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Abstract

A standard view in cognitive psychology is that people esti-
mate probabilities using heuristics that do not follow proba-
bility theory. We describe a model of probability estimation
where people do follow probability theory in estimation, but
are subject to random error or noise. This model predicts that
people’s conditional probability estimates will agree closely
with probability theory for certain noise-cancelling expres-
sions, but deviate from probability theory for other expres-
sions. We describe an experiment which strongly confirms
these predictions, suggesting that people estimate conditional
probabilities in a way that follows standard probability theory,
but is subject to the biasing effects of random noise.

Introduction
Probability theory provides a calculus of chance describing
how to make optimal predictions under uncertainty. Up to
the 1960s the standard view in psychology was that people’s
probabilistic reasoning essentially followed probability the-
ory. However, various systematic biases in people’s proba-
bility judgements (many identified in the 1970s and 1980s by
Tversky, Kahneman and colleagues) led researchers to con-
clude that, in fact, people do not follow probability theory but
instead estimate probabilities using various heuristics. While
these heuristics often yield reasonable judgments, they can
also produce strong biases in people’s probabilistic reasoning
in certain cases (Tversky and Kahneman, 1973).

In this paper we return to the view that people follow prob-
ability theory when reasoning about uncertainty. We present
a simple model of conditional probability judgment (judg-
ment of probabilities P(A|B): the probability of A given that
B has occurred) where people estimate probabilities accord-
ing to probablity theory, but are subject to random error or
noise in recall from memory. Importantly, this model pre-
dicts that bias will be ‘cancelled’ for certain combinations of
conditional probability estimates, and so those combinations
should agree closely with probability theory. In an exper-
iment testing this prediction, we find close agreement with
probability theory for noise-cancelling expressions, alongside
systematic deviation from probability (in just the direction
predicted by the model) for other expressions.

Estimating probabilities
In standard probability theory, the probability of some event A
is estimated by drawing a random sample of events, counting
the number of those events that are instances of A, and di-
viding by the sample size. In probability theory the expected

value of these estimates is equal to P(A), the probability of A;
individual estimates vary with an approximately normal dis-
tribution around this value. We assume that people estimate
the probability of A in exactly this way: randomly sampling
episodes from memory, counting the number that are A, and
dividing by the sample size. We assume a long-term mem-
ory from which a random sample of episodes or traces can
be drawn. For some event A we assume that each episode i
holds a flag set to 1 if i contains event A and set to 0 otherwise.
An estimate for the probability of A is obtained by randomly
sampling episodes from memory, counting the number where
the flag for A is set to 1, and dividing by the sample size.

If this counting process was error-free, people’s estimates
would have an expected value of P(A). Human memory is
subject to various forms of random error, however. To re-
flect this we assume some small probability d < 0.5 that when
some flag is read, the value obtained is not the correct value
for that flag. We assume that this noise is symmetric, so that
the probability of 1 being read as 0 is the same as that of 0
being read as 1. We also assume a minimal representation
where every type of event, be it a simple event A, a conjunc-
tive event A∧B, a disjunctive event A∨B, or any other more
complex form, is represented by such a flag, all with same
probability d of being read incorrectly.

A randomly sampled event will be counted as A if the event
truly is A and its flag is read correctly (this occurs with prob-
ability (1− d)P(A), since P(A) events are truly A and flags
have a 1−d chance of being read correctly), or if the event is
truly ¬A (not A) and its flag is read incorrectly as A (this oc-
curs with probability (1−P(A))d, since 1−P(A) events are
truly ¬A, and flags have a d chance of being read incorrectly).
The expected value or average for a noisy estimate of P(A) is
the sum of these two terms:

〈PE(A)〉= (1−2d)P(A)+d (1)

with individual estimates varying around this value. This av-
erage is systematically biased away from the ‘true’ probabil-
ity P(A), such that estimates will tend to be greater than P(A)
when P(A)< 0.5, and less than P(A) when P(A)> 0.5. This
model explains observed patterns of bias in probability esti-
mates such as conservatism, underconfidence, subadditivity,
binary complementarity and the conjunction and disjunction
fallacies (see Costello and Watts, 2014, 2016).
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Table 1: 16 identities that must have a value of 0 in standard probability theory. Our model predicts if these identities are
computed from people’s individual probability estimates for any pair of events A,B, values obtained for identities 1 to 8 will
have a mean of 0, the value required by probability theory. Our model predicts that identities 9 to 16 will have values that are
positive and significantly different from 0, with identities 13 to 16 having values approximately half those of identities 9 to 12.

