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Abstract 

 

Here we develop a microscopic approach aimed at the description of a suite of physical effects 

related to carrier transport in, and the optical properties of, halide perovskites. Our theory is based 

on the description of the nuclear dynamics to all orders and goes beyond the common assumption 

of linear electron-phonon coupling in describing the carrier dynamics and band gap characteristics. 

When combined with first-principles calculations and applied to the prototypical MAPbI3 system, 

our theory explains seemingly disparate experimental findings associated with both the charge-

carrier mobility and optical absorption properties, including their temperature dependencies. Our 

findings demonstrate that orbital overlap fluctuations in the lead-halide structure plays a significant 

role in determining the optoelectronic features of halide perovskites. 
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Halide perovskites (HaPs) such as MAPbI3 have found applications in several optoelectronic 

devices1–5 including photovoltaic cells, where power conversion efficiencies rival those of highly-

processed crystalline silicon despite a solution-based route to their synthesis.6–9 High efficiencies 

are related to long carrier diffusion lengths, as dictated by the carrier mobility-lifetime product, 

and near-optimal absorption features, including a sharp absorption edge.10 These advantageous 

properties are likely linked to the unusual physical characteristics of the lead-halide bonds, notably 

their mixed ionic-covalent character and their low-frequency, large-amplitude anharmonic lattice 

displacements, which generate significant polar fluctuations.11,12 Concomitantly, the HaP 

electronic band-structure is reflective of typical inorganic semiconductors, with low effective 

masses of holes and electrons, suggesting large mobilities and efficient carrier transport. This 

combination of nuclear and electronic properties appears to be unique in the context of high-

efficiency semiconductors. 

The unusual nature of lattice fluctuations in HaPs renders traditional solid-state approaches, which 

generally rely on small (harmonic) displacement models with linear electron-phonon coupling,13,14 

suspect for the description of the carrier and optical absorption properties of these compounds. It 

has been shown that conventional theories either generally strongly underestimate the temperature 

(T) dependence of HaP mobilities or misrepresent their room-T magnitudes.15–17 For example, 

acoustic-phonon scattering models yield a room-T value that is several orders of magnitude above 

experimental data,15 while large polaron theories based on optical-mode scattering strongly 

underestimate its T-dependence.16–19  A very recent ab initio study employing linear coupling to 

optical modes was successful in describing the T-dependence of the carrier lifetimes in MAPbI3.
20 

With respect to this latter study, it should be noted that while models based on the assumption of 

low-order electron-phonon coupling form the standard basis for the description of the T-

dependence of semiconductor band gaps,21,22 such models appear not to capture the T-dependence 

of the MAPbI3 band gap.23,24 In particular, a proper description of this effect was found to require 

strongly non-linear electron-phonon coupling.25 Lastly, there is currently no microscopic 

description of how the large-amplitude anharmonic lattice displacements in HaPs, which 

seemingly should yield large fluctuations in the band gap, relate to the sharp optical absorption 

edge of MAPbI3 at room-T.10 To the best of our knowledge, a unified microscopic theory that 

would rationalize all of these important physical characteristics of HaPs does not currently exist. 
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Surmounting the challenges presented by these puzzles will thus greatly enable the design of new 

materials that build upon the attractive features of HaPs.  

Here, we take a major step in this direction via the formulation and theoretical investigation of a 

fully microscopic model describing the interplay between electronic structure and nuclear motion 

in MAPbI3 which makes no limiting assumptions about the harmonic nature of the lattice or the 

specifics of the electron- (hole-) phonon coupling. When our model is combined with first-

principles calculations for the prototypical HaP variant MAPbI3, it provides a reasonably accurate 

description of the charge-carrier mobility and optical absorption properties, including their T-

dependencies, as validated by comparison to pertinent experimental data. The theory highlights 

the importance of anharmonic fluctuations of the Pb-I bonds that evolve in time and space and 

produce large temporal and spatial modulations of orbital overlaps. In contrast to canonical 

inorganic semiconductors, the charge carrier dynamics in MAPbI3 are thus characterized by sizable 

off-diagonal electron-phonon coupling effects, which limit carrier mobilities without resulting in 

substantial carrier trapping or impacting the sharpness of the absorption edge in MAPbI3. 

