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In many perinatal pharmacoepidemiologic studies, exposure to a medication is classified as “ever exposed”
versus “never exposed” within each trimester or even over the entire pregnancy. This approach is often far from
real-world exposure patterns, may lead to exposure misclassification, and does not to incorporate important
aspects such as dosage, timing of exposure, and treatment duration. Alternative exposure modeling methods can
better summarize complex, individual-level medication use trajectories or time-varying exposures from information
on medication dosage, gestational timing of use, and frequency of use. We provide an overview of commonly
used methods for more refined definitions of real-world exposure to medication use during pregnancy, focusing
on the major strengths and limitations of the techniques, including the potential for method-specific biases.
Unsupervised clustering methods, including k-means clustering, group-based trajectory models, and hierarchical
cluster analysis, are of interest because they enable visual examination of medication use trajectories over time
in pregnancy and complex individual-level exposures, as well as providing insight into comedication and drug-
switching patterns. Analytical techniques for time-varying exposure methods, such as extended Cox models and
Robins’ generalized methods, are useful tools when medication exposure is not static during pregnancy. We
propose that where appropriate, combining unsupervised clustering techniques with causal modeling approaches
may be a powerful approach to understanding medication safety in pregnancy, and this framework can also be
applied in other areas of epidemiology.

clustering methods; confounding factors (epidemiology); Cox models; epidemiologic methods; longitudinal
studies; medication; pregnancy; time-varying exposure methods

Abbreviations: g-formula, generalized computation formula; GBTM, group-based trajectory modeling; HCA, hierarchical cluster
analysis; IPTW-MSM, inverse probability of treatment-weighted marginal structural model; SSRI, selective serotonin reuptake
inhibitor.

INTRODUCTION

Studies of medication use in pregnancy present unique
challenges when researchers need to ascertain exposure
status. Pregnancy is time limited, not always planned, and
frequently undetected in the first weeks or even months.
Many outcomes of interest have a specific and narrow win-
dow of vulnerability to medication exposure (e.g., cardiac
malformations occur as a result of exposures in gestational
weeks 3–8) (1), whereas others have unknown or prolonged
exposure vulnerability.

In longitudinal observational studies on medication use
during pregnancy, valid and reliable exposure definitions are
essential to prevent bias resulting from misclassification. In
many pharmacoepidemiologic studies, exposure to a medi-
cation is classified as “ever exposed” versus “never exposed”
during the pregnancy or within each trimester. This binary
approach, however, does not reflect real-world exposure pat-
terns; it does not distinguish between a single dose of med-
ication and chronic use over many days, and it disregards
important aspects such as dosage, treatment duration, and
timing of exposure (2, 3). Consequently, the binary approach
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Figure 1. Heat maps showing daily (A, B) and cumulative dose (C, D) for ondansetron (A, C) and sertraline (B, D) use during pregnancy, with
dose represented by gradations on the color spectrum from yellow (indicating lower daily and cumulative dose) to red (higher doses). Days
without use of the medication of interest are denoted by horizontal dashes (A, B). Each of the 15 horizontal lines represents 1 pregnancy. The
day of delivery is indicated by a vertical bar.

may lead to exposure misclassification for the vulnerable
period of interest, because medication use may have taken
place outside of sensitive time windows, even within the
same trimester. A graphical presentation of this problem is
given in Figure 1, in which the daily dose and cumulative
dose of ondansetron, an antiemetic agent, and sertraline, an

antidepressant, on each day during pregnancy were plot-
ted using a heat-map graphic for each individual (4). All
the women depicted in Figure 1 would be classified as
exposed, but clearly lumping all these individuals into a sin-
gle “ever exposed” category during pregnancy for either of
these medications does not accurately reflect the real-world
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situation. In some studies, researchers have tried to address
this issue by examining the cumulative days of medication
use, and others have assessed dose–response categories (e.g.,
high, medium, or low dose vs. no exposure) of first or high-
est daily dose of medications used during the etiologically
relevant gestational window (5–8). However, changes in
medication exposure or dosage over time are not considered
in these approaches (9).

Alternative exposure modeling methods can summarize
complex, individual-level medication use trajectories or time-
varying exposures from information on medication dose,
gestational timing of use, and frequency of use into groups
whose members have similar longitudinal exposure patterns.
These medication exposure patterns may be used in many
types of epidemiologic studies, including, but not limited
to, drug utlization studies and exposure-outcome association
analyses. Moreover, accurate exposure characterization is
necessary in causal inference, because causal consistency,
treatment variation irrelevance, and no measurement error
are among the causal identification conditions (10). These
methods are of particular interest for studies on safety of
medication use during pregnancy, because the development
of a specific perinatal outcome may depend on the dosage
and duration of medication exposure within a specific ges-
tational period.

To our knowledge, an overview of methods for more
granular definitions of real-world exposure to medication
during pregnancy is currently lacking; thus, our objective for
this article was to review longitudinal methods for medica-
tion exposure modeling during pregnancy in epidemiologic
studies. We outline 3 approaches to deal with complex longi-
tudinal exposures: 1) unsupervised clustering methods as a
mean to identify trajectories of medication use, 2) extended
Cox models to correctly classify exposed and unexposed
person-time, and 3) g-methods to explicitly model longi-
tudinal exposures when confounding is affected by prior
exposure. For each approach, we provide pregnancy study
examples (Table 1) and elaborate on the strengths and limita-
tions (Table 2), including the potential for biases associated
with these approaches. Although we focus on perinatal
studies, because of the importance of these methods for
determining sensitive periods of development, these meth-
ods can also be applied in other areas of epidemiology, either
separately or in combination. Software that can be used to
apply the methods described is included in the Web Table 1
(available at https://doi.org/10.1093/epirev/mxab002).

UNSUPERVISED CLUSTERING METHODS

Unsupervised clustering methods are used to group indi-
viduals with similar patterns of values for a given variable
or variables. The intent is to create homogenous groups that
minimize within-group variance and maximize between-
group variance. The methods are considered to be unsuper-
vised because no a priori assumptions are made regarding
group membership with respect to the outcome or other
covariates. These methods may be used to identify groups
with similar patterns of medication exposure (e.g., adher-
ence, dose, and/or gestational timing of use) during preg-

nancy. Unsupervised clustering methods previously used in
pregnancy medication studies, including k-means cluster-
ing, group-based trajectory models, and hierarchical cluster
analysis, are described in the following sections. These
methods can be used to identify clinically relevant pat-
terns of real-world medication use. For example, Figure 2A
shows k-means clustering–identified patterns of prednisone
dose used by pregnant women with rheumatoid arthritis. In
Figure 2A, group 1 includes women who took high doses
of prednisone throughout pregnancy and group 2 contains
women who increased their dose later in pregnancy, likely
due to an increase in disease symptoms, whereas group
3 includes women with physiologic levels of prednisone
throughout pregnancy.

k-Means clustering

k-Means is an unsupervised clustering method that has
been used in studies with longitudinal data to identify similar
patterns of values (i.e., trajectories), for 1 continuous vari-
able or jointly for multiple, continuous, correlated variables
measured at multiple points (11, 12). k-Means clustering is
an algorithm for which the aim is to partition n observations
(e.g., individuals) into k clusters. The method is nonpara-
metric and no assumptions are made about the shape of
the trajectories (11). Through a series of iterations, k-means
minimizes the squared error between the cluster mean and
points in the cluster for all clusters (13). Consequently, data
points within the same cluster are considered to be more
similar to each other, whereas data points in different clusters
will be less similar. After initially assigning each observation
to a cluster, k-means begins a 2-phase iterative algorithm to
identify optimal clusters: 1) an expectation phase, in which
the center of each cluster is calculated; and 2) a maximiza-
tion phase, in which each observation is assigned to its
nearest cluster (e.g., using Manhattan or Euclidean distance
as the distance measure) (13). This process is repeated until
there are no more changes in the clusters (convergence of
the algorithm) or until the number of predefined iterations
has been reached (13).

Quality criteria, such as the Caliński and Harabasz, Ray
and Turi, and Davies and Bouldin criteria, can be used to
help select the optimal number of clusters (13–15). However,
using these criteria does not always result in convergence
on a single solution, convergence on a clinically relevant
solution, or identification of large-enough clusters to carry
out additional analyses.

In previous studies, researchers have used k-means to
identify patterns of psychotropic medication (e.g., antide-
pressants, anxiolytics, hypnotics), ondansetron, and pred-
nisone use during and after pregnancy and to link the patterns
with maternal and infant outcomes (Table 1; Figure 2A).
The authors of these studies used data on medication
exposure from prescription medication orders in patients’
electronic health records (16–19), pharmacy dispensing
information (9, 20, 21), or self-report (4, 22) to identify
medication trajectories. In these studies, investigators linked
trajectories of higher daily and/or cumulative doses as
compared with trajectories of lower doses with perinatal
outcomes. Trajectories of anxiolytic and hypnotic drug

Epidemiol Rev. 2021;43:130–146

https://doi.org/10.1093/epirev/mxab002


Modeling of Medication Use in Pregnancy 133

Ta
b

le
1.

