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Abstract

Extracting and Querying Probabilistic Information in BayesStore

by

Zhe Wang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael J. Franklin, Chair

During the past few years, the number of applications that need to process large-scale data has
grown remarkably. The data driving these applications are often uncertain, as is the analysis, which
often involves probabilistic models and statistical inference. Examples include sensor-based mon-
itoring, information extraction, and online advertising. Such applications require probabilistic data
analysis (PDA), which is a family of queries over data, uncertainties, and probabilistic models that
involve relational operators from database literature, as well as inference operators from statistical
machine learning (SML) literature. Prior to our work, probabilistic database research advocated an
approach in which uncertainty is modeled by attaching probabilities to data items. However, such
systems do not and cannot take advantage of the wealth of SML research, because they are unable
to represent and reason the pervasive probabilistic correlations in the data.

In this thesis, we propose, build, and evaluate BAYESSTORE, a probabilistic database system
that natively supports SML models and various inference algorithms to perform advanced data
analysis. This marriage of database and SML technologies creates a declarative and efficient prob-
abilistic processing framework for applications dealing with large-scale uncertain data. We use
sensor-based monitoring and information extraction over text as the two driving applications. Sen-
sor network applications generate noisy sensor readings, on top of which a first-order Bayesian
network model is used to capture the probability distribution. Information extraction applications
generate uncertain entities from text using linear-chain conditional random fields. We explore a
variety of research challenges, including extending the relational data model with probabilistic data
and statistical models, efficiently implementing statistical inference algorithms in a database, defin-
ing relational operators (e.g., select, project, join) over probabilistic data and models, developing
joint optimization of inference operators and the relational algebra, and devising novel query exe-
cution plans. The experimental results show: (1) statistical inference algorithms over probabilistic
models can be efficiently implemented in the set-oriented programming framework in databases;
(2) optimizations for query-driven SML inference lead to orders-of-magnitude speed-up on large
corpora; and (3) using in-database SML methods to extract and query probabilistic information
can significantly improve answer quality.
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Chapter 1

Introduction

As massive scale data acquisition and storage becomes increasingly affordable, large amounts of
both structured and unstructured data are being collected. A new class of applications is using
advanced probabilistic data analysis to extract useful patterns, insights and trends from the col-
lected data with the goal of gaining important scientific insights and business advantages. Existing
systems and technologies such as relational database systems and statistical machine learning pack-
ages, fall short in supporting the combination of efficient large-scale data processing and advanced
probabilistic modeling and inference. A common industry practice for probabilistic data analysis
loosely connects relational database and statistical packages through data import and export. How-
ever, this design suffers problems, including inefficiency and information loss (i.e., inaccuracy), in
supporting probabilistic data analysis tasks. What is needed is an integrated system that can na-
tively support probabilistic models, uncertainties in data, inference and relational query processing,
and optimization over large-scale datasets.

1.1 Bigger Data and Deeper Analysis

An ever-growing number of Web, science and enterprise applications are generating large amounts
of structured and unstructured data. The 2011 IDC (International Data Corporation) Digital
Universe study predicts that overall data in the world will grow by 50 times by 2020 to 35
Zettabytes 1 [1].

Structured data are data organized using a certain identifiable structure (i.e., data model), such
as those in relational databases and spreadsheets. Structured data used to be mainly generated by
human input. However, the increasingly ubiquitous deployment of information sensing devices in
the past decade is generating huge amounts of structured data, which dwarfs the amount generated
by human input [1]. These information sensing devises include: physical sensors, where sensor
readings are collected for inventory management and environmental monitoring applications; soft
sensors, where software logs and click streams are collected for log analysis and online advertise-

11 Zettabyte = 1021 bytes = 1 million Petabytes
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ment applications; and bio-medical instruments, where measurements and genome sequences are
collected for health informatics and computational genomic applications.

Unstructured data, on the other hand, refers to data that do not have a pre-defined data model.
Unstructured data consists of text as well as multimedia data, such as audio, video and pictures.
The traditional forms of text data include corporate documents, news, emails, books, and academic
papers. More recently, with the success and popularity of social network applications, such as
Twitter, Facebook, Yelp, and Blogspot, unstructured text data is being generated faster than ever
before. Moreover, the amount of unstructured multimedia data is also experiencing rapid growth
due to Web applications such as YouTube and Flickr. The IDC study predicts that unstructured
information will make up about 90 percent of all data created in the next 10 years.

In order to extract useful information, patterns, insights, and trends from both structured and
unstructured data, advanced data analysis is used, which goes beyond computing simple statistics
such as count, max, and sum and uses probabilistic models and methods from statistical machine
learning (SML) literature. SML-based data analysis enables: (1) statistical inference and prediction
based on probabilistic SML models; (2) parsing and understanding the semantics of unstructured
data; and (3) probability theories to reason about uncertainty in a principled manner. The result
data of the SML-based data analysis are inherently associated with uncertainties and probabilities.
Uncertainties specify all possible values of the result data, whereas probabilities specify confidence
over the possible values. Next, we give examples of such advanced SML-based data analysis.

The first example involves sensor networks, where environmental indicators such as tempera-
ture and humidity for a specific location over time can be inferred from the nearby sensor readings
using SML models. The inferred values are inherently associated with uncertainties and probabil-
ities. Another example is probabilistic text analysis applications, in which person names, events,
and company names are extracted from news articles and user sentiments for certain products are
inferred from reviews using SML models. The extracted entities and sentiments also naturally
carry uncertainties and probabilities. As a further example, predictive analysis and risk analysis
uses SML models to, for example, predict the path of a hurricane in atmospheric sciences or esti-
mate the risk of a portfolio in the finance industry. The hurricane path and risk prediction is again
associated with uncertainties and probabilities.

Many companies have gained a competitive edge using these advanced analyses over large
amounts of data. For example, Netflix and Splunk gained their business advantages by analyzing
structured data such as user ratings and software logs respectively. Twitter and Facebook, on
the other hand, generate profit by inferring user preferences and interests from unstructured text.
Google applies advanced analysis algorithms to both structured and unstructured data, supporting
products such as Maps, News, Search and so on.

1.2 Two Motivating Applications

The system and the techniques developed in this thesis are driven by two applications that need
to support advanced SML-based analysis over large amounts of data: (1) sensor networks and (2)
text analysis.
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1.2.1 Sensor Networks

Sensor networks consist of spatially distributed autonomous sensors that monitor physical or en-
vironmental conditions, such as temperature, sound, vibration, pressure, motion or pollutants [2].
Sensors cooperatively pass their data through the network to a main location. Sensor networks
have been widely deployed to monitor environment such as air pollution and forest fires, structures
such as buildings and bridges, and human movement such as smart home and elderly care.

While the sensor readings are deterministic, the values of the physical properties (e.g., light,
temperature) remains uncertain due to missing sensor readings from low battery life and unavoid-
able measurement errors from signal interference. Thus, although we have the measurement of
temperature at a certain time and location, the actual value of the temperature remains uncertain.

TinyOS [3] and TinyDB [4] were developed at UC Berkeley as an operating system and data
management system for these small and ubiquitous data sensing devices. While these systems are
efficient in collecting sensor readings, they do not natively handle the inherent missing values and
erroneous readings. Previous work [5] showed that SML models can be used to interpolate and
smooth the raw sensor readings.

1.2.2 Information Extraction (IE)

Information extraction (IE) is one type of text analysis that extracts entities, such as person names,
companies and events, from the text of news articles, emails and tweets. This is done by tagging
the tokens in the text with labels (e.g., location, event), which are structural information (i.e., meta-
data) over the text. In other words, the goal of IE is to automatically extract structured information
from unstructured text. For example, information extraction tools, such as Stanford NER [6] and
MALLET [7], can extract the organization “NFL”, the event “Super Bowl”, the locations “Mead-
owlands Stadium”, “Big Apple”, “New York”, and the sport teams “Jets” and “Giants” from the
following piece of text.

NFL owners voted to put the 2014 Super Bowl in the new $1.6 billion Meadowlands
Stadium in the Big Apple, home to the New York Jets and Giants.

State-of-the-art IE over text is performed using probabilistic models and probabilistic infer-
ence algorithms from the SML literature. A probabilistic model is learned from the training data,
which contains human-generated text and labels. The probabilistic model encodes (1) a probability
distribution of all possible extractions (i.e., label sequence) that could be given to a piece of text,
and (2) the statistical correlation between the token and the corresponding label assigned to it. For
example, if the word is “NFL”, it is highly likely that it should be labeled as an organization. The
model also encodes the correlation between adjacent tokens and labels. For example, given the
following token “Bowl”, it is more likely that “Super” is part of the event name “Super Bowl”.
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1.3 Probabilistic Data Analysis (PDA)

As described in previous sections, SML models have been used in many applications to extract
useful information from structured and unstructured data to gain important scientific insights and
business advantages. While SML-based analysis is a key part of the data analysis to support this
new class of applications, SML packages lack a number of other important data analysis function-
alities. First, database-like relational query processing is not supported in SML packages to select,
project, join, and aggregate different parts of the structured data. Second, declarative languages are
not supported to specify ad-hoc queries for exploratory data analysis—procedural code needs to
be written in SML packages to specify data analysis tasks. Third, real-time query processing and
optimization is not supported for interactive query-answering interface—offline batch processing
is employed in SML packages and an analysis task usually take hours to complete.

The goal of this thesis is to support real-time interactive probabilistic data analysis using
declarative SQL-like query interface based on those SML models. We define probabilistic data
analysis (PDA) as a family of queries over data, uncertainties, and SML models that involve both
relational operators from the database literature, and inference operators from the statistical ma-
chine learning (SML) literature. Based on SML models, PDA queries can be used to analyze
structured and unstructured data, to perform inference based on probabilistic models, and to exe-
cute relational queries over data with uncertainties.

We define probabilistic data analysis to incorporate:

1. A declarative SQL-like interface to define ad-hoc interactive queries;

2. Efficient real-time query processing that involve:

(a) Statistical inference operations based on SML models;

(b) Relational operations over both deterministic and uncertain data;

3. Analysis over both structured and unstructured data.

For the IE example from the previous subsection, the inference queries in PDA would use
probabilistic IE models to extract entities (e.g., person name, companies, and locations) from the
text data. The extracted entities are not deterministic: rather, they are associated with uncertainties
and probabilities. For example, the model may generate uncertainties by extracting “Apple” as a
company entity or extracting “Big Apple” as a location entity with different probabilities from our
example text. Let us assume that an entity table is a database relation that stores all the extracted
entities from the text with their uncertainties. The relational queries in PDA support basic select-
project-join and aggregation over the entity table. Because the extracted entities in the entity
table are uncertain, the relational queries need to be able to handle data with uncertainties and
probabilities.

As another example of PDA, sensor networks applications must constantly reason with vol-
umes of noisy sensor readings using statistical inference to accomplish tasks like motion detection
and human behavior modeling. Based on the SML models learned over past sensor readings, PDA
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tools can be used to infer the underlying distribution of the true temperature values and perform
relational selection, projection, join, and aggregation over these probabilistic distributions.

Other applications that require probabilistic data analysis include Web applications (e.g. social
networks, recommendation systems), where click-streams are analyzed to model customer behav-
iors; log analysis, where software companies analyze huge volumes of software logs to predict and
debug errors at run time; data integration systems, where schema mapping and entity resolution
results are full of uncertainties; computational genetics, where genome sequence reads are stored
with confidence values; and crowdsourcing, where the answers from the “crowd” contain various
types of errors that need to be reasoned about.

1.4 Existing Systems and Technologies

In this section, we review existing systems and technologies for data analysis, including traditional
databases and data warehouses, statistical machine learning and a common industry practice that
combines the two to perform probabilistic data analysis. We discuss the strengths and weaknesses
of each system or technology in supporting probabilistic data analysis applications and justify why
a new approach is needed.

1.4.1 Databases and Data Warehouses

Traditionally, relational databases and data warehouses have been widely adopted to query and
analyze large relational datasets. Such systems efficiently support (1) relational algebra to perform
data filtering, join, and aggregation using technologies such as caching, indexing, optimization
and parallelization; (2) online analytical processing (OLAP), which performs scalable aggregation
over large multi-dimensional data using additional technologies such as materialized views; and
(3) data mining toolkits for classification and clustering over large-scale relational data. Relational
databases and data warehouses have achieved great success in querying and analyzing data for
business, government and Web applications in the past 40 years.

Such systems, however, fall short in supporting the new class of applications, data types and
analysis we described in Section 1.1. First, traditional database systems do not natively support
text analysis over unstructured data, such as information extraction described in Section 1.3. Al-
though most databases can store text data and can create inverted indices to support keyword search
queries over the text, the more advanced analysis of extracting the structural information from the
unstructured text and performing general relational queries over the extracted data is not supported.

Second, traditional database systems assume that all data are deterministic. They do not handle
uncertainties or probability distributions either in data storage or in query processing. Although
current research in probabilistic databases has been exploring ways to store uncertainties and prob-
abilities within the relational data model, as we will discuss in Section 2.4, most approaches lead
to inefficiency and lack of expressiveness in storing probabilistic distributions. Finally, traditional
database systems do not natively support advanced analysis involving probabilistic modeling and
statistical inference. Although there has been some research on how to enable certain statistical
methods in relational databases, as we will describe in Section 2.5, the general problem remains
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open, especially regarding efficient and scalable support of probabilistic models and inference in
databases.

More recently, research on probabilistic databases is aimed to efficiently store and query over
uncertain and probabilistic data. However, most early work in this area [8, 9] assumed indepen-
dence between data values, making it very expensive or impossible to encode the probabilistic
correlations that commonly exist, for example, between the tokens and labels in information ex-
traction. A detailed review of probabilistic database literature can be found in Section 2.4.

1.4.2 Statistical Machine Learning (SML)

Statistical machine learning (SML) is a scientific discipline concerned with designing and devel-
oping algorithms that allow computers to learn and generalize from observed data that represent
incomplete information about statistical phenomenon, in order to develop models that can make
predictions on missing attributes or future data.

Many such models inherently encode a probability distribution over the possible values of the
data. For example, based on sensor readings, machine learning models can be learned to capture
the distribution of the true temperature values. When an inference operation is performed over data
based on such probabilistic models, the results of the inference operation are associated with proba-
bility distributions. Probabilistic machine learning models have been successfully applied to many
applications, including interpolation of missing values in sensor networks, extraction of entities,
facts and relationships from text, and prediction of trends and patterns for online advertisement
and log analysis.

Over the years, a number of SML packages have been developed to support both learning
algorithms that generate probabilistic models from empirical data and inference algorithms that
compute the top-k highest probability answers or probability distributions. Compared to database
systems, these packages, including Rapid Miner, Weka, and Apache Mahout, can perform more
advanced analysis such as text analysis over unstructured data and statistical inference over prob-
abilistic models with uncertain data. Moreover, these packages are efficiently implemented using
data structures common in statistics and probability theory, such as arrays and matrices. They also
use procedural languages, such as Java and C++, which are natural for implementing sophisticated
learning and inference algorithms, usually involving iterative and recursive procedures.

In Standalone SML packages, however, cannot fully support the requirements of PDA require-
ments identified in Section 1.3. This is because SML packages do not support important function-
alities required for advanced data analysis: (1) relational query operations (e.g., select, project,
join, aggregate) over data; (2) declarative languages to specify ad-hoc exploratory queries; and (3)
real-time PDA query processing and optimization for interactive query-answering interface.

1.4.3 Loose Coupling of Databases and SML

A common industry practice to perform PDA uses machine learning packages to perform statistical
inference over probabilistic models for both structured and unstructured data, and separately uses
relational databases to store and query over the original data and the analysis results. Figure 1.1
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Figure 1.1. Illustration of the common practice for probabilistic data analysis.

shows the architecture of this common practice. Data from sources such as online news, sensor
readings, and tweets are stored in a relational database. At the time of data analysis, the raw data are
exported from the database into a file, organized into the required format, and fed into a machine
learning package. Given a previously learned probabilistic model, a series of probabilistic data
analysis tasks are performed over the new data inside the machine learning packages, including
data cleaning, feature extraction, and statistical inference. Finally, the analysis results are imported
back into the database for users to query.

There are many problems with this common practice for PDA.

The first problem is poor performance due to exhaustive data processing. In the common prac-
tice, user queries are issued on top of the database, whereas the probabilistic analysis is performed
outside of the database. This setup requires the probabilistic analysis to be performed exhaus-
tively (i.e., over all the data), because it is unaware of the user queries. For example, information
extraction has to be performed over all possible entities for the entire corpus before loading into
the database. This common practice results in a batch process for probabilistic analysis, which is
inefficient and inflexible for ad-hoc queries. Moreover, because all the data analysis computations
are done outside of the database (in SML packages), they do not take advantage of the facilities in
the database for efficient data storage and retrieval, such as indexing, caching, and optimization.

The second problem is information loss. The common practice imports only the top-1 highest
probability results as deterministic values into the relational database systems for users to query.
This is because relational databases do not handle values with uncertainties or probabilities. How-
ever, the top-1 highest probability results generated from the machine learning models are not
always correct. In fact, the accuracy of the state-of-the-art IE models can vary from 80% to the
upper 90th percentile for different applications. This process prematurely discards all the uncer-
tainties and probabilities inherent from the data analysis and in the analysis results, which may
actually contain the correct answers that the users are looking for.

To continue the IE example from Section 1.2.2, assume that the model mistakenly extracts
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“Apple” as a company entity with the highest probability, and “Big Apple” as a city entity with a
lower probability. If we populate the entity table with only the top-1 extractions from this model,
the following query

select all documents which contain a city entity “Big Apple”

would not return our example document and would possibly be missing many other correct answers
as well.

If the database system could support the storage of and query processing over uncertainties
and probability distributions over all possible extractions, the above query would result in a list of
documents, including the document shown in the IE example in Section 1.2.2. This list of docu-
ments could be ranked in descending order of the probabilities of the extractions that contain a city
entity “Big Apple”. Although the returned extractions will include results that are not the highest
probability, such results may well be the correct answers that are missing from those generated
using the common practice.

Other problems with the common practice of loose coupling for PDA include: (1) it does not
support online analysis queries using SML models; (2) it does not support a declarative query
interface for SML-based analysis tasks; (3) it does not support indices over the data for SML-
based analysis; and (4) it uses blackbox implementations of SML methods, which prevents many
types of performance optimizations.

1.4.4 PDA Summary

Traditional database systems are unable to support PDA applications, because they lack the ability
to handle uncertainties and probability distributions, and the ability to deal with data types other
than structured relational data. On the other hand, SML packages lack the ability to efficiently
scale up to large datasets, and the ability to handle interactive and declarative queries. The com-
mon industry practice for probabilistic data analysis loosely couples relational databases with SML
packages to enable relational queries over the result of statistical inference with probabilistic mod-
els. Although such an approach can be used to implement probabilistic data analysis applications,
it sacrifices efficiency and scalability by keeping probabilistic analysis outside of database as a
batch process. It also sacrifices answer quality by allowing users to query only the most likely
view of the analysis result distributions, prematurely discarding the uncertainties and probabili-
ties inherent in the data and analysis, which may actually contain the correct answers for the user
queries.

1.5 Our Approach: BAYESSTORE

In order to address the weaknesses of the current systems and technologies for probabilistic data
analysis applications, in this thesis, we describe the design, implementation and evaluation of
BAYESSTORE, an integrated probabilistic database system, which natively and efficiently supports
probabilistic models, statistical inference, and relational queries over uncertain data and probability
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distributions. The class of probabilistic models used in BAYESSTORE is known as Probabilistic
Graphical Models, which we describe in detail in Section 2.1.

The main design guideline of BAYESSTORE is to bring probabilistic analysis models and meth-
ods, implemented in SML packages closer to the data in the database. This is done by implement-
ing and integrating these computationally intensive analysis tasks into the data processing engine
of the database. This approach allows probabilistic analysis to be performed more efficiently using
database facilities, enables a deep integration and optimization between inference and relational
operators in a single PDA task, and enables uncertainties and probabilities to be preserved and
reasoned about during query processing.

The main features of BAYESSTORE are the following:

First, BAYESSTORE supports the storage of both structured relational data and unstructured text
data. It also supports the storage of uncertain data through “incomplete tables”, where the uncertain
data are represented as missing values in the data table. The possible values of the uncertain data
and the probability distributions over them are encoded in a probabilistic distribution.

Second, BAYESSTORE adopts a clean separation of the relational and probabilistic compo-
nents, unlike most earlier work in probabilistic databases. Rather than attaching probabilities to
uncertain data elements, BAYESSTORE maintains probability distributions as first-class entities in
the database, separate from the data tables. This design has a number of benefits. First, it allows
users to expose all probabilistic information as database objects that can be queried and manipu-
lated by users and applications. Second, and perhaps most important, it allows users to leverage
ideas from state-of-the-art SML in order to effectively represent, query, and manipulate probabilis-
tic distributions.

Third, BAYESSTORE supports both relational and inference operators in processing and opti-
mizing probabilistic data analysis queries. Query processing over uncertain data requires special
algorithms to handle the associated uncertainties and probability distributions: in BAYESSTORE,
relational operators are redefined to be applied to the uncertain data; and inference operators are
implemented to perform statistical inference over uncertain data. Query optimization techniques
are also developed for BAYESSTORE to optimize the runtime performance of PDA queries that
involve inference operations.

To summarize, BAYESSTORE is a unified framework that combines the advanced probabilistic
modeling and analysis power from statistical machine learning with the scalable data processing
and management power of relational database systems to support real-time probabilistic data anal-
ysis over large-scale datasets.

1.6 Contributions

This dissertation contains five major contributions.

• In-Database Representation for Probabilistic Data and Model (Chapter 3): We designed
an efficient in-database representation for both deterministic and uncertain data, and for dif-
ferent types of data: structured or unstructured. We also developed an in-database repre-
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sentation for probabilistic models encoding probabilistic distributions over uncertain data
values.

• Probabilistic Relational Operators (Chapter 4): We invented new algorithms for proba-
bilistic relational operators, including select, project, and join over probabilistic models and
data. These algorithms allow probability distributions to be queried, and allow uncertainties
and probabilities to be populated through data processing pipelines in a principled manner.

• In-Database Probabilistic Inference Operators (Chapter 5): We developed native in-
database implementations for four inference algorithms over probabilistic graphical models,
including Viterbi, sum-product, MCMC Metropolis Hastings, and MCMC Gibbs sampling.
These implementations are shown (in Sections 5.3.2 and 5.4.2) to have comparable runtime
to open source implementation of the same algorithms in procedural languages. This result
shows that sophisticated statistical methods, involving recursive and iterative procedures, can
be efficiently implemented in a set-oriented data processing framework like PostgreSQL.
These native implementations also open up the opportunity for optimizations between the
relational and the inference operators within a single probabilistic data analysis task.

• Probabilistic Query Processing (Chapter 6): We crated query-driven techniques for ex-
ecuting PDA queries that involve both inference operators and relational operators. These
techniques achieve a deep integration between the relational operators and the native imple-
mentation of the inference operators. Experiments (in Section 6.5) show that (1) querying
over distributions rather than the top-1 highest-probability results can reduce false negatives
(i.e., missing results) by as much as 80%; and (2) these query-driven techniques can achieve
orders-of-magnitude speed-up on large-scale datasets compared to the batch process used in
the common practice of loose coupling for PDA.

• Query Rewrites and Optimizations (Chapter 7): Lastly, we developed a query optimiza-
tion technique called “hybrid inference”, which can choose among the different inference
algorithms we implemented in BAYESSTORE. Within a single PDA query, and for each data
item, hybrid inference picks an appropriate inference algorithm in terms of runtime and ac-
curacy, based on the data, the model, and the query. An analysis (Section 7.7) over three
datasets, including New York Times, Twitter and DBLP, shows that this optimization tech-
nique can achieve 5 to 10 times speed-ups compared to standard algorithms used in the SML
literature.

1.7 Summary

A growing number of applications require advanced probabilistic data analysis over large amounts
of structured or unstructured data to extract insights and predict trends in business, social science,
and in medical domains, among others. In this chapter, we described how this new type of prob-
abilistic data analysis is applied to reason about noisy sensor readings and to extract structural
information from unstructured text—the two motivating applications of this thesis. We outlined
the existing technologies and the common practice of loose coupling these technologies to per-
form PDA as well as their weaknesses. Finally, we summarized the BAYESSTORE, an integrated
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data analysis system supporting both relational and inference queries over probabilistic models and
uncertain data for PDA. We also explained how such an integrated system is more efficient in run-
time, enabling real-time interactive analysis, and by supporting uncertain data processing provides
better answers than those generated using the loose coupling approach.

The remainder of this dissertation justifies these claims more completely. In the next chapter,
we review the details of probabilistic graphical models and their inference operations for proba-
bilistic data analysis, and survey the related work in the area of probabilistic databases. In Chap-
ter 3, we give an overview of the BAYESSTORE system, and describe its new data model, extended
from the relational data model. Chapters 4 and 5 discuss the algorithms and in-database imple-
mentations of probabilistic relational operators and inference operators. Chapters 6 and 7 discuss
the query processing algorithms and optimization techniques for probabilistic queries, involving
both relational and inference operators. In Chapter 8, we discuss the remaining open issues and
sketch directions for future work. Chapter 9 presents the conclusions of this dissertation.
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Chapter 2

Background

In this chapter, we first introduce the class of probabilistic SML models that we use in this thesis—
probabilistic graphical models (PGMs). We describe in detail two types of PGMs that are used in
the two motivating applications of this thesis: Bayesian networks for sensor networks applications
and conditional random fields for IE applications. We outline the basic inference algorithms over
the two types of PGMs that are needed for PDA queries. We then survey related work on prob-
abilistic databases, in-database statistical models, and statistical relational learning. We describe
the differences between these related work and the work in this thesis and justify why this thesis
work is needed to support the PDA requirements identified in Section 1.3.

2.1 Probabilistic Graphical Models (PGMs)

In this thesis, we focus on one class of probabilistic models in the SML literature to perform
probabilistic data analysis, namely probabilistic graphical models (PGMs). In this section, we give
an overview of PGMs in general and a primer on the two types of PGMs that drive this thesis work:
Bayesian networks and conditional random fields.

2.1.1 Overview

Probabilistic graphical models (PGMs) [10, 11, 12, 13, 14] have become an extremely popular
tool for modeling uncertainty. They provide a principled way to deal with uncertainty through the
use of probability theory, and an effective approach for coping with complexity through the use of
graph theory.

At a high level, the goal is to efficiently represent a joint distribution P over some set of random
variables X = {X1, ..., Xn}. Even in the simplest case where these variables are binary-valued,
a joint distribution requires the specification of 2n numbers – the probability of the 2n different
assignments of values x1, ..., xn. However, it is often the case that there is some structure in the
distribution that allows us to factor the representation of the distribution into modular components.
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The structure that graphical models exploits is the independence properties that exist in many real-
world applications. The independence properties in the distribution can be used to represent such
high-dimensional distributions much more compactly.

