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Abstract 

Direct and indirect translational control of mRNA concentrations in Escherichia coli 

By 

Huanjie Sheng 

Doctor of Philosophy in Integrative Biology 

University of California, Berkeley 

Professor Daniela Kaufer, Co-Chair  

Doctor Han N. Lim, Co-Chair  

 

The survival of bacterial cells requires the coordinated regulation of genes and proteins so that 
cells can quickly and efficiently respond to opportunities for rapid cell growth and to stresses of 
different environments. Many of the networks and mechanism for the coordinated regulation 
of genes and proteins involve the control the production, degradation and translation of 
messenger RNAs (mRNAs). This dissertation focuses on the relationship between translation 
and the regulation of mRNA production and degradation that occurs without (direct 
translational control) and with (indirect translational control) the action of small non-coding 
RNAs (sRNAs). The results shine a light on the designing process of circuits in bioengineering 
and the mystery of complicated bacterial stress responses and adaptations. 
 
In the first chapter, we developed a new metric named threshold overlap score (TOS) that 
measures colocalization between biomolecules. TOS describes whether two or three 
biomolecules occur in the same place more than chance. Specifically, TOS quantifies the 
percentage of overlapping signals between two or three channels with respect to the uniformly 
distributed random signals and rescales this value so that it is easily interpretable. The TOS 
metric was used in the third chapter to quantify sRNA localization in the nucleoid, which 
provided novel insight into their role in mRNA transcription, degradation and translation. 
 
In the second chapter, we built an open source tool (ImageJ plugin) with an easy-to-use user 
interface called EzColocalization. EzColocalization gives biologists without programming 
experience access to imaging segmentation, data visualization, and colocalization analyses 
including TOS, other classic colocalization metrics and custom colocalization measurements. A 
form of EzColocalization was used in the first chapter to demonstrate and valid TOS as useful 
metric and it was used in the third chapter to measure sRNA colocalization and understand the 
role in mRNA in mRNA transcription, degradation and translation.  
 
In the third chapter, we studied the subcellular localization of sRNAs to elucidate their roles in 
mRNA production, degradation and translation. Based on our data, we concluded that sRNAs 
can but mRNAs cannot enter the densely packed nucleoid. This phenomenon is due to the 
active translation and larger size of mRNAs. These findings indicate that sRNAs have the 
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potential to regulate nascent mRNAs in the nucleoid prior to the completion of mRNA 
transcription, which increases their potential impact and efficiency as a regulator. 
 
In the fourth chapter, we constructed mathematical models that capture “real-world” 
regulation. Unlike the classic central dogma model where mRNA production and degradation 
and protein production and degradation are all completely independent, the real-world model 
includes the effects of translation on premature transcription termination and mRNA 
degradation. The simulations reproduce key experimental observations and show that the 
coupling of translation to mRNA production and degradation to increase quality control occurs 
at the cost of efficiency. 
 
Together, the four chapters in this dissertation provide novel insight into the direct and indirect 
control of mRNA concentrations by sRNA localization and translational feedbacks, and how 
these sophisticated regulatory processes may benefit bacterial growth and adaptation.



 
 

i 
 

Table of Contents 
 

Acknowledgements ............................................................................................ v 

Introduction: An overview of gene regulation in Escherichia coli and the role of 

small RNAs in controlling gene expression ......................................................... vi 

I. Mechanisms of mRNA production and degradation ............................................ vii 

I.I. Mechanisms of transcription ...................................................................................... vii 

I.I.i. Mechanism of transcription initiation ....................................................................... vii 

I.I.ii. Mechanism of transcription elongation ................................................................... vii 

I.I.iii. Mechanism of transcription termination ............................................................... viii 

I.II. Mechanisms of mRNA degradation ......................................................................... viii 

I.II.i. 5’ end-dependent mRNA degradation .................................................................... viii 

I.II.ii. 5’ end-independent mRNA degradation .................................................................. ix 

I.II.iii. The digestion of mRNA fragments by exoribonuclease .......................................... ix 

II. Regulation of mRNA concentrations .................................................................... x 

II.I. Genome structures ...................................................................................................... x 

II.I.i. Gene position .............................................................................................................. x 

II.I.ii. Gene clustering and orientation ............................................................................... xi 

II.I.iii. Operon ..................................................................................................................... xi 

II.II. Impact of translation................................................................................................. xi 

II.III. Regulation by sRNAs ............................................................................................... xii 

II.IV. Impact of subcellular localization ........................................................................... xii 

III. Summary ........................................................................................................ xiii 

Chapter 1: Systematic and general method for quantifying localization in 

microscopy images ................................................................................................... 1 

1.1 Abstract.................................................................................................................. 1 

1.2 Introduction ........................................................................................................... 2 

1.3 Results .................................................................................................................... 3 

1.3.1 Calculating the threshold overlap score (TOS) ....................................................... 3 



 
 

ii 
 

1.3.2 Generating TOS matrices ........................................................................................ 7 

1.3.3 Interpretation of TOS analysis in samples with mixed localization patterns ......... 9 

1.3.4 Comparison of TOS with other metrics of localization ......................................... 11 

1.3.5 Comparison of TOS with other metrics of localization ......................................... 13 

1.3.6 TOS values can distinguish localization patterns in experimental data with high 

specificity and high sensitivity .......................................................................................... 16 

1.4 Discussion ............................................................................................................ 19 

1.5 Materials and Methods ....................................................................................... 21 

1.5.1 Simulations, calculation of metrics, and statistical analyses ................................ 21 

1.5.2 Receiver operating characteristic (ROC) curves ................................................... 21 

1.5.3 Analysis of images ................................................................................................. 21 

Chapter 2: EzColocalization: An ImageJ plugin for visualizing and measuring 

colocalization in cells and organisms ...................................................................... 22 

2.1 Abstract................................................................................................................ 22 

2.2 Introduction ......................................................................................................... 23 

2.3 Results .................................................................................................................. 24 

2.3.1 Overview of EzColocalization workflow ................................................................ 24 

2.3.1.1 Inputs ............................................................................................................ 24 

2.3.1.2 Cell Filters ...................................................................................................... 25 

2.3.1.3 Visualization tab ............................................................................................ 27 

2.3.1.4 Analysis ......................................................................................................... 29 

2.3.2 Applications of EzColocalization ........................................................................... 31 

2.4 Discussion ............................................................................................................ 38 

2.5 Materials and Methods ....................................................................................... 40 

2.5.1 EzColocalization development .............................................................................. 40 

2.5.2 Description of packages and classes for EzColocalization .................................... 40 

2.5.3 Testing of EzColocalization ................................................................................... 43 

2.5.4 Download and installation .................................................................................... 43 

2.5.5 Data acquisition guidelines ................................................................................... 43 

2.5.6 Image alignment ................................................................................................... 45 

2.5.7 Heat maps, scatterplots and metric matrices ....................................................... 45 



 
 

iii 
 

2.5.8 Colocalization metrics for two reporter channels ................................................ 48 

2.5.9 Colocalization metrics for three reporter channels .............................................. 50 

2.5.10 Custom analysis ................................................................................................ 53 

Chapter 3: Nucleoid and cytoplasmic localization of small RNAs in Escherichia coli

 56 

3.1 Abstract................................................................................................................ 56 

3.2 Introduction ......................................................................................................... 57 

3.3 Results .................................................................................................................. 60 

3.3.1 sRNAs with equal probability in the nucleoid and cytoplasm .............................. 60 

3.3.2 sRNAs display no preferential membrane localization ......................................... 65 

3.3.3 RNA length and translation affect nucleoid localization ...................................... 68 

3.3.4 Hfq has minimal effect on sRNA localization ........................................................ 73 

3.4 Discussion ............................................................................................................ 76 

3.5 Materials and Methods ....................................................................................... 80 

3.5.1 Bacterial plasmids and strains .............................................................................. 80 

3.5.2 RNA fluorescent in situ hybridization (RNA FISH) ................................................. 81 

3.5.3 Analysis of RNA FISH images ................................................................................. 82 

3.5.4 Measurements of GFP fluorescence for membrane proteins .............................. 83 

3.5.5 Power calculation for determining selected fraction (FT) ..................................... 83 

3.5.6 Calculating the fraction of GlmZ and SgrS sRNAs bound to Hfq ........................... 84 

Chapter 4: Translational control of mRNA concentrations optimizes both quality 

control and launch control in bacteria .................................................................... 96 

4.1 Abstract................................................................................................................ 96 

4.2 Introduction ......................................................................................................... 97 

4.3 Results .................................................................................................................. 99 

4.3.1 Power-law relationship and negative cooperativity in a simple translational 

mRNA control model ........................................................................................................ 99 

4.3.2 A detailed kinetic model of translational mRNA control .................................... 103 

4.3.3 The collaboration and counteraction of transcription-translation coupling and 

mRNA degradation-translation coupling ........................................................................ 106 

4.4 Discussion .......................................................................................................... 108 



 
 

iv 
 

4.5 Materials and Methods ..................................................................................... 109 

4.5.1 The definition of exponent in a general function ............................................... 109 

4.5.2 The derivation of negative cooperativity from experimental data .................... 109 

4.5.3 Comparing the outcome of different cooperativity ........................................... 111 

4.5.4 The detailed kinetic model of the translational mRNA control .......................... 112 

Conclusions ..................................................................................................... 115 

References ...................................................................................................... 116 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

v 
 

Acknowledgements 

 

I want to thank Han N. Lim for bringing me to Berkeley and the field of gene regulations in 
bacteria. Although Han left two years after I got here, he continued to help me with my Ph.D. 
By the time this dissertation comes out, we have already published three papers together 
corresponding to the first three chapters. 
 
I also need to acknowledge Prof. Daniela Kaufer for adopting me after Han left. In the last three 
years, I had a good time in her lab working together with other people doing completely 
different things. It was a real challenge to work in a very different topic out of the field I had 
studied before. Nevertheless, I collaborated with a couple of people with their projects on 
blood-brain barrier and empathy. This actually will not only give me two more papers that are 
not included in this dissertation, but also a broader view of biological questions. 
 
At the end, I want to thank my other committee members for their help during my five years in 
Berkeley. Prof Ellen Simms was also the chair of my qualifying exam and we had several helpful 
conversation on research topics and my interest. Prof. Michiko Taga provided useful guidance 
when Han left and she has always been responsive and easy to reach. 



 
 

vi 
 

Introduction: An overview of gene regulation in Escherichia coli and 

the role of small RNAs in controlling gene expression 

 

The production and degradation of mRNAs in bacterial cells are highly regulated and well- 
organized. As a key intermediate step of the central dogma of molecular biology, mRNAs bridge 
the gap between the DNA that encodes information to protein products that perform functions 
in the cell. In this dissertation, I focus on the translational controls of mRNA concentrations in 
E.coli. These controls include regulatory mechanisms like translational coupling as well as 
indirect factors like localization. 
 
To provide an overview of gene expression systems in bacteria, the first part of this 
introductory chapter will review some of the fundamental processes in mRNA production and 
degradation:  transcription initiation (I.I.i), transcription elongation (I.I.ii), transcription 
termination (I.I.iii), 5’ end-dependent mRNA degradation (I.II.i), 5’ end-independent mRNA 
degradation (I.II.ii), and mRNA fragment digestion (I.II.iii). The second part of this introductory 
chapter will examine some of the factors and mechanisms that are used to control the above 
fundamental processes in mRNA production and degradation: genome structures (II.I), 
translational coupling (II.II), small non-coding RNA regulation (II.III), and subcellular 

localization (II.IV). Other factors that are not discussed in the dissertation are briefly touched on 

in the last section. 
 
 
 



 
 

vii 
 

I. Mechanisms of mRNA production and degradation 
 
In this part I will briefly described the mechanism of mRNA production (i.e. transcription) and 
mechanism that degrade or remove mRNAs from cells. 
 
I.I. Mechanisms of transcription 
 
Transcription is the first part of central dogma marking the beginning of gene expression. The 
transcription of mRNAs in bacteria consists of three major phases: initiation, elongation, and 
termination. In particular, transcription elongation and termination are usually discussed 
together because stalling RNAP will be rescued by termination. On the other hand, transcription 
initiation represents the commitment to express the target gene constitutively or conditionally. 
Here I describe the gene mechanisms of transcription in central dogma.  
 
I.I.i. Mechanism of transcription initiation 
 
Transcription initiation in bacteria is typically regulated by the promoter sequence located 
between 10 and 35 nucleotides (-10 and -35) upstream of the transcription initiation start site 
[5, 6]. The promoter is a cis-regulatory sequence in the genome that can be recognized by RNAP 
and sigma factors (σ) [7]. This promoter is usually identified by the RNAP via searching for the 
correct sequences and bound sigma factors (σ) via one-dimensional or three-dimensional 
diffusion along the DNA [5, 6, 8, 9]. In E.coli, σ70 is the most common sigma factor that 
transcribes a large number of housekeeping genes [10]. Other sigma factors are present in 
response to specific stress conditions such as heat shock, osmotic pressure, and transition to 
stationary growth [11]. Once RNAP and the corresponding sigma factor bind at the promoter, 
they form a complex known as the RNA polymerase holoenzyme [12]. In this complex, the 
binding free energy drives the rate-limiting step of breaking the base pairs between the DNA 
double strands as the closed complex transforms to the open complex [13]. After this 
transition, RNAP is able to mediate the base pairing between the DNA template and the free 
single nucleotides to form the 3’ of the new growing mRNA. 
 
I.I.ii. Mechanism of transcription elongation 
 
After approximately 10 nucleotides of the nascent mRNA have been created, the sigma factor 
of the holoenzyme is released marking the start of transcription elongation [7]. The remaining 
part of elongation is carried out by the subsequently assembled ternary elongation complex 
(TEC) which is composed of the newly synthesized RNA, the DNA template, and the RNAP [14]. 
Transcription elongation involves adding new nucleotides that are complementary to the DNA 
template to the 3’ end of the growing mRNA.  The nature of elongation requires TEC to be 
stable enough so that the transcription can continue and also flexible enough so it can disrupt 
base pairs while moving forward along the DNA template. Studies have shown that the β’-

clamp of RNAP is responsible of DNA binding while the β-subunit of RNAP have catalytic and 
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nucleotidyl transferase activity [15, 16]. The sites of RNAP that interacts with DNA and RNA play 
key roles in the sliding of the TEC while the DNA-RNA hybrid region keeps the TEC stable [17]. A 
“rachet” model has been proposed that favors the unidirectional movement of the RNAP [18, 
19]. While a rachet mechanism can boost the efficiency and fidelity of transcription elongation, 
RNAP pausing, backtracking, and even disassociation of the TEC in the middle of genes can still 
occur [20, 21].  
 
I.I.iii. Mechanism of transcription termination 
 
Transcription termination takes place (either in the absence of presence of termination factor 
Rho) until the RNAP reaches a terminator sequence after the end of a gene or because the 
RNAP stalls. Termination releases the mRNA from RNAP and dissociates the complex from the 
DNA template [22-24]. In E.coli, there are two types of transcription termination: intrinsic 
termination and Rho-dependent termination. 
 
Intrinsic termination typically occurs at DNA sequences consisting of a palindromic GC-rich 
region followed by a series of thymines [24], which forms a hairpin that can disrupt the binding 
of the TEC [24-27]. Rho-dependent termination relies on the interaction between the 
termination factor Rho and the NusG protein [28]. The Rho factor recognizes the rut sequences 
on the mRNA, looping the mRNA through its central channel [29], and then pulls the 3’ end of 
the mRNA out of RNAP, thereby leading to transcription termination [30-34]. Both types of 
termination are frequently found in different parts of the genome [35, 36]. The intrinsic 
termination sites have some structural constraints like A-region, U-region, and hairpin [37]. In 
contrast, Rho dependent termination requires an untranslated transcript region with at least 
85-90 nucleotides [38, 39].  
 
I.II. Mechanisms of mRNA degradation 
 
To maintain homeostasis, the mRNAs produced by transcription must embrace the ultimate 
fate of being degraded. There are two main mechanisms of mRNA degradations in E.coli: (i) 5’ 
end-dependent mRNA degradation and (ii) 5’ end-independent mRNA degradation. These two 
processes both cleave long mRNA transcript into short mRNA fragments. In addition to these 
active processes for degrading mRNAs, mRNAs are also in effect removed from cells via the 
dilution that occurs with cell growth and cell division, which will be briefly discussed in the next 
section on the regulation of mRNA concentrations. 
 
I.II.i. 5’ end-dependent mRNA degradation 

 
mRNA degradation at the 5’ end begins with the trimming of the 5’ end triphosphate to a 
monophosphate by RNA pyrophosphohydrolase RppH [40, 41]. Deletion of the gene for RppH in 
bacteria increases the half-lives of mRNAs between three- and eleven-fold [42]. An mRNA with 
a monophosphate at the 5’ end is more likely to be bound and more efficiently cleaved by 
RNase E which has endoribonuclease activities [42-46]. The cleavage of the mRNA by RNase E 
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generates mRNA fragment with a 5’ monophosphate which are subject to further 5’ end-
dependent degradation [40]. RNase G is a homolog of RNase E with about 50% similarity in the 
amino acid sequence [47] and it shares the same preference as RNase E for cleaving mRNAs 
with a 5’ monophosphate and similar cleavage sites [48, 49]. Despite the similarities, the role of 
RNase G is very limited  compared to RNase E, and can often be ignored [50]. Recently, a new 
study also found that 35%~50% of mRNAs in E.coli are diphosphorylated indicating that removal 
of phosphates at the 5’ end by RppH is a two-step procedure [51]. However, this does not mean 
that pyrophosphate removal by RppH is the rate-limiting step. Instead, the decay of many 
mRNAs are still controlled by the cleavage of the monophosphorylated mRNA fragments 
generated in the process of degradation [52].  
 
I.II.ii. 5’ end-independent mRNA degradation 
 
An alternative pathway to 5’ end dependent mRNA degradation occurs by RNase E cleavage at 
AU-rich sequences with little specificity for sequence and secondary structures to generate 
short mRNA fragments [53-56]. It has been proposed that this process is promoted when RNase 
E binds to multiple unpaired regions simultaneously [53]. Alternatively, it may occur when 
RNase E binds to the 5’ end of the mRNA and then the mRNA loops so that the RNase E can 
simultaneously bind internal distant sequences within the same mRNA and cleave them   [57]. 
Although the specific mechanism and details of this pathway have not been completely 
defined, it raises the possibility that under some conditions and for some mRNAs they can be 
cleaved at a downstream site before upstream sites (i.e. cleavage of an mRNA may occur at a 
site that is 3’ to 5’ sites). 
 
 
I.II.iii. The digestion of mRNA fragments by exoribonuclease 

 
Exoribonucleases in E.coli (including RNase II and polynucleotide phosphorylase (PNPase)) 
process mRNA fragments and poly (A) tails from the 3’ end of RNAs by successive removal of 
nucleotides for recycling [58, 59]. In general, exonucleases are thought to be less active without 
preceding cleavage by endoribonucleases due to the frequent secondary structures at the 3’ 
end of native mRNAs [60]. PNPase can also degrade uncleaved mRNAs with the assistance of 
RNA helicase RhlB as part of the E. coli degradosome [61, 62]. These exoribonucleases are also 
referred to as oligoribonuclease when they act on very short mRNA fragments and breaks them 
into single nucleotides [63]. Even for these short mRNA fragments, direct degradation by 
exonucleases is believed to be extremely rare without preprocessing by RNase E [64, 65], which 
may be due to the need for RNase E to disrupt secondary structures. mRNAs with extensive 
secondary structures, which may have short mRNA fragment that still have extensive secondary 
structure after RNase E cleavage, may require a different exoribonuclease RNase R to be 
processed into single nucleotides [66-68]. Note: specific exoribonucleases that are not primarily 
involved in mRNA degradation, such as those that primarily degrade tRNAs (e.g. RNase T,) are 
not discussed here [64, 69]. 
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II. Regulation of mRNA concentrations 
 
In the previous section, the key processes and their mechanisms in mRNA production and 
degradation were discussed. However, mRNAs are not produced and degraded spontaneously 
without regulatory control. Cells have developed a variety of mechanisms that regulate mRNA 
concentrations. In this part, four categories of regulatory control are discussed: genome 
structures (II.I), translational feedbacks (II.II), sRNA regulation (II.III), and change in 
subcellular localization (II.IV). 
 
II.I. Genome structures 
 
The genome of E.coli is circular and is packed into a region of the cell called the nucleoid [7]. 
Histone-like proteins such as HU and IHF contribute to the structure of the nucleoid [70], and 
this can impact at a very basic level the chemistry and physics of transcription, degradation and 
translation of mRNAs and their regulation by factors in the cell (this is examined in Chapter 3). 
In addition, organizational features of the genome can potentially modulate the control of gene 
expression, and these include the relative position of a gene in the genome, the clustering and 
orientation of genes with related functions in the genome, and the organization of genes within 
the same mRNA (operon). These organizational features are discussed in more detail below. 
 
II.I.i. Gene position  
 
The location of a gene in the genome is an important factor in determining the level of 
transcription of the corresponding mRNA. According to basic mass action, genes with more 
copies are expressed at a higher level. In bacteria, the number of copies of a gene before cell 
division depending on the rate of cell division and the location of the gene on the chromosome. 
In bacteria it can take 60-90 minutes to replicate the chromosome but cells can double in 
approximately 20 minutes. That is, bacteria cannot complete chromosome replication when 
rapidly dividing within a single generation and therefore begin replication of the chromosome 
for a future generation in advance [71]. As a consequence, there are multiple copies of each 
gene in a cell during rapid growth. Because chromosome replication starts at the origin of 
replication (oriC), genes that are closer to the origin may have a higher mRNA concentrations 
due to the greater copy number than those that are distant from the origin [72-74]. Recent 
studies have also shown that not all chromosomal position effects are due to gene copy 
number, some are mediated at the level of transcription [75]. That is, different positions on the 
chromosome can alter access of RNAP, DNA binding proteins including transcription factors, 
and ribosomes to genes and mRNAs. It has been proposed that transcription initiation is 
regulated locally and globally by the folding and compaction of the chromosomes [76]. The 
detailed mechanisms and structure modification of the chromosomes remain unclear and 
require further studies. In summary, gene expression can be affected by gene position due to 
gene copy number (which in turn is due to the distance of genes from the origin and 
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chromosome replication) and non-gene copy number effects such as how easily regulatory 
factors can access a gene. 
 
II.I.ii. Gene clustering and orientation 
 
It has been observed that highly expressed genes and genes in the same pathway tend to occur 
next to each other on the chromosome and that essential genes can have a preference for the 
leading strand of the chromosome. While it has been speculated that these observations may 
be due to effects on gene regulation, studies have shown that gene clustering and orientation 
have minimal effects on mRNA production and gene noise [72, 77]. It has therefore been 
proposed that gene clustering may be a consequence of easier acquisition and selection of 
genes if they are co-acquired with functionally related genes via horizontal gene transfer rather 
than due to selection for a n effect that gene clustering may have on gene regulation  [78, 79]. 
The reason for the higher proportion of essential genes on the leading strand is not known. 
 
II.I.iii. Operon 
 
An operon is a single mRNA that contains multiple genes with related functions [80]. The 
expression of genes within one operon has been shown to depend on its relative position [81, 
82]. Specifically more proximal genes have higher expression than distal genes. This relationship 
can be explained by two possible mechanisms. Firstly, RNAP must first transcribe the proximal 
gene before the distal gene. That is, a distal gene can only be transcribed if the proximal gene is 
transcribed and the RNAP has not dissociated or terminated transcription, but the converse is 
not the case. Also, like the copy number effect in DNA replication, the more proximal a gene 
occurs in an operon the earlier it can be transcribed and therefore it will be more likely to have 
a greater copy number because it’s simply closer to the site of transcription initiation and has a 
greater likelihood of completed transcription. Secondly, genes that are earlier in the operon can 
begin translation before the distal gene have even been transcribed. For short lived mRNAs, this 
mechanisms can have a substantial impact on protein concentrations.  

 
II.II. Impact of translation 
 
Translation is the process by which ribosomes translate the codons on the mRNA template to 
amino acids and synthesize the individual amino acids into a peptide. The frequency of 
ribosome binding and the velocity of ribosomes on the mRNA directly affect the rate of 
translation. Because translation and transcription occurs simultaneously on the mRNA, 
increasing the translation rate can also increase the effective mRNA concentration by 
preventing transcription termination through the interaction between the leading ribosome 
and RNAP [83, 84]. In addition, mRNA decay also decreases when the translation rate is high 
because translating ribosomes along the mRNA shelter RNase cleavage sites [85]. The 
coordination between ribosomes, RNases, termination factors, and RNAP together makes the 
transcription and translation highly organized and coupled in bacteria cells.   
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II.III. Regulation by sRNAs 
 
sRNAs are short non-coding transcripts of approximately 100 nucleotides. sRNAs are involved in 
the regulation of multiple pathways from oxidative stress to sugar and iron metabolism [86-89].  
Unlike constitutively expressed mRNAs, sRNA concentrations usually vary in response to 
environmental stress or growth [90, 91]. The binding of sRNAs to mRNAs to create an mRNA-
sRNA duplex can alter translation or degradation of the mRNA to increase protein 
concentrations (activating sRNAs) or decrease protein concentrations (repressor sRNAs) [92, 
93]. Only  small proportion of sRNAs seems to be activators [94]. Most sRNAs appear to be 
repressors and are often co-degraded with the target mRNA after duplex formation [95]. sRNAs 
can either bind their target mRNAs with perfect complementarity or only partially paired with 
their target mRNAs [86]. The latter can be highly sequence specific and facilitated by an RNA 
chaperone, Hfq [96, 97].  
 
sRNAs can regulate mRNA transcription and mRNA degradation [98]. 6S sRNA is able to inhibit 
transcription initiation by sequestering the most common sigma factor (σ70) and preventing 
RNAP from forming the transcription initiation complex [99]. Premature transcription 
termination can also be affected by sRNA binding which can increase target mRNA through the 
transformation of the secondary structures on the mRNA near the sRNA binding site [100, 101]. 
sRNAs can also decrease or increase mRNA translation. sRNAs can decrease mRNA translation 
by several mechanisms, the most common of which is binding near the ribosome binding 
sequence to prevent the access of ribosomes. The decreased translation can also make the 
target mRNA more vulnerable to the attack of RNase resulting in notable increase in mRNA 
degradation [102-105]. Less commonly, sRNAs increase translation primarily by binding to the 
mRNA to alter secondary structure so that the ribosome binding sequence is more accessible to 
ribosome. These mechanisms give sRNAs a critical role in the regulation of mRNA 
concentrations particularly during stress. 
 
II.IV. Impact of subcellular localization 
 
mRNAs in E.coli can have diverse localization pattern in the cell. For example, the 
antiterminator bglG and the cytoplasmic chloramphenicol acetyltransferase cat mRNAs have 
been shown to have polar and cytoplasmic localization respectively [106]. Some mRNAs are 
localize to the site where the protein products are functional [106, 107]. In other cases, mRNAs 
are transported to specific destinations in the cell before the completion of translation [108, 
109]. The ptsg membrane localizing mRNA is transported to specific sites in the cell where it is 
translated, and at this site the translation can be regulated by several factors including by 
sRNAs [110]. Because mRNA concentrations have been shown to be dependent on the 
translation, improperly localized mRNAs might be degraded or terminated due to the absence 
of translating ribosomes.  
 
The localization of mRNAs is also important because the factors that regulate the degradation 
and translation of mRNA can also localize to different parts of cell. For instance, ribosomes 



 
 

xiii 
 

mostly localize in the cytoplasm rather than the nucleoid [111]. Also, RNaseE has been shown 
to be primarily localize to the cell membrane. Therefore mRNA localization is an important 
factor in the regulation of mRNA degradation and translation. 
 

III. Summary 
 
 
In summary, there are many known factors that can modulate gene expression and specifically 
the production, degradation and translation mRNA concentrations. There are also many factors 
that are specific and important to individual genes and pathways, and of course there are many 
biomolecules, pathways and genes that have yet to be discovered and/or understood in terms 
of their contribution to the regulation of genes. On top of this there is the complexity that 
arises in cells due to the interaction of all these mechanisms that the cell exploits and benefits 
from. In my dissertation, I will touch different aspects of these regulatory mechanisms and 
explain my contribution to our knowledge of regulations of gene expression and mRNA 
concentrations in E.coli. 
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Chapter 1: Systematic and general method for quantifying localization 
in microscopy images1 

 
1.1 Abstract 
 
Quantifying the localization of molecules with respect to other molecules, cell structures, and 
intracellular regions is essential to understand their regulation and actions. However, 
measuring localization from microscopy images is often difficult with existing metrics. Here we 
evaluate a metric for quantifying localization that is termed the threshold overlap score (TOS), 
and show it is simple to calculate, easy to interpret, able to be used to systematically 
characterize localization patterns, and generally applicable. TOS is calculated by: (i) measuring 
the overlap of pixels that are above the intensity thresholds for two signals; (ii) determining 
whether the overlap is more, less, or the same as expected by chance (i.e. colocalization, 
anticolocalization, or noncolocalization); and (iii) rescaling to allow comparison at different 
thresholds. The above is repeated at multiple threshold combinations to generate a TOS matrix 
to systematically characterize the relationship between localization and signal intensities. TOS 
matrices were able to identify and distinguish localization patterns of different proteins in 
various simulations, cell types and organisms with greater specificity and sensitivity than 
common metrics. For all the above reasons, TOS is an excellent first line metric, particularly for 
cells with mixed localization patterns. 

                                                      
 
1 This chapter has been previously published as "Systematic and general method for quantifying 
localization in microscopy images" in Biology open (2016), 5(12), 1882-1893. 
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1.2 Introduction 
 
Quantifying the localization of proteins, RNAs, and complexes within cells can help determine 
their regulation and sites of action [112-114]. Therefore the development and evaluation of 
metrics to quantify localization is an important and shared goal of many different disciplines. 
Three common approaches to quantifying localization are: (i) measuring the fraction of two 
signals that overlap [112, 115]; (ii) measuring the correlation or rank-order correlation of pixel 
intensities for two signals [112, 116]; and (iii) identifying objects and determining their 
fractional overlap or the distance separating them [115, 117]. These metrics and less common 
alternatives [114, 115] have been successfully used in many applications. However, there are 
also many types of images and samples where the above metrics do not perform well and their 
results are difficult to interpret [113, 115, 118, 119], inconsistent [113], and/or susceptible to 
arbitrariness and bias [119]. 
 
Metrics often encounter difficulty when images and samples have: a signal of low intensity 
compared to background and non-specific signals [113, 120], a large proportion of pixels with 
background or non-specific signals [113, 121], a nonlinear relationship between two signals 
[115], or mixed patterns of localization. Other important barriers to the use of some metrics 
include: limited testing (and consequently researchers are uncertain the metric is suitable for 
their samples and application), underlying assumptions that limit their general application, and 
the need for customization or simulations that require specialized knowledge and skills. All 
these issues are common resulting in researchers in many disciplines resorting to qualitative 
(and often inaccurate) assessments of localization by simply superimposing (or “merging”) 
images [112, 113]. No single metric or analysis protocol will meet all requirements for all 
researchers [112, 113], but clearly additional tools to quantify localization are needed.  
 
In this study we evaluated a metric for localization termed the threshold overlap score (TOS), 
which measures the overlap in signals above threshold intensity values. We use “localization” 
and “localization pattern” to refer to the measurement of overlap. If the overlap is greater 
than, less than, or the same as expected by chance then localization is categorized as 
“colocalization”, “anticolocalization” or “noncolocalization”, respectively. The first part of the 
study derives TOS and then describes a strategy of using it at many combinations of thresholds 
to generate a TOS matrix that can identify and distinguish features in mixed patterns of 
localization. The second part of the study applies TOS analysis to simulated data and 
experimental data obtained from public image repositories. The latter showed that values from 
the TOS matrix can distinguish the localization patterns of different proteins for a variety of cell 
types and organisms, and that they can do so with greater specificity and sensitivity than 
common metrics (Pearson’s correlation coefficient, Manders’ colocalization coefficients, and 
Spearman’s rank correlation coefficient). 
 
 
 

 



 
 

3 
 

1.3 Results 
 
1.3.1 Calculating the threshold overlap score (TOS) 
 
The first step in calculating TOS is measuring the observed fraction of pixels that exceed the 
threshold of one signal that also exceed the threshold of a second signal (Figure 1.1A). That is, 
measuring the “fractional area of overlap” (abbreviated to “AO”). Instead of choosing 
thresholds by selecting specific values for the intensities, which in turn specify fractions of 
pixels for signals 1 and 2 (“FT1” and “FT2” respectively), we directly chose these fractions 
(following rank ordering of the pixels by intensity). This approach of specifying thresholds in 
terms of selected fractions rather than as values allows observed data from individual cells that 

have different intensities and total numbers of pixels to be more easily combined. Therefore, 

 

    observed AO1 =
fractional area above signals 1 and 2 thresholds 

fractional area above signal 1 threshold 
 and 

    observed AO2 =
fractional area above signals 1 and 2 thresholds 

fractional area above signal 2 threshold 
.   Eq. 1.1 

 
The second step is normalizing the observed AO1 and AO2 by their expected overlaps (for 
uniformly distributed random signals), which are FT2 and FT1 respectively, resulting in the AO 
ratio. Because it may seem counterintuitive that AO1 and AO2 are normalized by the threshold 
of the other signal we consider the example of a cell with 100 pixels and selected fractions for 
signal 1 and 2 of 50% (FT1 = 0.5) and 10% (FT2 = 0.1) respectively. In this example, 50 and 10 
pixels are selected for signals 1 and 2 respectively. If the selected pixels for signal 1 are 
uniformly distributed throughout the cell, then half of them would be expected to overlay the 
selected pixels for signal 2 (irrespective of their distribution), which is 5 pixels. For the selected 
pixels of signal 1, this expected 5 pixel overlap represents 0.1 of them (i.e. 5 out of 50), which is 
equal to the selected fraction for signal 2 (FT2) as stated above. This normalization assumes a 
null distribution with pixel intensity values uniformly distributed across the cell and 
independent (note: the point spread function with autocorrelation between pixels does not 
alter the predicted value but it does affect its variance [113]). From Eq. 1.1, 
 

AO ratio =
fractional area above signal 1 and 2 thresholds 

fractional area above signal 1 threshold × fractional area above signal 2 threshold 
.   Eq. 1.2 

 
The AO ratio has the same value when calculated from the observed AO1 or AO2. The AO ratio ≈ 
1, > 1 or < 1, when the pixels above the threshold of each signal overlap by the same, greater 
than, or less than the null distribution. The minimum AO ratio depends on FT1 + FT2 (Figure 
1.1B). If FT1 + FT2 ≤ 1, the minimum AO ratio can be zero because it is possible for the selected 
pixels for each signal to not overlap (note: the AO ratio is never undefined because both FT1 and 
FT2 > 0). However, if FT1 + FT2 > 1 the minimum AO ratio cannot be zero because it is impossible 
for the selected pixels for each signal to overlap less than the sum of FT1 + FT2 minus 1. The 
maximum AO ratio also depends on FT1 and FT2 (Figure 1.1B). Specifically, the maximum occurs 
when the smaller of the selected fractions completely overlaps the larger. 
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Minimum AO ratio = {

FT1 +FT2−1

FT1 ×FT2
, when FT1 +FT2 > 1

0                , when FT1 +FT2 ≤ 1
 .     Eq. 1.3 

 

Maximum AO ratio =
minimum {FT1,FT2}

FT1 ×FT2
.       Eq. 1.4 

 
The limits are 0 and 1 for the minimum AO ratio and 1 and +∞ for the maximum AO ratio. 
When the AO ratio = 1, the observed overlap is the same as expected for the null distribution. 
 