Our model aims to simulate very large system sizes and thus begins with a computationally 

efficient tight-binding (TB) parameterization of the band structure, as previously done, see, e.g., 

Refs. 26,27. It includes real-space descriptions of the on-site energies associated with occupancy of 

the relevant s-and p-orbitals of Pb and I, as well as the kinetic energy arising from  and  overlaps 

of these orbitals, which determine the hopping parameters in the TB scheme. We note that our TB 

scheme proceeds via a projection of the Bloch wavefunctions, calculated using density functional 

theory (DFT), onto atomic wavefunctions as described in the Supporting Information (SI). The TB 

approach thus naturally includes the important effect of spin-orbit coupling taken into account at 

the DFT level. Furthermore, the underlying PBE exchange-correlation functional was found to 

provide a fairly accurate description of the effective masses of MAPbI3, which are important for 

the theoretical evaluation of the carrier dynamics. Orbital overlaps and on-site energies are 

functions of the instantaneous nuclear configuration and may be updated as the nuclei move at 

each new set of lattice locations. As the lattice motion in HaPs exhibits anharmonic contributions 

around room-T, in our microscopic model we stipulate to go beyond the harmonic approximation 

and describe the nuclear displacements to all orders by virtue of fully unconstrained molecular 

dynamics (MD). These may be straightforwardly generated from a given force field28 or via ab-
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initio molecular dynamics (AIMD) whereby the force on each atom is generated on-the-fly from 

the instantaneous electronic density calculated self-consistently in DFT. Here we select the former 

approach, as the latter is currently computationally infeasible for the subsequent quantum 

dynamics simulations. The force field used here is known to reproduce T-dependent dynamical 

changes of the MAPbI3 lattice and stands in reasonable agreement with AIMD calculations.29 Due 

to the fact that it produces an elastic modulus that is approximately 20% too large,28 it perhaps 

slightly underestimates the size of the fluctuations highlighted below. Further details can be found 

in the SI.   

Figure 1 (a) Typical dynamical fluctuations in MAPbI3 at 300 K of orbital overlap and on-site energies 

as calculated via the DFT-tight-binding approach. The dynamical fluctuations in the orbital overlap 

generally exceed those in the on-site energies, which is unique for polar semiconductors. (b)  

Fluctuations of the orbital overlap, illustrating how large changes in the lead (gold)-iodine (pink) 

distance induce large fluctuations. (c) An exponential fit of the distance dependence of one of the 

hopping terms; the inset depicts a sketch of the change in Pb-I orbital overlap corresponding to the 

two highlighted points in panel (b). (d) Histogram (red curves) of the dynamically changing Pb-I 

distances and of the orbital overlap (shown in the inset), both recorded at 300 K. The distributions 

of both observables show strong deviations from a Gaussian behavior (dashed curves). 
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Fig.1a shows the dynamical fluctuations of both the orbital overlap and on-site energy for a 

particular bond and atom type when the DFT-based tight binding parameters are recomputed every 

time step along a representative MD trajectory of nuclear motion around room-T. We note that the 

fluctuations in the on-site energies of MAPbI3 on the basis of a TB model were highlighted 

before.30 Strikingly, here we find that the scale of the fluctuations in the orbital overlap is sizable 

(on the order of 15-20% of the mean value of the hopping parameter) and generically larger than 

that of the on-site energy fluctuations. Fig. 1b shows that the microscopic origin of the fluctuations 

is rooted in changes of Pb-I covalency due to anomalously large displacements within the mixed 

ionic-covalent inorganic framework, reminiscent of off-diagonal intermolecular fluctuations in 

organic semiconductors.31 Unsurprisingly, the orbital overlaps may be well-fit by a simple 

exponential function of the distance between the Pb and I atoms for all three relevant bond types.  

Fig.1c shows an exponential fit of the orbital overlap values generated over a series of ~15 ps MD 

trajectories with the DFT-TB approach, while the inset sketches the Pb-I orbital overlap for short 

and long Pb-I bonds. The correspondingly large non-linear off-diagonal fluctuations induce 

scattering mechanisms that, within the family of polar semiconductors, appears unique to HaPs.  

When the fluctuations in the orbital overlap and on-site energy TB parameters are expressed in 

terms of a small-amplitude, linear-order Taylor expansion of the nuclear coordinates, they generate 

Peierls-type (off-diagonal) and Fröhlich-type (polaronic or diagonal) electron-phonon couplings, 

respectively.13,32 Importantly, state-of-the-art first-principles descriptions of electron-phonon 

interactions in semiconductors usually do not account for Peierls coupling (which imparts a 

momentum-dependence to the electron-phonon vertex), and secondly typically only consider the 

linear term in the Taylor expansion of the electron-lattice potential.13,14 Here, we find that in 

MAPbI3 the fluctuations in the off-diagonal coupling are large and cannot be ignored. Furthermore, 

in Fig. 1d we show histograms of the statistics of the fluctuations of the Pb-I bond length and 

orbital overlap. Both distributions are markedly non-Gaussian, which demonstrates that Pb-I 

displacements are anharmonic and that the electron-phonon couplings are effectively non-linear. 

