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Pulsed Radiation by a Phased Semi-Infinite Periodic 
Planar Array of Dipoles 

Filippo Capolino’, and Leopold B. Felsen’ 
1) Dip. Ingegneria dell’Informazione, UniversitA di Siena, Via Roma 56, 53100 Siena, Italy. 
2) Dept. Aerospace and Mechanical Eng., and Dept. of Electrical and Comp. Eng., Boston 

University, 110 Cummington St., Boston, MA 02215, USA. 

I. Introduct ion 
To gain an understanding of the sparsely explored time domain (TD) behavior of 

periodic arrays of radiating or scattering elements (phased array antennas, frequency 
selective surfaces and related applications), we have initiated a systematic investigation 
of relevant canonical TD dipoleexcited Green’s functions (GF), which so far include 
those for infinite and truncated line periodic arrays [l], [2], as well as for infinite planar 
periodic arrays [3]. Such Green’s functions have been parameterized in terms of TD- 
Floquet waves (FW) of cylindrical [l] and planar type [3], and truncation-induced 
TD-FW-modulated diffractions [Z]. 

Such waves on semi-infinite and finite square arrays of dipoles have been inves- 
tigated in the frequency domain (FD) [4], and shown to be useful in practical array 
applications [5]. The present contribution extends our T D  studies to an infinite pe- 
riodic sequentially pulsed semi-infinite planar array. The phenomenology associated 
with truncated TD-FW and truncation-induced diffraction is explained in terms of in- 
stantaneous frequencies aided by asymptotic parameterization. Preliminary numerical 
results demonstrate the efficiency of the TD-FW algorithms. 

11. Statement of the Prob lem 
The geometry of the semi-infinite planar array of dipoles oriented along the Jo direction 
and excited by transient currents in free space is shown in Fig.1a. The period of the 
array is dz and d, in the 2 and z directions, respectively. The E field component 
is simply related to the Jo-directed magnetic scalar potential A which shall be used 
throughout. A caret ~ tags timedependent quantities; bold face symbols define vector 
quantities; i , ,  i, and i, denote unit vectors along x, y, and z ,  respectively. FD and T D  
quantities are related by the Fourier transform pair A(w) = J-mm A(t)e-Jwtdt ,  A(t) = 
& II”,A(w)eJwtdw. The phased array FD and TD dipole currents J ( w )  and j ( t ) ,  
respectively, are given by 

In the m, n-dependent element current amplitudes multiplying the delta function in (1) 
the FD portions wqzx’/c and wqzz’/c account for an assumed (linear) phase difference 
between adjacent elements in the z and z directions, respectively, and qz/c and qz/c 
denote interelement phase gradients normalized with respect to w. The T D  portion 
identifies sequentially pulsed dipole elements, with the element at (x’, z’) = (nd,, md,) 
turned on at time t,,, = (qZndz + qzmd,)/c.  

111. FD and TD Floquet  Waves for  the Infinite Ar ray  
A):Frequency Domain  FW. Applying the infinite Poisson summation formula to 
the doubly-infinite sum over the radiation by each dipole we obtain the total field ex- 
pressed as Atot(r,w) = E&, A,”,” where theFW Arqw(r,w) = e-jk.F.W”/(2jd,d2ky~c,,,). 
Here, qqw = k,,i, + kypqiy  + kzgir  denotes the total FW,, propagation vector, and 
r = zi, + yi, + zi, the distance to the observer. The spectral wavenumbers 
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Fig. 1. a) Semi-infinite periodic planar array of electric dipoles. U, points in the direction of the 
phasing q / c  with 7 = (73 + 7:)’”. b) Radiated fields. Parameters in Sec.V. 

k ,  = wqz/c + c y p ,  up = 27rp/dz, k,, = wqz/c + c y y r  cyq = 27rq/dz (2) 
characterize FW propagation along z and z, respectively, and k,,(w) = ( k 2  - k:, - 
k:,)-’/’, where k = w/c, with k the ambient wavenumber, c the ambient wave speed, 
and 9rn k,,, 5 0 on the top Riemann sheet. Floquet waves with transverse propagation 
constants kt,pq < k or kt,pq > k ,  kt,p, = (k:, + k&-’/’, are propagating or evanescent, 
respectively, in the y-direction. 
B):Time Domain FW. The inversion of the FD-FW is written as Arqw(r,t) = 