The third step is rescaling AO ratios so they can be compared for different thresholds (Figure 
1.1C). This is necessary because the AO ratio depends on the product of FT1 and FT2 (see Eq. 1.2-
1.4). For example, an AO ratio with 100% overlap will be 2 or 10 depending on whether 50% or 
10% of the pixels are selected for both signals. Another reason for rescaling is the inherent 
asymmetry of ratios. Quadrupling the numerator increases the AO ratio from 1 to 4 while 
quadrupling the denominator decreases it from 1 to 1/4; the latter is a much smaller absolute 
change. We found that a simple linear rescaling works well and the results are far easier to 
interpret. 
 
Linear rescaling generates a metric called the threshold overlap score (TOS). TOS rescales the 
AO ratios so they have a range from -1 to +1 for all thresholds and have a value of 0 when the 
observed overlap is exactly the same as expected for the null distribution (Figure 1.1D). 
 

TOS = {

0 , when AO ratio = 1
1−AO ratio 

minimumAO ratio−1
, when AO ratio < 1

AO ratio−1

maximumAO ratio−1
, when AO ratio > 1

       Eq. 1.5 

 
The magnitude of TOS reflects how much the overlap lies between the null hypothesis and the 
maximum or minimum values; for example an absolute value of TOS = 0.9 is nine tenths 
between the null distribution and the maximum or minimum possible overlap. 
 
Another approach to rescaling is to logarithmically transform the data, which has some 
advantages but the rescaled values are not easily interpreted.  As with linear rescaling, 
logarithmic rescaling was performed so the minimum and maximum AO ratios after rescaling 
are -1 and +1 respectively, and an AO ratio of 1 after rescaling is equal to 0 (i.e. the null 
distribution after rescaling = 0). The logarithmically rescaled AO ratios are referred to as “log 
TOS”.  We solved the function 
 
log TOS = α ∙ln(β∙AO ratio + γ) ,        Eq. 1.6             
 
for the above fixed points (note: ln = natural log). That is, we determined the constant 
coefficients α, β and γ from the following three equations: 
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 {
-1 = α ∙ln(β∙minimum AO ratio + γ);

0 = a ∙ln(b∙1 + c) ;
+1 = α ∙ln(β∙maximum AO ratio + γ).

        Eq. 1.7 

 
The coefficients are: 
 

α = 
1

ln(
maximum AO ratio - 1

1 - minimum AO ratio
)

, β = 
maximum AO ratio + minimum AO ratio - 2

(maximum AO ratio-1)∙(1 - minimum AO ratio)
 , and γ = 1- β.   Eq. 1.8 

 
Eq. 1.6 can be more simply expressed with the coefficient γ substituted in terms of β: 
log TOS = α ∙ln(β∙(AO ratio - 1) + 1).        Eq. 1.9 
 
Coefficients α and β can be rewritten in terms of the selected fractions FT1 and FT2, which are 
defined in the main text as: 
 

Minimum AO ratio = {

FT1 +FT2-1

FT1 ×FT2
, when FT1 + FT2 > 1

0 , when FT1 + FT2 ≤ 1
                   Eq. 1.10 

 

Maximum AO ratio = 
minimum {FT1, FT2}

FT1 × FT2
.                   Eq. 1.11 

 
FT1 and FT2 are fractions and therefore must be greater than or equal to 0, and less than or 
equal to 1. For simplicity, we let FT1 ≤ FT2 (note: this is not a constraint because the designation 
of signal 1 and 2 is arbitrary). Substitution of Eq. 1.10 and Eq. 1.11 into the expressions for the 
coefficients α and β in S3 gives: 
 

α = {

1

ln(
FT1 

1-FT1 
)
, when FT1 + FT2 > 1

1

ln(
1-FT2 

FT2
)
, when FT1 + FT2 ≤ 1

 and β = {

FT2 (2FT1 -1)

(1-FT2 )(1-FT1 )
, when FT1 + FT2 > 1

1-2FT2 

1-FT2 
, when FT1 + FT2 ≤ 1

 .              Eq. 1.12 

 
These expressions show that FT1 or FT2 must not be = 0.5 otherwise α and β are undefined. If FT1 
or FT2 are equal to 0.5 then a simple linear function is required to rescale the AO ratio to 
achieve the fixed points. In addition, α and/or β are undefined at the limits of FT1 and FT2 when 
they are equal to 1 or 0. 
 
A potential advantage of using log TOS is that there is no discontinuity in the first derivative. 
However, a disadvantage of log TOS is that values are difficult to interpret unlike the linear TOS 
where values are the fractions from the null ratio (i.e. the observed overlaps is equal to the 
expected overlap) to the maximum or minimum possible AO ratio. Furthermore, care must be 
taken to not calculate log TOS at selected fractions for which it is undefined. 
 
It is helpful to divide the spectrum of possible TOS values into categories of “colocalization”, 
“anticolocalization” and “noncolocalization”. In doing so, it is important to recognize that TOS 
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values may be too small to be biological relevant [122, 123] even if they show statistically 
significant differences from the null distribution. It is also not useful to define noncolocalization 
as exactly equal to zero because very few samples would be in this category. For these reasons, 
we recommend defining noncolocalization as a range of values (e.g. TOS between -0.1 and 
+0.1). A practical advantage of defining noncolocalization as a range is that a “true” 
noncolocalized pattern can be consistently referred to as such, rather than as “weak 
colocalization” in one measurement and ‘weak anticolocalization” in another due to 
measurement error and randomness in biological variation. It must be stressed that these 
bounds are for the convenience of interpretation and do not affect the analysis itself, and that 
the definition of noncolocalization should be guided by the design and purpose of the study. 
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1.3.2 Generating TOS matrices 
 
One of the most difficult aspects of measuring localization is selecting the thresholds [112]. 
Thresholds can affect the contribution to the analysis of background signals from the imaging 
system (if it is not subtracted) and from cells (e.g. autofluorescence) and low intensity signals 
from unbound or non-specifically bound fluorescent, chemiluminescent or colorimetric probes 
or stains. These low intensity signals, which we refer to as non-specific or “off-target” signals, 
typically have higher intensity than background signal but lower intensity than “on-target” 
signals where the probe or stain has localized to the biological target. Separating background 
and off-target signals is often difficult, and it is typically more important to distinguish both of 
them from on-target signals. Even if there is no background and off-target signals, threshold 
selection can affect quantification of localization. Therefore protocols have been developed to 
make threshold selection less arbitrary [112, 124] but they do not always function well, 
especially when on-target signals are anticorrelated or the background and off-target signals 
are high or correlated [113]. Furthermore, cells often have mixed localization patterns making 
the evaluation of localization at a single set of thresholds, no matter how they are chosen, an 
inaccurate ensemble description of localization. Based on all the above, we chose to 
systematically calculate TOS at many different thresholds resulting in a TOS matrix, which can 
be viewed as a heat map (Figure 1.1E). As will be shown below, the TOS matrix can reveal 
trends between localization and signal intensity, and allow the identification of multiple 
localization patterns within cells and organisms.  
 
A TOS matrix can in theory be generated by taking any number of combination of thresholds for 
each channel, ranging from a single set of thresholds to a set of thresholds from every different 
pixel intensity value in a cell. The former would create a matrix with one element and the latter 
would create a matrix with up to N2 elements, where N is the total number of pixels in the cell. 

Figure 1.1 Calculating the threshold overlap score (TOS) and generating TOS matrices. (A) Calculation of 
observed AO, expected AO, and AO ratio. Thresholds are measured by the fraction of pixels with higher 
intensity in the cell (i.e. the “selected fraction”, which are FT1 and FT2 for signal 1 and 2) as explained in the 
main text. (B) Diagram showing maximum, minimum and expected AO ratios as a function of the threshold 
for signal 1 (i.e. FT1 is varied and FT2 is fixed). Note: expected AO ratio is for the null distribution. (C, D) 
Threshold overlap score (TOS) is obtained from the AO ratio by rescaling linearly (or logarithmically) so the 
maximum, minimum and null values are +1, −1 and 0 for all selected fractions. (E) TOS matrix generated 
by simulating a uniform distribution for all threshold combinations (n = 500 for each selected fraction). As 
predicted, the observed AO values for the simulated uniform distribution are close to the expected AO 
values therefore the AO ratio is ≈ 1 and TOS is ≈ 0 at all threshold combinations. (F) Thresholds can affect 
quantification and characterization of localization. Hypothetical cells with mixed intracellular localization 
patterns for two signals (S1 and S2). Cells have uncorrelated off-target signals and negatively correlated 
on-target signal (note: although the off-target signals appear uniform, the signals have variation as shown 
in the scatterplots). Scatterplot to the left show that the determination of the localization pattern depends 
on the threshold selected. Thresholds at low signal intensities (FT1a and FT2a) will measure localization of 
both off-target and on-target signals and together they have a net positive correlation as shown by the 
green arrow (i.e. colocalization). Thresholds at high intensities (FT1b and FT2b) will measure localization of 
only the on-target signal, which has a negative correlation (i.e. anticolocalization). 
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While having the maximum number of combinations will give maximum resolution, creating it 
for every cell would be problematic for many reasons including: (i) being too computationally 
intensive; and (ii) resulting in different sized TOS matrices for each cell (because they have 
different numbers of pixels), which makes it harder to combine them (see below). It must also 
be kept in mind that if thresholds are taken at the very highest and lowest selected fractions 
there may be too few overlapping or non-overlapping pixels respectively for statistical 
significance unless large number of cells are measured (note: a priori statistical power can be 
estimated with standard parametric tests and then increased by up to 15% to account for post-
hoc non-parametric tests having less power [125, 126]). While bins at the highest thresholds 
will have a lower number of pixels, these pixels will have the highest numbers of reporter 
molecules (hence the higher intensity signal) and thus tend to have a lower coefficient of 
variation. 
 
We chose an intermediate number of threshold combinations (specifically 81 combinations) 
and found that it gave more than adequate resolution to detect different patterns of 
localization in our simulations and the experimental data we analyzed (see below). These 
threshold combinations were 9 selected fractions for signals 1 and 2 (FT1 and FT2) from 0.9 to 0.1 
in increments of 0.1. Initially, 10% of pixels with the lowest intensity pixels are removed from 
both signals (leaving a selected fraction of 90% of the pixels; i.e. FT1 and FT2 = 0.9), then 20% of 
the lowest intensity pixels in the entire cell are removed for one or both signals (leaving a 
selected fraction of 80% for signal 1 or 2), and so on, until 90% of the lowest intensity pixels in 
the entire cell are removed for one or both signals (leaving a selected fraction of 10% for signal 
1 and 2). Note: FT1 and FT2 = 1 were not included in the analysis because these selected fractions 
correspond to 100% of the pixels in the cell therefore all selected pixels must overlap and TOS = 
0.  
 
It can be necessary and convenient to extract values from TOS matrices that quantify specific 
features of mixed localization patterns, and three values that were found to be especially useful 
were (see below): (i) TOS at the highest thresholds (TOSh), which correspond to the lowest 
selected fractions (Figure 1.1F); (ii) the maximum TOS in the matrix (TOSmax), which if > 0 
specifies thresholds with maximum colocalization; and (iii) the minimum TOS in the matrix 
(TOSmin), which if < 0 specifies thresholds with maximum anticolocalization. TOSh was chosen 
because many analyses will want to specifically measure the localization pattern of the on-
target signal, which will usually be most separated from any background and off-target signals 
at the highest intensity values (see data below). If the localization pattern is similar at all 
intensities or the localization pattern of the pixels with the highest signal intensity is not 
reflective of the biology (including due to noise) then a lower threshold should be selected. 
Other criteria could also be used to select values from the TOS matrix (see Discussion) and their 
selection should be guided by the experimental system, biological questions, and the 
heterogeneity of the data. 
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1.3.3 Interpretation of TOS analysis in samples with mixed localization patterns 
 
We simulated cells to demonstrate how the TOS matrix appears with mixed patterns of 
localization. The simulated cells had two subpopulations of pixels, which for simplicity had 
equal counts and uniformly distributed random noise (range 0 to 1 × 104 arbitrary units (a.u.)). 
Population 1 was either positively correlated, uncorrelated, or negatively correlated for signals 
1 and 2 (scatterplots, Figure 1.2A-C) and population 2 always had uncorrelated signals 1 and 2 
(scatterplots, Figure 1.2A-C). The two populations initially overlay one another (mean = 6.5 × 
104 a.u. for both signals; middle scatterplots in Figure 1.2A-C). The mean of population 1 or 2 
was decreased in 40 equal increments (until the mean = 2.5 × 104 a.u.) (left and right 
scatterplots, Figure 1.2A-C). The population with the lower intensity signal can be considered to 
represent background and off-target signals and the population with the higher intensity signals 
can represent the on-target signal. Note: the absolute values and units of pixel intensity are not 
important because the pixels are rank-ordered according to intensity and thresholds are a 
selected fraction of the pixels rather than values. 
 
For every distribution created we calculated a TOS matrix. But only those distributions where 
populations 1 and 2 are at their lowest and highest mean intensities (lower left and lower right 
in Figure 1.2A-C), and where populations 1 and 2 maximally overlay each other (low center in 
Figure 1.2A-C) are displayed as heat maps. Visual inspection of the TOS matrices shows the 
upper right corner accurately reflects whether pixels with the highest intensities are colocalized 
(positively correlated), noncolocalized (uncorrelated) or anticolocalized (negatively correlated). 
Similarly, the lower left corner of the TOS matrices reflects whether pixels with the lowest 
intensities are colocalized, noncolocalized or anticolocalized. 
 
We extracted TOSh, TOSmax and TOSmin from the TOS matrices and plotted them as a function of 
the distance between populations 1 and 2 (with negative and positive shifts indicating the 
means of signals 1 and 2 for population 2 are less and more respectively than population 1) 
(Figure 1.2D-F). TOSh correctly shows when the population with the higher means was 

colocalized, anticolocalized or noncolocalized (i.e. TOSh > 0.1, ~ 0 and < -0.1 respectively) 
(Figure 1.2D-F). TOSmax identified when the combined population (i.e. populations 1 and 2 
considered together) displayed colocalization but was insensitive to the localization patterns of 
each subpopulation. TOSmin was sensitive to the presence of anticolocalization in population 1 
irrespective of whether it had the lower or higher mean of the two populations (scatterplots in 
Figure 1.2C and black line in Figure 1.2F). Values for TOSh, TOSmax and TOSmin were found to be 
relatively insensitive to the mean intensity and distance between the populations; that is, they 
provide a robust measure of localization. 
 
In summary, the TOS matrix is helpful in distinguishing colocalization, anticolocalization, and 
noncolocalization within mixed patterns of localization. TOSh, TOSmax and TOSmin from the TOS 
matrices appear to be robust measures of: (i) the localization pattern of the on-target signal, (ii) 
colocalization for all signals together (background, off-target and on-target), and (iii) the 
presence of anticolocalization within a mixed localization pattern. 
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Figure 1.2 Interpretation of TOS analysis in samples with mixed localization patterns. (A-C) Scatterplots 
and their corresponding TOS matrices for images with two populations of pixels (n = 300 for each 
population). Population 1 was positively correlated (A), uncorrelated (B), or negatively correlated (C), and 
population 2 was always uncorrelated. The means of the two populations were initially the same (center 
column) and either population 2 was decreased (left column) or population 1 was decreased (right 
column). Decreasing population 1 and decreasing population 2 corresponds to the positive and negative 
distances respectively in panels D-F. Populations 1 and 2 were decreased in 40 increments. Only 
scatterplots and TOS matrices for the initial and final positions are shown. (D-F) Mean TOSh, TOSmax and 
TOSmin at each distance of the populations (total = 81). Panels D, E and F correspond to distributions where 
population 1 is positively correlated, uncorrelated, or negatively correlated. Parameters were calculated 
from 50 TOS matrices simulated for each distance. Error bars are the standard error of the mean (sem). 
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1.3.4 Comparison of TOS with other metrics of localization  
 
We next compared TOSh, TOSmax and TOSmin to common metrics for evaluating localization 
using simulated cells with mixed localization patterns. It is not feasible to compare all the 
alternative metrics to TOS [112-114, 117]. Therefore we selected three metrics that are 
commonly used by experimentalists, which are Pearson’s correlation coefficient (PCC), 
Manders’ colocalization coefficients M1 and M2, and Spearman’s rank correlation coefficient 
(SRCC). 
 
PCC calculates the linear correlation in the intensity of two signals [113]. SRCC evaluates 
whether the rank order of values for two signals is the same or not and it does not matter 
whether this monotonic relationship is linear or nonlinear. M1 and M2 are calculated from the 
sum of the intensities of the pixels that exceed the thresholds for both signals 1 and 2 divided 
by the sum of the intensities of the pixels that exceed the threshold for signals 1 or 2 
respectively [113, 127]. M1 and M2 depend on the fraction of overlapping pixels, the intensities 
of the pixels, and the thresholds. It has been proposed that the “expected” M1 and M2 (which 
are equivalent to FT2 and FT1) should be subtracted from the observed M1 and M2 respectively, 
resulting in “M1diff” and “M2diff” [118]. Thresholds for M1 and M2 (and consequently for 
M1diff and M2diff) are commonly selected using a method (or a variant of it) described by 
Costes and colleagues [112, 124]. Costes’ method evaluates the correlation in pixels below each 
threshold in the data, and then selects the threshold with the minimum correlation or highest 
threshold with a non-positive correlation (note: we used the former from JACoP [112]). 
 
We examined how all metrics performed at distinguishing populations of cells with mixed 
localization patterns for off-target and on-target signals, which are challenging, common and 
important in localization analysis. The metrics were compared using receiver operating 
characteristic (ROC) curves, which are commonly used to evaluate image analysis tools and 
diagnostic tests [128]. To create the ROC curves, we first simulated “condition positive” and 
“condition negative” populations of cells with mixed localization patterns (Figure 1.3A, B). Each 
condition positive cell had an equal combination of pixels with positively correlated off-target 
signal and positively correlated on-target signal (means = 20,000 and 30,000 a.u. respectively; 
total pixels per cell = 600). The values were multiplied by a random number from a Gaussian 
distribution (mean = 1.0 and σ = 0.2), which was independent for each channel and pixel (Figure 
1.3A). Each cell in the condition negative population was generated in the same manner except 
the on-target signal was anticorrelated (Figure 1.3B). In the condition positive and negative 
populations the off-target signal had a slope of θ = eq, where q had one of 141 equal increments 
in the range −0.7 to +0.7. Note: the off-target signal was chosen to be positively correlated 
(rather than uncorrelated or negatively correlated) because this is often harder to threshold 
and discriminate from on-target signal, and we sought to compare the metrics under 
challenging conditions. For each slope, 50 cells were simulated resulting in 7050 cells for each 
condition.  
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We evaluated TOSh, TOSmax, TOSmin, PCC, SRCC, M1, M2, M1diff and M2diff for each cell. For 
every metric, P values were calculated using the two-tailed Mann-Whitney U test which showed 
all metrics had statistically significant differences in their values for the condition positive and 
negative populations (displayed in Figure 1.3C). Therefore a simple statistical comparison is not 
helpful in comparing the metrics. Histograms of the values for the condition positive and 
negative populations were generated and then the fractions of cells in each population above a 
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Figure 1.3 Comparison of TOS with other metrics of localization. (A, B) Representative scatterplots for 
simulated condition positive (A) and condition negative (B) cell populations. All cells have positively 
correlated off-target signal (black symbols) with a slope (θ) that was varied (see main text). Condition 
positive cells have on-target signal (gold symbols) that is positively correlated and condition negative cells 
have on-target signal that is negatively correlated. Both conditions have an equal number of off-target 
and on-target pixels. (C) Histograms of TOSh, TOSmax, TOSmin, PCC, SRCC, M1, M2, M1diff, and M2diff for 
the simulated condition positive and negative populations. P values are calculated using a two-tailed 
Mann-Whitney U test. Note: M2 values appear to exceed 1 because values that are exactly equal to 1 are 
in the 1 to 1.1 bin. (D) Diagram explaining the calculation of the true positive and false negative rates for 
the metrics in panel C (see main text). The fraction of cells in the condition positive population and 
condition negative population that are above the threshold are the true positive rate and true negative 
rate respectively. (E) Receiver operating characteristic (ROC) curves for each metric (see main text). 
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threshold that slides from highest to lowest value were determined. These fractions for the 
condition positive and negative populations are the true positive rates (also known as the 
sensitivity) and false positive rates (which is 1−specificity) respectively (Figure 1.3D). The true 
positive rates were plotted as a function of the false positive rates at each threshold to produce 
ROC curves for each metric (Figure 1.3E). The ROC curve nearest the upper left corner of the 
plot is closest to an ideal test with perfect classification of localization (i.e. 100% sensitivity and 
100% specificity). 
 
For the simulations, TOSmin was the best classifier followed by TOSh (Figure 1.3E). TOSmax did not 
perform well because there were positive correlations at high selected fractions for both the 
condition positive and condition negative populations therefore it could not distinguish them 
(Figure 1.3A, B). Similarly, PCC was generally positive for both populations, which is why it did 
not perform as well as TOSh. M1diff and M2diff did not perform well due to Costes’ method for 
threshold selection (note: also in some cases a threshold could not be identified resulting in 
undefined M1diff, and M2diff that were not included in the analyses). Consistent with the study 
mentioned above [118], M1diff and M2diff performed better than M1 and M2, therefore the 
former two were used in subsequent analyses. 
 
 
1.3.5 Comparison of TOS with other metrics of localization  
 
We demonstrated the generality of TOS analysis by calculating matrices and extracting TOSh, 
TOSmax, and TOSmin for experiments with different proteins in a variety of cells and organisms, 
which were obtained from public image repositories (Materials and Methods). 
 
The first dataset examined were Drosophila melanogaster Kc167 cells (n = 366), which had been 
probed with fluorescein conjugated phalloidin to identify F-actin in the cytoskeleton and 
stained with Hoechst 33342 to identify DNA [129, 130] (Figure 1.4A). TOS matrices from 
individual cells were combined and the median TOS value for each threshold combination was 
presented as a heat map (Figure 1.4B). This analysis shows that at most selected fractions the 
F-actin probe and DNA staining are strongly anticolocalized (i.e. TOS << 0), which is expected 
because they label different parts of the cell (i.e. outside the nucleus and in the nucleus 
respectively). Scatterplots also show anticolocalization with the intensities of F-actin labeling 
and DNA staining being largely independent (Figure 1.4C). TOSh, TOSmax, and TOSmin from 
individual cell TOS matrices were compared to PCC, SRCC, M1diff and M2diff from the same 
cells. The values of each metric for individual cells were plotted along with the median and 90th 
and 10th percentile values (note: all metrics have the same range and zero indicates no 
correlation or noncolocalization) (Figure 1.4D). In > 90% of cells, TOSh and TOSmin indicate 
anticolocalization and their medians are ≈ -1 (i.e. maximally anticolocalized). In contrast, 
TOSmax, PCC, SRCC, M1diff and M2diff have many values between the 90th and 10th percentiles 
that are close to or greater than zero, which indicates these metrics classify many cells as 
having noncolocalization or colocalization rather than the expected anticolocalization (Figure 
1.4D). 
 



 
 

14 
 

The second dataset examined were Saccharomyces cerevisiae cells (n = 38), which have a single 
copy of the spindle pole body component protein (Spc110) fused to both yellow fluorescent 
protein (YFP) and cyan fluorescent protein (CFP) (i.e. Spc110::YFP::CFP) [131]. We used eight 
sets of images (YRC PIR ID: 191, 3208, 3559, 3702, 3999, 4722, 5160, and 7396) with YFP, CFP 
and differential interference contrast (DIC) channels (Figure 1.4E). The analysis was performed 
as described for D. melanogaster. Because YFP and CFP are part of the same protein their 
signals should colocalize, and this was clearly seen at all threshold levels in the TOS matrix and 
scatterplot (Figure 1.4F, G). TOSh, TOSmax, TOSmin, PCC and SRCC correctly identified that >90% 
of cells have strong colocalization (Figure 1.4H). M1diff and M2diff incorrectly identified most 
cells as noncolocalized (Figure 1.4H) due to Costes’ method selecting very low thresholds; and 
this in turn results in the subtraction of a large “null” value and therefore M1diff and M2diff are 
small (note: this is one reason the rescaling for TOS is so helpful).  
  
The third dataset examined were Caenorhabditis elegans (n = 39) which had the production of 
green fluorescent protein (GFP) regulated by the activity of the clec-60 promoter (Figure 1.4I). 
In the pmk-1 deficient mutant that was imaged, GFP production is increased in the anterior 
intestine next to the pharynx which was identified by a Myo-2::mCherry fluorescent protein 
fusion [4] (Figure 1.4I). The analysis was performed as for the other datasets, and a matrix of 
TOS median values showed anticolocalization of the GFP and mCherry fluorescence signals at 
low selected fractions (i.e. high threshold) (upper right corner, Figure 1.4J). Anticolocalization is 
both consistent with the biology (because GFP and Myo-2::mCherry label different structures) 
and a scatterplot of a representative C. elegans (Figure 1.4K). Values of TOSh and TOSmin 
indicated anticolocalization in > 90% of worms (both green horizontal bars are below zero in 
Figure 1.4L). Most TOSmax values were > 0 therefore it was possible in most cells to identify a set 
of thresholds where there was a colocalization pattern, which was typically when the selected 
fraction was high in one channel and low in the other channel. In contrast to TOSh and TOSmin, 
values for PCC, SRCC, M1diff and M2diff were generally around zero indicating 
noncolocalization for most worms (Figure 1.4L). The latter group of metrics performed poorly 
because it was difficult to identify a threshold that distinguishes the overlapping off-target and 
on-target signals and Costes’ method tended to choose high selected fractions (i.e. low 
threshold values).  
 
In summary, TOS analysis successfully identified the expected localization patterns of different 
proteins in various cells and organisms. In these images, TOSh, TOSmax, or TOSmin were often 
able to identify specific features within mixed localization patterns better than PCC, SRCC, 
M1diff and M2diff. 
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1.3.6 TOS values can distinguish localization patterns in experimental data with high 

specificity and high sensitivity 
 
We investigated how well TOS and other metrics can distinguish similar localization patterns. 
Two types of Schizosaccharomyces pombe strains were chosen with fluorescent proteins that 
were expected to show colocalization. One strain (n = 40) had the fusion protein Sid4::YFP::CFP 
(strain KG4608; ID: 192, 776, 1062 and 1233) (Figure 1.5A). Because these fluorescent proteins 
are fused they should colocalize. A second strain (n = 38) had two fusion proteins: Cdc11::CFP 
and Cdc13::YFP (strain KG3544; ID: 292, 360, 414, and 744) (Figure 1.5B). Cdc11::CFP and 
Cdc13::YFP are known to colocalize to the spindle pole body [132, 133] as well as to other sites.    
 
Cells from each strain were identified and analyzed as described above. TOS matrices for both 
strains showed colocalization (TOS >> 0) at many threshold combinations (Figure 1.5C, D). 
However, at high signal intensities (i.e. small FT1 and FT2) there are differences in localization 
between the two strains; cells with Sid4::YFP::CFP have colocalization and cells with Cdc11::CFP 
and Cdc13::YFP have anticolocalization (Figure 1.5C, D). The difference in localization can also 
be seen in the scatterplot of CFP and YFP signal intensity in a representative cell from each 
strain (Figure 1.5E, F). That is, pixels with high intensity CFP and YFP signals tend to occupy the 
upper right corner for Sid4::YFP::CFP but tend to be at the right or at the top for Cdc11::CFP and 
Cdc13::YFP. Note: there are many possible causes for why there is more YFP fluorescence for a 
given amount of CFP fluorescence at high intensity levels compared to lower intensity levels for 
the YFP::CFP fusion (Figure 1.5E) including: increased transcription and translation termination, 
and decreased CFP fluorescence and/or increased YFP fluorescence due to altered protein 
folding and aggregate formation. 

Figure 1.4 Application of TOS to different types of experimental data. (A) Microscopy images of 
representative D. melanogaster cells with DNA staining (Hoechst 33342) and F-actin labeling (fluorescein 
conjugated phalloidin). Images are pseudocolored and white lines indicate cell boundaries. Scale bar ~ 5 
µm [1, 2]. (B) TOS matrix analysis in D. melanogaster cells (n = 366) with selected fractions for DNA staining 
and F-actin labeling intensity. (C) Scatterplot of DNA staining and F-actin labeling in the outlined D. 
melanogaster cell in panel A. Note: all intensity values are > 0. (D) TOSh, TOSmax, TOSmin, PCC, SRCC, M1diff, 
and M2diff values obtained in individual D. melanogaster. Green lines and square indicate the 90th and 
10th percentiles and the medians. Horizontal dash line at zero indicates noncolocalization or no 
correlation. (E) Microscopy images of representative S. cerevisiae cells with SPC110::YFP::CFP. Images 
presented as in panel A. are pseudocolored. Scale bar = 5 µm (obtained from YRC PIR image). (F) TOS 
matrix analysis in S. cerevisiae cells (n = 38) with selected fractions for CFP and YFP fluorescence intensity. 
Heat map scale shown in panel B. (G) Scatterplot of CFP and YFP fluorescence in outlined S. cerevisiae cell 
in panel E. (H) TOSh, TOSmax, TOSmin, PCC, SRCC, M1diff, and M2diff values obtained in individual S. 
cerevisiae. Data presented as in panel D. (I) Microscopy images of representative C. elegans with mCherry 
and GFP fluorescence. Scale bar ≈ 500 µm [4]. Images presented as in panel A except the white line is a C. 
elegans outline. (J) TOS matrix analysis in C. elegans (n = 42) with selected fractions for mCherry and GFP 
fluorescence intensity. Heat map scale shown in panel B. (K) Scatterplot of Myo-2::mCherry and GFP 
fluorescence signal in the C. elegans outlined in panel I. (L) TOSh, TOSmax, TOSmin, PCC, SRCC, M1diff, and 
M2diff values obtained in individual C. elegans. Data presented as in panel D. 
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TOSh, TOSmax, TOSmin, PCC, SRCC, M1diff and M2diff were calculated as for the analysis above 
(Figure 1.3D). All metrics except TOSmax had statistically significant differences in the 
distribution of values for the two strains (displayed in Figure 1.5G). To compare metrics we 
generated histograms of each value from individual cells (Figure 1.5G) and then ROC curves 
(Figure 1.5H) as described above. Cells with Sid4::YFP::CFP were designated the condition 
positive population and cells with Cdc11::CFP and Cdc13::YFP were the condition negative 
population. ROC curves for TOSh and TOSmin demonstrated that they can discriminate the 
localization patterns of the two cell types with greater specificity and sensitivity than SRCC, PCC, 
M1diff and M2diff. M1diff and M2diff were not able to distinguish the localization patterns in 
the two strains because of difficulty with thresholding. 
 
In summary, values from TOS matrices such as TOSh and TOSmin were able to distinguish the 
localization patterns of the different proteins with greater specificity and greater sensitivity 
than other common metrics, and they are particularly useful when there are mixed patterns of 
localization within each cell and thus measures of the localization pattern of entire cells are less 
meaningful. We stress that this assessment did not evaluate whether TOSh, TOSmax, TOSmin are 
better descriptors of an entire population of pixels or whether they identify a specific feature 
that is reflective of the underlying biology. 
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Figure 1.5 TOS values can distinguish localization patterns in experimental data with high specificity and 
high sensitivity. (A) Microscopy images of representative S. pombe cells with Sid4::YFP::CFP. Images are 
pseudocolored. White lines indicate cell boundaries. Scale Bar = 10 µm (obtained from YRC PIR images). 
(B) Microscopy images of representative S. pombe cells with Cdc11::CFP and Cdc13::YFP. Images are 
presented as in panel A. (C, D) TOS matrices for the strains in panels A and B respectively (n = 40 and 38). 
Each matrix shows the median values obtained for TOS matrices of individual cells. (E, F) Scatterplots of 
CFP and YFP signal intensity for the outlined cell of each strain in panel A and B respectively. (G) 
Histograms of TOSh, TOSmax, TOSmin, PCC, SRCC, M1diff and M2diff values for individual cells in each strain. 
* P value is calculated with the raw data, which has more variation than seen in the binned data of the 
histogram. (H) ROC curves for all metrics in panel G. 
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1.4 Discussion 
 
Measuring localization is a basic requirement of cell biology and imaging and yet it is often a 
challenging task. This study demonstrates the TOS metric and its application, and shows they 
are valuable tools to help meet the challenge of quantifying localization in a wide range of 
applications. 
 
TOS has many features that make it suitable for general applications. The first feature is that 
TOS is simple to interpret because it only quantifies whether signal overlap is the same, more, 
or less than expected by chance. In contrast, some overlap metrics have a weighting for signal 
intensities (e.g. Mander’s coefficients M1 and M2, “overlap coefficient”, and “k1 and k2 
coefficients” [115]), which means that any value is an unknown combination of two factors: 
overlap and intensities. A second feature is that TOS can be compared at different thresholds, 
which is not the case with some other metrics (e.g. M1 and M2 coefficients) [118]. A third 
feature is that a single value distinguishes between colocalization, anticolocalization and 
noncolocalization, whereas some metrics require two values for interpretation, and/or they do 
not directly distinguish between anticolocalization and noncolocalization [115]. A fourth feature 
is the null hypothesis for TOS has minimal assumptions and requires no simulations [112, 118], 
which makes it easier to be implemented. A fifth feature is that TOS is one of the metrics that 
does not assume a linear correlation in signal intensities [112]. 
 
The general applicability of TOS is enhanced by systematically evaluating it at many different 
threshold combinations. The resulting TOS matrix is particularly useful when there are mixed 
patterns of localization; and the background and off-target signals are continuous with the on-
target signal. TOS matrices are best interpreted holistically with TOS at each selected fraction 
being evaluated in the context of neighboring TOS (which can detect trends and provide 
confidence for a specific value for TOS) and in relation to other localization patterns found in 
the matrix. Within TOS matrices, TOS at the highest thresholds (i.e. TOSh) was particularly 
helpful in identifying localization patterns in on-target signals when the off-target and 
background signals were at high levels and/or occupying a large proportion of pixels. We 
showed that TOSh, as well as TOSmax and TOSmin, often had greater specificity and sensitivity 
than PCC, SRCC, M1diff, and M2diff. Furthermore, TOS was very easy to use with a wide variety 
of proteins, cell types, and organisms. For all the above reasons, TOS matrices are a good first 
line of analysis for quantifying intracellular localization. However, we reiterate that there is no 
best test for all situations [112, 113] and that the selection of a metric must take into account 
the purpose of the analysis, the underlying biology, and the types of images and samples. 
 
To interpret values of TOS it is important to highlight that in many imaging experiments, 
including those used in this study, the concentration of reporter is high and single particles 
cannot be resolved. Therefore the signal in each pixel (or voxel) is the total of many reporter 
molecules within an area (or volume) of the cell. That is, the signal intensity in each pixel 
reflects the local concentration of a molecule. Local concentrations may be higher or lower in 
some cell regions depending on: (i) sites of production and degradation; (ii) diffusion; (iii) 
kinetics of association and dissociation with cellular structures (e.g. nucleus, cell membrane or 
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cytoskeleton); and (iv) attraction to or exclusion from cell regions [134, 135]. With this in mind, 
colocalization, anticolocalization and noncolocalization should be considered as the relationship 
in the local concentrations of two types of molecules, which may be due to many factors (and 
therefore should not be interpreted by itself as revealing as something about the molecules 
binding [112, 113]). Note: the above mechanisms could potentially generate concentration 
gradients that contribute more to the spatial autocorrelation of signals in cells than point 
spread functions [113, 136]. 
 
Following from the above, colocalization indicates that higher concentrations of two molecules 
tend to occur in similar cell regions. This may be due to common sites of production, action, 
binding, or degradation. Anticolocalization indicates two molecules have high concentrations in 
different cell regions and thus at least one mechanism is causing the molecules to be recruited 
to and/or exclude from different regions, one molecule excludes the other from a region [134, 
137] or the molecules eliminate each other in the same location (e.g. when non-coding RNAs 
binding to mRNAs both are destroyed [138]). Noncolocalization indicates that molecules have 
no preference for avoiding or occurring in the same regions. Because the mechanisms 
responsible for generating anticolocalization and noncolocalization are different, the capacity of 
metric such as TOS to distinguish these patterns is potentially very useful. 
 
