural networks, including power-law scaling in the statistics of electrical signal

propagation and dynamic self-organization of differentiated subnetworks. A reservoir com-

puting (RC) strategy was employed to utilize measurements of electrical signals dynamically

generated in ASNs to perform time-series memory and manipulation tasks including a parity

test and arbitrary waveform generation. These results represent the useful integration of a

complex network into a dynamic physical RC device.
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Rajeev, LA Vyčiai, K.A.N.G. and the Kaunas hardcore family, GrimeLAb, Aidas, Bill and

the sausage explosion. Everyone who gave me their time when I needed the company. I am

happily grateful for your collective loving-kindness and patience with my rants of frustration

and quasi-sane speculations about reality in general and grad school in particular.

On the science side, this would not have been possible without Professor James K.

Gimzewski and my colleagues in the Gimzewski Group: Henry, Cristina, the Pauls, Haider,

Carlin, Tuan, Greg, Shivani, Jason, Brian, Frankie, Renato. Best of luck to newer arrivals—

the big wheel keeps on turning! This research was funded mostly by DARPA Physical

Intelligence; thanks to Dr. Todd Hylton for manifesting such an ambitious project. I also

benefitted greatly from collaborations with Sakurai-sensei at NIMS in Tsukuba, Peter and

Igor on PI, and Dante Chialvo on SOC. Many thanks to Aono-sensei for championing the

value of international collaboration: the MANA Nanotechnology Summer Schools delivered

invaluable insights into both science and humanity (drumroll for Tomo-sensei!). Victoria and

the Art | Sci experience were also great in that regard. To my P-Chem classmates: Argyris,

Jenny & Kenny, Soo Hong, Mauricio and the rest—can’t wait to not see you (wink wink).

From back in the day: the singular Stephen Marsden deserves all the credit (and blame!) for

making this kid want to be a chemist; marvelous Martin Head-Gordon took it from there.

Exemplary scientists but even better human beings. And very practical thanks to Lindy for

minding the details and keeping my head straight.

Lastly, I am proud to humbly acknowledge the tireless efforts of Dr. Adam Z. Stieg to

xi



focus my excitable and erratic energies on the tasks at hand. Your daily diligent discipline

and perseverance set an example that I strive to emulate. From the finer points of chromic

acid baths to the arrangement of surfboard fins, our conversations have invariably been

interesting and useful.

I̧ sveikata̧!

Chapter 3 is a version of Avizienis, A. V.; Martin-Olmos, C.; Sillin, H. O.; Aono, M.;

Gimzewski, J. K. & Stieg, A. Z. “Morphological Transitions from Dendrites to Nanowires

in the Electroless Deposition of Silver.” Crystal Growth & Design (2013). The published

article carries the following acknowledgements: The authors acknowledge Hsien Hang Hsieh

and Makoto Sakurai for their helpful assistance as well as the use of the Molecular Instru-

mentation Center in the Department of Chemistry and Biochemistry at the University of

California, Los Angeles. This research was partially supported by the Defense Advanced

Research Projects Agency (DARPA) Physical Intelligence project (BAA-09-63), and by the

WPI International Center for Materials Nanoarchitectonics (MANA).

Chapter 4 is a version of Avizienis, A. V.; Sillin, H. O.; Martin-Olmos, C.; Shieh, H. H.;

Aono, M.; Stieg, A. Z. & Gimzewski, J. K. “Neuromorphic atomic switch networks.” PloS

one (2012). The published article carries the following acknowledgements: The authors

acknowledge Dr. Igor Ovchinnikov for his helpful comments. This research was partially

supported by the Defense Advanced Research Projects Agency (DARPA) “Physical Intel-

ligence” program (contract number: HR0011—10-1—0008), and by the WPI International

Center for Materials Nanoarchitectonics (MANA).

Chapter 5 is a version of Sillin, H. O.; Aguilera, R; Shieh, H. H.; Avizienis, A. V.; Aono,

M.; Stieg, A. Z. & Gimzewski, J. K. “A theoretical and experimental study of neuromorphic

atomic switch networks for reservoir computing.” Nanotechnology (2013). The published

article carries the following acknowledgements: The authors gratefully acknowledge Cristina

xii



Martin-Olmos, Walter Freeman, Robert Kozma and Narayan Srinivasa for their helpful as-

sistance. Physical ASN chips were fabricated in the Integrated Systems Nanofabrication

Cleanroom (ISNC) at the California Nanosystems Institute (CNSI) and simulations utilized

resources at the Nano & Pico Characterization Lab (NPC) of CNSI. This work was partially

supported by the Japanese Ministry of Education, Culture, Sports, Science, and Technology

(MEXT) World Premier International (WPI) Research Center for Materials Nanoarchitec-

tonics (MANA), HRL Laboratories, and the Defense Advanced Research Projects Agency

(DARPA) - Physical Intelligence Program (BAA-09-63), US Department of Defense.

Chapter 6 is a version of Stieg, A. Z.; Avizienis, A. V.; Sillin, H. O.; Martin-Olmos,

C.; Aono, M. & Gimzewski, J. K. “Emergent Criticality in Complex Turing B-Type Atomic

Switch Networks.” Advanced Materials (2012). The published article carries the following

acknowledgements: A.Z.S and A.V.A contributed equally to this work. The authors grate-

fully acknowledge Dante Chialvo, Kang Wang, Bob Schwartz, Igor Ovchinnikov and Brian

Shieh for their input and assistance. This work was partially supported by the Ministry of

Education, Culture, Sports, Science, and Technology (MEXT) World Premier International

(WPI) Research Center for Materials Nanoarchitectonics (MANA) and the Defense Ad-

vanced Research Projects Agency (DARPA) - Physical Intelligence Program (BAA-09-63),

US Department of Defense.

xiii



Vita

1997-2001 Regents’ and Chancellor’s Scholar

University of California, Berkeley

2001 B.S. (Chemistry)

University of California, Berkeley

2007 M.S. (Experimental Physics)

Vytautas Magnus University

Kaunas, Lithuania.

Publications

Avizienis, A. V.; Martin-Olmos, C.; Sillin, H. O.; Aono, M.; Gimzewski, J. K. & Stieg, A.

Z. Morphological Transitions from Dendrites to Nanowires in the Electroless Deposition of

Silver. Crystal Growth & Design, ACS Publications, 2013, 13, 465-469.

Avizienis, A. V.; Sillin, H. O.; Martin-Olmos, C.; Shieh, H. H.; Aono, M.; Stieg, A. Z.

& Gimzewski, J. K. Neuromorphic atomic switch networks. PloS one, Public Library of

Science, 2012, 7, e42772.

Stieg, A. Z.; Avizienis, A. V.; Sillin, H. O.; Martin-Olmos, C.; Aono, M. & Gimzewski,

J. K. Emergent Criticality in Complex Turing B-Type Atomic Switch Networks. Advanced

Materials, Wiley Online Library, 2012, 24, 286-293.

Sillin, H. O.; Aguilera, R; Shieh, H. H.; Avizienis, A. V.; Aono, M.; Stieg, A. Z. & Gimzewski,

J. K. A theoretical and experimental study of neuromorphic atomic switch networks for

reservoir computing. Nanotechnology, IOP Publishing, 2013, 24, 384004.

xiv



Stieg, A. Z.; Avizienis, A. V.; Sillin, H. O.; Shieh, H. H.; Martin-Olmos, C; Aguilera, R;

Sandouk, E.; Aono, M. & Gimzewski, J. K. “Self-organization and Emergence of Dynamical

Structures in Neuromorphic Atomic Switch Networks” In: Memristor Networks (2014), Eds.

Adamatzky & Chua, Springer-Verlag, ISBN 978-3-319-02629-9.

Stieg, A. Z.; Avizienis, A. V.; Sillin, H. O.; Martin-Olmos, C.; Aono, M. & Gimzewski, J.

K. Self-organized Atomic Switch Networks. In Press: Japanese Journal of Applied Physics

(2014).

Sillin, H.O.; Sandouk, E.; Avizienis, A. V.; Aono, M.; Stieg, A. Z. & Gimzewski, J. K. Bench-

top Fabrication of Memristive Atomic Switch Networks. In Press: Journal of Nanoscience

and Nanotechnology, 13, (2013), DOI:10.1166/jnn.2013.8636 - arXiv ID: 1304.1243.

xv



CHAPTER 1

Introduction

Science in those days worked in broad strokes! They got right to the point. Nowadays it’s

always molecule, molecule, molecule.

—The Tick

The world as we find it is a very complex system. We begin to build an intuitive under-

standing of this unavoidable structure from sensory perceptions, which vary as a function of

both the external environment and internal mental states like mood and focus. Associative

memory adds layers of abstraction to this process, giving us the means to determine causal

relationships and develop theories to predict the future evolution of events. Where these

theories deal with the structure, bonding and reactivity of molecules, we find chemistry.

The chemical world of molecules, we learn in our quantum mechanics classes, has very

different rules from the quaint, “classical” world we learned to walk around in. Diving

deeply into the matter of developing consistent explanations for a growing body of connected

observations, our clever forebears extended their physical understanding beyond the intuitive

causal relationships established by the senses, to a place where going from point A to point B

doesn’t necessarily involve passing through the space between. Even if one is skeptical of the

implied metaphysics, technological marvels like the smartphone make a persuasive practical

argument for accepting the quantum theory that underpins solid state semiconductor-based

electronics.

The scientific method of combining experimental observation and mathematical theory,

exemplified by the interplay between Faraday and Maxwell, has proven to be one of the great

drivers of human progress. Abstract mathematical tools, fabricated from relentless logical

1



consistency, enable scientists to proceed where physical intuition falters. When experimental

observations defy expectations, and neither reasoned reconsideration nor intuitive leaps can

explain the discrepancy, purely mathematical models can be built which fit the data with

initially arbitrary. By studying the logical structure of the fitting model, and connecting its

abstract elements back to tangible quantities in the physical system which it represents, we

can convince ourselves of scientific truths that were unfathomable from previous perspectives,

as Planck did in establishing quantum theory from empirical fits of radiation curves.

And so it seems almost rude to ask: how about the weather? For a long time before

the advent of atomic theory, people have been coping with regular seasonal variations in

their environments as well as sudden manifestations of tremendous natural forces during

earthquakes, volcanic eruptions and other spectacular weather events. Those familiar with

their local landscape and armed with ancestral lore can develop finely tuned intuitions about

which sensory observations constitute important meteorological data, how features of that

data combine to create regional weather patterns and anticipate future events. It seems

curious, then, that adding information from satellites and using advanced data analysis

algorithms has not (yet) produced major improvements in the reliability of weather forecasts.

The confounding factor is complexity : an appropriately difficult term to define, as the

ability to transition between multiple states is a key feature of complex systems. When

objects are dynamically interconnected, new properties can emerge which belong to the

whole without belonging to any particular part. Complex dynamics often emerge in open,

dissipative systems, where matter and energy are exchanged with the surroundings. However,

there are no obvious a priori principles for making useful distinctions between “systems”

and their “surroundings”, though they can be intuitively clear in context. On a large scale,

we understand the Earth as a system bounded by its gaseous atmosphere, with solar energy

flowing in from the surrounding space. On a small scale, we recognize living things as

systems bounded by membranes of dynamic permeability, which regulate the exchange of

ions and more between their internal structures and the surrounding environment. The

trouble with predicting the weather lies in determining the relevant context. In a general

sense, we can define weather as a manifestation of emergent dynamics in a planetary system,
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an example of pattern formation in dissipative non-equilibrium states sustained by incoming

energy flows from solar radiation, nuclear fission, and so on. But consider spatiotemporal

variations in sea surface temperature: is El Niño a cause or effect of other weather events?

The answer, of course, is that “it’s complicated.” Complex systems typically contain feedback

loops, resonances, and other nonlinear features that make it impossible to isolate and analyze

individual parts in terms of simpler, reductive categories.

The local strategy for weather prediction produces reasonably accurate forecasts because

restricting the context to a limited set of important features makes it easier to determine

their temporal correlations with events of interest. There is some risk of making spurious

associations, or overlooking behaviors emerging from more subtle global factors that can

manifest resonances at particular confluences of previously uncoupled local states, but simple

qualitative analysis starting from an intuitive selection of key parameters can produce very

good models that accurate describe the local systems normal dynamic range. The global

strategy starts from the high-level, generic context of basic balance equations describing the

flow of mass, energy and momentum through the system. Since the precise mathematical

form of these flows and the complex couplings between them are not well known, the next step

is to parametrize and numerically fit using all available data. This is a massive computational

undertaking, the product of which is likely to be undermined by the same complexity it aims

to model: the data comes from measurements of systems that can transition into turbulent

states with chaotic dynamics that are extremely sensitive to initial conditions, making it

practically unfeasible to derive meaningful information from them. In the end, there is no

clear practical benefit to choosing the comprehensive global context instead of focusing on a

less general but more manageable restricted local context. Finding ways to usefully combine

these approaches, maximizing the strengths of each, is an active area of complex systems

research.

Developments in our understanding of complex systems suggest that we might be due for

more mind-bending adjustments to our modern scientific intuitions. In at least some prac-

tical sense, different forces exist at different scales. Predicting oceanic currents by running

a quantum molecular dynamical simulation of every molecule in the sea is a not possible
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given the available computing resources, which implies we must develop other methods sim-

ply for practical reasons. But the problem is bigger than that. It may be the case that

such a simulation would still be inaccurate, because the molecular dynamics fail to capture

important complex dynamics that emerge at larger size scales. The question remains: where

could these properties emerge from, if not the underlying quantum world of the constituent

molecules? Does this imply the existence of additional, “undiscovered” fundamental forces

of nature? The two major breakthroughs defining modern physics, quantum mechanics and

relativity, remain unreconciled. The study of complex systems, with their inherently hierar-

chical structures, is the most promising approach to bridging that gap between size scales

and pushing us into a newer, stranger and even more beautiful world.

The bulk of this dissertation consists of previously published material, a product of

the modern “write as you go” approach to graduate study in the sciences. The paper in

chapter 3 developed from previously unreported observations of nanowire growth during

a diffusion-limited reaction using copper metal to reduce silver ions. We had been using

the process to grow dendritic silver structures, following recipes established in the 1980s

when this reaction was somewhat popular as an experimental test case for diffusion-limited

aggregation (DLA) models. At first, while using mm-sized pieces of copper wire and foil, as

in the previous works, we reproduced the expected dendritic structures. Then, while doing

a summer internship at NIMS in Tsukuba, Japan with Sakurai-sensei, we ran the same

reaction using copper microspheres, expecting to produce a distribution of microscale silver

snowflakes, and were startled to instead find silver nanowires (somewhat loosely speaking,

as the widths were & 100nm). Since the reaction was supposed to be diffusion-limited based

on the concentration of silver ions, which produced dendrites with branching at intervals

significantly smaller than a micron, it seemed as though the same DLA mechanism from the

models should still be at work. Clearly, it was not.

It took several years of exploring non-equilibrium systems and nonlinear dynamics to

develop a reasonable explanation of the observed transition. In short, under these reaction

conditions, silver generally favors growth by stacking along the (111). When the nucleation
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site is small enough, the DLA mechanism is defeated by the advance of the growth front

into the bulk solution–small wires grow fast enough to keep growing as wires. When the

reaction area is larger, the growth process does couple with the diffusion field, forming a

repeating pattern of instabilities that bring on dendritic growth. On a personal note, I

feel very fortunate to have been gifted the magical experience of accidental discovering a

previously unreported phenomenon, and am proud to have completed the effort detailed

in this work: starting with an unexpected, unexplained result–which we utilized in the

main research effort described in the other 3 papers–and studying and experimenting and

thinking and developing my understanding of the relevant physical processes until I could

offer a reasonable explanation of why it happens.

The remaining 3 papers are all focused, from different perspectives, on one main subject:

Atomic Switch Networks (ASNs). ASNs were developed in collaboration with our colleagues

at NIMS, who did the initial work building single “atomic switches”: Ag−Ag2S junctions,

which when probed by STM were observed to extrude single-atom Ag wires from the silver

sulfide surface layer. Further experiments on single switches found interesting memory prop-

erties. For example, the time constant of the (high conductance, wire-formed) ON state had

a nonlinear dependence on the form of the bias voltage input. Our group took on the chal-

lenge of creating a massively interconnected network of these switches, towards the dream

of building a metal brain with inorganic synapses.

In more practical terms, we succeeding in fabricating silver-silver sulfide nanowire net-

works that exhibited many interesting dynamical properties, with some similarities to iso-

lated atomic switches, along with network-specific behaviors. The paper included in chapter

6 came first, chronologically speaking, written partly as an overview of dynamic computing

strategies, and serves to outline the overall research effort. It also includes probably the sin-

gle most interesting result in this dissertation, namely the power-law statistics of metastable

ASN conductance state residence times, as analyzed from the overall network current re-

sponse to applied voltage pulses. The current usually fluctuates between metastable conduc-

tance “plateaus” several times per 10ms pulse, but the power-law extends out into the range

of seconds, i.e. no fluctuations in conductivity for more than 10 consecutive pulses. This
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result connects to the concept of criticality (which turns out to be quite a loaded term) and

to the self-organized (SOC) variety in particular . Our understanding of the implications

is still developing, but it was certainly an indication that the ASN was something like the

functional network of nonlinear elements that we had set out to build.

The paper included in chapter 4 is focused on the network-specific properties of ASNs.

Since we have yet to find an effective way of directly observing switching events as they

happen, we had to infer the degree to which the network connectivity was a causally signifi-

cant feature. This lack of direct evidence was responsible for a persistent anxiety about the

possibility that all the action was happening at the electrode-ASN interface. The IR camera

experiment (in chapter 6) had allayed these fears to some degree, but our first opportunity

to test the ASN against a theoretical prediction of memristor network behavior came when

Oskoee and Sahimi published the results of their simulation of memristor networks (2011).

The simplest prediction to test experimentally regarded higher harmonic generation (HHG).

Our first experimental attempt at testing for this effect, using a sine wave voltage bias, found

HHG in line with the simulated results. This also provided a control against the dynami-

cal activity observed in untreated silver nanowire networks, which can exhibit conductance

fluctuations (presumably arcing between wires), but did not show HHG.

The paper include in chapter 5 details our effort to design an ASN-specific computational

model. From the experimentalist’s perspective, it is often not clear how best to make further

progress with these systems. We fabricated new substrates, with more electrodes in different

patterns, and were able to reproduce some of the earlier results on them. But we also

saw some differences, including new problems getting clear signals, presumably due to the

proximity between and/or smaller size of the new electrodes. This is a basic problem when

working with dynamic systems, especially self-assembled ones: they can exhibit a wide range

of signal dynamics based on device history and other nonlinear factors, and it can be hard

to determine whether the observed dynamics are coming from within the network or from

e.g. intermittent contact or limiting charge injection kinetics at the electrode-ASN interface.