O
ve

rv
ie

w
of

S
tu

di
es

on
M

ed
ic

at
io

n
U

se
D

ur
in

g
P

re
gn

an
cy

U
si

ng
Lo

ng
itu

di
na

lM
et

ho
ds

fo
r

E
xp

os
ur

e
M

od
el

in
g

Fi
rs

t
A

u
th

o
r,

Ye
ar

(R
ef

er
en

ce
N

o
.)

S
tu

d
y

P
o

p
u

la
ti

o
n

E
xp

o
su

re
o

f
In

te
re

st
M

o
d

el
in

g
M

et
h

o
d

O
u

tc
o

m
e

o
f

In
te

re
st

U
ns

up
er

vi
se

d
C

lu
st

er
in

g
M

et
ho

d
s

H
ur

au
lt-

D
el

ar
ue

,
20

16
(9

)
W

om
en

in
cl

ud
ed

in
th

e
E

F
E

M
E

R
IS

da
ta

ba
se

w
ho

ga
ve

bi
rt

h
in

H
au

te
-G

ar
on

ne
,F

ra
nc

e,
be

tw
ee

n
20

04
an

d
20

10

P
re

sc
rip

tio
ns

of
ps

yc
ho

tr
op

ic
dr

ug
s,

tr
an

sf
or

m
ed

in
to

th
e

nu
m

be
r

of
D

D
D

s
pe

r
m

on
th

k-
m

ea
ns

cl
us

te
rin

g
N

on
e

H
ur

au
lt-

D
el

ar
ue

,
20

17
(2

0)
W

om
en

in
cl

ud
ed

in
th

e
E

F
E

M
E

R
IS

da
ta

ba
se

w
ho

de
liv

er
ed

a
liv

eb
or

n
in

fa
nt

in
H

au
te

-G
ar

on
ne

,F
ra

nc
e,

be
tw

ee
n

20
04

an
d

20
10

A
nx

io
ly

tic
an

d
hy

pn
ot

ic
m

ed
ic

at
io

ns
di

sp
en

se
d

du
rin

g
pr

eg
na

nc
y,

tr
an

sf
or

m
ed

in
to

th
e

nu
m

be
r

of
D

D
D

s
pe

r
m

on
th

k-
m

ea
ns

cl
us

te
rin

g
N

eo
na

ta
lp

at
ho

lo
gy

:
ox

yg
en

th
er

ap
y,

in
tu

ba
tio

n,
re

su
sc

ita
tio

n,
tr

an
sf

er
to

sp
ec

ia
liz

ed
se

rv
ic

e,
an

d/
or

re
sp

ira
to

ry
di

st
re

ss

B
an

do
li,

20
18

(1
7)

P
re

gn
an

tw
om

en
de

liv
er

in
g

at
U

C
S

an
D

ie
go

H
ea

lth
w

ith
≥1

an
tid

ep
re

ss
an

t
pr

es
cr

ip
tio

n
in

th
e

3
m

on
th

s
be

fo
re

or
du

rin
g

pr
eg

na
nc

y

A
ve

ra
ge

da
ily

do
se

an
d

cu
m

ul
at

iv
e

do
se

of
an

tid
ep

re
ss

an
ts

pe
r

w
ee

k
du

rin
g

th
e

fir
st

32
w

ee
ks

of
ge

st
at

io
n

an
d

th
e

fir
st

13
w

ee
ks

po
st

pa
rt

um
ba

se
d

on
E

M
R

k-
m

ea
ns

cl
us

te
rin

g
B

ir
th

w
ei

gh
t,

ge
st

at
io

na
l

ag
e

at
de

liv
er

y

P
al

m
st

en
,2

01
8

(4
)

M
ot

he
rT

oB
ab

y
A

ut
oi

m
m

un
e

D
is

ea
se

s
in

P
re

gn
an

cy
S

tu
dy

:p
re

gn
an

tw
om

en
fr

om
th

e
U

ni
te

d
S

ta
te

s
an

d
C

an
ad

a
w

ith
rh

eu
m

at
oi

d
ar

th
rit

is
an

d
pr

ed
ni

so
ne

us
e

D
ai

ly
an

d
cu

m
ul

at
iv

e
do

se
of

pr
ed

ni
so

ne
du

rin
g

th
e

fir
st

32
w

ee
ks

of
ge

st
at

io
n

as
se

ss
ed

w
ith

te
le

ph
on

e
in

te
rv

ie
w

s
in

cl
ud

in
g

st
ar

ta
nd

st
op

da
te

s,
fr

eq
ue

nc
y

of
us

e,
an

d
st

re
ng

th

k-
m

ea
ns

cl
us

te
rin

g
G

es
ta

tio
na

la
ge

at
de

liv
er

y

B
an

do
li,

20
20

(1
6)

Li
ve

bo
rn

,s
in

gl
et

on
de

liv
er

ie
s

be
tw

ee
n

20
12

an
d

20
16

am
on

g
gi

rls
an

d
w

om
en

ag
ed

12
–4

9
ye

ar
s

id
en

tif
ie

d
in

O
pt

um
La

bs
D

at
a

W
ar

eh
ou

se
ad

m
in

is
tr

at
iv

e
he

al
th

-c
ar

e
cl

ai
m

s

A
nt

id
ep

re
ss

an
tp

re
sc

rip
tio

n
fil

ls
be

tw
ee

n
LM

P
an

d
35

ge
st

at
io

na
lw

ee
ks

w
ith

do
sa

ge
s

co
nv

er
te

d
to

fl
uo

xe
tin

e
eq

ui
va

le
nt

s

k-
m

ea
ns

cl
us

te
rin

g
M

aj
or

ca
rd

ia
c

m
al

fo
rm

at
io

ns
,p

re
te

rm
bi

rt
h,

an
d

ne
w

bo
rn

re
sp

ira
to

ry
di

st
re

ss

Le
m

on
,2

02
0

(1
8)

Li
ve

bo
rn

,s
in

gl
et

on
de

liv
er

ie
s

at
M

ag
ee

-W
om

en
s

H
os

pi
ta

lw
ith

U
P

M
C

H
ea

lth
P

la
n

co
ve

ra
ge

fr
om

20
06

th
ro

ug
h

20
14

O
nd

an
se

tr
on

ex
po

su
re

ex
tr

ac
te

d
fr

om
th

e
in

pa
tie

nt
E

M
R

an
d

th
ro

ug
h

in
su

ra
nc

e
cl

ai
m

s
fo

r
ou

tp
at

ie
nt

pr
es

cr
ip

tio
ns

k-
m

ea
ns

cl
us

te
rin

g
N

eo
na

ta
lc

ar
di

ac
an

om
al

ie
s

P
al

m
st

en
,2

02
0

(2
1)

Li
ve

bo
rn

de
liv

er
ie

s
be

tw
ee

n
20

12
an

d
20

16
am

on
g

gi
rls

an
d

w
om

en
ag

ed
12

–4
9

ye
ar

s
id

en
tif

ie
d

in
O

pt
um

La
bs

D
at

a
W

ar
eh

ou
se

ad
m

in
is

tr
at

iv
e

he
al

th
-c

ar
e

cl
ai

m
s

P
ha

rm
ac

y
di

sp
en

si
ng

of
an

tid
ep

re
ss

an
ts

fr
om

3
m

on
th

s
be

fo
re

LM
P

th
ro

ug
h

35
ge

st
at

io
na

lw
ee

ks

k-
m

ea
ns

cl
us

te
rin

g
P

re
ec

la
m

ps
ia

an
d

po
st

pa
rt

um
he

m
or

rh
ag

e

P
al

m
st

en
,2

02
0

(2
2)

M
ot

he
rT

oB
ab

y
P

re
gn

an
cy

S
tu

di
es

:p
re

gn
an

t
w

om
en

fr
om

th
e

U
ni

te
d

S
ta

te
s

an
d

C
an

ad
a

w
ith

rh
eu

m
at

oi
d

ar
th

rit
is

C
um

ul
at

iv
e

do
se

of
or

al
co

rt
ic

os
te

ro
id

s
du

rin
g

th
e

fir
st

13
9

da
ys

of
ge

st
at

io
n

as
se

ss
ed

w
ith

te
le

ph
on

e
in

te
rv

ie
w

s
in

cl
ud

in
g

st
ar

ta
nd

st
op

da
te

s
an

d
do

se

k-
m

ea
ns

cl
us

te
rin

g
P

re
te

rm
bi

rt
h

Ta
b

le
co

n
ti

n
u

es

Epidemiol Rev. 2021;43:130–146



134 Wood et al.
Ta

b
le

1.
C

on
tin

ue
d

Fi
rs

t
A

u
th

o
r,

Ye
ar

(R
ef

er
en

ce
N

o
.)