The TOS metric could be adapted for applications that were not examined in this study and to 
measure localization in different ways. We chose to measure overlap by selecting pixels above 
thresholds because that approach was most similar to that of Manders’ colocalization 
coefficients. However, AO, AO ratio and TOS could be modified to measure the overlap of pixels 
below a threshold or within a range (i.e. the equivalent of a band-pass filter or low-pass filter 
instead of a high-pass filter). Another way in which the TOS metric could be altered is to choose 
selected fractions of pixels by features other than signal intensity such as their distances to the 
cell poles or membrane. Additionally, TOS analysis could be adapted to examine localization in 
three dimensional images (e.g. images assembled from confocal microscopy) or measure the 
convergence of more than two signals. 
 
In conclusion, systematic evaluation of the TOS metric at multiple threshold combinations is a 
valuable addition to the repertoire of tools available for the quantitative analysis of images. 
TOS analysis is simple to implement and easy to interpret, and it has many features that make 
suitable for many types of images and samples. Furthermore, values from TOS matrices can 
distinguish patterns of localization with greater sensitivity and greater specificity than other 
commonly used metrics. These findings make a strong case for selecting TOS analysis as a first 
step to evaluating localization in images. 
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1.5 Materials and Methods 
 
1.5.1 Simulations, calculation of metrics, and statistical analyses 
 
Simulations, calculations and statistical analyses were performed as described in the Results 
using Matlab (R2015a, Mathworks) (code archived at Figshare: 
https://figshare.com/s/6504f19aef88f1d6cf95). Post-measurement statistical comparisons 
were performed using the two-tailed Mann-Whitney U test. Note: localization in one set of 
samples could also be compared to the median of the expected null distribution using the Sign 
test or by bootstrapping. 
 
1.5.2 Receiver operating characteristic (ROC) curves  
 
Histograms for simulated data were generated using the histcounts function in Matlab. This 
function, which is based on Scott’s rule [139], determined the bin edges in the range of −1.2 to 
1.2. For experimental data, bin edges had increments of 0.1 for TOSh and TOSmin (defined in 
Results section), Pearson’s correlation coefficient, and Spearman’s rank correlation coefficient, 
and increments of 0.001 for the other metrics. The bin edges were used as thresholds and the 
fraction of counts in each population above the thresholds were used to create the ROC curves. 
 
1.5.3 Analysis of images 
 
Images of Drosophila melanogaster Kc167 cells (BBBC007_v1 (A9)) and whole organism 
Caenorhabditis elegans (BBBC012v1) were obtained from the Broad Bioimage Benchmark 
Collection [140].  Hand drawn boundaries of D. melanogaster cells were downloaded from the 
same collection and inverted to select cells [141]. Saccharomyces cerevisiae (DHY155) and 
Schizosaccharomyces pombe (KG4608 and KG3544) images were obtained from the Yeast 
Resource Center Public Image Repository (YRC PIR) [142]. Boundaries were traced around C. 
elegans in four different brightfield images, around S. cerevisiae cells in eight differential 
interference contrast (DIC) images, and around S. pombe in four DIC images for each strain. 
Traces were performed in ImageJ [143] and these defined the boundary of a “region of interest 
(ROI)” (data files at Figshare: https://figshare.com/s/e414b6b45d53f79f7b1f). A “Count Mask” 
was created in ImageJ to fill each ROI in an image with a unique integer. Count Mask was used 
to select pixels in the fluorescence images with Matlab that correspond to cells or C. elegans. 
Pixel intensity values within each cell or C. elegans were stored in an array, which were used for 
the analyses. 
 
Some downloaded drawn objects for D. melanogaster cells did not identify cell boundaries 
therefore the Analyze Particle function in ImageJ was used to eliminate small (<400 pixels) and 
large objects (>5000 pixels) from the analysis. In addition, boundaries that identified areas 
between cells were eliminated by selecting only ROIs with fluorescence signals greater than the 
background in non-cell regions. Occasional S. cerevisiae cells had binned data so they were 
removed from the analyses.  

https://figshare.com/s/6504f19aef88f1d6cf95
https://figshare.com/s/e414b6b45d53f79f7b1f
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Chapter 2: EzColocalization: An ImageJ plugin for visualizing and 
measuring colocalization in cells and organisms2 

 

2.1 Abstract 
 
Insight into the function and regulation of biological molecules can often be obtained by 
determining which cell structures and other molecules they localize with (i.e. colocalization). 
Here we describe an open source plugin for ImageJ called EzColocalization to visualize and 
measure colocalization in microscopy images. EzColocalization is designed to be easy to use and 
customize for researchers with minimal experience in quantitative microscopy and computer 
programming. Features of EzColocalization include: (i) tools to select individual cells and 
organisms from images; (ii) filters to select specific types of cells and organisms based on 
physical parameters and signal intensity; (iii) heat maps and scatterplots to visualize the 
localization patterns of reporters; (iv) multiple metrics to measure colocalization for two or 
three reporters; (v) metric matrices to systematically measure colocalization at multiple 
combinations of signal intensity thresholds; and (vi) data tables that provide detailed 
information on each cell in a sample. These features make EzColocalization well-suited for 
experiments with low reporter signal, complex patterns of localization, and heterogeneous cells 
and organisms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
 
2 This chapter has been previously published as "EzColocalization: An ImageJ plugin for 
visualizing and measuring colocalization in cells and organisms" in Scientific reports (2018), 8(1), 
15764. 
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2.2 Introduction 
 
Advances in microscopy equipment and labeling techniques make it possible for researchers to 
image a variety of biological molecules in almost any cell, tissue, or organism [144-150]. 
However, researchers often find it difficult to rigorously evaluate and interpret the images. In 
particular, it is often challenging to determine whether the different molecules of interest occur 
in the same locations, different locations or independent locations (i.e. colocalization, 
anticolocalization and noncolocalization respectively) in cells, tissues or organisms  [151]. 
 
Several factors limit the use of current software for visualizing the localization of reporters in 
biological samples and measuring colocalization [112, 113, 152, 153]. One factor is that 
customization of the software is often required for the equipment, reporters and samples [154, 
155], and for automated analyses. A second factor is that the software is often not suited to 
experiments that push the limits of detection, where the intensity of the intracellular signal is 
similar to the extracellular signal (i.e. “background”) [3], and where there are high levels of non-
specific signal in cells [151]. The latter can occur because the probes or reporters are not 
sufficiently specific [156], are not adequately removed from cells or organisms [157], or have 
low signal relative to endogenous compounds (i.e. “autofluorescence”) [158]. That is, software 
tools are needed to distinguish intracellular pixels from extracellular pixels, and to select signal 
intensity thresholds to limit analyses to a subset of intracellular pixels. A third factor is that 
there are often mixed localization patterns within cells and different localization patterns 
among cells in a sample [113, 151, 159]. When this heterogeneity is present, software is need 
to provide measurements for each cell or defined subsets of cells in samples. 
 
It is often possible to address the above challenges by combining multiple existing software 
programs and customizing them [3, 151]. However, combining and customizing software 
requires proficiency in programming, experience with quantitative microscopy, comfort with 
mathematics and statistics, and other support. Many researchers do not have these skills and 
resources, and this a likely reason that many studies evaluate colocalization by the simple, but 
often misleading, method of overlaying red and green color images [112, 113]. Therefore there 
is a pressing need for a single application that provides all the tools for start to finish analysis of 
colocalization and can be easily customized. 
 
In this study, an open source plugin for ImageJ called EzColocalization was developed so that 
researchers at all levels of proficiency can visualize the localization of signals and measure 
colocalization via an easy-to-use graphical user interface (GUI). The first part of the study 
describes EzColocalization, and the second part demonstrate its use for different sample types 
and for resolving common issues that prevent rapid and robust quantitative measurements of 
colocalization. EzColocalization can measure colocalization in cells, tissues, and whole 
organisms (e.g. Caenorhabditis elegans and Drosophila embryos); and the software is especially 
helpful where automation and customization is required, to obtain individual cell 
measurements in samples with many cells, and for reporters with low signal or low specificity. 
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2.3 Results 
 
2.3.1 Overview of EzColocalization workflow 
 
The workflow for EzColocalization is divided into four modules each with its own tab on the 
GUI. The tabs are: (i) “Inputs” where images, masks or regions of interest (ROI) lists are selected 
and aligned; (ii) “Cell Filters” where cells can be selected based on physical features and signal 
intensity; (iii) “Visualization” where heat maps, scatterplots, and metric matrices (defined 
below) are created; and (iv) “Analysis” where the colocalization metrics and outputs are 
chosen. Not all modules and not all processes within a module have to be used. Some tabs have 
a “Preview” button to run a specific module instead of the “Analyze” button which runs all 
selected processes in all modules.  
 
2.3.1.1 Inputs 

 
Image files, which are chosen in the “Input” tab (Figure 2.1A), must be: (i) monochromatic (i.e. 
not RGB or CMYK formats); (ii) 8-bit, 16-bit, or 32-bit; and (iii) in a format such as TIFF that 
retains the original pixel intensity values. Large images may be compressed for file transfer 
using a lossless format such as ZIP or LZW, and then decompressed for analyses. In addition to 
images, EzColocalization can accept masks and ROI lists for cell identification (see below). If 
there are multiple images for each channel, the images should stacked for more efficient 
analysis in the “Stack” menu (see ImageJ guide for further details [160]). Images in a stack may 
be different fields of view or a time series, but must have the same magnification and image 
order for each channel. The input tab also provides options for setting thresholds for signal 
intensity and aligning misaligned images from different channels (Figure 2.1B and Materials 
and Methods). Recommendations for acquiring suitable images for colocalization analysis are 
provided in the Materials and Methods. Note: alignment operates on the assumption that an 
appropriate threshold for signal intensity can be chosen to distinguish pixels inside and outside 
of cells; if thresholding includes areas outside the cell or only a limited area within cells, then 
the alignment may not function properly. For this reason, all alignments should be checked by 
outputting ROIs and confirming appropriate cell areas are selected. 
 
EzColocalization is primarily designed for one “cell identification” channel and two or three 
“reporter” channel images.  However, it can operate with other input combinations (Table 2.1). 
The cell identification channel is used to identify individual cells, and consequently to 
distinguish intracellular and extracellular pixels. The cell identification channel can be any image 
that identifies the cell boundary including: light microscopy images (e.g. phase contrast [161, 
162] and bright-field), images with a reporter that labels the cell membrane or is throughout 
the cytoplasm (e.g. Cy5, Figure 2.1B), and images with an extracellular dye that outlines cells. 
Differential interference contrast (DIC) images create shadows that make it difficult for 
automated selection of cells using threshold methods [163]; therefore for DIC images we 
recommend that ROIs be created using the “selection tools” in ImageJ to manually outline cell 
areas, and then adding them to a list by choosing “Add to Manager” (in “Selection” submenu of 
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the “Edit” menu). A binary mask can be created using the “Clear Outside” and then 
“Autothreshold” functions of ImageJ, once there are ROIs for all cells of interest in an image. 
 
 

A B

Convert cell regions in all channels to binary mask

Align binary masks to maximize cell region overlap

Threshold algorithm chosen for each channel 

(“Show threshold” displays cell regions in red)

Obtain X, Y shift values from above and use the values 

to perform translational shift to align original images

Cell identification input

(phase contrast)

Reporter 1

(DAPI)

Reporter 2

(Cy5)

X,Y 

shifts

INPUTS TAB

 

 
 
2.3.1.2 Cell Filters 
 
The “Cell Filters” tab is used to help select cells in images (Figure 2.2A) and distinguish 
intracellular and extracellular pixels. Cells are identified by: (i) choosing one of the ImageJ 
threshold algorithms [160], or manually selecting the thresholds (which is done by selecting 
“*Manual*” from a drop-down list in the Inputs tab and pressing the “Show Threshold(s)” 
button), to identify regions corresponding to cells in the cell identification channel (Figure 
2.2B); (ii) using watershed segmentation to separate touching objects in the cell identification 
channel images (optional) (Figure 2.2B); (iii) selecting objects from the cell identification 
channel images based on physical parameters (Figure 2.2C) and signal intensity (Figure 2.2D). 
EzColocalization will attempt to automatically detect whether input images have dark or light 
background using skewness. Assuming there are more pixels in the background than in the 

Figure 2.1 Input and alignment tab. (A) Input tab in the GUI. (B) General steps for the alignment of images. 
The cell identification image stack (phase contrast; left column), reporter 1 image stack (DAPI staining of 
DNA; center column), and reporter 2 image stack (Cy5; right column) are images of a previously reported 
bacterial strain (HL6320) [3]. Scale bar is 2 μm. Reporter 1 and 2 images are pseudocolored. Red coloring 
in the second row of images indicates the objects identified by thresholding of the signal in each channel 
(“Default” algorithm in ImageJ). Following alignment of the images, some pixels will overhang or need to 
be filled with pixels (yellow areas) so that all images have the same area in the common aligned region. 



 
 

26 
 

cells, an image with positive skewness indicates a dark background and negative skewness 
indicates a light background. Users can also manually select whether the input images have 
dark or light background in the “Parameters…” options of the “Settings” menu. Cells that are 
only partly within an image, and therefore could provide misleading values, are automatically 
removed from analyses. 
 
EzColocalization has one optional “Pre-watershed filter” and 8 optional post-watershed filters 
(with the option to select more). Watershed segmentation can aid the separation of dividing 
and touching cells [164] but it can also divide large objects such as aggregates of extracellular 
material into smaller fragments that are the same size as cells. To avoid the latter, the Pre-
watershed filter can be used to exclude objects with large areas from the analysis. The Preview 
button in the Cell Filters tab allows users to see which objects on the current image will be 
filtered out when the minimum and maximum bounds of the Pre-watershed filter are adjusted. 
There are two classes of parameters for the post-watershed cell filters (Table 2.2): (i) physical 
parameters based on measurements from the cell identification channel; and (ii) signal intensity 
parameters from the reporter channels. Physical parameters apply to all channels whereas 
signal intensity parameters apply only to the reporter channel for which they are selected 
(because reporters may have very different level of signal). In addition to filtering based on 
predefined options in ImageJ, EzColocalization has filters for the “MeanBgndRatio” or 
“MedianBgndRatio”, which are calculated by dividing the mean or median signal intensity of 
pixels inside an object by the respective mean or median signal intensity of extracellular pixels. 
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2.3.1.3 Visualization tab 
 
The “Visualization” tab displays signals in cells as: (i) “heat maps”; (ii) scatterplots; and (iii) 
“metric matrices” (Figure 2.3A).  
 

Figure 2.2 Cell identification and cell filters tab. (A) Cell filter tab in the GUI. (B) Cell selection and 
watershed segmentation. Red coloring in the image in the second row indicates objects identified by 
thresholding of the signal in the cell identification channel (“Default” algorithm in ImageJ).  Cells are the 
same as in Figure 2.1. (C) Selection of cells based on physical features using the cell filters. Scale bar is 2 
μm. Phase contrast image from Figure 2.1. Red outline indicates the objects that were identified by 
thresholding (Panel B), and in the case of the right image, are within the parameter range(s) selected by 
the filter.  (D)  Selection of cells based on signal intensity using the cell filters. Phase contrast (cell 
identification image) and DAPI stain (reporter channel) images of bacteria (HL6187). Scale bar is 2 μm. 
Note: the lower of the two cells in the image (no red border) has been removed from the analysis by the 
cell filter (that is, it no longer has the red cell outline). 
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Heat maps are 8-bit color images that show the relative magnitude of reporter signals (Figure 
2.3B). They are generated by normalization and rescaling so that the minimum and maximum 
pixel values are 0 and 255 respectively in each cell, image, or stack. There are eight options for 
coloring the heat maps, and the intensity values for each color are obtained from the "Show 
LUT" function (within the “Color” submenu of the “Image” menu in ImageJ). Cell heat maps are 
suited for determining where each reporter occurs with highest intensity in cells. Image heat 
maps can show if different cells within a field of view have substantially different intensities, 
which may indicate biological heterogeneity or unevenness in labeling. Stack heat maps can 
show if cells in different images have substantially different levels of signal intensity, which may 
indicate unevenness in labeling or measurements across a slide (e.g. due to photobleaching) or 
at different time points (if the stack is a time series). Note: heat map appearance is affected by 
brightness and contrast settings. 
 
Scatterplots show the relationship between the signal intensity for two or three reporter 
channels for individual cells, images, and stacks (Figure 2.3C). This relationship is important in 
choosing the appropriate metric (Materials and Methods). Scatterplots can also reveal 
heterogeneity in the localization patterns [151], which may require removal of background 
pixels or separate analyses for different cell types. 
 
Metric matrices provide an overview of localization patterns by showing the calculated values 
of a colocalization metric for many threshold combinations. Metric matrices for the threshold 
overlap score (TOS) have been shown to be useful for the analysis of localization patterns for 
two reporter channels [3, 151] (Figure 2.3D). For completeness, EzColocalization has the option 
to calculate metric matrices for two reporter channels using five other metrics: threshold 
overlap score with logarithmic scaling [151], Pearson correlation coefficient (PCC), Manders' 
colocalization coefficients (M1 and M2), Spearman's rank correlation coefficient (SRCC), and 
intensity correlation quotient (ICQ) [3, 151]. Colocalization for three channels can also be 
measured using ICQ, Manders' colocalization coefficients and TOS [127] (Materials and 
Methods). 
 
Thresholds for all metrics are measured as the top percentile (FT) of pixels for signal intensity [3, 
151]. For example, FT = 0.1 is the 10% of pixels with the highest signal. For the metric matrices, 
FT is also used to specify the step size for the threshold combinations. That is, FT = 0.1 would be 
used to set thresholds for the 10%, 20%, …, and 100% of pixels with the highest signal. If FT does 
not divide evenly into 100, then the remaining percent is the last step size. For metrics that do 
not need a threshold (i.e. PCC, SRCC, and ICQ) the values are calculated assuming that only the 
pixels above the thresholds exist. The metric matrix window has options for the values to be 
saved as text or image, for changing the FT or type of metric, viewing individual cell metric 
values as a list, and calculating the mean, median or mode of the metric for each threshold 
combination. The “Proc” (processed) and “Raw” button determine whether the list of data 
displayed, copied, or saved with the “List”, “Copy”, or “Save…” buttons respectively is the 
average value for the sample for each threshold combination (e.g. median value) or all values 
for each cell in the sample for all threshold combinations. 
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2.3.1.4 Analysis 
 
The “Analysis” tab has two subtabs (“Analysis metrics” and “Custom”). The Analysis Metrics 
subtab has six metrics for measuring colocalization for two reporters (Figure 2.4A) and three 
metrics for three reporters (see previous section). Users may choose a threshold or no 
threshold for PCC, SRCC and ICQ. TOS and Manders’ colocalization coefficients must have a 
threshold to be calculated. Thresholds can be selected using Costes’ method [124] or manually. 
In the Custom subtab (see Materials and Methods for additional information), users can write 
their own code in JavaTM to analyze images (note: the example provided is for calculating PCC) 
(Figure 2.4B). The “Compile” button tests the code and creates a temporary file in the Java 
temporary directory and displays the outcome of the compiling with a “Succeeded” or “Failed” 

Figure 2.3 Visualization tab. Bacterial cells (HL6187) with labeled sodB::gfp RNA (Cy3 channel) and DNA 
(DAPI). (A) Visualization tab in the GUI. (B) Heat maps of Cy3 and DAPI signals for bacteria with “cellular 
scaling” (defined in main text). Scale bar is 2 μm. (C) Scatterplot of Cy3 and DAPI for the cell on the left 
and outlined in white in Figure 2.3B. (D) Metric matrix for TOS (linear scaling) for the cell on the left and 
outlined in white in Figure 2.3B. FT is the top percentage of pixels in the channel; for example, if FT for Cy3 
is 80% then it refers to the 80% of pixels with the greatest Cy3 signal. Black color on the left column and 
bottom row indicate that TOS values are not informative when one threshold is 100%; that is, the overlap 
of two reporters can only be 100% if 100% of pixels are selected for at least one channel. 
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label. If successful, the compiled custom code is read to the memory again and applied to the 
selected cells.  
 
The output of every analysis is a table that specifies the image and an identifier number for 
every cell (Figure 2.4C), and for each cell, values are provided for: (i) the selected metric; (ii) 
physical parameters; and (iii) average signal intensity for each channel (if selected). Note: 
“NaN” in the output table indicates the failure to calculate a value. Users can also generate 
summary windows (with the cell number, mean, median and standard deviation for the 
selected metric) (Figure 2.4D), histograms of metric values (Figure 2.4E), binary mask images, 
and ROI lists that specify each cell’s position and number on each image in the ROI manager. 
ROI lists and binary mask images can be saved for re-analysis of the same cells. 
 

A BAnalysis tab (Analysis metrics) Analysis tab (Custom)  

C D E

 
 



 
 

31 
 

 
 
2.3.2 Applications of EzColocalization 
 
EzColocalization is designed to be used in a modular manner to facilitate customization of 
analyses for a wide variety of experiments and researcher needs. This section focuses on 
demonstrating specific tools in EzColocalization to solve real-world problems in diverse image 
sets. 
 
In the first application of EzColocalization, images of rat hippocampal neurons from the Cell 
Image Library (CIL:8773, 8775-8788, which are attributed to Dieter Brandner and Ginger 
Withers) are used to demonstrate: (i) using a reporter channel for cell identification when the 
experiment does not have separate non-reporter images for cell identification; (ii) cell filters for 
selecting cells; and (iii) visualization tools for choosing metrics. The workflow of the analysis is 
outlined in Figure 2.5A. In the first step, two reporter image stacks were created: one stack 
with images where F-actin is labelled (using a phalloidin peptide conjugated to rhodamine); and 
the second stack with images where tubulin is labelled (using an antibody conjugated to Alexa 
488) (Figure 2.5B). The interaction of F-actin and tubulin is important for the growth and 
migration of neurons [165, 166]. We used the F-actin images for cell identification because it is 
present in all cells and it shows the cell boundaries [151]. Individual cells were selected from 
the F-actin images by applying a threshold to identify cells [160] and using a cell filter to remove 
cell debris (note: parameter values in Figure 2.5A). 
 
After the cells were selected, the intensity of reporter signals were examined using cellular heat 
maps and scatterplots. We found the reporters did not colocalize at high signal levels and there 
was a complex relationship between the signal intensities (Figure 2.5C, D). Due to the latter, 
localization was quantified using Manders’ M1 and M2 and TOS (Materials and Methods). M1 
and M2 were evaluated at thresholds selected by Costes’ method, and the values were 0.289 
and 0.995 respectively. These values are usually interpreted as indicating that tubulin has high 
colocalization with F-actin, and F-actin has low colocalization with tubulin. TOS values were 
evaluated by generating a metric matrix with median TOS values. The matrix showed 
colocalization, anticolocalization and non-colocalization at different thresholds for the signal 
intensities of tubulin and F-actin (Figure 2.5E). At sites in cells where F-actin and tubulin have 

Figure 3.5 Analysis tab. (A) Analysis tab in the GUI for selection of default metrics. Note: this example is 
for two reporter channels (see Figure 2.8F for 3 reporter channels). (B) Analysis tab in the GUI for users 
to code custom metrics. The example code provided is for measuring colocalization by Pearson correlation 
coefficient. (C) Example of a data table showing metric values for Pearson correlation coefficient (PCC) 
and some of the parameter values for each cell in the analysis. Label = the image and unique cell number 
to identify individual cells; Area = area of each cell in pixels; and X = the average x-value of all pixels in a 
cell. Data is from the example used in Figure 2.3. (D) Summary report (“Log”) of the results in Figure 2.4C. 
(E) Histogram generated from the results in Figure 2.4C. The height of each bin is the relative frequency. 
The Count is the number of cells. Mean is the mean value. StdDev is the standard deviation. Bins is the 
number of bins. Min and Max are the minimum and maximum values of the lowest and highest bin 
respectively (which are shown immediately under the histogram). Mode is the mode value. Bin Width is 
the width of each bin within the histogram. 
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the highest intensity signal (top 10% of pixels for each channel), the median TOS value is −0.36 
(n = 20). This negative value indicates anticolocalization, which is consistent with the impression 
obtained from the heat maps and scatterplots, and with other reports [151]. 
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Figure 2.5 Application 1: Cell selection using reporter images and physical parameters. Images are rat 
hippocampal neurons labelled with an F-actin probe and anti-tubulin antibody visualized by fluorescence 
microscopy (see main text). (A) Workflow of the analysis. (B) Cell identification using the F-actin reporter 
and filters to remove small non-cell objects (yellow arrow) based on their size (i.e. Area option from the 
cell filters). Large yellow box in left panel is a zoomed in view of the smaller yellow box. Red outline of the 
neuron indicates it has been identified as an object (i.e. a cell) for analysis. Scale bar is 100 μm. (C) Heat 
maps with cellular normalization showing localization regions of signal intensity for the cell shown in panel 
B. Scale bar is the same as panel B. (D) Scatterplot showing relationship between the signal intensity for 
two reporter channels for an arbitrary cell in the sample. Pixels with the highest intensity signal for each 
reporter channel have the lowest intensity signals for the other reporter, which indicates 
anticolocalization (blue circles). Green dash lines indicate thresholds selected by Costes’ method. (E) 
Metric matrix for the median TOS (linear) value for all cells in the sample (n = 20). Green box indicates the 
threshold combination where F-actin and tubulin have the highest intensity signal (top 10% of pixels for 
each channel); the median TOS value is -0.36.  
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In the second application, images of Saccharomyces cerevisiae undergoing mitosis were 
obtained from the Cell Image Library [167] to demonstrate: (i) cell identification via hand-drawn 
outlines (for experiments where automated methods of cell identification cannot be applied); 
and (ii) image alignment. The reporter inputs were an image from a wild type strain (“control”; 
CIL: 13871) that has the BFA1 protein that loads TEM1 onto the spindle pole body, and an 
image from a strain without the BFA1 protein (∆bfa1 deletion mutant; CIL: 13870). In these 
reporter images, cells expressed TEM1 protein fused to GFP and the DNA was labelled with 
DAPI (4', 6-diamidino-2-phenylindole). TEM1 localizes to spindle pole bodies during mitosis and 
is implicated in triggering exit from mitosis [167]. The workflow is shown in Figure 2.6A. In this 
application, ROIs were manually drawn around cells using the “Freehand” selection tool in 
ImageJ on DIC images. Binary masks, which were used to select cell areas, were created by 
selecting the ROIs and using the “Clear Outside” and then “Auto Threshold” functions of ImageJ 
[160] (Figure 2.6B). The cell areas were used for cell identification and to correct alignment 
between the DIC images and the reporter channels using the “default” threshold algorithm 
(Figure 2.6C). Following this cell identification and image alignment, the images are now ready 
for visualization and analysis as described in the previous example. 
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In the third application, images of whole adult Caenorhabditis elegans obtained from the Broad 
Bioimage Benchmark Collection (BBBC012v1, M14) [140] were used to demonstrate that: (i) 
EzColocalization can analyze colocalization in whole organisms; and (ii) “cell” filters can select 

Figure 2.6 Application 2: Image alignment.  Images are S. cerevisiae with TEM1 translationally fused to 
GFP and DAPI staining visualized by DIC microscopy and fluorescence microscopy (see main text). (A) 
Workflow of the analysis. (B) Cell identification by hand-drawn ROIs on a DIC image and creation of a 
binary image mask. Red outline indicates the boundary of the hand-drawn ROI. Scale bar is 3.5 μm. (C) 
Alignment of the reporter images using the binary mask image. Arrows indicate areas of misalignment 
that are corrected. Red outline is the same as for Panel B.  
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individual organisms based on reporter signal intensity. The images in this example are from 
the same dataset used in our study describing TOS (but they are not the same images) [151]. 
The workflow is shown in Figure 2.7A. Outlines of individual C. elegans were drawn in ImageJ 
on bright-field images to create ROIs, and the ROIs were added to the ROI manager for “cell” 
identification. GFP expressed from the clec-60 promoter in the anterior intestine was reporter 1 
and mCherry expressed from the myo-2 promoter within the pharynx, which is an organ next to 
the anterior intestine [4], was reporter 2. Cell filters for physical parameters were unnecessary 
because only those objects considered to be suitable C. elegans had outlines drawn around 
them in the first place. However, cell filters for signal intensity were necessary because some C. 
elegans had low GFP signal, possibly due to transgene silencing [168, 169] (Figure 2.7B). 
Subsequent visualization and analysis was performed as described in the first application. 
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In the fourth application, we demonstrate the analysis of colocalization for three reporter 
channels. The workflow was the same as for two reporter channels except “3 reporter 
channels” was first selected in the “Settings” main menu (Figure 2.8A). Images were obtained 
from the Broad Bioimage Benchmark Collection (BBBC025, Version 1, Image set: 37983,  image: 
p23_s9) of U2OS bone cancer cells (n = 66) [170]. The three reporter images had DNA, 
endoplasmic reticulum (ER) and mitochondria respectively stained with Hoechst 33342, 
concanavalin A/Alexa Fluor488 conjugate, and MitoTracker Deep Red (upper row, Figure 2.8B). 
Cell identification was performed with an image of the plasma membrane labeled with wheat 
germ agglutinin (WGA)/Alexa Fluor 555 conjugate (upper left, Figure 2.8B). Note: the image 
also had the Golgi apparatus and F-actin network labeled [170].  The plasma membrane was 
traced using the polygon selection tool in ImageJ to create ROIs for the individual cells, and the 
ROI manager containing the ROIs was selected for cell identification. 

Figure 2.7 Application 3: Cell selection using signal intensity parameters. Images are whole adult C. 
elegans with GFP expressed from the clec-60 promoter and mCherry expressed from the myo-2 promoter 
that are visualized by bright-field microscopy and fluorescence microscopy (see main text). (A) Workflow 
of the analysis. (B) Selection of C. elegans so that only those individuals with an average intensity for the 
reporter signal that is above a threshold level are included in analyses. Left image shows the ROI manager 
with a list of each ROI that was hand-drawn around each C. elegans. Right image shows the reporter 
channel images with red outlines indicating the boundaries of the ROIs. C. elegans below the threshold 
level were excluded (yellow arrow) from the analyses by using the cell filters for signal intensity. Scale bar 
is 250 μm. 
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The localization patterns were visualized in the same manner as for two reporters except that: 
(i) there are three sets of heat maps for the reporters instead of two (lower row, Figure 2.8B); 
and (ii) scatterplots and metric matrices are in three dimensions (Figure 2.8C-F). There is the 
option in the Visualization tab and the Analysis tab (Figure 2.8G) to measure colocalization for 
the three reporters using ICQ, TOS or Manders’ M1, M2 and M3 metrics. Of the three metrics, 
we found that TOS was the easiest to interpret. TOS has a single value for measuring the 
colocalization of all three reporter signals, and it clearly showed the reporter signals for the 
nucleus, mitochondria and ER overlapped at low thresholds (i.e. at high FT values there is 
colocalization; red color in Figure 2.8E) and did not overlap at high thresholds (i.e. at low FT 
values there is anticolocalization; blue color in Figure 2.8E). These observations are consistent 
with the nucleus, mitochondria and ER organelles overlapping at their edges (where the signal 
from their reporters is typically lower) due to known physical interactions, but not at their 
centers (where the signal from their reporter is typically higher) because they are distinct 
structures in cells [171-173]. 
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Figure 2.8 Application 4: Measurement of colocalization for three reporter channels. Images are of 
human bone cancer cells (U2OS) labelled as described in the main text. (A) Workflow of the analysis. (B) 
Images of cells in the cell identification and reporter channels. Top row are raw images. Bottom row, left 
image is the cell identification with pseudocolor (blue is the signal from Hoechst 33342 signal and green 
is the signal from phalloidin/Alexa Fluor 568 conjugate and wheat germ agglutinin/Alexa Fluor 555 
conjugate) and boundaries of the ROIs in white (see main text). Bottom row (except left image) are heat 
maps for each of the three reporters with the boundaries of the ROIs shown. Signal intensity is indicated 
by the bar below each reporter image. Scale bar is 20 μm. (C) A three channel scatterplot for a single cell 
is shown for illustrative purposes only. (D-F) Metric matrices of median values for ICQ (D), TOS (E) and 
Mander’s colocalization coefficients M1, M2 and M3 (F) for all cells in the analysis (n = 66). Note: black 
color on metric matrix for ICQ indicates there were no pixels above all three thresholds for some cells, 
and therefore ICQ could not be calculated. (G) Analysis tab for three reporter channels. 
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2.4 Discussion 
 

EzColocalization was designed to make it easier for researchers to determine where particular 
types of molecules occur in cells and organisms in relation to other types of molecules. In 
addition, EzColocalization can provide data on colocalization for each cell or organism in a 
sample, which is increasingly recognized as being crucial to understanding biological process 
such as cell differentiation [174], cancer [175], and microbial pathogenesis [176]. 
 
Two of the most widely used existing applications for colocalization analysis are JACoP and 
Coloc2 [112, 153]. JACoP is an ImageJ plugin that can generate pixel intensity scatterplots to 
visualize localization patterns and measure colocalization with a variety of metrics including 
PCC (Van Steensel’s CCF method or Costes’ randomization), Manders’ M1 and M2, ICQ, and 
object based methods [112]. It also permits thresholds to be chosen manually or automatically 
using Costes’ method [112]. Coloc 2 is a plugin for Fiji [153], which builds on the functionality of 
JACoP by providing options to: analyze selected ROIs within single images, threshold images 
using a “bisection” algorithm, and measure colocalization with SRCC and Kendall’s Tau rank 
correlation. Unfortunately, JACoP and Coloc 2 do not have built-in options to automate 
analyses or perform separate colocalization measurements for multiple objects in an image, 
therefore analyses can be challenging for images with a lot of background pixels or different cell 
types. The Wright Cell Imaging Facility (WCIF) has helped address these challenge by creating a 
colocalization plugin that can measure colocalization for individual cells by manually creating 
individual ROIs [113], but this method cannot be easily automated to analyze many cells across 
many images. 
 
In addition to the above, software has been reported for measuring colocalization in cells, 
particularly in cases where the signal is defined to distinct regions or foci. One of these 
applications is MatCol, which can identify overlapping objects after a threshold is applied, and 
then calculate if the measured overlap is significantly different to that expected if the same 
objects were randomly scattered [177]. Another reported script calculates object based 
colocalization in confocal images [178] from the percent overlap of the objects. A third program 
measures colocalization for three-dimensional images; it measures the proportion of 
thresholded objects in one channel that have their center of mass within thresholded objects of 
another channel [179]. There are practical barriers to the widespread use of these three 
programs including the need for additional software to identify cell areas and that they are 
written in Matlab or C++ (therefore users must be familiar with these programming languages 
to customize them). 
 
To make it easy to optimize analyses, EzColocalization has a simple GUI that requires no 
programming experience unless a custom metric is created. The GUI template is based on one 
that is familiar to many microscopists. ImageJ also has a large library of tools that can be used 
with EzColocalization, and it is open source software [160]. ImageJ has options for creating 
stacks of images and thresholding images, which were incorporated into EzColocalization for 
automated analyses. EzColocalization also has tools for the input of images, cell identification, 
visualizing localization patterns, measuring colocalization, and for displaying and saving results. 
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EzColocalization can select individual cells from cell identification images using thresholds, ROIs, 
or mask images. Identification of individual cells allows pixels within cells to be discriminated 
from pixels in the background and non-cell objects. In addition, cell filters can limit analyses to a 
subset of cells with certain physical parameters and minimum signal levels. Filters are used to 
select cells instead of more advanced techniques for cell detection [180] because: (i) they do 
not require assumptions about cell features (therefore diverse cell types can be analyzed); and 
(iii) they are intuitive, which makes it easier for researchers to tailor settings for their 
experiments and identify if patterns of localization are associated with specific cell features.  
 