Where there is a clear objective, as there was after the Oskoee simulation was published,

we can design an experiment to test it. Therefore, we set about building our own model,
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building in features specific to the Ag−Ag2S−Ag atomic switch as we understood it. The

atomic switch differs from a generic (passive) memristor, as the high conductivity state

can be relatively far from equilibrium, leading to the observed tendency for switches to

turn off over time We tested the model against experimental results, and found the range

of model parameters (keeping physical constants fixed to real values) which reproduced

observed behavior. The simulation allows us the view that our instruments have not (yet),

to see switching activity at the link-by-link level, and it is encouraging to see a distribution

of (simulated) activity that reproduces the experimental data.

Chapter 2 contains more background information about complex systems, non-equilibrium

thermodynamics, and other delightful topics. Complexity is difficult to write about, and

even more difficult to study with proper scientific rigor. Working with ASNs has produced a

continuous stream of frustratingly incomplete experiments, cut short by inopportune mani-

festations of the underlying nonlinear dynamics. But it has also led to some very interesting

results, which have proved resistant to all attempts at unraveling. In the end, these devices

do truly seem to be complex networks of nonlinear dynamic functional elements. The story

of controlling complex systems and developing dynamic technology is just beginning: I hope

that these early results might encourage more scientists to take the nonlinear risks and earn

the resonant rewards of wrestling with complexity.

7



CHAPTER 2

Background

The role of attractors in computation—or in thinking, for that matter—raises a number of

fascinating issues at the interface between dynamical systems theory and non-equilibrium

physics on the one side, and computer and cognitive sciences on the other side. The results

that will arise from this unexpected synthesis are likely to be far-reaching indeed.

— Ilya Prigogine

2.1 Complex Systems

When we think of the phrase complex system absent a particular frame of reference, any

number of things can jump to mind: a fancy assemblage of gears, traders frantically shouting

across a marketplace, an inscrutable logic puzzle, and so on. While these examples are all

very different, we can still notice some common features that will serve as our generic point

of departure to define complex systems [NPN89]: dynamic networks of interacting elements.

The details of the interactions can be complicated, often including nonlinear effects such

as resonance and memory. Our basic formalism (evidencing a dynamic bias) will be the

temporal trajectory of this system: a system of equations describing the temporal evolution

of the state variables {Xi} that represent the networked elements, which proceeds according

to system-specific functional relationships {Fi} with the other state variables {Xj}.

dXi

dt
= Fi(Xj, λ) (2.1)

We have also included a quantity λ, which we call a control parameter. As the obvious
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outlier in Eq. 2.1, the control parameter is the essential feature delineating this formalism for

complex systems, from systems of equations in general. A complex system exhibits different

modes of behavior depending on the value of λ. These changes in behavior are commonly

referred to as phase transitions because of their resemblance, mathematical and otherwise,

to phenomena such as the change in magnetism at the Curie temperature. To summa-

rize: changing control parameters will cause complex systems to undergo phase transitions

between different modes of behavior. This is what makes them complex.

This is a rather specific perspective on complex systems, but it will hopefully prove a use-

ful one. It at least explains why this work is ambitiously dedicated to “controlling” complex

systems—shouldn’t we simply try to understand them first? The idea is that understanding

and control of complex systems converge at λ. The control parameter is a condensed state-

ment of the key relationships within the network of elements being studied. It can be thought

of as quantifying intuitive descriptions of a system, such as its distance from equilibrium.

For example, consider the mechanical stresses, magma flow pressures, friction at material

interfaces and so on that constitute the {Xi} and {Fi} of plate tectonics. Locally, micro-

scopically, their world is a relatively simple one, with lots of reversible collision dynamics,

some chemical transformations, but general maintaining temporal and other symmetries. It

is changing λ, which enfolds all the specific inhomogeneities—the excess stress accumulating

in particular regions due to differing rates of thermal expansion caused by spatial fluctua-

tions in the flow of thermal energy from the sun, perhaps—that can suddenly alter even the

local mode of behavior by triggering an earthquake. Suddenly, symmetries are broken, and

tiny molecules miles apart all translate several feet in the same direction. This reconfigura-

tion leads to λ changing back across the critical value associated with the earthquake phase

transition, and the earth resumes its usual near-equilibrium mode of behavior. Obviously,

it is no simple matter to calculate λ for such a large system, or even establish its functional

form; but it does a good formal job of describing how systems become complex.

We have now introduced the concept of symmetry breaking, which is a regular occur-

rence in complex systems. The most well-known example of symmetry breaking comes from

Rayleigh-Bénard convection cells [Kos93]: as a temperature gradient forms between the
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(cooler) top and (warmer) bottom of a cup of tea, the molecules between begin to deviate

from their usual, random Brownian motion due to the spatial variation in T, leading to a

corresponding gradient in the density of the liquid. The density of the warmer, lower lay-

ers decreases due to the increased thermal motion of the fluid, increasing the density of the

cooler, upper layers. Gravity opposes this arrangement, dragging the denser fluid downwards

to restore spatial homogeneity. This competition between the temperature-related density

gradient and the force of gravity is captured in the dimensionless Raleigh number, Ra.

RaL =
gβ

να
(TB − TT )L3 (2.2)

where L is the height of the cup, TB and TT the temperatures at bottom and top, g is the

acceleration due to gravity and the remaining terms represent properties of the fluid.

In this system, Ra functions as λ. When the tea has cooled to form a critical temperature

gradient between top and bottom, the system undergoes a dynamic phase transition at

λc marked by the spontaneous formation of Bénard convection cells, columnar structures

defined by the flow of warmer fluid up one side and cooler fluid down the other. This

flow can proceed in either a clockwise or counter-clockwise direction—which brings us back

to symmetry breaking and brings in the associated notion of bifurcation [And66]. At λc,

which can be reliably calculated using Eq. 2.2, the symmetry (i.e. spatial uniformity) of

Brownian motion is broken and replaced by ordered patterns of convective flow. This process

is repeatable over cycles of heating and cooling, and in that sense it is predictable. However,

the direction of flow that will begin in some microscopic volume of the fluid as the system

undergoes the symmetry breaking transition is not predictable, nor consistent between trials.

On the other hand, once the direction of flow of one cell is known, the nature of convective

flow throughout the system can be determined due to the regular alternation of flow direction

in adjacent Bénard cells. Poised at λc, the system “makes a choice” between clockwise and

counterclockwise, and the rest of the pattern forms predictably afterwards. This “choice”

represents an instance of bifurcation.

Bifurcations occur at critical interactions between chance and constraint, between nor-

mal fluctuations and irreversible changes. As the cup of tea approaches λc, the constraint
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dictates that the phase transition will occur, yet chance determines the details of how. Tea

molecules colliding and solvating and generally fluctuating around the mean established by

state variables suddenly plunge over an energetic cliff; somehow, that final fluctuation tran-

scends the random and some molecule makes an as-if “meaningful decision” that triggers

the self-organization towards coherent motion for 1020 molecules more. This nearly mystical

interaction of scales is actually a regular feature of complex systems, associated with the idea

of criticality [Ma00] and the emergence of long-range spatiotemporal correlations, which we

will return to discuss later.

We have now developed a more precise picture of the different modes of behavior a

complex system can transition between. There is another useful tool for understanding the

dynamics of these different modes, and the general classes according to which similarities can

be found between physically distinct systems, known as Lyapunov stability analysis [Mos73].

This analysis considers how a system will evolve in time when subjected to a perturbation.

X(t) = Xs + x(t) (2.3)

where X(t) = time evolution of system, Xs = initial or “reference” state, and x(t) = per-

turbation/fluctuations representing internal dynamics

There are different classes of stability. In the case that a small initial perturbation has a

persistent small effect, the system is referred to as stable in the sense of Lyapunov, or equiv-

alently that it exhibits orbital stability. This is the case of a frictionless pendulum: given a

small push, it retains a small oscillation. The meaning of orbital stability comes from con-

sidering the phase portrait of the system, representing the time evolution of state variables,

on which the trajectory of such a system would proceed around a closed loop. When we add

friction, the effect of the small push wears down over time, and X(t) converges back to Xs,

the equilibrium rest state, which now constitutes an attractor for the asymptotically stable

region around Xs. Trajectories passing near Xs will spiral towards it. These classes can be

combined into asymptotic orbital stability, perhaps by adding a motor to the pendulum with

friction. The motor drives the pendulum along an orbital trajectory, while friction dampens
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the effect of perturbations and returns to the stable orbit. It is worth noting that asymptotic

stability is essentially a feature of dissipative systems, which can have some (irreversible)

mechanism for eliminating the effect of the perturbative energy input.

The most famous stability class is, in fact, unstable. Unstable systems can lead to chaos,

where even a small perturbation will launch the system on a trajectory that takes it far

from its initial conditions [Man77]. But even simple, conservative systems can be unstable:

consider the physicist’s famous frictionless ball situated in a landscape of hills and valleys.

The state in which the ball is precisely balanced atop the tallest hill is unstable, as any nudge

will send it rolling off indefinitely to the chosen side. This emphasizes the importance of the

choice of Xs. Local stability applies when the mode of behavior depends on the magnitude

of the perturbation. For example, consider a ball in a smooth bowl contained inside a rough

(friction) sphere: the system will exhibit orbital stability in response to a small nudge, as the

ball rolls along the sides of the bowl, but a sufficiently large shake will launch the ball out of

the bowl, where it will asymptotically converge towards the point attractor at the bottom

of the sphere. Global stability applies in the classic isolated thermodynamic system, where

all roads lead to equilibrium. In this case, entropy is the force driving the convergence on

the globally stable equilibrium state, which qualifies it as a Lyapunov function.

This is perhaps worth mentioning because of the situation in open and dissipative systems,

which complex systems commonly are [Pri67]. Because they are not isolated, they can

exchange entropy with the environment (deS), meaning that the total entropy variation

(dS) of the system will not necessarily be positive.

dS

dt
=
diS

dt
+
deS

dt
(2.4)

The entropy production
diS
dt resulting from internal changes in the system is still governed

by the second law, meaning that diS > 0, which is why entropy is a Lyapunov function

guaranteeing the global stability of isolated systems. However, since the entropy flux
deS
dt can

be positive or negative, this does not hold for non-isolated systems, meaning that they need

not converge on equilibrium without even breaking the second law.

We now return to the connection between complex systems and criticality. The term is
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used for some of the same historical reasons as phase transition: there is much in common

between a crystal undergoing a second-order phase transition, and a complex system near

a critical state [NM84]. In both cases, the correlation length of the system approaches the

system size. That is, a microscopic change in one local corner of the crystal can cause a corre-

sponding change on the opposite side, a macroscopic distance away. This has been famously

studied with statistical mechanics to produce the Ising model and its family; but what is

startling, is the apparent ubiquity of critical states in naturally occurring complex systems.

While the theory of self-organized criticality (SOC) [Bak97] is not universally accepted as

a technically useful (i.e. predictive) description of the physical processes underlying the ob-

servation of critical exponents in natural systems, it is at least an interesting, intuitive point

of departure for investigating complex systems at a conceptually high level.

SOC purports that any system, consisting of elements connected by nonlinear, threshold-

governed dynamics, which is subjected to a slow, system-scale energetic driving force, fol-

lowed by fast internal relaxation and local equilibration of threshold energies, will naturally

organize towards a critical state. The fast relaxation of the slow driving energy serves to

correlate the distribution of energy amongst adjacent thresholds, towards the (critical) point

where added energy will quickly propagate across the entire system (often referred to as

“avalanches” for various reasons) until some dissipative event is triggered such that the

stimulation energy can be absorbed by the storage capacity freed by dissipation. As these

cycles continue, the system continues to stay at or near the critical state, with equal flows

of energy in and out, until some control parameter induces a phase transition (as when an

epileptic fit changes neuron spiking patterns to an unstable, supercritical mode) that alters

the dynamical structure [Chi10].

It has been proposed by Walter Freeman[KPB05] that the origins of intelligence are to be

found in this dynamical regime; that the brain operates by utilizing regular transitions back

and forth between critical and subcritical states at brain-wave frequencies. Incoming sensory

stimulation pushes the neuronal network into a critical state during which it explores, alters

and forms new features in an attractor landscape that influences the flow of electrical signals.

During its periodic return to the subcritical, the system’s trajectories localize around selected
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attractors, forming a link between sensory activity and cognitive structures. This attractor

landscape is viewed as our memories, the knowledge and wisdom built by experience, the

echo left by countless instances of this process. The transition dynamics themselves consti-

tute our thoughts, reflexes and intuitions, the selection principles that emphasize particular

associations and thereby feed back into structuring the attractors.

While this simplified presentation of Freeman’s interpretation of brain dynamics is suffi-

ciently vague to be as irrefutable as it is unprovable, it serves to illustrate how the outstand-

ing feature of complex systems—control parameter-mediated transitions between different

modes of behavior—is closely linked to pattern formation, and offers a plausible mechanism

for the operation of an adaptable, associative memory. Repeated dynamical phase transi-

tions will tend to express connections between the different phases, creating patterns. Of

course, patterns can be formed by simpler means, but complexity additionally enables these

patterns to be adaptive, not restricted to a choice between the stable memory of periodic

orbits or the ahistorical adaptability of chaos and relentlessly scale-free fractals. Complex

systems can function as both, and ultimately emerge resembling neither.

2.2 Dynamic Technology

We now turn to the challenge of utilizing complexity. The human body, and especially the

brain in it, is an inescapable example of the technological potential of complex systems.

However, the historical trend in technological development is to increase control over struc-

ture and consistency of function; dynamical phase transitions, the hallmark of complexity,

are generally limited to when things break. The power of the simplifying approach is clear

upon consideration of the way that properties of the nanoscale have been harnessed to build

modern solid-state electronic devices. A deep understanding of semiconductor materials and

their interactions with dopants has allowed electrical engineers to create reliable functional

components out of the famously slippery fabric of quantum mechanical interactions; the

moving parts are ions and electrons, their spooky quantum natures corralled by materials,

interfaces, and the controlled application of electric fields.

14



Designing dynamic technology requires a different perspective. The big picture includes

both dynamic and more traditional components, combined to maximize the strengths of

each: dynamic adaptability and traditional reliability. Of course, the actual function of

traditional, “static” devices, such as electrochemical batteries, involves nonlinear dynamics,

with battery voltage dependent on the (charge/discharge) history of the system. The point

is that this dimension is effectively linearized by design, not utilized to technological effect.

The dropping voltage of a battery can trip a switch to start drawing power from a second

battery instead, as the first starts recharging, because the role of the battery system is to

provide electric power at a designated voltage. To incorporate the battery as a dynamic

component would be to use it as a sensor, to use the information about its instantaneous

voltage, perhaps in concert with other observations of changes in its electrode structure,

electrolyte composition, and so on, to perform some useful function. (Which is, incidentally,

one valid description of the neuromorphic technology developed in this work).

It serves to mention that dynamic technology does not necessarily have to be complex.

A famous example [Van95] is the Watt governor. Designed by James Watt (adapted from

windmill technology) to stabilize the power output of steam engines to feed the factories of

the industrial revolution, the “Watt centrifugal governor” (1827) uses a feedback mechanism

to establish an inverse relationship between engine speed and throttle opening in order to

maintain a desired steady-state setpoint. A spindle is connected by gears to the engine’s

main flywheel, causing it to spin at a rate directly proportional to engine speed. Balls on

hinges are attached to this spindle, arranged such that the centrifugal force of the rotation

causes the arms to climb as the angular velocity increases. These arms are in turn linked

to the throttle, with the net effect of producing a nearly instantaneous control response to

fluctuations in engine performance (caused by changing loads, boiler pressure, etc) so as to

maintain smooth power delivery suitable for efficiently operating factory machinery.

While not particularly complex—especially in the sense of not exhibiting any distinct

modes of dynamic behavior (spinning vs. resting or accelerating vs. decelerating being trivial

cases: there may be obvious differences in the time-evolution of these states, but the forces

mediating interactions between components of the system remain unchanged)—the function
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performed by the Watt governor is fundamentally dynamic. Its function is predicated on

feedback, a design principle shared by most dynamic technologies. Interconnections between

subsystems within the device generate time-varying signals, both as inputs and outputs,

which are linked back to the sources of the temporal fluctuations in such a manner as to

dampen and eliminate them. This leads to the curious result that, taken as a whole, the

governed steam engine becomes a less dynamic system; a successful dynamic governor design

ensures this! It is an important and recurring hierarchical feature of network-based systems,

that a description of their characteristic properties and behaviors might be accurate at one

size scale and not another. This “simple” example underscores the most technologically

interesting property of dynamical systems: their capacity to respond to changes in their

environment, akin to what we might intuitively call information processing. Of course, any

sensor needs to have this property as well; but as in the battery example, a good sensor

design will restrict the dynamics in order to maximize consistency. Our goal is a technology

that directly correlates dynamic richness with device performance.

The notion of information has found its way throughout the intellectual world, from

the nanoscale intricacies of quantum computing, to traditional philosophical inquiries along

epistemic and ontological lines. Perhaps the most famous collision of information with

more established disciplines was Claude Shannon’s co-opting of thermodynamic entropy to

define a quantified measure that could serve as the basis for the nascent field of information

theory [Sha48]. There is a relatively intuitive connection that can be made between the

statistical formulation of entropy and a naive idea of information in a signal: since the

default state of a signal would be that of maximum entropy, i.e. the most probable state

(meaningful discussion of entropy should aim to avoid its commonly conflated counterpart,

“randomness”), any regular deviations in statistical features of a signal from their most

probable states, represent the presence of information. Someone or something has imposed

a persistent change on the signal, which can be decoded and interpreted as a meaningful

message. Entropy, in this light, is the physical manifestation of probability as a force, guiding

systems towards their most probable state. Information is that which resists it.

The technological promise of dynamic devices lies in their implicit capacity to near-
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instantly synthesize many information-rich signals into higher dimensional representations,

potentially producing “smart” emergent behaviors. Traditional computers, especially as

they become increasingly parallelized, can also deal with multiple simultaneous information

streams; however, they process them as digitized abstractions, using semiconductor device

physics to implement logical operations. A dynamic information processor uses its own

device physics to directly convert all the incoming signals to a processed output. The Watt

governor is limited to only one input signal (flywheel rotation), which it transforms into an

output with two degrees of freedom (open or close throttle). In this so-called Information

Age, our input/output ambitions have increased dramatically. We now envision brain-like

dynamical systems capable of synthesizing many simultaneous streams of information—from

video feeds, stock tickers, weather stations, heart monitors—and make “intelligent” decisions

in lieu of a human operator (who is subject to fatigue, mood swings, and other seriously

nonlinear effects) to control power grids, or temporarily shut down satellites to avoid damage

from incoming high energy radiation.