S
tu

d
y

P
o

p
u

la
ti

o
n

E
xp

o
su

re
o

f
In

te
re

st
M

o
d

el
in

g
M

et
h

o
d

O
u

tc
o

m
e

o
f

In
te

re
st

P
al

m
st

en
,2

02
1

(1
9)

W
om

en
w

ith
as

th
m

a
or

S
LE

en
ro

lle
d

in
th

e
C

al
ifo

rn
ia

M
ed

ic
ai

d
pr

og
ra

m
lin

ke
d

to
bi

rt
h

ce
rt

ifi
ca

te
s,

20
07

–2
01

3

O
ut

pa
tie

nt
ph

ar
m

ac
y

cl
ai

m
s

fo
r

or
al

co
rt

ic
os

te
ro

id
s

an
d

di
se

as
e-

re
la

te
d

m
ed

ic
at

io
ns

be
tw

ee
n

LM
P

an
d

ge
st

at
io

na
ld

ay
25

8

k-
m

ea
ns

cl
us

te
rin

g
P

re
te

rm
bi

rt
h

Fr
an

k,
20

18
(2

8)
P

re
gn

an
tw

om
en

pa
rt

ic
ip

at
in

g
in

M
oB

a
us

in
g

th
yr

oi
d

ho
rm

on
e

re
pl

ac
em

en
t

th
er

ap
y

D
ai

ly
do

se
s

of
hy

po
th

yr
oi

d
m

ed
ic

at
io

n
fr

om
6

m
on

th
s

pr
io

r
to

pr
eg

na
nc

y
un

til
12

m
on

th
s

af
te

r
de

liv
er

y,
ba

se
d

on
pr

es
cr

ip
tio

ns
in

N
or

P
D

(d
at

e
of

di
sp

en
si

ng
,s

tr
en

gt
h,

an
d

qu
an

tit
y)

an
d

se
lf-

co
m

pl
et

ed
qu

es
tio

nn
ai

re
s

G
B

T
M

N
on

e

S
ch

af
fe

r,
20

19
(3

0)
D

at
a

lin
ke

d
fo

r
th

e
M

U
M

S
S

tu
dy

:w
om

en
w

ho
ga

ve
bi

rt
h

be
tw

ee
n

20
05

an
d

20
12

in
N

ew
S

ou
th

W
al

es
,A

us
tr

al
ia

P
re

sc
rip

tio
n

fo
r

an
tip

sy
ch

ot
ic

s:
to

ta
la

nd
av

er
ag

e
D

D
D

s
av

ai
la

bl
e

in
ea

ch
30

-d
ay

in
te

rv
al

du
rin

g
th

e
st

ud
y

pe
rio

d

G
B

T
M

P
re

gn
an

cy
co

m
pl

ic
at

io
ns

an
d

bi
rt

h
ou

tc
om

es

W
oo

d,
20

21
(3

1)
P

re
gn

an
ci

es
en

ro
lle

d
in

th
e

IB
M

M
ar

ke
tS

ca
n

he
al

th
-c

ar
e

cl
ai

m
s

da
ta

ba
se

be
tw

ee
n

20
11

an
d

20
15

re
su

lti
ng

in
a

liv
e

or
st

ill
bi

rt
h

O
ut

pa
tie

nt
cl

ai
m

s
fo

r
ge

ne
ric

na
m

es
of

m
ed

ic
at

io
ns

us
ed

in
th

e
tr

ea
tm

en
to

f
m

ig
ra

in
e

G
B

T
M

an
d

gr
ou

p-
ba

se
d

m
ul

tit
ra

je
ct

or
y

m
od

el
s

N
on

e

S
al

va
to

re
,2

01
7

(3
4)

P
re

gn
an

tw
om

en
pa

rt
ic

ip
at

in
g

in
M

oB
a

w
ith

pa
ra

ce
ta

m
ol

us
e

Q
ue

st
io

nn
ai

re
:a

ny
co

m
ed

ic
at

io
n

us
ed

du
rin

g
pr

eg
na

nc
y

at
4-

w
ee

k
in

te
rv

al
s,

in
cl

ud
in

g
in

di
ca

tio
n

fo
r

us
e

an
d

nu
m

be
r

of
da

ys
us

ed

H
C

A
N

on
e

E
xt

en
d

ed
C

ox
M

od
el

s

Yo
nk

er
s,

20
11

(5
5)

W
om

en
<

17
w

ee
ks

of
ge

st
at

io
n

fr
om

ob
st

et
ric

al
pr

ac
tic

es
an

d
ho

sp
ita

l-b
as

ed
cl

in
ic

s
in

C
on

ne
ct

ic
ut

an
d

w
es

te
rn

M
as

sa
ch

us
et

ts
w

ho
un

de
rw

en
t

an
tid

ep
re

ss
an

tt
re

at
m

en
to

r
ha

d
a

cu
rr

en
t

or
pr

io
r

hi
st

or
y

of
a

de
pr

es
si

ve
di

so
rd

er
,

be
tw

ee
n

M
ar

ch
20

05
an

d
M

ay
20

09

S
el

f-
re

po
rt

ed
an

tid
ep

re
ss

an
tu

se
vi

a
st

ru
ct

ur
ed

at
-h

om
e

in
te

rv
ie

w
,a

sk
ed

to
sh

ow
pi

ll
bo

ttl
es

T
im

e-
va

ry
in

g
ap

pr
oa

ch
in

C
ox

pr
op

or
tio

na
l

ha
za

rd
m

od
el

s

M
aj

or
de

pr
es

si
ve

ep
is

od
e

X
u,

20
12

(5
2)

V
ac

ci
ne

an
d

M
ed

ic
at

io
n

in
P

re
gn

an
cy

S
ur

ve
ill

an
ce

S
ys

te
m

H
1N

1
V

ac
ci

ne
in

P
re

gn
an

cy
S

tu
dy

:w
om

en
en

ro
lle

d
be

fo
re

20
w

ee
ks

of
ge

st
at

io
n,

U
S

,

H
1N

1
va

cc
in

e
T

im
e-

va
ry

in
g

ap
pr

oa
ch

in
C

ox
pr

op
or

tio
na

l
ha

za
rd

m
od

el
s

M
is

ca
rr

ia
ge

M
at

ok
,2

01
4

(4
7)

U
K

H
E

S
da

ta
ba

se
lin

ke
d

to
th

e
C

P
R

D
:

w
om

en
be

tw
ee

n
15

an
d

45
ye

ar
s

ol
d

w
ho

de
liv

er
ed

a
si

ng
le

to
n

liv
e

bi
rt

h
be

tw
ee

n
A

pr
il

1,
19

97
,a

nd
M

ar
ch

31
,2

01
2

D
ec

on
ge

st
an

tp
re

sc
rip

tio
ns

be
tw

ee
n

ge
st

at
io

na
lw

ee
ks

27
–3

7
re

gi
st

er
ed

in
C

P
R

D

T
im

e-
va

ry
in

g
ap

pr
oa

ch
(c

on
si

de
re

d
un

ex
po

se
d

un
til

pr
es

cr
ip

tio
n)

in
C

ox
pr

op
or

tio
na

l
ha

za
rd

m
od

el
s

P
re

te
rm

bi
rt

h

Ta
b

le
co

n
ti

n
u

es

Epidemiol Rev. 2021;43:130–146



Modeling of Medication Use in Pregnancy 135

Ta
b

le
1.

C
on

tin
ue

d

Fi
rs

t
A

u
th

o
r,

Ye
ar

(R
ef

er
en

ce
N

o
.)