The visualization tools (heat maps, scatterplots, and metric matrices) can help with choosing 
the appropriate metrics and thresholds for the analyses. The metric matrices are particularly 
useful for samples with non-specific binding or localization of probes. These matrices display 
colocalization values for multiple combinations of thresholds for signal intensity, which 
facilitates the selection of thresholds so the analysis includes pixels from cellular regions with 
high signal (due to specific localization) and excludes pixels from regions with low signal (due to 
non-specific localization). 
 
EzColocalization can not only measure colocalization for two reporters but also for three 
reporters. The latter is a useful feature that is unavailable for most software applications for 
measuring colocalization. In addition, custom metrics can be programmed in EzColocalization. 
 
The data table generated by the colocalization analysis is an important feature of 
EzColocalization. Because the value of the colocalization metric for each cell is provided, and 
not just the average measurement of colocalization for the sample, it is possible to examine the 
distribution of metric values, perform statistical analyses, calculate receiver operator 
characteristic curves, and analyze subsets of cells in heterogeneous samples [151]. The data 
table also lists the specific image and a unique identifying number for each cell, therefore 
researchers can examine the images to determine why different cells have different 
measurements. The data tables can be downloaded and used in any spreadsheet application, 
which makes the data accessible to researchers without programming experience. 
Furthermore, the values for the physical parameters, signal intensity, and colocalization metrics 
can be retrieved from the tables (if the check box is selected) for more sophisticated 
multivariate analyses, including clustering, classifying and ordination methods. 
 
In conclusion, EzColocalization is an ImageJ plugin with a user-friendly GUI, tools for start-to-
finish analysis of colocalization, and many options to customize analyses. The tools are provided 
to select specific types of cells or organisms, visualize and measure colocalization, and 
automate analyses. The analysis generates a data table with measurements of colocalization, 
signal intensity and physical parameters for each cell, which allow users to delve deep into their 
data. Together these features make EzColocalization ideal for researchers at all levels, and for 
analyzing heterogeneous samples and complex patterns of localization. 
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2.5 Materials and Methods 
 
2.5.1 EzColocalization development 
 
The code for EzColocalization was written in Eclipse Java Integrated Development Environment 
(IDE) release 4.3.0 [181], which is a workspace for writing code and detecting compiling errors 
in JavaTM. EzColocalization incorporates ImageJ Application Program Interfaces (APIs) available 
from the National Institutes of Health, U.S. Department of Health and Human Services. An 
environment builder was used so that code written in the IDE ran in an instance of ImageJ as a 
plugin. This builder was implemented with Java Development Kit 8 [182] and the ImageJ source 
code within the IDE. The WindowBuilder [183] plugin for the IDE was used to design and 
generate the code for the GUI, and the code produced was restructured and revised to improve 
readability, and add listeners, which obtain user inputs from the GUI for running the plugin.  
 
The basic level of organization of the code for EzColocalization are “classes”. Classes are 
independent blocks of code that represents a set of methods and variables; a class may be 
devoted to performing calculations which share code or calculations that are most conveniently 
performed together. Classes with related operations are grouped into a higher level of 
organization termed “packages”. For example, a class that generates heat maps and a class that 
displays heat maps may be bundled into the same package. The classes and packages are 
described in detail in the following section. It should be noted in regard to class functions that 
many processes within EzColocalization are performed as background computing, and thus the 
results of some functions, which are intermediates in longer methods, are not displayed and 
cannot be interacted with via the GUI. 
 
2.5.2 Description of packages and classes for EzColocalization 
 
The first two packages have very basic purposes. The first is the “default” package (by JavaTM 
convention) and its only function is to load the plugin within ImageJ. This package contains a 
single class, “EzColocalization_”, and outputs from this package are not accessible by other 
classes in other packages. The second package is “ezcol.files”, which has a single class 
(“FilesIO”) that loads all emblems and sample images for the GUI. 
 
The third package is “ezcol.main”. It performs shared and general functions, and has six classes 
(“GUI”, “ImageInfo”, “MacroHandler”, “PluginStatic”, “PluginConstants”, and 
“AnalysisOperator”). GUI creates the GUI. ImageInfo stores information on the formats of the 
input images. MacroHandler enables use of the recorder in ImageJ so users can run macros that 
automatically run commands in batches. For example, the recorder can be used to create a 
macro to automatically modify and analyze a large set of images with particular settings. 
PluginStatic contains all static parameters (inputs) and static utility methods (common 
functions) used in analyses. PluginConstants contains all shared constants that are accessed by 
other classes. AnalysisOperator coordinates the operation of analyses in response to the inputs.  
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The fourth package is “ezcol.align”, which performs image alignment and has three classes 
(“BackgroundProcessor”, “TurboRegMod”, and “ImageAligner”). BackgroundProcessor 
enhances the contrast of images by: (i) subtracting background signal from pixels using the 
rolling ball algorithm in the “Subtract Background” function of ImageJ ; (ii) generating binary 
images of the reporter and cell identification channels with a user chosen algorithm from the 
“Auto Threshold” function in ImageJ  or thresholds manually set by the user (note: only a single 
manual threshold can be applied for a stack of images, and this is performed by selecting 
“*Manual*” and then displaying the thresholds by selecting “Show threshold(s)”; if no manual 
selection is made, the “Default” algorithm is applied); (iii) converting all pixels above the value 
identified by the Auto Threshold algorithm to a value of 255, and all those below it to 0; (iv) 
applying the “Fill Holes” function of ImageJ  on the binary images to better select the entire 
area of cells; and (v) calculating the average signal of pixels below the threshold in each 
reporter channel. TurboRegMod uses the “Translation” alignment algorithm from TurboReg to 
calculate the required XY coordinate shifts to align the binary images from the output of the 
BackgroundProcessor class by maximizing the overlap of pixels above the threshold. Note: 
interpolation of pixel values and other alignment functions that are normally performed by 
TurboReg are avoided because these functions alter pixel values. ImageAligner performs the 
image alignment by applying the calculated XY shifts from TurboRegMod to the original images. 
  
The fifth package is “ezcol.cell”, which identifies cell areas and obtains pixel values. This 
package has six classes (“ParticleAnalyzerMT”, “CellFinder”, “CellFilterDialog”, 
“CellDataProcessor”, “DataSorter”, and “CellData”). Note: “cell” refers to any objects being 
analyzed, including subcellular structures or whole organisms. ParticleAnalyzerMT is a 
customized multithreading version of the “Analyze Particle” function from ImageJ and it is used 
to identify cell areas above the thresholds, which are pixels of the objects on the binary images 
produced by BackgroundProcessor (see previous package)). CellFinder takes inputs from the 
previous class and converts them into a format for the next class, performs watershed 
segmentation [184], and removes cells based on user defined cell filters. CellFilterDialog opens 
the window for additional cell filters. CellDataProcessor obtains the values of pixels identified 
for each cell. DataSorter and CellData sort the pixel values of cells based on intensity and store 
them so that these steps do not need to be repeated multiple times for later calculations. 
 
The sixth package is “ezcol.metric”, which performs colocalization analysis in response to inputs 
from ezcol.cell, and contains six classes (“BasicCalculator”, “MetricCalculator”, 
“CostesThreshold”, “MatrixCalculator”, “MatrixCalculator3D”, and “StringCompiler”). 
BasicCalculator is an abstract class containing methods and values shared by the other 
“calculators” (i.e. MetricCalculator, MatrixCalculator, MatrixCalculator3D). MetricCalculator 
uses previously described algorithms to calculate Li’s ICQ, Manders’ colocalization coefficients 
M1, M2 and M3, PCC, SRCC, and TOS. “CostesThreshold” uses Costes’ method for determining a 
threshold and the algorithm was optimized for faster operation using ranked pixel values and 
dynamic programming as follows. The thresholds start at the maximum pixel values for each 
channel and PCC is calculated. Then the thresholds are decreased to the next highest pixel 
value, the values above the new threshold are subtracted from the stored sums, and PCC is 
calculated again from the new stored sums, and so on. During the entire process when all the 
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pixels have been removed, we compare all the PCC values calculated for all thresholds to find 
the minimum absolute PCC value. MatrixCalculator calculates metric matrices for two reporter 
channels. MatrixCalculator3D creates metric matrices for three reporter channels. 
StringCompiler compiles and performs any custom analysis written by the user.  
 
The seventh and eighth packages are “ezcol.visual.visual2D” and “ezcol.visual.visual3D”, which 
output plots and data from the analyses. These packages are located in the folder called 
“visual” and both obtain inputs from ezcol.cell for heat maps and scatterplots and from 
ezcol.metric for histograms and metric matrices. 
 
The ezcol.visual.visual2D package contains nine classes for visualizing two dimensional data and 
results (“HeatGenerator”, “HeatChart”, “HistogramGenerator”, “HistogramStackWindow”, 
“ScatterPlotGenerator”, “PlotStackWindow”, “HeatChartStackWindow”, “OutputWindow”, and 
“ProgressGlassPane”). HeatGenerator normalizes pixels values so the maximum and minimum 
values are 0 and 255 (8-bit) or 65535 (16-bit) respectively for each cell, image, or stack. The 
normalized values are assigned colors from ImageJ lookup tables, or assigned from Matlab 
(R2015a, Mathworks, Natick, MA, USA) in the case of “hot” and “cool” colors. HeatChart is a 
modified version of the class JHeatChart (created by Tom Castle) which takes colors from the 
previous class to generate heat maps as RGB images, and values from MatrixCalculator to 
generate two dimensional metric matrices. HistogramGenerator and HistogramStackWindow 
generate histograms by respectively converting cell based data into histogram data starting 
with ten bins, and generating a stack of histograms for selected metrics. The number of bins 
can be increased or decreased in increments of one with the “nBin+” or “nBin−” buttons. 
ScatterPlotGenerator obtains pixel values from two reporter channels for five random cells per 
image in a stack. If five or less cells are present in an image, then pixel values are obtained for 
all cells in the image. PlotStackWindow creates and displays a stack of scatterplots, with each 
plot containing the pixel values for a single cell. HeatChartStackWindow generates the metric 
matrices window. OutputWindow generates the analysis summary window and its content. 
ProgressGlassPane generates the progress bar and presents tips in the GUI. 
 
The ezcol.visual.visual3D package has 14 classes for visualization of three reporter channels in 
dynamic three dimensional scatterplots and metric matrices (“Arrow3D”, “Cube3D”, 
“Element3D”, “GraphicsB3D”, “Line3D”, “Point3D”, “Polygon3D”, “Rect3D”, “Renderer”, 
“ScatterPlot3D”, “ScatterPlot3DWindow”, “Spot3D”, “Square3D”, and “Text3D”). All classes are 
adopted from the jaytools.jar written by Urah Jay. His original classes are modified particularly 
for three dimensional scatterplots. Element3D is an abstract class (which means it cannot be 
initialized or constructed) containing methods and values shared by the other classes, including 
“Arrow3D”, “Cube3D”, “Element3D”, “Line3D”, “Point3D”, “Polygon3D”, “Rect3D”, “Spot3D”, 
“Square3D”, and “Text3D”. These classes represent the corresponding 3D elements as their 
names suggest; for example, “Arrow3D” is a class to indicate an arrow on a 3D graph. Some of 
these 3D elements (“Arrow3D”, “Polygon3D”, “Rect3D”, and “Square3D”) are not used for the 
purpose of this plugin but are kept for completeness of the package. Renderer is the 3D 
graphics process of automatically converting 3D elements into 2D image data, the results of 
which are feed into GraphicsB3D to paint the 2D image data of the projected 3D elements on 
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the image canvas. ScatterPlot3D and ScatterPlot3DWindow generate 3D scatterplots and 
metric matrices by respectively converting the cell data into a compatible format for plotting 
and presenting the data in the plot window. 3D scatterplots are created in the same manner as 
ScatterPlotGenerator except for obtaining pixel values from three reporter channels. Usually 
the first cell is shown when the image window opens, and users can select the next cell or the 
previous cell by clicking the forward and back buttons on the window. 3D metric matrices are 
generated in the same way as HeatChart but all color squares are replaced by 3D spheres to 
enable visualization of deeper layers in the 3D matrices. 
 
The ninth and final package is “ezcol.debug”. It has two classes, and reports errors and 
warnings within the plugin. It contains a class, “ExceptionReporter”, which handles and reports 
errors or warnings, and the class, “Debugger”, which was used during development to debug 
the plugin. 
 
2.5.3 Testing of EzColocalization 
 
EzColocalization was tested on images from experiments and on modified images created to 
test specific issues (e.g. misalignment). Unpublished images of bacterial cells (HL6187) were 
used to illustrate the different modules of EzColocalization (Figure 2.1-2.4). These bacteria had 
plasmid pHL1392 in strain HL3338 [185]. pHL1392 has the ampicillin resistance gene, ColE1 
origin, and the green fluorescent protein (GFP) fused to part of the sodB gene and transcribed 
from the PLlacO-1 promoter. The sources of the images used for the application experiments 
(Figure 2.5-2.8) are stated in the relevant Results section. Note: images presented in the figures 
are cropped so that it is easier to see individual cells. 
 
2.5.4 Download and installation 
 
For users without ImageJ, the first step is to download and install the ImageJ application 
from: https://imagej.nih.gov/ij/download.html. Then the EzColocalization plugin can be 
downloaded from:  http://sites.imagej.net/EzColocalization/plugins/. When saving the file, the 
user should delete the timestamp at the end of the name of the EzColocalization file. For 
example, a version named "EzColocalization_.jar-20190501171302" should be renamed as 
"EzColocalization_.jar". Once the plugin has been renamed "EzColocalization_.jar" it can be 
moved into the "plugins" folder of ImageJ to install it. Alternatively, users can install it by 
running ImageJ, selecting "Install..." from the "Plugins" menu of the menu bar, and then 
selecting the renamed file to install. To use EzColocalization, run the ImageJ application (open 
“ImageJ.exe” in the ImageJ folder) and choose "EzColocalization" from "Plugins" on the menu 
bar. For those using Fiji, the EzColocalization update site can be followed according to the 
instructions at https://imagej.net/Following_an_update_site. 
 
2.5.5 Data acquisition guidelines 
 
Accurate colocalization measurements begin with good experimental data, which depends on 
the samples, the reporters, the imaging system, data collection methods, controls and replicate 

https://imagej.nih.gov/ij/download.html
http://sites.imagej.net/EzColocalization/plugins/
https://imagej.net/Following_an_update_site
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measurements. Some guidelines the authors have found useful include the following. Samples 
should be prepared in a manner that: preserves the native spatial organization, minimizes 
touching of cells or organisms (which makes the identification of individual cells or organisms 
easier), and minimizes movement of cells or organisms (especially for live imaging). The 
reporters should be optimized to specifically label the molecules of interest (which includes 
minimizing excess or non-specifically bound reporter), and to minimize cross-talk (also known 
as bleed-through) between the reporter signals and between each reporter signal and non-
reporter signals in cells and tissues (e.g. autofluorescence). In addition, reporters with the 
highest specific signal should be preferentially paired with targets that have the lowest 
concentration. Too much reporter is sometimes more problematic for colocalization 
measurements than too little because of non-specific labeling or aggregation. A reporter that 
identifies the cell boundary or entire cell should be considered if the cell boundaries are unclear 
in bright-field imaging to facilitate automated cell identification so that single cell 
measurements of colocalization can be easily performed. The imaging system should be set-up 
with: a high quality monochromatic camera to maximize the signal-to-noise ratio, controls to 
check the settings and reproducibility of measurements on different days, and adjustments to 
the light source or neutral density filters to prevent oversaturated pixels with artificially low 
intensity values. It is important to recognize that misalignment between imaging channels often 
occurs (and may occur after the initial set-up and alignment) therefore images from different 
channels should ideally be overlaid in each experiment to evaluate the alignment and to correct 
any misalignment by adjusting the physical apparatus or the analysis. Differential interference 
contrast (DIC) is not recommended, and users should instead use phase contrast or another 
method that does not create shadows for identifying cell boundaries. Generally, it is preferable 
to maximize the resolution, but the scale of the cells and structures must be considered. For 
example, measuring the colocalization of reporters in intracellular structures will require a 
higher level of resolution than measuring colocalization at different tissue structures or organs. 
Additional guidance on the practical aspects of setting up a system for colocalization 
measurements is available in several reviews 10-12. The data should be collected at the highest 
number of bits to maximize the dynamic range of the signal, and images saved in an 
appropriate format (see note below). The importance of controls for the proper analysis of the 
colocalization measurements cannot be overstated. Researchers should not only include 
appropriate biological controls (e.g. deletions strains without the labeled protein) but should 
also measure some cells with only one of each reporter to quantify and to correct for bleed-
through. In addition, independent replicate measurements of controls and samples on different 
days are important because labeling, microscopy set-up (especially in shared facilities), and any 
automated settings for image collection can vary dramatically between different experiments 
and often without the researcher being aware of it until the analysis is performed. As an aside, 
researchers should only use deconvolution or image corrections that have been proven to 
provide more accurate representation of localization for their specific reporters, samples, and 
imaging system. 
 
The format of the images is important. The image file format should be TIFF or another lossless 
compression format with a single value for pixel intensity. A color camera that records pixel 
values in RGB can be problematic because it is unknown how the three values contribute to 
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total signal intensity. Pseudocolors can be created for visualization purposes if the pixel 
intensity values are not changed. RGB and pseudocolor images can be distinguished by looking 
at the information on top of the image window in ImageJ. 
 
2.5.6 Image alignment 
 
The Inputs tab provides the option for the alignment of images from different channels. The 
alignment is performed by: (i) subtracting background signal from the cell identification and 
reporter images to enhance contrast using the rolling ball algorithm of the “Subtract 
Background” function (note: this step can be turned on or off in the “Parameters…” options of 
the “Settings” menu); (ii) thresholding the resulting images; (iii) creating a binary mask from the 
thresholded images; (iv) processing the binary mask with the “Fill Holes” function to ensure cell 
interiors are selected; (v) aligning the reporter channels and binary mask image using the 
translation alignment algorithm component of the TurboReg plugin [186]; (vi) obtaining the X 
and Y coordinate offset values from the alignment and using them to align the original cell 
identification and reporter images; and (vii) removing overhanging pixels and filling-in pixels 
(with a value of zero) so all images in the stacks have same size (yellow area in Figure 2.1B). 
Note: TurboReg functions that interpolate pixel values are not used because they change the 
original values.  
 
2.5.7 Heat maps, scatterplots and metric matrices 
 
Many factors should be considered when performing analyses and selecting a metric for 
quantifying localization. These should include heterogeneity in the data, the specificity of the 
reporter, the relative intensity of the intracellular and extracellular background signals, and the 
relationship between the intensities of the reporter signals. EzColocalization provides tools in 
the Visualization tab to help users evaluate these considerations.  
 
Heat maps created by EzColocalization can be normalized for each cell, each image, or each 
stack (“cell heat maps”, “image heat maps” and “stack heat maps” respectively). Cell heat maps 
can help visually identify the locations in cells where reporters have the highest and lowest 
intensity, and the localization patterns (i.e. colocalization, anticolocalization and 
noncolocalization of the reporters). Image heat maps can show whether different cells have 
different average signal intensities within each image. The cell and image heat maps should be 
carefully inspected for evidence of heterogeneity among cells with respect to: the locations of 
reporters within cells, the localization pattern (i.e. relative positions of the reporters), and the 
average signal intensity. If there is heterogeneity, then it may be appropriate to limit analysis to 
a subpopulation of cells by using the cell filters in EzColocalization so that measurements are 
not an average of multiple populations. Image heat maps should also be examined to 
determine if the pixels with the highest signal (likely containing reporter) have similar levels of 
intensity to the pixels with the lowest signal (“background”). If so, then analysis may be 
improved by selecting individual cells from the image so that the only intracellular pixels are 
analyzed or by selecting thresholds so that only pixels with signal greater than background 
levels are analyzed (see metric matrices below) [121, 187] .  
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Scatterplots reveal the relationship between the signal intensities for different reporters. 
Evaluating this relationship is important because different assumptions about the relationship 
of the reporter signals are central to the calculation, interpretation and selection of the metrics 
for colocalization (see next section). Scatterplots may also reveal if different cells or organisms 
within a sample have very different intensities or different relationships between pixel 
intensity. If there is heterogeneity, cell filters may be able to limit analysis to a more 
homogeneous population. In addition to cell-to-cell heterogeneity, there may be heterogeneity 
within each cell; that is, different relationships between the signals at different levels of signal 
intensity. For example, a cell may have pixels with low signal for two reporters that have no 
correlation and pixels with high signal for the same two reporters that have a positive 
correlation (due to specific binding to a protein) [112]. In cases where there are different 
relationships between the pixels at different levels of signal, it may be possible to select 
thresholds for the reporter signals so that colocalization is only measured for a subset of pixels. 
 
Metric matrices can be calculated for six different colocalization metrics in EzColocalization: 
TOS with linear or logarithmic scaling [151], PCC [113], SRCC [188], Manders’ colocalization 
coefficients M1 and M2 [113, 127] and ICQ [189]. Each metric matrix calculates the value of the 
selected metric at every combination of the thresholds chosen (Figure 2.9). Metric matrices can 
quickly determine whether there are general patterns of colocalization, anticolocalization or 
noncolocalization that depend on signal intensity [3, 151]. A metric matrix can also help to 
select a threshold that provides a better measure of colocalization for a subset of pixels with 
different intensities in a cell. That is, the selection of thresholds via the metric matrices can 
provide more targeted analysis. Because the thresholds in the metric matrix are measured in 
terms of the percentage of pixels rather than absolute signal level, the metric matrix is well-
suited to comparing and aggregating values in a groups of cells where there may be some 
differences in average signal intensity and cell size. 
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Fig. S1. Metric matrices and selected fractions.

 

 
 
In relation to selecting thresholds, EzColocalization provides two options: Costes’ method and 
manual selection. Costes’ method chooses the thresholds automatically [124]. The advantage of 
automatic selection of the thresholds is that it decreases the potential for user bias. However, 
the method often does not work well if the signal intensities of the intracellular and 
background pixels are not clearly distinguishable, the reporter signals do not have similar levels 
of intensity or a monotonic relationship, or there are outlier pixels with high signal [113]. 
Manual selection of thresholds by the user is more flexible but it requires care to ensure they 
are chosen appropriately. The heat map and scatterplots, as well as the metric matrices, can 
guide the manual selection of the thresholds. Metric matrices can help ensure the thresholds 
are chosen so that they are representative of broad trends and the results are robust (i.e. a 
small change in the values of the thresholds should not substantially alter the result). Two notes 
of caution in regard to the selection of thresholds: (i) the metric matrix should not be used to 
“fish” for a metric and threshold values to give a result that is not broadly consistent with all 

Figure 2.9 Metric matrices and selected fractions. (A) Heat maps showing the intensities of Cy3 and DAPI 
signal for sodB::gfp RNA and DNA respectively in a bacterial cell. The sodB::gfp RNA was labeled with Cy3 
labeled probes by RNA fluorescence in-situ hybridization. Scale bar is 1 µm. (B) Metric matrix with TOS 
values (linear) for the cell in Panel A. Each box in the matrix is the TOS value calculated for the pixels that 
are above the threshold for each channel. The thresholds are measured as the percentage of pixels with 
the highest signal for each channel (FT). For this example, the chosen FT are the top 100%, 75%, 50% and 
25% for Cy3 and the top 100%, 80%, 60%, 40% and 20% for DAPI. The calculated value of TOS is shown for 
every combination of thresholds and the approximate value is displayed in the bar to the right. The box is 
colored black when at least one threshold is 100% because in such cases TOS values are not informative; 
that is, when 100% of pixels are selected for at least one reporter then the overlap with the other channel 
must always be 100%. Threshold combinations indicated by the purple box and gold dash line box are 
discussed in Panel C. (C) Scatterplot of the pixels in the cell in Panel A. The purple box has pixels that are 
both in top 75% and the top 80% of values for Cy3 and DAPI respectively, which are used to calculate the 
TOS value shown in the purple box in the metric matrix (Panel B). The gold dash line box has pixels that 
are both in top 20% and the top 25% of values for Cy3 and DAPI respectively, which are used to calculate 
the TOS value shown in the gold box in the metric matrix (Panel B). 
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the data; and (ii) the selection of thresholds must balance the need to eliminate pixels with 
background or non-specific signal against the need to keep as many pixels as possible so the 
results of the analysis are broadly representative and not fluctuating due to the noise 
associated with having a small number of values. Additional guidance on the selection of 
thresholds is provided in previous publications [3, 151]. 
 
2.5.8 Colocalization metrics for two reporter channels 
 
This section provides brief and general guidelines for selecting a colocalization metric. More 
detailed information on colocalization metrics is published elsewhere [112, 121, 151, 190]. As 
mentioned in the previous section, it is important to examine the scatterplots to determine the 
relationship between the signal intensities of the reporters before choosing a colocalization 
metric.  
 
Pearson’s correlation coefficient (PCC) is the covariance of two variables divided by the product 
of their standard deviations. It is typically used to measure the linear correlation of the signal 
intensity values for two reporters (Figure 2.10) [115, 191]. PCC values can range from −1 which 
indicates a strong negative correlation between the signals (anticolocalization) to 1 which 
indicates a strong positive correlation (colocalization). A PCC value of 0 indicates there is no 
correlation (noncolocalization). Note: PCC could be used to measure nonlinear relationships 
following a nonlinear transformation of the data, although this is not typically done for 
measuring colocalization. 
 
Spearman’s rank correlation coefficient (SRCC) is calculated by ranking the pixels according to 
the intensity of signal for each channel and then measuring the correlation in the rankings 
between two channels [188]. SRCC measures whether the signal intensities of the reporters 
have a monotonic relationship (Figure 2.10), and it is relatively insensitive to outliers because it 
is based on rankings. Therefore SRCC is suitable for non-linear, monotonic relationships such as 
power law or logarithmic functions. SRCC values range from −1 (anticolocalization) to 1 
(colocalization) [190], and 0 indicates there is no correlation (noncolocalization). 
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Figure 2.10 Scatterplots identify the relationship between signal intensities. Scatterplots reveal the 
relationship between the intensities of different reporters, which is important for selecting an appropriate 
colocalization metric. Three relationships and the recommended metric for measuring colocalization for 
each are shown (see text of Materials and Methods). The blue line and the circles indicate the 
hypothetical relationship and hypothetical data points respectively. 
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The intensity correlation quotient (ICQ) is the ratio of the total number of pixels where the 
signal intensity is above the means for both channels or below the means for both channels (i.e. 
excluding pixels that are above the mean in one channel and below the mean in the second 
channel), divided by the total number of pixels, minus 0.5 [187, 189]. ICQ ranges from –0.5 to 
+0.5. ICQ is essentially a sign test with positive or negative values for pixels that are on a 
positive or negative slope of a function through the mean of both channels. ICQ, like SRCC, is 
often used to evaluate whether the signal intensities of two reporters have a monotonic 
relationship (although it could also be used for some types of non-monotonic relationships) 
(Figure 2.10). ICQ is less sensitive to outliers than PCC. ICQ is not an appropriate metric for 
heterogeneous samples because the mean may not be an appropriate point around which 
localization should be evaluated. 
 
Manders’ colocalization coefficients M1 and M2 are calculated by determining the sum of the 
intensities of pixels that either exceed thresholds for both signals 1 and 2 divided by the sum of 
the intensities of the pixels that exceed the threshold for signal 1 or exceed the threshold for 
signal 2, respectively [113, 127]. The threshold can be determined by several algorithms 
including Costes’ threshold [124]. Disadvantages of M1 and M2 are that both values are needed 
to determine whether there is colocalization, and the interpretation of these values is 
complicated by them being dependent on the threshold values [118]. Manders’ colocalization 
coefficients M1 and M2 (and also the threshold overlap score defined below) tend to be better 
for evaluating colocalization or anticolocalization in cases where there is not a clear localization 
pattern, there is a mixed pattern of localization, or there is a non-monotonic relationship 
(Figure 2.10). 
 
The threshold overlap score (TOS) is a newer metric that shares some similarity to M1 and M2 
in that it calculates the overlap in pixels above a threshold [3, 151]. TOS is calculated by 
determining the number of pixels that exceed thresholds for both signals 1 and 2 and dividing 
this number by the number of pixels that exceed the threshold for signals 1 or 2 respectively. 
Unlike M1 and M2 there is no weighting for signal intensity. In addition, TOS normalizes the 
observed overlap by the overlap expected to occur simply by chance (which is not done for M1 
and M2). A result of this normalization is that TOS measures colocalization as a single value 
which makes it easier to interpret and compare between experiments than Manders’ 
colocalization coefficients. TOS values are rescaled so that −1 corresponds to the minimum 
possible overlap (anticolocalization), 0 corresponds to the same overlap as would occur by 
chance (noncolocalization), and 1 corresponds to the maximum possible overlap 
(colocalization). The default rescaling option is linear because it is easily interpreted, and its 
value reflects the fraction between random distribution and the minimum or maximum values 
(-1 or +1 respectively). For example, a value of 0.5 represents half the maximum possible 
overlap. EzColocalization also permits a logarithmic rescaling (natural log) for users requiring a 
metric without a discontinuity in the first derivative, but it is harder to interpret than linear 
rescaling [151]. As mentioned above, TOS is suitable for the analysis of experiments that have 
non-monotonic relationships, mixed patterns of localization, or unclear localization patterns 
(Figure 2.10). TOS can also be used for monotonic relationships including linear correlations, 
although in such cases it may not be as sensitive or specific as other metrics (e.g. PCC). 
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In summary, PCC is often used for datasets where the reporters have an approximately linear 
relationship between the pixel values. SRCC and ICQ are commonly used to evaluate whether 
the signal intensities of the two reporters have a monotonic relationship, and are generally 
considered more robust to outliers than PCC. Manders’ M1 and M2 or TOS are often preferred 
in cases where there is no clear monotonic localization pattern, or mixed patterns of 
localization. 
 
2.5.9 Colocalization metrics for three reporter channels 
 
The metrics for two channels were: (i) PCC; (ii) SRCC; (iii) ICQ; (iv) Manders’ coefficients; and (v) 
TOS with linear or logarithmic rescaling. Of these metrics, we extended ICQ, Manders’ 
coefficients and TOS (linear or logarithmic rescaling) to measure colocalization for three 
reporters, and their derivations are below. PCC and SRCC were not extended for three reporters 
because their meaning and interpretation becomes much more complicated. Specifically, no 
single value of PCC (or SRCC) can represent the standardized covariance. Instead there are 
multiple values, each of which reports the extent two channels (independent variables) can 
predict the signal in the third channel (dependent variable). The first component of principal 
component analysis (PCA) should be used to measure linearity without assuming dependency 
of three channels [192]. However, PCA is difficult to interpret in relation to colocalization 
analysis and therefore was not included [193]. 
 
Li’s ICQ [189] can be easily expanded to three (or more) channels. 
 

ICQ =
𝑁𝑎𝑏𝑜𝑣𝑒+𝑁𝑏𝑒𝑙𝑜𝑤

𝑁𝑡𝑜𝑡𝑎𝑙
− 0.5,         Eq. 2.1 

 
where Nabove

 is the number of pixels above the means of all three channels, Nbelow
 is the number 

of pixels below the means of all channels, and Ntotal
 is the total number of pixels. For two 

channels, ICQ is a crude measure of the fraction of pixels that are on the positive diagonal; that 
is, it can be interpreted as the fraction of pixels that are broadly consistent with a monotonic 
increasing relationship. For three channels, ICQ provides a crude measure of whether pixel 
values tend to increase in all three channels. However, the interpretation of the value is more 
complicated because of the combinatorics; a pixel may have values above or below the mean in 
8 possible combinations. A value of −0.25 would be expected if the pixel values have a random 
distribution, and assuming the median and mean values are approximately equal. In this case, a 
value >−0.25 may indicate a positive relationship, but it does not exclude the co-presence of a 
negative relationship. A value of <−0.25 indicates a negative relationship but it does not rule 
out a positive relationship in a subset of pixels. 
 
The use of Manders’ colocalization coefficients for three channels (i.e. M1, M2, and M3) has 
been previously reported [127]. The derivation of Manders’ colocalization metrics for more 
than two channels is straight forward as it simply evaluates the proportion of overlapping 
signal. However, Manders’ colocalization metric are often used with an automated method of 
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threshold selection, such as Costes’ method, and these methods typically do not readily extend 
to three channels [124]. Therefore, EzColocalization users can either select thresholds manually 
or by using the metric matrix for Manders’ colocalization coefficients with three channels. The 
thresholds are measured as FT. M1, M2, … Mn can be calculated by Eq. 2.1 where there are at 
least two reporters: 
 

M𝑖 =
∑G𝑖,𝑐𝑜𝑙𝑜𝑐 

∑G𝑖
,           Eq. 2.2 

 
where G𝑖,𝑐𝑜𝑙𝑜𝑐 is the value of each pixel in channel 𝑖 that is above all thresholds and 𝐺𝑖 
represents the value of each pixel in channel 𝑖 that is above the threshold for only channel 𝑖. 
The number of Manders’ colocalization coefficients is equal to the number of channels, 
therefore three values need to be interpreted for three channels. Three values can be difficult 
to interpret collectively and to compare colocalization between samples. Another challenge is 
that the interpretation of the Manders’ colocalization coefficient depends on the selected 
thresholds [151]. 
 
TOS measures the overlap of the signal above the threshold for each channel accounting for the 
amount of overlap that would be expected to occur by random chance for different thresholds 
[151]. One of the first steps in calculating TOS is to determine the number of pixels in each cell 
that exceed the thresholds for all three reporter channels (Acoloc) and the number of pixels that 
exceed the threshold for one of the reporter channels (Ai, where i is the ith channel). Dividing 
the former by the latter is the “observed AO”. This calculation, is equivalent to calculating the 
fraction of pixels in the cell that exceed the threshold for all three channels (Fcoloc) divided by 
the fraction of pixels that exceed the threshold for the chosen channel i (FTi). That is, 
 

 observed AO𝑖 =
Acoloc

A𝑖 
=

Acoloc/Atotal

A𝑖 /Atotal
=

Fcoloc

FT𝑖 
, where 𝑖 = 1, 2 or 3.   Eq. 2.3 

 
Note: FTi and Fcoloc are fractions rather than percentages for all equations in this section, and are 
defined as greater than zero and less than or equal to one.  
 
The next calculation is the expected AO value assuming uniformly distributed random pixel 
values. If the pixels above the threshold for the first channel are randomly distributed 
throughout the cell, then the chance a pixel above the threshold for the second channel 
overlaps one of the pixels that exceeds the threshold for the first channel, is simply equal to the 
fraction of pixels above the threshold for the first channel (previously explained elsewhere 
[151]). Following from this, the chance a pixel that exceeds the threshold for the third channel 
overlaps a pixel that already exceeds both the first and second channels is simply the product of 
the fraction of pixels that exceed the first and second reporter channels. Therefore, the 
 

expected AO𝑖 =
FT1×FT2×FT3

FT𝑖 
, where 𝑖 = 1, 2 or 3.      Eq. 2.4 
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The observed AO is divided by the expected AO to generate the “AO ratio”, which accounts for 
the increase in overlap that occurs with selection of more pixels (i.e. greater FT). 
 

AO ratio =
Fcoloc

FT1×FT2×FT3
.         Eq. 2.5 

 
The AO ratio is equal to 1 for cells where the overlap is the same as expected by chance. The 
value of the AO ratio depends on whether the observed overlap is more or less than expected 
by chance as well as the selected thresholds. The latter can make interpretation difficult, 
therefore the AO ratio is rescaled to generate the TOS, which enables easier comparison of 
analyses with different thresholds. 
 