F(w) exp(-j$(w))dw in which F ( w )  accounts for the slowly varying amplitude 
terms and $(w) = k,,z + kyp,y + k z - wt, with ICz,,, k,, and kz, functions of w, 
accounts for all the w phase terms 7: the exponent. For p = q = 0, the phase is 
linearly dependent on w and the inverse Fourier transform is evaluated as t )  = 
( 2 d z d z m ) - 1 c U ( t  - t o ) ,  in which q = m; U(T)  = 0 or 1 for T < 0 or 
T > 0, respectively, is the Heaviside step function; and to = (qzz + qzz + m y ) / .  
is the turn on time [3]. For p # 0 or q # 0, the phase G(w) contributes to the inverse 
Fourier integral through the asymptotic local frequencies wpq(r ,  t )  which satisfy the 
saddle paint condition ( d $ / d ~ ) ~ ~ ~  = 0, and parameterize the TD-FW wave dynamics. 
The solutions [3] 

with up, = c(q.a, + qzaq)/( l  - q’), W,, = [G,”, + a,”,c2/(1 - q 2 ) ] ’ / 2 ,  are real in the 
causal domain t > t o  = (7.2 + qzz)/c + TO (T > TO). Standard asymptotic evaluation 
of the pqth TD-FW w-integral leads to [3] as 

ce-j(Qp2+QpX),-j(-i)’ff/4 e j ( G p q T + ( - l ) ’ & q m )  

d l d z J m  &(T’ - 7:)’l4 - (4) 
The unit step function U(T-TO) = U(t-to) arises because real saddle point frequencies 
wpy,i are restricted to T > TO ( t  > t o ) .  

A;$(,, t )  - 

IV. FD and TD Floquet Waves for the Semi-Infinite Array 
A):Truncation-Induced FD Diffracted Fields. As shown in [4], truncated FD- 
FW expressions are obtained by deformation of the relevant spectral integration path, 
followed by uniform asymptotics, 

Atot(r,w) = ~A,FdN(r,w)U(&?(w) - 4) + x A ; f ( r , w )  ( 5 )  
PI, 9 
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where AFqw(r,w) are the FWs, and A: are the q-th cylindrical diffracted fields due to 

the truncation. The radial wavenumber IC,, = ,/= with Csrnk,, < 0 implies radial 
exponential decay when lkl < so that only a few A; terms in (5) are necessary away 
from the truncation. $”(U) is the shadow boundary of the truncated FW,, which, for 
propagating FWs, coincides with the FW,, propagation angle &(U) = cos-’ (kz , /kpq);  
B ( w )  = {l - expljd,(kp,(w) cos $ - W ~ ~ / C ) ] } - ~  ; F ( z )  is the transition function of the 
Uniform Theory of Diffraction (UTD)[4], with argument 6,,(w) = d-sin(($ - 
~$~ , (w) ) /2 )  and $ = cos-’(z/p) is the observation angle measured from the truncation 
of the array, see Fig.1. Every FW, in (5) is the same as that for the infinite array, 
except that its domain of existence is the region q5 < 6;:. 
B): Truncation-Induced T D  Diffracted Fields. To parameterize the truncat- 
ed FW phenomenologies in terms of instantaneous frequencies and wavenumbers, we 
access the time domain through Fourier inversion of Atot(r,w) in (5) which has been 

solution to early observation times near the wavefronts. Each of the AFqw(r,w) and 
its corresponding diffracted field A$r,w) has a particular arrival time, near which the 
FD asymptotics will be most accurate. Again we need to distinguish between the dis- 
persive q # 0 and the nondispersive q = 0 cases. The asymptotic inversion procedure is 
analogous to that in [Z], but differs in detail. We shall only list the results. The ”quasi 
nondispersive” q = 0 (a, = 0) term is decomposed based on the relations kPo(w) = 
w/~( l -92 ) ’ /~  and B ( w )  = l / Z + j  C,”=-,[w/c(1-q:)1/2(cos $-cos$oo)-ap]-’. There- 
fore, Fourier inversion for the terms in (6) corresponding to the p = 0 contributions 
can be done in closed form, 

obtained by high-frequency asymptotics This restricts the validity of the truncated TD 

with rd = m p / c  and t d  = 9xz/c + 7 d .  All the other pterms (with q = 0) yield 
truncated TD-FW via moving shadow boundaries $ p : ( ~ ~ , , ~ ( t ) )  and the diffracted fields 
can be approximated in the neighborhood of $ B ( ~ ~ o , , ( t ) )  as in [2] for the truncated 
line array. For q # 0, TD inversion from the high-frequency result in (6) is based on 
the stationary (saddle) points w,, defined by (d$d/dw)I,: = 0, [l] of the composite 