S
tu

d
y

P
o

p
u

la
ti

o
n

E
xp

o
su

re
o

f
In

te
re

st
M

o
d

el
in

g
M

et
h

o
d

O
u

tc
o

m
e

o
f

In
te

re
st

D
an

ie
l,

20
15

(5
3,

54
)

P
re

gn
an

tw
om

en
re

gi
st

er
ed

w
ith

th
e

C
la

lit
H

ea
lth

S
er

vi
ce

s
w

ho
w

er
e

ad
m

itt
ed

fo
r

a
de

liv
er

y
or

ha
d

a
m

is
ca

rr
ia

ge
at

S
or

ok
a

M
ed

ic
al

C
en

te
r

(I
sr

ae
l)

N
S

A
ID

s
di

sp
en

se
d

be
tw

ee
n

LM
P

an
d

th
e

da
y

be
fo

re
ad

m
is

si
on

to
th

e
ho

sp
ita

lf
or

m
is

ca
rr

ia
ge

s
or

20
w

ee
ks

’g
es

ta
tio

n
fo

r
pr

eg
na

nc
ie

s
th

at
en

de
d

w
ith

a
bi

rt
h

T
im

e-
va

ry
in

g
ap

pr
oa

ch
(c

on
si

de
re

d
un

ex
po

se
d

un
til

pr
es

cr
ip

tio
n)

in
C

ox
pr

op
or

tio
na

l
ha

za
rd

m
od

el
s

M
is

ca
rr

ia
ge

G
-M

et
ho

d
s

B
od

na
r,

20
04

(6
6)

Ir
on

S
up

pl
em

en
ta

tio
n

S
tu

dy
:w

om
en

<
20

w
ee

ks
pr

eg
na

nt
at

th
e

in
iti

al
vi

si
tt

o
a

pu
bl

ic
pr

en
at

al
cl

in
ic

in
R

al
ei

gh
,N

or
th

C
ar

ol
in

a,
19

97
–1

99
9

R
an

do
m

ly
as

si
gn

ed
to

re
ce

iv
e

iro
n

su
pp

le
m

en
ts

;w
om

en
w

er
e

as
ke

d
to

re
tu

rn
st

ud
y

pi
ll

bo
ttl

es
an

d
to

co
m

pl
et

e
qu

es
tio

nn
ai

re
s

on
co

m
pl

ia
nc

e.
P

ha
rm

ac
y

re
co

rd
s

on
di

sp
en

si
ng

of
iro

n-
co

nt
ai

ni
ng

su
pp

le
m

en
ts

M
ar

gi
na

ls
tr

uc
tu

ra
l

m
od

el
s

A
ne

m
ia

at
de

liv
er

y

W
oo

d,
20

16
(6

7)
P

re
gn

an
tw

om
en

pa
rt

ic
ip

at
in

g
in

M
oB

a
w

ho
ha

d
a

si
ng

le
to

n
bi

rt
h

w
ith

ou
tm

aj
or

bi
rt

h
de

fe
ct

s

Q
ue

st
io

nn
ai

re
:t

rip
ta

n
us

e,
w

ith
tim

in
g

of
ex

po
su

re
co

lla
ps

ed
in

to
tr

im
es

te
r

ca
te

go
rie

s

M
ar

gi
na

ls
tr

uc
tu

ra
l

m
od

el
s

N
eu

ro
de

ve
lo

pm
en

ta
l

ou
tc

om
e

at
ag

e
3

ye
ar

s

Lu
pa

tte
lli

,2
01

7
(6

8)
D

ep
re

ss
ed

pr
eg

na
nt

w
om

en
pa

rt
ic

ip
at

in
g

in
M

oB
a

Q
ue

st
io

nn
ai

re
:a

nt
id

ep
re

ss
an

tu
se

du
rin

g
pr

eg
na

nc
y,

ca
te

go
riz

ed
in

4-
w

ee
k

in
te

rv
al

s
M

ar
gi

na
ls

tr
uc

tu
ra

l
m

od
el

s
P

re
ec

la
m

ps
ia

Lu
pa

tte
lli

,2
01

8
(6

9)
P

re
gn

an
tw

om
en

pa
rt

ic
ip

at
in

g
in

M
oB

a
re

po
rt

in
g

de
pr

es
si

ve
/a

nx
ie

ty
di

so
rd

er
s

be
fo

re
an

d/
or

du
rin

g
pr

eg
na

nc
y,

lin
ke

d
to

th
e

M
ed

ic
al

B
ir

th
R

eg
is

tr
y

of
N

or
w

ay

Q
ue

st
io

nn
ai

re
:S

S
R

Iu
se

at
4-

w
ee

k
in

te
rv

al
s

du
rin

g
pr

eg
na

nc
y,

in
cl

ud
in

g
in

di
ca

tio
n

fo
r

us
e

an
d

nu
m

be
r

of
da

ys
us

ed

M
ar

gi
na

ls
tr

uc
tu

ra
l

m
od

el
s

B
eh

av
io

ra
l,

em
ot

io
na

l,
an

d
so

ci
al

de
ve

lo
pm

en
t

in
pr

es
ch

oo
l-a

ge
d

ch
ild

re
n

P
et

er
se

n,
20

18
(7

0)
P

re
gn

an
tw

om
en

pa
rt

ic
ip

at
in

g
in

th
e

D
N

B
C

or
M

oB
a

P
ar

ac
et

am
ol

,a
sp

iri
n,

an
d

ib
up

ro
fe

n
D

N
B

C
:3

te
le

ph
on

e
in

te
rv

ie
w

s,
re

po
rt

ed
on

a
w

ee
k-

by
-w

ee
k

ba
si

s
M

oB
a:

Q
ue

st
io

nn
ai

re
re

sp
on

se
s,

re
po

rt
ed

in
4-

w
ee

k
in

te
rv

al
s

M
ar

gi
na

ls
tr

uc
tu

ra
l

m
od

el
s

C
er

eb
ra

lp
al

sy

A
bb

re
vi

at
io

ns
:

C
P

R
D

,
C

lin
ic

al
P

ra
ct

ic
e

R
es

ea
rc

h
D

at
al

in
k;

D
D

D
,

de
fin

ed
da

ily
do

se
;

D
N

B
C

,
D

an
is

h
N

at
io

na
l

B
ir

th
C

oh
or

t;
E

F
E

M
E

R
IS

,
E

va
lu

at
io

n
ch

ez
la

F
em

m
e

E
nc

ei
nt

e
de

s
M

ed
ic

am
en

ts
et

de
Le

ur
s

R
is

qu
es

;E
M

R
,

el
ec

tr
on

ic
m

ed
ic

al
re

co
rd

;G
-m

et
ho

ds
,

ge
ne

ra
liz

ed
m

et
ho

ds
;G

B
T

M
,

gr
ou

p-
ba

se
d

tr
aj

ec
to

ry
m

od
el

;H
C

A
,

hi
er

ar
ch

ic
al

cl
us

te
r

an
al

ys
is

;H
E

S
,

H
os

pi
ta

lE
pi

so
de

s
S

ta
tis

tic
s;

LM
P,

la
st

m
en

st
ru

al
pe

rio
d;

M
oB

a,
N

or
w

eg
ia

n
M

ot
he

ra
nd

C
hi

ld
C

oh
or

tS
tu

dy
;M

U
M

S
,M

at
er

na
lU

se
of

M
ed

ic
at

io
ns

an
d

S
af

et
y;

N
or

P
D

,N
or

w
eg

ia
n

P
re

sc
rip

tio
n

D
at

ab
as

e;
N

S
A

ID
,n

on
st

er
oi

da
la

nt
iin

fl
am

m
at

or
y

dr
ug

;S
LE

,s
ys

te
m

ic
lu

pu
s

er
yt

he
m

at
os

us
;S

S
R

I,
se

le
ct

iv
e

se
ro

to
ni

n
re

up
ta

ke
in

hi
bi

to
r;

U
C

,U
ni

ve
rs

ity
of

C
al

ifo
rn

ia
;U

P
M

C
,U

ni
ve

rs
ity

of
P

itt
sb

ur
gh

M
ed

ic
al

C
en

te
r.

Epidemiol Rev. 2021;43:130–146



136 Wood et al.

Ta
b

le
2.

S
um

m
ar

y
of

th
e

M
ai

n
A

pp
lic

at
io

ns
,A

dv
an

ta
ge

s,
an

d
Li

m
ita

tio
ns

of
k-

M
ea

ns
Lo

ng
itu

di
na

lC
lu

st
er

in
g,

G
ro

up
-B

as
ed

Tr
aj

ec
to

ry
M

od
el

in
g,

H
ie

ra
rc

hi
ca

lC
lu

st
er

A
na

ly
si

s,
E

xt
en

de
d

C
ox

M
od

el
s,

an
d

G
-M

et
ho

ds

M
et

h
o

d
S

p
ec

ifi
ed

by
R

es
ea

rc
h

er
A

p
p

lic
ab

ili
ty

A
d

va
n

ta
g

e
L

im
it

at
io

n
s

U
ns

up
er

vi
se

d
cl

us
te

rin
g

m
et

ho
ds

N
o

gu
ar

an
te

e
th

at
id

en
tif

ie
d

cl
us

te
rs

ar
e

he
ur

is
tic

al
ly

or
cl

in
ic

al
ly

m
ea

ni
ng

fu
l;

vu
ln

er
ab

ili
ty

to
bi

as
es

(c
on

fo
un

di
ng

,
se

le
ct

io
n,

m
is

cl
as

si
fic

at
io

n)
m

ay
be

le
ss

ap
pa

re
nt

k-
m

ea
ns

Lo
ng

itu
di

na
l

cl
us

te
rin

g
N

um
be

r
of

cl
us

te
rs

M
od

el
si

m
ila

r
pa

tte
rn

s
of

va
lu

es
fo

r
lo

ng
itu

di
na

lly
co

lle
ct

ed
va

ria
bl

es

N
on

pa
ra

m
et

ric
;r

eq
ui

re
s

no
as

su
m

pt
io

ns
ab

ou
tt

ra
je

ct
or

y
sh

ap
e;

op
tim

iz
es

an
ob

je
ct

iv
e

fu
nc

tio
n

(m
in

im
iz

in
g

su
m

of
sq

ua
re

d
er

ro
r)