To rescale the AO ratio, the minimum and maximum value must be determined for the 
thresholds. The minimum AO ratio can be zero if the sum of the FT for two channels is less than 
or equal to 1 (i.e. FT1 + FT2 ≤ 1). Note: for the above FT1 and FT2 are greater than zero; if A1 or A2 
are zero then there is no overlap and FT1 and FT2 should not be calculated. In the case where the 
first two channels do not overlap, the threshold for the third channel is inconsequential. If there 
is no overlap of pixels above the thresholds for two channels then there can be no overlap of all 
three channels, even if all the pixels are selected for the third channel (i.e. FT3 = 1) and 
consequently the minimum AO ratio would be zero. That is, if FT1 + FT2 + FT3 ≤ 2, then it is 
possible for the minimum AO ratio to be equal to zero. If FT1 + FT2 + FT3 > 2 then overlap of all 
three channels must occur by at least the amount exceeding 2. In summary, 
 

minimum AO ratio = {

FT1 + FT2 + FT3 – 2

FT1 × FT2 × FT3
 , when FT1 + FT2 + FT3 > 2

0 , when FT1 + FT2 + FT3 ≤ 2 
.   Eq. 2.6 

 
The limits of the minimum AO ratio are 0 and 1. 
 
The maximum AO ratio occurs when all three channels maximally overlap, and the maximum 
amount of overlap can be no more than the minimum FT. For example, if two channels both 
have thresholds that select 80% of pixels and the third channel only selects 5% of pixels in the 
cell, then the maximal overlap of the selected pixels can be no more than 5% of the pixels in the 
cell; that is, the minimum of the three FT values. 
 

Maximum AO ratio =
minimum{FT1,   FT2,   FT3}

FT1 × FT2 × FT3
 .      Eq. 2.7 

 
The last step in calculating TOS is to rescale the AO ratio using the limits for the minimum AO 
ratio and for the maximum AO ratio as previously reported [151]. A TOS value reflects the 
fraction of the “distance” between random chance (also known as the null distribution) and the 
minimum or maximum possible overlap for the thresholds. A positive value indicates 
colocalization, zero indicates overlap that is no more or less than a random distribution, and a 
negative value is anticolocalization. For example, 0.5 is halfway between a random distribution 
and maximum TOS value (half-maximal colocalization for the chosen thresholds) and -0.5 is 
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halfway between a random distribution and the minimum possible TOS value (half-maximal 
anti-colocalization for the chosen thresholds). It should be noted that the contribution of each 
channel to the colocalization measurement is not specified in the TOS value. Therefore, 
anticolocalization may be due to one single channel not overlapping with the other two (as 
opposed all channels not overlapping). 
 
2.5.10 Custom analysis 
 
The Custom subtab in the Analysis tab allows users to perform custom mathematical analysis 
for all pixel intensity values in selected cells without having to directly modify the code for 
EzColocalization. In brief, custom written code inserted into the Custom tab of the plugin uses 
the same cells or organisms that would be selected by the cell filters (with any alignment used) 
for non-custom analyses. Each cell’s pixel intensity value for each reporter channel are stored in 
an array, named c1, c2, and c3 for reporter channels 1, 2, and 3 respectively. The order of the 
pixels within each array is the same; that is, the same index within each array is the same pixel 
in each channel, and is the intensity value for that channel. The pixel values in the arrays can be 
analyzed using code written with standard mathematical functions in Java. Selecting the 
“Resource” button takes the user to a website with a list of operators and functions in Java for 
mathematical calculations. 
 
 
Table 2.1 Input images and possible outputs from EzColocalization. * Cell identification 
channel may be reporter images as discussed in main text. Therefore it is possible to perform all 
possible analyses with two sets of images (with one set being used as both a cell identification 
image and a reporter image). # Cell identification images are required to distinguish 
intracellular and extracellular signal therefore without them any analysis or normalization must 
be for whole images or image stacks. 
 

Inputs Outputs 
Cell 

identification 
channel* 

1 
reporter 
channel 

2 or 3 
reporter 
channels 

Report of 
physical 

features of 
cells 

Visualization: 
scatterplots, & 

metric 
matrices of 

cell 

Visualization: 
heat maps of 

cell 

Visualization: 
scatterplots & 

metric 
matrices of 

image or stack 

Visualization: 
heat maps of 

image or stack 

Analysis: 
measure 

colocalization 
in cells 

Analysis: 
measure 

colocalization 
in images & 

stacks #  

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Yes Yes No Yes No Yes No Yes No No 

Yes No No Yes No No No No No No 

No Yes Yes No No No Yes Yes No Yes 

No Yes No No No No No Yes No No 

No No No No No No No No No No 
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Table 2.2. Physical and signal intensity parameters for cell features. *Units for pixel size are 
arbitrary units unless users set a scale on the images. 
 
Physical (P) 
 or Signal 

Intensity (S) 
parameter 

Name Units Description 

P Area pixels* Number of pixels in a cell. 

P X pixels* Average x-coordinate of a cell. 

P Y pixels* Average y-coordinate of a cell. 

P Perimeter length pixels* Length of the outside boundary of a cell. 

P Width pixels* Width of a cell in the x-axis. 

P Height pixels* Height of a cell in the y-axis. 

P BX pixels* Top left x-coordinate of the smallest rectangle enclosing a cell. 

P BY pixels* Top left y-coordinate of the smallest rectangle enclosing a cell. 

P Major pixels* Primary axis of the best fit ellipse for a cell. 

P Minor pixels* Secondary axis of the best fit ellipse for a cell. 

P Circularity unitless Circularity of a cell calculated by 4   area  perimeter2. A value of 1 is a 
perfect circle and <1 is an ellipse. 

P Angle degrees Angle between the main axis of an ellipse fit to a cell and x-axis of the 
entire image containing the cell. 

P Feret’s diameter pixels* Longest possible distance between any two points on a cell boundary. 

P FeretX pixels* Starting x-coordinate of the Feret’s diameter of a cell. 

P FeretY pixels* Starting y-coordinate of the Feret’s diameter of a cell. 

P Feretangle degrees Angle between a cell’s Feret’s diameter and its images x-axis. 

P MinFeret pixels* Minimum caliper diameter of a cell. 

P AR unitless Aspect ratio of a cell calculated by major axis ÷ minor axis. 

P Round unitless Roundness of a cell calculated by 4  Area    major axis2. 

P Area fraction unitless Percentage of pixels in an image which are included in a cell. 

P Solidity unitless Solidity of a cell calculated by its area  area of its convex hull. 

S Mean (Ch1), 
(Ch2), or (Ch3) 

arbitrary Mean of pixel values for a cell in reporter channels 1, 2, or 3. 

S Mode (Ch1), 
(Ch2), or (Ch3) 

arbitrary Mode of pixel values for a cell in reporter channels 1, 2, or 3. 

S Median (Ch1), 
(Ch2), or (Ch3) 

arbitrary Median of pixel values for a cell in reporter channels 1, 2, or 3. 

S Minimum (Ch1), 
(Ch2), or (Ch3) 

arbitrary Minimum pixel value for a cell in reporter channels 1, 2, or 3. 

S Maximum (Ch1), 
(Ch2), or (Ch3) 

arbitrary The maximum pixel value for a cell in reporter channels 1, 2, or 3. 

S StdDev (Ch1), 
(Ch2), or (Ch3) 

arbitrary Standard deviation of pixel values for a cell in reporter channels 1, 2, or 3. 

S Skew (Ch1), 
(Ch2), or (Ch3) 

unitless Skewness of pixel values for a cell in reporter channels 1, 2, or 3. 

S Kurt (Ch1), (Ch2), 
or (Ch3) 

unitless Kurtosis of pixel values for a cell in reporter channels 1, 2, or 3. 

S RawIntDen (Ch1), 
(Ch2), or (Ch3) 

arbitrary  Sum of all pixel values for a cell in reporter channels 1, 2, or 3. 

S IntDen (Ch1), 
(Ch2), or (Ch3) 

arbitrary Product of pixel number and average pixel value for a cell in reporter 
channels 1, 2, or 3. 

S Mean BgndRatio 
(Ch1), (Ch2), or 
(Ch3) 

fold 
background 

Fold change of average pixel value for a cell versus the average pixel 
value for all pixels outside of cells in reporter channels 1, 2, or 3. For 
example, “1x-2x” for Ch1 would select cells with a mean pixel value one to 
two fold the mean pixel value outside cells for reporter channel 1. 

S Median BgndRatio 
(Ch1), (Ch2), or 
(Ch3) 

fold 
background 

Fold change of median pixel value for a cell versus the median pixel value 
for all pixels outside of cells in reporter channel 1, 2, or 3. For example, 
“1x-2x” for a Ch1 filter input would select cells with a median pixel value 
one to two times the value of the median pixel value outside cells in 
reporter channel 1. 
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Chapter 3: Nucleoid and cytoplasmic localization of small RNAs in 
Escherichia coli3 

 
3.1 Abstract 
 
Bacterial small RNAs (sRNAs) regulate protein production by binding to mRNAs and altering 
their translation and degradation. sRNAs are smaller than most mRNAs but larger than many 
proteins. Therefore it is uncertain whether sRNAs can enter the nucleoid to target nascent 
mRNAs. Here, we investigate the intracellular localization of sRNAs transcribed from plasmids in 
Escherichia coli using RNA fluorescent in-situ hybridization. We found that sRNAs (GlmZ, OxyS, 
RyhB, and SgrS) have equal preference for the nucleoid and cytoplasm, and no preferential 
localization at the cell membrane. We show using the gfp mRNA (encoding green fluorescent 
protein) that non-sRNAs can be engineered to have different proportions of nucleoid and 
cytoplasmic localization by altering their length and/or translation. The same localization as 
sRNAs was achieved by decreasing gfp mRNA length and translation, which suggests that sRNAs 
and other RNAs may enter the densely packed DNA of the nucleoid if they are sufficiently small. 
We also found that the Hfq protein, which binds sRNAs, minimally affects sRNA localization. 
Important implications of our findings for engineering synthetic circuits are: (i) sRNAs can 
potentially bind nascent mRNAs in the nucleoid, and (ii) localization patterns and distribution 
volumes of sRNAs can differ from some larger RNAs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                      
 
3 This chapter has been previously published as "Nucleoid and cytoplasmic localization of small 
RNAs in Escherichia coli" in Nucleic acids research (2017), 45(5), 2919-2934. 
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3.2 Introduction 
 
Bacterial small RNAs (sRNAs) regulate the production of diverse classes of proteins in a wide 
variety of pathways [194]. Most sRNAs bind to target mRNAs at or near the translation 
initiation region (TIR) and form sRNA-mRNA duplexes. Duplex formation commonly decreases 
translation and/or increases mRNA degradation resulting in decreased target protein 
production [194]. Less often, duplex formation has the opposite effect, causing increased target 
protein production [194]. Some sRNAs can decrease the production of target proteins and 
increase the production of others [195-200]. Additionally, some sRNAs regulate gene 

expression by: binding directly to the 70-RNA polymerase holoenzyme to alter transcription 
[201], sequestering proteins [202], and being translated into an active peptide [203].  
 
Most sRNA regulation in Escherichia coli and in many other bacteria requires the Hfq protein 
[204]. Hfq primarily exists as a hexamer that can bind sRNAs and mRNAs to alter their folding 
and/or facilitate duplex formation. In addition, Hfq can mediate the interaction of proteins and 
complexes (including RNase E, ribosomes, poly(A) polymerase I and polynucleotide 
phosphorylase) with sRNAs, mRNAs and/or duplexes [205, 206]. Hfq has been shown by 
electron microscopy to be present at the inner cell membrane, as well as in the nucleoid and 
cytoplasm [207]. Many of the proteins that bind to Hfq are also found in the cytoplasm and/or 
at the cell membrane [208-210]. 
 
It has yet to be determined where sRNAs localize to in the cell, which is a barrier to 
understanding their mechanism of action and the constraints on their activity. It is often 
assumed that most RNAs are small, and thus they can move anywhere in the cell. However in 
actuality, RNAs are usually large compared to the proteins they encode due to: (i) each RNA 
having three nucleotides for each amino acid encoded (in addition there are 5’ and 3’ 
untranslated RNA sequences); (ii) the average nucleotide is three times the mass of an amino 
acid (≈330 Daltons and ≈110 Daltons respectively) [211]; and (iii) RNAs often have less compact 
structures than globular proteins [211]. Therefore even relatively short sRNAs are large 
compared to some of the small proteins that act as transcription factors. For example, the 
diameters of the MicA and DsrA sRNAs are approximately 87.5 Å and 111.5 Å [212] whereas the 
typical globular protein has a diameter of 50 Å [211]. Therefore while transcription factors can 
move through the densely packed DNA of the nucleoid to bind near the promoters of target 
genes, it is possible that many sRNAs and mRNAs are not able to do so because of their larger 
size. 
 
In general, factors other than size and structure can also affect RNA and protein localization, 
including: (i) the molecules they form complexes with, which can transport them [213, 214] or 
restrict them [215] to specific sites in the cell; (ii) covalent modifications [216, 217]; and (iii) net 
electrostatic charge and charge distribution [218, 219]. In bacteria, a variety of RNA localization 
patterns and mechanisms have been reported. It has long been recognized that the signal 
recognition particle (SRP) pathway is an important mechanism for RNA and protein localization. 
SRP recognizes signal sequences at the N-terminal end of nascent proteins, leading to the 
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transport of a complex containing the partial mRNA, ribosome, and partly synthesized protein 
[220] to the cell membrane [note: it has also been proposed that these components may be 
transported separately [221]]. Once at the cell membrane, translation continues in conjunction 
with translocation of the protein across the cell membrane [220]. Recently, it has been 
demonstrated that mRNAs can also be transported to the cell membrane without being 
coupled to translation via a mechanism that has not been fully elucidated involving RNA zip 
codes [106]. Bacteria also have mechanisms to localize RNAs to other cellular regions including 
the cytoplasm [106, 222, 223], cell poles [106, 223], and septa of dividing cells [224]. Other 
studies have shown that some mRNAs primarily localize to their site of transcription [109] 
[note: it is unclear whether this transcription is taking place at the edge or the center of the 
nucleoid]. In summary, regulation of RNA localization is important to cells, there are diverse 
sites and complex patterns of localization, and multiple localization mechanisms, of which most 
are poorly understood. 
 
Whether or not sRNAs can localize to the nucleoid has important implications for gene 
regulation. An inability of sRNAs to enter the nucleoid would prevent them binding the TIR on 
target mRNAs as soon as it is transcribed, and give ribosomes greater opportunity for 
assembling at the TIR and initiating translation. sRNAs would instead only be able to bind the 
mRNA after the transcription-translation complex has formed and moved to either the outer 
edge of the nucleoid or the membrane [96, 110]. At the edge of the nucleoid, transcription and 
translation occur where there is a high concentration of ribosomes [137, 225-228], which may 
make it more difficult for the sRNA and Hfq to compete for binding at the TIR. Localization has 
been reported for one sRNA-mRNA pair (SgrS-ptsG mRNA); and in this pair, translation of the 
transmembrane domain of the ptsG mRNA is required for SgrS to mediate degradation of this 
mRNA [110]. Therefore in this case, it appears the sRNA does not need to enter the nucleoid to 
mediate its actions. Because ptsG requires at least one round of translation for transport to the 
membrane, SgrS cannot completely silence PtsG production [110]. In theory, complete silencing 
of target protein production is achievable if sRNAs bind to target mRNAs soon after they are 
transcribed and before any translation is initiated. The 6S sRNA, which regulates gene 
transcription by binding to the RNA polymerase holoenzyme with the sigma70 factor [229], 
indicates that it is possible for at least some sRNAs to move through the nucleoid to sites where 
transcription is initiated. 
 
Due to the fundamental roles of sRNAs in bacterial survival and pathogenesis, identification of 
their cellular localization will benefit many areas of basic and medical research. Knowledge of 
sRNA localization within cells will also aid the rational design and optimization of their use in 
engineered gene regulatory circuits. sRNAs are useful components in regulatory circuits 
because of their properties, including rapid signaling [230], programmable specificity [96, 231], 
and threshold-linear responses [230, 232]. sRNAs have been used as tools to investigate the 
properties of gene regulation [105, 185, 230, 232] and to construct circuits for metabolic 
engineering and “knock-down” studies [233, 234]. 
 
In this study we investigated whether sRNAs preferentially accumulate in the nucleoid, 
cytoplasm, or cell membrane using synthetic sRNA systems on plasmids. In the first part, we 
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examined the localization of four sRNAs (GlmZ, OxyS, RyhB and SgrS), and the gfp mRNA 
encoding the green fluorescent protein (GFP) using RNA fluorescent in-situ hybridization (FISH). 
We evaluated localization by measuring the overlap of the sRNA signal with the nucleoid or 
with pixels at the cell membrane. We found that sRNAs localized in both the nucleoid and 
cytoplasm. In contrast, the gfp mRNA control showed less localization in the nucleoid than in 
the cytoplasm. Further examination of the localization of the sRNAs found that very few cells 
had membrane localization compared to a control mRNA (bglF), which was fused to gfp and 
was known to have membrane localization [106]. In the second part of the study, we 
engineered RNAs, with the gfp mRNA as the starting point, to determine whether we could 
alter nucleoid and cytoplasmic localization. We found that decreasing RNA length and 
decreasing translation increased nucleoid localization, and that these effects can be combined 
resulting in the same level of nucleoid localization as the sRNAs. Conversely, we demonstrated 
that increasing RNA length via fusion of native target mRNA sequences to the gfp mRNA, 
increased the preferential localization of RNAs in the cytoplasm. We also demonstrated that 
Hfq had no effect on sRNA localization in the cytoplasm and nucleoid. Together our results 
suggest that RNA size is an important factor, but not the only factor, in determining RNA 
localization, and that because of their small size, sRNAs can enter the nucleoid. 
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3.3 Results 
 
3.3.1 sRNAs with equal probability in the nucleoid and cytoplasm 
 
We sought to examine the localization of sRNAs in the nucleoid and cytoplasm. The genes for 
three silencing sRNAs (OxyS, RyhB, and SgrS) and two activating sRNAs (DsrA and GlmZ) were 
placed on plasmids in Escherichia coli. The advantages of having the sRNAs on plasmids are: (i) 
it is more common to synthetic circuits; (ii) it directly examines whether sRNAs can enter the 
dense structure of the nucleoid (whereas if sRNAs are transcribed from the chromosome it is 
unclear if their presence in the nucleoid is due to it being their site of production); and (iii) 
there are multiple copies of the genes which increases the sRNA concentrations thereby making 
it easier to detect them. Note: one study found no difference in the localization of mRNAs 
transcribed from a plasmid or from the chromosome [106]. We selected the gfp mRNA to 
compare with sRNA localization because it is a non-native mRNA (and therefore less likely to be 
subject to control mechanisms), a common reporter in synthetic biology, and GFP is readily 
quantified by fluorescence microscopy. 
 
We measured the localization of the sRNAs by RNA fluorescent in-situ hybridization (RNA FISH) 
because it does not require any modification of the sRNA sequence or structure. Other studies 
have used RNA FISH to count the number of sRNAs in single cells of Yersinia pseudotuberculosis 
and Yersinia pestis [235] to characterize the search kinetics of the SgrS sRNA for ptsG [236], and 
to localize mRNAs [106]. Phase contrast microscopy was used to identify the cell boundary and 
the DNA stain 4',6-diamidino-2-phenylindole (DAPI) was used to identify the nucleoid. 
 
In our first experiment we examined whether we could detect sRNAs in exponentially growing 
cells. We compared sRNA signal intensities between strains with and without transcription of 
the sRNA (the latter was performed in strains without promoters) using “global normalization” 
for the RNA signal heat maps (Figure 3.1A). Global normalization linearly scaled the signals 
using the highest pixel value in all of the strains (“high”) and the lowest pixel value in all of the 
strains (“low”) to set the range. The normalized signals in each pixel in individual cells were 
plotted as heat maps. Strong signal was observed with the sRNA probes only in the strains 
where GlmZ, OxyS, RyhB and SgrS were transcribed and not in control strains without the 
promoter (Figure 3.1A, C). These results indicate the probes only detect sRNAs and not their 
DNA sequences or endogenous RNAs. The signal for the transcribed DsrA was very low 
therefore no further experiments were performed with it (Figure 3.2). The gfp probes were also 
specific for when the gfp mRNA was transcribed (Figure 3.1B, C).  
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To visualize intracellular localization of sRNAs and mRNAs in individual cells we performed 
“cellular normalization” for the RNA signal heat maps rather than “global normalization”. That 
is, we linearly scaled the pixel values in each cell using the highest (“high”) and lowest (“low”) 
pixel value for that particular cell (Figure 3.3A). Inspection of representative cells indicated that 
pixels with the highest intensity signal for each sRNA appear to occur in regions with DAPI (i.e. 

Figure 3.1 RNA FISH specifically detects sRNAs and mRNAs. (A, B) sRNA and mRNA signal intensities in 
representative cells with and without a promoter (PCon or PLlacO-1) in the Cy5 (A), Cy3 (B), or GFP (B) 
channels. Signal intensity in cells is shown as a heat map with “global normalization” (main text). Cell 
edges (white line) were identified by phase contrast and transferred to Cy5, Cy3 or GFP channels. Yellow 
scale bar is 1 μm for all images. Strains with promoter: glmZ (HL6320; n = 375); oxyS (HL6318; n = 105); 
ryhB (HL6268; n = 233); sgrS (HL6332; n = 499); gfp (HL6322; n = 133). Strains with no promoter: glmZ 
(HL6547; n = 428); oxyS (HL6531; n = 281); ryhB (HL6530; n = 199); sgrS (HL6532; n = 579); gfp (HL6533; n 
= 278). All gfp measurements were in the presence of 1 mM IPTG. (C) Signal-to-background ratios with 
and without transcription for each RNA or protein. Error bars are the SEM. # bar and error are 
approximately one and zero and therefore not visible. Statistical comparison of mean signal-to-
background ratios between strains with and without a promoter was significant for all pairs (P values for 
all pairs < 1 × 10-58; Mann-Whitney U two-tailed test and two-tailed t-test). 

Figure 3.2 RNA FISH for DsrA and SgrS. Representative cells 
transcribing DsrA and SgrS with Cy5 labeled probes. White line is the 
cell boundary identified by phase contrast, which after alignment 
was transferred to the Cy5 channels. Yellow scale bar indicates 1 μm. 
The intensity of Cy5 signal in cells is shown as heat maps with “global 
normalization” (described in main text). Strains: dsrA (HL6269) with 
PCon promoter; sgrS with PCon promoter (HL6332; data from Figure 
3.1A is reshown for comparison). 
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in the nucleoid) as well as regions outside it (i.e. in the cytoplasm). The gfp mRNA displayed a 
very different pattern of localization with high signal predominantly in the cytoplasm (Figure 
3.3A). The negative control strains for Cy3 and Cy5 (described in figure legend) had diffuse 
localization of signal as expected for background signal (Figure 3.3B). The signal-to-background 
ratio was <1.2 and <1.3 for Cy3 and Cy5 respectively in > 95% of the negative control cells; 
these values were used as cut-offs to identify cells in our experiments with no signal and 
therefore not included in the analyses.  
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The nucleoid does not have a distinct boundary but instead has parts that extend into the 
cytoplasm. Therefore to evaluate whether sRNAs can enter the nucleoid we need to focus on 
their localization in the center of the nucleoid where the DNA is densest and the DAPI signal is 
highest. Specifically, we needed to set a threshold to select the pixels with highest DAPI signal. 
However, we did not want to set the threshold too high so that there were too few pixels to 
evaluate the statistical significance of the measured overlap of the sRNA signal with the center 
of the nucleoid. In other words, the threshold needs to select a fraction of pixels with the 
highest intensity signal (FT) that is neither too small nor too large. We performed a power 
calculation (Materials and Methods) and determined FT = 0.1 to be the threshold for our 
experiments. That is, we set thresholds for the sRNA and DAPI signals (and also for the mRNA 
and GFP signals) so that the 10% of pixels with the highest intensities in each cell were selected 
for our analyses. 
 
To quantify localization we first determined the observed overlap of our selected pixels for the 
sRNA signal (or gfp mRNA signal) with our selected pixels for the DAPI signal (i.e. the center of 
the nucleoid). This was calculated by counting the number of overlapping pixels and dividing it 
by the number of selected pixels for the DAPI channel. Because we selected the pixels with the 
highest signal, the effect of background signal was minimal. We then divided the observed 
overlap by the expected overlap for a uniform distribution of random signal intensities across 
the cell. We rescaled this ratio resulting in a threshold overlap score (TOS) with -1 and +1 as 
the minimum and maximum respectively [151]. That is, 
 

TOS=

{
 
 

 
 

                 0,                                           when observed overlap = expected overlap,

             
observed overlap

expected overlap
 -1,                     when observed overlap < expected overlap, and

observed overlap - expected overlap

1 - expected overlap
, when observed overlap > expected overlap.

 

 

Figure 3.3 sRNAs occur with equal probability in the nucleoid and cytoplasm. (A) sRNA and mRNA 
localization in representative cells transcribing an sRNA or mRNA in phase contrast, DAPI, and Cy5 or Cy3 
channels. Signal intensities within cells are shown as heat maps with “cellular normalization” (main text). 
Cell edges were identified by phase contrast (red line) and transferred to the DAPI, Cy5, and/or Cy3 
channels (white line) following alignment. Yellow scale bar indicates 1 μm. Strains with promoter: glmZ 
(HL6320; n = 81); oxyS (HL6318; n = 126); ryhB (HL6268; n = 93); sgrS (HL6332; n = 209); gfp (HL6322; n = 
34). Data for gfp are from the same experiment as in Figure 3.1 but here they are shown with cellular 
normalization instead of global normalization (note: cells with saturated pixels in the DAPI channel were 
not included in this analysis). (B) Representative cells in the negative control (HL716; n = 355) without Cy3 
or Cy5 probes in phase contrast, DAPI, Cy5 and Cy3 channels. The negative control is the host strain 
without any plasmid (HL716) and without probes. (C) Threshold overlap score (TOS) for each sRNA, the 
mRNA, and negative control. Bars are the medians, circle symbols are the means, and error bars are the 
SEMs. TOS is a normalized measure of the overlap of the top 10% of the DAPI and Cy5 (or Cy3) signals (see 
main text for further details). Median TOS of each sRNA to the gfp mRNA was significantly different (P =  
2.0 × 10-14, 6.0 × 10-16; 9.0 × 10-15 and 2.5 × 10-11 for GlmZ, OxyS, RyhB and SgrS respectively; Mann-Whitney 
U two-tailed test). 
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The observed and expected overlaps are both fractions with a value between 0 and 1; and in 
this case the expected overlap is 0.1. TOS > 0, ≈ 0, and < 0 indicate the sRNA or mRNA occurs in 
the nucleoid more, the same, or less than a signal that is uniformly distributed throughout the 
cell (i.e. colocalization, noncolocalization and anticolocalization with the nucleoid respectively). 
It is important to note that TOS is designed to evaluate the fractional overlap of the sRNA signal 
or mRNA signal with DAPI independent of the level of clustering of selected pixels (see 
summary below). Otherwise, any change in localization measured by the TOS metric would be 
due to an unknown combination of changes in signal overlap and/or clustering. 
 
Our analysis revealed that three sRNAs (GlmZ, OxyS, and RyhB) had median TOS values of 0.02, 
0.01, and 0.04 respectively (Figure 3.3C). That is, the top 10% of pixels with the highest 
intensity signal for each sRNA and the “center” of the nucleoid (where the top 10% of pixels 
with the highest intensity signal for DAPI occur) have TOS values that are close to zero. This 
indicates the sRNA signals overlap as much as would be expected for a signal that was 
uniformly distributed in the cell (i.e. noncolocalization). For SgrS, there was weak 
anticolocalization of the signal and the nucleoid (median TOS ≈ -0.17). In contrast to the sRNAs, 
gfp mRNA has strong anticolocalization with a median TOS = -1.00 (Figure 3.3C). Therefore 
there is essentially no overlap between the top 10% of pixels with highest intensity gfp mRNA 
signal and the top 10% of pixels with highest intensity DAPI signal. To better highlight this 
difference between sRNAs and mRNA localization we show only the 10% of pixels with highest 
signal intensity for the sRNA or mRNA (magenta color), and only the 10% of pixels with highest 
signal intensity for the DNA (i.e. DAPI; cyan color) in Figure 3.4. Selected pixels for the sRNAs or 
mRNAs that overlap the selected pixels for the DNA have a yellow color. Figure 3.4 shows that 
relatively few of the selected pixels for the mRNAs overlap the selected pixels for the DNA 
compared to the sRNAs (note: this can be most clearly seen in “zoomed” views of the digital 
images). 
 
In summary, sRNAs tend to occur in both the nucleoid and cytoplasm and the gfp mRNA occurs 
predominantly in the cytoplasm. The mechanistic basis for this difference is examined in later 
experiments. Our finding that the fractional overlap of the 10% of pixels with highest intensity 
signals for the sRNAs and the 10% of pixels with the highest intensity signal for the DNA, is 
approximately the same as expected by chance for a uniform distribution, does not necessarily 
mean the pixels for both signals are actually uniformly distributed throughout the cell. First, it is 
sufficient for the pixels of only one of the signals to be uniformly distributed. Second, TOS 
evaluates overlap independent of the level of clustering of the selected pixels. In the second 
case, the selected pixels for the RNA signal and the DAPI signal may be clustered but if these 
clusters are randomly distributed in the cell then the overlap may be same as expected for a 
uniformly distributed signal. 
 
 
 
 
 



 
 

64 
 

 
 
 
3.3.2 sRNAs display no preferential membrane localization 
 
We analyzed images from the above experiments to determine if there was increased 
localization of sRNAs at the cell membrane. We included the gfp mRNA as a negative control 
because it does not localize at the membrane [222, 237]. In addition, we created a positive 
control by fusing the bglF mRNA, which encodes β-glucoside phosphotransferase permease 
(BglF), to the gfp mRNA. BglF has eight domains that span the inner membrane [238], and the 
bglF mRNA has previously been shown to localize to the membrane by a translation 
independent mechanism [106]. RNA FISH was performed as above and GFP was measured by 
fluorescence microscopy (Materials and Methods). 
 
The BglF::GFP protein was observed in regions near the membrane as expected (Figure 3.5A). 
The bglF::gfp mRNA was not obviously at the membrane from visual inspection of cell images 
but it was detectable by quantitative analysis. Quantitative analysis was performed by 
identifying the cell boundaries in the phase contrast images and removing the outermost layer 
of pixels using the “erode” function in ImageJ. The outermost layer of pixels were removed 
because they include areas outside the cell and have less signal from the point spread function 
of neighboring pixels. Together these factors create an “edge effect” with lower signal in the 
outermost layer of pixels (Figure 3.5B). The next outermost layer was termed the “membrane” 

DAPI-Cy3

RyhB

OxyS

SgrS

gfp

(mRNA)

GlmZ

phase contrast DAPI-Cy5

A B

phase contrast

Negative 

control

DAPI-Cy5phase contrast DAPI-Cy3

Fig. S3.

Figure 3.4 Top 10% of signal for sRNAs, mRNA or DNA in 
cells. (A) sRNA and mRNA localization in representative 
cells (same as shown in Figure 2A) transcribing sRNAs or 
mRNAs in phase contrast, DAPI, and Cy5 or Cy3 channels. 
Pixels with highest 10% of DAPI signal (DNA) are colored 
cyan and pixels with highest 10% of Cy5 signal (sRNA) or 
highest 10% of Cy3 signal (mRNA) are colored magenta. 
Any pixels that have the highest 10% of DAPI signal and 
the highest 10% of Cy3 or Cy5 signal (i.e. overlapping 
pixels) are colored yellow. Note: readers may need to use 
zoom on the images to see individual pixels. Yellow scale 
bar indicates 1 μm. Strains are described in the legend for 
Figure 2A. (B) Representative cells (same as shown in 
Figure 2B) in the negative control (HL716; n = 355) without 
Cy3 or Cy5 probes in phase contrast, DAPI, Cy3 and Cy5 
channels. Pixels are colored as described in panel A. 
Yellow scale bar indicates 1 μm. 
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and we determined by TOS whether the top 10% of intensity values in the whole cell overlap 
with this membrane layer more, less, or the same as a uniform distribution. We created 
histograms of this “membrane TOS” obtained from each cell and found that the mean and 
median values often did not capture differences between samples because of heterogeneity in 
the cell populations (Figure 3.6). Therefore we measured the fraction of cells in each sample 
that had colocalization of the sRNA or mRNA signal with the membrane region (i.e. membrane 
TOS > 0) (Figure 3.5C). 
 
BglF::GFP and bglF::gfp mRNA had 93.8% and 57.1% of cells with membrane TOS > 0 
respectively (Figure 3.5C). That is, the 10% of pixels with the highest BglF::GFP and bglF::gfp 
mRNA signal in the cell overlapped with the membrane region more than expected by random 
chance in the majority of cells. These results in the positive controls are consistent with 
membrane localization. In contrast, all the sRNAs and the gfp mRNA had very low percentages 
of cells with TOS > 0 (Figure 3.5C), and these percentages were significantly lower than the 
bglF::gfp mRNA positive control (P values < 1 × 10-6; Fisher’s exact test). The control with 
uniform randomly distributed background signal (HL716) is not affected by the edge effect and 
was expected to have a 50:50 random split of cells with TOS > 0, and this was observed (Figure 
3.5C). In summary, none of the sRNAs displayed evidence of membrane localization.  
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Figure 3.5 sRNAs display no preferential 
membrane localization. Cell edges were 
identified as in Figure 3.3A. Yellow scale bar 
indicates 1 μm. (A) mRNA and protein 
localization of bglF::gfp (HL5969) in 
representative cells shown for the phase 
contrast, GFP (n = 304) or Cy3 (n = 84) channels. 
Signal intensities of Cy3 and GFP are shown as 
heat maps with cellular normalization. 
Measurements were made at 1 mM IPTG. (B) 
“Edge effect” shown in a cell with GFP 
expression (HL6322). Average GFP fluorescence 
and DAPI signals along the longitudinal axis 
(upper cell images); both signals decrease at the 
cell ends (left lower plot) resulting in a positive 
correlation for binned pixel values (right lower 
plot; circled with a red line). Solid and dash cyan 
lines in the phase contrast image show the 
center and edges of the longitudinal axis. (C) 
Fraction of cells with membrane localization 
(“membrane TOS” > 0) in strains probed for 
sRNAs and mRNAs, or expressing GFP. Analysis 
was performed on measurements collected for 
Figure 3.3 (HL6322, HL6320, HL6318, HL6268, 
and HL716). The number of cells with TOS > 0 
was compared between the positive control 
(bglF::gfp) and each of the sRNAs and mRNAs 
using Fisher’s exact test. * indicates statistical 
significance (P < 1 × 10-6). NS indicates no 
significance (P = 1.8 × 10-1) for the negative 
control (Cy5). 



 
 

67 
 

 
 
3.3.3 RNA length and translation affect nucleoid localization 
 
We attempted to engineer RNAs with the same level of nucleoid localization as sRNAs. Creating 
nucleoid localization for the full length gfp mRNA was judged to be more likely to be 
informative than simply disrupting nucleoid localization of sRNAs. Moreover, sRNAs have very 
important structure-function relationships that when altered could have unexpected and 
unexplainable effects. The first factor that was considered was RNA length. RyhB, OxyS, GlmZ 
and SgrS have lengths of 102, 121, 207, and 238 nucleotides respectively whereas the gfp 
mRNA has a total length of 994 nucleotides (717 nucleotides for the coding sequence and ~277 
nucleotides for the 5’ untranslated region and T1 terminator). Therefore the gfp mRNA is 
expected to have a larger size resulting in more difficulty diffusing through the compact 
chromosomal DNA of the nucleoid. The second factor that was considered were polysomes, 
which are complexes comprised of an mRNA, 70S ribosomes, the translated peptide and other 
factors [239]. The presence of polysomes increases mRNA size and therefore could impede 
mRNA movement through the nucleoid. 
 