A PGM is a graph G = (V,E), which consists of a set of random variables (the nodes of the
graph V ), associated to the entities from the problem domain, and a set of conditionally indepen-
dent relationships among them, encoded by the edge set E. Probabilistic graphical models provide
a general-purpose modeling language for exploiting conditional independence structure between
random variables. Inference over PGMs provides us with the mechanisms for computing the top-k
highest probability values or the distribution of a subset of random variables in V .

Two major families of graphical models dominate the related literature. Bayesian Networks
(also called belief networks or causal networks) are defined over directed graphs; Markov Random
Fields (also called Markov networks) follow an undirected graphical representation. The indepen-
dence semantics of the former state that a node is conditionally independent of any other node in
the network, when conditioned on its parents (the nodes that point to it). In the case of Markov
Random Fields, where the edge directionality is dropped, the independence semantics allow two
sets of RVs to be regarded as independent when conditioned on a third set of RVs that completely
separates the two.

PGMs have been successfully applied to numerous applications in many domains [10, 15, 12].
Applications of graphical models include information extraction, speech recognition, computer
vision, modeling of noisy mobile sensor data, gene finding, and diagnosis of diseases. Probabilis-
tic data analysis in different applications applies different PGMs. In the following sections, we
describe in detail two types of PGMs—Bayesian networks and conditional random fields.

2.1.2 Bayesian Networks

In this section, we introduce general Bayesian networks, which are a set of directed probabilistic
graphical models. In Chapter 3.3.2, we describe a Bayesian network variant we use for sensor
network applications.

Over the past 20 years, Bayesian networks (BNs) have emerged as a widely-used statistical ma-
chine learning (SML) model to efficiently represent and reason about multi-variate probabilistic
distributions [16]. A BN is a directed acyclic graph (DAG) G = (V,E) with nodes V representing
a set of RVs {X1, X2, . . . , X|V |}, and edges E denoting conditional dependence relationships be-
tween RVs. In a nutshell, the structure of the BN encodes the assertion that each node is condition-
ally independent of its non-descendants, given its parents. This allows us to model the probability
distribution of a RV Xi, locally, as a conditional probability table (CPT) or factor Pr[Xi|Pa(Xi)]
that specifies how Xi depends probabilistically on the values of its parent nodes Pa(Xi). It is
not difficult to see that the overall joint probability distribution can be factored into the product
of all local factors in the DAG; that is, Pr[X1, ..., X|V |] =

∏|V |
i=1 Pr[Xi|Pa(Xi)]. Given that the

dimensionality of local correlation models is typically much smaller than |V |, this factored BN

representation can be orders of magnitude more efficient than a straightforward |V |-dimensional
probability distribution.

Bayesian networks can be used to model the probability distribution over noisy sensor readings.
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ε1.L ε1.Tp p 
Brt Hot 0.8 
Drk Hot 0.2 
Drk Cold 0.8 

Brt Cold 0.2 

MBN: Bayesian Network 

ε1.Tp 

ε2.L ε2.Tp 

ε1.L 

CPT (ε1.L | ε1.Tp) 

Figure 2.1. An example Bayesian network of temperature (Tp) and light (L) readings from
two sensors {ε1, ε2}; and the CPT associated with RV ε1.L.

Every noisy sensor reading, either missing or not, is represented by one RV in the BN. In addition,
conditional probability tables (CPTs) are used to capture probabilistic correlations across sensor
readings. Such a generalized model essentially acknowledges the potential for uncertainty in all
probabilistic values. Bayesian networks take the traditional SML point of view where models for
all random quantities are learned from historical training quantities and further manipulated on the
basis of current observations. In addition, note that the joint distribution over the missing-value
RVs can be obtained using conventional SML techniques for conditioning the BN on the observed
evidence values, which are the observed sensor readings.

The following example describes a very simple BN between only four sensor readings.

Example 1 Figure 2.1 depicts a simple BN, representing the joint distribution over 4 RVs

Pr[ε1.Tp, ε1.L, ε2.Tp, ε2.L], where the 4 RVs are the temperature (Tp) and light (L) readings

of two sensors ε1 and ε2. The local model for each RV is given by a conditional probability ta-

ble (CPT). The figure shows only the CPT for RV ε1.L. If the value of RV ε2.Tp is known to be

Cold then it is considered as an observed RV from the evidence provided in Sensor1. The joint

distribution F of Sensor1 can be computed by calculating the probability Pr[ε1.Tp, ε1.L, ε2.L|

ε2.Tp = Cold] over the BN. �

2.1.3 Conditional Random Fields

In this section, we introduce a state-of-the-art model—linear-chain conditional random fields
(CRF)—for information extraction from unstructured text data. In contrast to Bayesian networks
described in the previous section, linear-chain CRFs are undirected (Markov) PGMs.

The linear-chain Conditional Random Field (CRF) [17] is a leading probabilistic model for
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(a) 

2181 Shattuck North Berkeley CA USA 

X=tokens 

Y=labels 

(b) 

x 2181 Shattuck North Berkeley CA USA 

y1 street num street name city city state country (0.6) 

y2 street num street name street name city state country (0.1) 

Figure 2.2. (a) Example CRF model for an address string; (b) two possible segmentations y1, y2.

solving IE tasks. We now describe an example IE task called field segmentation, in which a text-
string is regarded as a sequence of pertinent fields, and the goal is to tag each token in a text-string
with one of the field labels (i.e., field names). Consider the following example.

Example 2 Fig. 2.2(a) shows a CRF model instantiated over an address string x ’2181 Shattuck

North Berkeley CA USA’. The possible field labels are Y = {apt. num, street num, street name,

city, state, country}. A segmentation y = {y1, ..., yT} is one possible way to tag each token in x

into one of the field labels in Y . �

The following definition [18, 17] defines the conditional probabilistic distribution of y given a
specific assignment x by the CRF model.

Definition 2.1.1 Let X, Y be random variables, Λ = {λk} ∈ RK be a parameter vector, and

{fk(yt, yt−1, xt)}Kk=1 be a set of real-valued feature functions. Then a linear-chain conditional

random field is a distribution p(y | x) that takes the form:

p(y | x) =
1

Z(x)
exp{

T∑
t=1

K∑
k=1

λkfk(yt, yt−1, xt)}, (2.1)

where Z(x) is a normalization function. �

Two possible feature functions for the CRF model in Example 2 and in Figure 2.2 are:
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f1(yt, yt−1, xt) = [xt appears in a city list] · [yt = city]

f2(yt, yt−1, xt) = [xt is an integer] · [yt = apt. num]

·[yt−1 = street name]

A CRF model represents the probability distribution over all possible segmentations of a text-
string d. Fig. 2.2(b) shows two possible segmentations of the text-string d and their probabilities.

2.2 Inference Algorithms

Having described the basic Bayesian network and conditional random fields model, in this section,
we now describe four different inference algorithms over PGMs: Viterbi, sum-product, Markov
chain Monte Carlo (MCMC) Metropolis Hastings, and MCMC Gibbs sampling. Some of these
inference algorithms (e.g., Viterbi) are specialized for linear-chain CRF models; while others are
general inference algorithms (e.g., sum-product, MCMC) that can be applied to any PGM model,
including both Bayesian networks and linear-chain CRFs.

2.2.1 Top-k Inference on CRF Models

The top-k inference is the most frequently used inference operation over the CRF model. Top-k
inference determines the segmentations with the top-k highest probabilities given a token sequence
x from a text-string d.

The Viterbi dynamic programming algorithm [19] is a key implementation technique for top-
k inference in IE applications. For simplicity, we provide the equations to compute the top-1
segmentation. These can be easily extended to compute the top-k. The dynamic programming
algorithm computes a two dimensional V matrix, where each cell V (i, y) stores the top-1 partial
segmentations ending at position i with label y.

V (i, y) =


maxy′(V (i− 1, y′)

+
∑K

k=1 λkfk(y, y
′, xi)), if i > 0

0, if i = −1.

(2.2)

We can backtrack through the V matrix to recover the top-1 segmentation sequence y∗. The
complexity of the Viterbi algorithm is O(T · |Y |2) where T is the length of the text-string and |Y |
is the number of labels.

Constrained Top-k Inference: Constrained top-k inference [20] is a special case of top-k infer-
ence. It is used when a subset of the token labels has been provided (e.g., via a user interface). Let

16



s be the evidence vector {s1, ..., sT}, where si is either NULL (i.e., no evidence) or the evidence
label for yi. Constrained top-k inference can be computed by a variant of the Viterbi algorithm
which restricts the chosen labels y to conform with the evidence s.

Marginal Inference: Marginal inference computes a marginal probability p(yt, yt+1, ..., yt+k|x)
over a single label or a sub-sequence of labels [17]. The backward-forward algorithm, a variation
of the Viterbi algorithm, is used for such marginal inference tasks.

2.2.2 Sum-Product Algorithm

Sum-product (i.e., belief propagation) is a message passing algorithm for performing inference on
graphical models, such as CRF and Bayesian networks [11, 10]. The simplest form of the algorithm
is for tree-shaped models, in which case the algorithm computes exact marginal distributions.

The algorithm works by passing real-valued functions called messages along the edges between
the nodes. These contain the “influence” that one variable exerts on another. A message from a
variable node yv to its “parent” variable node yu in a tree-shaped model is computed by summing
the product of the messages from all the “child” variables of yv in C(yv) and the feature function
f(yu, yv) between yv and yu over variable yv:

µyv→yu(yu) =
∑
yv

f(yu, yv)
∏

y∗u∈C(yv)

µy∗u→yv(yv). (2.3)

Before starting, the algorithm first designates one node as the root; any non-root node which
is connected to only one other node is called a leaf. In the first step, messages are passed inwards:
starting at the leaves, each node passes a message along the edge towards the root node. This
continues until the root has obtained messages from all of its adjoining nodes. The marginal of the
root node can be computed at the end of the first step.

The second step involves passing the messages back out to compute the marginal of all the
nodes in a PGM: starting at the root, messages computed according to formula 2.3 are passed in
the reverse direction, until all leaves have received their messages. Like Viterbi, the complexity of
the sum-product algorithm is also O(T · |Y |2).

Variants of the sum-product algorithm for cyclic models require either an intractable junction-
tree step, or a variational approximation such as loopy belief propagation (BP) [11, 21]. In this
thesis, we do not study these variants further.

2.2.3 MCMC Inference Algorithms

Markov chain Monte Carlo (MCMC) methods are a class of randomized algorithms for estimating
intractable probability distributions over large state spaces by constructing a Markov chain sam-
pling process that converges to the desired distribution. Relative to other sampling methods, the
main benefits of MCMC methods are that they (1) replace a difficult sampling procedure from
a high-dimensional target distribution π(w) that we wish to sample with an easy sampling proce-
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GIBBS (N)

1 w0 ← INIT();w ← w0; // initialize

2 for idx = 1, ..., N do

3 i← idx%n; // propose variable to sample next

4 w′ ∼ π(wi | w−i) // generate sample

5 return next w′ // return a new sample

6 w ← w′; // update current world

7 endfor

Figure 2.3. Pseudo-code for MCMC Gibbs sampling algorithm over a model with n variables.

dure from a low-dimensional local distribution q(·|w), and (2) sidestep the #P -hard computational
problem of computing a normalization factor. We call q(·|w) a “proposal distribution”, which—
conditioned on a previous state w—probabilistically produces a new world w′ with probability
q(w′|w). In essence, we use the proposal distribution to control a random walk among points in
the target distribution. We review two MCMC methods here: Gibbs sampling and Metropolis-
Hastings (MCMC-MH).

Gibbs Sampling

Let w = (w1, w2, ..., wn) be a set of n random variables, distributed according to π(w). The
proposal distribution of a specific variable wi is its marginal distribution q(·|w) = π(wi|w−i)
conditioned on w−i, which are the current values of the rest of the variables.

The Gibbs sampling algorithm (i.e., Gibbs sampler) first generates the initial world w0, for
example, randomly. Next, samples are drawn for each variablewi ∈ w in turn, from the distribution
π(wi|w−i). Figure 2.3 shows the pseudo-code for the Gibbs sampler that returns N samples. In
Line 4, ∼ means a new sample w′ is drawn according to the proposal distribution π(wi|w−i).

Metropolis-Hastings (MCMC-MH)

Like Gibbs, the MCMC-MH algorithm first generates an initial world w0 (e.g., randomly). Next,
samples are drawn from the proposal distribution w′ ∼ q(wi|w), where a variable wi is randomly
picked from all variables, and q(wi|w) is a uniform distribution over all possible values. Different
proposal distributions q(wi|w) can be used, which result in different convergence rates. Lastly,
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each resulting sample is either accepted or rejected according to a Bernoulli distribution given by
parameter α:

α(w′, w) = min(1,
π(w′)q(w|w′)
π(w)q(w′|w)

) (2.4)

The acceptance probability is determined by the product of two ratios: the model probability ratio
π(w′)/π(w), which captures the relative likelihood of the two worlds; and the proposal distribution
ratio q(w|w′)/q(w′|w), which eliminates the bias introduced by the proposal distribution.

2.3 Integrating SML with Databases

In the previous two sections, we gave a primer on the two types of PGMs used in this thesis and
the corresponding inference algorithms. In the next three sections, we layout three bodies of work
that all tried to integrate statistics and probabilities with relational databases and data model.

Research that integrates statistical methods with relational database systems can be traced back
to 1990’s when the term data mining was introduced. Data mining, a relatively young and in-
terdisciplinary field of computer science, is the process of discovering new patterns from large
datasets involving methods at the intersection of statistics, artificial intelligence, machine learning,
and database systems. Examples include efficient clustering, classification, and association rule
mining algorithms and scalable in-database implementations [22, 23, 24]. The more recent re-
search integrating probabilities or SML with databases include work from probabilistic databases,
in-database SML methods, and statistical relational learning.

The most relevant work to this thesis is from the probabilistic database (PDB) literature. The
PDB research includes: (1) proposals of new data models in order to store data with uncertain-
ties and probabilities; (2) definitions of new query semantics over uncertain data and probability
distributions; (3) development of new algorithms for probabilistic relational query processing and
optimization; and (4) implementation of such PDB systems. In Section 2.4, we survey key con-
cepts and main works in the PDB literature.

In recent years, more sophisticated models such as PGMs are developed in the SML literature
for extracting information, making decisions, and for predicting future events. In Section 2.5, we
describe works that integrate PGMs methods with relational database systems. This body of work
is the closest to the data mining literature, where the statistical methods are implemented on top
of the relational database systems. Different from the PDB work, the relational data model, the
relational query semantics, and the relational data processing remain the same for the in-database
SML work.

Statistical relational learning (SRL), different from the previous two bodies of work from the
database community, is a research direction in the SML community. SRL research develops higher-
level and more declarative probabilistic SML models. Moreover, learning algorithms in SRL use
relational data from database systems and can take advantage of the structural information from
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such data. The Bayesian network variant in Section 3.3.2 for sensor networks is an example SRL
model. In Section 2.6, we describe a number of important works in the SRL literature.

2.4 Probabilistic Database Systems

In this section, we first summarize the key concepts, introduced in the past literature, that most or
all of the proposed probabilistic database systems share in common. Then we describe in detail
a subset of proposed PDBs, their data models, query evaluation methods, and specific contribu-
tions. Last, we compare those systems and point out how the approach we take is different from
approaches in previous work.

2.4.1 Key Concepts

Probabilistic databases (PDBs) store, manage, and query uncertain data and their probabilities. In
this section, we describe some of the key concepts in the probabilistic database literature, including
(1) different types of uncertainties; (2) different probabilistic data models; (3) possible world query
semantics; and (4) various probabilistic query evaluation approaches.

Two Types of Uncertainties

A probabilistic database represents a set of possible worlds (i.e., possible database instances) W =
{W1,W2, ...} and a probability distribution F over them. Two types of uncertainty exist in the data:
tuple-level uncertainty and attribute-level uncertainty. Tuple-level uncertainty represents that the
existence of a tuple in a data table is uncertain. Attribute-level uncertainty represents that the value
of an attribute in a data table is uncertain. Most PDBs only handle tuple-level uncertainty. Although
attribute-level uncertainty can be converted into tuple-level uncertainty, the resulting table would
contain far more tuples and a great deal of redundant (i.e., un-normalized) information. Thus,
supporting attribute-level uncertainty is highly desirable, not only for compact, natural and flexible
representation but also for efficient query evaluation.

Three Types of Probabilistic Database (PDB) Models

There are three types of probabilistic database models in the literature to date, which are classified
by the type of correlations they allow among the tuples. The first type is the tuple-independent
probabilistic database, in which the tuples are considered to be independent probabilistic events. A
tuple-independent PDB can be designed to handle both tuple-level and attribute-level uncertainties.
An example tuple-independent PDB is Trio [9].

The second type is block independent-disjoint (BID) probabilistic databases, in which the tu-
ples are partitioned into blocks, such that all tuples within a block are mutually exclusive events,
and all tuples from different blocks are independent events. Although mutually exclusive corre-
lation among tuples is allowed, the BID model still cannot express general correlations such as
positive correlation among tuples. In many ways, BID is designed to express attribute-level un-
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certainty using tuple-level uncertainty and mutually exclusive correlation [25]. An example BID
probabilistic database is MystiQ [26, 27].

The third type is the graphical model probabilistic database, in which a probabilistic graphical
model is natively used in the database to encode correlation among both the tuple-level and the
attribute-level uncertainties. Compared to the BID and the tuple-independent PDBs, a probabilistic
graphical model can represent much more complex probabilistic correlations that exist among
tuples and attribute values. Moreover, it can compactly represent general probability distributions
using conditional independence and factorizations.

Although, in theory, both the BID and the tuple-independent PDBs can represent arbitrary
probability distributions by storing all possible worlds with their corresponding probabilities, in
practice it is infeasible because the number of possible worlds is exponential in the number of
uncertain values in the database [28]. In contrast, probability distributions can often be encoded
by a simple probabilistic graphical model. Therefore, we advocate graphical model PDBs because
they enable compact representation of probability distributions and efficient query processing al-
gorithms. Moreover, all tuple-independent and BID PDBs can be converted into graphical model
PDBs [29].

Finally, we can also classify probabilistic models into discrete and continuous. In the former,
attributes are discrete random variables; in the latter, they are continuous random variables. Be-
cause it is possible to create PGMs (e.g., Bayesian networks) with continuous random variables, it
is possible to extend our work to continuous domains. However, for simplicity, we focus on PGMs
over discrete domains in this thesis.

Possible World Query Semantics

To our knowledge, all recent work in query processing for probabilistic databases follows the pos-
sible world query semantics. The possible world semantics define the correct answer to any query,
which can involve both relational and inference operators, over any PDB system that defines a set
of possible worlds W and a probability distribution over them F . The possible world semantics
state the following.

Starting from a PDB DBp, representing a set of possible worlds W and a probability distri-
bution F over them, the resulting DBp’ of a query Q over this PDB Q(DBp ) should represent
a new set of possible worlds W ’ and a new distribution F ’. The resulting worlds in W ’ are the
distinct possible worlds generated from applying the query to each of the possible worlds in W .
The resulting distribution F ’ captures the probabilities aggregated over W ’: the probability of a
world Wn ∈ W ’ is the sum of the probabilities of all the worlds in W that result in Wn after the
query.

In tuple-independent PDBs, the output probabilistic database DBp’(W ’,F ’) is represented as
a set of pairs (t, p), where t is a possible tuple, i.e., it is in one of the possible resulting worlds
W ′, and p is the probability that t is in Wn when Wn is chosen randomly from the set of possible
worlds W ’. In other words, p represents the marginal probability of the event the query returns the
answer t over the space of possible resulting worlds. This representation of the results does not
report how distinct tuples are correlated. Thus, we know that t1 is an answer with probability p1
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and that t2 is an answer with probability p2, but we do not know the probability that both t1 and
t2 are answers.

However, it has been shown in [30] that starting out with a tuple-independent PDBDBp, certain
relational queries (e.g., aggregation, join, duplicate elimination) can generate a resulting PDB with
correlated tuples. Thus, neither the tuple-independent nor the BID model is closed for relational
queries under the possible world semantics.

Graphical models are not only a more expressive and compact representation of probabilistic
distributions, but they also enable PDBs to be closed under relational and inference queries. Given
the possible world semantics, graphical model PDBs can preserve the full joint distribution of the
resulting PDB DBp without information loss, including the correlations generated during query
processing.

Query Evaluation Approaches

Following the possible world query semantics, there are two query evaluation approaches for
graphical model PDBs [8]: the extensional query plan and the intensional query plan.

An extensional query plan is a query plan that explicitly manipulates probabilities and com-
putes both the answers and probabilities. Two popular examples of extended operators in exten-
sional query plans are the independent join operator, which multiplies the probabilities of the tu-
ples it joins, under the assumption that they are independent, and the independent project operator,
which computes the probability of an output tuple, again assuming that the tuples are indepen-
dent [8]. In general, an extensional plan does not correctly compute the query probabilities. If the
plan does correctly compute the output probabilities for every input database, then it is called a
safe query plan. Safe plans are easily added to a relational database engine, and the complexity of
a safe plan is polynomial to the size of the data.

On the other hand, not all queries can be evaluated using the extensional approach and safe
query plans. Intensional query evaluation first computes the lineage of the query [9], then com-
putes the probability of the lineage expression. Lineage connects uncertainties to other uncer-
tainties in the database, from which they were derived through query processing. The intensional
approach reduces query evaluation to the problem of computing the probability of a propositional
formula. Intensional evaluation works for every query, but it can perform much worse than exten-
sional query evaluation.

In fact, it has been shown in [29] that both extensional and intensional query evaluation can
be mapped to inference operations over probabilistic graphical models representing the probability
distribution of the PDB. Safe plans give rise to inference problems with tree-structured graphical
models in which running inference is easy. This result coincides with the extensional query pro-
cessing procedure and complexity. The queries that require intensional query evaluation are those
that result in graphical models that contain cycles. Inference over cyclic graphical models is known
to be NP-hard, which coincides with the findings for intensional query evaluation.
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2.4.2 PDB Research Projects

Probabilistic databases and new data models to capture uncertain data were active area of research
in the mid 1980’s and the 1990’s [31, 32, 33, 34, 35]. Data models with attribute-level uncer-
tainties [33], semantics similar to possible world semantics [34], and query processing techniques
with a relaxed version of possible world semantics [35] were all proposed. During this period,
the publications were somewhat sporadic with little effort put into synthesizing these works, each
with different data models and query semantics. Moreover, there was no published effort to build
a prototype probabilistic database system for a realistic application.

More recently (since the year 2000), with the demand from many applications to handle data
with uncertainty and to apply probabilistic data analysis methods to the data, an increasing need
for a data management system that can deal with uncertain data, apply probabilistic methods, and
query over probability distributions has been recognized. A number of probabilistic data represen-
tations and systems have been proposed [26, 36, 9, 37, 29, 38, 39, 40].

In contrast to the earlier work, the more recent work in probabilistic databases is more
application-driven and system oriented. A number of PDB systems have been proposed and proto-
typed during the past seven years. These different projects on PDB enabled synthesis and compar-
ison between different approaches and this competition helped the field of probabilistic databases
to develop tremendously within a very short time. In this section, we survey the more recent work
in the probabilistic database literature that is closely related to the work reported in this thesis.

MystiQ: Suciu et al. in [26] and in a series of papers that followed studied the problem of ef-
ficiently answering queries on probabilistic databases, returning a list of tuples ranked by their
probability of existence in the database. This line of work gave birth to MystiQ [8], a system that
uses probabilistic query semantics to find answers in data sources that contain uncertainties.

On one hand, being the first work in the recent probabilistic databases literature, this work
focused on a very limited scope for probabilistic data representation and query processing, sup-
porting tuple-level uncertainty, tuple-independence, and extensional query evaluation. These as-
sumptions make this work hard to apply to real applications [28]. On the other hand, this work
established a solid foundation for follow-up work by defining correct query semantics and laying
out a dichotomy of query evaluation methods. The main contributions of this work include the
following.

First, this work revisited the semantics of traditional relational query operators in order to
enable them to handle values with probabilities, formalized the notion of possible worlds as all
the possible instantiations of a probabilistic database, and formalized the standard possible worlds
query semantics described in Section 2.4.1. These semantics have been used by most of the later
work on query processing in PDB.

Second, as demonstrated by Dalvi and Suciu [26], probabilistic query processing quickly gives
rise to computationally-intractable probabilistic inference problems, as complex correlation pat-
terns can emerge during processing even if naive independence assumptions are made on the base
data tuples. In fact, modulo a class of “safe” query execution plans, query processing in a tuple-
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independent PDB is #P -complete in the size of the database (i.e., number of tuples) 1. Finally,
approximate algorithms are provided in [26] for queries that do not have a safe query plan.

Trio: The Trio [9] project focused on promoting data lineage as a first-class citizen in an extension
of the relational model and an SQL-based query language. The probabilistic data representation
and the probabilistic query processing was formalized using data lineage.

Similar to MystiQ, X-relations, the probabilistic representation in Trio, assumed tuple-level
independence. In an X-relation, the uncertainties can exist both in tuple existence and in attribute
values. Unlike MystiQ, Trio adopted an intensional approach for query processing, in which the
probabilities are computed from the Boolean expressions generated from lineage. In Trio, proba-
bilistic correlations between tuples can be generated from queries and composition of basic events.
However, the tuple-independent representation based on X-relations is expensive and unnatural to
represent correlations: a large number of base events and a complex Boolean expression may be
needed to encode a simple correlation between two random variables.

Orion: A different approach from both MystiQ and Trio is taken in ORION [36, 41], a PostgreSQL-
based database system that handles uncertainty and probabilistic queries for constantly evolving
data. Its authors are motivated by the uncertainty that characterizes today’s sensor network deploy-
ments.

They propose a probabilistic data model that represents each data value as an interval and a
(continuous) probability distribution, and they extend the semantics of common SQL operators to
support the execution of probabilistic queries conforming to this proposed model. The system is
designed to handle uncertainties in both attribute values and tuple existence. Orion 2.0 [41] can
support correlations between attribute values within a single tuple. However, it cannot support
correlations between tuples. Thus, Orion can only support tuple-independent uncertainties in the
data.

The Orion system uses both extensional and intensional query evaluation. For queries with
safe plans, query evaluations similar to extensional query plans are performed; for queries without
a safe plan, query evaluations similar to intensional query plans are used. In [42], the Orion system
is extended to allow a form of probabilistic joins, namely probabilistic threshold joins between
probabilistic relations.

PrDB: More recent work has attempted to address the limitations imposed by the oversimplifying
of independence assumptions between tuple existence and attribute values by explicitly modeling
the correlations among the entities stored in the database. Sen et al. [29] made use of probabilistic
graphical models from the statistical learning literature to represent and maintain the correlations
between tuple-level uncertainties in the base tables and during query processing. Thus, the re-
sulting graphical models contain one random variable per tuple in both the base tables and the
generated tables from relational queries. PrDB extended the probabilistic data model in [43] to
also support attribute value uncertainty.