Label Identity Predicted value
1 P(A)+P(B)−P(A∧B)−P(A∨B) = 0
2 P(A)+P(B∧¬A)−P(B)−P(A∧¬B) = 0
3 P(A|B)P(B)−P(B|A)P(A) = 0
4 P(A|B)P(B)+P(A|¬B)−P(A|¬B)P(B)−P(A) = 0
5 P(B|A)P(A)+P(B|¬A)−P(B|¬A)P(A)−P(B) = 0
6 P(B|A)P(A)+P(A|¬B)−P(A|¬B)P(B)−P(A) = 0
7 P(A|B)P(B)+P(B|¬A)−P(B|¬A)P(A)−P(B) = 0
8 P(A|¬B)+P(B)+P(B|¬A)P(A)−P(B|¬A)−P(A)−P(A|¬B)P(B) = 0

9 P(A)+P(B∧¬A)−P(A∨B) = d
10 P(B)+P(A∧¬B)−P(A∨B) = d
11 P(A∧¬B)+P(A∧B)−P(A) = d
12 P(B∧¬A)+P(A∧B)−P(B) = d
13 P(A∧B)−P(A|B)P(B) = d/2
14 P(A∧B)−P(B|A)P(A) = d/2
15 P(A∧B)+P(A|¬B)P(B)−P(A)−P(A|¬B) = d/2
16 P(A∧B)+P(B|¬A)−P(B)−P(B|¬A)P(A) = d/2

Predictions
Consider the identities given in Table 1. Probability theory
requires that when the terms in the first identity (identity 1)
are summed, the resulting value must be 0 for all events A
and B. Our model also predicts that, on average, people’s
estimates for this identity will also sum to 0. For example
suppose we ask people to estimate P(A),P(B),P(A∧B) and
P(A∨B) and combine each person’s estimates in the form of
identity 1. Since the expected value of a sum is equal to the
sum of expected values of its terms, the expected value for
this combination is, using Equation 1,

〈PE(A)〉+ 〈PE(B)〉−〈PE(A∧B)〉−〈PE(A∨B)〉=
(1−2d) [P(A)+P(B)−P(A∧B)−P(A∨B)]+2d−2d = 0

and so we expect that the average value for this identity will
be 0 just as required in probability theory. Since individ-
ual values for this sum are perturbed by random noise, we
expect these individual values to be distributed symmetri-
cally around that mean of 0. The same prediction holds for
identity 2. A number of experiments have shown that these
identities do in fact hold in people’s probability judgments:
when we ask people to estimate probabilities for the terms in
these identities for a range of events, and then combine each
person’s estimates according to the identity, the values ob-
tained are distributed approximately symmetrically around a
mean of 0, as required by probability theory and predicted by
our model (Costello and Watts, 2014, Costello and Mathison,
2014, Fisher and Wolfe, 2014).

This model also predicts that people’s probability estimates

will violate the requirements of probability theory for identi-
ties 9 to 12 in Table 1, with the same degree of violation for
each identity. Probability theory requires that these identi-
ties must also sum to 0 for all events A and B. Substituting
our model’s expression for the expected value for estimates
of each term gives an overall positive expected value of d, vi-
olating the requirement of probability theory. For example,
the estimated value of the expression in Identity 9 is

〈PE(A)〉+ 〈PE(B∧¬A)〉−〈PE(A∨B)〉=
(1−2d) [P(A)+P(B∧¬A)−P(A∨B)]+2d−d = d

Again, a number of experiments have shown that these iden-
tities are indeed violated in people’s probability estimates, in
just the way predicted by the model. These results, however,
apply to only to unconditional or direct probabilities. In the
next section we describe our more general model of condi-
tional probabilities, and derive a similar set of results.

Estimating conditional probabilities
Just as above, we assume that people estimate P(A|B) by
drawing a random sample of instances of B, counting the
number that are also A, and dividing by the sample size. As
before, we assume some chance of random error d in this
counting process. Given this random error there are two mu-
tually exclusive ways in an item can be read as an instance of
event B: (i) when the item truly is an instance of B and is read
correctly (this occurs with probability (1− d)P(B)); and (ii)
when the item is actually ¬B but is read incorrectly as B (this
occurs with probability d(1−P(B))).
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We first take case (i). Given that a randomly sampled item
is read as B, the probability that the item is truly an instance
of B is

(1−d)P(B)
(1−d)P(B)+d(1−P(B))

=
(1−d)P(B)

(1−2d)P(B)+d

with the denominator here representing the probability that
an item will be read as B, and the numerator the probability
that such an item was read correctly.