Many approaches have been tried, and more continue to be developed towards producing

this kind of dynamic information technology. Most efforts are still limited to simulation,

modeling dynamic systems with equations to be numerically computed in traditional digital

fashion. The neural network (NN) approach to machine learning is the most famous of these.

Inspired by the biological model of signal-integrating, decision-making neurons connected by

an assortment of dynamic, nonlinear synaptic junctions, simulated NNs are basically (ab-

stracted) complex systems, and the form of the equations governing their interactions will

determine the shape of their attractor landscapes and dynamical phase transitions. The

simplest NNs have feedforward architectures, which are easily computed but (because) they

are not complex. They perform some function, a deterministic mapping of input to output,

which might be dynamically changed according to some algorithm, but they are not true dy-

namical systems [LJ09]. Recurrent NNs are in fact dynamical systems, in which activity can

persist even in the absence of input signals. However, the richness of their dynamics tends

to overwhelm the algorithms charged with training the recurrent NN to do useful work.

One stream of research effort has focused on finding good ways to restrict the dynamics
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without losing their benefits, as with the symmetrical synaptic weights in Hopfield networks

[Hop82]. These were the first recurrent NNs to demonstrate stable memory, though at the

cost of allowing only point attractors. This cost is too high for those who, like Freeman, are

principally interested only in biologically plausible models, since their goal is not simply to

produce better information processors, but to gain insight into how our brains work.
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CHAPTER 3

Morphological Transitions from Dendrites to

Nanowires in the Electroless Deposition of Silver

A morphological transition from dendrites to nanowires in the electroless deposition of silver

by galvanic displacement of copper seeds is investigated as a function of seed size. The tran-

sition to dendritic growth is interpreted as arising from local reaction anisotropies interacting

with the global solute concentration distribution. Reactions were performed on substrates

bearing lithographically patterned grids of copper posts with sizes ranging from 1-50µm.

When copper seed size exceeds 10µm, the deposition reaction consumes silver cations at a

sufficient rate to create ripple-like Mullins-Sekerka instabilities in their distribution. The

resulting concave growth fronts produce branched, dendritic structures. For copper posts

smaller than 3.5µm, cation consumption is balanced by diffusion and the growth front’s

advance towards the bulk, leading to networks of nanowires formed as the local reaction

anisotropy favors growth by stacking along Ag (111) planes.

3.1 Introduction

Morphological transitions in non-equilibrium growth processes arise from interactions be-

tween microscopic interfacial dynamics and macroscopic driving forces [Lan80, BGM88].

Such transitions occur when variation of a process parameter alters the expression of lo-

cal anisotropy in the global growth mechanism [CH93]. Determining which parameters are

responsible presents a challenge, as intuition derived from classical thermodynamics may

become misleading far from equilibrium [FKH94]. Reliable selection of morphology requires

parameters that control the interplay of temporal and spatial scales, functioning as non-
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equilibrium analogues to thermodynamic state variables [BG90]. Experimental investiga-

tions can identify these control parameters for specific growth processes and enable their use

in directing the morphology of self-assembling structures.

Electroless deposition (ELD), a general term encompassing processes also referred to as

galvanic displacement or cementation, involves the reduction of metal ions in solution without

the application of an external bias voltage. The technique is primarily used for depositing

metal coatings, and differs from simple homogenous redox reactions in that deposition occurs

at a specific interface and not in the bulk of the solution [Ohn91]. The utility of ELD as

a fabrication strategy arises from its capacity to combine surface patterning with chemical

self-assembly, gaining the flexibility of solution-phase synthesis while retaining the control

of top-down design processes. This work focuses on the ELD of silver from copper seeds in

silver nitrate solution, according to the reaction:

Cu0
(s) + 2 Ag+

(aq) −→ 2 Ag0
(s) + Cu2+

(aq) (3.1)

Controlled synthesis of silver nanostructures is of particular interest, as bulk silver has the

highest electrical and thermal conductivity of all metals [RM07]. Extensive studies of silver

nanostructures have also demonstrated strong antimicrobial characteristics [RYG09] as well

as size/shape-dependent surface plasmonic effects, with particular implications for sensing

and optical spectroscopies [XH05, WXM06, NE97]. The wiring of interconnects has become

the most important factor in electronic chip design and performance [HMH01], motivating the

development of biologically-inspired, self-assembled complex nanowire network architectures

[TGL11] and devices [SAS12]. Higher dimensional, dendritic silver nanostructures have

additional advantages in surface enhancement for catalysis [RM07], detection [WXM06],

and as electrodes for electrochemical devices such as batteries, which harness the efficiency

of branching geometries to optimize transport processes [PZW07].

We present a study on the morphology of ELD silver structures where the size of the cop-

per seeds used to grow them under non-equilibrium conditions serves as a control parameter.

Lithographically patterned Cu posts with edge lengths ranging from 1-50µm and heights of
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200-790nm were reacted with 50mM silver nitrate solutions. This concentration was selected

to investigate diffusion-limited deposition mechanisms [SDG86, KA95]. ELD occurred si-

multaneously at all Cu-solution interfaces upon immersing the substrate in AgNO3, keeping

all reaction parameters (temperature, concentration, reaction time) identical except for the

dimensions of the Cu seeds (Figure 3.1).

3.2 Results and Discussion

Deposit morphology was observed to depend on seed size, with edge dimensions on the

order of 1µm producing extended wires (Figure 3.2a), while above 10µm the deposits have

a branched, dendritic structure (Figure 3.2b). This emergent length scale can be used to

bridge the gap between top-down and bottom-up fabrication techniques in directing the

self-assembly of functional nanostructured devices [ASM12].

Morphological transitions in non-equilibrium growth processes such as diffusion-limited

ELD result from changes in the nature of the solid-solution interface at the growth front

[GBC86]. The pure diffusion-limited aggregation (DLA) model of Witten and Sander has

proven a powerful tool for understanding a range of fractal growth phenomena [WS81]. In

to the DLA model, solid growth occurs as random walkers (in our case, Ag+ cations) diffuse

into contact with the solid and attach (e.g. are reduced to Ag metal), becoming part of the

growing aggregate [MSH84]. Good agreement has been seen between DLA model predictions

and Ag structures grown using diffusion-limited ELD from Cu at seed sizes larger than a

millimeter [KA95, KAM94]. However, there is no size scale inherent in the DLA model,

which approximates an idealized case of a solution approaching zero density [MSU05], and it

is therefore unable to predict a morphological transition based on the size of the aggregate

interacting with the solute distribution as a whole.

Size scales can be introduced by turning to mean-field models of diffusion-limited growth

[RLT96]. They begin by defining a field controlling the growth process; in our case, the

concentration distribution of diffusing Ag+ cations, which has a maximum value of the

bulk concentration and is zero at the solid-solution interface. Growth is most likely to
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Figure 3.1: Experimental schematic. (a) Representation of the lithographic mask used for

patterning Cu seeds of various size and pitch. Two distinct patterns, square and chessboard,

are deposited onto SiO2 substrates for each seed size with pitch equal to and double that of

the respective seed edge length (1-50 microns). (b) Schematic of a SiO2 substrate with Cu

seeds immersed in a 50mM AgNO3 solution, where individual blocks represent a grid of given

size. ELD reactions occur simultaneously under identical reaction conditions (temperature,

concentration, time) with the exception of Cu seed size. Post heights ranging from 200-790nm

were used.
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occur at protruding tips, as they extend furthest towards the bulk concentration. However,

the interaction between the consumption of ions and the restoring forces resulting from

concentration gradients at the interface is known to lead to instabilities in the distribution

of ions around the growth front. The formation of such instabilities was analyzed by Mullins

and Sekerka, who determined conditions for the propagation of perturbations at growth fronts

[MS64], which have been used to explain the non-equilibrium formation of dendritic patterns

[SB93]. We investigate these conditions experimentally, by simultaneously performing silver

ELD reactions identical except for the size of the copper seeds.

Experiments were performed using microscale copper posts lithographically patterned on

thermally oxidized (500nm SiO2) silicon. Electron beam lithography was used to prepare

1µm2 Cu seeds, while UV lithography was used to deposit Cu grids with edges dimen-

sions ranging from 2-50µm and thicknesses of 200-790nm. Microfluidic wells were fabricated

around the Cu to facilitate the ELD reaction with aqueous AgNO3. A thick layer of SU-8

(approximately 500µm) was deposited by spin coating, then UV exposed and baked at 95◦C

before developing in propylene glycol methyl ether acetate and a final hard baking at 130◦C

under nitrogen. Silver nitrate (99.98%, Fischer) was dissolved in 18.2MΩ deionized water

to prepare 50mM solutions. Samples were characterized using optical and scanning electron

microscopy.

Small Cu posts (< 3.5µm, Figure 3.4) were observed to exclusively grow nanowires when

reacted with 50mM AgNO3. At larger seed dimensions, branched structures were produced.

The transition from wires to dendrites occurred for edge lengths near 10µm (see typical

images shown in Figure 3.4). Extended wires were not observed at edge lengths greater than

15µm. No morphological dependence on the height of the posts was noted over the range

examined.

In order to investigate the possible influence of the substrate on the morphological tran-

sition, we reacted Cu microspheres (99.995%, Alfa-Aesar, average diameters of 1 and 10µm)

in stirred 50mM AgNO3 solutions. These solution-grown Ag deposits were compared to

structures produced from identical Cu seeds initially drop cast onto a supporting substrate.

Optical images of each preparation showed no appreciable variation in structural morphol-

23



Figure 3.2: Branching of Ag structures increasing with the decreasing strength of anisotropic

forces. Preferential orientations for crystal growth lead to the formation of nanowires (a)

until the growth front is sufficiently large to interact with the concentration field and produce

branched dendrites (b). Scale bars = 1µm.

Figure 3.3: SEM images of Ag nanowires formed by ELD from lithographic Cu grids (1x1µm,

300nm thickness, 5µm pitch). The interpenetration of simultaneously grown wires highlights

the predominance of local forces in the reaction at this seed size. Structures do not branch

but may thicken. Scale bars: (a) 10µm, (b) 1µm.
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ogy for a given seed size. However, comparison of XRD spectra for the deposits evoked

distinctions, as collected using a Panalytical X’Pert Pro X-ray powder diffractometer using

Cu Kα radiation (Figure 3.5).

Diffraction peaks near 38◦ and 44◦ were assigned to the (111) and (200) planes of fcc

silver, respectively, according to standard values (Joint Committee on Powder Diffraction

Standards file 04-0783). The shoulders on the (111) peaks are attributed to an Ag-Cu

solid solution. Ag and Cu do not typically form alloys, despite both metals having fcc

structures with a size mismatch satisfying the Hume-Rothery criterion for the formation of

solid solutions (< 15%), but they have been observed in non-equilibrium deposition processes

such as sputtering [GBB08]. While the ELD mechanism is driven by simultaneous reduction

and oxidation half-reactions at the metal-solution interfaces, the potential is transferred from

the dissolving Cu seed to the Ag plating growth front through the metal-metal interface inside

the deposit. The resultant local electric field is of sufficient strength to form an Ag-Cu solid

solution at this interface.

The influence of size and substrate was taken from the XRD spectra by comparing the

ratios of (111) and (200) peak intensities. This ratio gives a metric for the relative strength

of anisotropic forces in the crystal growth process, where higher ratios are correlated to

the preferential stacking of (111) planes associated with wire growth [CKM04]. In aqueous

solution, the (111) and (100) facets of fcc Ag are the most stable, with water molecules

interacting more strongly with the (100) surface, making (111) the preferred growth ori-

entation [YCY11]. The observed trend in Figure 3.5 indicates that both smaller size and

restricted volume (surface-based) growth serve to increase the anisotropy, with (111):(200)

ratios increasing above the 10:4 standard for fcc silver crystals. This indicates that slower

[Ag+] depletion rates are associated with increased expression of oriented growth.

Given these observations, we find the transition between growth modes to be a feature

of the non-equilibrium nature of the ELD process. Recent investigation into the effect of

the size of Cu microspheres in a similar Cu/Ag+ ELD reaction attributed the observed

morphological transitions from plates to belts and branched structures to changes in the

electrochemical potential as a function of the concentration of reactants, calculated using the
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Figure 3.4: Optical micrographs illustrating the transition from wire to dendrite growth as a

function of Cu seed size. At 7µm (a) wires predominate, with branched structures appearing

as (b) seed size is increased to 9µm. (c) Wires were not observed for deposits from 15µm

seeds. Scale bars = 10µm.

Figure 3.5: Comparing X-ray diffractograms of Ag structures grown from 1 and 10µm Cu mi-

crospheres in solution and on a glass surface shows that both seed size and surface proximity

influence the preference for the (111) orientation associated with crystal growth anisotropy.
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Nernst equation [LS11]. However, the Nernst equation is derived to estimate the reactivity

of an electrode-solution interface at equilibrium, and is not applicable to the ELD process

that occurs far from it. We propose that the formation of dendrites does not occur due to

the reaction potential increasing with seed size, but rather because of Mullins-Sekerka (MS)

instabilities appearing when the rate of depletion of reactants in the vicinity of the growth

front critically outpaces restoring forces. Past this critical point, the growth mode changes

because of non-equilibrium patterns in the solute concentration distribution caused by MS

instabilities.

At a growing solid-liquid interface, the presence of a perturbation in the concentration

field that is not stabilized by damping influences will propagate to form ripples in the distribu-

tion of solution-phase components. This tendency for an initially infinitesimal perturbation

in a concentration distribution to increase and spread is the essence of the MS instability

analysis. Above the emergent size scale (∼10µm Cu seeds for the reaction conditions used

in this experiment), the consumption of Ag+ at the growth front is sufficiently rapid to

form MS instabilities, which create variations in the concentration distribution (Figure 3.6).

Local regions of high [Ag+] reach sufficient chemical potential to nucleate branches, which

can in turn form new MS instabilities. As the principal growth front advances at a constant

velocity v, the instability-related branches grow at a rate proportional to v
1
2 , creating a den-

dritic structure with a preferred axis of orientation through otherwise self-similar branches

[KAM94].

Below the transitional Cu seed edge length, local forces sufficiently dampen the perturba-

tions caused by the consumption of Ag+ at the growth front, and no large-scale disruptions

of the concentration field occur. The tip of the growing deposit moves smoothly towards

higher concentration areas, such that local crystal growth anisotropy dominates the process

and produces wires preferentially oriented along the (111) surface. The advancing growth

front functions similarly to a directed drift term in diffusion-driven aggregation models, which

predict needle-like growth when the flow of reactants towards the interface is sufficient to

dampen instability [Nag89].

The localized nature of the wire growth mechanism is illustrated by the formation of in-
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Figure 3.6: Dendritic growth due to Mullins-Sekerka instabilities. (a) For growth fronts

of sufficient size, the consumption of Ag+ outpaces the rate of replenishment, creating an

instability in the concentration distribution. Diffusion gradients (represented as green ar-

rows) are largest between the bulk and depleted regions, but the MS instability perturbs

the flux of incoming cations to create a concave growth front. (b) The concave growth

front leads to regions of increased Ag+ concentration near the surface of the growing deposit

with sufficient electrochemical potential to nucleate new growth sites. (c) As the branches

grow, additional MS instabilities form, repeating the process and leading to the self-similar

dendritic morphology.
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terpenetrating wire networks (Figure 3.3). Since there is no disruption of the concentration

field, each growth process is effectively independent, so the wires can grow past each other.

Conversely, during dendritic growth, MS instabilities alter the distribution of available Ag+

at a more global scale. As dendritic growth fronts approach, the depletion effects compound,

and growth halts before deposits come into contact (Figure 3.4c). These observations sup-

port the notion that the transition in deposition morphology is associated with a change

in the scope of the growth front’s interaction with the solute concentration distribution.

The specific magnitude of the critical parameters for inducing the transition are sensitive to

many factors, from the bulk concentration of silver cations to the presence of hydroxide and

nitrate anions, which have been found to promote nanowire formation in other Ag reduc-

tion processes [CBM03, KH12]. While the observed ∼10µm transition length is particular

to our choice of reaction parameters, this investigation is of general interest because of the

mechanistic insight gained by experimentally isolating a single parameter—the seed size—

and observing its influence on the emergence of global non-equilibrium patterns from local

anisotropy.

In conclusion, we have developed a flexible ELD technique using lithographically pat-

terned copper seeds reacted with silver nitrate solutions to controllably produce either wires

or dendrites by utilizing an emergent length scale in the non-equilibrium deposition process.

We propose that at seed sizes on the order of 1µm, the process is controlled by local crystal

growth anisotropy and produces wires, while above 10µm the growth front depletes reactive

solute species at a rate sufficient to create MS instabilities in the concentration field and

forms dendritic deposits. This combination of patterning and self-assembly is an effective

means for constructing biomorphic electroionic devices [SAS12], and is a useful blueprint

for connecting bottom-up and top-down methodologies to efficiently produce complex nan-

otechnology.
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CHAPTER 4

Neuromorphic Atomic Switch Networks

Efforts to emulate the formidable information processing capabilities of the brain through

neuromorphic engineering have been bolstered by recent progress in the fabrication of non-

linear, nanoscale circuit elements that exhibit synapse-like operational characteristics. How-

ever, conventional fabrication techniques are unable to efficiently generate structures with

the highly complex interconnectivity found in biological neuronal networks. Here we demon-

strate the physical realization of a self-assembled neuromorphic device which implements

basic concepts of systems neuroscience through a hardware-based platform comprised of over

a billion interconnected atomic-switch inorganic synapses embedded in a complex network

of silver nanowires. Observations of network activation and passive harmonic generation

demonstrate a collective response to input stimulus in agreement with recent theoretical

predictions. Further, emergent behaviors unique to the complex network of atomic switches

and akin to brain function are observed, namely spatially distributed memory, recurrent dy-

namics and the activation of feedforward subnetworks. These devices display the functional

characteristics required for implementing unconventional, biologically and neurally inspired

computational methodologies in a synthetic experimental system.

4.1 Introduction

The human brain is the most powerful information processor known to man. Although the

activity of individual neurons occurs orders of magnitude slower (ms) than the clock speeds

of modern microprocessors (ns), the human brain can greatly outperform CMOS computers

in a variety of tasks such as image recognition, especially in extracting semantic content from
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limited or distorted information, when images are presented at drastically reduced resolutions

[TFM96, TFF08, SWB07, Ull07]. These capabilities are thought to be the result of both serial

and parallel interactions across a hierarchy of brain regions in a complex, recurrent network,

where connections between neurons often lead to feedback loops [Abe91, DM07, BS09].