To evaluate the effects of RNA length and polysome formation on localization we compared the 
full length gfp mRNA to a partial length mRNA, and both lengths with and without translation. 
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Figure 3.6 Histograms of membrane TOS. The data is 
from the experiment shown in Figure 3.5. All histograms 
have the same bin width of 0.1 TOS (unitless). Grey dash 
line indicates membrane TOS = 0. 
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Translation was prevented by deleting the ribosome binding sequence (RBS) and the start 
codon, which for the full length mRNA abolished GFP fluorescence. To summarize, there were 
four sets of samples in this experiment (Figure 3.7A): (i) full length gfp mRNA with translation (≈ 
994 nucleotides); (ii) full length gfp mRNA without translation (≈ 976 nucleotides); (iii) first 
quarter of the gfp mRNA with an introduced stop codon and translation (≈ 460 nucleotides); 
and (iv) first quarter of the gfp mRNA with an introduced stop codon and no translation (≈ 442 
nucleotides). Localization of these mRNAs was measured by RNA FISH using the Cy3 probes for 
the gfp sequence (representative cells in Figure 3.7B). TOS was calculated as described above 
to measure the overlap of pixels with the top 10% of the mRNA signal and pixels with the top 
10% of the DAPI signal (which are primarily in the center of the nucleoid). We found that in 
most samples, the median and mean TOS were not the same due to a long-tailed distribution. 
This distribution required a rank-order test for statistical significance (Mann-Whitney U two-
tailed test) and therefore we primarily compared the median TOS between samples. 
 
We examined the effect of translation on localization by comparing median TOS for full length 
mRNA with and without the RBS (-1.00 and -0.70 respectively) (Figure 3.7C). These differences 
were statistically significant (P = 2.6 × 10-4; total n = 299). Therefore decreasing translation to 
reduce the number of polysomes along the mRNA increased the overlap of pixels with the 
highest (i.e. top 10%) gfp mRNA and DAPI signals; that is, polysomes appear to prevent nucleoid 
localization of the mRNA. We next examined the effect of mRNA length on localization by 
comparing median TOS for the full length gfp without the RBS and the first quarter of gfp 
without the RBS, which were -0.70 and 0.05 respectively (Figure 3.7C). The difference in 
median TOS was statistically significant (P = 1.4 × 10-27; total n = 395) indicating that decreasing 
mRNA length enabled greater localization of the top 10% of pixels with the gfp mRNA signal in 
the nucleoid. We did not compare full length gfp with the RBS to the quarter length gfp with 
the RBS because altering mRNA length can also potentially decrease the number of polysomes 
along the mRNA; therefore observed differences may reflect the combined effects of length 
and translation. It is notable that the partial length gfp mRNA without an RBS has a median and 
mean TOS ≈ 0; that is, it has the same fractional overlap with the nucleoid as the sRNAs. 
 
The partial length gfp mRNAs with and without an RBS had similar median TOS (0.01 and 0.05 

respectively) but large differences in mean TOS (-0.23 ± 0.03 and -0.07 ± 0.02 respectively) 
(Figure 3.7C). This difference in the means was due to the gfp mRNA without the RBS having 
more cells in the tail of the distribution with greater localization of mRNA in the cytoplasm. The 
data indicate the effects of shortening RNA length and decreasing translation can be combined, 
which is expected if polysomes and length contribute at least partly independently to RNA size, 
and if RNA size affects nucleoid localization. 
 
We replaced the first quarter of the gfp coding sequence without the RBS and start codon with 
the sequence from the last quarter of the gfp coding sequence and repeated the experiments 
and analysis (representative cells in Figure 3.7D). Despite the different sequences, these partial 
length gfp mRNAs had very similar median and mean TOS (Figure 3.7E), which suggests the 
degree of nucleoid localization is primarily determined by length and not sequence. 
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To determine how RNA lengths relate to their size, we plotted the radius of gyration (Rg) for 
sRNAs, ribozymes, transfer RNAs, ribosomal RNAs and mRNAs (Figure 3.7F and Table 3.6). The 
radius of gyration is a way of describing the distribution of mass of an RNA or protein around its 
axes of rotation. If the shape of a RNA or protein is approximated by a solid sphere then the 
diameter is roughly equal to the radius of gyration multiplied by 2√(5/3) [240]. The values were 
obtained from the literature or by searching the Nucleic Acid Database Project for bacterial RNA 
structures with > 30 nucleotides and without any protein binding [241]. We fitted the 
measurements to the power law relationship that exists between Rg and the number of bond 
segments for a polymer (N). Specifically, we used the function Rg = a·Nν, where N is the number 
of nucleotides, a is a pre-factor, and v is an exponent that specifies the compactness of the RNA 
in a solvent [242-246]. 
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Our fit using the Levenberg-Marquardt algorithm yielded v = 0.50 ± 0.05 and a = 3.66 ± 1.46 Å 
(adjusted R2 = 0.85; n = 28). The exponent (v) is consistent with an ideal polymer chain with a 
simple random walk in a θ solvent [242]. Studies of relatively short RNAs, which tend to be 
tRNAs, riboswitches and ribozymes with high levels of self-annealing and more compact 
structures, often have exponents ≈1/3 to ≈2/5 [244, 247]. We reanalyzed the data for only the 
tRNAs, riboswitches and ribozymes (51-400 nucleotides), and the fit yielded an exponent v = 
0.36 ± 0.10 (a = 6.18 ± 3.25 Å; adjusted R2 = 0.53; n = 13), which was similar to that reported in 
the other studies [244, 247]. Conversely, our fit to experimentally measured sRNAs, mRNAs, 
and random sequences (75 to 1523 nucleotides) yielded a high exponent value indicating self-
avoiding interactions and a larger volume (v = 0.60 ± 0.11 and a = 2.68 ± 2.04 Å; adjusted R2 = 
0.98; n = 5). Note: all errors for the fits are the standard deviations. 
 
We estimated the Rg for our sRNAs using the parameters from the first fit because it had the 
lowest relative errors and was the most general fit. The calculated Rg for the sRNAs are: 37.0 Å 
(RyhB, 102 nucleotides); 40.3 Å (OxyS, 121 nucleotides), 52.7 Å (GlmZ, 207 nucleotides), and 
56.5 Å (SgrS, 238 nucleotides). The predicted Rg for the partial length gfp mRNA without the 
RBS is 75.2 Å. This value is only slightly larger than for the sRNAs and similar to the 30S and 50S 
ribosomes which are approximately 70-80 Å [248-250] and can enter the nucleoid [226]. 
 
The predicted Rg for the full length gfp mRNA without the RBS is 114.3 Å, which is 
approximately the same radius as the 70S ribosome [251, 252]. That is, the Rg for the full length 
gfp mRNA, which does not enter the nucleoid, is 1.5-fold larger than the Rg of the partial length 
gfp mRNA that does enter the nucleoid. While this fold difference is relatively small, the 

Figure 3.7 RNA length and translation affect nucleoid localization. Cell edges were identified as in Figure 
3.3A. Yellow scale bar indicates 1 μm for all images. Measurements were made at 1 mM IPTG. (A) Full and 
partial length gfp mRNA with and without the RBS (st7) and start codon. (B) Localization of gfp mRNA in 
representative cells with each of the genes in panel A. DAPI and Cy3 signal intensities (cellular 
normalization) represented as heat maps. Sample sizes: HL6322 (n = 113), HL6733 (n = 186), HL6735 (n = 
229), and HL6737 (n = 209). (C) TOS for strains with each of the genes shown in panel A. Bars are the 
medians, circle symbols are the means, and error bars are the SEMs. Median TOS for the following 
pairwise combinations were statistically significant (Mann-Whitney U two-tailed test): full length gfp 
mRNA ± RBS (P = 2.6 × 10-4), 1st quarter gfp mRNA ± RBS (P = 3.8 × 10-4), and full length gfp mRNA – RBS 
versus 1st quarter gfp mRNA – RBS (P = 1.4 × 10-27). (D) Comparison of gfp mRNA localization in cells with 
1st quarter gfp mRNA – RBS (HL6737; n = 231) and 4th quarter gfp mRNA – RBS (HL6736; n = 205). (E) TOS 
for strains with the genes in panel D. Plot is presented as in panel C. The difference in median TOS was 
small and barely significant (P = 1.2 × 10-2, Mann-Whitney U two-tailed test). (F) Radius of gyration (Rg) as 
a function of RNA length. Rg values from the literature, which are provided in Table 3.6, were fitted to a 
power function as defined in main text (grey line). Parameter values from the fit were then used to 
calculate Rg for the sRNA and gfp mRNAs without RBS. Two target mRNA::gfp mRNA fusions from Figure 
3.5 are included in the plot for comparison. Because these fusions (rpoS::gfp and fhlA::gfp) have similar 
lengths their symbols overlap (see Figure 3.8 and main text for more details). Parameter errors are the 
standard deviations. Shading shows RNA size ranges that may have potentially high, intermediate and low 
nucleoid penetrance. 
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absolute difference in diameter is large (≈ 100 Å) (note: diameters of the partial and full length 
gfp mRNAs are 194.1 Å and 295.2 Å respectively, assuming they are spherical). 
 
We also measured the localization of mRNAs that are longer than the full length gfp mRNA. 
These mRNAs had the non-translated region and partial coding sequence of two native mRNAs, 
rpoS and fhlA, translationally fused to gfp (Figure 3.8A). These native mRNAs are known targets 
for sRNA regulation, and both fusions were previously described and shown to have relatively 
low translation, particularly for fhlA::gfp [185]. Because of this low level of translation, it was 
more appropriate to compare the localization of these target mRNA::gfp fusions to the 
localization of the full length, non-fusion gfp mRNA without the RBS rather than with the RBS. 
The lengths of the rpoS::gfp and fhlA::gfp fusion mRNAs were ≈1161 and ≈1185 nucleotides 
respectively. We measured localization by the same method as used for the other gfp mRNAs, 

and determined the mean TOS to be -0.79 ± 0.03 and -0.71 ± 0.04 for rpoS::gfp and fhlA::gfp 
respectively, and the median TOS to be -1.00 for both mRNAs (Figure 3.8B, C). The rpoS::gfp 
(≈1161 nucleotides) and fhlA::gfp (≈1185 nucleotides) fusion mRNAs, which are longer than the 
full length gfp mRNAs and have even less overlap with the nucleoid, have predicted Rg of 124.7 
Å and 126.0 Å respectively, and diameters of 322.0 Å and 325.3 Å respectively (Figure 3.7F). 
These results show that mRNAs longer than the full length gfp mRNA without the RBS have 
even greater localization in the cytoplasm, consistent with their longer length further reducing 
nucleoid localization. 
 
Together the data indicate that RNAs can be engineered to increase or decrease their 
localization by altering their length and/or level of translation to increase or decrease their size. 
For RNAs to have the same level of nucleoid localization as sRNAs, they appear to require an Rg 
< ≈ 80 Å or diameter < ≈ 200 Å, with all other factors being equal. Larger RNAs appear to have 
more difficulty moving into and through the nucleoid, and thus tend to localize outside the 
nucleoid. 
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3.3.4 Hfq has minimal effect on sRNA localization 
 
Given the prominent role of Hfq in regulating sRNA activity in E. coli it is important to establish 
whether Hfq affects sRNA localization. Hfq could potentially affect sRNA localization in several 
ways. The Hfq hexamer has a diameter of 62-65 Å [239, 253] therefore its binding to sRNAs 
could potentially add to their size and limit their movement in the nucleoid to regions with the 
densest DNA. Alternatively, the binding of Hfq to sRNAs may decrease their size as occurs with 
the rpoS target mRNA, which has a smaller size in the Hfq::rpoS complex (Rg = 58.0 ± 1.0 Å) than 
alone (Rg = 68.1 ± 1.6 Å) [254]. In addition, Hfq can bind to DNA [255] therefore it could 
potentially sequester sRNAs in the nucleoid. 
 
We examined sRNA localization in strains without Hfq (Δhfq) by RNA FISH (Figure 3.9A). These 
measurements were performed in parallel in strains with Hfq (Figure 3.3). We calculated TOS 
and found little or no difference in nucleoid localization with and without Hfq (Figure 3.9B). The 
exception was SgrS, which lost its slight preference for the cytoplasm with the deletion of hfq 
resulting in equal preference for the cytoplasm and the nucleoid (median TOS = - 0.17 and 0.02 
respectively; P = 5.23 × 10-4; total n = 535). The deletion of hfq prevents SgrS from forming 

Figure 3.8 Localization of target mRNAs fused to gfp. Cell edges were identified as in Figure 3.3A. Yellow 
scale bar indicates 1 μm for all images. Measurements were made at 1 mM IPTG. Note: HL6733 data are 
the same as that shown in Figure 3.7 and are reshown to enable convenient comparison. (A) Full length 
gfp mRNA with and without additional untranslated and coding sequences. (B) Localization of gfp mRNA 
in representative cells with each of the genes in panel A. DAPI and Cy3 signal intensities (cellular 
normalization) represented as heat maps. Sample sizes: HL6733 (n = 186), HL6193 (n = 177), and HL6201 
(n = 98).  (C) TOS for strains with each of the genes shown in panel A. Bars are the medians, circle symbols 
are the means, and error bars are the SEMs. Differences in the TOS values for the following pairwise 
combinations of samples were statistically significant (Mann-Whitney U two-tailed test): full length gfp 

mRNA – RBS versus rpoS::gfp mRNA (P = 2.3 × 10
-7

) and full length gfp mRNA – RBS versus fhlA::gfp mRNA 

(P = 1.2 × 10
-2

). 
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duplexes with its target mRNA (ptsG) [256], therefore the latter finding of decreased 
anticolocalization with the nucleoid is probably due to less SgrS binding to its target mRNA 
outside the nucleoid at the cell poles [236]. It should be noted that under our growth 
conditions it has been established that SgrS translation does not occur [256, 257]. 
 
The minimal effects of Hfq on sRNA localization are unlikely to be due to the sRNAs being in 
such excess that there is insufficient Hfq to bind most of the sRNA molecules. One reason it is 
unlikely that there is a large pool of unbound sRNAs, is that many studies have shown that 
sRNAs are rapidly degraded in the absence of Hfq [see references and data in [185, 230]]. 
Furthermore, Hfq is clearly interacting with at least GlmZ, RyhB, and SgrS because the deletion 
of hfq altered their mean signals (and thus their concentrations) (Figure 3.9C). The halving of 
the GlmZ and SgrS concentrations (mean signal above background) when hfq was deleted 
suggests that at least 50% of the GlmZ and SgrS sRNAs are bound to Hfq (see calculations and 
model in the Materials and Methods). If Hfq was only binding to a small fraction of these sRNAs 
then the deletion of hfq should have had a correspondingly small effect on their concentrations. 
 
There are many reasons OxyS and RyhB may have shown no difference in concentration and an 
increase in concentration with the deletion of hfq. These include similar degradation rates for 
the unbound and Hfq bound forms in our experiments, and decreased duplex formation in the 
hfq deletion strains causing increases in the sRNA concentrations by amounts that offset (OxyS), 
or more than offset (RyhB), the decreases in sRNA concentrations caused by the loss of Hfq 
protection of the sRNAs. We tested duplex formation of RyhB with a fusion of its target 
sequence (sodB) to gfp and found that SodB::GFP levels were increased in the Δhfq strain 
(signal-to-background ratio in wild-type and Δhfq strains were 3.28 ± 0.18 and 6.54 ± 0.46; 
HL6284 and HL6285). Therefore RyhB activity was decreased in the Δhfq strain, and 
consequently Hfq concentrations in the wild-type background are sufficiently high to be a major 
contributor to duplex formation. 
 
Together our experiments indicate the similarity in sRNA localization in the wild-type and Δhfq 
strains is not explained by insufficient Hfq, and is most likely due to Hfq not having much effect 
on sRNA localization. 
 
 
 



 
 

74 
 

-1.0

-0.5

0.0

0.5

1.0

 

 

O
x
y
S

R
y
h
B

S
g
rS

G
lm

Z

O
x
y
S

-△
h
fq

R
y
h
B

-△
h
fq

S
g
rS

-△
h
fq

G
lm

Z
-△

h
fq

N
e
g
. 
c
o
n
t.

 

(C
y
5
)

GlmZ

Δhfq

H
L
6
3
2
0

H
L
6
3
1
8

H
L
6
2
6
8

H
L
6
3
3
2

H
L

6
3

2
1

H
L
6
3
1
9

H
L
6
2
8
6

H
L
6
3
3
3

H
L

7
1

6

highlow

low highDAPI

Cy5

A

phase contrast DAPI Cy5 (sRNA probe) 

OxyS

Δhfq

RyhB

Δhfq

SgrS

Δhfq

B

T
O

S 0.0

0.5

1.0

−0.5

−1.0

nucleoid localization

cytoplasm localization

1

3

5

 

 

O
x
y
S

R
y
h
B

S
g
rS

G
lm

Z

O
x
y
S

-△
h
fq

R
y
h
B

-△
h
fq

S
g
rS

-△
h
fq

G
lm

Z
-△

h
fq

M
e

a
n

 s
ig

n
a

l-
to

-b
a

c
k
g

ro
u

n
d

 r
a

ti
o

C

1

3

5

sRNA

sRNA

H
L
6
3
2
0

H
L
6
3
1
8

H
L

6
2

6
8

H
L

6
3

3
2

H
L
6
3
2
1

H
L
6
3
1
9

H
L
6
2
8
6

H
L
6
3
3
3

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 Hfq has minimal effect on sRNA localization. Cell edges were identified as in Figure 3.3A. 
Yellow scale bar indicates 1 μm for all images. Measurements for the negative control strain (HL716) 
without any plasmid and probes were made at 1 mM IPTG. (A) sRNA localization in strains without hfq 
(△hfq). Signal intensities of DAPI and Cy5 in individual cells are shown as heat maps with cellular 
normalization. All strains have the sRNA transcribed from the PCon promoter. Strains: glmZ (HL6321; n = 
144); oxyS (HL6319; n = 97); ryhB (HL6286; n = 62); and sgrS (HL6333; n = 326). (B) TOS for each sRNA with 
hfq (data from the experiments in Figure 3.3A) and without hfq (panel A). Bars are the medians, circle 
symbols are the means, and error bars are the SEMs. Median TOS for pairs of strains with or without hfq 
were very similar for GlmZ, OxyS, and RyhB (P = 4.4 × 10-1, 1.3 × 10-2, and 1.7 × 10-2 respectively; Mann-
Whitney U two-tailed test). Median TOS was significantly different for SgrS with or without hfq (P = 5.2 × 
10-4). (C) Signal-to-background ratios for each sRNA with and without hfq. Error bars are the SEMs. Mean 
signal-to-background ratio in strains with and without hfq were statistically significant for GlmZ, RyhB, and 
SgrS but not for OxyS (P = 1.4 × 10-50, 2.6 × 10-4, 4.0 × 10-125 and 3.7 × 10-1 respectively; two-tailed t-test). 
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3.4 Discussion 
 

In this study we showed that sRNAs occur throughout the nucleoid and cytoplasm. The four 
sRNAs that were measured are diverse: (i) they ranged in size from 102 to 238 nucleotides; (ii) 
one (GlmZ) acts to increase target protein production and three (OxyS, RyhB, and SgrS) act to 
decrease target protein production; and (iii) they are involved in regulating different classes of 
proteins in different pathways including iron storage (RyhB), oxidative stress (OxyS), and 
carbohydrate metabolism (GlmZ and SgrS) [194]. Given the variety of the sRNAs studied, the 
findings of this study are likely to be general. In contrast to the sRNAs, the full length gfp mRNA 
almost exclusively occurs in the cytoplasm, which is consistent with nucleoid exclusion and the 
observation in another study that diffusion of gfp mRNA appeared to avoid the nucleoid [222]. 
We hypothesized that the difference between the sRNAs and the gfp mRNA was due to the 
larger size of the latter because of its greater length and polysomes. Decreasing each of these 
factors reduced nucleoid exclusion of the full length gfp mRNA, and decreasing both of these 
factors completely eliminated the nucleoid exclusion. Together the results indicate that sRNAs 
are able to enter the nucleoid due to their smaller size, and our observation that there is no 
preferential localization in the cytoplasm or nucleoid suggests that sRNAs probably move into 
and out of the nucleoid at similar rates (see below).  
 
We also found that the deletion of hfq had minimal effect on the localization of sRNAs. This 
result includes sRNAs that bound to Hfq in our experimental systems in sufficient amounts that 
the deletion of hfq affected their concentrations and/or activities. To explain our findings we 
consider three plausible scenarios that take into account Hfq stabilizes sRNAs [185, 194, 204]. In 
scenario 1, Hfq binds sRNAs in the nucleoid or the cytoplasm, and unbound sRNA movement 
into and out of the nucleoid is slow or limited. In this scenario we would expect the 
concentration to decrease at the site of Hfq binding resulting in decreased or increased 
nucleoid localization, which is not consistent with our observations. In scenario 2, Hfq binds 
sRNAs in the nucleoid or the cytoplasm, and unbound sRNA movement into and out of the 
nucleoid is fast and unlimited. In this scenario we would expect the deletion of hfq to decrease 
the total cellular sRNA concentration but there would be minimal effect on localization because 
of rapid movement of sRNA. In scenario 3, Hfq binds sRNAs in both the cytoplasm and nucleoid. 
For the sRNAs to localize with equal probability in the nucleoid and cytoplasm as observed, Hfq 
must also localize with equal probability in the nucleoid and cytoplasm (or less likely, there is a 
difference in Hfq activity in the nucleoid and cytoplasm that is exactly counterbalanced by a 
difference in Hfq concentration in the nucleoid and cytoplasm so the sRNA localization appears 
to occur with equal probability in the nucleoid and cytoplasm). In this scenario, deletion of hfq 
decreases the concentration of sRNAs in both the nucleoid and the cytoplasm. However, for 
sRNA localization not to change with the deletion of hfq (as was observed), then the sRNAs 
must also be able to move without Hfq equally to the nucleoid and cytoplasm. Scenarios 2 and 
3 are compatible with our observations, and both are consistent with sRNAs being able to move 
in and out of the nucleoid with minimal bias. To be clear, our findings do not specify where in 
the cell sRNAs bind and act on mRNAs. 
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Our observation that sRNAs can readily move into and through the nucleoid indicates they have 
the potential to bind mRNAs at the earliest stages of transcription and therefore can compete 
with ribosomal subunits for binding at the TIR. As mentioned above, the advantage of sRNAs 
binding to the TIR before the ribosomal subunits (instead of waiting until afterwards), is that it 
can potentially prevent the first round of translation initiated within the nucleoid and therefore 
prevent any protein at all being produced. This advantage is important for target proteins that 
exert their actions at low concentrations [258] and in systems that have high cooperativity, 
ultrasensitive switches, or positive feedback [259, 260]. As an example, proteins such as the 
outer membrane proteins, OmpA, OmpC and OmpF, which are regulated by the MicA, MicC and 
MicF sRNAs, where the expression of even a single protein could provide a route for 
bacteriophage to enter the cell and cause cell death [261]. In addition, if sRNAs bind to the TIR 
immediately after its transcription they can potentially prevent the leading ribosome from 
being in close proximity to the RNA polymerase, which may increase the probability of 
transcription termination for some genes [262-264]. The increased transcription termination 
would further enhance gene silencing by sRNAs. For sRNAs that increase target gene expression 
via opening up hairpins at the TIR [195] to facilitate ribosome binding, the capacity to enter the 
nucleoid and bind during the early stages of transcription would be expected to further 
enhance their activity by preventing transcription termination. Our demonstration that short 
lengths of mRNA can move through the nucleoid suggests that partial length mRNAs that are 
generated during transcription termination [23, 264, 265] can easily diffuse out of the nucleoid. 
This movement of partial length mRNAs will reduce entropic forces acting to expand the 
nucleoid and allow mRNA fragments to be quickly broken down and recycled by the RNA 
degradosome at the inner membrane [209, 266].  
 
During stress conditions and slow growth rates, the nucleoid can become more compact 
resulting in less space between the folded DNA, and consequently greater resistance to the 
diffusion of large molecules through the nucleoid [227]. Therefore, while we found that RNAs of 
442 nucleotides or less in length were able to localize in the nucleoid, this may not be the case 
during stress, which may explain why sRNAs are much shorter (50-250 nucleotides) [267]. The 
effect of stress on nucleoid localization of sRNAs and mRNAs needs to be further investigated 
and should be kept in mind when designing synthetic circuits. 
 
Our findings are relevant in many ways for the design of synthetic gene circuits incorporating 
sRNAs and other non-coding RNAs. They directly demonstrate that the construction of synthetic 
gene circuits with sRNAs on plasmids will not impair these sRNAs from accessing the nucleoid 
and regulating target genes on the chromosome. In addition, we found little difference in the 
nucleoid localization of RNAs over a wide range of sizes from 102 nucleotides (RyhB) to 442 
nucleotides (partial length gfp mRNA without RBS). Therefore synthetic sRNAs should be 
designed to be less than 442 nucleotides (or an Rg < ≈ 80 Å or a diameter < ≈ 200 Å), and 
probably shorter if they need to function during stress conditions for the reasons mentioned 
above. This constraint on size may limit the use of long non-coding RNAs, which are typically 
cis-acting and bind to complementary target mRNAs [203], particularly for applications where 
they need to act within the nucleoid to be efficient. Within the range of 442 to 1185 
nucleotides it appears that as the RNA becomes larger it has more difficulty entering the 



 
 

77 
 

nucleoid; this relationship between size and nucleoid localization needs to be further 
characterized. It must be stressed that size is not the only factor that may affect RNA 
localization. As we showed with the bglF::gfp mRNA, and others have shown for other RNAs 
[215], specific sequences can affect RNA localization, which could conceivably affect nucleoid 
localization of sRNAs. 
 
Another point that is relevant to synthetic biology is the effect of localization on local RNA 
concentrations. Because sRNAs we investigated do not appear to sequester or concentrate in 
any specific regions of the cell their concentrations are simply determined by the whole volume 
of the cell. In contrast, mRNAs such as gfp (as well as ptsG and bglF) occupy a smaller volume 
because of exclusion from the nucleoid and therefore have higher local concentrations. 
Estimates of the volume of the nucleoid range from ~50-75% of the cell volume [226, 268], 
which means that with the same number of sRNA and mRNA molecules, the effective 
cytoplasmic mRNA concentration (if the mRNA is excluded from 75% of the cell volume) may be 
four times higher than the sRNA concentration. This difference is important in quantitative 
models of gene regulation, particularly for sRNAs due to their stoichiometric action [232, 269], 
and for mRNAs encoding cooperative proteins and other proteins with steep response curves 
[259, 260]. Another consequence for the modeling of sRNAs that enter the nucleoid and 
therefore have greater potential for silencing, is that this is expected to alter several aspects of 
their threshold-linear response [230, 232] (i.e. target protein concentration as a function of 
sRNA production) (Figure 3.10). Specifically, it is expected that: (i) the linear graded response 
will be “steeper” because each sRNA prevents more target proteins from being produced; (ii) 
the transition at the threshold will be sharper [232]; and (iii) the minimum target protein 
concentration will be lower (Figure 3.10). 
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In conclusion, this study reveals that sRNAs can move into the nucleoid and because of this they 
have the potential to regulate mRNAs deep within the nucleoid, soon after mRNA transcription 
is initiated and the TIR is synthesized, and before the transcription-translation complex moves 
to the edge of nucleoid. Furthermore, sRNAs appear to occur with equal probability in the 
nucleoid and cytoplasm which suggests there is no bias or sequestration of sRNAs in either 
region. This information provides a deeper understanding of the potential roles for sRNAs in 
gene regulation and of the potential constraints on the evolution of sRNAs, and allows the 

Figure 3.10 Expected threshold-linear responses for sRNAs that 
can and cannot enter the nucleoid with all other factors being 
equal. The sRNAs are decreasing translation of the target mRNA. 
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construction of more accurate and more detailed models to optimize the engineering of 
synthetic circuits incorporating sRNAs. 
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3.5 Materials and Methods 
 
3.5.1 Bacterial plasmids and strains 
 
Strains, plasmids and oligonucleotide sequences are in Table 3.1-3.3. Plasmids were assembled 
using components of the pZ system [270] including the ColE1 origin, terminator sequences and 
promoters. Plasmid maps are in Figure 3.11. sRNA sequences were amplified from MG1655 and 
cloned downstream of the synthetic PCon [185] promoter (or PConshort promoter for GlmZ 
[271]). The gfp sequence was obtained from pTAK102 [272] and cloned downstream of the 
PLlacO-1 promoter [270]. The sodB (-56 to +141) [105], rpoS (-149 to +30), and fhlA (-107 to 
+96) mRNA target sequences, and the full length bglF sequence (without stop codon) were 
amplified from MG1655 and translationally fused to the gfp mRNA (note: numbering relative to 
start codon). Chromosomal sRNA genes and hfq were deleted using the lambda Red method 
[273] with the oligonucleotides in Table 3.3. 
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3.5.2 RNA fluorescent in situ hybridization (RNA FISH) 
 
RNA FISH was performed on cells inoculated from overnight culture into fresh lysogeny broth 
(LB) media with 100 µg/mL of ampicillin and grown at 37°C and 200 revolutions per minute 
(rpm) for 3.5 - 5 hours until they reached an OD600nm ~ 0.3-0.5, and then they were harvested. 
Isopropyl β-D-1-thiogalactopyranoside (IPTG; Fisher Scientific, Fair Lawn, NJ, USA) was added as 
specified for individual experiments in the figure legends and protocols below. The RNA FISH 
protocol was the same as reported [274] except for the following modifications: (i) the volume 
of the cell culture and the amount of fluorescent probe were halved; (ii) probes for DsrA, RyhB, 
SgrS and OxyS sRNAs were in a single mix of DNA probes (labeled with Quasar Cy5); and (iii) 
GLOX was added after hybridization and washing (final concentration of 0.4% glucose, 10mM 
Tris HCL, 2 x SSC, 1% glucose oxidase and 2% of 21.6 mg/mL of catalase from bovine liver) to 
increase signal and prevent bleaching of  Cy3 and Cy5 in accordance with the manufacturer’s 
recommendations (Biosearch Technologies, Novato, CA, USA).  
 
The first part of the process of RNA FISH was growing the cells and fixing them. Cells from an 
overnight culture were inoculated into fresh lysogeny broth (LB) media with 100 µg/mL of 
ampicillin (and 1 mM IPTG for the gfp mRNAs). The cells were grown at 37°C and 200 
revolutions per minute (rpm) on a shaker for 3.5 - 5 hours to an OD600nm ~ 0.3-0.5. Then 7.5 mL 
of the culture was removed and centrifuged for 10 minutes at 4°C and 3650 g, the supernatant 
was removed and the cell pellet was resuspended in 0.5 mL of fixation solution [3.7% 
formaldehyde (Mallinckrodt Chemicals, Phillipsburg, NJ, USA) in 1 x PBS (phosphate buffered 
saline)] and incubated at 25oC for 30 minutes at 30 rpm. The fixed cells were centrifuged at 
25oC for 8 minutes at 400 g, the supernatant was removed, and the cell pellet resuspended in 1 
x PBS. The cells were then centrifuged at 25oC for 3.5 min at 600g and resuspended in 1 x PBS 
and this was repeated. The cells were resuspended in 70% ethanol and incubated at 25oC for 1 
h to permeabilize them, and then centrifuged at 25oC for 7 minutes at 600 g, and the cell pellet 
resuspended in wash solution [35.43% formamide (Fisher Scientific, Fair Lawn, NJ, USA) in 2 x 
saline sodium citrate (SSC)] [274]. 
 

Figure 3.11 Plasmid maps. (A) pHL1391 and its derivatives (pHL1892, pHL1966, and pHL2000). pHL1391 
was modified by replacing rpoS with either RBS(st7)::bglF or fhlA, and inserting an Asp terminator between 
the BamHI and ApaI restriction sites to generate pHL1892 or pHL1966 respectively.  pHL2000 is the same 
as pHL1391 except the partial rpoS sequences is replaced by the partial sodB sequence, and PCon (no 
HindIII site)::ryhB is inserted between BamHI and ApaI in the same clockwise direction as gfp. (B) pHL1990 
and its derivatives (pHL1991, pHL2004 and pHL2013). *pHL1990 plasmid was modified by replacing PCon 
(no HindIII site)::dsrA with: (i) PCon (no HindIII site)::ryhB generating pHL1991; (ii) PCon::oxyS generating 
pHL2004; (iii) PCon (no HindIII site)::sgrS generating pHL2013. (C) pHL2016. (D) pHL2017 and its 
derivatives (pHL2135, pHL2137, pHL2138 and pHL2139). *pHL2017 was modified by replacing the 
RBS(st7)::gfp with: (i) gfp (no ATG or RBS(st7)) generating pHL2135; (ii) first quarter RBS(st7) gfp 
generating pHL2137; (iii) last quarter gfp (no ATG or RBS(st7)) generating pHL2138; (iiii) first quarter gfp 
(no ATG or RBS(st7)) generating pHL2139. (E) pHL2095 and its derivatives (pHL2096, pHL2097 and 
pHL2099). *pHL2095 was modified by replacing ryhB with: (i) oxyS to generate pHL2096; (ii) sgrS 
generating pHL2097; (iii) glmZ generating pHL2099. (F) pHL2098. 
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The second part of the process of RNA FISH was probe hybridization and DNA staining. These 
probes were designed using the manufacturer’s proprietary software and labeled with Quasar 
Cy5 for the sRNAs and Quasar Cy3 for the gfp mRNA (Table 3.4).  Fixed cells in wash solution 
were centrifuged at 25oC for 7 minutes at 600 g and resuspended in 25 µl hybridization solution 
[10% w/v dextran sulfate (Pharmacia; now part of GE Healthcare Life Sciences), 2x SSC, 10% 
formamide, 2 mM ribonucleoside vanadyl complex (New England Biolabs, Ipswich, MA, USA), 
200 µg/mL of bovine serum albumin (Sigma, St. Louis, MO, US), and 1 mg/mL of tRNA from E. 
coli MRE600 (Roche Diagnostics, Indianapolis, IN, USA)]. Note: we found the hybridization 
solution became unstable after multiple uses and therefore it was stored as single-use aliquots. 
Two µl of each fluorescently labeled probe at a concentration of 25 µM was added to each 25 µl 
hybridization solution (final volume is 27 µl) at 30oC overnight at 30 rpm on a shaker. The next 
morning the probe was washed away as previously described [274]. In the final wash step, 4', 6-
diamidino-2-phenylindole (DAPI; Invitrogen, Grand Island, NY, USA) was added to a final 
concentration of 10 µg/mL to stain the DNA and incubated at 30oC for 30 minutes and then 
centrifuged at 25oC for 3.5 minutes at 600 g. After the final wash, the cells were resuspended in 
100 µl of GLOX buffer (0.4% glucose, 10mM Tris-HCL and 2 x SSC) and incubated at 25oC for 5 
minutes. The cells were then centrifuged for 3.5 minutes at 600 g and resuspended in 10 µl of 
GLOX buffer with a final concentration of 0.43 mg/ml of bovine catalase (Sigma) and 1% glucose 
oxidase from Aspergillus niger (Sigma), placed on slides with coverslips and examined 
immediately by fluorescence microscopy. 
 
Cells were visualized with a Zeiss AxioObserver Z1 inverted microscope with Plan-Neofluar 
100x/1.3 oil Ph3 objective and with or without the 1.6x optovar. Images were captured with a 
Hamamatsu EM-CCD digital camera (Model C9100-13) and iVision-Mac software (Biovision 
Technologies, Exton, PA, USA). The filter sets are: Cy3 (560/40 nm exciter, 660 nm longpass 
beamsplitter and 630/75 nm emitter); Cy5 (620/60 nm exciter, 660 nm longpass beamsplitter 
and 700/75 nm emitter); DAPI (350/50 nm exciter, 400 nm longpass beamsplitter and 420 nm 
longpass emitter); and GFP (470/40 nm exciter, 495 nm longpass beamsplitter and 525/50 nm 
emitter). The light source was an X-cite 120Q lamp or X-cite 120LED (Lumen Dynamics, 
Mississauga, Canada). Power settings, exposure times, and gain of the photomultiplier tube 
detector were adjusted for individual experiments to maximize the signal-to-background ratio. 
 