Given that we truly have an instance of B, there are two
mutually exclusive ways in which that item can be read as A:
when the item is indeed an instance of A and is read correctly,
or when the item is actually ¬A and is read incorrectly as
A. Since P(A|B) is the probability of an item being truly an
instance of A given that it is truly an instance of B, the first
possibility occurs with probability (1− d)P(A|B); since 1−
P(A|B) is the probability of an item being truly ¬A given that
it is truly an instance of B, the second possibility occurs with
probability d(1−P(A|B)). The sum of these two probabilities
is (1− 2d)P(A|B) + d, and so the overall probability of an
instance being read as A given that it was read as B (and is
truly B) is

(1−d)P(B) [(1−2d)P(A|B)+d]
(1−2d)P(B)+d

(2)

Taking case (ii) and reasoning in just the same we we get
that the overall probability of an instance being read as A
given that it was read as B (but is truly ¬B) is

d(1−P(B)) [(1−2d)P(A|¬B)+d]
(1−2d)P(B)+d

(3)

Since (i) and (ii) are mutually exclusive and cover all pos-
sibilities, the sum of Equations 2 and 3 gives our predicted
value for 〈PE(A|B)〉, the average estimate for the conditional
probability P(A|B). Adding and using the identities

P(B)P(A|B) = P(A∧B)

(1−P(B))P(A|¬B) = P(A∧¬B) = P(A)−P(A∧B)

we get

〈PE(A|B)〉=
(1−2d)2P(A∧B)+d(1−2d) [P(A)+P(B)]+d2

(1−2d)P(B)+d
(4)

Just as with Equation 1, this average is systematically biased
away from the ‘true’ probability P(A|B).

A direct probability P(A) is, in probability theory, equiva-
lent to a conditional probability P(A|B) where the condition-
ing event B has a probability of 1. Rearrangement shows that
when P(B) = 1, Equation 4 reduces to Equation 1, our ex-
pression for direct probability estimation. Equation 4 thus
completely describes all probability estimates, both direct and
conditional, in this model. While Equation 4 appears compli-
cated, it follows directly from two simple assumptions: that
probabilities are estimated by counting event occurrence (in
accordance with probability theory) and that this counting
process is subject to random noise.

Predictions
From probability theory we have a number of identities
whose value must be 0 for all events A and B. One such iden-
tity is Bayes’ Rule (Identity 3 in Table 1). Our model pre-
dicts that this identity should also hold in people’s probabil-
ity judgments, on average. To see this, suppose we ask people
to estimate P(A),P(B),P(A|B) and P(B|A) and for each per-
son we take the products P(A|B)P(A) and P(B|A)P(A). Since
estimates vary independently, the expected value of the prod-
ucts is equal to the product of the expected values of their
constituents, giving

〈PE(A|B)PE(B)〉= 〈PE(A|B)〉〈PE(B)〉
= (1−2d)2P(A∧B)+d(1−2d)[P(A)+P(B)]+d2

and similarly

〈PE(B|A)PE(A)〉= 〈PE(B|A)〉〈PE(A)〉
= (1−2d)2P(A∧B)+d(1−2d)[P(A)+P(B)]+d2

and so

〈PE(A|B)PE(B)〉−〈PE(B|A)PE(A)〉= 0

Thus our model predicts that the average value of this identity,
computed from people’s individual probability judgments,
should equal 0 as required by probability theory. Since de-
viations from this expected average in individual estimates
are due to random error, we also expect that individual val-
ues for these identities will be approximately symmetrically
distributed around 0.

Similar expansion and rearrangement gives the same result
for Identities 4 through 8 in Table 1. Our model therefore pre-
dicts that these identities should all have an average value of
0 in people’s estimates (matching the requirements of prob-
ability theory), and that individual values for these identities
will be approximately symmetrically distributed around 0.