Recent research in systems neuroscience has developed models to explain this combination

of rapid and complex processing which view the brain as a large network containing many

recurrent loops with both excitatory and inhibitory connections, within which feedforward

sub-networks are embedded for fast signal propagation [DM07, Gol09, TFS08].

In the brain, these excitatory/inhibitory connections between neurons, known as synapses,

are nonlinear electroionic junctions whose conductivity changes in response to electrical and

chemical signals. The relative timing of signals arriving from either side of the synaptic termi-

nals, as well as larger-scale spatiotemporal patterns of network activity during these events,

strongly influence the resultant change in synaptic strength, or plasticity [AN00, TFM96],

a property postulated as the mechanistic basis for memory and learning [Heb49]. Recently,

nanoscale electroionic circuit elements known as atomic switches [THN05] have been shown

to exhibit input-dependent memory behaviors similar to short-term plasticity and long-term

potentiation in neuronal synapses, where the time constant for conductance decay to the

high resistance OFF state depends on the strength and timing of applied voltage pulses

[HOT10]. This tendency to equilibrate produces short- and long-term memory behaviors

that enable atomic switches to function as “inorganic synapses” [OHT11].

We present a detailed analysis regarding the consequences of coupling many atomic

switches together in a highly interconnected, recurrent structure to create an operational

neuromorphic device that self-assembles into a functional state. The motivation for building

complex network-based computing devices extends beyond an interest in understanding and

emulating brain function. Alongside efforts to reduce the dimensions of circuit elements

while increasing their integration, the wiring of interconnects has become the limiting factor

in both design and performance of electronic devices [TH08]. Wire delays are significantly

slower than transistor switching speeds, producing a situation where more logic gates can

be fabricated on a chip than are able to communicate in one processor cycle [HMH01].
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This communication bottleneck can be addressed theoretically through the use of different

network topologies, varying the number and type of interconnections. Complex nanowire

networks are relatively simple to fabricate using self-assembly and would therefore be ideal

wiring architectures, provided that they are useful.

Previously we reported an operational regime near the “edge of chaos” in similar net-

work devices, as characterized by power law scaling of temporal metastability, avalanche

dynamics and criticality [SAS12] reminiscent of electrical activity in biological neural sys-

tems [BP03, Chi10]. In such a state, the system is highly correlated and theoretically achieves

maximum efficiency of information transfer while retaining a fading memory of prior states.

These results indicate a potential capacity for efficient information processing, thereby sur-

mounting problems associated with wire delays and interconnect structures. The distributed

nature of the atomic switch array’s dynamics makes it a candidate platform for efficient ker-

nel design in the emerging field of “Reservoir Computation” (RC) [LJ09]. The fact that

RC does not require subtle control of internal network dynamics and is therefore simpler to

execute, makes it an appealing route to begin using neuromorphic devices to perform compu-

tational tasks. Complex network architectures generated through self-assembly of functional

nanoscale elements, like those described here, offer the benefits of scalability and ease of

fabrication combined with control of distributed nonlinear dynamics that may represent the

architectural basis of a new computational paradigm.

4.2 Results

Atomic switch network devices were characterized using a range of potentiostatic inputs,

including constant and ramped DC as well as sinusoidal AC signals. These complex atomic

switch networks are shown to exhibit various nonlinear behaviors, depending on the mag-

nitude and timing of both present and prior input signals. Behaviors include both weak

(continuous I-V loop hysteresis) and strong (discrete threshold switching) memristance as

well as nonlinear frequency response (higher harmonic generation) and persistent fluctua-

tions in conductivity under constant bias (recurrent connectivity); results which were found

32



to agree with a recent theoretical study of current flow in memristor networks [OS11]. Op-

eration of the device using pulsed voltage stimulation produced network-specific emergent

behaviors, as spatially localized conductive channels akin to feedforward subnetworks were

formed within the embedding recurrent network. While there are significant differences be-

tween these atomic switch networks and biological neural networks (NNs), we demonstrate

the physical implementation of high-level NN features in an inorganic structure, including

bottom-up self-assembly that is reminiscent of neuronal growth in the brain [SB98], nonlinear

input-dependent conductance response which strongly resembles the function of biological

synapses [BM09, Heb49], and emergent properties considered fundamental to brain function

- recurrent dynamics which gives rise to large persistent, correlated network responses and

the activation of feedforward subnetworks [Gol09, TFS08, GHS08, KRA10, MM09, RJ08].

4.2.1 Atomic switches, complex networks and neuromorphic hardware

Previous reports on the synapse-like properties of single atomic switches have demonstrated

features similar to short-term plasticity and long-term potentiation, where applied bias

voltage produced a junction conductance dependent on the history of stimulation (pulse

frequency, length) [HOT10]. Individual atomic switches exhibit time-dependent nonlinear

conductance due to several related mechanisms: (1) bias induced Ag+ migration, (2) elec-

trochemical redox reactions involving Ag+/Ag0 to produce metallic filaments, and (3) an

associated non-equilibrium α/β-Ag2S phase transition [XBW10], which all compete with

thermodynamically driven stochastic renormalization to the equilibrium OFF state. Though

atomic switches can be configured to operate in an essentially nonvolatile manner similar

to memristors—two-terminal circuit elements whose resistance depends on the history of

charge passed through them [SSS08]—their volatility indicates that they are more properly

classified as “memristive systems” [Chu71, Chu11].

These mechanisms collectively produce the memristive switching and synaptic memory

functions exhibited by a single atomic switch. Specifically, ’weak’ memristance resulting

from redistribution of Ag+ dopant cations across the insulator leads to ’strong’ memristance
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characterized by abrupt switching through metallic filaments formed once the Ag+ cations

reach the cathode and are reduced to metallic silver [THN05]. TEM studies have shown that

the metallic silver filaments formed during switching are surrounded by a sheath of β-Ag2S,

a conductive phase of silver sulfide normally unstable below 170◦C [XBW10], possessing a

body-centered cubic structure with sulfide anions forming channels in which silver cations are

delocalized, highly mobile and dynamically correlated [AM59, GSC84]. This non-equilibrium

phase transition is attributed to a relaxation of strain induced by lattice mismatch between

Ag0 and α-Ag2S, the electrically insulating room temperature phase [WKT07]. In the ab-

sence of applied bias, thermodynamic pressures return the Ag2S to its room-T α-phase,

which drives the dissolution of the Ag0 filaments and turns the atomic switch OFF at a rate

dependent on the history of applied bias, producing the observed memory effects.

A great deal of effort has been put towards building biologically inspired computational

hardware [DMM95, ILH11a, LMM03, Mea90, RJB96, TVH02, XRC09, MM88], though

matching the complexity of the brain in a usable electronic device presents an exceedingly

difficult engineering challenge. Fabrication requirements force design concessions, such as

approximating the complex, recurrent connectivity between neurons by a simpler network

geometry. The amenability of crossbar structures to conventional fabrication techniques

has led to their use in neuromorphic hardware, with pre- and post-synaptic CMOS neurons

connected by memristive elements at the crosspoints [JCE10]. This is an ideal hardware im-

plementation of a 3-layer neural network model [Ros58], where input and output neurons are

connected by a synaptic “hidden layer” of variable strength, and is also a promising platform

for building dense, fast solid-state memory devices [CDL10]. However, the structural sim-

plicity of the crossbar architecture is both a strength, enabling independent control of each

synaptic element, and a weakness, since the well-defined grid lacks complex structures with

the recurrent connections believed to be essential to brain function [DM07, KRA10]. While

it is possible to program these features into a software model implemented on neuromorphic

hardware, the physical existence of these complex structures may be essential to successfully

generate the requisite spatiotemporal interactions between multiple signals simultaneously

traveling through the network [BM09, Sea80].
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4.2.2 Device fabrication and characterization

Based on the view that recurrent connectivity is essential to brain-like function, we have

built, characterized and operated devices using massively interconnected (109 junctions/cm2

according to analysis of SEM images), silver nanowire networks functionalized with inter-

facial Ag—Ag2S—Ag atomic switches. These nanowire networks were prepared through

self-assembly without pre-patterning of the network topology using the electroless deposi-

tion of Ag from Cu inside the SU-8 reaction well of an I/O device platform [SAS12, MVW12].

Specifically, spontaneous oxidization of metallic copper through reaction with dilute aque-

ous solutions of AgNO3 produces a metallic silver structures with variable morphologies

depending on the concentration of Ag+ and distribution of Cu [KA95, LSZ09, WXM06].

Dendritic silver nanowires with minimum feature sizes <100nm seen in Figure 4.1b were

produced by using lithographically patterned Cu posts shown in the inset of Figure 4.1a.

Control over the size and distribution of Cu seeds increased device yield by ensuring the

formation of conductive pathways between the Pt device I/O electrodes as seen in Figure

4.1b. Ag—Ag2S—Ag interfaces were formed spontaneously within the network during gas

phase sulfurization [KTH06]. Following optimization of fabrication protocols, a total of 96

networks were used for the device characterization described below.

Theoretical analysis of current flow in memristor networks during bias voltage sweeps

indicated the possibility of a phase transition in device behavior from ’weak’ to ’strong’

memristive regimes [OS11]. Initial voltage sweeps of these network devices (Figure 4.2a

and 4.S1) typically demonstrated smooth, pinched hysteresis loops characteristic of weakly

memristive systems followed by an abrupt, nearly discontinuous jump to a distinct, high

conductance ON state occurs at an activation bias voltage (Va). This behavior represents

activation of the network and is shown as an illustrative example of a network device undergo-

ing a behavioral phase transition similar to the bias-driven forming step required to activate

single resistive switches. Following network activation, devices subjected to repeated bias

sweeping generally exhibit robust, strong memristive behavior, typified by hard switching

(inset). Robust switching over 10,000 cycles was demonstrated at an operational threshold

35



Figure 4.1: Device Fabrication (a) SEM image of complex Ag networks (scale bar = 10 µm)

produced by reaction of aqueous AgNO3 (50 mM) with (inset) lithographically patterned Cu

seed posts (scale bar = 1 µm). (b) High resolution image of the functionalized Ag network at

the device electrode interface (Pt) showing wire widths ranging from 100nm to 3µm (average

<1µm) and lengths extending from a few microns to almost a millimeter (scale bar = 700

nm).

voltage (Vt) of reduced magnitude (Figure 4.S2) as compared to the formation bias voltage, a

general phenomenon in resistive switches [WA07]. While the specific magnitude of Va and Vt

differ significantly between devices due to inherent variability in the solution-phase methods

used to fabricate them, the qualitative transition from weak to strong memristive behavior

was observed regularly, consistent with theoretical predictions [OS11].

Similar to the electroforming step usually required to activate single atomic switches

and memristors [WA07], the observed transition from weak to strong memristive behavior

is assigned to two related mechanisms. In poorly conducting regions comprised mainly of

Ag2S, anodic silver dissolves into and travels across the electrically insulating sulfide as Ag+,

decreasing resistance and producing a weakly memristive effect. In regions of higher Ag+

dopant concentrations, mobile cations reach the cathode and are reduced to Ag0, creating

metallic filaments across the insulator that cause an abrupt change to an ON state with a

sharp increase in conductance at Vt associated with the electrochemical process of filament

formation. At the network level, the bias-induced creation of additional memristive junctions

and filament formation across existing ones combine to produce the theoretically predicted

transition of network I-V behavior to a strongly memristive phase (schematically illustrated
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Figure 4.2: Network Activation - memristive behavior. (a) Representative example of initial

bias sweeps (0-5V sweep at 1 V/s) applied to a pristine device which steadily activate higher

percentages of atomic switches, resulting in increased current. After 11 sweeps, the device

resistance decreases from ∼ 10MΩ to ∼ 500Ω. Subsequent ±1.5 V bipolar sweeps result in

repeatable pinched hysteresis behavior (inset: ROFF = 25kΩ, RON = 800Ω), and bistable

switching. (b-d) Schematic representation of the mechanism producing the I-V characteris-

tics shown in (a). The network initially consists of weakly memristive junctions and ohmic

contacts (b). Continued application of unipolar bias voltage (c) drives the dissolution of

silver into silver sulfide, increasing the number of memristive elements, while cation migra-

tion across extant memristive junctions leads to filament formation and the onset of hard

switching behavior. (d) After the proportion of strong memristors exceeds the percolation

threshold (ρ > 0.5), the network functions reliably in the hard switching regime.

in Figure 4.2b-d) as the proportion of switching elements in the network exceeds the per-

colation threshold (50%) [OS11]. Having undergone this transition, the continuously swept

network operates as a hard switching memristor shown in Figure 4.2a (inset). All further

data presented was acquired from devices following activation.
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4.2.3 Network-specific properties

While weak and strong memristive behavior can be exhibited by single resistive switches,

the most interesting features of this complex atomic switch device are its network-specific

properties. In order to confirm that the entire network was involved in processing the input

signals, devices were imaged using an IR camera with 20mK sensitivity to track Joule heat-

ing from current flow during slow bias sweeps. The IR images revealed power dissipation

occurring across the network, indicating that the phase change in network I-V behavior was

not attributable to the formation of a single maximum conductivity pathway of switches ar-

ranged in series between the active electrodes [SAS12]. The distribution of activity indicates

that the observed I-V characteristics are due to the sum of parallel current flow, meaning

that network structure and connectivity are actively influencing device function.

As recent theoretical models predict passive generation of second harmonics in both sin-

gular memristors and in random networks, the distribution of switch function throughout the

network was examined through analysis of the device?s frequency response [OS11, CPD12].

Simulation of current flow in memristor networks indicate that 2nd harmonic generation

will occur under an applied sinusoidal voltage in networks whose percentage of hard switch-

ing junctions exceeds the percolation threshold [OS11]. Further, the relative magnitude of

higher harmonics is predicted to increase with the relative number of hard switching junc-

tions. Following activation, device response to a 10 Hz sinusoidal voltage signal varying in

strength from 250 mV to 4 V shows a large increase in higher frequency components af-

ter functionalization (Figure 4.3b). The proportion of higher harmonics generated increases

with signal amplitude (Figure 4.3c), with the largest increase occurring between 250 and 500

mV. A larger degree of higher harmonic generation is consistent with an increased number

of memristive junctions operating in the hard switching regime above Vt (∼ 0.5 V). Both the

distributed power dissipation [SAS12] and harmonic generation are characteristic of activity

distributed throughout the network.

Having characterized atomic switch operation in an interconnected complex network, we

examined the device for emergent behaviors specific to its brain-like recurrent structure.
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Figure 4.3: Frequency Response — distributed conductance (a) Amplitude spectrum from

a Fourier transform of a control device’s response to a 2 V, 10 Hz sinusoidal input signal

compared to (b) that of a functionalized device which shows enhanced overtones of the input

signal with respect to (a). (c) Plot of 2nd and 3rd harmonic generation in current response as

a function of bias voltage in both functional (black) and control (gray) networks. Harmonic

magnitudes are represented as percentage of the fundamental for a 10 Hz sinusoidal input

signal.

Structurally, the atomic switch network is recurrent in the sense that there exist pathways

such that electrical signals produced at one junction may lead to (delayed) feedback at the

same junction. Here we present experimental evidence of spatially distributed and correlated

network dynamics, which are attributed to such recurrent connectivity. These recurrent

dynamics are presented as an emergent property of the atomic switch network.

Applying a constant 1V DC bias (Figure 4.4a) produced persistent, bidirectional fluctuations—

both increases and decreases—in network conductivity of large magnitudes (∼20-150%) over

a range of time scales (seconds-hours). In the absence of recurrent structures within the

network, the filamentary mechanism of an atomic switch implies that conductivity would

increase monotonically under constant DC bias. The applied voltage leads to the thicken-

ing of filaments until the potential drop across the junctions is insufficient to reduce more

silver cations [THN05]. However, large bidirectional fluctuations (∆I greater than 100% on

the scale of hours) in the current response persisted for several days under constant applied

voltage, demonstrating that the complex network connectivity inherently resists localized
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positive feedback that would lead to the serial formation of a single, dominant high conduc-

tivity pathway between electrodes. Rather, recurrent loops in the network create complex

couplings between switches, resulting in network dynamics that do not converge to a steady

state even under constant bias. A single switch turning ON does not simply lead to an

increased potential drop across the next junction in a serial chain, but redistributes voltage

across many recurrent connections that can ultimately produce a net decrease in network

conductivity. This behavior represents a network-scale analog of defect-defect interactions

that have been observed to produce current fluctuations in metal nanobridges [RB91]. The

nanoscale switch filaments couple these interactions with electrochemical redox processes,

leading to significant changes in the conductivity state of the entire network.

These fluctuations are of a magnitude significantly greater than what can be consid-

ered noise. An internal control experiment compared Fourier transformed current responses

(Figure 4.4b) of the devices to constant voltage before and after functionalization. The for-

mation of atomic switch junctions expands the degree of correlation in current fluctuations,

producing 1/f-like behavior across the entire sampled range, far exceeding that of control

devices (unsulfurized silver network, grey line in Figure 4.4b), which flattens to white noise

and some high energy, high frequency fluctuations attributed to arcing between neighbor-

ing wires. Functionalization with atomic switch elements increases the influence of past

events on the present state of the network, in accordance with their memristive character-

istics [HOT10, OHT11, Kes82]. This results in an expanded degree of correlation in the

measured frequency response. Similar 1/f spectra have been observed along with current

fluctuations in other resistive switching systems, exhibiting relative resistance changes ∆R
R

ranging from < 0.002 for metallic filaments to an experimental and theoretical maximum of

0.5 in the semiconducting high resistance OFF state [INC10]. The network device of Figure

4.4 is operating in an intermediate state with an average resistance of 172kΩ (compared to

ROFF > 10MΩ) and fluctuations of ∆R
R
∼ 1. In order to produce relative resistance changes

of such high magnitude, switching events within the network must be correlated. While

stochastic processes may be involved in the correlation of these fluctuations [Kes82, CT03],

their magnitude and persistence is an emergent feature of recurrent connectivity in the device
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Figure 4.4: DC Response — recurrent dynamics (a) Time traces of current response to 1 V

DC bias show large current increases and decreases at all time scales around a mean of 5.81

µA (172 kΩ); shorter time traces (ii-iii) are subsets of (i). Representative device parameters:

ROFF > 10MΩ, RON < 20kΩ, VT = 3 V during activation (b) Fourier transforms of DC bias

response for Ag control (grey) and functionalized Ag—Ag2S (black) networks. The power

spectrum of the functionalized network displays 1/fβ power law scaling (β = 1.34).

architecture that has not been observed in simpler atomic switch geometries.