In PrDB, query processing over a PDB based on graphical models is reduced to manipulation
of the probabilistic graphical models and inference over the resulting models. This work also

1This problem, as shown by Sen and Deshpande [29], is isomorphic to well-known intractability issues
faced in traditional SML work.

24



described the in-database implementation of a junction tree inference algorithm, and another first-
order inference algorithm over probabilistic graphical models [30].

This work came out about the same time as our work, and used a similar approach as ours
in probabilistic data modeling and query processing. However, we have developed an integrated
PDA system with inference and relational query processing as well as optimization. In contrast,
the PrDB project did not explore how to integrate the individual techniques being considered (e.g.,
inference algorithms, index structures) in a unified framework or implementation. Also, the tech-
niques developed in PrDB could not support some specific PDA applications, in particular IE.
This is because the IE-models are not general graphical models, but rather are linear-chain models,
which require special inference and index techniques.

MCDB: MCDB [40] is a probabilistic database built on Monte Carlo algorithms. The driving ap-
plication of MCDB is risk management: statistical and probabilistic analysis using what-if queries
to calculate cost and benefit under different conditions. This application is very important for
financial institutions, such as banks and insurance companies.

MCDB provides a rich data model by combining two simple primitives: a large, predefined set
of random variables and SQL queries (views). An MCDB database does not encode uncertainty
in the data itself. Instead, it allows the user to define arbitrary variable generation functions, VG,
which are pseudorandom generators for any random variable. The semantics of MCDB is the
standard possible worlds semantics for probabilistic databases. The SQL queries can define views
that join a deterministic table and the probabilistic values generated from a VG function. An
example VG function is Normal(mean,stdv), which is a variable generating function that generates
a normal distribution with a given mean and standard deviation.

For query evaluation, MCDBs run Monte Carlo simulations. This has the major advantage
that it is a uniform approach applicable to all, even very general, probabilistic models. The dis-
advantage is that Monte Carlo simulations are costly and cannot handle the tail of the distribution
effectively.

Recent work from this project, also looks at the scalability problem of such a sampling based
system [44] and the techniques to deal with questions asking for tail distributions [45]. However,
scalability and tail distributions remain to be the two major concerns for any system built on Monte
Carlo methods.

MayBMS: MayBMS [39] can support both tuple-level and attribute-level uncertainty using U-
relations. U-relations represent uncertainty and correlations between attribute values by decom-
posing a large joint distribution into small factor tables. This factorization results in a more succinct
representation of the probability distribution than the world-set decompositions (WSDs), the prob-
abilistic data representation in [46], and the uncertainty-lineage databases (ULDBs) such as Trio.
Such factorizations are similar to those used to generate a probabilistic graphical model from a
high-dimensional distribution based on conditional independence.

Like Trio, the MayBMS system also supports intensional query evaluation. But using U-
relations, MayBMS results in more efficient query processing. U-relations allow for a large class
of queries to be processed using relational algebra only, and thus efficiently in the size of the data.

MayBMS is a significant step forward from earlier probabilistic databases. However, U-
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relations do not directly support SML model representations. There is a gap between the U-relation
data model and the SML-based probabilistic data analysis model. For example, the linear-chain
CRF model for IE cannot be directly represented using U-relations. Moreover, it is unclear how
to efficiently and compactly transform the probabilistic distribution encoded by SML models over
uncertain data to the U-relations supported by MayBMS. Finally, statistical inference algorithms
are not supported in MayBMS.

2.4.3 Summary

Recent research efforts in PDB have injected new excitement into the area of uncertainty manage-
ment in database systems. When we started this thesis work, most PDB work relied on somewhat
simplistic models of uncertainty and placed the focus on simple probabilistic extensions that can be
easily mapped to existing relational database architectures, essentially ignoring the state-of-the-art
in SML. Given the background of prior work, the goal of our work is to build, on the foundation
of possible world semantics and probabilistic graphical models, a probabilistic database that (1)
supports graphical models natively to represent the uncertainties and probability distributions in
data; (2) implements statistical inference operations in addition to the relational operations; (3)
supports probabilistic relational operators based on the possible world semantics; and (4) achieves
a deep integration and query optimization between the inference and relational operations; so that
it can efficiently and accurately support various PDA tasks based on SML models.

2.5 In-database SML Methods

The need for statistical methods inside a relational database system was acknowledged by the
development of data mining techniques to support processing of large datasets that involved op-
erations outside of the realm of standard transactional query processing such as classification,
clustering, and association rule mining [47, 48].

In this section, we describe research that has considered integrating SML models, such as
PGMs, into relational database systems. In contrast to the PDB work in the previous section, this
body of work does not study how to represent uncertain data and probability distribution in the
database or how to perform query processing over uncertainties and probabilities. Instead, statisti-
cal models and methods are implemented in the database as UDFs to perform certain analysis over
data, where the main challenge is how to implement and apply such statistical models effectively
over the data in database systems.

BBQ: Deshpande et al. [5] proposed a robust query processing architecture called BBQ for sen-
sor network applications. BBQ uses multivariate Gaussian distributions to handle imprecisions in
sensor readings and to perform approximate query answering. BBQ was one of the most influ-
ential papers that attempted to marry the worlds of probabilistic inference and query processing.
However, BBQ models the correlation of a large number of random variables through a single mul-
tivariate distribution, which leads to exponentially large probability representation and inefficient
probabilistic reasoning.

MauveDB: MAUVEDB [37] is the first known database management system that explores the
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idea of building statistical models of the stored data, in order to avoid problems of data irreg-
ularities, noise, or missing values by maintaining a more robust representation of the “physical
phenomenon” from which the original data were sampled. This work also discusses issues related
to the creation and maintenance of regression and interpolation models as “model-based views” in
a user-transparent way, which can be later accessed using traditional SQL queries. The semantics
of the system could support any sort of probabilistic model in the future, by defining a model-
based view appropriately, along with the necessary query language extensions and the UDFs that
will handle the statistical parts of the computation.

MPF Queries: Bravo and Ramakrishnan [49] have studied MPF (marginalize a product function)
queries, which are aggregate queries over a stylized join of several relations. In probabilistic
inference, this join corresponds to taking the product of several probability distributions, while the
aggregate operation corresponds to marginalization. Probabilistic inference (e.g., sum-product)
algorithms can be expressed directly as MPF queries in a relational setting. Therefore, optimizing
the evaluation of MPF queries provides scalable support for probabilistic inference in database
systems. They built on ideas from database query optimization, as well as traditional algorithms
such as variable elimination and belief propagation from the probabilistic inference literature.

Tuffy: A number of techniques are implemented in Tuffy [50] to scale up inference algorithms
over Markov Logic Networks (MLNs) [51, 52, 53, 54]. The techniques include: (1) a solution that
pushes MLNs into RDBMSes using bottom-up grounding that leverages the RDBMS optimizer;
(2) a hybrid architecture to support both disk-based grounding, as well as in-memory inference;
and (3) data partition techniques to decrease the memory usage and increase parallelism and scal-
ability of the in-memory inference algorithms. Results show orders-of-magnitude improvements
in runtime compared to Alchemy [55], a software package that provides a series of algorithms for
statistical relational learning and probabilistic logic inference, based on the Markov logic network
representation.

MLNs and Tuffy are geared towards a variety of text analysis applications, including informa-
tion extraction, entity resolution, and text mining. Apart from PrDB and our work, Tuffy is a new
attempt to leverage the efficient data processing power in databases to scale up the SML inference
algorithms. It also took the approach to natively support in-database inference algorithms to take
advantage of the database components, such as indexes and the query optimizer.

Tuffy, however, is not a probabilistic database: it does not aim to support relational queries
over the probabilistic output of SML inference. Rather, it aims to be a scalable MLN inference
engine utilizing database facilities. Therefore, Tuffy does not support or optimize probabilistic
data analysis queries that involve both relational and inference operations over SML models.

2.6 Statistical Relational Learning

As exemplified by recent research on statistical relational learning, the SML community has also
been moving in the direction of higher-level, more declarative probabilistic modeling tools. The
key idea lies in learning and reasoning with first-order (FO) (or, relational) probabilistic models in
which the random variables in the model representation correspond to sets of random parameters
in the underlying data [56, 57, 58].
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PRMs: The Probabilistic Relational Model (PRM) [56, 59] is a good example of such a model.
PRMs are an FO extension of traditional (propositional) BNs over a relational DB schema: random
variables in the PRM directly correspond to attributes in the schema; thus, PRMs can capture cor-
relation structure across attributes of the same or different relations (through foreign-key paths) at
the schema level. The idea, of course, is that this correlation structure is shared (or, FO-quantified)
across all data tuples in the relation(s). For instance, in a Person database, a PRM can specify a
correlation pattern between Person.Weight and Person.Height (e.g., a conditional probability
distribution Pr[Person.Weight = x|Person.Height = y] that is shared across all Person in-
stances. Such shared correlation structures not only allow for more concise and intuitive statistical
models, but also enable the use of more efficient lifted probabilistic inference techniques [58] that
work directly off the concise FO model.

Various extensions of the PRM formalism have been proposed to express simple correlations
between objects of different relations, to capture the existence uncertainty of an object (tuple), or
to express even richer formalisms that support class hierarchies [60].

MLNs: A Markov logic network (MLN) [61] is a probabilistic logic that applies the ideas of a
Markov network to first-order logic, enabling uncertain inference. An MLN model is a collection
of formulas from first-order logic, to each of which is assigned a real number, the weight. Taken
as a Markov network, the vertices of the network graph are atomic formulas, and the edges are
the logical connectives used to construct the formula. A potential function is associated with each
formula and takes the value of 1 when the formula is true, and 0 when it is false. The potential
function is combined with the weight to form the Gibbs measure and partition function for the
Markov network.

The above definition glosses over a subtle point: atomic formulas do not have truth values
unless they are grounded and given an interpretation—that is, until they are ground atoms with a
Herbrand interpretation. Thus, a Markov logic network becomes a Markov network only with re-
spect to a specific grounding and interpretation; the resulting Markov network is called the ground
Markov network. The vertices of the graph of the ground Markov network are the ground atoms.
The size of the resulting Markov network thus depends strongly (exponentially) on the number of
constants in the domain of discourse.

Inference in MLNs can be performed using standard Markov network inference techniques
over the minimal subset of the relevant Markov network required for answering the query. These
techniques include Gibbs sampling and belief propagation.

Dyna: Dyna [62, 63] is a small, very-high-level programming language that makes it easy to spec-
ify dynamic programs and train their weights. Given a short declarative specification in Dyna, the
Dyna optimizing compiler produces efficient C++ classes that form the core of the C++ application.

Natural applications of Dyna include various kinds of parsing, machine translation, speech
decoding, and finite-state modeling. Dyna also has many other applications, especially in other
applied AI areas, as dynamic programming (and its degenerate case, tree search) is a common
strategy for solving combinatorial optimization problems.

Properly speaking, Dyna is a “weighted” logic programming language: terms have values, and
Horn clauses are replaced by aggregation equations. It is Turing-complete. Dyna can also be
thought of as extending compiled C++ with powerful deductive database features.
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2.7 Summary

To summarize, previous work in probabilistic database literature has laid a solid foundation for
probabilistic database research in terms of uncertainty representation, query semantics and query
evaluation methods. However, most work before this thesis placed the focus on simple probabilistic
extensions that can be easily mapped to existing relational database architectures and essentially
ignored the state-of-the-art research in statistical machine learning literature. Other work in the
database literature has been done to incorporate advanced statistical models and methods into
the database systems. Moreover, the work on statistical relational learning in the SML literature
develops models and algorithms that can take advantage of first-order structures in relational data.
However, none of these two bodies of work studies the problem of storage and query processing
over the uncertain data and the probabilistic outcome of such statistical analysis. The goal of our
work is to build upon these prior efforts to natively support statistical machine learning models and
algorithms in the database.
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Chapter 3

The BAYESSTORE Data Model

In this chapter, we first provide an overview of BAYESSTORE and its system architecture. Then,
we outline the BAYESSTORE data model and give two instances of the data model: a first-order
Bayesian network (FOBN) model for sensor network applications and a linear-chain conditional
random fields (CRF) model for information extraction applications over unstructured text.

The FOBN model, like Bayesian networks (BN), is a general probabilistic graphical model.
Moreover, FOBN can capture common correlations in Bayesian networks using first-order tem-
plates to improve the compactness of the model. The first-order templates are additional complex
components in the model. On the other hand, the linear-chain CRF model has a simple and very re-
stricted probabilistic correlation structure (i.e., linear-chain). Thus, the representation of the CRF
model is much simpler than that of the FOBN model. These two BAYESSTORE instances pro-
vide a spectrum—general and complex to specific and simple—of probabilistic graphical models
that can be represented in BAYESSTORE to perform probabilistic data analysis for two different
applications.

3.1 BAYESSTORE Overview

The BAYESSTORE probabilistic database system supports uncertain data and probabilistic graph-
ical models as first-class citizens. The uncertain data is stored in incomplete relations as missing
values, and the graphical models are stored in separate relational data tables.

On top of the relational and the probabilistic components, an extended set of operators is sup-
ported, including the probabilistic relational operators over uncertain data and inference operators
over the probabilistic graphical model. These new operators together with deterministic relational
operators are used to compose complex probabilistic analysis queries, which are compiled into
query plans and are executed by the BAYESSTORE PDB. The results of the analysis queries, when
appropriate, are associated with uncertainties and probabilities quantified over them.

Figure 3.1 shows the architecture of BAYESSTORE. The data, either structured or unstruc-
tured, can be stored directly in BAYESSTORE in a relational format. BAYESSTORE supports both
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Figure 3.1. The system architecture for BAYESSTORE Probabilistic Database System.
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Figure 3.2. The block diagram of the BAYESSTORE PDB components built on top of the
PostgreSQL DBMS.

relational and inference operations. Using BAYESSTORE, probabilistic analysis tasks can be com-
posed as queries, involving both statistical inference and relational operations, over both uncertain
and deterministic data. Queries over uncertain data can return either the top-k highest-probability
answers or the marginal distributions of the uncertain values.

BAYESSTORE is implemented as a modification of the PostgreSQL 8.4 relational database
system. BAYESSTORE extends three components in the database system: the data model, the
query plan executor, and the query rewriter and optimizer. Figure 3.2 shows the block diagram
of the components we implement in BAYESSTORE to natively support in-database probabilistic
models, statistical inference and probabilistic query processing. First, we extend the relational
model of traditional databases to support incomplete relations and probabilistic graphical models.

Second, we extend the query plan executor to support: (1) existing algorithms that implement
statistical inference algorithms over probabilistic graphical models; (2) new algorithms that imple-
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ment probabilistic relational operations over the incomplete relation and the probabilistic model;
and (3) optimized algorithms that implement probabilistic queries, achieving a deep integration
between the relational and the inference operators, to improve runtime performance. Finally, we
extend the query rewriter/optimizer with new rules for probabilistic analysis queries, which for
example, choose among different statistical inference algorithms and pick the one that is the most
efficient and accurate given a specific query and data.

This chapter describes the BAYESSTORE data model. The following chapters are dedicated to
each of the system blocks in Figure 3.2.

3.2 BAYESSTORE Data Model:

Incomplete Relations and Probability Distribution

BAYESSTORE is founded on a novel data model that treats uncertain relational data and probabilis-
tic models of uncertainty as first-class citizens in the probabilistic database system. Abstractly, a
BAYESSTORE probabilistic database DBp =<R, F> consists of two key components: (1) A col-
lection of incomplete relationsR, and (2) A probability distribution function F that quantifies the
uncertainty associated with all incomplete relations inR.

An incomplete relationR ∈R is defined over a schemaAd ∪Ap comprising a (non-empty) sub-
setAd of deterministic attributes (that includes all candidate and foreign key attributes inR), and a
subset Ap of probabilistic attributes. Deterministic attributes have no uncertainty associated with
any of their values — they always contain a legal value from their domain, or the traditional SQL
NULL. On the other hand, the values of probabilistic attributes may be present or missing from
R. Given a tuple t ∈R, non-missing values for probabilistic attributes are considered evidence,
representing our partial knowledge of t. Missing values for probabilistic attribute Ai ∈Ap capture
attribute-level uncertainty; formally, each such missing value is associated with an RV Xj rang-
ing over dom(Ai) (the domain of attribute Ai). (Note that applications requiring tuple-existence
uncertainty can incorporate a probabilistic boolean attribute Existp to capture the uncertainty of
each tuple’s existence in an incomplete relation. As discussed later, this requirement can also arise
during query processing in BAYESSTORE.)

The second component of a BAYESSTORE database DBp =<R, F > is a probability distribu-
tion function F , that models the joint distribution of all missing-value RVs for relations inR. Thus,
assuming n such RVs, X1, . . . ,Xn, F denotes the joint probability distribution Pr(X1, . . . ,Xn). The
association of F with conventional PDB possible-worlds semantics [26] is now straightforward:
every complete assignment of values to all X i’s maps to a single possible world for DBp.

Note that, unlike most PDB work to date [32, 34, 26, 9, 39], the BAYESSTORE data model
employs a clean separation of the relational and probabilistic components: Rather than attaching
probabilities to uncertain database elements, BAYESSTORE maintains the probability distribution
F over the incomplete relations as a separate entity. This design has a number of benefits. First,
it allows us to expose all probabilistic information as a separate, first-class database object that
can be queried and manipulated by users/applications. Second, and perhaps most important, it
allows us to leverage ideas from state-of-the-art SML techniques in order to effectively represent,
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query, and manipulate the joint probability distribution F . Thus, the BAYESSTORE data model
directly captures the PDB possible-worlds semantics, while exposing the (potentially complex)
probabilistic and correlation structures in the data as as first-class objects that can be effectively
modeled and manipulated using SML tools.

From our definition of F , it is evident that it is a potentially huge mathematical object — the
straightforward method for representing and storing this n-dimensional distribution F is essentially
linear in the number of possible worlds of DBp.

3.3 BAYESSTORE Instance for Sensor Networks

In this section, we first describe a BAYESSTORE instance, which captures uncertain sensor data
using incomplete relations and the probabilistic distribution F over noisy sensor readings using
first-order Bayesian networks. A variation of Bayesian networks, FOBN extends BNs with a set
of first-order extensions. Such extensions enable FOBN to obtain more compact probabilistic
model representations than BNs through specifying shared correlation and conditional indepen-
dence structures.

3.3.1 Sensor Tables: The Incomplete Relations

Suppose there are two sets of environmental sensors in different rooms of a hotel. The first set
of sensors monitors temperature and light levels; while the second monitors humidity and light
levels. Sensor readings are inherently noisy – readings may be dropped due to sensor malfunctions
or power fluctuations, or even garbled by radio interference from other equipment. For the ease of
exposition, we assume that sensor readings are discretized into binary values; Cold and Hot for
temperature, Drk (Dark) and Brt (Bright) for light, and High and Low for humidity levels. We
regard all collected readings from the two sets of sensors being stored in a database DBp of two
incomplete relations respectively.

Sensor1 (Time(T), Room(R), Sid, tempp(Tp), lightp(L) )

Sensor2 (Time(T), Room(R), humidityp(H), lightp(L) )

Probabilistic attributes are denoted with superscript p, while the attributes constituting the pri-
mary key are underlined. In this example, neither relation is associated with tuple-level existence
uncertainty. Figure 3.3(a) depicts an instance of these relations. Blank cells correspond to missing
values, and are represented by an RV for each, taking values from the domain of the corresponding
probabilistic attribute. Each RV can be referred to by its tuple identifier and attribute name (e.g.
ε1.Tp is the RV of the missing value of tuple ε1).

In this snapshot ofDBp, the possible worlds distribution F can be captured by a 16-dimensional
distribution table, over the RVs associated with the 16 values under the probabilistic attributes in
Sensor1 and Sensor2. The Bayesian networks, introduced in Section 2.1.2, can be used to more
compactly represent this 16-dimensional distribution using conditional indecency and factoriza-
tions. For example, the Figure 3.3(b) shows the BN over the first 4 uncertain values in Sensor1,
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Figure 3.3. (a) Incomplete Relations Sensor1 and Sensor2. Each tuple is referred to by
its identifier (εi). (b) An example Bayesian Network representation of the probabilistic
distribution of tuples {ε1, ε2}, and the CPT associated with RV ε1.L. (c) The mapping
between the entity sets of two stripes, STp and SH , from Sensor1 and Sensor2 respectively,
involved in a child-parent relationship.

where the 4-dimensional distribution is reduced into 3 two-dimensional local distributions. If the
rest of the RV’s observe similar conditional independence, then the 16-dimensional distribution
(with size 216) can be reduced into 12 two-dimensional local distributions (with size 12× 22).

3.3.2 First-Order Bayesian Networks: The Probability Distribution

Even with the use of a factored representation that exploits conditional independence among tuple
variables, the size of the resulting tuple-based BN model (also referred to as a propositional BN)
remains problematic: The model requires one RV per probabilistic attribute, per tuple, per relation!
The number of RVs in a propositional BN model is linear to the number of tuples in the database.
Thus, the size of the BN model is large. Furthermore, the cost of probabilistic reasoning over these
models is bound to be prohibitive for non trivially-sized domains [29].

To overcome these problems, BAYESSTORE employs a novel refinement of recent ideas in the
area of First-Order (FO) probabilistic models [56, 57, 58]. More specifically, the BAYESSTORE

probabilistic model is based on a novel class of First-Order Bayesian Network (FOBN) models.
In general, a FOBN modelMFOBN extends traditional (propositional) BN structures by capturing
independence relationships between sets of RVs. This allows correlation structures that are shared
across multiple propositional RVs to be captured in a concise manner. More formally, aMFOBN

encodes a joint probability distribution by a set of FO factorsMFOBN = {φ1, ..., φn}— each such
factor φi represents the local CPT model of a population of (propositional) RVs. For instance, the
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popular Probabilistic Relational Models (PRMs) [56] are an instance of FOBN models specified
over a given relational schema: First-order RVs in a PRM directly correspond to schema attributes,
and the correlation structure specified is shared across all propositional instances in the relation
(which are assumed to be independent across tuples — i.e., no vertical correlations). Attributes in
different relation schemas can also be correlated along key/foreign-key paths [56].

The BAYESSTORE FOBN model is based on a non-trivial extension to PRMs that allows corre-
lation structure to be specified and shared across first-order RVs corresponding to arbitrary, declar-
atively specified, sub-populations of tuples in a relational schema. Thus, unlike PRMs, shared
correlation structures in BAYESSTORE can be specified in a very flexible manner, without being
tied to a specific relational schema design. This flexibility can, in turn, enable concise, intuitive
representations of probabilistic information. The key, of course, is to ensure that such flexibly-
defined FO correlation structures are also guaranteed to map to a valid probabilistic model over
the base (propositional) RVs in the BAYESSTORE database. (Such a mapping is known as FO
model “grounding” in the SML literature.) In what follows, we give a brief overview of some of
the key concepts underlying the BAYESSTORE FOBN uncertainty model, and how they ensure a
valid mapping to a possible-worlds distribution.

Entities and Entity Sets The following definition provides a declarative means of specifying ar-
bitrary sub-populations of tuples by selecting “slices” of the deterministic part of an incomplete
relation R.

Definition 3.3.1 [Entity Set R.E ] An Entity Set (R.E) of an incomplete relation R with determin-

istic attributes K1, . . . , Kn, is the deterministic relation R.E (K′) (where K′ ⊆ {K1, . . . , Kn}),

defined as a relational algebra query which performs a selection and a subsequent projection on

any part K′ of {K1, . . . , Kn}: R.E def
= πK′(σcondition on K′( R )). �

The elements of an entity set essentially identify a number of “entities” at arbitrary granularities
– tuples or tuple groups – which contain some probabilistic attributes that we intend to model. Note
that, in general, since entity sets are defined as projections on parts of R’s superkey, a particular
entity ε can correspond to a set of tuples in R. The probabilistic attribute RV associated with ε
corresponds, in fact, to the same RV across all R tuples corresponding to ε; in other words, in
any possible world, a probabilistic attribute associated with an entity is instantiated to the same
value for all tuples in the entity’s extent. Thus, intuitively, entities define the granularity of the
base, propositional RVs in the BAYESSTORE model. An entity set then naturally specifies the
granularity of first-order RVs (quantified over all entities in the set).

Various entity sets can be specified for the same relation, depending on the level in which
entities are captured. Among those, the maximal entity set of R, which associates an entity with
each tuple in R, can be obtained by projecting on any key of R— for our Sensor1 table example:
Sensor1 .EM = π{R,T,Sid}(Sensor1 ). Each entity ε in Sensor1 .EM (i.e. each sensor reading tuple)
is associated with two uncertain quantities, its temperature (ε.Tp) and light readings (ε.L), which
can be represented by the RVs ε.XTp and ε.XL, that model the stochastic process of assigning
values to ε.Tp and ε.L, respectively.
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Coarser entity definitions are also useful when we need to associate the same RV for several
tuples in an incomplete relation, i.e., tuples that always have the same probabilistic attribute value
in any possible-world instantiation. Such situations arise naturally, for instance, when values of a
probabilistic attribute are redundantly repeated in a table or during the processing of cross-product
and join operations over probabilistic attributes (Section 4.4).

First-Order RVs and Stripes: Having specified the concept of entity sets, we can now naturally
define the notion of first-order RVs in BAYESSTORE. Such FO RVs (termed stripes) represent
the values of a probabilistic attribute for a population of entities that share the same probabilistic
characteristics.

Definition 3.3.2 [Stripe S <R.Ap, E >] A stripe S <R.Ap, E > over an entity set E of an incom-

plete relation R, represents a set of random variables, one per entity from E , which models the

stochastic process of assigning values to the probabilistic attribute Ap of that entity.

Mapping and First-Order Factors: As mentioned earlier, a FO factor in a FOBN captures the
shared correlation structure (CPT) for a group of underlying propositional RVs (i.e., entities). Using
our earlier definitions, we can define BAYESSTORE FO factor φ (S|Pa(S)), as a local CPT
model that describes the conditional dependence relationship between a child stripe S and its
parent stripes Pa(S). For example, if for all entities in of the incomplete relation Sensor1 , the
RV corresponding to light, Li, conditionally depends on the temperature, Tpi, of the same entity
εi (i.e., Tpi → Li), and this correlation pattern (i.e., CPT) is shared across all entities, then this
situation can be captured concisely by two stripes: STp =< Sensor.Tp, {πR,T,SidSensor} > and
SL =< Sensor.L, {πR,T,SidSensor} >, and a FO factor over them: φ (SL|STp).

In the above example, we implicitly assumed the existence of a one-to-one mapping between
entities in the child stripe (SL) and entities in its parent stripe (STp); i.e., each (propositional) RV

Li ∈ SL will have as a parent its corresponding Tpi ∈ STp. Although this is often the case,
non-bijective types of stripe mappings can be defined as well.