A
ss

um
pt

io
ns

of
eq

ua
lv

ar
ia

nc
es

fo
r

k
gr

ou
ps

m
ay

no
ti

de
nt

ify
sm

al
le

r
gr

ou
ps

;a
ss

um
es

cl
us

te
rs

ar
e

lin
ea

rly
se

pa
ra

bl
e;

w
ill

id
en

tif
y

di
st

in
ct

gr
ou

ps
in

un
ifo

rm
da

ta

G
ro

up
-b

as
ed

tr
aj

ec
to

ry
m

od
el

s
N

um
be

r
an

d
sh

ap
e

of
tr

aj
ec

to
rie

s;
ty

pe
of

pa
ra

m
et

ric
m

od
el

F
in

ite
m

ix
tu

re
m

od
el

fo
r

as
si

gn
in

g
in

di
vi

du
al

s
to

lo
ng

itu
di

na
lt

ra
je

ct
or

ie
s,

gi
ve

n
si

m
ila

r
va

lu
es

on
va

ria
bl

es
of

in
te

re
st

F
le

xi
bi

lit
y

fo
r

ha
nd

lin
g

di
ffe

re
nt

va
ria

bl
e

ty
pe

s
(d

ic
ho

to
m

ou
s,

co
un

t,
co

nt
in

uo
us

)

C
on

ve
rg

en
ce

pr
ob

le
m

s
w

he
n

sa
m

pl
e

si
ze

is
sm

al
lo

r
w

he
n

sp
ec

ifi
ed

tr
aj

ec
to

ry
nu

m
be

rs
or

sh
ap

es
fit

th
e

da
ta

po
or

ly

H
ie

ra
rc

hi
ca

lc
lu

st
er

an
al

ys
is

S
im

ila
rit

y
de

fin
iti

on
;l

oc
at

io
n

of
de

nd
ro

gr
am

cu
ts

C
lu

st
er

s
ob

se
rv

at
io

ns
ba

se
d

on
re

se
ar

ch
er

-d
ef

in
ed

va
lu

es
of

si
m

ila
rit

y

N
um

be
r

of
cl

us
te

rs
no

ts
pe

ci
fie

d
a

pr
io

ri;
al

lo
w

s
fo

r
fl

ex
ib

le
de

fin
iti

on
s

by
re

se
ar

ch
er

C
om

pu
ta

tio
na

lly
in

te
ns

e,
m

ay
be

in
fe

as
ib

le
in

la
rg

e
da

ta
se

ts

M
et

ho
ds

us
in

g
a

pr
io

ri
ex

po
su

re
de

fin
iti

on
s

A
pr

io
ri

de
fin

iti
on

s
fo

r
ex

po
su

re
m

ay
no

t
ca

pt
ur

e
th

e
m

os
tc

om
m

on
pa

tte
rn

s
or

th
e

cl
in

ic
al

ly
re

le
va

nt
w

in
do

w
of

vu
ln

er
ab

ili
ty

E
xt

en
de

d
C

ox
m

od
el

s
D

ef
in

iti
on

of
ex

po
su

re
pe

rs
on

-t
im

e,
co

nf
ou

nd
er

s,
ou

tc
om

es

C
on

si
de

rs
ex

po
su

re
as

a
fu

nc
tio

n
of

tim
e

R
es

ea
rc

he
r

ca
n

up
da

te
ex

po
su

re
st

at
us

du
rin

g
fo

llo
w

-u
p

tim
e;

in
cl

ud
es

fl
ex

ib
le

co
ns

id
er

in
g

of
tr

un
ca

tio
n

an
d

ce
ns

or
in

g

C
an

no
ta

dd
re

ss
cu

m
ul

at
iv

e,
jo

in
t,

or
tim

e-
va

ry
in

g
ex

po
su

re
w

ith
tim

e-
va

ry
in

g
co

nf
ou

nd
in

g

G
-m

et
ho

ds
D

ef
in

iti
on

of
ex

po
su

re
,

ou
tc

om
es

,c
on

fo
un

de
rs

S
ce

na
rio

s
w

he
re

tr
ea

tm
en

ta
nd

co
nf

ou
nd

in
g

ch
an

ge
s

ov
er

tim
e

M
od

el
ef

fe
ct

of
tim

e-
va

ry
in

g
tr

ea
tm

en
ti

n
th

e
pr

es
en

ce
of

fe
ed

ba
ck

fr
om

tim
e-

va
ry

in
g

co
nf

ou
nd

in
g

R
eq

ui
re

s
m

ea
su

re
m

en
to

fa
ll

re
le

va
nt

ex
po

su
re

s
an

d
co

nf
ou

nd
er

s
ov

er
tim

e

A
bb

re
vi

at
io

n:
G

-m
et

ho
ds

,R
ob

in
s’

ge
ne

ra
liz

ed
m

et
ho

ds
.

Epidemiol Rev. 2021;43:130–146



Modeling of Medication Use in Pregnancy 137

A)

C)

B)

Figure 2. Data visualization of unsupervised clustering methods applied in pregnant women: A) k-means clustering of prednisone exposure
among pregnant women with rheumatoid arthritis (4); B) group-based trajectory models of dispensed thyroid hormone replacement therapy
(28); and C) hierarchical cluster analysis of the average number of medication exposures (34). ATC, Anatomical Therapeutic Chemical; C-H,
constant-high; C-M, constant-medium; D-L, decreasing-low; I-M, increasing-medium.

dose identified by k-means were associated with differing
neonatal risk, whereas binary exposed and unexposed
groups had similar risks (20). Varying risks for postpartum
hemorrhage were identified in another study on the basis of
both gestational timing and dose of antidepressant exposure
(21). Increased risks were observed for trajectories with

antidepressant exposures sustained later in pregnancy but
not for a trajectory containing women with antidepressant
dose reduction or discontinuation early in pregnancy. These
examples illustrate that trajectory groups can be considered
a possible method for defining exposure status in studies of
medication safety during pregnancy.
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Group-based trajectory modeling

Group-based trajectory modeling (GBTM) is an unsuper-
vised method in which semiparametric models are used to
identify longitudinal trajectories (23, 24). GBTM estimates
multiple models simultaneously by maximizing a combined
likelihood. Specifically, GBTM simultaneously estimates
1) a multinomial model for group-assignment probabilities
and 2) models estimating longitudinal trajectories using
polynomial functions of time. Individuals are assigned to
the trajectory group to which they have the highest mem-
bership probability. Analysts can specify a range of number
of groups and polynomial shapes of each group. Multiple
models are compared using the Bayesian Information Crite-
rion, the odds of correct classification, and other approaches,
in combination with expert clinical opinion to select the
optimal number of groups (25–27).

In the field of perinatal pharmacoepidemiology, at least 4
groups have used GBTM to study medication use (Table 1).
Frank et al. (28) grouped women according to monthly prob-
ability of having used thyroid hormone replacement therapy
before, during, and after pregnancy. GBTM identified 4
distinct patterns of use (Figure 2B), with lower education
of the mother predicting membership in the lowest thyroid
hormone replacement therapy use group. Other studies using
GBTM grouped women according to the probability of
filling an opioid prescription in each of 12 months after
cesarean delivery (29) and antipsychotic use (30). In the
latter study, women with the greatest exposure to antipsy-
chotics had the highest rates of gestational hypertension and
gestational diabetes. As with k-means, extensions of GBTM
allow for simultaneous modeling of 2 or more exposures.
Group-based multitrajectory modeling was recently used to
model longitudinal fills of multiple prescription medica-
tions simultaneously: researchers examined polypharmacy
patterns in pregnant women with migraine and compared
maternal characteristics between the observed trajectories
(31).

One drawback of GBTM is that, at times, it does not
converge when nonparametric methods such as k-means do
converge. In a study comparing the 2 methods using simu-
lated data with known clusters, GBTM selected essentially
the same trajectories as k-means in 3 data sets but did not
converge in 1 data set, whereas k-means produced results
consistent with known clusters (11). When performance was
compared using data from 2 real cohort studies, results were
again discrepant. In 1 data set, k-means and GBTM found
trajectories that were quite similar. However, in the second
data set, k-means resulted in 4 clusters, whereas GBTM
either did not converge or gave incoherent results. The
authors concluded that k-means seemed as efficient as the
existing parametric algorithm when applied to polynomial
data and potentially was more efficient when applied to
nonpolynomial data (11).