phase q d ( w )  = k,,p + k,,a - wt ,  

which are real in the diffracted-field causd domainr‘ > Td ( t  > t d ) .  The two solutiodfh 
(8) identify the local instantaneous frequencies of oscillation of the q-th diffracted wave 
at a given point r and a given instant 7‘. The corresponding instantaneous wavenumbers 
kq,i(t) = w;,j(t)/c, kzq,i(t) E %w:,i(t)/C + a,, and kpq, i ( t )  = (k&(t) - kZ,,i(t))-’/2 are 
all real for t > td, and kpq, j ( t )  -+ 0 fo r t  -+ CO. Standard asymptotic8 leads to 
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i = 1,2. It can be shown that wqd,cutoff P wt(b  + 00) 5 ug:rf E wPq,i(t + XI), arid 
thus, since t d  2 t o ,  at a certain time t = t&? 2 t d ,  the y-th diffracted and pq-th FW 
local instantaneous frequencies are equal, i.e., ut($:) = wpq(t::). Furthermore, it 
can be shown that cos q5p,(wpq(ti:)) = cos q5, which means that at t = t:: the py-th 
moving SB intercepts the stationary observer a t  r; there the q-th TD diffracted field 
has a transitional behavior that compensates for the truncation of the py-th TD-FW, 
and restores total field continuity. 

V. Band Limited Pulse Excitation 
When each dipole in (1) radiates a practically useful band-limited (BL) pulse 

G[t-(qrz+qzz)/c],  the corresponding band-limited TD-FW xFqwiBL forp or y # 0 and 
TD-diffracted field A$BL for y # 0, can be evaluated by including the pulse spectrum 
G(w)  in the impulsive inversion integral. For wideband (short duration) pulses, G(w) 
can be considered slowly varying with respect to the phases G(w) and @(U), and 
can therefore be approximated by its value at the saddle point frequencies wp,,,i(t), and 
w,&(t) for FWs and diffracted fields, respectively. The asymptotic BL-TD fields 
and are found by multiplying the ordinary asymptotic A;$ and A$ by G(w,,,+) 
and G(w&J, respectively. The FD-FWoo and y = 0 diffracted field are not inverteble 
by w-asymptotics and are calculated by convolving 6(t) with the TD-FW 2tow(t) and 
xf(t)  in (7), respectively. Preliminary numerical experiments have been carried out to 
test the accuracy of the asymptotic solutions for 2FFBL, and to compare the results 
with a reference solution obtained by an element-by-element summation over the pulsed 
BL radiation from all dipoles, i.e., 6[t-(qrz+qzz) - n , , , ) / ~ ] / [ 4 a ~ ~ ~ ) ] - ' ,  with R,,,, = 
((z-nd~)2+(z-7nd~)2+y2)'/2,  m, n = 0, f l ,  2 ~ 2 ,  .... The mn-series has been truncated 
at lml, 1111 < 130, comprising all non-negligible element radiations. Figure l b  shows 
plots for a semi-infinite planar array with interelement phasing = qz = 0 (broadside 
radiation) and interelement spacing (1, = 10dz in order to highlight the new phenomena 
(with respect to the truncation in [2]) due to the z-dispersion relation for diffracted fields 
(all fields with p # 0 are negligible). BL excitation: normalized Rayleigh pulse 6(t) = 
!Reb/( j  + w ~ t / 4 ) ~ ]  (i.e., g(0) = 1 ); G(w) = ~ ( 6 w ~ ) - ' ( j 4 w / w ~ ) ~ e x p ( - 4 1 w / / w , ~ ) ;  
central radian frequency WM = Zac/d, (AM E 2 a c / w ~  = dz).  Observer location: 
(z,y,z) = (-dz/2,8d,,0) so that q5 = 93.6", and since $0, = 90" diffracted fields are 
in transitional behavior. Since U(& - 9) = 0, no FWoq are present. Fields Act) 
are plotted versw normalized time t / T ,  with T = &/c .  The almost identical turn-on 
times to/T = 8 and td/T = 8.02 also indicates that diffracted fields are in transitional 
behavior. The included asymptotic terms p = 0 and IyI 5 1 (solid curve), suffice to 
give good agreement with the reference solution (dotted curve), demonstrating good 
convergence of the TD-FW representation. 
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