Definition 3.3.3 [Mapping between Stripes f [Sp, Sc]] A mapping f between two stripes – a child

stripe Sc < R.Apc , Ec > and a parent stripe Sp < R.App, Ep >, is a surjective function from the

entity set Ec to Ep, f[Sp, Sc]: Ec → Ep, expressed as a first-order logic formula over the schemata

Kc and Kp of the entity sets Ec and Ep, where Kp ⊆ Kc. For the mapping to be valid, the selection

predicates of the relational algebra expressions used to define Ec and Ep respectively, need to be

the same. �

Definition 3.3.3 formalizes the association of the individual elements (RVs) of two stripes in-
volved in a “child-parent” relationship (Sp → Sc) at a per-instance level. In essence, it requires
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that every RV from Sc will have a single corresponding parent RV from Sp. In addition, it ensures
the minimality of the parent stripe Sp, through the constraint of surjectivity, as every RV in Sp has
to be associated with at least one RV from Sc. From the above, while it is permissible for an RV

from Sp to be parent of more than one RV from Sc, a child RV from Sc cannot have more than one
parent (since such multi-variable correlations cannot be captured by a single FO edge).

The last requirement of definition 3.3.3 essentially states that between the entity set attributes of
the child and the parent stripes, there is a key-foreign key relationship, so that the entities between
the two sets can be unambiguously associated with each other. To continue the previous example,
the “1-1” mapping between the stripe SL and its parent STp, can be expressed as:

(∀εL ∈ SL.E ,∀εTp ∈ STp.E)Pa(r.εL) = r.εTp, s.t.:
εL.T = εTp.T ∧ εL.R = εTp.R ∧ εL.Sid = εTp.Sid

(3.1)

where r.εL signifies the RV associated with the entity εL from stripe SL’s entity set, and Pa(r.εL)
the parent RV of r.εL.

Up to this point we have tacitly assumed that we can express correlations only among stripes of
the same incomplete relation. Nevertheless, conditional dependence relationships can be formed
between stripes of different relations. As noted earlier, the two relations must be involved in a
key-foreign key relationship, the foreign key of the parent incomplete relation should be part of
the primary key of the child, and the selection predicates (if any), populating the entity sets of the
stripes must be the same, for the last condition of Definition 3.3.3 to be satisfied.

Following the running example of Figure 3.3, we assume that attributes T andR of Sensor form
a foreign key for Sensor2. Moreover, assume that for each room and timestamp, the temperature
readings of the 3 different sensors in that room depend conditionally on the (single) humidity
reading for that timestamp (i.e., H → Tp), and that this correlation pattern is quantified by the
same CPT across all such groups of RVs. That can be expressed by defining 2 stripes, STp =<
Sensor.Tp, {πR,T,SidSensor} > for temperature and SH =< Sensor2.H, {πR,TSensor2} >
for humidity, and a first order factor φ(STp|SH) which is made explicit through the one-to-many
mapping:

(∀εTp ∈ STp.E , ∀εH ∈ SH .E)Pa(r.εTp) = r.εH , s.t.
εTp.T = εH .T ∧ εTp.R = εH .R

(3.2)

The mapping f [STp, SH ] is graphically depicted in Figure 3.3(c). In this example we can see the
application of Definition 3.3.3 in its full generality; each entity of the parent stripe SH is associated
with its 3 corresponding entities from the child stripe STp, which can be uniquely defined because
of the key-foreign key relationships that characterize the two entity sets.

We are now ready to formally define a first-order factor.

Definition 3.3.4 [First-order Factor φ ({Si},{fi},CPT)] A first-order factor φ represents the con-

ditional dependency of a child stripe Sc on a set of parent stripes Pa(Sc) = {Sp1 , . . . , Spn}, φ

(Sc|π(Sc)). It consists of:
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• A child stripe Sc and a (possibly empty) ordered list of parent stripes {Sp1 , . . . , Spn}.

• A (possibly empty) ordered list of stripe mappings {fi[Sc, Spi ]}, (i = 1, . . . , n), each one

associating the entities of the child stripe with those of the corresponding parent stripe.

• A conditional probability table (CPT), quantifying the common local model, that holds for all

the RV associations that are defined by the set of mappings {fi[Sc, Spi ]}, among the entities

of the stripes involved, P (Sc|π(Sc)).

First-order Bayesian Network: A BAYESSTORE FOBN modelMFOBN can now be defined as
a set of first-order factors Φ = {φ1, ..., φn}, where each φi defines a local CPT model for the
corresponding child stripe. Note that our definitions of stripes and stripe mappings are sufficient
to guarantee that each individual FO factor can be grounded to a valid collection of local CPTs
over propositional RVs (entities). In the presence of multiple FO factors (and possible connections
across factors), ensuring that the globalMFOBN model can be grounded to a valid probabilistic
distribution over entities is a little trickier. More specifically, note that even distinct stripes in
factors can overlap (see Example 3 below), and additional structural constraints must be imposed
on the model to guarantee grounding to an acyclic BN model.

An MFOBN manages to abstract the conditional independence relationships represented
among the RVs of a Bayesian Network, at the level of populations of RVs (stripes) that share the
same local probabilistic model. By explicitly maintaining the association of each stripe with the
RVs of the entities that comprise it, as well as the parent-child relationship between every pair of
connected stripes (through the corresponding mapping function), a First-Order Bayesian Network
MFOBN can be invariably translated to a propositional Bayesian Network (BN), among the RVs
that constitute theMFOBN , which become the nodes of the BN. Then, for every RV of the child
stripe Sc of every first-order factor inMFOBN , an directed edge is added to the ground BN, which
connects it with its corresponding parent RVs, as specified by the set of mapping functions fi()’s,
associated with that first order factor.

Thus, the joint probability distribution of the RVs in BN, can be calculated from theMFOBN

as:

P (X1, ..., X|R|) =
N∏
i=1

|φi.Sc.E|∏
j=1

CPT (sj|Pa(sj)), (3.3)

where N is the number of first-order factors, R the set of RVs among all the incomplete relations
of the probabilistic database DBp, |φi.Sc.E| is the number of entities in the ith’s factor child stripe
φi.Sc, sj is the RV corresponding to the jth entity of φi.Sc, and π(sj) the set of sj’s parent RVs,
associated with sj according to the set of mappings {φi.f(Sc, Sp)}, Sp ∈ π(Sc).

Of course, the grounding of anMFOBN in its propositional BN is neither desired, nor required
in many cases. Besides its concise representation, anMFOBN has the potential of exponentially
accelerating inference as well. Poole [58] has demonstrated that common inference algorithms for
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Figure 3.4. An invalid (on the left) and a valid (on the right) dependency graph of two
First-Order Bayesian Networks

BNs can be adapted to work in a first-order setting. Thus, unless an efficient implementation of a
first-order inference is not provided, the grounding process described above is not necessary.

One thing to note aboutMFOBNs is that, although they can be represented in a graphical struc-
ture as their propositional relatives (e.g. BNs, Markov Networks, etc.), each first order factor forms
a disconnected component of that graph. This is in contrast to the equivalent propositional BN,
where RVs are explicitly connected with all their parents through edges, forming large connected
components. In an MFOBN though, an entity may appear in the entity sets of multiple child
and/or parent stripes, in different first-order factors, as each such factor captures different “correla-
tion templates” (or first-order correlations as we call them) in which that entity participates. Thus,
stripes in aMFOBN can be implicitly correlated, because their entity sets may overlap, although
in the graphical representation appear disconnected (see Figure 3.5). This by no means suggests a
weakness of our formalism, but rather a unique property in the graphical modeling literature, that
comes from the flexibility which the first-order specification of correlations has to offer!

Overlapping entity sets though can potentially cause the resultingMFOBN to become invalid.
In a propositional BN, the constraint that enforces the model’s structural consistency with respect
to the probabilistic distribution it represents is that the directed graph is acyclic. In anMFOBN ,
overlaps in the stripes’ entity sets of the first-order factors may cause cyclic dependencies, which
although are implicit since the subgraph of each first-order factor is disconnected from the rest, as
we previously noted, these cycles become explicit as soon as the model is grounded to a proposi-
tional BN.

Since grounding is an expensive operation (proportional to the total number of RVs encoded
by anMFOBN ) the consistency of the latter can be verified on the first-order model’s structure as
well. To accomplish that, a dependency graph of theMFOBN is constructed, which includes as
nodes all the stripes (children and parents alike) from all theMFOBN ’s first order factors, and two
types of edges: directed, black edges, going from parent to child stripes, and undirected, red ones,
between a parent and a child stripe of different factors, only if these stripes share entities between
them.

If the dependency graph is acyclic, then the ground BN is guaranteed to be acyclic as well, and
theMFOBN represents a valid probability distribution. Basic condition for this quick test is that in
each first-order factor, the entity sets of the child stripe with the ones of its parents do not overlap.
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MFOBN: First-order Bayesian Network

S1:<Sensor1.Tp,
{� T,R,Sid (σSid≠2 Sensor1)}>

S2:<Sensor1,Tp, 
{� T,R,Sid Sensor1}>

S3:<Sensor1.L,
{� T,R,Sid Sensor1}>

φ1 (S1):
φ2 (S3|S2):

CPT2

CPT1S1 S2 S3

S5:<Sensor1.Tp,
� T,R,Sid (σSid=2 Sensor1)}>

S4:<Sensor.Tp,
{� T,R,Sid (σSid=1 Sensor1)}>

φ3 (S5|S4):
CPT3

S4 S5

Figure 3.5. First-order Bayesian Network model over the incomplete relation Sensor1 in
Figure 3.3.

Nevertheless, a cycle does not necessarily mean that the model is inconsistent. Figure 3.4 depicts
an inconsistent and a consistent dependency graph, both of which contain cycles. In the first one,
by following the directed edges along the cycle, RV Tp2 appears to be a parent of itself. In the
second, where we implicitly assume that parent of Tp1 is Tp3, and Tp2 is Tp4, neither Tp4 nor
Tp1, which appear in more than one nodes in the cycle, act as parents of themselves.

Following are three necessary conditions, which if they all hold, the MFOBN in question is
deemed inconsistent:

• The dependency graph contains at least one cycle, formed by alternating directed and undi-
rected edges.

• If we identify the end points of the cycle as Sstart (the beginning stripe) and Send (the ending
stripe), these stripes are by construction connected with an undirected edge, and thus contain
some entities in common. Let this overlapping set of entities be SO.

• By tracing back the lineage (parent-child mappings) of each entity in SO, starting from Send,
and following the directed edges in reverse direction up to Sstart, the path of entities should
result in a cycle.

Example 3 Figure 3.5 shows an exampleMFOBN for our sensornet probabilistic database. There

are three first-order factors: {φ1, φ2, φ3}. For φ1, the child stripe φ1.S1 is defined over the attribute

Tpp, and with an entity set of all the entities with Sid 6= 2. For φ2, both the child and parent stripes

are defined over the maximal entity set of the Sensor1 relation (i.e. for all tuples in Sensor1).

Finally, for φ3, the child stripe is defined over the attribute Tpp of all the entities with Sid = 2,

and the parent stripe is defined over Tpp of all the entities with Sid = 1. In all cases, “1-1”
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strID pos token Label 

1 0 2181 

1 1 Shattuck 

1 2 North 

1 3 Berkeley 

1 4 CA 

1 5 USA 

(a) 

token prevLabel label score 

2181 (DIGIT) null street num 22 

2181 (DIGIT) null street name 5 

… .. .. 

Berkeley street street name 10 

Berkeley street city 25 

.. .. .. 

(b) 

Figure 3.6. An instance of the TOKENTBL table.

mapping functions are assumed, which along with the corresponding CPTs, are omitted from the

figure in the interest of space.

Learning the shared correlation structure and the parameters of an FO probabilistic model
from data is known to be a challenging task [64]. In a workshop paper [65], we discussed the
complications of the learning process, and how it can be facilitated over a hierarchical version of
FOBNs.

3.3.3 Summary

MFOBN is a novel, declarative FO extension of BN models that is able to capture complex possible-
worlds distributions of large PDB instances in a compact and scalable manner. Based on the
solid probabilistic foundation of BNs, BAYESSTORE can model the complex correlation patterns
present in real-world uncertain applications; in addition, through our novel FO extensions, such
correlations can be declaratively expressed (and learned) at the appropriate level of granularity,
with random variables (RVs) specified in a very flexible and schema-independent manner. (This is
in contrast to PRMs [56, 59], where RVs correspond only to schema-level attributes; PRMs are a
simple special case of the BAYESSTORE FO statistical model.)

3.4 BAYESSTORE Instance for Information Extraction

Although IE has been cited as a key driving application for probabilistic database research, there
has been little work on effectively supporting the probabilistic IE process, storing the probabilistic
IE outputs, and executing queries over them in a PDB. Gupta and Sarawagi’s work [28] presented
a mapping from probabilistic IE outputs to a PDB, but it showed that with a probabilistic database,
which requires independent assumptions or supports only limited probabilistic correlations, the
probability distribution over the possible extractions from an IE model can only be stored approxi-
mately.

In this section, we show how to bridge the gap between CRF-based IE and probabilistic
databases, preserving the fidelity of the CRF distribution by storing both the text and the CRF
model in BAYESSTORE. We describe an instance of the BAYESSTORE data model that can support
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rich probabilistic IE models, such as conditional random fields (CRF) by (1) storing text-strings
in an incomplete relation R as an inverted file with a probabilistic labelp attribute; and (2) rep-
resenting the CRF model that encodes the probability distribution over all possible extractions.
The BAYESSTORE representation of the CRF model uses the terminology from the BAYESSTORE

representation of the FOBN model described in the previous section.

3.4.1 Token Table: The Incomplete Relation

The token table TOKENTBL is an incomplete relation R, which stores text-strings as relations in a
database, in a manner akin to the inverted files commonly used in information retrieval. As shown
in Fig. 3.6, each tuple in TOKENTBL records a unique occurrence of a token, which is identified
by the text-string ID (strID) and the position (pos) the token is taken from. A TOKENTBL has the
following schema:

TOKENTBL (strID, pos, token, labelp)

The TOKENTBL contains one probabilistic attribute – labelp, which can contain missing values,
whose probability distribution can be computed from the CRF model. The deterministic attributes
of the TOKENTBL are populated by parsing the input text-strings D, with label values marked as
missing by default.

3.4.2 Conditional Random Fields: The Probability Distribution

Unlike the case of a general FOBN or Markov Network, a linear-chain CRF model is a very
restrictive version of a Markov Network. The only correlation factor f(yt, xt, yt−1) is between the
current label yt, current token xt and the previous label in the sequence yt−1. Thus, the structure of
theMCRF model can be represented, using the terminologies in Section 3.3.2, by one first-order
factor consists of three stripes {yt, yt−1, xt}: Φ({yt, yt−1, xt}, f [yt, yt−1, xt], φ[yt, yt−1, xt]). Two
out of the three stripes represent all the label attribute values, and the third stripe represents all the
token attribute values in the TOKENTBL:

yt =<TOKENTBL.Label, {πstrID,pos(TOKENTBL)} >,
yt−1 =<TOKENTBL.Label, {πstrID,pos(TOKENTBL)} >,
xt =<TOKENTBL.Token, {πstrID,pos(TOKENTBL)} >,

In directed graphical models such as FOBN, a mapping function fi() represent the mapping from
the instances in a child stripe to the instances in its parent stripes. In undirected graphical models
such as CRF, a mapping function represents the mapping between instances of stripes in a factor.
The following function f [yt, yt−1, xt] represents the mapping between three stripes—the tokens xt,
the associating labels yt, and the corresponding previous labels yt−1.

f [yt, yt−1, xt] = {σyt.strID=yt−1.strID=xt.strID∧yt.pos=yt−1.pos+1=xt.pos(yt, yt−1, xt)},

Finally, the factor table φ[yt, yt−1, xt] is the local probabilistic distribution between the label yt
and the previous label yt−1 given a token xt.
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3.5 Summary

In this chapter, we presented the data model of BAYESSTORE, which is comprised of a set of
incomplete relations and a probability distribution over those relations encoded in a probabilistic
graphical model. Such a data model manages to fully expose both the uncertainties in data and their
probabilistic distribution as a unified and robust probabilistic representation that can be jointly ma-
nipulated. We showed instances of the BAYESSTORE data model for two different applications—
sensor networks and information extraction over text—using two types of probabilistic graphical
models. The FOBN model is general but complex, while the linear-chain CRF model is simple but
limited. These two examples represent a wide spectrum of applications and probabilistic models
we can support in BAYESSTORE.
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Chapter 4

Probabilistic Relational Operators

Having presented the BAYESSTORE data model in Chapter 3, in this chapter, we describe al-
gorithms for SPJ (i.e., selection, projection, join) operators over incomplete relations and their
associated probability distribution. We use the FOBN model applied to sensor network data as the
driving example. In the experimental section 4.5, we show effectiveness of various probabilistic
selection algorithms in filtering out zero-probability tuples to reduce the input to the following
expensive inference operators. We also conduct one preliminary experiment to show the best-case
inference runtime improvement that can be achieved by exploiting first-order structures in FOBN
model.

4.1 Overview

The standard algorithms for relational SPJ operators can only operate over deterministic relations.
For probabilistic data analysis, we need to support probabilistic SPJ operators over a DBp such
as BAYESSTORE. A naive query processing approach is to (1) perform traditional relational op-
erations on the set Ω of all possible worlds; (2) compute a new set of possible worlds Ω′; and (3)
correctly map probabilities from F to F ’. However, this computation is clearly intractable given
the exponential number of possible worlds. Thus, the core challenge is to generate the new state
of DBp given a query without having to enumerate and process over all possible worlds.

We present new SPJ algorithms that seamlessly integrate the state-of-the-art SML techniques
with relational query processing to support probabilistic SPJ queries and probabilistic model ma-
nipulations inside BAYESSTORE. The probabilistic SPJ algorithms in BAYESSTORE operate on
both the data in the incomplete relations and the probability distribution in the PGMs. Operations
on the PGM model are performed first in order to ensure that the resulting probability distribution
F ’, encoded by the modified PGM, is compatible with the new state ofDBp. Operations on the in-
complete relations are performed second to filter out non-existent tuples (i.e., with zero existence
probability) by exploiting the structure of the PGM. The second data filtering step is performed
without impairing the soundless or accuracy of the result.
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The following sections describe the algorithms for probabilistic selection, projection, and join
over both the incomplete relations (i.e., sensor tables) and the probabilistic distribution encoded in
a first-order Bayesian network.

4.2 Selection

We focus our discussion on the use of a selection predicate %, that is a conjunction of atomic predi-
cates (% = ∧%i(i = 1, ..n)), whose operators involve arithmetic comparisons Θ ∈ {<,>,6,>,=}
between a probabilistic or deterministic attribute and a constant (%i = AiΘcti). BAYESSTORE also
supports other forms of atomic predicates, such as %i = AiΘBi presented in Section 4.4, where
probabilistic joins are discussed.

The techniques for performing selection over the model (as we call theMFOBN modification
process), which are discussed in Section 4.2.1, have proven to be quite fundamental for all the
relational operations described in this chapter. On the other hand, selection over the tuples of R
is not a trivial process either, as the filtering is no longer deterministic for probabilistic attributes.
Section 4.2.2 introduces a basic algorithm for selecting incomplete data tuples, as well as two
optimizations, which attempt to reduce the size of the resulting incomplete relation R’, without
affecting the validity of the selection output.

4.2.1 Selection over ModelMFOBN

In a deterministic DB, selection over a relation R generates a new relation that contains only the
tuples that satisfy the selection predicate. Should R be an incomplete relation (e.g., the Sensor1
relation of Figure 3.3, in which some temperature and light readings are missing), a selection with
predicate % : (Sensor1 .Lp = Brt), apart from removing the tuples that have a light value different
than Brt, affects the distribution of possible worlds F as well, since worlds where L = Drk cannot
be generated by %.

In statistical model terms, this probabilistic selection operation resembles that of computing the
conditional distribution Pr[X|Y1 = y1, . . . , Yn = yn] of a set of RVs X , given that RVs {Yi}n1 ∈ X ,
have specific values {y1, . . . , yn}. Thus, it seems tempting to calculate the new possible-worlds dis-
tribution F ’ over the set of example RVs XSensor = {Tp1, . . . , Tpn, L1, . . . , Ln}, by conditioning
on all the RVs that correspond to Sensor1 .L = Brt. Unfortunately, this operation does not result
in the correct possible worlds distribution: In a nutshell, the problem here is that conditioning (and
other standard model manipulations, such as marginalization) cannot by themselves express pos-
sible worlds with different numbers of tuples — even under the conditioned/marginalized model,
the number of tuples in each possible completion of an incomplete relation R is going to be the
same (i.e., |R|). In contrast, applying the selection operation over the possible worlds can obvi-
ously result in worlds with different numbers of tuples, by filtering out tuples that do not satisfy the
selection predicate; essentially, probabilistic selection introduces tuple-existence uncertainty (i.e.,
the existence of a tuple in a possible world becomes uncertain).

Continuing with our example, a given tuple t ∈ Sensor1 appears only in the possible worlds
where the attribute L = Brt, and in all the rest it is filtered out completely. On the other hand,
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by simply calculating the conditional Pr[XSensor|L1 = Brt, . . . , Ln = Brt] directly over the
model, the possible worlds corresponding to the resulting joint pdf all have the same number of
tuples (i.e., the number of tuples in Sensor1 with L 6= Drk) all having L = Brt. (It should
also be intuitively clear that this conjunctive conditioning does not have the right semantics for
our selection operation.) The fact that the cardinality of tuples between possible worlds can vary
cannot be directly expressed by standard conditioning/marginalization operations on the model.

We capture tuple existence uncertainty by introducing the probabilistic attribute Existp in the
schema of the incomplete relation being selected, if it is not contained already. Depending on
whether the selection predicate % involves a deterministic Ad, or a probabilistic attribute Ap, the
corresponding selection over a model σ(MFOBN ) behaves differently.

The atomic predicate % : (AdΘct), restricts the entity set to which the predicate % applies. For
example, % : (Sid = 3 ∧ Tp = Hot) restricts the entity set of predicate % to only include the
entities with Sid equals 3. Entities with Sid 6= 3 cannot exist in the resulting relation (i.e., their
Existp=0).

Existence uncertainty is introduced in the model when % involves a probabilistic attribute Ap.
For example, if a predicate Tp = Hot is applied to a tuple t with a missing Tp value, the presence
of t in the output becomes probabilistically dependent on t.Tp’s value. Intuitively, this operation
corresponds to changing the local model of the factor that corresponds to R’s Existp attribute, to
be dependent on that probabilistic attribute (for our example, Tp).

Figure 4.1 shows the select-model algorithm, based on a predicate % of the form AdΘ1ct1 ∧
ApΘ2ct2. For example, % = (Sid = 3 ∧ Tp = Hot). The algorithm can be easily extended to
process a conjunctive predicate % with any number of atomic predicates. (Join predicates (e.g.,
AΘB) are discussed in Section 4.4.)

Lines 1-2 define the entity set on which the selection predicate applies: %.E . The presence of
the deterministic attribute inside % (Sid = 3) essentially restricts its entity set %.E (e.g., to all tuples
with Sid = 3); otherwise, the predicate applies to any entity within R’s entity set.

If %.E is non-empty, a new first-order factor φ is added to the modelMFOBN (lines 5-11). φ
represents the local model of an Existp attribute stripe over the entity set %.E : S c < Existp, %.E
>. ApΘ2ct2 determines the parent stripe, φ.Sp, of Sc. The latter is defined over the probabilistic
attribute Ap in % (e.g., a stripe on attribute Tpp becomes a parent of a stripe on the Existp attribute,
with the same entity set, which in this example contains all the tuples with Sid = 3). A one-to-one
mapping is established between φ.Sc and its parent stripe φ.Sp, in line 8 (e.g., the value of the
Existp attribute in entity ε maps to the value of Tpp in the same ε). Finally, the CPT table of φ
is set to represent the deterministic conditional distribution: Existp = 1 with probability 1, iff
ApΘ2ct2 = true.

Lastly, lines 12-16 deal with the residual entity set (e.g., the entities with Sid 6= 3), which
contains all the entities of R that are not included in %.E : (R.E- %.E). A second first-order factor
φ is defined over the Existp attribute of the residual entity set, which specifies that none of these
entities exists.

In the interest of space, the pseudocode of Figure 4.1 omits a preprocessing step that examines
if there exist first-order factors in MFOBN that are defined over attribute Existp. Such a case
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SELECT-MODEL (R,MFOBN , % = AdΘ1ct1 ∧ApΘ2ct2)

1 MFOBN ’←MFOBN

2 %.E ←< AdΘ1ct1 >

3 // Modification of pre-existing factors φ ∈MFOBN if φ.Sc

4 // over Existp – Step omitted due to space constraints.

5 if %.E 6= ∅ then

6 φ.Sc ←< R.Existp, %.E >

7 φ.Sp ←< R.Ap, %.E >

8 φ.f ← a one-to-one mapping between Sp and Sc

9 φ.CPT ← {Existp = 1 iff %.ApΘ2ct2 == true}

10 MFOBN ’←MFOBN ’ ∪ φ

11 endif

12 if %.E 6= R.E then

13 φ.Sc ←< R.Existp, (R.E − %.E ) >

14 φ.CPT ← {Existp = 0}

15 MFOBN ’←MFOBN ’ ∪ φ

16 endif

17 returnMFOBN ’

Figure 4.1. Algorithm for selection over model with predicate % = (AdΘ1ct1 ∧ ApΘ2ct2)
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might arise if R is a result of a previous selection. For such an existence factor φ, the entity sets
of its stripes are restricted to contain the entities that lie in the intersection of φ.Sc.E and %.E . The
correctness of the final possible-worlds distribution, follows trivially from the existence RVs added
to the FOBN model.

Example 4 As an example, suppose the selection predicate of σSid=3∧Tpp=Hot(Sensor) is applied

on the modelMFOBN in Figure 3.5. The selection operation first extends the schema of Sensor1

with a probabilistic attribute Existp, which represents the existence uncertainty of every tuple in

Sensor1. It then modifies the model by adding two first-order factors over two different stripes

of the Existp attribute. The first specifies that for all entities with Sid = 3, Existp’s value is

dependent on Tpp’s value: if Tpp = Hot then Existp = 1, and 0 otherwise. The second specifies

that for all entities with Sid 6= 3, Existp = 0.

4.2.2 Selection over an Incomplete Relation σ(R )

In a traditional deterministic relation, a selection with predicate % filters out exactly those tuples
that do not satisfy the predicate. For an incomplete relation R, such a naive filtering operation
would produce incorrect results. The first problem lies in whether to select the tuples with missing
values in the predicate attribute: if the missing value has zero probability to satisfy the predicate,
then the tuple should be filtered. A conservative approach would select all tuples with missing
values. The second problem is that there may be tuples in R that do not satisfy the predicate,
but are still relevant, due to their correlation with another tuple that has non-zero probability of
satisfying the predicate. The absence of these evidence tuples will lead to incorrect probabilistic
inference computations later on.