While this model predicts agreement with probability the-
ory for the identities given above, it also predicts that Iden-
tities 13 through 16 in Table 1 should have a positive value
in people’s estimates, violating probability theory. For exam-
ple, using the same substitutions as above we get an expected
value for Identity 13 of

〈PE(A∧B)−PE(A|B)PE(B)〉
= (1−2d)P(A∧B)+d− (1−2d)2P(A∧B)

−d(1−2d)[P(A)+P(B)]−d2

= d(1−d)−d(1−2d) [P(A)+P(B)−2P(A∧B)]

Similar substitutions gives exactly the same expected value
for identities 14,15 and 16. Probability theory requires that
0 ≤ P(A)+P(B)− 2P(A∧B) ≤ 1 for all A and B, and since
d < 0.5 by assumption, we see that values for this expres-
sion are distributed between d2 and d(1−d) and the expected
value for Identities 13 through 16 will is at the centerpoint of

2455



Table 2: A,B weather event pairs used in the experiment.

pair A, B pairs in Block 1 pair A, B pairs in Block 2
1 cold, rainy 6 cloudy, rainy
2 cloudy, icy 7 cold, icy
3 cold, thundery 8 cloudy, thundery
4 cloudy, warm 9 sunny, warm
5 sunny, snowy 10 icy, snowy

this range, which is d/2. Our prediction, therefore, is that
Identities 13 through 16 should have, on average, a value of
d/2; half the value of Identities 9 through 12.

An Experiment
We now describe an experiment testing the predictions of our
model; in particular, those concerning the identities shown in
Table 1. To test these predictions we gathered 62 participants’
estimates for the 10 different constituent probability terms in
the identities in the Table (i.e. P(A), P(A∧B), P(A|B) and
so on) for five different pairs of events. We combined each
participant’s individual estimates for each pair according to
the given identities. Participants in Block 1 saw one set of
five pairs of events and those in Block 2 saw a different set:
we expected the predictions to hold for both blocks.

Materials
We constructed two sets of pairs of weather events, each con-
taining five pairs; participants in Block 1 gave estimates for
one set of pairs and those in Block 2 gave estimates for the
second set. The two sets are shown in Table 2; the pairs were
selected so that each set contained events of high, medium
and low probabilities, and with varying conditional probabil-
ity relationships between events.

Method
Participants were 62 undergraduate students at the School of
Computer Science and Informatics, UCD, who volunteered
to take part in exchange for partial course credit. Participants
were asked to estimate the ten probabilities

P(A), P(B), P(A∧B), P(A∧¬B), P(¬A∧B), P(A∨B),

P(A|B), P(B|A), P(A|¬B), P(B|¬A)

for each of the five pairs of weather events, giving 50 esti-
mation questions for each participant. For single events, con-
junctions, and disjunctions participants were asked

• What is the probability that the weather will be W on a
randomly-selected day in Ireland?

where the weather event W could be, for example, ‘cloudy’,
‘cold’, ‘cloudy and cold’, ‘cloudy and not cold’ and so on.
For conditionals, participants were asked

• If the weather in Ireland is W on a given randomly selected
day, what is the probability that the weather will also be X
on that same day?

Table 3: Average value (SD) for Identities in the Experiment,
computed from participants’ probability estimates in Blocks 1
and 2. Values for identities 1 to 8 are close to 0, while values
9 to 16 are significantly different from 0 in one-sample t-tests,
as predicted by our model. Values for identities 13 to 16 were
approximately half of those for identities 9 to 12, again as
predicted by our model.

Block
Identity 1 2 predicted

1 0.00 (0.31) -0.03 (0.26) 0
2 -0.01 (0.26) -0.08 (0.30) 0
3 -0.01 (0.12) 0.00 (0.16) 0
4 -0.02 (0.20) 0.02 (0.20) 0
5 0.01 (0.19) 0.02 (0.19) 0
6 -0.01 (0.21) 0.02 (0.20) 0
7 -0.01 (0.16) 0.02 (0.11) 0
8 -0.02 (0.16) 0.00 (0.19) 0

9 0.24 (0.29)∗ 0.17 (0.26)∗ d
10 0.25 (0.31)∗ 0.25 (0.31)∗ d
11 0.25 (0.31)∗ 0.28 (0.32)∗ d
12 0.24 (0.29)∗ 0.20 (0.28)∗ d
13 0.14 (0.18)∗ 0.10 (0.18)∗ d/2
14 0.13 (0.20)∗ 0.10 (0.20)∗ d/2
15 0.12 (0.26)∗ 0.12 (0.27)∗ d/2
16 0.13 (0.22)∗ 0.12 (0.22)∗ d/2

** p < 0.0005, with Bonferroni correction for multiple
comparisons

where W and X were the two single component events of the
conditional P(X |W ). Participants gave their estimates on a
100-point scale, with the 0 point labelled ‘will never hap-
pen’ and the 100 point labelled ‘certain to happen’. Questions
were presented in random order on a web browser. The task
took around half an hour to complete. Participants’ responses
these were divided by 100 prior to analysis.