A spectral analysis (see SI) shows that the phonon modes which dominate the hopping fluctuations 

comprise a low frequency band that includes the dominant TO mode as well as motion with 

characteristic frequencies commensurate with LO modes associated with Pb-I-Pb bending and Pb-

I stretching,20 while the on-site energy fluctuations are controlled by the dominant LO mode. 
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Having established that anharmonic nuclear motions and off-diagonal, non-linear electron-phonon 

coupling need to be taken into account when describing carrier dynamics in MAPbI3, our next step 

concerns examining their effect on quantum transport of electrons and holes. An explicit nuclear-

coordinate dependence of the TB parameters, as described in the SI, enables an approximate 

description of the quantum dynamics in MAPbI3. In particular, a semiclassical (Ehrenfest) 

treatment,32 where the electronic degrees of freedom are computed exactly while the nuclear 

degrees of freedom are treated classically (albeit with no assumptions of small amplitude or 

harmonic displacement), allows for a facile extraction of the charge mobility,31 as described in the 

SI. We have carried out full Ehrenfest calculations including the mean-field back-reaction force of 

the charge on the nuclei, but we find the effect of this force to be very small (~1% changes to the 

mobility) similar to results of previous models of charge transport in organic crystals.33 We thus 

neglect the back-reaction force for data production runs. We also note that while this approach has 

known deficiencies,32 it should be accurate when the frequency of nuclear motion is very small 

compared to that associated with the magnitude of the mean orbital overlap terms, as is the case in 

MAPbI3. Treatments which quantize the nuclear motion and go beyond a semiclassical approach 

as well as numerical details (e.g., initial conditions and trajectory lengths), are reported in the SI.  

As shown in Fig. 2a and b, the time evolution of the carrier is affected strongly by the temporal 

and spatial fluctuations of the orbital overlaps: charge carriers in MAPbI3 diffuse through a 

potential energy landscape (see Fig. 2c) that involves disordered couplings within the lead-halide 

lattice, which retards a coherent spread of the wavefunction but without causing significant carrier 

trapping. Our approach allows for the direct examination of the implications of this unusual 

scattering mechanism for the carrier dynamics in MAPbI3 by simulations of very large system 

sizes. This is a necessary attribute of a real-space approach, where the diffusive limit (which can 

be detected by a pronounced plateau in the time derivative of the quantum mean-square 

displacement) must be reached before the amplitude of the electronic wave function reaches the 

simulation boundaries. Indeed, as described in the SI, we use simulation cell lengths on the order 

of 100 unit cells in our final calculations, far larger than the expected size of polarons in MAPbI3.
16 

Finite size studies illustrate that the mobilities extracted with such large cells yield converged 

results.  

 



7 
 

 

In Fig. 2d, we show the simulated T-dependence of electron mobilities. Remarkably, semi-

quantitative agreement is found when the theory is compared to the results of recent experiments 

with respect to both the magnitude of the room-T mobility (with a best estimate of e 135 cm2/Vs) 

as well as its T-dependence (approximately ~T-2).23,34–36 The hole mobility is expected to be 

approximately 1.5 times smaller at 300 K (see SI). Experimental data on carrier mobilities in 

MAPbI3 do scatter in the literature but are generally found to be of the order of, or slightly less 

than, 100 cm2/Vs at room-T,37 which is very close to our approximate result. Further improvements 

to our theory, such as using more advanced DFT functionals in the TB parameterization or 

Figure 2 (a) Two-dimensional projection of the spread of a conduction-band Wannier wave-packet (as described 

in the SI) at 5 fs (a) and at 50 fs (b). Note that while a localized wave-packet is used here for illustrative purposes, 

our mobility calculations employ the correct canonical initial condition. The wave-packet spread shows that the 

coherent transfer of free carriers is retarded by the disorder in the potential landscape and orbital fluctuations. 

The spreading is anisotropic due to fact that p-p Pb-I overlap dominates.  Thus, it is expected that the mobility 

also encodes this anisotropy. (c) Calculated quantum mean-squared displacement from initial carrier position. 

Two time points corresponding to (a, pre-diffusive) and (b, diffusive) motion are illustrated. It shows that the 

orbital-overlap fluctuations result in nearly-free carriers that diffuse in MAPbI3. The crossover time implies mean 

electron-phonon scattering times of 10fs or less at 300K. (d) Thermally averaged mobility (see SI) as function of 

temperature and a fit to the T-dependent data. 
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including dynamic effects beyond displacements in the nuclear fluctuations may be required for 

being able to making even more accurate predictions of the carrier dynamics. It is also noted that 

the exponent in the T-dependence of the mobility has been reproduced in experiments to lie 

between ~-1.5 to –2.836,37,which is far above (300% to 500%) the exponent estimated from the 

large polaron model16,17 but within 30% to 40% of our estimate.  