As an example, consider two sensors, one placed on the exterior of a building, the other placed
in a heating duct. The sensors are anti-correlated: when the exterior sensor is cold, the duct sensor
is more likely to be hot. A query that asks for the temperatures of all sensors detecting heat, must
retain theCold temperature reported by the exterior sensor, if the duct’s sensor temperature reading
in a given tuple is missing.

Thus, selection over an incomplete relation σ(R) has to be sufficient, in retaining evidence
tuples inR, which are relevant to any tuple that may satisfy the predicate with non-zero probability.
On the other hand, selection should also be minimal, in deleting any tuple that neither satisfies the
predicate nor is correlated with other “candidate” tuples. The “minimum” incomplete relation
can be achieved by computing the marginal probability distribution over all the Existp attribute
values, and filtering all the tuples that have 0 probability of having Existp = 1. The complexity
of this inference computation is known to be NP-hard, in general. We proceed to describe a base
algorithm for σ(R), and two optimizations that reduce the former’s complexity, while being as
economical in retaining evidence tuples as possible.
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Base Algorithm. Figure 4.2 displays the basic version of the data selection algorithm. According
to the two objectives stated earlier, it selects tuples which either satisfy the predicate or contain
missing values (tuple set T ), while retaining all the tuples that are correlated with at least one tuple
from T . The latter are determined by computing a transitive closure operation over T , using a tuple
correlation graph – an undirected graph in which nodes correspond to R’s tuples, and undirected
edges represent correlations between pairs of tuples (“vertical” correlations).

In particular, the data selection algorithm initially uses the input predicate % to select the tu-
ples in the incomplete relation R, which either contain evidence satisfying the predicate, or their
probabilistic attribute value in the predicate is missing (line 1).

In lines 2-20, the transitive closure of the tuple setE1 is computed, using semi-naive evaluation,
over the tuple correlation graph. At the end of each iteration, a new set of tuples Ei+1 is generated,
containing the parents and children of each tuple t ∈ Ei, as defined in the correlation graph. At
each iteration, the newly chased tuples are added to Ecorr, the set of all correlated tuples with t.

Lines 7-16, represent the chasing of t’s correlated tuples. All first-order factors φ inMFOBN

are traversed: if one of the parent stripes’ entity sets φ.Spj .E contains an entity that maps to t (or
more formally, if the projection of t on φ.Spj .E’s schema belongs in φ.Spj .E), then the entity(ies)
in the child stripe φ.Sc to which it maps, are computed through the reverse mapping f−1

j (t) and
added to Ecorr; if t can be associated with an entity of φ.Sc.E , then all its corresponding entities
from each of φ.Sc’s parents are chased as well.

Example 5 Figure 4.3 depicts the model MFOBN of Sensor1, and the latter’s tuple correlation

graph. Tuples {t1, t2}, {t4, t5} indicate correlated pairs. As a first step, the algorithm selects tuples

from Sensor1 which satisfy the predicate or contain missing values. Consequently, it computes the

incomplete relation Sensor1’, calculating the transitive closure of the tuples generated from the

first step, given the tuple correlation graph. Note that in the latter step, t2 is added, because even

though it does not satisfy the predicate, it has a vertical correlation with t1.

Evidence-Based Early-Stopping Optimization. The transitive closure computation that the
base algorithm utilized to collect all vertically correlated tuples, despite its correctness, might
conservatively select more tuples than necessary. However, two tuples t1 and t2 may be condi-
tionally independent, even if there exists a vertical correlation between them. Consequently, we
can accelerate the computation, by stopping early when encountering conditionally independent
tuples, and thus reduce the number of resulting tuples.

Identifying conditionally independent tuples is done by means of the “Bayes Ball” algo-
rithm [16]. Bayes Ball is a standard Graphical Model algorithm that takes as input a Bayesian
Network and evidence values for some of its random variables, and determines pairs of nodes in
the network that are independent, given the evidence. The details of the Bayes Ball algorithm can
be found in [16]. Figure 4.4 modifies our SelPlain algorithm by replacing the transitive closure
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SELECT-DATA-BASE (R,MFOBN , %)

1 S ← SELECT(R, %);R′ ← ∅;E1 ← S; i← 1;

2 while Ei 6= ∅ do

3 Ei+1 ← ∅;

4 for each t ∈ Ei do

5 R′ ← R′ ∪ t;Ecorr ← ∅;

6 // Locate correlated tuples to t by traversingMFOBN

7 for each φ ∈MFOBN do

8 // If t is associated with an entity in one of φ’s

9 // parent stripes...

10 if ∃j(j ∈ {1, . . . , n}) : t ∈ φ.Spj .E then

11 Ecorr ← Ecorr ∪ f−1
j (t);

12 // or child stripe...

13 else if t ∈ φ.Sc.E then

14 for each φ.fj do

15 Ecorr ← Ecorr ∪ fj(t);

16 endfor endif endfor

17 Ei+1 ← Ei+1 ∪ Ecorr;

18 endfor

19 i← i+ 1;

20 endwhile

21 return R′

Figure 4.2. Base Algorithm for select-over-data
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Figure 4.3. An example illustrating the Base Select-over-data Algorithm for σTp=‘Cold′(Sensor).

operation with the Bayes Ball algorithm to avoid retaining tuples that, given the evidence, are
independent of any tuples that may be in the output.

Example 6 Continuing our example from Figure 4.3, let us suppose that another vertical corre-

lation exists between tuples t2 and t6 (t2 → t6), which is reflected with a dotted line in the tuple

correlation graph. Although t6 is correlated with t2, the Bayes Ball algorithm indicates that it is

conditionally independent with t1, and therefore, the transitive closure stops at t2; t6 doesn’t need

to be chased.

Factor-Based Data Filtering Optimization. Recall that the base algorithm conservatively main-
tained all the tuples that contained a missing value for the attribute mentioned in %, assuming that
the probability for such a tuple to have a value that satisfies % is non-zero. Nevertheless, we could
have used the MFOBN model, conditioning on the evidence present in R, to verify if this holds
for every such tuple. In particular, we have not yet utilized the probability distribution encoded in
MFOBN , to actually verify if the probability of satisfying the predicate is non-zero, conditioning
on the evidence present in the incomplete relation.

As an example, let us examine the following query over the Sensor1 relation of Figure 4.3:
σL=Drk(Sensor). Suppose the local model of L, φ2, has a conditional probability table φ2.CPT, indi-
cating that probability of L = Drk is zero when Tp = Hot. Thus t2, even with its L value missing,
has zero probability satisfying the predicate.
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EVIDENCESEL (R,MFOBN , %)

1 S ← SELECT(R, %);R′ ← ∅;E1 ← S;

2 while Ei 6= ∅ do

3 Ei+1 ← ∅

4 for each t ∈ Ei do

5 R′ ← R′ ∪ t;

6 // Locate tuples correlated with t, by calling Bayes-Ball

7 // algorithm over modelMFOBN

8 Ecorr ← BAYES-BALL(t,MFOBN )

9 Ei+1 ← Ei+1 ∪ Ecorr
10 endfor

11 i← i+ 1

12 endwhile

13 returnR′

Figure 4.4. EvidenceSel algorithm for selection over data based on evidence
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Since probabilistic inference is an expensive operation, as a relaxation, we avoid computing
the conditional probability of the RV of every missing value, given all the available evidence in R
and %. Instead, we focus on tuples with RVs that are involved only in horizontal correlations. In
particular, for each RV r corresponding to such tuples, we do not calculate the conditional over the
whole model, Pr[r|Xev ∪ %.Ap = ct], where Xev represents the vector of evidence data in R, but
rather we calculate Pr[r|−→Y ev ∪ %.Ap = ct], where

−→
Y ev is the vector of RVs from the same tuple as

r, instantiated with the evidence in the tuple. This probability can be obtained from the CPT of the
horizontal factor φ in which r belongs (as part of φ.Sc). Should Pr[r|−→Y ev ∪ %.Ap = ct] = 0, the
tuple can be safely removed from the result set, and not chased for other correlated tuples to it.

4.3 Projection

In this section, we concentrate on projection πΠ(R) without duplicate elimination, where the pro-
jection list Π = {A1, .., An} contains the primary key. This assumption guarantees that there will
be no duplicates generated from the project operation, because all the primary key attributes remain
in the resulting relation.

The inherent difficulty with duplicate elimination lies in the fact that it is inherently not a
first-order operation. To be able to account for duplicates, we would have to model the uncertain
quantities of the probabilistic DB at the tuple level, which would require that we ground the first
order model associated with the DB. Exploring more concise probabilistic representations to model
duplicates is left as future work.

Traditional projection semantics over a deterministic relation, would result in retrieving each
tuple from the relation, while keeping only a subset of its attributes. Such an operation over an
incomplete relation though would generate incorrect results, because deleting the attributes that
are not in the subset A may lead to loss of evidence, which is needed to generate the correct
probabilistic distribution function F .

Not unlike selection, projection over an incomplete relation R retains some attributes A∗ that
are not in the projection list Π, if they are correlated with other attributes in Π, and deletes only the
uncorrelated attributes B = Sch(R) − Π − A∗, where Sch(R) is the schema (attribute list) of R.
The project operation over the modelMFOBN deletes the first-order factors that involve attributes
in the set B only.

The project algorithm is shown in Figure 4.5. In lines 1-5, the algorithm traverses all first-order
factors φ in the modelMFOBN . If φ involves two attributes Ap and Bp, where Ap belongs in the
project list (Ap ∈ Π), and Bp does not (Bp /∈ Π), then Ap and Bp are correlated by factor φ. Thus,
on line 3, the algorithm retains Bp in project attribute set Π. In lines 6-9, the algorithm traverses
all the first-order factors a second time, and processes the modelMFOBN ’ to remove first-order
factors that only involve attributes which are not in the newly computed set Π. In lines 11-13,
the algorithm iterates through every tuple in the incomplete relation R, and performs a traditional
projection of each tuple on the attributes that remained in Π.

Example 7 Using the example in Figure 4.3, suppose we have a new probabilistic attribute Hu-
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PROJECT (R,MFOBN ,Π)

1 MFOBN ’←MFOBN

2 for each φ ∈MFOBN do

3 if ∃i, j : φ.Si.A
p ∈ Π && φ.Sj .B

p /∈ Π then

4 Π← Π ∪Bp

5 endif endfor

6 for each φ ∈MFOBN do

7 if ∀i, φ.Si.Ap /∈ Π then

8 MFOBN ’←MFOBN ’− φ;

9 endif endfor

10 R′ ← ∅

11 for each t ∈ R do

12 R′ ← R′ ∪ t(Π)

13 endfor

14 returnR′,MFOBN ’

Figure 4.5. Projection algorithm over Incomplete Relations
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midityH , and a new first-order factor φ4, which represents a prior probability table for all attribute

values in H . Suppose we are to perform the projection π{T,R,Sid,L} on this modified incomplete re-

lation Sensor1. Since the first-order factor φ2 encodes a correlation between attributes Tp and L,

Tp is then included in the projection attribute set Π. Attribute H is not included in Π, because it is

not correlated with any attribute in Π. Thus, the model of Sensor1 is modified by deleting φ4, be-

cause it only involves attribute H . Finally, the new incomplete relation is generated by projecting

every tuple of Sensor1 on the subset of attributes Π = {T,R, Sid, Tp, L}.

4.4 Join

We now turn our attention to binary selection predicates. In particular, we will examine how
the join operator (./%) between two incomplete relations R1 and R2, whose entities’ correlation
patterns are captured by the first order model MFOBN , determines the contents of the resulting
incomplete relation R = R1 ./% R2, as well as the necessary modifications toMFOBN . We will
concentrate on join predicates of the form: % = (R1.A

pΘR2.B
p), where attributes A and B are

probabilistic.

4.4.1 Join over ModelMFOBN

The modifications to MFOBN which are required to maintain the consistency of the probability
distribution F with respect to R, are quite similar to those that the selection over the model algo-
rithm performs. As in Section 4.2.1, we need to capture the existence uncertainty of every joinable
pair of tuples r1 ∈ R1 and r2 ∈ R2, in the final result. The possible universe of these pairs corre-
sponds to R1 × R2. Nevertheless, these possibilities are restricted by the join predicate %. Hence,
the challenge, as in selection, lies in capturing the existence uncertainty of all probable tuple pair
combinations in a first order fashion.

To accomplish this, we extend MFOBN by adding a first-order factor over R.Existp, which
depends on the probabilistic attributes Ap and Bp that participate in %. The algorithm is described
in Figure 4.6. Initially, as a preprocessing step (lines 4–8), we rename the attributes in the schema
of R, Sch(R), to be able to refer to each attribute of R by a unique name. This renaming step
needs to be carried over the attributes of the stripes of each first-order factor inMFOBN as well, so
that the correspondence ofMFOBN ’s stripes with the probabilistic attributes of R is maintained.

Lines 10–17 define the new existence first-order factor φ. Essentially, the entity set of φ’s
child stripe, φ.Sc.E corresponds to the cross product of the entities of the relations to be joined,
R1(K, . . . , Ap) and R2(K, . . . , Bp), where K and K

′
are the sets of attributes comprising the

primary keys of R1 and R2 respectively, as indicated by line 2. φ.Sc’s parents are the stripes φ.Sp1
and φ.Sp2 , representing the populations of RVs for the join attributes R1.A

p and R1.B
p. Each

entity εc from φ.Sc.E is associated with the original “copies” of the two entities, ε1 and ε2, from
which it was generated – one from each respective parent stripe. This many-to-one association
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between an entity of one of the two initial relations, and its multiple copies in the entity set of
φ.Sc, is captured by the mapping functions φ.f1 and φ.f2 (lines 14–15). Finally, the CPT of this
new factor represents the deterministic conditional distribution Existp = 1 with probability 1, iff
R1.A

pΘR2.B
p = true.

As a special case, if R1 or R2 are a result of a previous selection, in which case MFOBN

contains existence factor(s) already, a similar process takes place, which extends the entity sets
of the child and parent stripes involved, as well as the condition defining the factors’ CPTs, to
the resulting cross-product domain of the join. The only difference there is the formulation of the
local model of the existence random variables Existp in the resulting join model. The algorithm
generates the local model ofExistp of the join resultR as a conjunction (

∧
) of the condition in the

local model of R1.Existp, the condition in the local model of R2.Existp, and the join condition.

4.4.2 Joining Incomplete Relations σ(R )

As in the case of selection, the presence of missing values for the probabilistic attributes of an
incomplete relation, causes complications when the latter is to participate in a join. In particular,
when the attributes participating in a join predicate are probabilistic (R1.A

pΘR2.B
p), each tuple

of R1 (equivalently for R2) that has a missing value for Ap, may satisfy % and thus participate in
the join result, depending on the possible values it can take, according to the MFOBN and the
evidence present in R1 and R2. Following the same intuition as in Section 4.2.2, all such tuples
from both relations should be considered “joinable” conservatively, as the join operation per se
becomes uncertain.

In addition, we might also need to include in the result the join of two tuples r1 ∈ R1 and
r2 ∈ R2 that do not satisfy the join predicate, for the same reason that this problem arises in
selection: this resulting tuple might be correlated with another tuple from R = R1 ./% R2 that
satisfies %, and hence its absence from R can erroneously interfere with probabilistic inference
operators. Therefore, the set of these seemingly disqualified join tuples needs to be transitively
calculated from the tuples of R′ that satisfy %, using the probabilistic information provided in
MFOBN .

In essence, the above can be phrased as a direct extension of the selection over a single incom-
plete relation, studied in section 4.2.2. Taking advantage of the techniques developed there, as well
as common Relational Algebra equivalences, we first compute the cross product of the relations to
be joined, on top of which we apply our probabilistic selection operator, using the same predicate
as in %: R1 ./% R2 = σ%=(R1.AΘR2.B)(R1 ×R2).

Example 8 Given the example in Figure 4.7, the query we want to evaluate over these two incom-

plete relations is:

SELECT * FROM Sensor1 R1, Sensor2 R2 WHERE R1.L = R2.L

The algorithm initially renames the attributes in the definition of each factor’s stripe Si, so that

they coincide with the resulting relation’s schema: R(Sid1, Sid2, Tpp, L1p, L2p, Existp). A de-
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JOIN (R1(K, . . . , Ap), R2(K
′
, . . . , Bp),MFOBN , %)

1 R← R1 ./% R2;

2 %.E ← π
K∪K′(R1 ×R2)

3 // Assign unique names to the stripes of the factors inMFOBN

4 for each φ ∈MFOBN do

5 φ.Sc ← RENAME(φ.Sc, Sch(R))

6 for each parent stripe φ.Spi , i = {1, . . . , n} do

7 φ.Spi ← RENAME(φ.Spi , Sch(R))

8 endfor endfor

9

10 // Create an existence factor

11 φ.Sc ←< R.Existp, %.E >

12 φ.Sp1 ←< R1.A
p, R1.E >

13 φ.Sp2 ←< R2.B
p, R2.E >

14 φ.f1 ← ∀εc ∈ φ.Sc.E , ∃ε1 ∈ φ.Sp1 .E , φ.f1(εc) = ε1 : εc.K = ε1.K

15 φ.f2 ← ∀εc ∈ φ.Sc.E , ∃ε2 ∈ φ.Sp2 .E , φ.f2(εc) = ε2 : εc.K
′
= ε2.K

′

16 φ.CPT ← {Existp = 1 iff % == true}

17 M′FOBN ←MFOBN ∪ φ

18 return R,M′FOBN

Figure 4.6. Join algorithm over ModelMFOBN .
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Figure 4.7. The join operation over the model of two incomplete relations, Sensor1 and Sensor2.

terministic first-order factor φ4 for R.Existp is added to MFOBN . Its child stripe’s entity set,

S7.E is defined as: {πSid1,Sid2R}, while the parent stripes associated with it, S5 and S6, over the

attributes R.L1 and R.L2 included in the join predicate, have entity sets: {πSid1R} and {πSid2R}

respectively. Each entity in the parent stripe S5.E (likewise for S6) has a unique Sid1 value,

s1, which is mapped with a set of children entities from S.E , all having Sid1 = s1 and Sid2 ∈

dom(Sid2). Finally, the CPT of φ4 is defined as:(R.Existp = 1, iff R.L1 = R.L2).

4.5 Experimental Evaluation

We have implemented and evaluated various algorithms for probabilistic selection presented in
Section 4.2. We have also implemented a very limited first-order inference optimization over
FOBNs to show the best-case runtime improvement by exploiting first-order structures. The main
findings of our experimental study can be summarized as follows:

• In our experiment setup, we generate selection predicates with different selectivity, data with
different percentage of missing values, and model with different correlations. The experi-
mental results consistently show that, compared to the strawman algorithm, the proposed
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selection algorithm can drastically reduce the size of the output without affecting the accu-
racy of the result. We believe that this experiment result holds in general for other applica-
tions and models. We also show that this reduction in the input to the subsequent inference
operator can decrease inference runtime by up to 5 times in our experimental setup.

• We conduct one preliminary experiment to show the best-case inference runtime improve-
ment that can be achieved by exploiting first-order structures in FOBN model. We also
acknowledge cases where the overhead can outweigh the improvement of first-order infer-
ence in runtime. An optimizer is needed to be able to choose between different inference
algorithms and optimizations. In Chapter 7, we show our effort in that direction.

Our implementation is based on Postgres 8.2.4 (www.postgresql.org) and uses Murphy’s
BNT Toolbox (www.cs.ubc.ca/∼murphyk/Bayes/bnt.html) for inference. In this section we
describe the results of our experimental evaluation, which focused primarily on selection algo-
rithms. All experiments were run on a 2.8Gz CPU, 1GB RAM system running the Fedora Linux
Core 5.

4.5.1 Methodology

For our evaluation we used an extension of the example scenario of Section 3.3.1—a hotel with
100 rooms, each instrumented with 8 environmental sensors, measuring temperature and light over
time. All the sensor readings are stored in an incomplete relation Sensor. The distribution F of this
probabilistic database is captured by a FOBN modelMFOBN . TheMFOBN contains 4 first-order
factors: a prior for all temperature readings of the 1st, 3rd and 5th – 8th sensor for every room
φ(Tp), one capturing the same correlation pattern between the light and temperature readings
over every sensor in the hotel φ(L|Tp), and two first-order factors modeling the correlation of
the temperature readings between the 1st and 2nd, and 3rd and 4th sensor pairs in every room,
φ(Tp2|Tp1) and φ(Tp4|Tp3).

We used selection queries over the Sensor table with different selectivity. We also generated
sensor readings with different sizes and different percentage of missing values. Next we describe
our data generator.

Data Generation

We generated a synthetic dataset, by forward sampling on the model described earlier. In order to
thoroughly evaluate the effectiveness of our probabilistic selection algorithms, we varied a number
of parameters.

• Data Size (size): We generated the Sensor table with different number of tuples (i.e., sensor
readings) by increasing the number of timestamps;

• Data Missing Ratio (mratio): We generated the Sensor table with different percentage of
missing values in order to vary the level of uncertainty in the data;
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• Query Selectivity Ratio (sel ): We generated selection queries with different selectivity by
appropriately manipulating the CPTs of the first order factors φ(Tp2|Tp1) and φ(Tp4|Tp3).

• Model Connectivity Ratio (cratio): The model connectivity ‘cratio’ is the number of vertical
correlations between tuples over the total number of tuples in Sensor. Connectivity ratio was
varied by adding or dropping first-order factors in the model described in Section 4.5.1.

Based on these parameters, we generate data sets, queries, and models that has different char-
acteristics, which influence the size of the output and the runtime of the probabilistic selection
algorithms.

Algorithms and Metrics

We evaluate the four probabilistic selection algorithms over incomplete relations with different
optimizations presented in Section 4.2.2. Algorithm PlainSel filters data tuples of an incomplete
relation R using the traditional selection operator, and generates evidence tuples, resorting to a full
transitive closure over R and the model structure. EvidenceSel uses the “evidence-based early-
stopping” technique on top of PlainSel, while FactorSel extends PlainSel by incorporating
the “factor-based data-filtering” technique. Lastly, FullSel uses both optimizations.

4.5.2 Data Size

In this first experiment, we varied the number of tuples (i.e., sensor readings) in the Sensor table
from 20, 000 to 100, 000, while keeping the query selectivity (0.01), the model connectivity (7/8),
and the percentage of missing values (0.01) constant. The “evidence-based early-stopping” tech-
nique employed in FullSel and EvidenceSel (behind the FullSel line in Figure 4.8(a)) reduces
the size of the result relation significantly compared to PlainSel and FactorSel. By comparing
FactorSel and PlainSel, we observe that the “factor-based data-filtering” technique employed
by the former also decreases the result size, but not as much as the “evidence-based early-stopping”
technique.

As shown in Table 4.10, the runtime of all probabilistic selection algorithms for data with size
10, 000 is below 0.5 second. The difference in runtime among these algorithms is within a factor of
2. The subsequent inference algorithm, on the other hand, is 20 to 100 times more expensive than
the probabilistic selection algorithms in runtime. Thus, the comparative execution time of various
probabilistic selection algorithms is not the focus of this evaluation.

The runtime of the subsequent inference algorithm, as we can see in Table 4.10, is proportional
to the size of the input (i.e., the output of the probabilistic selection algorithm). For example, while
the output size of the PlainSel is 10 times that of the FullSel, the inference runtime over the
output of the PlainSel algorithm is 5 times that of the FullSel algorithm. Thus, the focus of
the experiments in this Chapter is to compare the size of the output among different probabilistic
selection algorithms.
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Figure 4.8. Output size of various probabilistic selection algorithms for different sizes of
the incomplete relation SENSOR and different selectivity of the queries.
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4.5.2 Data Size

In this first experiment, we varied the number of tuples (i.e., sensor readings) in the Sensor table

from 20, 000 to 100, 000, while keeping the query selectivity (0.01), the model connectivity (7/8),

and the percentage of missing value (0.01) constant. The “evidence-based early-stopping” technique

employed in FullSel and EvidenceSel (behind the FullSel line in Figure 4.8(a)) reduces the

size of the result relation. Thus, EvidenceSel and FullSel smaller output size than the PlainSel

and FactorSel variants. By comparing FactorSel and PlainSel, we observe that the “factor-

based data-filtering” technique employed by the former also decreases the result size, but not as

drastic as the “evidence-based early-stopping” technique.

The runtime of all the algorithms for size 10, 000 is below 0.5 second, and the difference in

runtime among these algorithms is within a factor of 2. However, the runtime of the subsequent

inference algorithm is 10 to 50 times more expensive than the probabilistic selection algorithms.

Thus, the comparative execution time of various probabilistic selection algorithms is not the focus

of this evaluation.

On the other hand, looking at the first two rows of Table ??, we see the the runtime of the subse-

quent inference algorithm is proportional to the size of the input (i.e., the output of the probabilistic

selection algorithm). Thus, the focus of the experiment in this Chapter is to compare the size of the

output among different probabilistic selection algorithms.

PlainSel FactorSel EvidenceSel FullSel
Input Size (number of tuples) 1512 1184 204.5 159

Regular Inference Runtime (sec) 27.1 21.9 5.73 5.53

Runtime (sec) PlainSel FactorSel EvidenceSel FullSel
Regular Inference 27.1 21.9 5.73 5.53

First-order Inference (Best-Case) 2.0 1.6 1.1 0.9

4.5.3 Data Uncertainty

We also experimented by varying the ratio of missing values ‘mratio’ in Sensor, while keeping its

size to 10000 tuples, Q’s selectivity to 0.01, andMFOBN ’s connectivity ratio to 0.5. As indicated

in , the execution time of the algorithms utilizing the “evidence-based early-stopping” technique

grows more rapidly than the rest, as ‘mratio’ increases. This behavior is justifiable, as a higher
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Figure 4.10. Size of input to inference vs. inference execution time for selection query with sel
= 0.01, data with size = 10000, mratio = 0.01, and model with cratio = 7/8.

4.5.2 Data Size

In this first experiment, we varied the number of tuples (i.e., sensor readings) in the Sensor table

from 20, 000 to 100, 000, while keeping the query selectivity (0.01), the model connectivity (7/8),

and the percentage of missing value (0.01) constant. The “evidence-based early-stopping” technique

employed in FullSel and EvidenceSel (behind the FullSel line in Figure 4.8(a)) reduces the

size of the result relation. Thus, EvidenceSel and FullSel have smaller output size than the

PlainSel and FactorSel. By comparing FactorSel and PlainSel, we observe that the “factor-

based data-filtering” technique employed by the former also decreases the result size, but not as

much as the “evidence-based early-stopping” technique.

The runtime of all the algorithms for size 10, 000 is below 1 second, and the difference in

runtime among these algorithms is within a factor of 2. The subsequent inference algorithm, on the

other hand, is 10 to 50 times more expensive than the probabilistic selection algorithms in runtime.

Thus, the comparative execution time of various probabilistic selection algorithms is not the focus

of this evaluation.

On the other hand, as we see in Table 4.10, the runtime of the subsequent inference algorithm is

proportional to the size of the input (i.e., the output of the probabilistic selection algorithm). Thus,

the focus of the experiment in this Chapter is to compare the size of the output among different

probabilistic selection algorithms.