Results
Two participants were excluded because they gave the same
response for all questions, leaving 60 participants (31 in
Block 1 and 29 in Block 2). As a consistency check we
split participants in each block into two random groups and
calculated the average probability estimate in each group for
each one of the 50 presented probability terms. If participants
were responding consistently we would expect there to be a
reliable correlations between these split-half averages. Both
blocks showed a high correlation between split-half averages
(r = 0.96, p < 0.0001 and r = 0.97, p < 0.0001), indicating
consistent responses.

Deviations from probability theory As predicted by our
model, average values for identities 9 to 16 were positive for
every A, B pair in both blocks, representing significant devia-
tion from probability theory’s requirement that these identites
have a value of 0 (see Table 3). Average values for every one
of these identities were significantly different from probabil-
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ity theory’s value of 0 in one-sample t-tests across individual
values in both blocks ( p < 0.0005 in all cases, with Bonfer-
roni correction for multiple comparisons), just as predicted.

Recall that our model predicts that Identities 9 through 12
should all have the same average value, equal to d (the rate
of random error for a given participant), and that Identities 13
through 16 should all have the same average value, equal to
d/2. The average values in Table 3 support this prediction:
values for Identities 9 through 12 were all close to their over-
all mean of 0.235 and values for Identities 13 through 16 were
all around half that value (close to their overall mean of 0.12).

We would expect this chance of random error, d, to vary
across participants, but to be relatively constant within a given
participant. To test this prediction, for each participant we
calculated the average value of Identities 9 through 12 from
that participant’s estimates and measured the correlation be-
tween participants’ values for pairs of identities. All correla-
tions were positive (average pairwise correlation of r = 0.57);
of the six pairs, five showed a significant correlation at the
p< 0.001 level (with Bonferroni correction for multiple com-
parisons), while correlation for the remaining pair was not
significant (p = 0.17). Similarly, for each participant we cal-
culated the average value of Identities 13 through 16 from that
participant’s estimates and measured the correlation between
participants’ values for pairs of identities. Again, all correla-
tions were positive (average pairwise correlation of r = 0.71);
all pairs showed a significant correlation at the p < 0.001
level (with Bonferroni correction for multiple comparisons).

Agreement with probability theory
We expected reliable agreement with probability theory for
the identities 1 to 8. This expectation was also confirmed.
For all identities 1 to 8, participants’ responses had an aver-
age value very close to probability theory’s required value
of 0 in both Blocks 1 and 2. Averaging across all these
identities gave a grand mean of M = −0.006(95%CI =
[−0.002,+0.015],SD = 0.22). Figure 1 graphs the frequency
of occurrence of values for these identities. It is clear from the
graph that values for these identities are symmetrically dis-
tributed around 0, the value predicted by our model. G1 sam-
ple skewness for values for each identity in this graph were
close to zero (all fell in the range±0.15), and the overall sam-
ple skewness across all identities was G1 =−0.01, indicating
symmetric distributions (Bulmer, 2012).

This pattern of close agreement with probability theory for
identities 1 to 8 also held for each individual event pair A,B.
There are 80 different averages for these identities in Table
3 (10 event pairs by 8 identities); of these 74 (92.5%) fell
in the range −0.1 . . .+ 0.1, and 48 (60%) fell in the range
−0.05 . . .+ 0.05. We analysed the distribution of these val-
ues for individual event pairs by carrying out 80 separate one-
sample t-tests. Of these 80 tests,none were significantly dif-
ferent from 0 at the p < 0.01 level; with Bonferroni correc-
tion for multiple comparisons, just one t-test was marginally
significant (p = 0.04). JZS Bayes Factor tests on overall val-
ues for identities (across all pairs) gave evidence in favour of
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Figure 1: Frequency of occurrence of different values for
Identities 1 through 8 in Experiment 1 across all A, B pairs in
the experiment, grouped into ‘bins’ from v−0.05 . . .v+0.05
for v from −1 to +1 in steps of 0.1. For example, since there
were 60 participants in the experiment and each participant
saw five pairs of events, the value of Identity 7 was calcu-
lated 5×60 = 300 times in total. Grouping these values into
bins, we find that more than 60% of these calculations gave a
value that fell in the −0.05 . . .+0.05 bin. Probability theory
predicts these values will be symmetric around 0.

the null hypothesis (that the value for the identity is 0) in all
but one identity (and the overall value for that identity was
still relatively close to 0). These results suggest that values
for all these identities are distributed around 0, just as pre-
dicted by our model. Of course, the fact that some values for
these identities were different from 0 means that there may
be some other factor in play that is not accounted for in our
model. However, even values that were significantly different
from 0 were nevertheless still close to 0; this suggests that,
even if there is some other such factor, the influence it has is
small.