3.5.3 Analysis of RNA FISH images 
 
Images were processed in ImageJ [143]. The first step (except for the negative control without 
GFP, Cy3 and Cy5) was alignment of phase-contrast and fluorescence images. This was 
performed by subtracting background signal (“Subtract Background” function), thresholding 
(default algorithm), aligning thresholded images [customized “StackReg” plugin [186]], 
extracting offset values from this alignment, and applying the offset values to align the original 
phase-contrast and fluorescence images. Note: background signal is still present in these 
original images and consequently in the localization analyses. The second step was 
identification of cells in the phase-contrast images. This was done by thresholding the images 
(default algorithm) and converting them to binary. On the binary images, cells were initially 
selected based on size (“Analyze Particle” function) and then watershed segmentation [164] 
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was used to separate dividing and touching cells. A second more stringent selection was 
performed to select cells: (a) with a narrow range of sizes; (b) that were rod shaped with a 
major axis to minor axis > 2.01 (AR filter); (c) that were below a threshold width (MinFeret 
filter); and (d) that did not have saturated pixels (Max measurement). Cells with an average 
signal-to-background of less than 1.2-fold for Cy3 and 1.3 -fold for Cy5 were not included in the 
analyses (see main text) except in Figure 3.1 and for the negative control (HL716). See Table 3.5 
for analysis parameters. The cell boundaries were “regions of interest (ROI)”. A “Count Mask” 
was created in ImageJ which filled each ROI within an image with a unique integer. The Count 
Mask was then used to select pixels in the fluorescence images that correspond to cells using 
Matlab (R2015a, Mathworks, Natick, MA, USA). Pixel intensity values within each cell were 
stored in an array with a unique location identifier for each cell. 
 
3.5.4 Measurements of GFP fluorescence for membrane proteins 
 
Bacteria with BglF::GFP were prepared as follows. An overnight culture was inoculated into 
fresh LB media with 100 µg/mL of ampicillin and grown at 37°C and 200 revolutions per minute 
(rpm) for 2-2.75 hours to an OD600nm ~ 0.1. Cells were then induced at 1 mM IPTG for one hour, 
grown to an OD600nm ~ 0.4, and placed on ice for 20 minutes. One mL of iced culture was 
centrifuged at 1610 g, the supernatant removed, and the pellet resuspended in 7 µl of iced LB. 
Three microliters of resuspended cells were mounted on glass slides with a cover slip. 
Fluorescence microscopy was performed using a Nikon TE2000 inverted microscope with 100x 
objective, 1.5 × optovar, with Ph3 annulus, X-cite 120PC lamp (Exfo, Waltham, MA, USA) and an 
excitation filter/dichroic mirror/emission filter set for GFP (470 ± 20 nm/495 nm/525 ± 25 nm 
respectively). Images were acquired using a Pixus 1024 pixel CCD camera (Princeton 
Instruments, Trenton, NJ, USA) and Metamorph 7.0 software (Molecular Devices, Sunnyvale, 
CA, USA). 
 
3.5.5 Power calculation for determining selected fraction (FT) 
 
To determine the selected fraction of pixels with the highest intensity (FT) that were needed to 
measure overlap with the nucleoid and cell membrane, and thus the threshold, we performed a 
power calculation assuming: (i) equal numbers of selected pixels for the signal of interest and 
the center of the nucleoid; (ii) at least 30 cells will be measured and each cell has 300 pixels (i.e. 
total “population” size = 9000 pixels); (iii) a type I error (α) = 0.05; (iv) power = 1 – type 2 error = 
0.8; and (v) the observed overlap of the signal of interest with the center of the nucleoid will be 
at least 30% of the maximum possible overlap or 30% of the minimum possible overlap (after 
taking into account the expected overlap of the null distribution which is equal to FT). There is 
no analytical solution so we approximated a function using the Matlab “sampsizepwd” to 
calculate FT according to the above criteria. We calculated an FT = 0.0886 and rounded to 0.1 for 
our analyses. Note: with a greater number of cells this selected fraction can detect statistically 
significant differences in the overlap from the null hypothesis of < 30% of the maximum or 
minimum possible overlap. 
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3.5.6 Calculating the fraction of GlmZ and SgrS sRNAs bound to Hfq 
We observed that the deletion of hfq decreased the signal for GlmZ and SgrS by approximately 
50% (main text). This finding is consistent with previous reports that the binding of Hfq to these 
sRNAs decreases their degradation rates [230, 269], and therefore the deletion of hfq will 
decrease their concentrations. From our finding we estimated the fraction of GlmZ and SgrS 
that are bound to Hfq using sets of equations to create a model of sRNA production and 
degradation (both in the presence and absence of Hfq). These equations are simplified from our 
previously reported models [230, 275]. 
 
The model has a constant production rate P (units: M·s-1) because the same promoter and 
plasmid is used in strains with and without hfq. The degradation of the unbound sRNAs is 

proportional to their concentration U (unit: M) and is specified by the rate constant U (units: s-

1). Unbound sRNA can bind Hfq to form a bound form with concentration H (unit: M). The rate 
constants for the sRNA and Hfq binding and unbinding reactions are kU (units: M-1·s-1) and kH 
(unit: s-1) respectively. The degradation of sRNAs bound to Hfq is also proportional to their 

concentration and is specified by the rate constant H (unit: s-1). 
 
In the presence of Hfq, the equations for the system are: 
 
𝑑𝑈

𝑑𝑡
= 𝑃 + 𝑘𝐻 ∙ 𝐻 ∙ 𝐻𝑓𝑞 − 𝑘𝑈 ∙ 𝑈 − 𝛾𝑈 ∙ 𝑈, and         Eq. 3.1 

𝑑𝐻

𝑑𝑡
= − 𝑘𝐻 ∙ 𝐻 ∙ 𝐻𝑓𝑞 + 𝑘𝑈 ∙ 𝑈 − 𝛾𝐻 ∙ 𝐻.         Eq. 3.2 

 
In our experiments we measured the total sRNA concentration by RNA FISH, which is U + H, 
therefore we combine the above equations to give 
 
𝑑(𝑈+𝐻)

𝑑𝑡
= 𝑃 + −𝛾𝑈 ∙ 𝑈 − 𝛾𝐻 ∙ 𝐻.         Eq. 3.3 

 
At steady state, 
 
𝑃 =  𝛾𝑈 ∙ 𝑈 + 𝛾𝐻 ∙ 𝐻.          Eq. 3.4 
 
In the absence of Hfq, bound sRNA does not occur therefore the equation for the system is: 
 
𝑑𝑈

𝑑𝑡
= 𝑃 − 𝛾𝑈 ∙ 𝑈.          Eq. 3.5 

 
At steady state, 
 
𝑃 =  𝛾𝑈 ∙ 𝑈

∗.            Eq. 3.6 
 
* indicates the steady state concentration of unbound sRNA is not necessarily the same in the 
systems with Hfq and without Hfq (Eq. 3.4). 
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For both GlmZ and SgrS, the total sRNA concentration in the hfq deletion mutant, which has 
only unbound sRNA, is approximately half that of the wild-type with hfq. That is,  
 

𝑈∗ = 
1

2
(𝑈 + 𝐻).          Eq. 3.7 

 
The substitution of Eq. 3.7 into Eq. 3.6, and using the equality of the right hand sides of Eq. 3.4 
and Eq. 3.6 gives 
 

 𝛾𝑈 ∙
1

2
(𝑈 + 𝐻) =  𝛾𝑈 ∙ 𝑈 + 𝛾𝐻 ∙ 𝐻.        Eq. 3.8 

 
Rearranging Eq. 3.8 specifies the ratio of U and H in terms of the degradation constants and 
incorporates the constraint obtained from the experimental observations (defined in Eq. 3.7). 
That is, 
 

 
𝑈

𝐻
 =  1 −

2𝛾𝐻

𝛾𝑈
, where 𝐻 > 0 and 𝛾𝑈 > 0.       Eq. 3.9 

 
Biologically U and H must be greater than or equal to zero. We set aside the case where H is 
equal to zero for the purpose of interpreting Eq. 3.9 to avoid the ratio of U/H being undefined 
and also because it is already considered in Eq. 3.5 and Eq. 3.6 for the hfq deletion strain. 
Consequently, 
 

1 −
2𝛾𝐻

𝛾𝑈
≥ 0, where 𝛾𝑈 > 0.                    Eq. 3.10 

 
Therefore, 
 

 
𝛾𝐻

𝛾𝑈
≤

1

2
, where 𝛾𝑈 > 0.                    Eq. 3.11 

 
Because 𝛾𝐻 ≥ 0 and 𝛾𝑈 > 0 then 
 

0 ≤  
𝛾𝐻

𝛾𝑈
≤

1

2
.                      Eq. 3.12 

 

We now consider the limits of the  
𝛾𝐻

𝛾𝑈
 ratio. The lower limit, 

𝛾𝐻

𝛾𝑈
= 0, occurs when degradation of 

bound sRNA is zero and only unbound sRNAs are degraded. Under these conditions, Eq. 3.9 
indicates the U/H ratio must be 1/1 to satisfy our experimental observations for GlmZ and SgrS. 
That is, approximately 50% of the sRNA are bound to Hfq when there is no degradation of Hfq 
bound sRNAs. Therefore the deletion of hfq and elimination of bound sRNAs would decrease 

the total sRNA concentration by 50%, as observed for GlmZ and SgrS. The upper limit, 
𝛾𝐻

𝛾𝑈
=

1

2
, 

occurs when the value for the degradation rate constant for bound sRNAs is one half that of 
unbound sRNAs. In this scenario, the wild-type strain has a concentration of unbound sRNA that 
is essentially zero because sRNAs rapidly and stably bind to Hfq. Bound sRNAs have a 
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concentration that is twice that of unbound sRNAs (the latter occur when hfq is deleted), 

because the degradation rate for bound sRNAs is half that of unbound sRNAs. The 
𝛾𝐻

𝛾𝑈
 ratio 

cannot exceed 1:2 (e.g. 1:1) otherwise the total sRNA concentration in the wild-type strain is 
less than two-fold the concentration in the hfq deletion strain, and this would not be consistent 
with our measurements.  
 
In summary, the 50% decrease in total sRNA concentration of GlmZ and SgrS with the deletion 
of hfq indicates that 50%-100% of these sRNAs are bound to Hfq. 
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Table 3.1 Strains. 
 

Strain  Description Source 
Antibiotic 
Resistance 

HL1 MG1655 + pKD46 [185] amp 

HL713 HL1 + integration at intS of PCR product kanR::lacIq amplified from pHL67 
with intspkd1f and laciqints 

This study kan 

HL716 HL713 + pCP20 and cured [185] none 

HL744 HL716 + pKD46 [276] amp 

HL751 HL744 + Δhfq using pKD13 and oligonucleotides hfqpkd1f and hfqpkd4r This study kan 

HL752 HL744 + ΔsgrS using pKD13 and oligonucleotides sgrsko1pkd1f and 
sgrsko2pkd4r 

[276] kan 

HL756 HL752 + pCP20 and cured This study none 

HL770 HL751 + pCP20 and cured This study none 

HL772 HL770 + pKD46 This study amp 

HL852 HL744 + ΔdsrA using pKD13 and oligonucleotides dsrako1pkd1f and 
dsrako2pkd4r 

This study kan 

HL865 HL852 + pCP20 and cured [185] none 

HL2729 HL744 + ΔryhB using pKD13 and oligonucleotides rybpkd1f and rybpkd4r This study kan 

HL2752 HL2729 + pCP20 and cured [185] none 

HL3221 HL744 + ΔoxyS using pKD13 and oligonucleotides oxys1pkd1f and 
oxys2pkd4r 

This study kan 

HL3262 HL3221 + pCP20 and cured [185] none 

HL3325 HL772 + ΔryhB using pKD13 and oligonucleotides rybpkd1f and rybpkd4r This study kan 

HL3338 HL3325 + pCP20 and cured [185] none 

HL3387 HL772 + ΔoxyS using pKD13 and oligonucleotides oxys1pkd1f and 
oxys2pkd4r 

This study kan 

HL3425 HL3387 + pCP20 and cured [185] none 

HL5212 HL744 + ΔglmZ using pKD13 and oligonucleotides glmzkopkd1f and 
glmzkopkd4r 

This study kan 

HL5226 HL5212 + pCP20 and cured This study none 

HL5316 HL5226 + pKD46 This study amp 

HL5378 HL5316 + ΔglmY using pKD13 and oligonucleotides glmykopkd1f and 
glmykopkd4r 

This study kan 

HL5390 HL5378 + pCP20 and cured This study none 

HL5969 HL716 + pHL1892 This study amp 

HL6040 HL744 + ΔyhbJ using pKD13 and oligonucleotides yhbjshortpkd1f and 
yhbjshortpkd4r 

This study kan 

HL6128 HL5390 + Δhfq via transduction from HL6040 This study kan 

HL6190 HL6128 + pCP20 and cured This study amp 

HL6193 HL716 + pHL1391 [185] amp 

HL6201 HL716 + pHL1966 This study amp 

HL6268 HL2752 + pHL1991 This study amp 

HL6269 HL865 + pHL1990 This study amp 
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HL6284 HL2752 + pHL2000 This study amp 

HL6285 HL3338 + pHL2000 This study amp 

HL6286 HL3338 + pHL1991 This study amp 

HL6317 HL756 + Δhfq via transduction from HL751 This study kan 

HL6318 HL3262 + pHL2004 This study amp 

HL6319 HL3425 + pHL2004 This study amp 

HL6320 HL5390 + pHL2016 This study amp 

HL6321 HL6190 + pHL2016 This study amp 

HL6322 HL716 + pHL2017 This study amp 

HL6332 HL752 + pHL2013 This study (kan) amp 

HL6333 HL6317 + pHL2013 This study (kan) amp 

HL6530 HL2752 + pHL2095 This study amp 

HL6531 HL3262 + pHL2096 This study amp 

HL6532 HL752 + pHL2097 This study (kan) amp 

HL6533 HL716 + pHL2098 This study amp 

HL6547 HL5390 + pHL2099 This study amp 

HL6733 HL716 + pHL2135 This study amp 

HL6735 HL716 + pHL2137 This study amp 

HL6736 HL716 + pHL2138 This study amp 

HL6737 HL716 + pHL2139 This study amp 
 

(kan) = kanamycin resistance but kanamycin not used for selection in the experiment 
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Table 3.2 Plasmids. 
 

Plasmid Description Source 
Antibiotic 
Resistance 

pHL67 lacIq from pTrc99a + ColE1 from pZE21 + kanR cassette from pKD13 
(including P1 and P4 oligonucleotide sites); template for lacIq insertion into 
the genome 

[185] kan 

pHL1391 ampR + PLlacO-1::rpoS::gfp::T1T2 terminator + T1 terminator + ColE1 [185] amp 

pHL1966 ampR + PLlacO-1::fhlA::gfp::T1T2 terminator + T1 terminator + ColE1 This 
study 

amp 

pHL1892 ampR + PLlacO-1::RBS (st7)::bglF::gfp::T1T2 terminator + Asp terminator + 
T1 terminator + ColE1 

This 
study 

amp 

pHL1990 ampR + Asp terminator + PConNoHind::dsrA::T1 terminator + ColE1 This 
study 

amp 

pHL1991 ampR + Asp terminator + PConNoHind::ryhB::T1 terminator + ColE1 This 
study 

amp 

pHL2000 ampR + PLlacO-1::sodB::gfp::T1T2 terminator +  PConNoHind::ryhB::T1 
terminator + ColE1 

This 
study 

amp 

pHL2004 ampR + Asp terminator + PCon::oxyS::T1 terminator + ColE1 This 
study 

amp 

pHL2013 ampR + Asp terminator + PConNoHind::sgrS::T1 terminator + ColE1  This 
study 

amp 

pHL2016 ampR + PLlacO-1::glmS::gfp::T1T2 terminator + PConShortNoHind::glmZ::T1 
terminator + ColE1 

This 
study 

amp 

pHL2017 ampR + PLlacO-1::RBS (st7) gfp::T1T2 terminator + Asp terminator + T1 
terminator + ColE1 

This 
study 

amp 

pHL2095 ampR + Asp terminator::ryhB::T1 terminator + ColE1 This 
study 

amp 

pHL2096 ampR + Asp terminator::oxyS::T1 terminator + ColE1 This 
study 

amp 

pHL2097 ampR + Asp terminator::sgrS::T1 terminator + ColE1 This 
study 

amp 

pHL2098 ampR + Asp terminator::gfp::T1T2 terminator + Asp terminator + T1 
terminator + ColE1 

This 
study 

amp 

pHL2099 ampR + Asp terminator::glmZ::T1 terminator + ColE1 This 
study 

amp 

pHL2135 ampR + PLlacO-1::gfp (no RBS, no ATG)::T1T2 terminator + Asp terminator + 
T1 terminator + ColE1 

This 
study 

amp 

pHL2137 ampR + PLlacO-1::RBS (st7) gfp (first quarter)::T1T2 terminator + Asp 
terminator + T1 terminator + ColE1 

This 
study 

amp 

pHL2138 ampR + PLlacO-1::gfp (last quarter, no RBS, no ATG)::T1T2 terminator + Asp 
terminator + T1 terminator + ColE1 

This 
study 

amp 

pHL2139 ampR + PLlacO-1::gfp (first quarter, no RBS, no ATG)::T1T2 terminator + Asp 
terminator + T1 terminator + ColE1 

This 
study 

amp 
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Table 3.3 Oligonucleotides. 
 
Forward Reverse Sequence Function (strain created) 

dsrako1pkd1f dsrako2pkd4r atatggcgaatattttcttgtcagcgaaaaaaat
tgcggataaggtgatggtgtaggctggagctgc
ttc 
 

delete dsrA using pKD13 as template 
in HL852 

dsrako2pkd4r 
 

dsrako1pkd1f 
 

tattcatgacttcagcgtctctgaagtgaatcgtt
gaatgcacaataaaaattccggggatccgtcga
cc 
 

delete dsrA using pKD13 as template 
in HL852 

glmykopkd1f 
 

glmykopkd4r 
 

agttcagatacaacaaagccgggaattacccgg
ctttgttatggaataaggtgtaggctggagctgc
ttc 
 

delete glmY using pKD13 as 
template in HL5378 

glmykopkd4r 
 

glmykopkd1f 
 

cgttaccaaactattttctttattggcacagttact
gcataatagtaaccattccggggatccgtcgac
c 
 

delete glmY using pKD13 as 
template in HL5378 

glmzkopkd1f 
 

glmzkopkd4r 
 

tagttccttctcacccggaggcaagcacctccgg
ggccttcctgatacatgtgtaggctggagctgct
tc 
 

delete glmZ using pKD13 as 
template in HL5212 

glmzkopkd4r glmzkopkd1f acaagtgttaagggatgttatttcccgattctctg
tggcataataaacgaattccggggatccgtcga
cc 
 

delete glmZ using pKD13 as 
template in HL5212 

hfqpkd1f 
 

hfqpkd4r 
 

tcagaatcgaaaggttcaaagtacaaataagca
tataaggaaaagagagagtgtaggctggagct
gcttc 
 

delete hfq using pKD13 as template 
in HL751, HL1120, and HL1179  

hfqpkd4r 
 

hfqpkd1f 
 

ggaacgcaggatcgctggctccccgtgtaaaaa
aacagcccgaaaccttaattccggggatccgtc
gacc 
 

delete hfq using pKD13 as template 
in HL751, HL1120, and HL1179 

intspkd1f 
 

laciqints 
 

ccgtagatttacagttcgtcatggttcgcttcaga
tcgttgacagccgcagtgtaggctggagctgctt
c 
 

PCR amplify kanR::lacIq using pHL67 
as template to integrate at intS 

laciqints 
 

intspkd1f 
 

atagttgttaaggtcgctcactccaccttctcatc
aagccagtccgcccagctaactcacattaattgc
gttgc 
 

PCR amplify kanR::lacIq using pHL67 
as template to integrate at intS 

oxys1pkd1f 
 

oxys2pkd4r 
 

agcaatgaacgattatccctatcaagcattctga
ctgataattgctcacagtgtaggctggagctgct
tc 

delete oxyS using pKD13 as 
template in HL3221 and HL3387 
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oxys2pkd4r 
 

oxys1pkd1f 
 

atttatatgtataaatttgagcctggcttatcgcc
gggcttttttatggcattccggggatccgtcgacc 
 

delete oxyS using pKD13 as 
template in HL3221 and HL3387 

rybpkd1f 
 

rybpkd4r 
 

gattttgaggatggttgagagggttgcagggta
gtagataagttttagatgtgtaggctggagctgc
ttc 
 

delete ryhB using pKD13 as 
template in HL2729 and HL3325 

rybpkd4r 
 

rybpkd1f 
 

tttgcacaaccgcagaacttttccgcagggcatc
agtcttaattagtgccattccggggatccgtcga
cc 
 

delete ryhB using pKD13 as 
template in HL2729 and HL3325 

sgrsko1pkd1f 
 

sgrsko2pkd4r 
 

gcaaaagacagcaattttattttccctatattaa
gtcaataattcctaacgtgtaggctggagctgct
tc 
 

delete sgrS using pKD13 as template 
in HL752 

sgrsko2pkd4r 
 

sgrsko1pkd1f 
 

gccatcgtcattatccagatcatacgttcccttttt
agcgcggcgagaatattccggggatccgtcgac
c 
 

delete sgrS using pKD13 as template 
in HL752 

yhbjshortpkd1f yhbjshortpkd4r 
 

atgcccagcttgtttgtgatttcaacagtttgctt
gacgggtgtaggctggagctgcttc 
 

 delete yhbJ using pKD13 as 
template in HL6040 

yhbjshortpkd4r 
 

yhbjshortpkd1f 
 

cggtaatgtctcttttagacgttgtgaggagaaa
cagtacattccggggatccgtcgacc 

delete yhbJ using pKD13 as template 
in HL6040 
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Table 3.4 FISH probe sequences. 
 

Oligonucleotide Fluorescence label Sequences Function 

gfp Quasar Cy3 aagttcttctcctttacgca 
gaattgggacaactccagtg 
acatcgccatctaattcaac 
gacagagaatttttgcccat 
catcaccttcaccctctcca 
agggtaagttttccgtatgt 
tcccagtagtgcaaataaat 
gttggccatggaacaggtag 
ataaccgaaagtagtgacaa 
atctcgcaaagcattgaaca 
tgctgtttcatatgatctgg 
catggcactcttgaaaaagt 
tttcctgtacataaccttcg 
gttcccgtcatctttgtaaa 
tgacttcagcacgtgtcttg 
acaagggtatcaccttcaaa 
accttttaactcgattctat 
ttccatcttctttaaaatca 
tccattttgtgtccaagaat 
attatgtgagttatagttgt 
gtttgtctgccatgatgtat 
ttaactttgattccattctt 
aatgttgtgtctaattttga 
ctaattgaacgcttccatct 
gtattttgttgataatggtc 
gacagggccatcgccaattg 
ggtaatggttgtctggtaaa 
gaaagggcagattgtgtgga 
tctcttttcgttgggatctt 
actcaagaaggatcatgtga 
gtaatcccagcagctgttac 
tgtatagttcatccatgcca 
 

probing for gfp mRNA 

DsrA Quasar Cy5 caccaggaaatctgatgtgt 
gcttaagcaagaagcactta 
tgagggggtcgggatgaaac 
 

probing for DsrA sRNA 

GlmZ Quasar Cy5 gagatggaatgagcatctac 
tgaggcactaaggcgaacat 
ctctgcgtcattccggagtt 
ggacgataagcaccgtaaac 
ggcataagcgacatctgtca 
ttgtgtccatggtgtctgat 
caagtgggtgcttcactcaa 

probing for GlmZ sRNA 
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gcgttaaaacaggtctgtat 
gcctgctcttattacggagc 
 

OxyS Quasar Cy5 aagaggtgccgctccgtttc 
gggcagtgacttcaagggtt 
cgagttgagaaactctcgaa 
gttcacgttggctttagtta 
cggatcctggagatccgcaa 
 

probing for OxyS sRNA 

RyhB Quasar Cy5 gcgagggtcttcctgatcgc 
atgtcgtgctttcaggttct 
aatactggaagcaatgtgag 
gccagcacccggctggctaa 
 

probing for RyhB sRNA 

SgrS 
 
 
 
 
 
 
 
 
 
 

Quasar Cy5 
 
 
 
 
 
 
 
 
 
 

gggcacccccttgcttcatc 
gtgctgataaaactgacgca 
acttcgctgtcgcggtaaaa 
cttaaccaacgcaaccagca 
catggttaatcgttgtggga 
tcccactgcatcagtccttc 
tcaactttcagaattgcggt 
agtcacacatgatgcaggca 
gggtgattttacaccaatac 
ccagcaggtataatctgctg 
 

probing for SgrS sRNA 
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Table 3.5 Parameter values for experimental data analyses. 
 

 

“Initial size filter” displays the minimum and maximum particle areas selected before 
watershed segmentation. “Second size filter” displays the minimum and maximum particle 
areas selected after watershed segmentation. “AR filter” is the lower and upper bounds of the 
major to minor axis used to select shape. “MinFeret” is the lower and upper bounds of the 
minimum caliper diameter for cells.  “Radius 1” and “Radius 2” are the rolling ball radii used in 
the “Subtract Background” function for phase-contrast and fluorescence images respectively. 
  

Microscope type Initial size filter 
(pixel2) 

Second size 
filter (pixel2) AR filter MinFeret filter 

(pixels) 
Radius 1 
(pixels) 

Radius 2 
(pixels) 

Nikon TE2000E [300,1100] [300,900] (2.01, ∞) [0,30] 25 50 
Zeiss 
AxioObserver Z1 
(optovar 1.0 ×) 

[100,400] [100,300] (2.01, ∞) [0,10] 25 50 

Zeiss 
AxioObserver Z1 
(optovar 1.6 ×) 

[200,800] [200,600] (2.01, ∞) [0,15] 25 50 



 
 

94 
 

Table 3.6 Radii of gyration for bacterial single stranded RNAs. 
 

RNA Length 
(nucleotides) 

Radius of gyration# 
(Å) 

Source 

S-adenosyl methionine riboswitch 
(unbound) 

51 25 [277] 

S-adenosyl methionine riboswitch 
(unbound) 

52 31.7 [277] 

fragment from 5S ribosomal RNA 62 28.5, 28.7 [28.6] PDB: 357D, 
364D 

MicA small RNA 75 33.9 [212] 

tRNA (valine) 76 24.4 PDB: 2K4C 

tRNA (fMet) 77 22.6 PDB: 3CW5 

thiamine pyrophosphate riboswitch 
(unbound) 

83 27.5 [277] 

DsrA small RNA 87 43.2 [212] 

S-adenosyl methionine riboswitch 
(unbound) 

94 29.9 [277] 

cyclic diguanylate riboswitch (unbound) 98 32 [277] 

yybP-ykoY Mn riboswitch 107 34.6 PDB: 4Y1M 

5S ribosomal RNA 120 32.7 [278] 

5S ribosomal RNA 120 36.1 [279] 

flavin mononucleotide riboswitch 
(unbound) 

141 29.4 [277] 

lysine riboswitch (unbound) 181 43 [277]  

Ribozyme (Azoarcus) 195 ~60 [280] 

glycine riboswitch (unbound) 226 45 [281] 

rpoS mRNA (partial sequence) 284 68.1 [254] 

ribonuclease P ribozyme 400 43.9, 44.3, 48 [45.4] [282] 

random intergenic sequence transcribed 975 182 [283] 

12S (partial 16S) ~1000 71 [284] 

random intergenic sequence transcribed 1523 208 [283] 

16S ribosomal RNA 1541 176 [285] 

16S ribosomal RNA 1541 189, 161 [175] [286] 

16S ribosomal RNA 1541 114 [250] 

mRNA sequence (cowpea chlorotic 
mottle virus) 

2777 172 [283] 

23S ribosomal RNA 2904 230 [286] 

MS2 RNA (bacteriophage) 3569 181 [287] 
 

§ Radius of gyration was calculated from structures deposited in The Nucleic Acid Database 
Project at Rutgers, The State University of New Jersey. # The hydrodynamic radius is assumed 
to be approximately the same for RNAs [288]. * Classified as non-riboswitch and non-ribozyme 
RNA structures. Values in square brackets [ ] are the average. 
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Chapter 4: Translational control of mRNA concentrations optimizes 
both quality control and launch control in bacteria 

 
 

4.1 Abstract 
 
Bacteria have evolved to be extremely efficient to maximize their growth rate and survival 
under stress. And yet bacteria spend valuable energy and resources when the translation rate is 
low on initiating the transcription of mRNAs and further investing in terminating their 
transcription and degrading the mRNAs (“translational mRNA control”) rather than turning off 
transcription initiation. Here we investigated the trade-offs associated with translational mRNA 
control using mathematical models and analyses of experimental data. We show that 
translational mRNA control can function as (1) a quality control mechanism with the leading 
ribosome acting as the primary evaluator of mRNA quality thereby preventing the creation of 
potentially deleterious proteins, and (2) a “launch control” system with a high baseline rate of 
transcription initiation acting as an accelerator and transcriptional termination and mRNA 
degradation simultaneously acting as a brake on the protein production resulting in a faster 
response at times of need. These advantages are at the cost of less efficient resource use, 
including high levels of partially transcribed mRNAs that sequester valuable resources. These 
findings explain previously unexplained experimental observations and support translational 
control as a mechanism that expends resources for other potential benefits to gene regulations. 
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4.2 Introduction 
 
The central dogma of molecular biology is a two-step process whereby genetic information 
encoded by DNA is first transcribed to create messenger RNA (mRNA) and then translated into 
proteins that perform most of the functions in the cell (Figure 4.1A). Classic models of gene 
regulation based on the central dogma usually consider four independent rates can be used to 
control protein concentrations [289]: (i) mRNA production (i.e. transcription); (ii) mRNA 
degradation; (iii) protein production (i.e. translation); and (iv) protein degradation. 
Independently regulating these four different process would seem more than adequate to 
control protein concentrations, and yet many biological systems have evolved additional 
interactions and complexity. 
 
In bacteria, mRNA transcription and degradation are usually dependent of mRNA translation. 
Specifically, low translation rates can lead to less transcription due to increased transcription 
termination by Rho-dependent and Rho-independent mechanisms [28, 290, 291], which is 
generally referred to as transcription-translation coupling. A low translation rate also often 
increases mRNA degradation due to less ribosomes preventing RNases accessing the mRNA 
[292, 293] (note: we refer to this as “mRNA degradation-translation coupling”). Both 
mechanisms lower concentration of full length mRNA at low translation rates, therefore we will 
refer collectively to transcription-translation coupling and mRNA degradation-translation 
coupling as “translational mRNA control”. 
 
The existence of mRNA-translation coupling has long been known and some of the mechanisms 
have been elucidated in some detail (although there is still much to learn). But the reasons 
these mechanisms have evolved are unclear. Translational mRNA control may exist to: (i) 
provide quality control so that mutant proteins, partial proteins or misfolded proteins (that 
occur due to genetic, transcription or translation errors) that can be toxic to the cell are not 
created [294]; (ii) prevent the formation of heteroduplexes of RNA and one strand of double 
stranded DNA (R loops) that are deleterious to the cell [295]; (iii) conserve resources by 
preventing the synthesis of mRNAs and sequestration of ribosomes by mRNAs that are not 
being translated [293, 296]; (iv) a mechanism for limiting the use of resources at times of 
competition for ribosomes, RNA polymerase, ATP, amino acids, and other factors [297-299]  (in 
contrast to point (iii) it is not the case that the encoded protein is not required). 
 
The idea that translation termination is a mechanism that limits the use of energy and 
resources (point (iii) above) builds on the idea from early research on the trp operon, which 
encodes proteins necessary for the production of tryptophan. In this system, transcription of 
the operon terminates when there are sufficient levels of tryptophan in the cell, and thus 
further production of tryptophan would be a waste of resources. However, there are features 
of this operon that indicate that it may not be a representative example of translational mRNA 
control. The trp operon is a very specific example where the protein product of the gene is 
directly involved in translation. Furthermore, it is an example of regulation where the cell has 
sufficient resources (i.e. adequate tryptophan) rather than too little resources, which occurs 
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with most genes. Therefore, it is unclear to what extent this operon reflects a general principle 
for the evolution of transcription termination and translational mRNA control. 
 
While it is clear that terminating transcription part way through translation or rapidly degrading 
mRNAs that are not being translated could save energy and conserve the use of resources such 
as nucleotides and amino acids, this approach uses more resources than decreasing 
transcription initiation in the first place. The case for translational mRNA control being the best 
available mechanism due to barriers in evolving general mechanisms that couple translation 
and transcription initiation is not compelling, as such mechanism are already known to exist, 
including sigma factors and (p)ppGpp [11, 300]. 
 
A recent study quantified the effect of mRNA translational control on mRNA and protein 
concentrations [262]. The study demonstrated a power-law relationship between protein and 
mRNA concentrations, and further evidence for this was observed in an independent study 
[262, 301]. Specifically, the protein concentration (P) increase as the mRNA concentration (M) 
to the power of 3.6; that is, 𝑃 ≈ 𝑀3.6 [262]. The basis for this empirical observation was shown 
to be due to the action of both transcription-translation coupling and mRNA degradation-
translation coupling. The precise reason that a power-law (or similar relationship) emerges and 
the implications for gene regulation were not investigated. However, it is clear that 
translational mRNA control is a mechanism that holds across a large range of translation rates, 
and therefore the close relationship between transcription, degradation and translation of 
mRNAs may have regulatory properties that have favored its selection. 
 
To understand the potential regulatory properties of translational control mechanisms it would 
be helpful to understand how it affects mRNA transcription, and degradation and protein 
concentrations, then it would be possible to evaluate the possible advantages and 
disadvantages. Mathematical models can be a powerful tool to do this and provide a 
framework for a mechanistic understanding gene regulatory interactions [230, 269, 271, 272, 
275, 302, 303]. Therefore in this study, mathematical models were created to specifically 
examine the general regulatory effects of translational mRNA control on mRNA and proteins 
concentration.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

98 
 

4.3 Results 
 
4.3.1 Power-law relationship and negative cooperativity in a simple translational mRNA 

control model 
 

In classic models of central dogma (“central dogma model”) (Figure 4.1A, B), increasing the 
transcription rate (𝑘𝑚; [mRNA]∙s-1) increases the mRNA concentration and increasing the 
translation initiation rate (𝑘𝑝; [protein]∙[mRNA]-1∙s-1) increases the amount of protein made 

from each mRNA. The steady state mRNA concentration [mRNA]ss is simply the transcription 
rate divided by mRNA degradation rate (𝛿𝑚; s-1). Therefore increasing 𝑘𝑝 increases the protein 

concentration but has no effect on the mRNA concentrations (Figure 4.1C); and consequently 
on a plot of protein concentration as a function of the mRNA concentration, varying 𝑘𝑝 simply 

results in a vertical line (Figure 4.1C). Multiplication of the mRNA concentration and the 
translation rate determines the production rate of proteins. The protein production rate 
divided by the degradation rate of the protein (𝛿𝑝) determines the steady state protein 

concentration [protein]ss. That is, 
 

[mRNA]𝑠𝑠 =
𝑘𝑚

𝛿𝑚
              Eq. 4.1 

 
and 
 

[protein]𝑠𝑠 =
𝑘𝑝

𝛿𝑝
[mRNA]𝑠𝑠.                        Eq. 4.2 
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Figure 4.1. The “classic central dogma” model. (A) The simplest classic system includes transcription, 
mRNA degradation, translation, and protein degradation. The system does not contain active mRNA 
degradation (but dilution of mRNA due to cell growth is included) and it does not contain any transcription 
termination. RBS: ribosome binding site. (B) Kinetic scheme of the classic central dogma. (C) The effect of 

altering the translation rate (𝑘 ) on full length mRNA and protein concentrations in the classic central 

dogma model. Formulas provided applies to all three plots. Black arrow on the protein-mRNA plot 

indicates the direction of the change when 𝑘  increases. 
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In models of bacterial gene regulation with translational mRNA control (“real-world models”) 
(Figure 4.2A, B), the rate of translation affects both the mRNA production rate (via its effect on 
transcription termination) and the mRNA degradation rate (via the effect of ribosomes on 
degradation). Since translation affects mRNA production and degradation, they both act to 
increase the full length mRNA concentration or both act to decrease the full length mRNA 
concentration, one of the simplest ways to represent their combined effect (i.e. translational 
mRNA control) on 𝑘𝑝 is by using a Hill function [289] (Figure 4.2C). That is, 

 

[mRNA]𝑠𝑠 =
𝑘𝑚

𝛿𝑚
(𝜖 +

𝑘𝑝
𝑛

𝑘𝑝
𝑛+𝐾𝑛

),                        Eq. 4.3 

 
where 𝐾 is the half-maximal effect of translational mRNA control, 𝜖 is the amount of mRNA that 
is generated independent of translation, and   is the Hill coefficient that describes the 
cooperativity. In most systems, the amount of mRNA generated in the absence of translation is 
negligible therefore 𝜖 is approximately zero, and the equation can be simplified to 
 

[mRNA]𝑠𝑠 =
𝑘𝑚

𝛿𝑚

𝑘𝑝
𝑛

𝑘𝑝
𝑛+𝐾𝑛

           Eq. 4.4 

 
In this system, when < 1 ,  = 1 and  > 1 , it is analogous to negative cooperativity, no 
cooperativity and positive cooperativity respectively. Negative cooperativity means that initially 
increasing the translation rate has maximal impact on the mRNA concentration and there is a 
diminishing return as the translation rate is further increased. Positive cooperativity means that 
initially increasing the translation rate has minimal impact on the mRNA concentration and 
there is increasing impact as the translation rate is increased. No cooperativity means that 
increasing the translation rate has the same relative impact at all levels. Due to the 
incorporation of translational mRNA control in this model, the mRNA concentration is no longer 
independent of the translation rate (𝑘𝑝). 