PlainSel FactorSel EvidenceSel FullSel
Probabilistic Selection Runtime (sec) 1.5 1.2 0.2 0.2

Input Size (number of tuples) 1512 1184 204.5 159
Regular Inference Runtime (sec) 27.1 21.9 5.73 5.53
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Figure 4.10. Size of input to inference vs. inference execution time for selection query with sel
= 0.01, data with size = 10000, mratio = 0.01, and model with cratio = 7/8.

4.5.2 Data Size

In this first experiment, we varied the number of tuples (i.e., sensor readings) in the Sensor table

from 20, 000 to 100, 000, while keeping the query selectivity (0.01), the model connectivity (7/8),

and the percentage of missing value (0.01) constant. The “evidence-based early-stopping” technique

employed in FullSel and EvidenceSel (behind the FullSel line in Figure 4.8(a)) reduces the

size of the result relation. Thus, EvidenceSel and FullSel have smaller output size than the

PlainSel and FactorSel. By comparing FactorSel and PlainSel, we observe that the “factor-

based data-filtering” technique employed by the former also decreases the result size, but not as

much as the “evidence-based early-stopping” technique.

The runtime of all the algorithms for size 10, 000 is below 1.5 seconds, and the difference in

runtime among these algorithms is within a factor of 2. The subsequent inference algorithm, on the

other hand, is 10 to 50 times more expensive than the probabilistic selection algorithms in runtime.

Thus, the comparative execution time of various probabilistic selection algorithms is not the focus

of this evaluation.

On the other hand, as we see in Table 4.10, the runtime of the subsequent inference algorithm is

proportional to the size of the input (i.e., the output of the probabilistic selection algorithm). Thus,

the focus of the experiment in this Chapter is to compare the size of the output among different

probabilistic selection algorithms.

PlainSel FactorSel EvidenceSel FullSel
Probabilistic Selection Runtime (sec) 0.28 0.32 0.20 0.33

Input Size (number of tuples) 1512 1184 204 159
Regular Inference Runtime (sec) 27.1 21.9 5.73 5.53
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Figure 4.10. Probabilistic selection runtime vs. size of output (i.e., input to inference) vs.
inference execution time for a selection query with sel = 0.01, data with size = 10000,
mratio = 0.01, and a model with cratio = 7/8.

4.5.3 Data Uncertainty

In the second experiment, we varied the selectivity sel of the queries, while keeping its size to
10, 000 tuples, connectivity ratios as 0.5, and the percentage of missing values as 0.01. As shown
in Figure 4.8(b), PlainSel and FactorSel generate similar output sizes, while FullSel and
EvidenceSel generate similar output sizes. In addition, we see that PlainSel generates more
than twice as many tuples as the FullSel algorithm when the selectivity is below 0.2. As the
selectivity increases, the difference in the size of the output among different algorithms decreases,
until it becomes zero when the selectivity is 1. This is because the “evidence-based early-stopping”
technique can no longer filter out a lot of tuples when all the tuples are selected. Also, in this setup,
very litter improvement is achieved by using “factor-based data-filtering” technique.

4.5.4 Model’s Connectivity Ratio

The third parameter we varied was the model’s connectivity ratio, keeping this time the size of the
Sensor table (10, 000), the percentage of missing value (0.1), and the query’s selectivity (0.1) con-
stant. Figure 4.9(a) clearly shows that, as the model connectivity increases, the sizes of the output
of different probabilistic selection algorithms increase linearly as well. However, the output sizes
of the algorithms PlainSel and FactorSel grow much faster than output sizes of the algorithms
EvidenceSel and FullSel, because they do not utilize the “evidence-based early-stopping” tech-
nique. Algorithms EvidenceSel and FullSel, on the other hand, only have minimal increase in
the result size of around 10%.

4.5.5 Data Uncertainty

We also experimented by varying the ratio of missing values ‘mratio’ in the Sensor table, while
keeping its size to 10, 000 tuples, query’s selectivity to 0.01, and model connectivity ratio to 0.5.
As we can see in Figure 4.9(b), EvidenceSel and FullSel perform better than PlainSel and
FactorSel in all cases, except for when the percentage of the missing value is 1, in which case,
all tuples are retrieved by all the algorithms.

From the above four experiments, we show that probabilistic selection algorithms
EvidenceSel and FullSel that utilizes the “evidence-based early-stopping” technique always
perform better than their counterparts: PlainSel and FactorSel algorithms respectively. While
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4.5.2 Data Size

In this first experiment, we varied the number of tuples (i.e., sensor readings) in the Sensor table

from 20, 000 to 100, 000, while keeping the query selectivity (0.01), the model connectivity (7/8),

and the percentage of missing value (0.01) constant. The “evidence-based early-stopping” technique

employed in FullSel and EvidenceSel (behind the FullSel line in Figure 4.8(a)) reduces the

size of the result relation. Thus, EvidenceSel and FullSel smaller output size than the PlainSel

and FactorSel variants. By comparing FactorSel and PlainSel, we observe that the “factor-

based data-filtering” technique employed by the former also decreases the result size, but not as

drastic as the “evidence-based early-stopping” technique.

The runtime of all the algorithms for size 10, 000 is below 0.5 second, and the difference in

runtime among these algorithms is within a factor of 2. However, the runtime of the subsequent

inference algorithm is 10 to 50 times more expensive than the probabilistic selection algorithms.

Thus, the comparative execution time of various probabilistic selection algorithms is not the focus

of this evaluation.

On the other hand, looking at the first two rows of Table ??, we see the the runtime of the subse-

quent inference algorithm is proportional to the size of the input (i.e., the output of the probabilistic

selection algorithm). Thus, the focus of the experiment in this Chapter is to compare the size of the

output among different probabilistic selection algorithms.

PlainSel FactorSel EvidenceSel FullSel
Input Size (number of tuples) 1512 1184 204.5 159

Regular Inference Runtime (sec) 27.1 21.9 5.73 5.53

Runtime (sec) PlainSel FactorSel EvidenceSel FullSel
Regular Inference 27.1 21.9 5.73 5.53

First-order Inference (Best-Case) 2.0 1.6 1.1 0.9

4.5.3 Data Uncertainty

We also experimented by varying the ratio of missing values ‘mratio’ in Sensor, while keeping its

size to 10000 tuples, Q’s selectivity to 0.01, andMFOBN ’s connectivity ratio to 0.5. As indicated

in , the execution time of the algorithms utilizing the “evidence-based early-stopping” technique

grows more rapidly than the rest, as ‘mratio’ increases. This behavior is justifiable, as a higher
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Figure 4.11. Inference execution time for selection query with sel = 0.01, data with size
= 10000, mratio = 0.01, and model with cratio = 7/8.

the “factor-based data-filtering” technique does reduce the size of the output as well, it is not as
effective as the “evidence-based early-stopping” technique in our experimental setup.

4.5.6 First-order Inference

One of BAYESSTORE’s major objectives is the integration of relational queries with probabilistic
inference operators. In our final experiment, we computes the joint distribution F of the RVs that
correspond to the missing values in the Sensor table, for all the readings that satisfy the condition
L=’Drk’. According to our query semantics, this inference query produces a new incomplete
relation Sensor’ and modelMFOBN ’.

The selection query operates both on the modelMFOBN , using the Select-Model algorithm
from Section 4.2.1, and on Sensor, using different data selection algorithms from Section 4.2.2.
The resulting modelMFOBN ’ is grounded to a flat Bayesian Network, so that standard inference
algorithms can be applied. Due to time limitations, rather than integrating an inference operator
in our prototype, we used the implementation of the Variable Elimination algorithm from Kevin
Murphy’s BNT toolbox. On top of it, we implemented one of the First-Order inference techniques
discussed in [58] (the FirstorderSharing technique), which allows us to share the inference
computation over a population of instances with the same model template, without fully grounding
the model. Thus, if every sensor in a sensor deployment has an independent and identical prob-
abilistic model, then the inference computation over every sensor reading is the same. Thus, the
inference computation can be shared among all sensor readings.

Table 4.11 shows the total execution time for the query, using our various data selection al-
gorithms, with and without the first-order optimizations. This is a best-case scenario, because the
probabilistic model over sensors in each room is the same in our model. Thus, we can share the in-
ference computation among different rooms over different timestamps. In this case, the first-order
inference optimization results in a 5 to 10 times reduction on the query execution time. We also
notice that with the first-order inference optimization, the FullSel algorithm can still achieve a 2
times speedup compare to the PlainSel algorithm.

This best-case evaluation show the promising potential to speed-up inference algorithms using
first-order structures in FOBN models. However, first-order inference does not always reduce
inference runtime. In fact, there are cases where the overhead can outweigh the improvement of
first-order inference in runtime. An optimizer is needed to be able to choose between different
inference algorithms and optimizations. In Chapter 7, we show our effort in that direction.

These results indicate that data and evidence filtering techniques manage to reduce the time
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of the inference operator, as a welcome effect of the incomplete relation’s size reduction. The
increased cost for the select operation is more than ten times less than the reduced cost for the
inference operation.

4.6 Summary

In this chapter, we described the new algorithms to execute basic relational operators over an in-
stance of the BAYESSTORE data model for the application of sensor networks based on FOBN
models. Each relational operator, including select, project, and join, consists of a two-part com-
putation: one part over the incomplete relation and the second part over the FOBN model. We
evaluated different variations of these algorithms in terms of the size of the output. We showed
that the effectiveness of pruning the output tuples directly affects the efficiency of the follow-up
inference algorithms. Furthermore, a preliminary experiment also showed the benefits of utilizing
first-order structures in the FOBN models in improving the runtime of the inference algorithms. In
this chapter, we focused on the FOBN model for sensor network applications. We touched upon
the inference runtime related to evaluating the efficiency of the probabilistic relational operators.
In the next chapter, we focus on the implementation and evaluation of inference algorithms for
information extraction over text.
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Chapter 5

Inference Operators

In this chapter, we describe the in-database implementation of various inference algorithms over
probabilistic graphical models, including Viterbi, sum-product, and MCMC algorithms described
in Chapter 2.2. In this thesis, we built two instances of the BAYESSTORE system using the same
data model and system architecture described in Chapter 3. For the rest of this thesis, we describe
the development of the BAYESSTORE system components for inference, probabilistic query pro-
cessing, and optimization driven by IE applications over text data. The inference algorithms are
described over this BAYESSTORE instance with the linear-chain CRF model.

We first describe the schema in this BAYESSTORE instance to store the CRF model. Then we
describe the detailed implementation of the inference algorithms over CRF models. Some of the
inference algorithms, such as Viterbi, are restricted to linear-chain CRF models; while other infer-
ence algorithms, such as the MCMC Gibbs sampler, are generally applicable to all PGMs, includ-
ing CRF and FOBNs. Finally, we show the runtime evaluation of the in-database implementation
of these inference algorithms compared to the corresponding open-source implementations. The
results show that inference algorithms over probabilistic graphical models can be efficiently im-
plemented in a set-oriented programming and execution framework, such as a relational database.

5.1 Overview

Our in-database implementation of the inference algorithms over the CRF model for IE is based on
the following two observations:

• Relational Representation of Inputs: As shown in Section 3.4, CRFs can be presented as a
first-class object in a BAYESSTORE. Similarly, text data can be captured relationally via the
inverted file representation commonly used in information retrieval.

• Declarative Inference: Given tabular representations of CRF model parameters and input
text, the inference algorithms for CRFs can be elegantly expressed as SQL queries using
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strID pos token Label 

1 0 2181 

1 1 Shattuck 

1 2 North 

1 3 Berkeley 

1 4 CA 

1 5 USA 

(a) 

token prevLabel label score 

2181 (DIGIT) null street num 22 

2181 (DIGIT) null street name 5 

… .. .. 

Berkeley street street name 10 

Berkeley street city 25 

.. .. .. 

(b) 

Figure 5.1. An instance of the MR table.

advanced features in PostgreSQL 8.4, such as recursive joins, window functions and array
data types.

Together, these observations result in a unified and efficient approach for implementing CRF
and its inference algorithms using the PostgreSQL DBMS. In Section 5.4.2, we show that the
runtime performance of this system is comparable to the corresponding standalone open-source
implementations of those inference algorithms. Our approach not only correctly performs CRF-
based IE on input text, but also maintains the probability distributions inherent in CRF models to
support probabilistic analysis queries over the uncertain extraction results.

5.2 MR Matrix: A Materialization of the CRF Model

Before we delve into the detailed implementation of the various inference algorithms over the CRF
model, let us first look at the relation and the corresponding schema that we use to represent the
CRF model. This model encodes the probability distribution F over all possible extractions. The
CRF model is stored in the MR matrix (the name MR matrix is borrowed from [66]), which is a
materialization of the factor tables in the CRF model for all the tokens in a document D. More
specifically, each token xt in D is associated with a factor table φ[yt, yt−1 | xt] in the CRF model,
which represents the correlations between the token xt, the label yt and the previous label yt−1.
The factor table φ[yt, yt−1 | xt] is computed from the weighted sum of the features activated by xt
in the CRF model:

φ[yt, yt−1 | xt] =
∑K

k=1 λkfk(yt, yt−1, xt).

where the features are real-valued functions, as described in Section 3.4. There are two ways to
store the MR matrix. The first is to use the following schema, where {token,label,prevLabel} is
the primary key:

MR (token, label, prevLabel, score)
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An example of an MR matrix instance of the above schema is shown in Fig. 5.1. The second
way is to store the factor table φ[yt, yt−1 | xt] for each token xt as an array data type, where the
array contains a set of scores sorted by {prevLabel, label}. This is a more compact representation,
and can lead to better memory locality characteristics. In addition, with the array data type, we do
not have to explicitly store the values of prevLabel and label, we can simply look up the score by
index. For example, if we want to fetch the score for prevLabel=5 and label=3, then we look up
the (5× |Y |+ 3)th cell in the array. The MR matrix schema with the array data type is:

MR (token, score ARRAY[])

The TOKENTBL and the MR table are the relational and the probabilistic components of the
BAYESSTORE instance for information extraction over text. TOKENTBL stores text in a relational
form, and MR stores the CRF model in a relational form. The probabilistic distribution of the
missing labelp values in TOKENTBL is encoded in the MR table. Together, these two tables repre-
sent the uncertainties and probability distribution needed for probabilistic IE and query processing
over its probabilistic outcome.

5.3 Top-k Inference over CRF

This section describes the recursive SQL implementation of the Viterbi algorithm – the central
inference algorithm to compute the top-k extractions of structure data over unstructured text using
linear-chain CRF models. We compare the merits of a declarative SQL implementation vs. an
imperative Java implementation of the Viterbi algorithm, and decide on a middle ground that re-
tains a good deal of the declarativeness of SQL, but embeds imperative UDF functions for issues
where relational is not a good representation, such as vectors and arrays. We also implemented the
sum-product algorithm over linear-chain CRF model in a similar manner.

5.3.1 Viterbi SQL Implementations

There are three approaches to implement the Viterbi algorithm: declarative, imperative, and hybrid.
The Java implementation of the Viterbi algorithm in the CRF open source project [66] is fully
imperative. The Viterbi dynamic programming algorithm can also be implemented declaratively
using recursive SQL queries over the incomplete relation TOKENTBL and the model representation
in the MR matrix. In this section, we describe ViterbiPerStr and ViterbiAllStr, two fully declarative
SQL implementation of the Viterbi algorithm.

The declarative and imperative approaches each have their own pros and cons. The declarative
approach makes the Viterbi algorithm more concise and easier to write, and opens up cost-based
optimization opportunities. On the other hand, the imperative approach is more flexible in applying
customized optimizations, which may lead to a large performance advantage over the declarative
approach.

Instead, we choose a middle ground that retains a good deal of the declarativeness, but embeds
imperative UDFs for issues where relational is not a good representation, such as vectors and
ordered lists. This SQL implementation with special UDF functions is called ViterbiArray.

68



pos street
num

street 
name

city state country pos street
num

street 
name

city state country

0 5 1 0 1 1

1 2 15 7 8 7

0 5 1 0 1 1

1 2 15 7 8 7

2 12 24 21 18 17

3 21 32 32 30 26

4 29 40 38 42 35

2 XXX XXX XXX XXX

3 21 32 32 28 26

4 XXX XXX XXX XXX4 29 40 38 42 35

5 39 47 46 46 50

4 XXX XXX XXX XXX

5 36 42 40 43 50

(a) (b)(a) (b)

Figure 5.2. Illustration of computing V matrix in ViterbiPerStr algorithm.

ViterbiPerStr and ViterbiAllStr: As stated in Section 2.2.1, the Viterbi algorithm computes the
top-k segmentation using a dynamic programming data structure – the V matrix. Let us assume
that we are computing top-1 segmentation for simplicity. Each cell in V (i, y) stores the score
and the path of the top-1 partial segmentation up until position i ending with label y. The V
matrix at position 0 is initialized from the MR matrix: V (0, y) = φ[y,−1|x0], where −1 denotes
that the previous label is NULL. The V matrix at position i > 0 is recursively defined from the
V matrix at position i − 1, by picking the partial segmentation with maximum score: V (i, y) =
maxy′{V (i− 1, y′) + φ[y, y′|xi]}. The next example illustrates the score and the path of the top-1
segmentations stored in the V matrix.

Example 9 We use the address of ”Jupiter”, a popular jazz bar in downtown Berkeley, ”2181

Shattuck Ave. Berkeley CA USA” as an example. Fig 5.2 shows the V matrix computed by the

ViterbiPerStr algorithm. The first row contains the possible labels and the first column contains

the string positions from 0 to 5. The scores are shown in the cells of the V matrix; the path of

the top-1 partial segmentations are shown as the edges. For example, the partial segmentation

in V(3,’city’) consists of three edges V(0,’street num’)→ V(1,’street name’), V(1,’street name’)→

V(2,’street name’), and V(2,’street name’)→ V(3,’city’).

The top-1 segmentation of the text-string can be computed by following the path from the cell in

the V matrix with the maximum score. In this example the path is high-lighted: {V(0,’street num’)

→ V(1,’street name’)→ V(2,’street name’)→ V(3,’city’)→ V(4,’state’)→ V(5,’country’)}. �

The basic SQL implementation of any dynamic programming algorithm involves recursion and
window aggregation. In the Viterbi algorithm, the window aggregation is group by followed by
sort and top-1. In Fig. 5.3, we show the SQL implementation for the ViterbiPerStr algorithm
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1 CREATE FUNCTION ViterbiPerStr (int) RETURN VOID AS

2 $$

3 -- compute the top-1 path from V

4 INSERT INTO Ptop1

5 WITH RECURSIVE P(pos,segID,label,prevLabel,score) AS (

6 SELECT * FROM Vtop1 ORDER BY score DESC LIMIT 1

7 UNION ALL

8 SELECT V.* FROM Vtop1 V, P

9 WHERE V.pos = P.pos-1 AND V.label = P.prevLabel

10 ),

11 -- compute the V matrix from mr and tokenTbl

12 Vtop1 AS(

13 WITH RECURSIVE V(pos,segID,label,prevLabel,score) AS (

14 -- compute V(0,y) from mr and tokenTbl

15 SELECT st.pos, st.segID, mr.label, mr.prevLabel, mr.score

16 FROM tokenTbl st, mr

17 WHERE st.strID=$1 AND st.pos=0 AND mr.segID=st.segID

18 AND mr.prevLabel=-1

19 UNION ALL

20 -- compute V(i,y) from V(i-1,y), mr and tokenTbl

21 SELECT start_pos, seg_id, label, prev_label, score

22 FROM (

23 SELECT pos, segID, label, prevLabel, score, RANK()

24 OVER (PARTITION BY pos,label ORDER BY score DESC) AS r

25 FROM (

26 SELECT st.pos, st.segID, mr.label, mr.prev_label,

27 (mr.score+v.score) as score

28 FROM tokenTbl st, V, mr

29 WHERE st.strID=$1 AND st.pos = v.pos+1

30 AND mr.segID=st.segID AND mr.prevLabel=v.label

31 ) as A

32 ) as B WHERE r=1

33 )SELECT * FROM V)

34 SELECT $1 as strID, pos, segID, label FROM Ptop1

35 $$

36 LANGUAGE SQL;

Figure 5.3. ViterbiPerStr UDF function in SQL takes in one strID at a time and computes
the top-1 segmentation.
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in a UDF function in SQL. ViterbiPerStr processes one strID at a time, whereas an alternative
is to compute the top-k inference for all text-strings in D at the same time, which we call the
ViterbiAllStr algorithm. However, ViterbiAllStr suffers from generating a large intermediate table
that cannot be indexed.

Lines 11 – 33 compute the V matrix in the Viterbi algorithm. Lines 14 – 18 initialize the V
matrix at position 0 for all labels. Lines 26 – 30 compute all possible partial segmentations up until
position i by joining the portion of the V matrix at position i− 1: V (i− 1) and the portion of MR
table for the token at position i: MR(xi) on condition V (i− 1).label = MR(xi).prevLabel. The
rest of the logic in lines 20 – 33 computes the top-1 partial segmentation V (i, yi) among all the
partial segmentations up until position i with the same yi value, using the rank() (for computing
top-1) function with partition by (group by) and order by (sort).

After the V matrix is computed, lines 3 – 10 reconstruct the top-1 segmentation for a text-
string, by backtracking from the maximum score in the V matrix. Line 6 picks the cell in the V
matrix with the maximum score, and lines 8,9 recursively trace back the top-1 segmentation.

The mode of computation for ViterbiPerStr is to execute the inference for one text-string at a
time. The most important change for ViterbiAllStr from ViterbiPerStr is omitting the strID= $1
predicate on Lines 17 and 29. In this case, the V matrix becomes three dimensional with strID,
position and label.

ViterbiArray: The ViterbiArray algorithm is an optimization of the ViterbiPerStr algorithm,
which uses the second schema of the MR matrix from Section 5.2, and takes advantage of the
array data type. Correspondingly, the score in the V matrix for a specific position i is also stored
as an array of 〈score, prevLabel〉 pairs with length |Y |, where prevLabel is used for backtracking
the top-1 segmentation.

Fig. 5.4 shows the SQL statements in ViterbiArray that replace Line 21 – 32 of ViterbiPerStr,
where the UDF function TOP1-ARRAY(V (i−1),MR(xi)) is used to replace the join between array
V (i−1) and arrayMR(xi), and the window aggregation (group-by, sort and top-1 operations) over
the result of the join.

Figure 5.4 also shows the algorithm for the function TOP1-ARRAY, which takes in two arrays:
the first is two dimensional arrayV V (i−1) and the second is one dimensional arrayMRMR(xi).
arrayV is a 2 by |Y | array, and arrayMR is a |Y | × |Y | array. Lines 10 – 11, join arrayV and
arrayMR and compute the new scores for the join result tuples. Line 13 – 17 compute the top-1
〈score, prevLabel〉 pair for each label yi. The function returns a new arrayV V (i).

The ViterbiArray algorithm is much faster than the ViterbiPerStr algorithm, because (1) the
join on V (i−1).label = MR(xi).prevLabel is replaced by index computation between two arrays
V (i− 1).score and MR(xi).score; (2) the scores in the MR matrix are compactly represented as
an array, which greatly improves the memory locality characteristics; (3) the computation of the
group by, sort and top-1 computation in ViterbiPerStr is replaced by index computation and the
maintenance of a priority queue.
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1 SELECT st.pos, st.segID,

2 top1_array(v.score, mr.score) as score

3 FROM tokenTbl st, V, mr

4 WHERE st.strID=$1 AND st.pos = v.pos+1

5 AND mr.segID=st.segID

TOP1-ARRAY (int[2][]arrayV, int[]arrayMR)

1 size1 = length of dimension 2 of arrayV;

2 size2 = length of dimension 1 of arrayMR;

3 result = new int[2][size1];

4

5 // compute the top1 for each label over the join result

6 // of arrayV and arrayMR on V.label=MR.prevLabel

7 // arrayMR is ordered by (prevLabel,label)

8 for i = 0; i < size2; i++ do

9 // prevLabel and label in arrayMR

10 k = i/size1; kr = i%size1;

11 newscore = arrayV [0][k] + arrayMR[i];

12

13 if k == 0 ‖ newscore > result[0][kr] then

14 result[0][kr] = newscore;

15 // record the prevLabel for the top1 for label kr

16 result[1][kr] = k;

17 endif endfor

18 return result

Figure 5.4. ViterbiArray modification in ViterbiPerStr and the algorithm for UDF function
in C top1-array.
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Figure 5.5. Average inference time (msec) for a single text-string for different implemen-
tations of the Viterbi algorithm.

dataset ViterbiAllStr ViterbiPerStr ViterbiArray Javadataset ViterbiAllStr ViterbiPerStr ViterbiArray Java

address 10.5 msec 3.2 msec 0.8 msec 0.5 msec

bib 1760.1 msec 175.1 msec 6.2 msec 16.2 msec

label1 Y‐label2

Y‐label2

label2

state0 state1 state2 –
t t ( +1)

state(2+n)
state(n+1)

(Y‐label2) and state(n+1)

Figure 5.6. Average inference time per text-string (msec) for different Viterbi implementa-
tions on address and bib dataset.
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5.3.2 Experimental Results

We implemented the Viterbi inference algorithm over CRF models in the PostgreSQL 8.4 devel-
opment version. The reason we use the development version is that it supports recursive queries.
The Java implementation of the CRF model learning and inference is from the CRF open source
project [66]. We conducted our experiments on a 2.4 GHz Intel Pentium 4 Linux system with 1GB
RAM.

We use two datasets in the evaluation. The first dataset is a set of over 200k address strings we
extracted from the yellow pages. The average number of tokens in the address strings is 6.8, and 8
labels are used to tag this dataset. The second dataset is a set of more than 18k bibliography entries
prepared by R.H. Thomason [67]. The average number of tokens in the bibliography strings is
37.8, and 27 labels are used to tag this dataset. We ran the three top-k inference implementations
in SQL: ViterbiAllStr, ViterbiPerStr and ViterbiArray, and the Java implementation on the address
dataset.

Fig. 5.5 shows the average inference time per text-string (IPS) in msec for different Viterbi
implementations with increasing number of text-strings on the x-axis, from 1k to 200k. The results
show that ViterbiAllStr is not scalable with the number of text-strings, and ViterbiPerStr is 6 times
more expensive than the hand-tuned Java implementation. On the other hand, the use of the array
data type in ViterbiArray demonstrates comparable performance to the Java implementation. The
average IPS is 0.57 msec for Java, and 0.81 for ViterbiArray.

Fig. 5.6 compares the IPS numbers over two datasets. The ViterbiArray implementation is
more efficient than the Java implementation on the bibliography dataset. There are two main
reasons for this: (1) ViterbiArray uses the materialized MR matrix, which needs to be computed
on the fly in the Java implementation; and (2) ViterbiArray uses an efficient join between arrays
with good memory locality characteristics, which is especially evident with a large number of
labels.