Hierarchical cluster analysis

Hierarchical cluster analysis (HCA) is used to classify
longitudinally measured characteristics into clusters on the
basis of a customized distance measure informed by the

researcher’s prespecified definitions of similarity (32). This
customized distance measure allows users to define “sim-
ilarity” in the context of their research question (33). For
modeling longitudinal medication exposures, women can be
classified into clusters by use of different drugs over time.
User-defined indices of similarity might include mechanism
of action, indication for use, or even chemical structure of
the active ingredient.

Similar to other approaches, the aim when using HCA is
to identify homogenous groups within heterogeneous data.
First, the possible features of medications are identified, and
values are manually assigned by the researcher. Features
might include the indication for use (e.g., analgesia vs. res-
piratory problems) or organ-system target (e.g., nervous vs.
cardiovascular system). For example, if an analyst prioritizes
indication as the feature of interest when considering con-
comitant medication use with paracetamol, opioids might be
given a score of 1 and inhaled steroids a score of 3, indicating
that opioids are more similar to paracetamol than inhaled
steroids. Next, the distance between 2 observations, based
on the totality of the features, is calculated. Clusters with
the smallest distance between them are then merged. The
merging is visually expressed using a dendrogram, where
the height axis displays the distance between observations.
Investigators then “cut” the dendrogram at clinically relevant
levels, with the aim of identifying informative groups. In
contrast to the other clustering methods discussed in this
article (i.e., k-means and GBTM), the number of clusters is
not specified as part of the HCA modeling process. Rather,
solutions from different dendrogram cuts are compared and
assessed for utility (32, 33).

HCA was used to capture longitudinal patterns of parac-
etamol use with concomitant medications during pregnancy
(Table 1) (34). In their study, Salvatore et al. (34) used the
difference between the codes of the Anatomical Therapeutic
Chemical classification system, defining similarity between
drugs as increasingly similar Anatomical Therapeutic
Chemical codes (e.g., the code for paracetamol is N02BE01;
that of ibuprofen in combination with codeine is N02AJ08;
and the code for budesonide is R03BA02) used by the
same individual. Paracetamol and ibuprofen plus codeine
diverged at the third Anatomical Therapeutic Chemical
level, whereas paracetamol and budesonide diverged at the
first level, meaning paracetamol and ibuprofen plus codeine
are more similar under this definition than are paracetamol
and budesonide. Using this algorithm, Salvatore et al. (34)
identified 5 clusters of medication users (Figure 2C). Two
clusters were high-intensity users, differentiated by their
use of medications for asthma; 2 clusters were moderate-
intensity users, differentiated by their use of psychotropic
drugs; the final cluster comprised low-intensity users. The
flexibility of the similarity metric means that researchers
can model 1 or multiple exposures simultaneously.

HCA offers several benefits for researchers: with no need
to prespecify the number of possible groups, researchers can
cut the dendrogram as they see fit to answer relevant research
questions, taking into account practical considerations like
sample size. The method can incorporate multiple variable
forms, including categorical binary indicators, although it
is not recommended to mix measurement scales (32). The
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customized distance metric allows the analyst great flexibil-
ity to choose parameters best suited to the research question;
however, HCA is computationally intensive compared with
simpler methods like k-means and may not be best suited for
larger data sets.

Challenges in interpreting results of unsupervised
clustering methods

Unsupervised clustering methods (i.e., k-means clus-
tering, GBTM, and HCA) can simplify dense medication
exposure information while preserving some complexity
regarding gestational timing of use and of dose changes,
yielding more well-defined exposure groups than can the
binary exposure approach. There are readily available
software packages for implementing the methods (Web
Table 1). However, several challenges must be addressed
when using unsupervised clustering methods.

Identification versus overextraction of groups. Medication
exposure data are subject to multiple sources of error (35,
36), including under- or overreporting, lack of adherence,
differences between dates of prescription fills and medica-
tion use, variability in doses, and inaccuracy of assigning the
date of conception or start of pregnancy. If exposure data are
recorded with error, unsupervised clustering methods may
assign individuals to trajectory groups different from the
ones that would have been assigned on the basis of actual
use and could change the shape of the trajectories from what
they would have been without errors. In addition, although
clustering methods create more within-group homogene-
ity of the exposure(s) being modeled, there is still expo-
sure heterogeneity within groups. Greater variability within
clusters could potentially reduce the strength of exposure-
outcome associations. Spaghetti plots of individual trajecto-
ries graphed against the group trajectory can help elucidate
within-group heterogeneity (37).

Finally, methods used to identify unobserved groups or
clusters are vulnerable to overextraction or identifying fic-
titious groups (38), and different clustering methods will
likely produce different clusters (39). Applying unsuper-
vised clustering methods does not necessarily result in useful
or “true” clusters, and there is subjectivity in identifying
the number of clusters for a study. In addition to considera-
tions regarding group size, coupling clustering methods with
clinical and biological knowledge is vitally important for
identifying clinically relevant clusters of medication users.

Differences in gestational length. The methods we have
described thus far require exposure data during the entire
exposure period of interest, and imputation methods are
available if data are missing. However, in pregnancy
research, exposure windows may differ between individuals
because of different gestational lengths. For example, a
woman who delivered at 34 gestational weeks would not
have information on medication dose during pregnancy
after 35 gestational weeks. In this example, it would not
be sensible to impute the woman’s medication use after
delivery. To avoid imputation of medication use after
delivery, some investigators have fit models only during

gestational weeks when all pregnancies were ongoing;
for example, by excluding women delivering before 32
gestational weeks and focusing on medication exposures
during the first 32 gestational weeks (4, 17).

Other challenges to consider. With many unsupervised
clustering methods available, there is no consensus on the
most suitable clustering method given a certain data set
(40). More research is needed to compare these methods
in scenarios specific to pregnancy. Furthermore, it may be
unclear whether modeling daily dose, cumulative dose, or
another function of dose is best for a particular medication.
An approach of modeling daily dose may be better suited
for medications that are chronically used with relatively
little variability, such as long-term use of a medication that
some women discontinue or initiate during pregnancy (e.g.,
an antidepressant). In contrast, a monotonically increasing
approach of modeling dose, such as cumulative dose, may
be better suited for medications that change rapidly from a
dose of 0 to a high dose and back to 0 within a few days (e.g.,
oral corticosteroids or opioids).

Challenges when using medication clusters for
outcome estimation

Unsupervised clustering methods may be used in both
descriptive drug utilization studies and exposure-outcome
association analyses. In the latter case, it is important to
carefully consider potential biases that could arise when
estimating associations between medication trajectories and
perinatal outcomes.

Bias from exposure misclassification. In studies using a
binary exposure definition, there is an expectation of bias
towards the null if exposure misclassification is nondiffer-
ential with respect to the outcome; this is not necessarily
the case with clustering methods if more than 2 groups
best describe the data (41, 42). Studies may also use differ-
ent methods to determine the date when pregnancy began;
differences in these methods may lead to misclassifica-
tion, especially for preterm births when using administrative
claims-based algorithms (43).

Selection bias. All unsupervised clustering approaches
discussed may result in bias from selection due to differences
in gestational length among the study participants and
the need to avoid imputation of medication use after
delivery. This may particularly affect studies that are focused
on outcomes for which the etiologically relevant period
includes late gestation. A central challenge in obtaining
valid estimates in perinatal epidemiology is the omnipresent
selection due to pregnancy losses occurring at every stage of
gestation (44–46), and clustering methods are not immune
to this. Furthermore, requiring pregnancies to progress to
a certain point may reduce immortal time bias but increase
selection bias.

Immortal time bias. Classification of exposure during preg-
nancy can result in immortal time bias when entry into the
exposed group is conditional on that pregnancy continuing
long enough to have the opportunity for exposure, free of
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the outcome of interest or any competing event. The time
before exposure occurs is considered “immortal” because
any outcome occurring before the opportunity for exposure
would result in the event being assigned to the unexposed
group, conferring an apparent protective effect of exposure
(47–49). Pregnancies in which the outcome occurs before
exposure would erroneously be classified as unexposed (48),
although the pregnancies did not continue long enough to
potentially become exposed to the medication. Pregnancies
in which the outcome of interest is not experienced will
thus have a greater chance (i.e., longer “survival”) for being
exposed to the medication during the follow-up.