Inside the generally recurrent structure of the brain’s neural network, there is evidence

for the existence of feedforward subnetworks utilized for the fast propagation of certain

signals [GHS08]. In this device, persistent fluctuations in current under constant DC bias

are produced by the recurrent network architecture, creating operational dynamics that resist

the feedfoward activation of serial chains of switches. However, by altering the form of the
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input signal, we were able to independently operate conductance channels between different

pairs of electrodes within the same device.

The application of a single, large voltage pulse (±3V, 1s) selectively switched connections

between electrode pairs ON and OFF (Figure 4.5a) with a RON/ROFF ratio greater than 30.

In the example shown, the conductive paths between the two channels overlap spatially, yet

are switched independently, indicating that local sub-regions of the network can transition to

distinct operational modes despite being embedded within a highly interconnected, largely

metallic structure. This is analogous to the presence of feedforward subnetworks within

the recurrent architecture of the cortex. Single pulses of sufficient magnitude overwhelm

the recurrent dynamics and induce feedforward activation of local sub-regions along a path

connecting the involved pair of electrodes without significantly altering the conductivity of

other spatially intertwined channels within the same nanowire network.

The degree to which pulse-mode channel creation influences overall network connectiv-

ity can be visualized in electrode resistance cross-correlation matrices (Figure 4.5b). In

this case, net electrode resistance is calculated from the pair-wise resistances to be a rep-

resentative measure of the overall connectivity of a given electrode to the network. The

correlation strength (denoted by color) represents the degree to which a pair of net electrode

resistances fluctuate in unison, interpreted as a measure of the number of shared network

sub-regions connected to both electrodes (Supporting Information). Correlation strength in-

creases strongly between electrodes connected by an ON channel, and decreases again when

the channel is switched OFF, with a varying degree of influence on electrodes not directly

involved in the switching. This implies that spatially central regions of the network can

be selectively associated with particular pairs of electrodes without globally increasing the

network connectivity. However, when conductive channels exist between all four electrodes,

the overall magnitude of correlation in the network is correspondingly large, as fluctuations

are spread evenly throughout the increasingly metallic network. This simple example of the

interaction between local and global operational characteristics is a promising indicator of

the possibility for the creation of a brain-like hierarchy of distinct functional regions within

a single network where the functional connectivity of the network itself is both dynamic and
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Figure 4.5: Distributed Memory Storage from Network-scale Switching (a) The device oper-

ates as a 2-bit non-volatile memory device. The resistance states across two channels (i-iii

and ii-iv) are monitored. ON/OFF switching of each channel is induced using super-thresh-

old pulses (3V, 1s in duration); the threshold voltages for each channel are ∼1.5 V. The

resistances are measured every 5s with a sub-threshold 200mV, 100ms pulses. (b) Although

the device operates with a four state output (both channels ON, 1 ON/1 OFF, etc), the net-

work’s internal configurations show diverse correlated patterns, from no correlation (blue) to

total correlation (yellow). The figure shows correlation coefficients of channel resistances for

all 6 pairwise electrode combinations. The correlation coefficients are calculated during each

of the 4 network switching configurations; the black and red bars (insets) show the channels

that are ON in the switching state.

self-organized [BWP11].

4.3 Discussion

Using a simple, two-step fabrication procedure combining top-down and bottom-up fabrica-

tion techniques, we have created functional neuromorphic devices based on a self-assembled,

complex network architecture. We describe these atomic switch networks as neuromorphic

not only in that the massively interconnected, dendritic features observed in biological neu-
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ral networks inspired the device architecture, but also due to several important network

scale properties reported here. The devices demonstrate weak and strong memristive be-

haviors, as well as higher harmonic generation, confirming theoretical predictions on current

flow through memristor networks. Previously unreported emergent behaviors specific to the

complex architecture were observed as persistent bidirectional fluctuations of the current

in response to constant applied voltage and the pulse-based feedforward switching ON and

OFF of localized conductance channels within the highly interconnected network. Despite

lacking the brain’s rich assortment of neurotransmitter systems, with distinct excitatory and

inhibitory neurons, the complex network of atomic switches produces multiple behaviors

from a single basic unit through a capacity for localizing function in subnetworks inside a

structure correlated by the nonlinear memory response of individual atomic switches. This

diversity of function indicates the device’s potential as a universal approximator of dynamical

systems [FN93], with possible applications in physically implementing unconventional com-

putational strategies [LJ09] and as an inorganic experimental platform for the investigation

of systems neuroscientific theories of biological brain function.

4.4 Materials and Methods

4.4.1 Substrate fabrication

Electrodes were patterned on the surface of a Si wafer (525µm thickness; p-type; 100mm

diameter; 500nm thermal oxide) by photolithography. A Cr/Pt (15/150nm) bilayer was de-

posited using e-beam evaporation. Subsequently, microfluidic reaction wells were patterned

from a thick layer of SU-8 (approx. 500 µm) deposited by spin coating. The resist was

UV exposed with a dose of 1200 mJ/cm2 followed by a post-exposure bake beginning at

65◦C and ramping up to 95◦C before cooling to room temperature at 1◦C/min. The SU-8

was developed by immersion in PGMEA (Propylene Glycol Methyl Ether Acetate). Fully

developed wafers were rinsed with isopropanol and hard baked at 130◦C on a hotplate in N2

atmosphere to increase SU-8 resistance to high temperatures.
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4.4.2 Network synthesis and functionalization

Electroless deposition of Ag from Cu was performed by pipetting aqueous AgNO3 (Fischer,

99.98%) at concentrations ranging from 0.1-100 mM into microfluidic cells containing Cu

seed posts, leading to a spontaneous reaction between Ag+ and Cu. Optimal conditions

were achieved with Cu posts ranging from 0.25-4 µm in diameter at pitches of 0.5-4 µm re-

acted with 50mM AgNO3, sulfurized at 130◦C for 10 minutes under N2 flow at atmospheric

pressure. The silver networks self-assembled during this processes, and were then functional-

ized by reaction with sulfur (Sigma-Aldrich, 99.5%) in a Pyrex tube. The sulfur was melted

in an evaporation boat at 130◦C and delivered to the substrate by N2 flow.

4.4.3 Measurement apparatus

Electrical characterization of the devices was conducted using four Pt electrodes positioned

around the edges of the Ag network. Current-voltage spectroscopy was conducted using

a bipotentiostat (Pine Instruments model AFCBP1) in conjunction with a DAQ module

(National Instruments USB 6259) at a sample rate of 10 kHz. Measurements were performed

in a two-electrode configuration. Multi-channel resistance measurements were obtained using

a multiplexed (National Instruments PXI 1073) SMU (National Instruments PXI 4130). The

entire I/O system was housed in a Faraday cage and mounted on a vibration isolation table

(TMC). Devices were characterized after each stage of the fabrication cycle. Subsequent data

analyses were carried out using MATLAB 2010b (MathWorks) and Origin 8.1 (OriginLab

Corporation).

4.4.4 Network resistance correlations

The full dataset used in Figure 4.5b contained resistance data from all 6 combinations of

the 4 electrodes in a device (for clarity, only 2 combinations are shown in Figure 4.5a). The

network resistance of each electrode was calculated as the parallel resistances to the other 3

electrodes. The dataset was parsed into the appropriate subsets (A on and B off, etc.) and

the MATLAB function corrcoef() was used to calculate the correlation coefficients for the
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different configurations.

4.5 Supporting Information

Figure 4.6: (a) Initial bias sweeps (±7.5V at1V/s) demonstrate weakly memristive behav-

ior with increasing hysteresis magnitude (70% increase in maximum ON/OFF, from 1.12

to 1.92 after 8 sweeps). (b) Bias sweeps from (a) rescaled to include the hard switching

(ON/OFF ratio of 14.3, 650% increase from maximum weak ON/OFF) phase transition

event at Va ≈ 7.5V .
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Figure 4.7: Operation of a device following the phase transition (activation) exhibiting

typical, robust pinched hysteresis/switching. Shown device parameters: sweep rate =

103V/s(1kHz), RON = 1kω, ROFF > 20kω, Vt = 0.5V .
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CHAPTER 5

A Theoretical and Experimental Study of

Neuromorphic Atomic Switch Networks for Reservoir

Computing

Atomic switch networks (ASN) have been shown to generate network level dynamics that

resemble those observed in biological neural networks. To facilitate understanding and con-

trol of these behaviors, we developed a numerical model based on the synapse-like properties

of individual atomic switches and the random nature of the network wiring. We validate

the model against various experimental results highlighting possibility to functionalize the

network plasticity and the differences between an atomic switch in isolation and its behaviors

in a network. The effects of changing connectivity density on the nonlinear dynamics are

examined as characterized by higher harmonic generation (HHG) in response to AC inputs.

To demonstrate their utility for computation, we subjected the simulated network to training

within the framework of Reservoir Computing (RC) and show initial evidence of the ASN

acting as a reservoir which may be optimized for specific tasks by adjusting the input gain.

The work presented represents steps in a unified approach of experimentation and theory of

complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

5.1 Introduction

Synapses play an essential role in cognitive function. Brain activity is characterized by

spatio-temporal varying electrical signals travelling through a vast interconnected recurrent

network of neurons, where the synapses mediate signaling. Until recently, research has tended
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to focus on an approach which promulgates that advances beyond complementary metal-

oxide semiconductors (“beyond-CMOS”) computation [nan11] may be achieved by fabricat-

ing electronic elements which recreate the fundamental behaviors of neurons and synapses

[Mea90, MD91]. Accordingly, new generations of synthetic synapses have been demon-

strated or modeled which display short- and long-term potentiation/depression (STP, LTP

and LTD respectively), spike timing dependent plasticity, and other neuroscientific phenom-

ena [ILH11b, JKZ13]. These devices have been incorporated into hybrid-CMOS/molecular

CMOS [JKZ13, LS05] circuitry with the aim to recreate synaptic spiking patterns typi-

cally realized with crossbar array geometries for optimized memory storage [BLS09, XRC09,

ZAD10, CJK11, KRL11, SKJ11, CYS12, KGW11, KJY12]. The architecture of the arrays is

designed to address each functional element individually and sequentially in a programmed

fashion, essentially precluding the elements to interact within a network. However, actual

complex systems exploit the non-trivial effects of interconnectivity [Sim62, Str01] that allow

individual units to function in synchrony over multiple spatial and temporal scales resulting

in self-organized patterns of activity [BP03, LHG07, MM09, Chi10, SYY11]. Consequentially,

emergent phenomena are distributed throughout the entire system and cannot be associated

with any particular node or local group [Jen98, SCK04, BM09]. In the brain, modification

of these intricate networks is believed to form the basis of memory, motor pathways, and

cognition [Heb49, FBH03, CMS04, KPB05].

Through a combination of top-down and bottom-up fabrication techniques, highly in-

terconnected wire networks containing synaptic functional units have been fabricated and

studied [ASM12, SAS12]. These atomic switch networks (ASN), composed of more than 109

individual inorganic synapses/cm2 [HOT10, OHT11, YTL12], i.e. atomic switches [THN05],

represent a unique class of physical devices capable of exhibiting synapse-like properties in

neurally-inspired architectures. Interfacing functionalized networks with multielectrode ar-

rays offers the ability to harness intrinsic system dynamics through input and read out of

real-time electrical signals at various spatiotemporal scales toward practical implementation

of neuromorphic computation [ASM12, SAS12]. ASNs retain the adaptive plasticity and

memory of their component atomic switches while exhibiting emergent properties such as
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criticality and spontaneous switching between discrete metastable resistance states.

Most attempts to mimic the brain’s function use simulated neural networks. Recurrent

neural networks consist of nodes, each with an adjustable connective weight, and allow

signals to propagate forwards and backwards through the network [HT85]. Such structure

allows information to be integrated at different time points, enabling online training. The

main drawback of recurrent networks remains the difficulty of adjusting individual connective

weights, which results in an inability to efficiently differentiate inputs or adapt to increasing

noise levels in the environment [Jae02]. The computational degrees of freedom are also too

vast to permit convergence in a reasonable time.

Recently, Reservoir Computing (RC) was developed to overcome these issues, while re-

taining biologically relevant features such as feedforward and recurrent structures [Jae01,

MNM02, SVV07, VSd07, LJ09, BSL10]. RC is achieved through a two-step process. First,

time varying input data is introduced to a fixed weight recurrent network or “reservoir”, in

which the nonlinear action of nodes produces higher dimensional representations of the input

data. This transformation permits the second step, where the new representations are read

out through a feedforward network or “linear readout”. Information that was not initially

linearly separable can then be processed through simple linear regression techniques in the

feedforward layer. Consequently, RC can perform complicated classifications in real time,

and enables generalization of learned tasks. Currently, RC is the most effective technique

available for certain tasks and has been realized in a variety of physical implementations as

proof-of-concept [FS03, SMS04, PDS12].

Atomic switch networks (ASNs) were proposed as well-suited to RC, because they con-

tain a physically recurrent network of nonlinear elements which are amenable to serve as

a reservoir while also exhibiting feedforward properties useful for the output layer [SAS12].

Atomic switch networks also possess a readily scalable architecture, multiple spatio-temporal

outputs, and synaptic non-linear elements displaying critical dynamics. Consequently, ASNs

are potential embodiments for enabling neuromorphic computational theories and represent

physical neuromorphic devices that have a direct connection with neuroscience.
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Understanding and harnessing the rich dynamics found in complex networks comprised of

coupled nonlinear elements is challenging. In particular, practical engineering goals are based

on stimulus-response relationships governed by internal system reorganization with minimal

fine-tuning at the microscopic level. Here we present a numerical model of ASNs which

illustrates key aspects of the spatial and temporal dynamics of the system, and investigates

their utility in the context of RC. Our simulation was built from the physical ASN devices:

the design and implementation was based on the well-documented physics of single synaptic

switches, and the connectivity was modeled on the known network architectures determined

from SEM images. The goal of the simulation was to deepen our understanding of network

function, optimize network design and explore the applicability of device architectures for

neuromorphic computational tasks.

First, we validated the accuracy of the simulation by reproducing data from the devices

such as controlled interconnect plasticity and emergent behavior despite the simulation’s

much smaller network size. Second, we show that fluctuations in a simulated isolated sin-

gle link are distinctly different from those of an identical link within the network. This

highlights the role of the network where synaptic elements behave differently as a result

of interconnectivity. The simulation was also found to show emergent properties that are

impossible to measure in a single device. Third, we show that higher harmonic generation

reported experimentally [ASM12] and theoretically predicted [CPD12, OS11], can be mod-

eled and utilized for reservoir computing. We finally discuss the potential impact of ASNs

as a unique physical embodiment that is capable of integrating neuromorphic architecture,

dynamics, and computation.

5.2 Methods

5.2.1 Network devices

The ASNs were grown using self-assembly of a rhizomic-dendritic network of highly inter-

connected silver (Ag) nanowires which were sulfurized to provide distributed nanojunctions
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comprised of inorganic synthetic synapses. ASNs were interfaced to input-output electrodes

fabricated using conventional micro-lithographic processing to create a functional device

[ASM12, SAS12] (Figure 5.1a). Electrodes were fabricated by electron beam evaporation

following photolithography on the surface of a p-type Si wafer (boron doped, 0-100 Ωcm−1)

insulated by a 500 nm thick thermal oxide layer. Deposition of 4 to 16 Cr/Pt (15/150 nm)

electrodes with diameters of 10 to 50 µm at pitches between 50 and 500 µm was followed

by spin-coating and patterning of an insulating layer of SU-8 deep UV resist, which served

to expose only point contact regions of the electrodes. Micron diameter cylindrical copper

seeds were then deposited at areal densities between 1 ∗ 106 and 2.5 ∗ 107 seed sites/cm2 for

the electroless deposition (also referred to as galvanic displacement or cementation) of Ag

from Cu on the SU-8 layer. Electroless deposition was performed under diffusion-limited

conditions using 50 mM aqueous solutions of AgNO3 [KAM94]. This spontaneous electro-

chemical reaction produced complex networks of metallic silver nanowires shown in Figure

5.1b. Previous studies have shown that the geometry and spacing of pre-patterned Cu posts

provides control over the global qualities of the network generating structures ranging from

extended nanowires to dendrites and fractals [SB93, AMS13]. The pitch of the Cu posts

was found to determine the relative density of the network (Figure 5.1c, d) while seed size

was used to control the presence of long-range connections. Typically, smaller Cu seeds

(< 3.5µm) produce many long wires and larger seeds (> 3.5µm) produce spatially confined

dendritic or fractal structures.

The self-assembled silver networks intrinsically contain crossbar-like junctions resulting

from the three-dimensional nature of the solution deposition process. Upon exposure to sul-

fur gas [KTH06] (10−1 torr at 130◦C for 3 min), the Ag nanowire junctions are functionalized

to form thin Ag—Ag2S—Ag metal-insulator-metal interfaces which, in the presence of post-

processing activation with external bias potential, are transformed into “atomic switches”.

Electrical characterization of the devices was conducted through current-voltage (I-V) spec-

troscopy using a bipotentiostat (Pine Instruments model AFCBP1) in conjunction with

either a data acquisition module (National Instruments USB 6259) or a multiplexed (Na-

tional Instruments PXI 1073) source-measurement unit (National Instruments PXI 4130).
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Figure 5.1: a) Atomic switch network devices were fabricated on a SiO2 substrate with 16 Pt

electrodes and an insulating SU-8 layer. Devices are approximately 4 cm2. b) Resultant Ag

wires vary in size (< 100 nm to > 1 mm) and create self-assembled networks with complex

interconnections (109 cm−2). Electrodes shown have 10 µm diameter and 50 µm pitch, and

range up to 50 µm diameter with 500 µm pitch. c-d) The density of interconnections can

be changed by altering the size/pitch of the Cu posts shown c) 1 µm/5 µm d) 1 µm/1 µm.

Scale bars = 10 µm.
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The maximum bandwidth of the measurement systems is 1 MHz and 10 kHz enabling 2 Ms

and 20 ks per second with 16-bit resolution. Subsequent data analyses were carried out using

MATLAB 2010b (MathWorks) and Origin 8.1 (OriginLab Corporation).