5.4 MCMC Algorithms

In this section, we describe the in-database implementation of a different class of inference
algorithms—the MCMC inference algorithms, which are much more general than the Viterbi al-
gorithm. The MCMC algorithms can be applied to perform inference not only over models with
a special restricted structure, such as linear-chain CRF, but can also over general probabilistic
graphical models, such as Bayesian Networks and Markov Random Fields. We describe the im-
plementation of two MCMC algorithms: the Gibbs sampler and Metropolis Hastings.

5.4.1 SQL Implementation of MCMC Algorithms

Both the Gibbs sampler and the Metropolis Hastings (MCMC-MH) algorithm are iterative algo-
rithms that contain three main steps: 1) initialization, 2) generating proposals, and 3) generating
samples. They differ in their proposal and sample generation functions.
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1 CREATE FUNCTION Gibbs (int) RETURN VOID AS

2 $$

3 -- compute the initial world: genInitWorld()

4 insert into MHSamples

5 select setval(’world_id’,1) as worldId, docId, pos, token,

trunc(random()*num_label+1) as label

6 from tokentbl;

7 -- generate N sample proposals: genProposals()

8 insert into Proposals

with X as (

select foo.id, foo.docID, (tmp\%bar.doc_len) as pos

9 from (

select id, ((id-1)/($1/numDoc)+1) as docID,

((id-1)\%($1/numDoc)) as tmp

10 from generate_series(1,$1) id) foo, doc_id_tbl bar

11 where foo.doc_id = bar.doc_id

)

12 select X.id,S.docId,S.pos,S.token, null as label,

null::integer[] as prevWorld, null::integer[] as factors

13 from X, tokentbl S

14 where X.docID = S.docID and X.pos = S.pos;

15 -- fetch context: initial world and factor tables

16 update proposals S1

17 set prev_world = (select * from getInitialWorld(S1.docId))

18 from proposals S2

19 where S1.docId <> S2.docId and S1.id = S2.id+1;

20 update proposals S1

21 set factors = (select * from getFactors(S1.docId))

22 from proposals S2

23 where S1.docId <> S2.docId and S1.id = S2.id+1;

24 -- generate samples: genSamples()

25 insert into MHSamples

26 select worldId, docId, pos, token, label

27 from (

28 select nextval(’world_id’) worldId, docId, pos, token, label,

getalpha_agg((docId,pos,label,prev_world,factors)

::getalpha_io) over (order by id) alpha

29 from (select * from proposals order by id) foo) foo;

30 $$

31 LANGUAGE SQL;

Figure 5.7. The SQL implementation of Gibbs sampler takes input N – the number of
samples to generate. 75



We initially implemented the MCMC algorithms in the SQL procedure language provided by
PostgreSQL—PL/pgSQL—using iterations and three User Defined Functions (UDF’s):

• GENINITWORLD() to compute the initialized world (line 1 for Gibbs in Figure 5.7);

• GENPROPOSAL() to generate one sample proposal (line 3 for Gibbs in Figure 5.7);

• GENSAMPLE() to compute the corresponding sample for a given proposal (line 4 for Gibbs
in Figure 5.7).

However, this implementation ran hundreds of times slower than the Scala/Java implementation
described in [68]. This is mainly because calling UDF’s iteratively a million times in a PL/pgSQL
function is similar to running a SQL query a million times. A more efficient way is to “decorrelate”,
and run a single query over a million tuples. The database execution path is optimized for this
approach. With this basic intuition, we re-implemented the MCMC algorithms, where the iterative
procedures are translated into set operations in SQL.

The efficient implementation of the Gibbs sampler is shown in Figure 5.7, which uses the
feature of window functions introduced in PostgreSQL 8.4. MCMC-MH can be implemented
efficiently in a similar way with some simple adaptations. The pseudo-code of MCMC-MH can be
found in Appendix A.1.

Lines 3 to 6 of Figure 5.7 show one way to generate the initial world, by randomly assigning
labels 1 to each token in TOKENTBL. Lines 7 to 14 show how to generate N proposals of label
variables to sample next, using a single SQL query rather than iteratively (N being represented as
the parameter $1). Relation X is the “skeleton” of the proposals, consisting of the id of the sample,
the docID and the pos of the token in TOKENTBL to perform the next sample. The “skeleton”
X is then joined with TOKENTBL to generate a set of proposals. For MCMC-MH, labels of the
proposed variables are also randomly assigned.

Lines 15 to 23 update the PROPOSALS table by initializing the first proposal of each document
with its initial world and the corresponding factor tables. This is the “context” for the first sample
proposal of each document; for each following sample proposal, the “context” is passed as the
aggregate states of the window function. As shown in lines 24 to 30, the sample corresponding to
each proposal is computed using the window aggregate function getalpha_agg. getalpha_agg
takes in the current proposal (docID, pos), and the “context” (prev_world, factor), and
returns the new sample (docID,pos,label) based on the proposal distribution. For MCMC-
MH, getalpha_agg computes α—the acceptance ratio of the proposal—and either accepts the
proposal by returning it as the sample (docID,pos,label), or rejects it by returning NULL.

This implementation achieves similar (within a factor of 1.5) runtime compared to the
Scala/Java implementation of the MCMC algorithms, as shown in the next section.

5.4.2 Experimental Results

We now present the results of our experiments to evaluate the efficiency of the SQL implementation
of the MCMC methods. We implemented the MCMC inference algorithms in PostgreSQL 8.4.1.

1numLabel is the total number of possible labels.
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Figure 5.8. Runtime comparison of the SQL and Java/Scala implementations of MCMC-
MH and Gibbs algorithms over DBLP.

We conducted the experiments reported here on a 2.4 GHz Intel Pentium 4 Linux system with 1GB
RAM.

For evaluating the efficiency of the in-database implementation of the MCMC methods, we
use the DBLP dataset [69] and a CRF model with 10 labels and features similar to those in [20].
The DBLP database contains more than 700, 000 papers with attributes, such as conference, year,
etc. We generate bibliography strings from DBLP by concatenating all the attribute values of each
paper record. We also have similar results for the same experiments over NYTimes dataset.

In the following experiment, we compare the runtime of the in-database implementation of the
MCMC algorithms, including Gibbs Sampling and MCMC-MH, with the runtime of the Scala/Java
(with Scala 2.7.7 and Java 1.5) implementation of MCMC-MH described in [68] over linear-chain
CRF models. The runtime of Scala/Java implementation is measured on a different machine with
better configurations (2.66GHz CPU Mac OSX 10.6.4 with 8G RAM).

As shown in Figure 5.8, the runtimes of the MCMC algorithms grow linearly with the number
of samples for both the SQL and the Java/Scala implementations. While the Scala/Java implemen-
tation of MCMC-MH can generate 1 million samples in approximately 51 seconds, it takes about
78 seconds for the SQL implementation of the MCMC-MH, and about 89 seconds for that of the
Gibbs Sampling. The result shows that, in the setup of this experiment, the in-database implemen-
tations of the MCMC sampling algorithms achieve comparable (within a factor of 1.5) runtimes to
the Java/Scala implementation.

5.5 Guidelines for Implementing In-database Statistical Methods

Having implemented a number of inference algorithms in the database, including the Viterbi dy-
namic programming for linear-chain CRF, sum-product algorithms (refer to Section 7), and the
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MCMC methods described above, we have developed a set of design guidelines for implementing
statistical methods in the database:

• Avoid using iterative programming patterns in PL/pgSQL and other database extension lan-
guages. This is easily overlooked, since many machine learning inference techniques are
described as iterative methods. Database architectures are optimized for running a single
query over lots of data, rather than iteratively running a little query over small amounts of
data. The passing of “iterative state” is achieved in a single query expression via recursive
queries in Viterbi and sum-product, and window aggregate functions in MCMC-MH and
Gibbs.

• Use efficient representations for factor tables. Tables and rows are heavy-weight representa-
tions for cells in a factor table. Array data types (which are now standard in many relational
database systems) provide better memory locality, faster look-up and more efficient opera-
tions.

• Drive the data-flow via a few SQL queries, and use user-defined functions (and aggregates)
to do inner-loop arithmetic. This design style enables the database optimizer to choose an
efficient data-flow, while preserving programmer control over fine-grained efficiency issues.

• Keep running state in memory, and update using user-defined functions and aggregates. This
is typically far more efficient than storing algorithm state in the database and updating using
SQL.

5.6 Summary

In this chapter, we described the in-database implementation of two classes of inference algo-
rithms over the CRF model. The first class contains exact inference algorithms that computes
top-k extractions over the linear-chain CRF model. These algorithms cannot be applied to more
general probabilistic graphical models. The second class contains general but approximate infer-
ence algorithms—the MCMC algorithms. This class of inference algorithms can be applied over
graphical models with more complex structures. The experimental results show that these statis-
tical methods can be implemented efficiently inside of a relational database, following a set of
implementation rules. The native implementation of the inference algorithms opens up opportuni-
ties for deep integration and optimization between the inference and the relational operators in the
database. We show such optimizations in the next chapter.
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Chapter 6

Viterbi-based Probabilistic Query Processing

Having described the efficient in-database implementation of the inference algorithms over CRF
models in BAYESSTORE, we can now execute probabilistic analysis queries that involve both rela-
tional and inference operators over the extracted entities from unstructured text. In this chapter, we
focus on the set of probabilistic queries that can be answered using the top-k inference algorithm
over the linear-chain CRF models—Viterbi. We evaluate such query processing and describe new
algorithms for probabilistic queries, which optimize by reordering the operators in query execution
and by employing a deep integration between the relational and inference operations. We conduct
experiments comparing both the runtime efficiency and answer quality of these new algorithms
with the standard query execution plans.

6.1 Overview

In Chapter 3 and Chapter 5, we described an in-database implementation of the CRF model and
its maximum-likelihood (ML1) inference algorithm—Viterbi. As we described in Section 1.4.3,
taking only the ML extraction results and ignoring their associated probabilities enables relational
queries to be performed in a straightforward manner. This approach, however, suffers from two
important limitations: (1) as shown in [28], restricting the queries to the ML extractions can result
in incorrect answers, and (2) because the IE inference is computed separately from the queries over
the extracted data, important optimization opportunities are lost.

In this chapter, we aim to achieve a deeper integration of IE and inference with relational
queries to improve both run-time efficiency and answer quality. We study two approaches.

We first consider deterministic Select-Project-Join (SPJ) queries over the ML results of Viterbi-
based IE. For this case, we develop query optimizations that reduce work by carefully pushing
relational operators into the Viterbi algorithm. Compared to previous approaches that treated the
IE and query phases separately, these optimizations can significantly improve efficiency.

1In this Chapter, we use ML to stand for maximum-likelihood, rather than machine learning.
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The key problem with querying the ML extractions stems from inaccuracies in IE models:
even high-quality ML extractions contain errors, which can be exacerbated in SPJ queries over
such extractions. We illustrate this point with an example scenario.

Example 10 Kristjansson et al. [20] used CRF-based IE to extract Contact information from the

signature blocks in the Enron email corpus [70]. One such block begins with the text:

Michelle L. Simpkins
Winstead Sechrest & Minick P.C.
100 Congress Avenue, Suite 800...

One of the fields we wish to extract from these email blocks is companyname, which in this

case should be “Winstead Sechrest & Minick P.C.”. Unfortunately, the ML extraction from the

CRF model assigns the value NULL to companyname. This IE error shows up more explicitly in

the following relational queries:

Query 1. Find contacts with companyname containing ”Winstead”

SELECT *

FROM Contacts

WHERE companyname LIKE ’%Winstead%’

Query 2. Find all contact pairs with the same companyname

SELECT *

FROM Contacts C1, Contacts C2

WHERE C1.companyname = C2.companyname

The first query provides an empty result, since “Winstead Sechrest & Minick P.C.” is not iden-

tified as a companyname. The second query is perhaps more vexing and counterintuitive: the

erroneous NULL parse for Michelle Simpkins’ companyname means that she does not even match

herself, hence, she is again absent from the output. In general, due to the inherent uncertainty in

IE, the answers to queries over ML extractions can contain false negatives and/or false positives.

�
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strID apt. nump street nump street namep cityp statep countryp

1 null 2181 Shattuck North Berkeley CA USA

2 12B 331 Fillmore St Seattle WA USA
(a)

2 12B 331 Fillmore St. Seattle WA USA

3 224B null Ford South St. Louis MO USA

strID company namep cityp statepp y y

1 Google Mountain View CA

2 Yahoo! Santa Clara CA 
(b)

3 Microsoft Seattle WA

Figure 6.1. Examples of the ML views of entity tables: (a) address strings (b) company
location strings.

To address this answer quality problem, we develop an alternative to the ML-based approach
using Probabilistic Database techniques, where probabilistic SPJ queries are computed over the
set of possible worlds (PWs) induced from the CRF-based distribution.

We show that, by allowing us to look beyond ML extractions, this probabilistic database ap-
proach can significantly reduce false negatives (by as much as 80% in our experiments) with only
marginal increase in false positives. As expected, the improvement in answer quality comes at a
performance cost due to the consideration of the full CRF distribution instead of only the ML ex-
traction. For probabilistic selection, we show how to reduce this overhead to a small fixed-cost per
document over the optimized ML-based queries. For probabilistic join, however, the performance
penalty can be much higher. Thus, the two approaches we develop, while both improvements over
the state-of-the-art, provide a design space where performance or answer quality can be empha-
sized based on the requirements of the application.

In the following sections we first present novel optimizations for SPJ queries over the
maximum-likelihood world of the CRF distribution that improve runtime performance through
the effective integration of relational operators and Viterbi-style inference. Then, we propose new
algorithms, that substantially extend Viterbi inference to enable effective probabilistic SPJ queries
over the full CRF distribution, and thus provide improved answer quality by considering the full
set of possible extraction “worlds”. Finally, we evaluate our proposed approaches and algorithms,
demonstrating the scalability of our solutions and exploring the trade-off between efficiency and
answer quality using data collections from the Enron and DBLP datasets.

6.2 Two Families of SPJ Queries

This section describes the setup of the system. Unstructured text is represented by a set of docu-
ments or text-strings D, and each document d ∈ D is represented by a set of token records in TO-
KENTBL. The CRF-based distribution over documents D is stored in MR table. The TOKENTBL

and MR table are pre-materialized and has been described in Section 3.4. Based on TOKENTBL

and MR, each document is parsed into one probabilistic record in an entity table. Two families of
queries over the probabilistic entity tables are explored.
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Entity Table: An entity table contains a set of probabilistic attributes, one for each label in Y .
Each tuple in the entity table has an independent distribution, defined by the CRF model over the
corresponding text-string d. Figure 6.1(a) shows the maximum-likelihood (ML) view of the entity
table with three address strings.

The entity table is defined and generated by a pivot operation over the possible labelings in the
TOKENTBL and their distribution. For each possible labeling of a text-string, the pivot operation
generates one possible world of the corresponding record in the entity table. For example, the
labeling corresponding to segmentation y1 in Figure 2.2(b) generates the first tuple in the entity
table in Figure 6.1(a).

Two Families of SPJ Queries: There are two families of queries we consider computing on the
extracted data in the entity tables. Given that the ML view of an entity table can be defined as:

CREATE VIEW entityTbl1-ML as

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r

FROM entityTbl1

WHERE r = 1;

one family is the set of deterministic SPJ queries over the ML views of the entity tables. The other
family computes the top-k results of probabilistic SPJ queries over entity tables using the set of
possible worlds (i.e., segmentations) induced by the CRF distribution. Optionally, a prescribed
threshold can be applied to the result probabilities. The queries in this family have the following
general form, where SQLQuery is a view using a standard SPJ query:

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r

FROM SQLQuery

WHERE r <= k [ AND prob(*) > threshold ]

6.3 Querying the ML World

In this section, we focus on deterministic SPJ queries over the ML views of the entity tables. The
naive way to compute this type of query is to first compute the ML extraction for each document,
then execute the SPJ queries over the result. We show that for selection and join, conditions can
be pushed into the Viterbi inference process to achieve significant speed-up. This performance
improvement demonstrates the benefit of a deep integration of IE and relational operators.

6.3.1 Optimized Selection over ML World

An example of a selection query over the ML view of an entity table is to find all the Address tuples
whose streetname contains ’Sacramento’ in the ML extraction:

SELECT *

FROM Address-ML

WHERE streetname like ’%Sacramento%’
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pos street
num

street 
name

city state country pos street
num

street 
name

city state country

0 5 1 0 1 1

1 2 15 7 8 7

0 5 1 0 1 1

1 2 15 7 8 7

2 12 24 21 18 17

3 21 32 34 30 26

4 29 40 38 42 35

2 XXX 24 XXX XXX XXX

3 XXX 32 XXX XXX XXX

4 29 40 38 41 334 29 40 38 42 35

5 39 47 46 46 50

4 29 40 38 41 33

5 36 47 46 46 49

(a) (b)(a) (b)

Figure 6.2. Illustration of the computation of V matrix in the following algorithms: (a)
Viterbi; (b) ConstrainedViterbi.

The selection condition over the ML view of the Address table is rewritten into two selection
conditions over the underlying TOKENTBL and MR: (1) test if the text-string d contains the token
sequence in the selection condition xcond (e.g., ’Sacramento’); (2) test if the position(s) where xcond
appears in d are assigned the label in the selection condition ycond (e.g., streetname). The first con-
dition can be simply pushed down over the TOKENTBL, only picking the documents that contain
the token sequence xcond. The second condition can be pushed into the Viterbi inference computa-
tion of a particular text-string d with condition {i, len, y′} ensuring that the label at positions from
i to (i + len − 1) is y′. In general, condition (2) may span multiple tokens. Next, we describe
SELVITERBI, a novel variant of the Viterbi algorithm that pushes the condition {i, len, y′} into the
Viterbi computation.

Recall the Viterbi algorithm described in Section 5.3.1, which computes a V matrix as in Fig-
ure 6.2(a): The condition {i, len, y′} is satisfied if and only if the ML segmentation path backtracks
to all the entries in V (i, y′) .. V ((i + len − 1), y′). The intuition behind the SELVITERBI algo-
rithm is as follows. Given condition {i, 1, y′} and a text-string d, if none of the top-1 (partial)
segmentations ending at position j where T > j > i backtrack to cell V (i, y′), then we can stop
the inference and conclude that this text-string does not satisfy the condition. We call such a po-
sition j a pruning position, and we would like to detect a pruning position as early as possible to
stop the inference computation. Similar intuition holds for the general case where len > 1. Our
SELVITERBI algorithm follows the basic Viterbi dynamic program algorithm, which calls a User
Defined Function (UDF), at each recursive step i, to compute the top-1 (partial) segmentations in
V (i, yi) using Equation (2.2), with additional logic to check if i is the smallest pruning position.
It stops the recurrence and returns null if a pruning position is found. The pseudo-code of the
SELVITERBI algorithm is shown in Figure 6.3 and 6.4.

Example 11 Using the example in Figure 6.2(a), suppose the condition {1, 1,streetnumber} is

generated from a selection condition for a specific text-string d: return text-string d with street-

number as the label of token #2 (counting from 0) in the ML segmentation. In the second recursive

step, only the partial segmentation in V (1,streetnumber) satisfies the condition. In the third recur-
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1 CREATE FUNCTION selViterbi (id, i, len, y’) RETURN VOID AS

2 $$

3 -- compute the V matrix from tokenTbl and factorTbl

4 INSERT INTO V

5 WITH RECURSIVE Vtop1(pos, entries, filter) AS (

6 SELECT st.pos,

7 mr.score[1:|Y|]||array-fill(-1,ARRAY[|Y|]) entries,

8 array-fill(0,ARRAY[|Y|]) filter

9 FROM tokenTbl st, factorTbl mr

10 WHERE st.strID=id AND st.pos=0 AND mr.segID=st.segID

11 UNION ALL

12 SELECT st.pos,

13 top1-array(v.score, mr.score) entries,

14 update-filter(i,len,y’,v.pos,v.filter,v.score) filter

15 FROM tokenTbl st, Vtop1 v, factorTbl mr

16 WHERE st.strID=id AND st.pos = v.pos+1 AND

17 mr.segID=st.segID AND (pos<=i or nonzero(v.filter))

18 ) SELECT pos, entries FROM Vtop1,

19 -- backtrack the ML segmentation from V

20 INSERT INTO Ptop1

21 WITH RECURSIVE P(pos,entry) AS (

22 SELECT pos, get-max(entries) entry

23 FROM Vtop1 WHERE pos=T-1

24 UNION ALL

25 SELECT V.pos, V.entries[P.prevLabel]

26 FROM Vtop1 V, P WHERE V.pos = P.pos-1

27 ) SELECT id as strID, pos, entry.label FROM Ptop1

28 $$

29 LANGUAGE SQL;

Figure 6.3. SELVITERBI(): optimized algorithm for select-over-ML queries, which stores
the ML segmentation in Ptop1.
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UPDATE-FILTER (i, len, y′, j, filter, V (j, y))

1 for each l ∈ Y do

2 if j > (i+ len)&&filter[V (j, l).prev] = 1 then

3 newFilter[l] = 1;

4 else if j > i&&l = y′&&filter[V (i− 1, l).prev] = 1 then

5 newFilter[l] = 1;

6 else if j = i&&l = y′ then

7 newFilter[l] = 1;

8 else newFilter[l] = 0;

9 endif endfor

10 return newFilter

Figure 6.4. UPDATE-FILTER(): auxiliary function for checking pruning position.

sive step, because no partial segmentations in V (2, y), y ∈ Y come from cell V (1,streetnumber)

as shown in Figure 6.2(a), j = 2 is the smallest pruning position. Thus, we stop the dynamic

programming algorithm and conclude that d does not satisfy the condition {1, 1,streetnumber}. �

Variants of SELVITERBI can be employed for increased efficiency based on criteria such as
the position and selectivity of a selection condition (which can be incorporated into a cost-based
optimizer).

Generalized Selection-Aware Viterbi: The SELVITERBI algorithm can be used with any
{i, len, y′} condition. However, for conditions with i being the last few positions, a variant of
the Viterbi algorithm, which computes the top-k segmentations from the end to the start of a text-
string, should be used for efficiency. Furthermore, the Viterbi algorithm can be modified to start
the dynamic programming from any position i, by expanding the intermediate result of the partial
segmentations in two directions, rather than just one (left to right) in Viterbi. As future work, a
cost-based optimizer can be developed to decide where/how to execute SELVITERBI, based on the
position and selectivity of a selection condition.

6.3.2 Optimized Join over ML World

An example of a join query over the ML views of two entity tables is to find all (Address, Company)
entity pairs (as in Figure 6.1) with the same city value.
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SELECT * FROM Address-ML, Company-ML

WHERE Address-ML.city = Company-ML.city

The naive join algorithm over the ML world is: first, compute the Viterbi inference on the two
input document sets independently; second, perform the pivot operations to compute the ML views
of the Address and Company entity tables – Address-ML and Company-ML; finally, compute the
deterministic join over the city attribute.

The intuition behind the optimization is that we do not need to compute the Viterbi inference
over a text-string in the outer document set if it contains none of the join-key values computed from
the inference over the inner document set. The optimized algorithm for join-over-ML follows
these steps: (1) compute the Viterbi inference over the smaller of the two input document sets,
we call this the inner set and the other the outer set; (2) build a hash-table of the join-attribute
values computed from the ML extraction of the inner set; (3) perform Viterbi inference only on
the documents in the outer set that contain at least one of the hashed values; and (4) perform the
pivot operation to compute the ML views of the entity tables and compute the deterministic join
over them. This optimization reduces the number of documents on which the Viterbi inference is
performed, which improves the performance of join-over-ML queries (by more than a factor of 5
in our experiments).

6.4 Querying the Full Distribution

In this section, we discuss novel probabilistic query processing strategies to compute the top-k
results of SPJ queries over the possible worlds of CRF-based entity tables. In contrast to the
techniques in Section 6.3, the algorithms here do not focus on the single ML segmentation, but
rather compute results from the CRF-induced distribution of possible segmentation worlds. As a
first step, we present an incremental Viterbi algorithm that supports efficient sorted access to the
possible segmentations of a document by descending probabilities. This ordering is critical for
efficiently computing the top-k results of SPJ queries, especially probabilistic joins.

6.4.1 Incremental Viterbi Inference

The conventional Viterbi top-k inference algorithm is a straightforward adaptation of the dynamic
programming recurrence in Equation (2.2). The idea is to maintain, in each V (i, y) cell, a list of
the top-k partial segmentations ending at position i with label y. This, of course, assumes that the
“depth” parameter k is known a priori.

We present a variant of the Viterbi algorithm that can incrementally (through a GET-NEXT-
SEG() call) compute the next highest-probability segmentation of a document. Our algorithm is
similar in spirit to the theoretical framework of Huang et al. [71] for finding k-best trees in the
context of hypergraph traversals.

Recall the V matrix computed by the Viterbi algorithm, where each cell V (i, y) contains a list
of top-k entries e = {score, prev(label, idx)} ordered by score. The key idea in our incremental
algorithm is to enumerate this list lazily: only on the path of the last extracted segmentation.
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The key idea in our incremental algorithm is to backtrack the last extracted segmentation and
use the basic Viterbi formula (Equation (2.2)) to compute the next highest-probability segmenta-
tion. Since all the V (T ) (T is the length of the document) entries in already-extracted (i.e., “con-
sumed”) segmentation paths cannot be used to compute the next highest-probability segmentation,
they recursively trigger (through a GET-NEXT() call) the computation for the next “unconsumed”
entry using Equation (2.2) from their predecessor V cells. The key observation here is that these
recursive GET-NEXT() calls can only occur along the path of the last extracted segmentation. More
specifically, assume y∗ denotes the ML segmentation discovered through Viterbi. To build the
next-best segmentation, we start from entry V (T, y∗[T ]). Since that entry is already “consumed”
(in the ML segmentation), we trigger a GET-NEXT() call to compute the next-best entry using the
entries in row V (T − 1); this, in turn, can trigger a GET-NEXT() call at V (T − 1, y∗[T − 1]), and
so on. Thus, GET-NEXT() calls are recursively invoked on the path y∗ from T down to 1 (or, until
we find a V (i, y∗[i]) cell with an already-computed “unconsumed” entry).

The incremental Viterbi algorithm in Figure 6.5 takes the document doc, the current V matrix,
the last top segmentation y∗, and the number of top segmentations generated so far L, to compute
the next highest-probability segmentation y∗new. If L = 0, then GET-NEXT-SEG() calls VITERBI()
to compute the ML segmentation. If L > 0, then recursive GET-NEXT() calls are triggered for V
cells on the y∗ path. The chain of GET-NEXT() calls stops either at row 1 or when y∗[i] is not the last
entry in cell V (i, y∗[i]). Equation (2.2) is used to compute the next probable (partial) segmentation
in V (i, y∗[i]) after computing the new entry for V (i − 1, y∗[i − 1]). Finally, GET-NEXT-SEG()
backtracks the next highest-probability segmentation y∗new from the (L + 1)th maximal entry in
row V (T ).