 
The simple model described above for the translational control model can be compared 
quantitatively with experimental measurements (Figure 4.2D). Although it is difficult to 
measure the translation initial rate (𝑘𝑝) directly, it is relatively straight-forward to compare a 

plot of the protein concentration as a function of the mRNA concentration as 𝑘𝑝 is increased 

(Figure 4.2E). It has been observed that there is a power-law relationship with a power of 
approximately 3.4 when the steady state protein concentration ([protein]𝑠𝑠) is plotted as a 
function of the mRNA concentration ([mRNA]𝑠𝑠). That is, 
 
[protein]𝑠𝑠 = 0.923[mRNA]𝑠𝑠

3.405,          Eq. 4.5 
 
(Figure 4.2D) [262]. 
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To understand the implication of this power-law relationship between mRNA and protein 
concentration, we simplified the translational mRNA control model. We started with the Eq. 4.4 
which describes the overall translational mRNA control with both transcription-translation 
coupling and mRNA degradation-translation coupling. The exponent of the power-law 
relationship in Eq. 4.5 is the slope on the log-log scale. We can obtain this exponent of the 
function by obtaining the derivative of protein concentration over mRNA concentration on the 
log-log scale; that is, 
 

exponent =
𝑑log[protein]𝑠𝑠

𝑑log[mRNA]𝑠𝑠
= 3.405         Eq. 4.6 

 
(See more detail in Materials and Methods about the exponent definition). Using Eq. 4.6 to 
obtain the exponent and the derivatives of Eq. 4.2 and 4.4 with respect to 𝑘𝑝 we obtained 

 

exponent =
1+(

𝑘𝑝

𝐾
)
𝑛

 
+ 1.            Eq. 4.7 

 
The exponent increases as 𝑘𝑝 increases, and the upper and lower bounds are  

 

exponent ∈ [
1

 
+ 1,∞).               Eq. 4.8 

 
The exponent was observed to be relatively constant in the previously published experimental 
data as the translation initiation rate (𝑘𝑝) was broad range, which indicates that the exponent 

of 3.405 holds when  𝑘𝑝 ≪ 𝐾 (and 𝑘𝑝/𝐾 ≈ 0). Therefore Eq. 4.7 can be simplified and made 

equal to the experimental measured value for the exponent (Eq. 4.6) to solve for n: 
 
1

 
+ 1 ≥ 3.405.                Eq. 4.9 

 

Figure 4.2. The translational mRNA control model. (A) Translating ribosomes prevent RNases from 
accessing the mRNA and degradating it and by preventing transcription termination (the combination of 
mechanisms is “translational mRNA control”). (B) Kinetic scheme for the translational mRNA model. 
Increasing the translation rate increases full length mRNA concentration by increasing the transcription 
rate and decreasing the degradation rate for mRNAs. (C) Mathematical model as described in the main 

text. The effect of altering the translation rate (𝑘 ) on full length mRNA and protein concentrations in the 

translational mRNA model. Grey arrows indicate the direction the translational mRNA control shifts the 
curve compared to the classic central dogma model. (D) Previously reported data between the full length 
mRNA and protein concentrations, and a fit of a power-law function to the data (Hussein et al., 2015). (E, 
F) Translational mRNA control with negative cooperativity (blue line) is consistent with the experimentally 
observed power-law relationship (black dash line) between full length mRNA concentrations and protein 
concentrations. The black box indicates the range of full length mRNA and protein concentrations of the 
published data in (C). Negative cooperativity indicates the leading ribosome has the most the impact. The 
size of ribosome represents its relative impact on the inhibition of both transcription termination and 
mRNA degradation. 
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The upper bound of the Hill coefficient is therefore  ≤ 0.4158. This bound, however, might be 
too stringent because experimental observed exponent might be noisy and the previously 
reported exponent in a different paper is only 3.2 [82]. Therefore, we altered this bound by 
only requiring the exponent to be greater than three. As a consequence, the Hill coefficient has 
a new bound of  < 0.5. In many biological systems, Hill functions operated near the half 
maximal point (K) where 𝑘𝑝/𝐾 ≈ 1, and if were the case the Hill coefficient would still be less 

than 1. Therefore negative cooperativity (i.e. n < 1) of translational mRNA control seems to be a 
robust prediction of the model. Note: a more general solution with any abstract function (not 
just the Hill function) is derived in the Materials and Methods section. 
 
To confirm the results of the above mathematical analysis, a simulation of the translational 
mRNA control model was performed (Figure 4.2E). The simulation was performed in Matlab 
(R2016b, Mathworks) and parameter values were set manually or calculated based on the 
conditions (see Materials and Methods for further details). Again, the results only aligned with 
the experimental data when there was negative cooperativity (Figure 4.2E). 
 
The negative cooperativity indicates that the leading ribosome has an outsized role in 
translational mRNA control. This finding is consistent with previous experimental studies that 
have shown that the leading ribosome has been shown to prevent RNAP from backtracking and 
unexpected stalling [28, 304] and the leading ribosome has important roles in translation 
initiation that do trailing ribosomes do not have [305]. In addition, there is some evidence that 
the leading ribosome has the most impact on mRNA degradation [108, 306]. 
 
The importance of the leading ribosome may be explained by at least two possible roles: (i) it is 
a "test-pilot" checking for errors in the target mRNA sequence (i.e. a quality control 
mechanism); and (ii) it prepares the cell for maximal protein production when the cell decides 
to switch on the gene (i.e. a “launch control” mechanism). As a quality control mechanism, it is 
the leading ribosome that will first identify issues in the mRNA sequence and translation (such 
as mutations, secondary structures that cause pausing, and limited availability of tRNAs, amino 
acids, ribosomes and other factors needed for translation). Launch control is the mechanism 
used in vehicles to maximize acceleration that works by simultaneously applying an accelerator 
and brake so the engine is at optimal revolutions per minute (rpm) for acceleration before the 
brake is removed, which is in contrast to traditional acceleration where the brake is first 
removed and then the accelerator is applied resulting in a substantial lag in acceleration. 
Launch control can also apply to gene regulation to maximize the speed of response to changes 
in the environment. In this case, a high transcription initiation rate is the analogous to applying 
the accelerator and transcription termination and mRNA degradation are analogous to applying 
brakes. Negative cooperativity in this system means minimal translation would be needed to 
remove the brakes thereby allowing protein production to occur with minimal delay.  
 
4.3.2 A detailed kinetic model of translational mRNA control 
 
To understand the role that translational mRNA control may play in quality control and launch 
control we created a detailed kinetic model to investigate features not included in the simple 
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model above including: (i) the separate contributions of transcription-translation coupling and 
mRNA degradation-translation coupling to quality control and launch control; (ii) the partial 
length mRNAs as well as full length mRNAs in quality control; and (iii) the dynamics of mRNA 
and protein concentration changes for launch control; and (iv) as a separate validation of the 
findings from the simple model. Because it is critical to anchor models with experimental 
observations and measurements, the model will focus on the specific system and the 
quantitative data was previously reported [262]. 
 
The kinetic model has three major classes of RNAs: (i) nascent mRNAs that occur because some 
mRNA synthesis occurs after transcription initiation but before transcription elongation is 
initiated (see Introduction), (ii) partial length mRNAs that occur after transcription elongation is 
initiated but before completion of transcription of the full length mRNA, and (iii) full length 
mRNAs (Figure 4.3A, B). At the beginning of transcription, RNA polymerase (RNAP) binds to the 
promoter and initiates transcription of the nascent mRNA before going onto transcription 
elongation. During this interval or just after the formation of the nascent mRNA, ribosomes and 
Rho factor can compete for binding at sequence in the 5’ end of the mRNA. If Rho factor binds, 
transcription will terminate and partial length mRNA will be generated. On the other hand, if 
ribosomes binding takes place first, then transcription will continue and a protein can be 
produced. With a very small probability, neither ribosome nor Rho factor binds during 
transcription. In this case, a naked full length mRNA is formed. 
 
In contrast to Rho factor which must bind at transcription initiation or soon thereafter, 
ribosomes may bind at any time to the naked full length or partial length mRNA that is not 
bound by Rho factor and this will prevent RNases from binding and decrease the mRNA 
degradation rate. If Rho factor is bound no ribosome can bind to the mRNA even if mRNA 
transcription is completed [262]. Similarly, RNases may bind at any time to a nascent, partial 
length mRNA or full length mRNA that is not already bound by a ribosome. 
 
The model assumes: (i) that RNase degradation is an active process and that in its absence 
mRNAs are simply removed by the dilution that accompanies cell growth or by slower 
mechanisms of RNA degradation (which is consistent with experimental observations in the 
system being modeled [262]); (ii) the leading ribosome primarily determines whether the 
mRNA is translated, terminated or rapidly degraded (which is based on experimental 
observations as described above) thereby the unmanageable complexity of a system with 
mRNAs having different number of ribosomes; (iii) that RNases are acting during transcription 
rather than after mRNA release (which is supported by experimental evidence [307]); and (iv) 
that Rho factor is the primary cause of transcription termination (which again was 
experimentally confirmed for this system [262]). 
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Figure 4.3. Kinetic model of translational mRNA control. (A) Reaction steps and complexes in the kinetic 
model of translational mRNA control. Nascent = nascent mRNA, Partial = partial length mRNA, and Full = 
full length mRNA. See main text for details. (B) Reaction schemer of the model in (A) with rate constants. 
Reaction species in the purple boxes indicate the competing actions between ribosome binding resulting 
in transcription and Rho factor binding resulting in transcription termination. Reaction species in the green 
boxes indicate the competing actions between ribosome binding resulting in transcription and RNase 
binding resulting in mRNA degradation. It should be noted that * indicates that kp* is proportional to kp. 
RNAP mRNA = naked nascent mRNA; Rho mRNA and Rho Partial= Rho factor bound nascent and partial 
length mRNAs; Ribo mRNA and Ribo Full = ribosome bound nascent mRNA and full length mRNA; Naked 
Full = neither Rho factor nor ribosome bound full length mRNA. Rate constants are defined in the 
Materials and Methods. (C) Simulation of the kinetic model of protein concentration as a function of full 
length mRNA at varying the translation initiation rates. 



 
 

105 
 

The kinetic model was simulated using parameters values reported for this system and in other 
published experiments. We first simulated the relationship between protein concentrations and 
full length mRNA concentration and the results were consistent with the previously observed 
power-law relationship (Figure 4.2D). The exponent of the simulated power-law was 3.2 (95% 
confidence interval ±  0.1), which is close to the experimentally measured exponent of 3.4 (95% 
confidence interval ±  0.1) (Figure 4.3C). Therefore the kinetic model also predicts the 
experimentally observed relationship between protein and full length mRNA concentrations. 
 
4.3.3 The collaboration and counteraction of transcription-translation coupling and mRNA 

degradation-translation coupling 
 
Having established that the kinetic model generates similar results to that of the simple model 
in the first part of the study and a key experimental observation (i.e. the power-law relationship 
with exponent 3.2), we next investigated features that can only be addressed by this model. In 
particular, whether the detailed kinetic model can also predict the effect of translational mRNA 
control on partial length mRNA concentrations; this would provide strong validation of the 
model as the relationship between the partial length mRNA concentration and translational 
mRNA control, which is not intuitive and not previously explained. 
 
When the translation initiation rate is increased it causes both a decrease in transcription 
termination and a decrease in mRNA degradation which have complementary effects on full 
length mRNA; that is both mechanisms act to increase it (Figure 4.4A). In contrast, increasing 
translation has opposing effects on partial length mRNA. A greater number of ribosomes bound 
to the nascent length mRNAs could prevent transcription termination leading to a decrease in 
partial length mRNA concentration while this will also increase the number of ribosomes bound 
to the partial length mRNAs preventing degradation by RNases resulting in an increase in partial 
length mRNA concentration. This leads to a tug of war between two processes and the 
strongest mechanism will affect the net change (Figure 4.4B). That is, the partial length mRNA 
can provide indicator of the relative contributions of the two mechanisms (note: it has already 
been reported that RNase E acts on partial length mRNAs and full length mRNAs with similar 
efficacy [262]). 
 
Our simulation result showed that in contrast to the full length mRNA which increased with 
translation the partial length mRNA concentration stayed relatively constant over a large range 
of translation rate 𝑘𝑝 (Figure 4.4C, D). That is, it appeared that the effect of increasing 

translation on transcription termination and on mRNA degradation contributed equally to the 
change in partial length mRNA. These findings are consistent with the experimental data from 
the previous study (Figure 4.4E, F). This indicates a balance between anti-degradation and anti-
termination in the generation of partial length mRNAs. 
 
The above result indicates that the translational mRNA control does not conserve resources. A 
resource conservation mechanism would enable the effect of transcription termination to 
dominate the effect of mRNA degradation, especially in regard to partial length mRNAs. 
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However, as we have shown the system is not configured in that way and therefore a 
substantial amount of nucleotides are sequestered in these relatively stable mRNA fragments. 
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Figure 4.4. Simulation of the concentration of partial length mRNAs using the kinetic model of translational 

control. (A, B) Increasing translation increases the transcription of full length mRNA (by decreasing transcription 

termination) and decreases mRNA degradation leading to increased full length mRNA. Increasing translation 

decreases the production of partial length mRNA (by decreasing transcription termination) and decreases mRNA 

degradation leading to increased full length mRNA. (C, D) The results of the simulation showing full length mRNA and 

partial length mRNA as a function of the translation initiation rate (kp). The inset shows the log-log scale plot of the 

same curves. (E, F) Experimental reported in Hussein et al., 2015 for comparison with the simulation results in panels 

C and D.

Figure 4.4. Simulation of the concentration of partial length mRNAs using the kinetic model of 
translational control. (A, B) Increasing translation increases the transcription of full length mRNA (by 
decreasing transcription termination) and decreases mRNA degradation leading to increased full length 
mRNA. Increasing translation decreases the production of partial length mRNA (by decreasing 
transcription termination) and decreases mRNA degradation leading to constant partial length mRNA. (C, 
D) The results of the simulation showing full length mRNA and partial length mRNA as a function of the 
translation initiation rate (kp). The inset shows the log-log scale plot of the same curves. (E, F) Experimental 
reported in Hussein et al., 2015 for comparison with the simulation results in panels C and D. 
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4.4 Discussion 
 
The first part of this study describes a simple mathematical model based on first principles and 
minimal assumptions that reproduces the experimentally observed power-law relationship, and 
shows that for an exponent to be consistent with experimental measurements therefore must 
be negative cooperativity; that is, the first ribosome has greater impact of translational mRNA 
control than trailing ribosomes. The greater impact of the leading ribosome on translational 
mRNA control is consistent with reported experimental observations [28, 108, 304-306].  This 
negative cooperativity (which was also observed in the kinetic model) is precisely the behavior 
needed for translational mRNA control mechanisms to act as a quality control mechanism 
[294]. Negative cooperativity means the leading ribosome can act as a “pilot” that evaluates the 
quality of the mRNA and translation and makes the decision as to whether the specific 
transcription event in which it is involved will generate mRNA structures or proteins that could 
be detrimental to the cell and therefore whether to terminate transcription and degrade the 
mRNA. 
 
The second part describes a kinetic model and simulates the behavior of the system with 
parameters from reported experimental measurements. The kinetic model also generated a 
power-law relationship over a wide range of values and an exponent value that supports the 
presence of negative cooperativity for translation. It predicts that a consequence of the 
combination of having both mechanism of translation mRNA control (transcription-translation 
coupling and mRNA degradation-translation coupling) is that they can have opposing actions 
resulting in high levels of partial length mRNA fragments that are more or less constant at all 
levels of translation. The stability of high concentrations of partial mRNA, which are due to the 
very mechanism that created them, does not seem consistent with the explanation that 
translational mRNA control as a mechanism that is primarily for the conservation of resources. 
As mentioned earlier, cells have alternative mechanisms available to them that can prevent 
transcription initiation taking place rather than needing to terminate transcription after 
transcription has been initiated and degrading the mRNA. 
 
The findings reveal that translational mRNA control can give rise to important regulatory 
properties and that these properties, rather than energy and resource conservation, may have 
contributed to its widespread and fundamental involvement in gene regulation. 
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4.5 Materials and Methods 
 
4.5.1 The definition of exponent in a general function 
 
The power-law relationship is characterized by a standard formula like 𝑦 = 𝑎𝑥𝑏 where 𝑥 is the 
independent variable (i.e. mRNA), 𝑦 is the dependent variable (i.e. protein), 𝑎 is a scaling 
constant, and 𝑏 is defined as the exponent. This definition of exponent, however, only applies 
to this particular form of power-law function. Therefore, we need to generalize the definition of 
exponent into a more generic form. To achieve this, we started by taking the logarithmic 
transformation on both side of the equation. This gives us: 
 
log𝑦 = log𝑎 + 𝑏log𝑥.                             Eq. 4.10  
 
We noticed that the exponent 𝑏 appears as the coefficient for the term log𝑥. To get rid of the 
unwanted constant log𝑎, we took the derivative with respect to log𝑥 on both sides of Eq. 4.10 
converting it to 
 
𝑑log𝑦

𝑑log𝑥
=

𝑑log𝑎

𝑑log𝑥
+

𝑏𝑑log𝑥

𝑑log𝑥
.                              Eq. 4.11 

 
Here log𝑎 is independent of log𝑥 so the first term on the right hand side equals zero. The log𝑥 
in the numerator and the denominator of the second term cancel each other. Therefore, we 
have: 
 
𝑑log𝑦

𝑑log𝑥
= 0 + 𝑏 = 𝑏.                                       Eq. 4.12 

 
Unlike the original definition of power, this formula doesn't rely on specific form of the 
equation. Thus, it can be applied to equations with more biological meaning including Hill 
functions. It's simply the slope of the function on the log-log scale. Following this definition, we 
can write the exponent of protein and mRNA (𝑏) to be the slope of the protein as a function of 
mRNA on the log-log scale as 
 

exponent (𝑏) =
𝑑log[protein]

𝑑log[mRNA]
.                 Eq. 4.13 

 
It should be noted that this measure of exponent varies with the parameters of the model. For 
example, due to the coupling of translation with transcription, the exponent might be a 
function of translation rate 𝑘𝑝. 

 
4.5.2 The derivation of negative cooperativity from experimental data 
 
Due to the limitation and lack of accurate quantitative measurements, the parameters of the 
Hill function in Eq. 4.4 are not clear. To avoid overfitting with specific parameter values or 
functions, we summarized transcription-translation coupling and mRNA degradation-translation 
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coupling together as one abstract function 𝑓(𝑘𝑝). For further analysis, we assumed that this 

function is a continuous and differentiable function of translation rate 𝑘𝑝. It's important to note 

that for a given translation rate 𝑘𝑝, there is only one corresponding mRNA concentration. Using 

this fact and substituting 𝑓(𝑘𝑝) into Eq. 4.4, we obtain a concise model of translational mRNA 

control as 
 

[mRNA]𝑠𝑠  =
𝑘𝑚

𝛿𝑚
𝑓(𝑘𝑝)

[protein]𝑠𝑠 =
𝑘𝑝

𝛿𝑝
[mRNA]𝑠𝑠 =

𝑘𝑝

𝛿𝑝

𝑘𝑚

𝛿𝑚
𝑓(𝑘𝑝).

                  Eq. 4.14 

 
Although there is no specific form of translational mRNA control, we could still derive the 
exponent of 𝑓(𝑘𝑝) from the exponent 𝑏 of protein-mRNA relationship as in Eq. 4.13. To do this, 

we substituted Eq. 4.14 into Eq. 4.13 and simplified the equation, which leads to a formula 
directly linking 𝑘𝑝 to 𝑏 as: 

 

𝑏 =
𝑑log(

𝑘𝑝

𝛿𝑝

𝑘𝑚
𝛿𝑚

𝑓(𝑘𝑝))

𝑑log(
𝑘𝑚
𝛿𝑚

𝑓(𝑘𝑝))
=

1
𝑑log(𝑓(𝑘𝑝))

𝑑log(𝑘𝑝)

+ 1.                                          Eq. 4.15 

 
In the last step of Eq. 4.15, we immediately noticed that the denominator of the first term has 
the same form as Eq. 4.13. This means the exponent of 𝑓(𝑘𝑝) ( 𝑓) with respect to 𝑘𝑝 can be 

expressed as 
 

 𝑓 =
𝑑log(𝑓(𝑘𝑝))

𝑑log(𝑘𝑝)
.                                             Eq. 4.16 

 
Plugging Eq. 4.16 into Eq. 4.15 we arrived at a simple formula: 
 

𝑏 =
1

 𝑓
+ 1.                                              Eq. 4.17 

 
This formula draws a connection between translational control of mRNA concentration as a 
general function with the observed power-law relationship between mRNA and protein. From 
the published data, we know translation has a positive impact on mRNA concentration and the 
experimental data shows a value of exponent 𝑏 around 3.4. This allows us to calculate the 
power of the translational mRNA control as  𝑓 = 0.4167. In a more general form, because the 

measured power is not accurate, we can also get a looser bound for  𝑓 based on the fact that 

the observed power is greater than 3. That is,  𝑓 < 0.5. 

 
To show the connection between this conclusion of a general function to that of a real 
biological system, we would like to bring back the Hill functions in Figure 4.2C. We modeled the 
translational mRNA control as in Figure 4.2C where we had 
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𝑓(𝑘𝑝) = 𝑘𝑚
𝑘𝑝
𝑛

𝑘𝑝
𝑛+𝐾𝑛

.                                        Eq. 4.18 

 
It's straight-forward to compute the exponent ( 𝑓) of Eq. 4.18 as 

 

 𝑓 =  
𝐾𝑛

𝑘𝑝
𝑛+𝐾𝑛

                                           Eq. 4.19 

 
Eq. 4.19 connects the Hill coefficient 𝑘 and the empirical exponent  𝑓. If   and 𝐾 are constants, 

then  𝑓 is actually a function of 𝑘𝑝. When 𝑘𝑝 = 0,  𝑓 =  ; when 𝑘𝑝 = 𝐾𝑘,  𝑓 = 0.5 ; when 

𝑘𝑝 → ∞,  𝑓 → 0. Therefore,  𝑓 ∈ (0,  ]. This bound need to be smaller than the upper bound 

for  𝑓 from above for the exponent   to hold for a broad range of translation rate 𝑘𝑝. That is, 

 ∈ (0,0.5]. This is the same as the bound we got with Hill function. 
 
4.5.3 Comparing the outcome of different cooperativity 
 
To compare translational mRNA control with different cooperativity, we plotted different 
cooperativity together as comparisons with the experimentally observed power-law 
relationship in Figure 4.2D. Fitting the data with a regular regression with a power-law function 
or Hill function will always give a negative cooperativity. Therefore, instead of fitting the model 
to data, we adjusted the parameters so different functions with different cooperativities always 
cross the same fixed point. This is done by first calculating the average mRNA level and the 
corresponding predicted protein level by the fitted power-law function in Eq. 4.5. The result 
gives a fixed point that is on all curves. Next, we set the parameters and the Hill coefficient 
(cooperativity) leaving only the degradation rate of the protein 𝛿𝑝 unset. In the last step, we 

computed the required 𝛿𝑝 for each model so that they all cross the fixed point of average 

mRNA level in the experimental data and plotted the final curves. It should be noted that we 
didn't specifically choose 𝛿𝑝 to be the last variable to be adjusted. Tuning other parameters will 

give similar results. The parameter values of Eq. 4.4 we used are: 𝑘𝑚 = 1 a.u.∙s-1, 𝛿𝑚 = 0.1 s-1, 
𝐾 = 100 s-1, 𝑘𝑝 ∈ [10

−2, 105] s-1, 𝛿𝑝 = 14.8164, 1.3812, 125.3703 s-1 for negative, no, and 

positive cooperativity respectively. Here 𝛿𝑝 values were solved for different cooperativities with 

the procedure described above by solve function in Matlab (R2016b, Mathworks). These values 
are not realistic because the unit used in the experimental data is arbitrary. 
 
The procedure described above is also implemented in Figure 4.3C where we compared the 
simulated power-law relationship to the experimentally observed power. In this case, a power 
law function like 𝑃 = 𝑎𝑀3.4 is used to represent the power-law relationship from experiment. 
Again, the average mRNA and its corresponding protein level on the simulated curve is used as 
a fixed point to calculate the value of 𝑎. We did not use the original fitted power-law function in 
Figure 4.2D because experimental measurements have very different scale in the values and 
they are not comparable to the simulated values. 
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4.5.4 The detailed kinetic model of the translational mRNA control 
 
We developed a mathematical model of central dogma including six key processes: 
transcription initiation, transcription termination, mRNA degradation, translation initiation, 
translation completion, and protein degradation. In this model, we focused on the status of 
mRNAs which fall into three big categories: nascent mRNA, full length mRNA, and partial length 
mRNA. 
 
Transcription initiation occurs with a rate of 𝑘𝑚 ([mRNA]∙s-1) and gives rise to the initial stage of 
mRNA marked as [RNAP ⋅ mRNA]. In the following step, Rho dependent transcription 
termination competes with translation initiation with a rate of  1 (s-1) and 𝑘𝑝 (s-1) respectively 

[308]. If the ribosome succeed, Rho factor cannot be activated so no partial length mRNA can 
be generated; if Rho factor reaches the site first without hindering ribosomes on the way, 
mRNA will be terminated [309]. In addition, it is possible that transcription might finish via 
intrinsic termination before ribosome or Rho factor binding occurs. Therefore, we built in a step 
where [RNAP ⋅ mRNA] is converted to naked full length mRNA ([Naked ⋅ Full]) at a rate of 𝑃𝑐  
(s-1). The naked full length mRNA will not stay long before ribosomes bind to it forming 
polysomes ([Ribo ⋅ Full]). 
 
On the other hand, once Rho factor binds to the nascent mRNA, it quickly stops the 
transcription turning the new transcript into partial length mRNA ([Naked ⋅ Partial]) at a rate of 
𝑃𝑖  (s

-1) preventing the unused transcription from being made [310]. This phenomenon is also 
known as premature termination [311]. Meanwhile, the Rho bound mRNA has a chance, 
although very unlikely, to reach the end of the gene without premature termination so we 
modeled this process with a small rate of 𝑃  (s-1). This creates a narrow corridor for Rho bound 
mRNA to be correctly translated. After premature termination, sometimes the ribosome 
binding site (RBS) on the partial length mRNA is still available. As a consequence, ribosome can 
still bind to the naked partial length mRNA producing ribosome bound partial length mRNA. 
However, no protein can be produced in this process and ribosomes on the partial length mRNA 
need to be rescued [312]. 
 
In the presence of ribosomes, mRNAs are covered and become inaccessible for RNases which 
degrades mRNAs [313]. This means, three ribosome bound states of mRNA in our model 
([Ribo ⋅ mRNA], [Ribo ⋅ Full], [Ribo ⋅ Partial]) should have a lower degradation rate 𝛿𝑚1 than 
the normal degradation rate 𝛿𝑚0 of the naked mRNAs ([RNAP ⋅ mRNA], [Rho ⋅ mRNA], 
[Naked ⋅ Partial], [Naked ⋅ Full]). Moreover, this protection by ribosomes applies to both 
nascent mRNA, partial length mRNA, and full length mRNA. That is, both [Ribo ⋅ Full] and 
[Ribo ⋅ Partial] have lower degradation rates. 
 
Finally, proteins are produced from the translating mRNA (polysomes) at a rate of 𝑘𝑝

∗  ([protein] 

∙ [mRNA]-1∙s-1). The rate constant of this process is assumed to be related to the RBS as well. 
This is because the rate of protein production is determined by the spacing between ribosomes 
on the translating mRNAs and this spacing is predetermined by the wait time of ribosomes 
binding at the RBS. In our simplified model, multiple ribosome binding events are compressed 
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into a single step. Thus, the direct influence of RBS on protein production is required to be 
factored in independently. In this paper, we assume 𝑘𝑝

∗  has the same value as 𝑘𝑝 but a more 

general form expressing 𝑘𝑝
∗  as a function of 𝑘𝑝 can also be used. 

 
At the last step, we have a constant rate of protein degradation at 𝛿𝑝. Two notable quantities 

that can be extracted from the model. The concentration of full length mRNA [Full ⋅ mRNA] is 
given by [Naked ⋅ Full] + [Ribo ⋅ Full] and the concentration of partial length mRNA [Partial ⋅
mRNA] is given by [Naked ⋅ Partial] + [Ribo ⋅ Partial]. The equations of the model are listed 
below: 
 
𝑑[RNAP⋅mRNA]

𝑑𝑡
= 𝑘𝑚 − 𝑘𝑝[RNAP ⋅ mRNA] + 𝑘−𝑝[Ribo ⋅ mRNA]

− 1[RNAP ⋅ mRNA] +  −1[Rho ⋅ mRNA]

−𝛿𝑚0[RNAP ⋅ mRNA] − 𝑃𝑐[RNAP ⋅ mRNA]

𝑑[Ribo⋅mRNA]

𝑑𝑡
= 𝑘𝑝[RNAP ⋅ mRNA] − 𝑘−𝑝[Ribo ⋅ mRNA]

−𝛿𝑚1[Ribo ⋅ mRNA] − 𝑃𝑐[Ribo ⋅ mRNA]

𝑑[Rho⋅mRNA]

𝑑𝑡
=  1[RNAP ⋅ mRNA] −  −1[Rho ⋅ mRNA]

−𝛿𝑚0[Rho ⋅ mRNA] − (𝑃𝑖 + 𝑃 )[Rho ⋅ mRNA]

𝑑[Naked⋅Partial]

𝑑𝑡
= 𝑃𝑖[Rho ⋅ mRNA] − 𝛿𝑚0[Naked ⋅ Partial]

−𝑘𝑝[Naked ⋅ Partial] + 𝑘−𝑝[Ribo ⋅ Partial]

𝑑[Ribo⋅Partial]

𝑑𝑡
= 𝑃𝑖[Rho ⋅ mRNA] − 𝛿𝑚0[Naked ⋅ Partial]

−𝑘𝑝[Naked ⋅ Partial] + 𝑘−𝑝[Ribo ⋅ Partial]

𝑑[Naked⋅Full]

𝑑𝑡
= 𝑃 [Rho ⋅ mRNA] + 𝑃𝑐[RNAP ⋅ mRNA] − 𝛿𝑚0[Naked ⋅ Partial]

−𝑘𝑝[Naked ⋅ Full] + 𝑘−𝑝[Ribo ⋅ Full]

𝑑[Ribo⋅Full]

𝑑𝑡
= 𝑃𝑐[Ribo ⋅ mRNA] − 𝛿𝑚1[Ribo ⋅ Full]

+𝑘𝑝[Naked ⋅ Full] − 𝑘−𝑝[Ribo ⋅ Full]

𝑑[𝑃𝑟𝑜𝑡𝑒𝑖 ]

𝑑𝑡
= 𝑘𝑝′[Ribo ⋅ Full] − 𝛿𝑝[𝑃    𝑖 ]

.          Eq. 4.20 

 
The kinetic parameters used in the models are: 𝑘𝑚 = 1nM . min- 1, 𝛿𝑚0 = 0.16min-1, 𝛿𝑚1 =
0.04min-1,  1 = 2.5min-1,  −1 = 4min-1, 𝑘𝑝, 𝑘𝑝′ ∈ (0,20]min-1, 𝑘−𝑝 = 2min-1, 𝑃𝑖 = 1min-1, 𝑃 =

0.07min-1, 𝑃𝑐 = 0.1min-1, 𝛿𝑝 = 0.03min-1. Among these parameters, 𝑘𝑚 and 𝛿𝑝 were previously 

reported. 𝛿𝑚0 is derived from the literature with an additional dilution rate of 0.02min-1 added 
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to the original value [230]. Other parameters were set in this study. The steady state solutions 
were solved by the solve function in Matlab (R2016b, Mathworks). 
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Conclusions 

 
“The Central Dogma. This states that once 'information' has passed into protein it cannot get out 
again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic 
acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic 
acid is impossible. Information means here the precise determination of sequence, either of bases 
in the nucleic acid or of amino acid residues in the protein.” Francis Crick (1957) [314]. 
 
In the more than 60 years since the central dogma was described we have learned an immense 
amount about the control of the flow of information in the cell, including roles for DNA, RNA and 
protein that were unimaginable when the central dogma was first proposed. And there is much 
that is still unknown. 
 
In this thesis I have investigated some of the most fundamental questions in biology. Where do 
mRNAs and the small non-coding RNAs that regulate them occur in cells (Chapter 3)? How does 
translation alter mRNA transcription and degradation (Chapter 4)? In the process of pursuing 
answers to these questions we also developed general tools that will benefit other researchers, 
and allow them to not only build on our findings but also to pursue an unlimited number of other 
questions. We have created new metrics for quantifying whether biological molecules (such as 
RNAs and proteins) that are involved in the regulation of cellular processes colocalize in the same 
parts the cell, and therefore may have regulatory interactions (Chapter 1). In addition, we have 
developed software tools that will enable researchers from diverse areas of biology to easily 
visualize and measure the contribution of spatial organization of molecules in cells to better 
understand their contribution to the regulation of translation and other processes (Chapter 2). 
 
This dissertation has revealed further complexity to translational regulation and that it is more 
pervasive and more important than we had thought. Translation should never simply be 
considered as a process that begins after the mRNA is generated and a process for simply 
converting the mRNA code into the amino code of proteins. We have shown that translation 
regulates the production and the degradation of its own template (i.e. mRNA). We have shown 
that the specialized non-coding RNAs that have evolved to regulate translation have the capacity 
to enter into the nucleoid to regulate transcription and translation at its very earliest stages, as 
well as localizing in the cytoplasm and at the membrane to participate in the translation and 
degradation of mRNAs at those locations.  
 
The findings in this dissertation not only contribute to our understanding of some of the most 
basic principles of gene regulation, but they also have broad potential applications for the 
analysis of the regulation of specific genes and biochemical pathways and for the design of 
engineered genetic circuits. 
 
Hidden things are waiting to be found.   – Huanjie Sheng 
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