5.2.2 Network model and simulation

Simulation efforts employed previously reported physical properties of atomic switches com-

posed of an Ag—Ag2S—Ag interface, shown schematically in Figure 5.2, that exhibit both

volatile and non-volatile memory properties as well as multi-state switching [HOT10, OHT11,

THN05]. Atomic switches are known to operate through two mechanisms: (i) forma-

tion/dissolution of conductive filaments, and (ii) a phase transition between monoclinic

acanthite (α) and body centered cubic argentite (β) Ag2S. Application of a bias voltage

across the junction induces the formation of nanoscale conducting channels across the Ag2S

interface through a bias-catalyzed phase transition, converting the surrounding α-Ag2S ma-

trix to a conductive and β-Ag2S phase which exhibits high ionic mobility as illustrated by

TEM-electron diffraction studies [XBW10]. In the absence of continued applied bias, the

conductive channels eventually return to their stoichiometric, thermodynamically favored

equilibrium state, which reverts the atomic switch to its initial high resistance. This transi-

tion gives rise to a weakly memristive behavior prior to the formation of Ag filaments across

the interface.

Continued application of bias voltage results in a concurrent increase in current through

the device, which then further drives migration of silver cations toward the cathode. At the

cathode mobile silver cations are subsequently reduced to Ag0, forming a highly conductive

Ag nanofilamentary wire. The completion of this filament results in a strong transition to

an ON state with a dramatic increase in conductivity [XBW10]. Removal of the applied bias

results in filament dissolution as the device again returns its thermodynamic equilibrium

state. The completion and dissolution of this filament characterizes strongly memristive

behavior. Continuous application of a bias voltage serves to increase filament thickness

as additional silver cations are reduced, causing thickening of the metallic filament. This
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Figure 5.2: Atomic switches are comprised of a Ag—Ag2S—Ag junction. Applied electrical

bias causes Ag cation migration to the cathode where it is reduced, forming a stable metallic

filament, resulting in resistance change. This migration is modeled by the filament length

w(t), Ag cation mobility µv, and additional stochastic terms.

dynamic process has been shown to alter the dissolution time constant, and can be externally

controlled by changing the input bias pattern (e.g. pulse frequency). Such changes in

volatility can be interpreted as long-term or short-term potentiation (LTP and STP) [HOT10,

OHT11].

Using a similar construction, a recent report simulated a nearest neighbor grid of resistors

and memristors [OS11]. Here, the memristive equations were augmented with new terms that

reflect the known properties intrinsic to Ag—Ag2S—Ag atomic switches as well as network

effects. The state variable of the memristive elements was chosen to be the length of the Ag

filament, represented as w(t) ∈ [0, w0], where the junctions’ gap sizes, w0, were randomized

with a mean of 5 nm according to known values [HOT10, OHT11, THN05]. The voltage

across each atomic switch junction is given by:

V (t) = [Ron
w(t)

w0

+Roff (1−
w(t)

w0

)] I(t) (5.1)

where Ron and Roff represent the resistance values for the ON/OFF states and I(t) the

current across the atomic switch junction. The rate of change in filament length was modeled

according to:
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dw(t)

dt
= [µv

Ron

w0

I(t)]Ω− τ [w(t)− w0] + η(t) (5.2)

where µv signifies the ionic mobility [Chu71, SSS08]. The window function, given by:

Ω = [
w(t)(w0 − w(t))

w2
0

] (5.3)

was included in (2) to incorporate the behavior of elements with state variables at the

extreme limits due to ionic drift [OS11, SSS08]. The term [µv
Ron

w0
I(t)]Ω provided the de-

pendence of filament growth rate on the electronic flux, while τ [w(t) − w0] operated as a

dissolution term that served to return the filament length to its original value w0 due to

the thermodynamic stability of the high resistance state. Although the dissolution rate con-

stant τ has not been extensively investigated in the network setting, a numerical survey over

three orders of magnitude (1to1000s−1) determined the value that best reproduced the prior

experimental results for the size of the simulated network. Lastly, a stochastic term η(t)

accounted for fluctuations in the density of available silver ions and the stochastic nature of

the filament formation/dissolution process in physical ASNs. This term, defined by:

η(t) = α(t)∆w(t) (5.4)

governed the growth rate of filament sizes, where w(t) represented the change in filament

length at time t reflecting the amount of electric flux through the switch junction. Here, the

random variable η(t) introduced a noise factor to the term η(t) that was distributed across

the network following a random distribution centered at zero with a standard deviation σa.

The probability distributions for both w0 and α were examined using simulated network

sizes ranging from 3x3 to 10x10 arrays with varying degrees of connectivity densities.

Finally, the connectivity in the simulation was modeled after the known interconnectivity

of ASNs [SAS12]. Physical networks are grown from copper seeds spatially distributed on

the substrate, which serve as nucleation sites for the electroless deposition of silver metal

under diffusion-limited conditions [AMS13]. This directed self-assembly process generates
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networks with a large distribution of wire lengths, characterized by SEM in the range of

100 nm to over 1 mm. The network contains elements of a nearest neighbor network, since

the wires are likely to connect to those grown from nearby copper seeds (Figure 5.1c-d).

They also exhibit characteristics of a random network as long wires extend across the entire

network, connecting distant nodes, and also connecting many nodes at once (Figure 5.1b).

Connectivity in the simulation was created by starting with a square lattice of nodes

mimicking the copper posts in the hardware design. Links connecting nearest neighbors as

well as distant nodes were then assigned randomly with the total number of connections

ranging from N=50 to 400. The simulation results reported here represent the typical net-

work response observed with connections reassigned for each run. Finally, the values of

the physical parameters such as ionic mobility, RON/ROFF ratio, and average gap size were

chosen according to experimental literature values as schematically illustrated in Figure 5.2

[HOT10, OHT11, THN05], leaving the only the network size and wiring density as free

parameters. Table 5.1 summarizes the range of the values of the parameters explored to

produce the results in this report.

w0 (nm) µv(m
2s−1V −1) RON/ROFF τ (s−1) α N

Avg: 5 0.5 x 10−12 Avg: 10−1 to 10−3 1 to 103 Avg: 0 50 to 400

σ: 0-40% σ: 0-40% σ: 0-30%

of ∆w(t)

Table 5.1: Parameters used in the simulation were tested over ranges that are physically

relevant to the Atomic Switch Network system: total gap width w0; ionic mobility µv of

Ag+ in Ag2S; RON/ROFF is the ratio of resistances at w = 0 and w = w0; τ is the filament

dissolution time constant; α modulates the level of noise in the w(t) term with each time

step; and N is the total number of connections.

Network simulations were executed in MATLAB through a graphical user interface (GUI)

that provides control over these parameters in addition to the locations and numbers of

sources/drains, structure of input waveforms, and magnitude of input signals. The GUI also
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provides direct monitoring of simulated I-V statistics as well as the current, power dissipation

and conductivity of each link within the simulated network.

5.3 Results & Discussion

Various studies were carried out under conditions similar to the physical implementations in

order to compare the numerical model’s results with prior ASN device experiments [SAS12].

Results from these simulations are examined in the context of network complexity on the ba-

sis of the underlying device physics and their associated emergent properties. The simulation

was then used to explore the parameter space of ASNs, establishing a systematic approach

to optimize network performance in the context of given training schemes and computational

tasks.

5.3.1 Device activation

Robust, hysteretic switching in ASN devices requires device activation by a symmetric trian-

gle wave ramp applied across the network. As net flux through the network increased, con-

nections became increasingly polarized and conductive, resulting different behavioral regimes

(insets of Figure 5.3a-c). A lack of completed metal filaments characterizes the initial state

in Figure 5.3a (inset) as the “soft switching” regime. Continued sweeping causes the forma-

tion of a continuously conductive path across the network, with intermediate connections

operating in a higher conductance state. This transition is observed as a dramatic change in

conductance, shown in the inset of Figure 5.3b, where network response changes from soft

to “hard switching” as the fraction of strongly memristive elements increases past the per-

colation threshold [SAS12]. Continuous sweeping of the applied bias is known to encourage

thickening and stabilization of as-formed nanofilaments [HOT10, OHT11, THN05], produc-

ing behavior that is robust to fluctuations in silver ion deposition/dissolution (Figure 5.3c

inset). As a result, there is an increased likelihood for an element in the network to operate

in the strongly memristive regime.

To reproduce this activation process, the simulation included the effects of filament sta-

58



bility on network response by tuning the distribution of noise factor α(t) while holding input

bias amplitude and frequency constant. A high noise level (σα > 7) was found to inhibit

stable transitions, or w(t) from crossing the interfacial barrier in the window function, which

enforced the soft switching state (Figure 5.3a). Lowering σα enables w(t) to increase past the

barrier without interruption, inducing the transition from soft to hard switching at the net-

work level (Figure 5.3b-c). Consequently, the noise level serves as a control parameter for the

number of strongly memristive elements and the soft/hard switching behavior, supporting

the conjecture on the mechanism behind the different switching behaviors.

Selecting the appropriate strength of the stochastic term enabled the ASN simulation

to agree qualitatively with the experimental memristive behavior. While simulation and

experiment show a quantitative difference in the hard switching regime (Figure 5.3c and

inset), specifically in the rate of change between the high and low resistance states, stronger

agreement with respect to RON/ROFF ratio and the rate of resistance state change (Fig-

ure 5.6b) was observed in a more densely connected simulated network. To elucidate the

underlying dynamics of the activation process, internal conductance maps of a sparse net-

work reveal the conductive pathways responsible for maximum current flow when operating

in the soft switching, transitional, and hard switching states. A single, dominant pathway

emerged at the transitional state and was destroyed in the subsequent input bias sweeps

that drove the network into the hard switching state. Further examination of functional

connectivity over the entire activation process enabled identification of equivalent regions

of network conductance for the transitional and hard switching states. In particular, the

network followed different trajectories to achieve values of maximum conductance, whereby

network conductance was increasingly distributed in nature for the hard switching case.

In the results described below, both w0 and α(t) were sampled from Gaussian distribu-

tions. Parameters of the distribution of w0 were selected to reproduce the experimental I-V

curves by matching the bias voltage used in the simulation to our experiment.
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Figure 5.3: Simulation of device activation using a 10x10 network with N=126, average

Ron/Roff = 10−2 and τ = 10s−1 under a triangle wave input bias of ±2V at 10 Hz demon-

strating a) an initial soft switching (σα = 10%) repeated indefinitely until b) a transition in

behavior from soft (blue, σα = 10%) to hard (red, σα = 0%) switching. c) Hard switching

persists indefinitely with σα = 10%. This behavior was ubiquitous across all configurations

with discrepancies in the bias amplitude/frequency. Experimental device activation curves

shown as insets for comparison.
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5.3.2 Recurrent structure

Physically implemented ASNs are observed to exhibit non-equilibrium dynamics under ap-

plied DC bias [SAS12]. These network fluctuations are attributed to two primary mecha-

nisms: (i) external bias causes silver ion migration toward the cathode where they are re-

duced to form metallic filaments, in opposition to the stochastic, thermodynamically driven

return to equilibrium and (ii) fluctuations in local resistance within the highly recurrent

network can trigger cascading resistance changes elsewhere in the system. The behavior

can be likened to neuronal avalanches observed in multielectrode array studies of neuronal

cultures [BP03, SAS12]. In a single isolated link (Figure 5.4a), the stochastic term η(t)

results in the generation of white noise in the current output. In contrast, when embed-

ded within a recurrent network single links displayed 1/fγ power law scaling. This clear

difference in characteristics shows the role of connectivity in a network. Each link in the

network receives voltage inputs from many locations in the system and integrates which in

turn modifies the link’s instantaneous resistance. This behavior facilitates the emergence of

spatially correlated structures in local network activity. The recurrent structure also enables

the integration of signals originating at different points in time, giving rise to non-trivial

correlations in the temporal domain as indicated by 1/fγ power law scaling with 0 < γ < 2

in the power spectral density (Figure 5.4). The current passing across the ASN in both

simulation and physical measurements also displays 1/fγ in the power spectrum (Figure

5.4b) [Kes82]. Although challenging to characterize in physical devices, the simulation data

provides insight to both spatial correlation and phase synchrony for experiment.
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Figure 5.4: Comparisons of the power spectrum of a simulated 10x10 network N=332, average

Ron/Roff = 10−2, τ = 10s−1, σα = 2.5% (blue) with a) a simulation of a single isolated

atomic switch with identical parameters. The isolated atomic switch (red) shows a power

spectrum dominated by white noise in contrast with a single element in network (blue) show

1/fγ power law scaling, and b) that of a network device (black) that shows 1/fγ power law

scaling with γ = 1.87 (simulation) and 1.78 (device).
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5.3.3 Feedforward subassemblies

Network plasticity was investigated as a mechanism for the formation of feedforward path-

ways within ASNs, although they have an inherently recurrent architecture. Previous studies

on physical ASNs have demonstrated their functionality as a two-bit memory storage device

with spatially controlled, independent switching channels using pulsed electrical stimulation

[SAS12]. This experimental result, which used macroscopic electrodes in contact with a large

area of the network to apply bias voltage stimulation, was also successfully simulated as il-

lustrated in Figure 5.5. To comply with the experimental setup, a 10x10 network simulation

was partitioned such that in each corner, a 4x4 block of nodes served the same purpose as

a physical device electrode. A channel was defined by selection of one block as the source

and another as the drain for application of an input bias voltage, with 4 blocks allowing for

6 possible channels. As shown in Figure 5.5, suprathreshold training pulses applied across

2 channels altered their respective conductances independently, even though the pathways

were physically overlapping. By monitoring simulated connectivity maps of the other 4

conductance channels during this process, dynamical reconfigurations of the network con-

nectivity were observed. Thus, nonvolatile memory write/rewrite steps occur concurrently

with nontrivial changes elsewhere in the network. Different write/rewrite pulse combinations

can store information while simultaneously allowing the network to evolve through new con-

figurations. Investigations of structures and stability of feedforward subassemblies may be

conducted by carrying out random or targeted deletion of links belonging to a given channel

in relation to the strength and duration of the external pulses that induced its formation.

Scaling the network size increases the number of distinguishable network states, allowing for

increased memory storage and diversity of nonlinear interactions.
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Figure 5.5: Spatially overlapping channels A and B can be modified independently by

write/rewrite pulses, emulating the 2-bit switching functionality of actual device behav-

ior (inset). This simulated 10x10 network (N=219, average Ron/Roff = 10−3, σα = 2.5%)

was partitioned with 4 separate 4x4 blocks to serve as electrodes. Spatially defined ON/OFF

switching was induced by applying write/rewrite voltage pulses (15 V, 10 ms duration) across

the channels specified in the figure. Measurements of conductance across all 6 possible chan-

nels were conducted with 1 V read pulses of negligible period.
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5.3.4 Nonlinear network dynamics

Resistive switches have recently attracted attention for higher harmonic generation (HHG),

presented in both single switches and networks [CPD12, OS11]. Experimental atomic switch

networks show HHG to be a function of applied input bias amplitude [SAS12]. Here, numer-

ical simulation was employed to explore HHG by stimulating a network with a sinusoidal

input (10Hz) while varying the input amplitude and network connection density (connectiv-

ity). For each simulated network of a given connectivity, the HHG analysis was performed

on data collected over 10 cycles of the input signal. The network was then reset to the same

initial state for the next level of input amplitude. A sharp rise in the ratio of higher har-

monic amplitudes to the fundamental at a threshold voltage was found in both experiment

and simulation (Figure 5.6a).

The network I-V response curves at increasing levels of input bias amplitude (Figure

5.6b) illustrate the onset of nonlinearity as characterized by HHG in Figure 5.6a-c. As the

voltage increased past the threshold magnitude, the switching behavior moved progressively

toward the hard switching regime. The threshold voltage decreased with increased density

of connections as shown in Figure 5.6c. An increase in connectivity provides more recurrent

substructures in the network and can be related to the nonlinearity in the integration of

electrical responses within the system. The decrease in the magnitude of the threshold

voltage can be attributed to an enhanced nonlinearity in the network dynamics where even at

lower bias voltage levels, the system tends to reside outside of a linear regime. These changes

in the behavior of HHG suggest a way toward quantitative characterization of functional

connectivity within ASNs based on their dynamics. As illustrated in Figure 5.1 and described

elsewhere [AMS13], fabrication conditions for ASNs allow substantial control over the size,

morphology and density of interconnects. Simulations may therefore be used to optimize

physical networks for specific applications.
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Figure 5.6: Higher harmonic generation can be influenced by network connectivity and

input amplitude. Harmonic overtones of several simulated 10x10 networks with average

Ron/Roff = 10−2, σα = 2.5%, and τ = 10s−1. a) The first 3 harmonic overtones of a network

with N=332 showed a threshold voltage for higher harmonic generation. Experimental de-

vice curves shown as an inset for comparison. b) Harmonic generation as a function of input

bias amplitude for a network of intermediate connectivity (N=229). The network I-V char-

acteristics tend towards hard switching behavior and increased higher harmonic generation

as a function of input bias amplitude. c) The sum of the first 3 harmonic overtones of sev-

eral simulated of networks with N=(126, 229, 332) indicated a shift toward lower threshold

voltages with increasing connectivity ascribed to an increasingly complex network.
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5.3.5 Reservoir computing

Higher harmonic generation is potentially of great usefulness in a modern computational

paradigm utilizing recurrent complex networks, called reservoir computing (RC). The ampli-

tude and frequency characteristics of produced higher harmonics may be used to quantita-

tively evaluate the efficiency of a reservoir in different dynamical regimes by accounting for

the accessible degrees of freedom in higher dimensional representation space. Using voltage

time traces as outputs, it is shown here that the ASN can effectively serve as a nonlinear

reservoir capable of performing the waveform generation task (Figure 5.7) considered as a

prerequisite to perform reservoir computing [Jae02].

Maximizing the number of output signals is advantageous in the context of RC training.