Bias from confounding by indication. The core feature
of unsupervised clustering methods is to group individuals
together on the basis of similar longitudinal patterns of expo-
sure. If researchers aim to investigate associations between
trajectories and outcomes, the reasons for individuals to have
similar trajectories of exposure must be evaluated. Consider
hypothetical clusters of opioid use identified using GBTM in
a cohort of patients who have migraine: a cluster going from
intense use before pregnancy to low use through the first
trimester versus a second cluster with consistently intense
use before and during pregnancy. In this example, it is pos-
sible that the first cluster experienced remission of migraine
with pregnancy onset, resulting in the trajectory of treatment
in that cluster. If migraine status is a confounder that is not
accounted for in the analysis, the resulting effect estimate
may be biased. This problem is compounded when the
potential confounder changes over time and is affected by
past exposure (e.g., if migraine status changes over time and
affects use of opioids at later time points in the pregnancy).

Although some clustering methods can incorporate time-
varying covariates (50), these methods cannot be used to
account for scenarios where time-varying confounding is
affected by prior exposure. Time-varying confounding by
underlying disease severity is especially a concern because
changes in disease severity are often closely linked with
changes in medication use and dosages of use and are often
associated with the outcome. Thus, if trajectories or clusters
of medication use are to be used in an outcome model (e.g.,
as the exposure in a model for risk of a perinatal outcome),
researchers should consider whether methods to adjust for
time-varying confounding are needed.

TIME-VARYING MEDICATION EXPOSURE AND
PERINATAL OUTCOMES

Thus far, we have focused on modeling complex longi-
tudinal exposures, and we have discussed the potential for
bias with those approaches, including inability to adjust for
time-varying confounders that also affect the exposure. In
the following sections, we discuss 2 methods of estimating
exposure parameters that address time-varying exposures.

The extended Cox model

Extended Cox models allow correct allocation of exposed
and unexposed person-time during the follow-up (51); thus,
they are useful in medication-in-pregnancy studies where the

exposure status is a function of time. Like the Cox propor-
tional hazard model, this method contains a baseline hazard
function multiplied by an exponential function; however, in
the extended Cox model, the exponential function contains
both time-dependent and time-independent predictors (51).
Time-dependent prenatal medication exposures are defined
by an interaction term between the exposure variable and
time t. The start of the follow-up time is usually set to the
start of pregnancy.

A major assumption of the extended Cox model is that
the hazard at time t depends on medication exposure status
at the same time t and not on exposure status at later or
earlier times (51). It is possible to allow lag-time variables
for past medication exposure (51). Within this method, pre-
natal medication exposure status can be redefined during
the follow-up time. A pregnancy is considered exposed
only from the period of time after the actual intake of a
medication; likewise, a pregnancy is considered unexposed
from the beginning of the follow-up and up to the time of
actual medication exposure, if exposure occurs (47). The
correct allocation of time prevents immortal time bias (48).

Although the extended Cox model accounts for the expo-
sure being a function of time, it provides a single regression
coefficient for each time-varying exposure, which represents
the overall estimate of the association between the time-
dependent medication exposure and the perinatal outcome
of interest (51). The interpretation of a resulting hazard ratio
estimate would then be that at any given time t, the hazard
for an unborn child who has already been exposed to a med-
ication in utero is an estimated number of times higher than
the hazard of an unborn child who has not been exposed to
a medication by that time (but may be so later in gestation).

Some medication-in-pregnancy studies in which extended
Cox models were applied exist in the literature (Table 1). In
the majority of these associations were estimated between
various prenatal medication exposures (i.e., nonsteroidal
anti-inflammatory drugs, decongestants, or H1N1 vaccine)
with proximal outcomes such as miscarriage and preterm
birth (47, 52–54) or maternal major depressive relapse (55)
(Table 1). Comparing the results of the standard versus
extended Cox models shows that estimates from the time-
independent model are biased because of immortal time (47,
52, 53), leading to an underestimation of increased risks or
an overestimation of protective medication effects.

Extended Cox models can account for the exposure being
a function of time, but there is no explicit modeling of time-
varying exposure in relation to time-varying confounders.
For instance, the extended Cox model would be unable to
account for time-varying depression in pregnancy, which is
affected by prior antidepressant exposure and determines
future antidepressant exposure. The models are thus unable
to provide time-specific estimates for the medication expo-
sure (51), and their application does not overcome the poten-
tial bias introduced by time-varying confounding (56). For
this, g-methods are required.

Generalized Methods

For many women, medication use is modified at preg-
nancy and throughout gestation, often in response to changes
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in underlying disease status or perceived risk of exposure.
For exposures that occur at a single time point, modeling
approaches are well described in pregnancy literature (57)
and in pharmacoepidemiology more generally (58). Expo-
sures that change over time present a thornier methodologi-
cal problem.

Consider an example of prenatal exposure to selective
serotonin reuptake inhibitors (SSRIs), where the outcome of
interest is risk of low birth weight in the infant. We may be
interested in the effects of discontinuing SSRI use before the
end of the first trimester, during mid-pregnancy, or contin-
uing use throughout pregnancy. Even if the first SSRI treat-
ment status were assigned randomly, an ethical study design
would allow for treatment to change depending on the sever-
ity of maternal depressive symptoms: women with refractory
depressive symptoms might have their dosages increased,
whereas those responding well to cognitive behavioral ther-
apy might decrease or discontinue SSRI treatment. In this
example, depression severity is a time-varying confounder.
To estimate the causal effect of SSRI exposure on offspring
risk of low birth weight, we must control for depression
severity. However, depression severity is affected by prior
SSRI exposure, meaning that the current value for SSRI
exposure has a causal effect on later depression severity.
Depression severity is on the causal pathway between treat-
ment and outcome and is simultaneously a confounder. Fail-
ing to adjust for depression severity will result in bias from
residual confounding, but adjustment for depression severity
blocks some of the effect of treatment and, in addition, could
induce collider stratification bias (59) (Figure 3A and 3C).

In epidemiology, recognition of the problem of treatment-
confounder feedback led to the development of the gen-
eralized (g) computation formula (g-formula) (56). Later
innovations addressing similar problems under different
assumptions included the inverse probability of treatment-
weighted marginal structural models (IPTW-MSM) (60)
and g-estimation of structural nested models (61). In non-
parametric settings with no interaction between exposure
and confounders, these methods will produce identical or
near-identical results; however, in parametric settings, some
differences will arise due to the assumptions and restrictions
that are a function of the portion of the data being modeled.

Briefly, the IPTW-MSM approach estimates marginal ef-
fects with respect to time-varying confounders by specifying
models for the treatment at each time point, conditional
on treatment and confounder history. IPTW-MSM makes
fewer assumptions than do the g-formula or g-estimation
of structural nested models, and because there is no need
to specify a model for the outcome or confounders, this
approach is less prone to model misspecification. Weights
can be inefficient or unstable, however, especially in high-
dimensional settings where there are very rare or zero-
probability combinations of exposure and confounders
(62).

G-estimation of structural nested models takes a similar
approach to IPTW-MSM but estimates effects conditional
on time-varying confounders by explicitly modeling interac-
tions between time-varying exposure and confounder (63).
This approach is more efficient than IPTW-MSM, but very
computationally intensive; it is particularly useful in settings

where effect modification is of interest. The g-formula esti-
mates marginal effects by modeling the outcome conditional
on confounders and treatment, and for each measurement
of the time-varying confounder conditional on treatment
and confounder history (62, 64). The g-formula method can
easily handle complex joint interventions and is overall more
efficient than IPTW-MSM and structural nested models if
the model is correctly specified. However, these gains in
complexity and efficiency come with several very strong
assumptions. The g-null paradox means that the model is
inconsistent with the causal null, whenever there is a non-
null effect of past treatment on future covariates (62). It
also requires modeling more of the data distribution, so
misspecification is a larger concern than with other meth-
ods. Even in the absence of misspecification, the g-formula
models potential outcomes under all possible interventions,
so interpretation of results is difficult with high-dimensional
treatments. These approaches allow for additional refine-
ments, termed collectively “doubly robust” methods, which
include targeted minimum loss-based estimation. Doubly
robust methods model both the outcome and exposure mech-
anisms, and will yield unbiased effect estimates if either of
these models is correctly specified (65). Targeted minimum
loss-based estimation is a substitution estimator, meaning it
is not prone to predicting values outside the sample, which
is a drawback of singly robust g-methods (62).

Collectively, these methods offer the opportunity to con-
sider hypothetical interventions that would change exposure
from what was observed to prespecified regimes. Inherent
in the g-methods approach is the design of a randomized
controlled trial, either real or hypothetical. We can express
the estimates from these models in terms of interventions:
the effect of an intervention that causes everyone in our
study to discontinue SSRI before the 13th week of gestation
versus, for example, no intervention or natural course, or
intervening to ensure everyone in our study continues SSRI
use throughout pregnancy.