Discussion and Conclusions
We can summarise the main point of our work as follows:
when deviations due to noise are cancelled out in people’s
probability judgments (as in Identities 1 through 8), those
judgements are, on average, just as required by probabil-
ity theory with no systematic bias. This pattern of agree-
ment with probability theory holds for all the different event
pairs A,B in our experiment. This agreement with probabil-
ity theory cannot be dismissed by suggesting that our partici-
pants happened to be particularly good at probability estima-
tion, because this agreement occurs alongside significant bias
away from the requirements of probability theory for identi-
ties which do not cancel out the effects of random noise (Iden-
tities 9 through 16). For these identities the average degree of
bias follows the predictions of our model (an approximately
constant degree of bias d for Identities 9 through 12, and an
approximately constant degree of bias d/2 for Identities 13
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through 16). Taken together, the most natural explanation for
these results seems to be that people estimate probabilities us-
ing a mechanism that is fundamentally rational (in line with
frequentist probability theory), but is subject to the biasing
effects of random noise.

While our results demonstrate that people’s probability es-
timates follow probability theory (when bias due to noise is
cancelled) we do not think people are consciously aware of
the equations of probability theory when estimating proba-
bilities. Indeed we doubt whether the participants in our ex-
periment were aware of the probablity theory’s requirement
that thse identities should equal 0 or would be able to ap-
ply that requirement to their estimations. Instead we propose
that people’s probability judgments are derived from a ‘black
box’ module of cognition that estimates the probability of an
event A by retrieving (some analogue of) a count of instances
of A from memory. Such a mechanism is necessarily subject
to the requirements of set theory and therefore embodies the
equations of probability theory.

We expect this probability module to be based on observed
event frequencies, and to be unconscious, automatic, rapid,
relatively undemanding of cognitive capacity and evolution-
arily ‘old’. Support for this view comes from that fact that
people make probability judgments rapidly and typically do
not have access to the reasons behind their estimations, from
evidence that event frequencies are stored in memory by an
automatic and unconscious encoding process (Hasher and Za-
cks, 1984), and from results showing that animals effectively
judge probabilities (for instance, of obtaining food from a
given source) and that their probabilities are typically close
to optimal (Kheifets and Gallistel, 2012).

Our results have implications for current approaches to
the psychology of people’s probabilistic reasoning. In par-
ticular, our results are problematic for the view that people
estimate probabilities via heuristics such as ‘representative-
ness’ (Tversky and Kahneman, 1983) or ‘denominator ne-
glect’ (Reyna and Brainerd, 2008) that do ‘do not appear to
follow the calculus of chance or the statistical theory of pre-
diction’ (Kahneman and Tversky, 1973, p. 237). It seems
to us that such heuristic accounts are motivated by the as-
sumption that the observed biases and errors seen in people’s
probability judgments cannot be explained by probability the-
ory. This motivation arises because probability theory is the
normative model against which these biases and errors are
assessed. If researchers had not taken those biases and errors
as evidence that people don’t reason using probability theory,
they would have had no reason to propose those alternative
accounts. However, our model suggests that these biases do
not, in fact, count as evidence that people don’t reason using
probability theory. Those alternative models thus lose their
fundamental motivation: there is no reason for moving from
probability theory to those alternative accounts in an attempt
to explain human probabilistic reasoning. There is, in con-
trast, an underlying motivation for the probability theory plus
noise model: the probability of events in the world necessar-

ily follow the rules of probability theory, and our reasoning
processes are necessarily subject to noise.

Our results have broader implications for research on pat-
terns of bias in aspects of people’s decision-making. A com-
mon pattern in such research is to identify a systematic bias in
people’s responses, and to then take that bias as evidence that
people are reasoning via some heuristic shortcut rather than
the correct reasoning process. Our results, however, show that
this inference from observed bias to inferred heuristic can be
premature: random noise in reasoning can cause systematic
biases in people’s responses even when people are using nor-
matively correct reasoning processes. To demonstrate con-
clusively that people are using heuristics, researchers must
show that observed biases cannot be explained as the result
of systematic effects caused by random noise.
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