Each network node was therefore chosen to serve as an output electrode. By subjecting

the network to a sinusoidal input at one corner electrode in the form of an input bias

voltage, multiple waveforms including triangle, square and frequency doubling sinusoidal

waveforms were constructed through superposition of voltage outputs at each electrode in

the simulation. The generated waveform rq (q = 1, 2, 3) was then a weighted sum of the

voltage outputs from the electrodes with the weights W i
q calculated by linear regression:

rq =
∑m

i=1W
i
q Vi, q = 1, 2, 3 (5)

where Vi are the output electrode voltages. Reservoir performance was assessed by the

quality of waveform generation and compared across networks with different parameters by

calculating the mean square error (MSE), which quantifies the differences between the target

and the generated waveforms:

MSE =
∑p

n=1(ytarget(tn)−
∑m

i=1W
iVi(tn)2)

P
(6)

where y is the target waveform. W i represent the weight coefficients to be trained with

maximum number of outputs (m = 16) at discrete time indices (tn) over a total length (P)

from n = 1 to 9000. To see whether the diverse dynamical regimes of ASN may affect the

efficiency of RC training, the input gain was varied to access the different characteristics gen-

erated of the higher harmonics. The weights were calculated independently using the output

responses from the network at each input voltage amplitude. As the magnitude of the applied
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Figure 5.7: a) Schematic of network simulation used in the waveform generation RC task,

with specific electrodes chosen as inputs/outputs (16 output electrodes). RC was imple-

mented using a 10x10 network (N=126, σα = 2.5%) with a 5 V, 10 Hz sinusoidal input

signal and tasked to produce 10 Hz triangle/square and 20 Hz sinusoidal waveforms. b)

Mean-squared error (MSE) for each task with respect to driving amplitude showed minimal

error in triangle/square waveform generation task at 10 V, corresponding to the onset of

higher harmonic generation (see red curve of Figure 5.6b). Performance in the 20 Hz sinu-

soidal waveform generation task decreased when c) the relative amplitude of the average 2nd

harmonic intensities of the readouts becomes increasingly diminutive. These results corre-

spond to a strong dependence on the 2nd harmonic for 20 Hz sine generation and the need

for HHG in triangle/square generation as expected by Fourier analysis.
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input voltage was increased, an abrupt onset of HHG (Section 3.4) was observed to influence

the associated error for the waveform generation tasks. Specifically, the ratio of the second to

higher harmonics (calculated with unweighted average of network outputs) dropped rapidly

with increasing voltage (≈ 8V ) as seen in Figure 5.7c. This bias-dependent reduction in

second harmonic amplitude was found to correlate directly with the critical voltage where

MSE increased dramatically in the task of generating a sine wave exhibiting frequency dou-

bling of the input signal. As the 2nd harmonic becomes less pronounced compared to the

higher harmonics it becomes more difficult to isolate in a linear combination of the output

signals through linear regression. In contrast, an increased ratio of higher harmonics to the

second harmonics resulted in better performance for the generation of waveforms containing

higher harmonic components such as square and triangular waveform. While HHG is not

a universal parameter designed to indicate increased computational performances, it does

faithfully explain computational performances on specific RC tasks.

The results clearly demonstrate that an ASN can be used as a pattern-generating kernel

in RC where it can be optimized by adjusting input gain and network connectivity. Training

ASNs to carry out more complex tasks requiring multiple, simultaneous inputs/outputs as

well as real-time feedback are currently under investigation [SVV07].

5.4 Conclusions & Outlook

Numerical modeling of atomic switch networks is essential for understanding the experimen-

tally observed emergent phenomena, and the microscopic degrees of freedom for synaptic

elements. A valid numerical simulation offers a controllable, convenient platform from which

to study specific aspects of the device functionality, and permits identification of control

parameters for network level behaviors as well as system optimization. By extracting the

relevant dynamical components of the network, our model can be expanded to understand

the functionalities of ASNs with respect to a larger theoretical framework.

The simulation, incorporating network stochasticity and filament dissolution into its state

equation, shows ASNs as devices capable of forming feedforward subassemblies that utilize
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network plasticity. Simulation results also reveal the networks’ nonlinear integration of local

electrical responses. Specifically, individual atomic switch elements show changes in their

power spectral density when embedded in a network, while HHG emerges in the ASN with

external bias and connectivity as control parameters.

Our simulation results support the feasibility of utilizing nonlinear dynamics without

needing to control or “train” the connections in the reservoir, and have indicated how to

best optimize physical device parameters to maximize RC efficiency for a given task. Future

efforts will focus on implementing benchmark tasks in RC in both simulation and hardware

to quantitatively assess the kernel quality and generalization rank [SVV07] in relation to

the changing parameters as compared to other software and hardware reservoirs. Note that

the plasticity intrinsic to the ASN makes it a dynamical reservoir, which show improved

function for some RC tasks [LPT09]. The dynamics of these devices during the training

period may be further characterized by calculating the Lyapunov exponent and used to

elicit the connections to increased computational power at the edge of chaos [Lan90].

The results presented here also demonstrate the value of using synaptic elements within

a biologically inspired connective architecture. Substantial efforts have been undertaken to

characterize and comprehend the dynamical hierarchy of a functioning complex system such

as the brain [KPB05, Fri08, MLF09, GS10]. The existence of a readily scalable, physical

device exhibiting many of the same dynamics as biological neural assemblies underscores

its potential as a tool to study complexity. The greatest potential of ASNs lies not only

in the versatility of hardware design but also in their scalability. A strategy which scales

up the hierarchical dimension, combined with insights obtained by actual learning and task

performance through RC could generate valuable new computational devices.
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CHAPTER 6

Emergent Criticality in Complex Turing B-Type

Atomic Switch Networks

Recent advances in the neuromorphic operation of atomic switches as individual synapse-like

devices demonstrate the ability to process information with both short-term and long-term

memorization in a single two terminal junction. Here it is shown that atomic switches

can be self-assembled within a highly interconnected network of silver nanowires similar in

structure to Turing’s “B-Type unorganized machine”, originally proposed as a randomly

connected network of NAND logic gates. In these experimental embodiments, complex net-

works of coupled atomic switches exhibit emergent criticality similar in nature to previously

reported electrical activity of biological brains and neuron assemblies. Rapid fluctuations

in electrical conductance display metastability and power law scaling of temporal correla-

tion lengths that are attributed to dynamic reorganization of the interconnected electroionic

network resulting from induced non-equilibrium thermodynamic instabilities. These collec-

tive properties indicate a potential utility for real-time, multi-input processing of distributed

sensory data through reservoir computation. We propose these highly coupled, nonlinear

electronic networks as an implementable hardware-based platform toward the creation of

physically intelligent machines.

6.1 Introduction

Modern state-of-the-art computers are the product of over half a century spent refining im-

plementations of Turing’s automatic machine (TAM)[Tur50] using Von Neumann’s computa-

tional architecture[Neu88]. The TAM is the principal theoretical framework for computation
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using sequential logical operations on single-purpose hardware consisting of an infinite tape

of symbols, a read/write head, and a control mechanism that acts based on a transition table

or instruction sheet. Von Neumann’s introduction of the concept of memory into the com-

puter architecture provided a blueprint for the physical realization of multi-functional TAM

machines that utilize multiple stored programs via two main functional units - processors

and memory. This flexible control mechanism made the TAM truly universal in its capacity

to complete any algorithmically defined task.

The von Neumann architecture has the principle advantage of clarity from the engineer-

ing perspective. Reduction in the physical size and increased areal density of electronic

components directly scales up performance in terms of increased bytes of storage and pro-

cessor cycles per second. The extension of this trend toward biologically inspired or ar-

tificially intelligent computation has resulted in attempts to simulate every neuron in the

mammalian cortex and to outperform human experts in games of strategy[AES09, CHH02].

These achievements, while impressive, are not readily scalable due to the basic constraints

of the CMOS architecture, its associated methods of fabrication, and the limits of its op-

erational mechanism [HBT11]. Further, the requisite passage of program instructions and

data between processor and memory has evolved as a speed-limiting step known as the “von

Neumann bottleneck” (vNB)[Bac78] (Figure 6.1a), which results in idle processor cycles and

power dissipation as information is simply being transferred, not processed. In combination,

these factors generate a computational architecture that consumes orders of magnitude more

space and energy than intelligent biological systems.

While current state of the art approaches to computation represent tremendous progress

in performance and efficiency versus their historical counterparts, computer scientists have

drawn inspiration from biology in an effort to develop computational strategies that are

able to match the capabilities of biological neural networks (BNN). Remarkably, such con-

cepts were proposed over sixty years ago as Turing’s “B-Type unorganized machine”[Tur92]

(TBTu), and have been subsequently popularized by Rosenblatt’s perceptron, recurrent neu-

ral networks, and reservoir computing [Ros58, Hop82, AHS85, BM95, MNM02, BN04, VSd07,

LJ09]. These bio-inspired designs are generally associated with the notion of “connection-
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Figure 6.1: Comparison of computation using Turing automatic machines (TAM) and Tur-

ing B-Type unorganized machines (TBTu)/Complex Network Reservoirs (CNR). (a): Con-

ventional TAM computation suffers from the intrinsic von Neumann bottleneck (vNB), as

instructions and data must be shuttled back and forth between memory and processor cores.

(b): TBTu/CNR computation transforms simultaneous input streams into a higher dimen-

sional forms/patters that are converted to intelligible outputs by a linear classifier, which

can be readily trained to detect various categories of CNR behavior. (c) As calculations

proceed sequentially in TAM (yellow figures), new input is delivered to memory (blue and

green figures, respectively). Earlier processes are unable to produce desired output due to

outdated instructions and must idle in the vNB (red figures). Upon the arrival of new in-

structions from memory, calculations can resume and proceed towards the output (green

figure on third floor). (d) In TBTu/CNR computation, inputs combine simultaneously to fill

the waiting elevator. This process is more time consuming (it is a slow elevator!), but upon

arriving at the third floor (output), they have undergone a complex transformation, having

spent time interacting to create a new state of the system.
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ism”. Connectionist theories are based on complex networks composed of simple units,

which, as a whole, produce emergent behavior not found or associated with any particular

unit [Jen98]. What constitutes a “complex system” is difficult to define precisely. However,

extensive studies of complex, real-world networks have revealed the importance of both struc-

tural topology and internal dynamics. Various models of connectivity and interaction have

been shown to accurately describe phenomena ranging from relationships between corporate

directors to the backbone of the Internet[Str01].

To date, artificial realization of connectionist architectures has been limited by the capac-

ity to fabricate robust interconnects between electronic components in a cost-efficient man-

ner, especially in designs utilizing unconventional topologies. Recent advances in nanoscale

science and technology have enabled the direct self-assembly and integration of functional cir-

cuit elements within the wiring scheme of nanoscale devices with the unique architectures[RJB96,

JGA00, TVH02, LMM03, ASM12]. Here, we utilize these concepts to construct a densely

interconnected network of synapse-like circuit elements, atomic switches, using bottom up

self-assembly. We find that this system demonstrates synaptic properties as well as some

of the emergent behaviors commonly observed in biological neural networks[BP03, LHG07,

MMK10, Wer07, HB05]. These complex atomic switch networks provide as a promising new

direction for the development of functional TBTu-inspired neuromorphic computing devices,

with specific implications toward physically implementable reservoir computation.

6.2 Computational Models

Building upon decades of inspired research based in the TAM/von Neumann computational

paradigm, modern processors routinely include multiple cores and large memory caches to

maximize efficiency by parallelizing computations and reducing memory access times. In ad-

dition to physical limitations on component size and the vNB, leakage currents through gate

dielectrics, programming challenges in parallel processing, and intolerance to faulty elements

have begun to impact operational performance. These obstacles provide strong motivation to

develop and implement alternative computational strategies. To this end, numerous theories
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and proposals have been put forth toward biologically inspired, neuromorphic computing

devices[Mea90].

Biological neural networks utilize self-configuring, hardware-based architectures capable

of dynamic topological alteration and function without the need for pre-programming or an

underlying software algorithm. These intrinsically nonlinear, complex systems demonstrate

extraordinarily efficient transmission of information and emergent behaviors commonly as-

sociated with intelligence such as associative memory, learning, and predictive capacity in

non-deterministic environments. Once such theoretical construct, the TBTu, was conceived

of as a randomly interconnected network of nothing more than modifiable NAND logic gates.

Since NAND gates may be combined to perform any other logic function, Turing hypothe-

sized that a sufficiently large network could serve as a usable computer, capable of any TAM

operation[Tur50]. Moreover, he showed that its connections and operations could be trained

over time to alter its behavior, in a similar fashion to that of a biological brain.

This concept has been applied in the fields of cognitive modeling and artificial intel-

ligence to form the basis of contemporary research into artificial neural networks (ANN).

These ANNs are typically implemented as software running on conventional TAM systems,

mimicking information processing in natural systems. The earliest ANNs, commonly known

as the “perceptron”, utilized a feed-forward design in which artificial neurons are connected

by modifiable synaptic weights and can “learn” to map input-output relationships accord-

ing to any (mathematical) function[Ros58]. The development of recurrent neural networks

(RNN) enabled the inclusion of adaptive capacities through feedback strategies[Hop82]. The

existence of cyclical connections makes the RNN a dynamical system, capable of sustaining

internal activity in the absence of additional signals, not merely mapping input to output.

However, basic RNN training strategies still involve the direct modification of internal synap-

tic weights implemented abstractly using algorithms inspired by biological neural networks.

In addition, ANNs are generally designed and optimized to perform specific computational

tasks, occasionally utilizing purpose-built hardware for increased functionality. This en-

hanced performance comes at the expense of flexibility, adaptability, and the capacity to

synthesize multiple time-varying input signals or to operate in a non-deterministic fashion
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— all hallmarks of biological neural systems.

Reservoir computation (RC) is a promising extension of RNNs towards more accurately

modeling biological neural networks that has been successfully implemented in various en-

gineering applications[MNM02, BN04, VSd07, LJ09]. Instead of tracking and modifying

individual synaptic weights, the complex network of artificial neurons is treated as a reser-

voir, which is dynamically modified by the input, while retaining some (fading) memory of

previous input signals as well. The complex network reservoir (CNR) acts to map these

lower-dimensional input signals into a higher-dimensional space, represented by patterns in

the state of the system and contains temporal information through integration of the input

history. Poised between simply periodic and wildly unpredictable oscillations, the CNR is

thereby allowed to operate at the edge of chaos[Lan90].

This approach overcomes the challenge of training individual synaptic weights inside

RNNs by not explicitly modifying them at all. Instead, a separate readout/output function

is trained to examine the response of the reservoir, interpreting the spatiotemporal patterns

formed by the collective effect of the input signals and transforming this higher-dimensional

information into the desired output. Through appropriate training, RC methods are ca-

pable of simulating any Turing-type computational machine. Since the reservoir functions

autonomously, a variety of readout functions can be used simultaneously, thereby allowing

the system to carry out multiple computational tasks on the same input stream in real-

time[MNM02, BN04].

While simulation and modeling efforts using traditional computational architectures re-

main the general, near-term focus of reservoir approaches, calls for the development of

hardware-based CNR systems continue to form the basis for inquiry into a new paradigm

of computational methods. Achieving these goals requires the development of physical sys-

tems whose properties mimic those of artificial, simulated reservoirs as well as a means to

harness the power of information rich output patterns they generate. We propose that the

former can be achieved by applying the concept of Turing’s connectionist networks to the

fabrication of complex device architectures comprised of highly interconnected, nonlinear

electronic elements. The latter requirement necessitates a near-infinite set of internal sys-
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tem states capable of receiving/storing information from all parallel input streams as well

as the ability to combine complex, dynamic signals into a single, higher-dimensional output.

This type of behavior principally describes that of a system operating in a critical state, a

property commonly associated with complex networks of nonlinear elements, where the di-

vergence of the system correlation length in both space and time provides all these requisite

characteristics[Jen98, Bak97].

6.3 Complex Device Architectures

The structure and activity of the biological brain is intrinsically complex, comprised of bil-

lions of neurons interacting recurrently through trillions of synaptic interfaces by utilizing

a range of signaling chemicals to produce excitatory and inhibitory changes in electroionic

conductivity. This dynamic, evolving system produces emergent phenomena with which we

are intimately familiar such as consciousness, intelligence, learning, and prediction. The

realization of hardware-based neuromorphic networks requires the ability to fabricate highly

interconnected, complex wiring architectures with integrated circuit elements whose nonlin-

ear properties emulate those of biological neurons and synapses. Fabrication of micro- and

nanoscale devices with complex architectures, especially those with some degree of random

structural topology, is difficult using solely lithographic methods due to challenges in forming

robust intra- and inter-device connections in a cost-efficient manner. However, combining

directed and self-assembly of nanoscale building blocks into functional device components

offers a promising route to creating intricate patterns of nanoscale components. To create

operable devices based on nanoscale architectures, two basic issues must be addressed: which

materials to use and how to pattern them into networks that have some degree of randomness

without negatively affecting their functional characteristics.

Simple metals continue to be the material of choice for wires and interconnects in the

fabrication of electronic devices. The power-law relationship known as Rent’s Rule formalized

the trend between the number of connections in integrated circuit designs and the number of

internal components, such as logic gates, and how these are strongly related to both logical
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Figure 6.2: Fabrication scheme for complex, electronic networks. (a) Schematic of the sub-

strate/device microfabrication through various lithographic techniques. (b) Cu seed posts (1

µm2, 1µm pitch, 300 nm height) deposited onto the substrate by electron beam lithography

react with AgNO3 within a reaction well formed from SU-8 epoxy photoresist, (c) result-

ing in electroless deposition of complex Ag nanowire networks. (d) The network extends

throughout the device well and is electrically probed via macroscopic Pt electrodes.
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capacity and complexity of the interconnect architecture. This relationship infers that the

limits on synthetic complex architectures lies in the cost of fabrication, with specific focus on

interconnect and wiring strategies[LR71, CS00]. Research has shown that biological neural

systems also obey this relationship[BGM10]. Whereas biological networks realize a balance

of cost and complexity through structural self-similarity and hierarchical modularity, ANN

implementations based on TAM/von Neumann architectures remain at the mercy of this

“cost of wiring”. While motivating the creation of bio-inspired devices, Rent’s Rule further

underscores the fact that new methods, differing not only in scale but also in kind, must be

developed to meet these challenges.

Solution phase electrochemistry offers an intriguing approach to the unconventional fab-

rication of complex metallic structures. In particular, the electroless deposition of various

metals through the spontaneous reduction of soluble metal cations is a mature technology

that has been employed extensively in macroscopic plating applications and the manufac-

ture of printed circuit boards (PCBs). In contrast to plating applications, dendritic (fractal)

growth processes have been studied extensively for various reasons[WS81, KA95, MSU97].

Unwanted, spontaneous growth of dendritic metal protrusions through insulating layers has

posed an engineering challenge as the resulting electrical shorts lead to device failures. In

a more positive light, interest in these intricate structures generated insightful mechanistic

models, such as diffusion-limited aggregation (DLA), that were tested and confirmed through

comparison of simulated structures to physically produced metallic silver fractals by reducing

controlled concentrations of Ag+ using seed metals such as copper and zinc.

Here, the electroless deposition process has been extended to produce devices with com-

plex architectures possessing both regular and random features by combining top-down

directed patterning of seed materials at the microscale with bottom-up self-assembly of

functional nanomaterials. Lithographic patterns of metallic copper were reacted with di-

lute solutions of silver cations to create complex networks of metallic silver nanostructures

(Figure 6.2). Optimization of this process enabled the controlled production of structures

ranging from extended nanowires to dense fractals, similar to biological neural assemblies

such as axons and dendrites[AMS13]. Spontaneous generation of nanogaps between these
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as-prepared metallic nanostructures has been attributed to ionic depletion in the interfa-

cial regions, due to the DLA growth mechanism. In addition, the formation of nanowire

crossbar-like junctions resulted from the three-dimensional nature of the solution deposition

process. By combining this wiring approach with compatible materials that demonstrate

synaptic properties, we have generated a complex network of randomly distributed, highly

interconnected inorganic synapses.