We return to the example of SSRI exposure and mater-
nal depressive symptoms to illustrate the link between g-
methods and the clustering methods we described previously
in this article. In our hypothetical study, SSRI exposure is
measured twice: at the 13th and 28th gestational weeks. At
these measurements, participants are asked to report on their
depressive symptoms, and their SSRI treatment is adjusted
as needed. For the simplest binary-exposure definition, we
would expect to see a group who used SSRIs at both times,
a group with no SSRI use at any time, as well as groups that
changed over the course of the study. In fact, there are 22,
or 4, possible exposure groups, and if we allow 3 categories
of SSRI exposure (none, low dose, high dose), there are 32,
or 9, groups. Assuming that all pregnancies in our study
proceed to term, we could fit a GBTM to the longitudinal
SSRI exposure variable over the study period, with the goal
of grouping together pregnancies with similar trajectories
of treatment. The 4-group GBTM solution could include
a group with constant high SSRI use, a group with initial
SSRI use who discontinued in early pregnancy, and a group
who discontinued early but resumed SSRI treatment during
the latter part of gestation, and a group of never users. A
generalization of these groups is illustrated in Figure 3B.
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Figure 3. Using trajectories as exposures may mask time-varying confounding, resulting in biased estimates. A) Late exposure is a collider
between early exposure and a confounder, C, opening a backdoor path to the outcome Y. C) Feedback between exposure and confounding
means that estimates that do and do not control for C will be biased. A, C) Both causal models are consistent with trajectories described by the
graph in (B). Group 1 is early exposure only; group 2 is late exposure only; group 3 is always exposed; and group 4 is never exposed.
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The difficulty occurs when we use the groups defined by
the GBTM in a model estimating the effect on low birth
weight risk. Figure 3A and 3C illustrate different possi-
ble causal models that are both consistent with the trajec-
tory groups, but in which the sensitive period of exposure
and the confounding structure are very different. Although
now masked by the trajectories, the problem of exposure-
confounder feedback is still present: depressive symptoms
are 1 of the causes of the different trajectory shapes; there-
fore, using the trajectories as our exposure implicitly adjusts
for depressive symptoms. Estimates from this model will
likely be biased. Although we can include time-varying
covariates for depressive symptoms in our GBTM (50),
this does not appropriately address treatment-confounder
feedback.

However, g-methods and clustering approaches may still
be complementary. For example, the g-formula is a model
for all potential outcomes given all combinations of treat-
ment and covariate history, making interpretation of results
challenging when there are many variations of treatment,
many measurements, or both. Using a clustering method to a
priori identify treatment regimes of particular interest would
mitigate this issue by allowing researchers to prioritize the
most salient treatment patterns. This could be particularly
effective in applications where the joint effects of polyphar-
macy are of interest.

IPTW-MSMs have had limited uptake in the pregnancy
medication literature (Table 1). Examples include studies
estimating the effect of iron supplementation with anemia at
delivery (66), triptan exposure with neurodevelopment (67),
antidepressant exposure with preeclampsia (68) and neu-
rodevelopment (69), and paracetamol exposure with cere-
bral palsy (70). In these studies, researchers used marginal
structural models to estimate effects of treatment at spe-
cific times in pregnancy, which could be used to identify
higher risk-exposure windows. Using the marginal structural
model method allowed for appropriate control of measured
time-varying confounding from sources such as concomi-
tant medication use or maternal depressive/anxiety symp-
toms. To our knowledge, other causal modeling approaches
have not been applied to the study of medications in preg-
nancy.

Other complex problems in perinatal pharmacoepidemi-
ology, including time-varying pregnancy losses, competing
risks, and differences in gestational length, are addressable
to some extent with g-methods, which can model time-
varying censoring processes affected by treatment and
covariates. Several g-methods tutorials are published and
provide an accessible entry into a very dense literature
(62–64, 71). Notably, these complex methods require well-
measured, time-varying treatment and covariate data, which
may not be readily available in the administrative databases
often used to conduct pregnancy medication-safety studies
(72) and may require augmentation with richer data sources
(73). Biases described previously (e.g., identification of the
start of pregnancy, misclassification) are still issues here;
furthermore, even rich data sources often have information
on disease severity collected a few times during pregnancy,
but treatment can change many times, limiting the practical
application of more complex methods.

IMPLICATIONS AND CLINICAL TRANSLATION

In this article, we have discussed a range of methods
for addressing an important challenge in pregnancy medi-
cation research: how best to deal with complex longitudinal
exposures. As larger data sources with increasingly granular
medication-use data become more widely available, and as
medication use among pregnant women increases (74–76),
methods for modeling exposure must evolve in complex-
ity to keep up. We have focused on presenting 2 distinct
approaches for addressing complex longitudinal exposures.
Using unsupervised clustering techniques allows researchers
to conduct data-driven examinations of complex exposure
patterns, which have been linked to perinatal outcomes.
Causal modeling approaches, such as g-methods for estimat-
ing exposure effects in the presence of time-varying con-
founding, test the effect of prespecified exposure windows
on outcomes. We suggest that combining these methods can
be a powerful approach to understanding medication safety
in pregnancy.

Unsupervised clustering methods are helpful for descrip-
tive analyses because their use allows visual examination
of medication use trajectories over time in gestation and
complex individual-level exposures (4, 28, 31), and can
provide insight into comedication and drug switching (31,
34), particularly when statistical results are combined with
expert clinical opinion on the utility of the observed groups.
Furthermore, unsupervised clustering methods can be useful
for summarizing exposure from multiple time points in high-
dimensional data such as from electronic health records (73).
Researchers can use this approach to define and classify rele-
vant windows of exposures as close as possible to real-world
situations (2, 3), and the approach also can inform analytical
studies. Using extended Cox models, analysts can redefine
prenatal medication exposure status during follow-up (53),
which limits the risk of immortal time bias, but extended
Cox models cannot explicitly model joint or time-varying
exposure in the presence of time-dependent confounders as
g-methods do (56, 60, 77, 78). Construction of treatment
episodes, time-varying confounders, cumulative exposure
and latency, and treatment switching remain fundamental
problems of time-varying methods, including extended Cox
models and g-methods. G-methods, together with unsuper-
vised clustering methods and descriptive analyses, can shed
light into possible sensitive windows of medication exposure
in pregnancy (67–69), which remain unknown for many
perinatal and maternal outcomes (e.g., preterm birth, child
neurodevelopment, preeclampsia).

We have described some of the more common approaches
to addressing longitudinal exposure in medications-in-
pregnancy studies, but other methods have been used as well.
For instance, Bluhmki et al. (79) incorporated time-varying
medication exposure during pregnancy and miscarriage as
separate states in a multistate model to deal with the problem
of left truncation and competing risks from other pregnancy
outcomes. As this field continues to develop, it is critical that
researchers evaluate methodologic novelty in terms of the
potential gains but also the risks of bias. Development of a
guideline for reporting results from unsupervised clustering
methods, similar to existing guidelines for reporting results
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from latent trajectory studies (80), would be a worthwhile
endeavor.

Despite the advances and benefits of novel longitudinal
exposure modeling methods, challenges remain. One such
challenge is the lack of user-friendly quantitative bias anal-
ysis methods to correct for exposure misclassification that
work with either clustering methods or time-varying expo-
sures and confounders. Bias analysis is a useful tool to help
researchers understand how much their effect estimates may
be biased due to selection, misclassification, and confound-
ing, and can incorporate both systematic and random error.
These methods, however, largely assume a single binary ex-
posure and outcome variable (81, 82), and their application
to clustering methods for the exposure is unclear because of
lack of methodological research on this topic. Importantly,
the use of these more granular methods assumes that the
quality of available data can support this kind of analysis.
For example, the larger the discrepancy between medication
prescription or dispensing information in electronic health
record data and the actual dose and dates of medication use,
the less useful these more complex methods are.

Another important challenge lies in how to communicate
results from complex exposure analyses into clinical terms.
Clinicians and women have so far interpreted risks according
to trimester-specific exposures, dose, or as “ever” exposed
in pregnancy, and so understanding more complex exposure
patterns may be challenging. However, researchers may
facilitate understanding by describing for each cluster the
average daily dose and number of days of medication use
during gestational windows.

In conclusion, longitudinal exposure methods are of par-
ticular interest in medication-in-pregnancy studies, because
they can model complex exposures, shed light on potential
vulnerable windows of exposure, and, ultimately, mirror
real-world situations of medication use in pregnant women.
Careful attention should be paid to the underlying assump-
tions, strengths and limitations, and potential for bias within
each of these newer methods when conducting drug uti-
lization or medication-safety studies in pregnancy. It is also
essential to note that simpler binary approaches have some
advantages over more complex methods, such as increasing
power and minimizing some kinds of exposure misclassifi-
cation. Efforts should be made to advance use of these newer
methods in pregnancy research, where appropriate, and to
maximize their utility in informing risks to maternal–child
health.
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