Having found that our theoretical model allows for a largely accurate description of the carrier 

dynamics in MAPbI3 around room-T, our mobility data enable us to quantify the importance of 

the different scattering mechanisms included in our model. We find that the temporal and spatial 

fluctuations of orbital overlaps that arise from large atomic displacements and result in off-

diagonal coupling fluctuations are the dominant factor in the T-dependence of the mobility (see 

SI). Our approach provides a fully microscopic theoretical description capable of capturing the 

non-trivial simultaneous consistency of the magnitude and T-dependence of the mobility. We have 

focused on the scattering mechanisms in HaPs pertinent around room-T, which is most important 

for their use in devices. But at lower T other mechanisms not included in our model, e.g., scattering 

by ionic impurities, could be important especially when the magnitude of nuclear displacements 

is reduced. 

The theoretical framework outlined here may also be used to quantitatively describe and 

understand several puzzling features associated with the optical properties of HaPs.  In particular, 

experiments have demonstrated that MAPbI3 exhibits a mild band gap opening with increasing 

temperature, as well as a sharp, weakly temperature-dependent absorption edge.10,23–25,38 The 

former feature is difficult to rationalize with low-order electron-phonon coupling,25 while the latter 

feature is surprising given the large scale of thermal disorder in MAPbI3 discussed above.  Within 

our model, these puzzles may be addressed via calculation of the time-dependence of the 

instantaneous band gap at different temperatures driven by nuclear motion. Fig. 3a illustrates the 

temperature-dependent change in the band gap from a reference value at 300 K that is in very good 

agreement with experimental data. Previous theoretical work relied upon high-order electron- 

phonon coupling to describe the observed behaviour,25 while such coupling, as well as anharmonic 

corrections, are naturally captured by our model. It should however be noted that we have 

neglected excitonic effects in our account of the band-gap opening. This is justified because the 

exciton binding energy only varies by ~10 meV from very low to room-T,39 while the band gap  
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changes by ~20 meV over the much smaller T range from 300 K to 350 K. As thermal nuclear 

motion also leads to a distribution of band gaps which vary with T,40,41 it can affect the sharpness 

of the absorption edge as characterized by the Urbach energy, EU.42,43 Using the T-dependent width 

of the gap distribution (see SI for convergence tests), we find Urbach energies EU= 10.7 meV (220 

K) and 14.7 meV (300 K) as reported in Fig. 3b, which compare remarkably well with measured 

values of EU=11.0 meV (200 K), 14.5 meV (300 K).10,38 It should be noted that the off-diagonal 

Figure 3 (a) Experimental band gap as a function of temperature and theoretical data using linear-electron-

phonon coupling (denoted “AHC+TE”), as adapted from Refs. 23-25, compared to theory of this paper; all data 

are aligned to their values at 300 K. (b) The Urbach energy quantifies the steepness of the optical absorption 

profile; comparison is made between the theory of this paper and the experimental results of Ref. 38. As charge 

and orbital fluctuations are correlated spatially only over short distances, the distribution of the T-dependent 

instantaneously recorded band gap values is narrow, resulting in small Urbach energies. 



10 
 

orbital overlap fluctuations contribute approximately 50% to the magnitude of EU
 in our 

calculations.   

The seemingly surprising confluence of a strongly limited mobility and a small EU may be 

understood by noting that charge scattering is completely determined by local lattice fluctuations, 

while the band gap is a global quantity that exhibits statistical self-averaging. Naively one expects 

that in an infinite size system band-gap fluctuations tend to zero, but this is only true when no 

spatial correlations of such fluctuations exist.40 Instead, EU is known to depend on the correlation 

length of the disorder potential, where long-range correlations result in wider band-gap 

distributions and larger EU.41 We quantify the correlation length of the disorder potential to be on 

the order of less than one unit cell of MAPbI3 (see SI), which shows that it is short-ranged. This 

explains the mild effect of the lattice fluctuations on the sharpness of optical absorption. 

In conclusion, we have presented a unified, fully microscopic model capable of accurately 

describing several of the most important and perplexing properties of HaPs, including the unique 

features that limit charge transport and the sharpness of the absorption edge in these systems. Our 

approach combines a computationally efficient DFT-TB scheme with large-scale MD to allow for 

quantum-dynamical simulations of the prototype material MAPbI3 that naturally incorporate the 

effects of the anharmonicity of nuclear motion and non-linear electron-phonon coupling. A major 

finding of our work is that large-amplitude anharmonic displacements in the lead-halide lattice 

involve charge and orbital fluctuations that lead to off-diagonal coupling modulations and play a 

leading role in determining these features, in stark contrast to typical inorganic semiconductors. In 

addition to providing a microscopic rationalization of the highly unusual properties of systems 

such as MAPbI3, the theoretical framework presented here promises to enable the rational design 

of as yet undiscovered related materials with tailored and optimized optoelectronic properties. 
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