6.4 Synthetic Synapses

Performing distributed, real-time computation of complex information requires suitable elec-

tronic device elements capable of mimicking salient aspects of biological synapse function

at the relevant physical scales. Recent research has developed a vast catalogue of nonlin-

ear, solid-state electronic elements for use in integrated circuits and solid-state memory. A

class of these, known as resistive switches, has received substantial attention as a synapse-like

element for use in next generation neuromorphic computers. Resistive switches (RS) are two-

terminal circuit elements that are distinguished from simple resistors by nonlinearities in the

relationship between current and voltage across their terminals[WA07]. These nonlinearities

can take various functional forms, from a smooth dependence on the time integral of current

passed through the device, to discontinuous jumps at some threshold value, or combinations

thereof. The resultant nonlinear dynamics can produce behaviors typically associated with

biological neural networks, including long-term potentiation, long-term depression, spike

timing dependent plasticity, and associativity[HOT10, PD10, LZL10, OHT11]. The basic

RS is a nanoscale device composed of a metal-insulator-metal (MIM) junction that can be

fabricated using a variety of materials.

An exciting subset of electroionic RS known as atomic switches exhibit common RS char-

acteristics including pinched I-V hysteresis and large ON/OFF switching ratios as well as

more exotic behaviors such as multistate switching in quantized increments of conductance[THN05].

The distinguishing feature of the atomic switch is its operational mechanism: atomic switches

utilize metal filament formation/annihilation and concurrent bias-catalyzed phase transition
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within a solid-state electrolyte metal-insulator-metal (MIM) interface. One prevalent atomic

switch configuration employs MIM interfaces of silver and silver sulfide (Ag2S). This chalco-

genide undergoes a temperature-dependent and bias-catalyzed transition from the mono-

clinic, semiconducting α-Ag2S phase (acanthite, 2.5 ∗ 10−3Ω−1cm−1) to a body-centered

cubic, metallic β-Ag2S phase (argentite, 1.6 ∗ 103Ω−1cm−1)[XBW10]. The argentite phase

has a remarkably high diffusion coefficient for silver, approximately equal to that of gaseous

silver atoms at an equivalent temperature and density. Under applied external bias, this

formulation operates via redox coupled ion migration of silver ions within the metallic ar-

gentite phase. While some RS are strictly non-volatile, the Ag-Ag2S atomic switch exhibits

nonlinear, time-dependent conductance that has lead to the observation of a number of

fascinating synapse-like properties including short- (volatile) and long- (non-volatile) term

memory[HOT10, OHT11]. Robust operation of these devices at rates up to 1 MHz over 105

cycles further enhances their potential applicability as a synthetic synaptic element.

To date, atomic switches have been primarily fabricated through advanced lithographic

methods in regular, crossbar-type architectures that are promising candidates for nanoscale

memory applications when operated in isolated, single device configurations. However, their

operational characteristics are less well understood when connected in series, parallel, or

directly coupled through their ionically conductive active layer, as would be required to

implement computation in the TBTu/CNR paradigm. Inspired by the exciting synaptic

properties of the Ag—Ag2S—Ag atomic switch configuration and its and material compati-

bility with our scheme for fabricating complex nanowire networks, we have characterized the

properties of interconnected atomic switches as a means to examine their potential applica-

bility as physical implementations of TBTu/CNR-based computation.

6.5 Critical Atomic Switch Networks

Complex networks of coupled nonlinear elements commonly manifest non-trivial spatiotem-

poral evolution through dynamic system reconfigurations[BMA06, DGM08] which enable

enhanced maintenance of system correlations and more effective signal propagation[Str01].
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Such behaviors can be attributed to a system governed by critical dynamics and are cru-

cial to the proposed implementation of hardware-based TBTu/CNR-inspired machines. As

such, we have fabricated and examined the operational characteristics of an electronic device

comprised of a highly interconnected network of interfacial atomic switches wired through

electroless self-assembly. Formation of the complex atomic switch network entailed conver-

sion of as-prepared metallic nanogap and crossbar-like interfaces into metal-insulator-metal

(MIM) junctions (Ag—Ag2S—Ag) through gas phase sulfurization. Due to the nature of the

electroless deposition process and resulting random network topology, a thorough survey of

sulfurization conditions was carried out to optimize the fabrication protocol.

Progressing from isolated, individual synthetic synapses to an assemblage of electro-

ionically coupled units introduces an extensive set of collective interactions potentially ca-

pable of producing emergent behaviors. Spatially distributed atomic switch junctions are

expected to interact through local variations in ionic concentration and electrochemical po-

tential that depend on the combined electrical resistance of the entire network as well as the

configuration, or state, of all other electro-ionically interconnected switches. Furthermore,

given that atomic switch synapses exhibit a conductance decay time constant dependent on

their operational history[OHT11], one can expect their dynamical behaviors to be addition-

ally complex.

To examine these properties, atomic switch networks were investigated by I-V spec-

troscopy. In common with isolated crossbar-type devices, as-fabricated atomic switch net-

works required an initial forming step whereby a sustained, high (≈ 6V) bias would bring

about a large but temporary drop in resistance. While parameters of the forming step varied

from device to device, this requisite step indicates the successful preparation of MIM inter-

faces within the network. After forming, slow voltage sweeps (1 V/s) resulted in pinched

hysteresis curves (Figure 6.3a) with an ON/OFF ratio of 103, further validating the forma-

tion of a functional atomic switch network with behavior analogous to that of a two-terminal

RS device. Repeatable switching was observed over 104 cycles, and was successfully operated

up to a 1 kHz switching rate. Extended periods of device interrogation under no applied

bias resulted in a return to the OFF state, as expected from the operational mechanism
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Figure 6.3: Electrical characteristics of complex nanoelectroionic networks. (a) Experimental

I-V curve demonstrating pinched hysteresis; RON=8 kΩ, ROFF >10 MΩ. (b) Ultrasensitive

IR image of a distributed device conductance under external bias at 300K; electrodes are

outlined in white. (c,e) Representative experimental network current response to a 2V

pulse showing switching between discrete, metastable conductance states. (d,f) Temporal

correlation of metastable states observed during pulsed stimulation demonstrated power law

scaling for probability, P(D), of metastable state duration. Power law scaling existed for

residence time both (d) within a single 10 ms pulse and (f) over 2.5 s during extended

periods of pulsed stimulation.
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of this particular Ag—Ag2S—Ag configuration. Un-sulfurized control devices comprised of

a purely metallic network demonstrated ohmic I-V characteristics at intermediate voltages

(±3V) followed by irreversible breakdown (melting) at high bias.

To rule out the possibility that network activity was simply the result of conductance lo-

calization along a dominant pathway, creating in essence a single large, serial atomic switch,

the device was characterized using ultra-sensitive IR imaging (Figure 6.3b). These results

revealed thermal emission at room temperature from Joule heating throughout the network,

indicating distributed and dynamic power dissipation during operation. Further, the appli-

cation of spatially-defined voltage stimulation enabled controlled activation/deactivation of

specific regions within the network (data not shown). Finally, enhanced overtones in the

device current response were observed[ASM12] as predicted by recently reported modeling

of random resistive switching networks stimulated with a sinusoidal voltage[OS11]. These re-

sults collectively indicate the successful formation of an interconnected network of nonlinear

elements, in this case atomic switches.

Emergent behavior was observed during pulsed voltage stimulation, in analogy to meth-

ods employed in neuroscience to probe cortical cultures. Under typical conditions (2 V, 10 ms

pulses, 10% duty cycle), the current response fluctuated over a wide range of metastable con-

ductance states associated with discrete network configurations (Figure 6.3c-f), as classified

by residence times in a given state ranging from milliseconds (within a single stimulation

pulse) to several seconds (across hundreds of pulses). Specifically, temporal metastabil-

ity was designated for all conductance states whose persistence time exceeded that of the

measurement bandwidth (10 kHz). Observation of both increased and decreased conduc-

tivity during stimulation can be attributed to internal network dynamics, as conductance

of isolated atomic switches only increases in response to sequences of identical stimulation

pulses[HOT10, OHT11, THN05].

Previously unreported current fluctuations of this kind are ascribed to dynamic redis-

tribution of network connectivity caused by actions of both individual switches as well as

electroionic coupling throughout the shared active layer. Specifically, formation of a con-

ducting filament results in localized depletion of silver cations within the solid electrolyte
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and thereby inhibits the formation of filaments at nearby MIM interfaces. Due to the high

diffusion constant of Ag+ in the β-Ag2S, this non-stoichiometric region may extend rela-

tively large distances and induce weak electroionic coupling even between distant switches.

Furthermore, concurrent formation and annihilation of conductive filaments will redistribute

current flow, thereby modifying local electrical potentials across the network. These local

variations sum to produce the observed fluctuations in global network conductance. While

direct mechanistic confirmation of the observed conductance fluctuations would be useful,

the inferred mechanism proposed here provides a rationale for future optimization of the

network architecture.

Critical dynamics are of ultimate importance for applications of TBTu/CNR-based com-

putation. Indicators of criticality typically include power-law scaling of 1/f fluctuations

and temporal metastability. Analysis of the power spectral density of network conductiv-

ity in the activated state revealed 1/f power law scaling over five orders of magnitude with

α ≈ 1.4 (data not shown). Electroionic coupling within the atomic switch network generated

metastable conductance states, which were analyzed for temporal correlations. Comparing

the probability of state duration with its likelihood indicated a power law distribution with

α ≈ 1.8 (Figure 6.3c-f), indicating a diverging temporal correlation length. Observations of

both spatially distributed electroionic activity within the network and the long-term persis-

tence of metastable state residence times alongside short-term, rapid fluctuations between

many available conductance states are strong indicators of critical system dynamics during

intermittent pulse operation. These metastable conductance states represent unique configu-

rations of the network and infer behavior similar to those of spatiotemporal states associated

with neural dynamics and those required by reservoir computation models.

6.6 Outlook and Perspectives

The value of exploring new paradigms in computation cannot be overstated, as the chal-

lenges of moving “beyond CMOS” undoubtedly provide inspiration and motivation for the

next generation of scientists and engineers. Likewise, elucidating the fundamental nature
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of intelligence remains a question for the ages in fields spanning all of human endeavor.

Drawing on a historical perspective of seminal developments in computer science, complex

systems theory and neuroscience, we have set out to propose a hardware-based approach

to neuromorphic computation that aims to harness the power of highly coupled, nonlinear

systems. We feel that the perspectives and results described herein represent a potentially

important link between the requirements for real-time, multi-sensory computation and on-

going advances in neuroscience through a readily addressable physical system with collective

behaviors analogous to those currently observed in biological neural networks.

Research into applications of artificial neural networks toward biologically inspired com-

putation has been greatly facilitated by modern developments in neuroscience. Recent find-

ings have shown biological neural networks to operate in a persistent critical state, a feature

commonly associated with the critical point of a second-order phase transition and power

law scaling of internal system dynamics[KSC09, Chi10]. Under such circumstances, the

system correlation length diverges in both space and time, whereby the influence of past

events decays slowly and physically distinct points within the system are coupled regardless

of the magnitude of separation. Spatiotemporal correlations of this type have been shown to

maximize memory, transmission of information, and adaptability within complex networks,

such that each part of the system is communicating with every other part of the brain,

for every time of its history. A class of critical systems emerge from coupled networks of

nonlinear elements governed by threshold dynamics that relax quickly compared to a slower

external driving force, an arrangement that allows these systems to settle into a range of

correlated metastable states. This model is more than superficially reminiscent of our cur-

rent understanding of neural dynamics, and has been employed in recent forms of advanced

neural network research including, but not limited, to reservoir methods such as liquid state

machines and echo state networks.

To our knowledge, the self-assembled atomic switch network described here represents

a unique implementation of a purpose-built electronic device composed of coupled nonlin-

ear elements that clearly demonstrates critical dynamics. We propose that such a system

provides a robust, flexible, and scalable experimental platform for controlled examinations
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of criticality and its potential applicability in the fields of neuroscience and neuromorphic

computation. Further, the inherent properties of single atomic switches and emergent be-

haviors observed in these complex atomic switch networks indicate a capacity for memory

and learning via temporally correlated, metastable critical states[AH10]. Such an approach

has potential utility for real-time, reservoir computation of multi-domain data systems such

as those used in autonomous locomotion, proximity sensing and global positioning as well

as a wide variety of sensing applications. Technological trends toward the growth of multi-

domain and distributed sensing systems represent the seminal challenge for new forms of

emerging computation in the centenary of Turing’s birth.
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CHAPTER 7

Conclusions

Determining control parameters for complex systems will be an increasingly important task

for scientists working in the 3rd millennium. Previous trends in experimental tool devel-

opment have encouraged focusing on the small, probing into single molecules and beyond,

which has produced an enormous amount of interesting discoveries and technologies. The

perspective of nanotechnology is now encouraging the development of techniques to build up

from the bottom, designing materials and devices with mesoscale structures, fabricated by

leveraging molecular properties to achieve some degree of self-assembly. We are now learning

that, at a practical level, the basic laws governing such physical concepts as fundamental

as transport and chemical transformation can be essentially system-dependent, and differ

according to emergent size scales. This is especially true for dissipative non-equilibrium

systems, which are a major source of the natural pattern formation mechanisms that nan-

otechnology aims to harness.

Now is the time to reckon with nonlinearity. It has been several decades since the rise of

fractals, chaos, and the associated mathematics that seemed poised to extend our modeling

capacity beyond the infinite cylinders and periodic boundary conditions that were necessary

approximations for obtaining analytical solutions. Yet linearization remains the preferred

approach to dealing with complexity, as it allows access to the complete library of computer

math algorithms, maximizing computational performance. However, such simplification,

while completely valid in many realistic contexts, has the basic consequence of flattening the

attractor landscape and smoothing out the chaotic trajectories inherent to nonlinear interac-

tions. By eliminating the possibility of “unexpected” resonant couplings between otherwise

weakly linked parameters, the linearized model loses its capacity to capture complexity and
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provide insight about unexpected behaviors and unforeseen dynamical phase transitions.

True, this is a difficult task. The demonstration of stable memory in threshold neu-

ral networks by Hopfield in 1982 represented a milestone for bio-inspired computing with

a dynamical system. But this actual, tangible achievement required enforcing symmetry in

connection strengths, strongly constraining the system dynamics, allowing only point attrac-

tors. New techniques are being developed to extract information from signals in increasingly

nonspecific ways, trying to determine patterns and structures inside data without necessarily

inputting a model to fit against. Cellular automata have been effectively employed in such

tasks, developing the concept of intrinsic computation to be measured in terms of generic

elements (memory, information production/transfer, logical operations, etc) which can be

used to assess the computational power of dynamical systems, albeit largely restricted to

off-line analysis of collected time series.

There will always be tradeoffs. But the dynamic form of available computing resources—

for example, the recent rise of GPU utility for numerical simulations—means that there is no

“slow-but-steady” incremental road to improving algorithmic performance, as the limiting

constraints themselves are also changing. The tools of inquiry increasingly resemble the

system of interest, which is a good sign to those who believe in the inherently hierarchical

nature of complexity and ubiquity of self-organization towards critical interfaces. It is up to

an emerging class of complex systems scientists to develop intuitions regarding the nature

of control parameters, in both their theoretical and physical forms. It is simple enough to

write down the formalism that functionally defines a control parameter; it is another business

entirely to establish their functional form given all the parameters at work in a real complex

system. This is the basic challenge facing researchers willing to take on complexity, embracing

its essentially elusive and surprising character. Their payoff will be a profound advancement

of understanding—the next quantum leap, as it were—along with the technology developed

from this understanding, which will usefully control complex dynamical systems, that in turn

will enable researches to open new fields of inquiry not yet visible from current perspectives.

As far as the current state of dynamic technology: seen through the lens of working with

ASNs, the principle challenge is to obtain many reliable, simultaneous measurements of the
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complex components. Time multiplexing is unsatisfactory, as it undermines the essential

advantage of using complex dynamic components. However, interference between measure-

ments, distinguishing between external stimulus signals (and their ghosts) and the internal

dynamics of system response, and establishing criteria for characterizing the initial state of

complex systems with inherent history dependence, to provide stable reference points that

can be used to make meaningful comparisons between and aggregations of data from dif-

ferent experiments, are all significant challenges that underscore the famous difficulties in

distinguishing observer from observed in a quantum universe. Some problems, it seems,

manage to propagate quite easily through any hierarchy of size scales, be they extended in

spatial or informational dimensions.

ASNs in particular must be understood in tandem with the measurement systems they

interface with. Being itself a collection of wires hosting electronic flows mediated by time-

dependent resistances, (mem-)capacitances, etc., coupling at electrode interfaces to more

wires leading to semiconductor-based elements such as amplifiers, ADCs, and so on, it seems

necessary to consider the entire ensemble as drawn on a single (complex) circuit diagram.

This is not necessarily true for all dynamic technology development: for example, using non-

linear optics to generate the complex dynamics could reduce the cross-coupling measurement

issues to the points where the optical system is sampled and transduced for processing (as-

suming that this device still requires interfacing with conventional experimental hardware).

ASN-based devices as we have built them truly are a single electronic system, where the

simultaneous voltage measurements of distinct spatial regions within the network are ap-

proximately independent due to the high impedance of the electrode connections. But the

switching activity in the network can produce effective impedance changes of many orders of

magnitude, which can approach a small but significant percentage of the electrode resistance,

and further development of the technology should account for these observer-observed type

of effects in the measurement electronics as well as the ASN. Of course, from an RC per-

spective, this may amount to nothing more than expanding the reservoir, as the quantities

of interest are the digitized time-series outputs, with the additional crosstalk coming out as

just more high-dimensional dynamical richness for the linear classifiers to work on.
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For now, this close connection between ASNs and more static computing devices should

be viewed as a strength. It is a basic and confounding tenet of complex systems research

that it is practically (and sometimes theoretically) impossible to reproduce experimental

initial conditions, modify one parameter, and collect another data point. The systems have

a history, and the parameters are usually multi-dimensional. From this perspective, there

is a happy simplicity to restricting the signals of interest to electrical ones. The study

of complexity is fundamentally interdisciplinary, and sticking with one physical medium

for the device allows electrochemists and electrical engineers to bring their distinct-yet-

connected intuitive understandings of electrical signals together, which is exactly the sort

of synthesis that constitutes progress towards controlling complex systems and developing

dynamic technology.
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