Complexity: When L = 0, GET-NEXT-SEG() calls VITERBI(), thus the complexity is O(T |Y |2).
When L > 0, the complexity of the incremental Viterbi algorithm GET-NEXT-SEG() is O(T (|Y |+
L)log(|Y | + L)), because GET-NEXT() is called maximum T times, where T is the length of the
document. Each GET-NEXT() call needs to sort at most (|Y | + L) entries, because each cell in
V (i, yi) contains 1 entry after the VITERBI() ML inference, and at most 1 entry is added to 1 cell
in V (i, yi) for each GET-NEXT-SEG() call.

Example 12 The Viterbi V matrix in Figure 6.2(a) shows the ML segmentation in bold. In

order to compute the second highest-probability segmentation, GET-NEXT() is triggered recur-

sively from GET-NEXT-SEG() to compute the next probable (partial) segmentations entry for cells

V (5,country), V (4,state), V (3,city), V (2,streetname) and V (1,streetname) on the ML path. The

second highest-probability segmentation is then computed by backtracking the entry in V (T, yT )

with the second highest score. �
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GET-NEXT-SEG (doc, V, y∗, L)

1 if L = 0 then

2 y∗new ← VITERBI(doc);

3 else

4 T ← doc.length;

5 // compute the next best entry for cell V (T, y∗[T ])

6 GET-NEXT(V, T, y∗[T ]);

7 Tmp← ∪yT∈Y V (T, yT );

8 sort Tmp by score desc;

9 y∗new[n]← Tmp[L+ 1];

10 for i = n− 1; i > 0; i−− do

11 y∗new[i]← y∗new[i+ 1].prev;

12 endfor endif

13 return y∗new

GET-NEXT (V, i, e)

1 maxidx← V (i, e.label).length; l← e.label;

2 if e = V (i, l)[maxidx] then

3 GET-NEXT(V, i− 1, y∗[i− 1]);

4 Tmp← ∪yi−1∈Y V (i− 1, yi−1);

5 for each te = {score, label, prev} ∈ Tmp do

6 te.score← te.score+ MR(l, te.label, xi);

7 endfor

8 sort Tmp by score desc;

9 V (i, l)← V (i, l) ∪ Tmp[maxidx+ 1];

10 endif

Figure 6.5. The incremental Viterbi algorithm for getting the next highest-probability seg-
mentation.
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6.4.2 Probabilistic Selection

The following query computes the top-1 result of probabilistic selection with condition streetname
contains ’Sacramento’ over the probabilistic Address entity table:

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r

FROM ( SELECT *

FROM Address

WHERE streetname like ’%Sacramento%’

) as Address

WHERE r = 1 AND prob(*) > threshold

Setting a threshold on probability can effectively filter out false positive results with very low
probabilities that could be introduced by considering additional non-ML worlds. For example,
for string “123 Fillmore Street Sacramento CA”, the above query should not return the erroneous
extraction where “Sacramento” is labeled streetname. Fortunately, the CRF model exploits the
“context” (e.g., position, previous label) of a token, so in the “context” of string “123 Fillmore
Street Sacramento CA“, “Sacramento” has a very low probability of being streetname, which can
be filtered out in the selection query with proper setting of the threshold. Please refer to Sec-
tion 6.5.1 for a discussion on threshold setting.

The probabilistic selection condition is translated into domain constraints that the labels at the
positions where xcond (e.g., “Sacramento”) appear in the text-string d can only be ycond (e.g., street-
name). For example, with string “123 Sacramento Street San Francisco CA“ and condition street-
name contains ’Sacramento’, the domain constrains are D(y2) = {streetname} and D(yi) = Y
for y1, y3, .., y6. The domain constraints D(y1), ..., D(yn) generated from the probabilistic selec-
tion condition are used as input to the constrained Viterbi algorithm, described in Section 2.2.1, to
compute the top-1 result of probabilistic selection. We illustrate the algorithm using the following
example.

Example 13 Consider the V matrix in Figure 6.2(b) with domain constraints such that y2 and y3

can only be streetname: D(y2) = D(y3) = {streetname}. Thus, we can cross out all the cells in

V (2) and V (3) where y 6= streetname as shown in Figure 6.2(b). These domain constraints result

in a top-1 constrained path that is different from the result of the basic Viterbi algorithm. The top-1

constrained path satisfies the selection condition, and will be returned as a result if its probability

is higher than a certain threshold. This constrained top-1 path is the non-ML extraction computed

for the probabilistic selection queries. �
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6.4.3 Probabilistic Join

The following query computes the top-1 (ML) result of a probabilistic join operation over the
probabilistic entity tables Address and Company, with an equality join condition on city.

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r

FROM ( SELECT *

FROM Address A, Company C

WHERE A.city = C.city

) as AddrComp WHERE r = 1

A naive probabilistic join algorithm is: first compute the top-k extractions (for a sufficiently
large k) from each input document then deterministically join over the top-k views of the entity
tables. The complexity of this algorithm is dominated by the expensive computation of the top-k
extractions. Computing a fixed number of top-k extractions for every input document is wasteful,
because most top-1 probabilistic join results can be computed from the first few highest-probability
extractions. Thus, a more efficient way is to compute the top-1 join results incrementally.

An incremental join algorithm is the rank-join algorithm described in [72]. It takes two ranked
inputs and computes the top-k join results incrementally without consuming all inputs. The algo-
rithm maintains a priority queue for buffering all join results that cannot yet be produced, and an
upper-bound of the score of all “unseen” join results. Using the buffer and the upper-bound, the
rank-join algorithm can decide if one of the produced join results is guaranteed to be among the
top-k answers.

The key idea behind our probabilistic join algorithm is that, given the incremental Viterbi
algorithm, which gives us ordered access to the possible extractions of a string d—a ranked list
by probability—we can compute the top-1 join result for a pair of strings using the rank-join
algorithm. Thus, our probabilistic join is a set of rank-join computations—one for each string pair
that is “joinable” (i.e., can potentially lead to join results). If most “joinable” string pairs compute
the top-1 most probable join result from the top-1 extractions, then GET-NEXT-SEG() is called far
fewer than k times per document. For the remaining “joinable” string pairs, more extractions are
computed incrementally to look for join results in non-ML worlds. In order to bound the search,
we set k to be the maximum number of extractions from a document.

If a string pair does not join within the top-k extractions, then rank-join incurs extra overhead.
Thus, an effective filter for non-“joinable” string pairs is crucial to the efficiency of the probabilistic
join algorithm. We find that an effective such filter is to first compute the top-k extractions for inner
(the smaller) entity table, build a hash-table for all the join-key values, and for each string in outer,
probe the join-key hash-table for the “joinable” inner strings.

The probabilistic equijoin algorithm in Figure 6.6 takes two joining relations: inner, outer,
two joining columns: incol and outcol, and a parameter k indicating an upper bound on the number
of extractions allowed per document. The algorithm first computes the top-k segmentations for
each inner document, which overlaps with at least one document in outer, using the incremental
Viterbi algorithm.
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For each string odoc ∈ outer, which contains at least one join-key from an inner extraction,
we compute the corresponding joinable set—a set of inner documents that have a join-key con-
tained in odoc. Then, the rank-join loop starts simultaneously for all idoc ∈ joinable and odoc
pairs. The next highest-probability segmentation yout∗ for odoc is computed. All inner segmen-
tations that have join-key value yout∗.outcol are retrieved, and the joined results are inserted into
matched—a hash-table containing all the matching {idoc, odoc} pairs and their corresponding
rank-join buffer containing matching segmentations {yin∗, yout∗}. Next, the upper-bound upper
for each {idoc, odoc} pair in matched is computed, and the segmentation pairs {yin∗, yout∗} that
have probability no less than upper are returned. Finally, idoc and {idoc, odoc} are deleted from
joinable and matched, respectively. The rank-join loop stops when either the joinable set be-
comes empty or the extraction depth exceeds k.

6.4.4 Probabilistic Projection

The following projection query computes the ML city value for each record in the entity table
Address.

SELECT *, rank() OVER (ORDER BY prob(*) DESC) r

FROM ( SELECT city

FROM Address ) as Address

WHERE r = 1

A naive strategy would be to first compute the full result distribution of a partial marginal-
ization over a sub-domain χ ⊂ Y for each label yi in the CRF model (using the distribution of
all possible segmentations) 2; then, the ML world from the distribution can be returned. In this
manner, however, significant effort is wasted in calculating the non-ML worlds of the marginal
distribution.

Next, we describe a novel probabilistic projection algorithm that integrates the top-1 Viterbi
inference and the marginal inference. The key idea underlying our probabilistic projection tech-
nique is to extend the Viterbi dynamic program to compute top-1 segmentation paths with labels
that are either projected on (i.e., in Y \χ) or ’don’t care’s marginalizing over all the projected-out
labels in chi.

Similar to basic Viterbi, our probabilistic projection algorithm (for projecting out a sub-domain
χ ⊂ Y ) also follows a dynamic programming paradigm, computing ML (partial) segmentations
ending at position i from those ending at position i−1. There are, however, two crucial differences.
First, the (partial) segmentations {y1, ..., yi}, i 6 T computed for probabilistic projection only have
labels yj, 1 6 j 6 i in Y \χ or ’don’t care’. yj =’don’t care’ means that the segmentation path
is marginalized over χ at position j (i.e., yj could be any label in χ). A dynamic programming
matrix V (i, y) stores such top-k (partial) segmentations that end in label y ∈ Y at position i.
Second, in order to compute the top-k (partial) segmentations in V (i + 1, yi+1), in addition to the
V (i, yi) entries, we also need to account for the possibility of a ‘don’t care’ in position i. This is

2Note that, in contrast to conventional marginal inference (Section 2.2.1), which marginalizes to eliminate RVs in y, partial marginalization
here marginalizes to restrict the domains of RVs in y.
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TOP1PROBJOIN (inner, outer, k, incol, outcol)

1 for each idoc ∈ inner that overlap with at least one odoc ∈ outer do

2 V ← null; yin∗ ← null;

3 for i = 0; i < k; i++ do

4 yin∗ ← GET-NEXT-SEG(idoc, V, yin∗, i);

5 inTopk.PUT({idoc, i}, yin∗); inKeys.PUT(yin∗.incol, {idoc, i});

6 endfor endfor

7 for each odoc ∈ outer that contains at least one inKeys.keys do

8 V ← null; yout∗ ← null;

9 joinable← all idoc that has inKeys.keys contained in odoc

10 for i = 0; i < k; i+ + do

11 yout∗ ← GET-NEXT-SEG(odoc, V, yout∗, i); outTopk.PUT({odoc, i}, yout∗);

12 for each {idoc, idx} ∈ inKeys.GET(yout∗.outcol) do

13 if idoc ∈ joinable then

14 yin∗ ← inTopk.LOOKUP({idoc, idx});matched.PUT({idoc, odoc}, {yin∗, yout∗})

15 endif endfor

16 for each doc pair {idoc, odoc} ∈ matched do

17 upper ← outTopk(odoc).maxprob× inTopk(idoc).minprob;

18 upper ← max(yout∗.prob× inTopk(idoc).maxprob, upper);

19 prob← yin∗.prob× yout∗.prob

20 if prob > upper then

21 return next {idoc, odoc, yin∗, yout∗}

22 matched.DELETE({idoc, odoc}); joinable.DELETE(idoc);

23 endif endfor

24 if joinable = ∅ then break;

25 endif endfor endfor

Figure 6.6. Algorithm for computing the top-1 result for probabilistic join queries.
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U(i+ 1, yi+1).score = log(max
prev
{Σyi∈χ(./prev (exp(V (i, yi).score+ FactorTbl(xi+1, yi, yi+1))))}) (6.1)

V (i+ 1, yi+1).score = max{ max
yi∈Y \χ

{(V (i, yi).score+ FactorTbl(xi+1, yi, yi+1))}, U(i+ 1, yi+1).score}

Figure 6.7. Equations for computing U and V matrix for probabilistic projection algorithm.

pos street
num

street 
name

city state country pos street
num

street 
name

city state country

Equation(3)
0 5 1 0 1 1

1 10 18 10 11 10

1 10 18 10 11 10

2 18 30 27 24 23

Equation(3)

Equation(4)

2 18 30 27 24 23

3 30 41 43 39 35

4 43 54 52 56 49

3 30 41 43 39 35

4 41 52 50 54 47

5 54 62 61 61 574 43 54 52 56 49

5 54 62 61 61 57

5 54 62 61 61 57

6 U (6,‐1)  =  73

V matrix U matrixV matrix U matrix

Equation(4)

Equation(5)

Figure 6.8. Illustration of the data structures in probabilistic projection.

accomplished by explicitly maintaining an auxiliary matrix U(i + 1, yi+1) that stores the (partial)
top-k segmentations ending at position i + 1 with label yi+1 ∈ Y and yi = ’don’t care’. Example
V and U matrices for the above example probabilistic projection query are shown in Figure 6.8.

Next, we describe how the entries in the V and U matrices are computed. Our probabilistic
projection algorithm is a variation of the Viterbi technique, where a dynamic programming re-
currence computes both V and U simultaneously. Equation (4) in Figure 6.7 computes the top-1
partial segmentation in cell V (i + 1, yi+1) by selecting either the best extension of a partial seg-
mentation in V (i, yi), yi ∈ Y \χ or U(i + 1, yi+1), depending which choice gives the maximum
score. Equation (3) in Figure 6.7 computes the top-1 partial segmentation for cell U(i + 1, yi+1),
marginalizing over χ at position i, given label yi+1 ∈ Y . If we think of each V (i, y), y ∈ Y
as a ranked list of tuples {score, label, prev} ordered by descending score, then computing the
top-ranked U(i + 1, yi+1) entry is a multi-way rank-join with an equality join condition on prev
over ranked lists V (i, y), y ∈ χ. The multi-way rank-join aggregates the entries (i.e., partial seg-
mentations) in multiple lists V (i, y), y ∈ χ, which agree on prev. The join condition (equality on
prev) ensures that the joined (partial) segmentations share the same path up to position i− 1. The
score of the resulting partial segmentation is the summation over the score’s of the joined partial
segmentations in V (i, y), y ∈ χ.

The top-1 result for probabilistic projection can be computed by backtracking the prev pointers
from either an entry in V (T, yT ), yT ∈ Y \χ or an aggregated entry U(T + 1,−1) computed by
aggregating V (T, yT ), yT ∈ χ (to account for a final label of ’don’t care’).
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The detailed pseudo-code descriptions of probabilistic projection algorithm can be found in
Appendix A.2.

Complexity: The complexity of the probabilistic projection algorithm isO(T 3|Y |3l), where l is the
average depth of the rank-join algorithm in GET-NEXT-U(). The additional complexity comes from
computing the U matrix. The computation of each entry in the U(i, yi+1) matrix may recursively
triggers up to T number of GET-NEXT-U() calls. And each GET-NEXT-U() is a rank-join algorithm,
which calls MARGINALIZATION() with complexity O(T |Y |2) in each iteration. Thus, we have the
complexity being O(T 3|Y |3l).

Example 14 Suppose the query is probabilistic projection over city on Address. Figure 6.8 illus-

trates the computation of the entries in the V and U matrices. Equation (3) is used to compute

U(i + 1, y′), y′ ∈ Y matrix entries from a rank-join over all the V (i, y) lists except when y =city.

Equation (4) is used to compute V (i + 1, y) matrix entries from the maximum of V (i, city) and

U(i + 1, y). The top-1 result of probabilistic projection is backtracked from the maximum of

V (5, city) and U(6,−1) (T = 5) through prev pointers. In this example, the most probable

segmentation after probabilistic projection (i.e., partial marginalization) is {’don’t care’,’don’t

care’,’don’t care’,city,’don’t care’,’don’t care’}.

6.5 Experimental Results

Having described two families of approaches for integrating query processing and IE, we now
present the results of a set of experiments aimed to evaluate them in terms of efficiency and answer
quality.

Setup and Dataset: We implemented the optimizations for select-over-ML (sel-ML) and join-
over-ML (join-ML) queries as described in Section 6.3, and the algorithms for computing the top-1
result for probabilistic selection (prob-sel) and probabilistic join (prob-join) as described in Sec-
tion 6.4. These implementations were done on PostgreSQL 8.4.1. We conducted the experiments
reported here on a 2.4 GHz Intel Pentium 4 Linux system with 1GB RAM.

For the accuracy experiments, we use the Contact dataset [73] and the CRF model developed
at the University of Massachusetts [20]. The Contact dataset contains 182 signature blocks from
the Enron email dataset annotated with contact record tags (e.g., phonenumber, city, firstname,
etc.). For ground truth, we rely upon manual tagging performed in prior work [20]. We use false
positives (i.e., the number of computed results not in the ground truth) and false negatives (i.e., the
number of results in ground truth not computed) as the two measures of accuracy.

For the efficiency and scalability experiments we use the DBLP dataset [69] and a CRF model
with similar features to those of [20]. The DBLP database contains more than 700k papers with
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Figure 6.9. Performance comparison (DBLP) between sel-ML.naive, sel-ML.opt and
prob-sel with difference selection conditions.

attributes, such as conference, year, etc. We generate bibliography strings from DBLP by con-
catenating all the attribute values of each paper record. Perhaps because it was generated from
structured data, the ML extraction accuracy on the DBLP dataset is as high as 97%, making it not
useful for the accuracy experiments. But it serves as an excellent stress test for the scalability of
the algorithms.

6.5.1 Selection over ML world (sel-ML): opt vs. naive

In the first experiment, we use the DBLP dataset to compare the efficiency of optimized and naive
algorithms for select-over-ML over 100k randomly picked documents (there is no answer quality
difference between them — they provide exactly the same answers). We expect the optimized al-
gorithm sel-ML.opt (using SELVITERBI()) to outperform the naive algorithm sel-ML.naive for
selection conditions on token sequences that can have different labels in different documents
(e.g., ’algorithm’ can be in a paper title or a conference name). Figure 6.9 shows performance
results for sel-ML.naive and sel-ML.opt as the left two bars of each selection condition. It can be
seen that the optimized approach can achieve a speedup of 2 to 3 times for 6 selection conditions
in Figure 6.9 3.

We also ran experiments comparing the two approaches for cases where there is no expected
benefit to the sel-ML.opt algorithm (i.e., where there is no pruning position for sel-ML.opt to
exploit). As we can see in the three middle selection conditions in Figure 6.9, the performance
of the two approaches was nearly identical, demonstrating that the optimized approach imposes
negligible overhead (10% in the worst case) on the selection algorithm.

3It is 10-fold more expensive to evaluate the three right selection conditions, because they appear much more frequently in our dataset.
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Figure 6.10. Performance comparison (DBLP) between join-ML.naive and join-ML.opt
with different input sizes.

6.5.2 Join over ML World (join-ML): opt vs. naive

In the second experiment, we compare the efficiency of the optimized and naive algorithms for
join-over-ML. We ran a query over two sets of documents from DBLP to find all pairs in the same
proceeding. Figure 6.10 shows the results for different input sizes (x × y denotes a join of a set
of x documents as the inner with a set of y documents as the outer). As can be seen in the figure,
join-ML.opt is more than 5 times faster than join-ML.naive when the input sizes are 5k × 50k.
The speedup of join-ML.opt decreases as the inner size approach the outer size.

Two statistics determine the relative performance of join-ML.opt compared to join-ML.naive:
the number of join-keys computed from the inner, and the selectivity of those join-keys over the
outer. The query joining on “proceeding” (shown in Figure 6.10) is a good case, where it generates
a small set of join-keys, which in turn have low selectivity. As the inner size increases, both the
number of join-keys and the selectivity increases, hence the speedup decreases.

Next, we ran a query over two sets of documents from the DBLP to find all pairs with the same
authors. Figure 6.11(a) shows the results for different input sizes. As can be seen in the figure,
join-ML.opt is more efficient than join-ML.naive when the inner size is much lower than outer
size, and join-ML.opt grows to be more expensive as the inner size increases. For this join query,
the size of inner join-keys is large and the selectivity of those join-keys is high.

Similarly, we ran the query joining on publisher. Since there are not many publishers, the size
of the inner join-keys remain small as the size of the inner increases, while the selectivity of those
join-keys is high. Thus, as can be seen in Figure 6.11(b), join-ML.opt have similar or slightly
better performance compare to join-ML.naive for all inner sizes.

There are cases, when the cost of filtering the outer documents using the inner join-keys out-
weigh the cost of inference over the filtered documents, the join-ML.opt becomes more expensive
than join-ML.naive. A query optimizer can estimate the statistics on the size and selectivity of the
inner join-keys and determine when it is beneficial to apply join-ML.opt.

In the previous two sections, we showed that the optimizations for SPJ-over-ML queries can
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with different input sizes.
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(False -) company firstname lastname jobtitle department
sel-ML 0.074 0.012 0.036 0.102 0.286
prob-sel 0.014 0 0.006 0.037 0.079
(False +) company firstname lastname jobtitle department
sel-ML 0.010 0 0 0.010 0
prob-sel 0.009 0.006 0.006 0.010 0

Figure 9: False negative, false positive rates and performance comparison between sel-ML and sel-PW queries.

techniques is certainly worthwhile.

APPENDIX
A Related Work
Information extraction (IE) from text has received a lot of attention
from both the database and the Machine Learning (ML) commu-
nities (see recent tutorials [20, 21]). The vast majority of works in
ML focuses on improving extraction accuracy using state-of-the-art
probabilistic techniques, including different variants of HMM [22]
and CRF [15, 11, 13] models. Probabilistic IE models provide high-
accuracy extraction results and a principled way to reason about the
uncertainty of the IE process.

Recently, a lot of effort has been devoted on exploring frame-
works that manage the state of the IE process, and provide support
to easily specify, optimize and execute IE tasks. The most promis-
ing approach in this effort is based on declarative specifications of
the IE tasks. The AVATAR project [2] at IBM Almaden Research de-
veloped an algebraic, rule-based IE system. Through the use of an
SQL variant, IE programs can be declaratively expressed and opti-
mized. PSOX project [4] at Yahoo! research is building a pipelined
IE system based on ML models. Shen et al. [3] also consider opti-
mizing declarative IE programs specified in DataLog. These earlier
efforts in declarative IE do not have a unified framework supporting
both a declarative interface as well as the state-of-the-art probabilis-
tic IE models.

There have been efforts to consider uncertainties in IE, but only
in limited settings. For example, Avatar project [23] explored ef-
ficient maximum-entropy algorithms to generate probabilities in
their rule-based IE system. Shen et. al. [24] developed best-effort
IE considers uncertainties but not probabilities.

At the same time, the ML community has also been moving in
the direction of declarative IE. Eisner et. al. [25] adopts a pure first-
order logic perspective by extending Prolog to provide support for
dynamic programming. Markov Logic [26] represents a very pow-
erful graphical model that marries the declarativeness of first-order
logic with the popular Markov Network model, and successfully
exemplifies how their model can handle the task of citation match-
ing. In contrast to the systems come from database community,
this framework natively supports uncertainty modeling, however,
no database optimizations are considered.

Since the early 80’s, a number of PDBSs have been proposed
in an effort to offer a declarative, SQL-like interface for managing
large uncertain-data repositories [5, 6, 7, 8, 9, 10]. This work ex-
tends the relational model with probabilistic information captured
at the level of individual tuple existence [5, 8] or individual tuple-
value uncertainty [6, 9]. The Trio [6] and MayBMS [9] efforts, try
to adopt both types of uncertainty, with Trio focusing on promoting
data lineage as a first-class citizen in PDBSs and MayBMS aiming
at more efficient tuple-level uncertainty representations through ef-
fective relational table decompositions. Recent PDBS efforts like
BAYESSTORE [10] and the work of Sen and Deshpande [8] rep-
resent probabilistic models (based on Bayesian networks) as first-
class citizens in relational database, and support in-database queries
and reasoning over the the model.

The issue of offering database support for managing IE through
state-of-the-art probabilistic models has not been addressed in ex-

isting PDBSs. Closer to our work, Gupta and Sarawagi [12] give
tools for storing coarse approximations of a CRF model inside a
simple PDBS supporting limited forms of dependencies. Instead,
our work aims to support the full expressive power of CRF models
and inference operations as a first-class PDBS citizen.
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Figure 6.12. False negative, false positive rates (Contact) between sel-ML.opt and prob-
sel queries.

achieve significant performance benefits. In the following sections, we turn to probabilistic SPJ
queries.

6.5.3 Probabilistic Selection: prob-sel vs. sel-ML

In this experiment, we compare the answer quality and performance of the probabilistic selection
prob-sel and the optimized selection over the ML world sel-ML.opt. We use a set of selection
conditions on each of the five labels in the Contact dataset: companyname, firstname, lastname,
jobtitle and department. For each label we use all the values for that label in the ground truth to
construct the set of selection conditions, and measure the average false positive and false negative
rates. This way, we avoid the randomness due to a particular selection condition.

The table in Figure 6.12 shows the false negative and false positive rates for the two approaches
over the five selection condition sets. As can be seen in the table, the prob-sel algorithm achieves
much lower false negatives. For example, the false negatives for department is reduced to 30%.
The results also show that prob-sel maintains a false positive rate 6 0.01 for all the cases.

In many IE application scenarios false negatives are more problematic than false positives be-
cause the former means losing answers, and the latter means extra answers, which can be remedied
by further processing. Our goal is to reduce the false negative rate without significantly increasing
the false positive rate.

Note that in the results shown here, The probability threshold in prob-sel algorithm was set
to 0.001—the estimated lowest probability of the ML extractions based on a sample documents. In-
creasing this threshold would exclude some ML extractions, which would then increase the false
negatives. Decreasing the threshold has minimal effect on the false negatives, while increasing
the false positive rate slightly. For the queries used in this experiment, all the false positive rates
remain below 0.05 even when the threshold is set as low as 10−6.

The right most bars for each selection condition in Figure 6.9 shows the execution time of prob-
sel algorithm, compared to sel-ML.naive and sel-ML.opt over 100k documents from DBLP. It
can be seen that while significantly reducing the false negative rates, the execution time of the
prob-sel algorithm is 2 to 5 times that of the corresponding sel-ML.opt algorithm. The is the
trade-off between the answer quality and execution time.
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(False -) k=1 k=5 k=10 k=15 k=20
join-ML 0.373 0.373 0.373 0.373 0.373

probjoin.naive 0.373 0.253 0.245 0.216 0.191
probjoin.opt 0.373 0.312 0.283 0.260 0.251

(False +) k=1 k=5 k=10 k=15 k=20
join-ML 0.082 0.082 0.082 0.082 0.082

probjoin.naive 0.082 0.259 0.437 0.515 0.567
probjoin.opt 0.082 0.091 0.093 0.097 0.110

Figure 9: False negative, false positive rates and performance comparison between sel-ML and sel-PW queries.
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Figure 10: (a) False negative, (b) false positive rates (Contact), and (c) performance comparison (DBLP) between join-ML and prob-join queries.

of the IE process, and simplify the specification, optimization and
execution of IE tasks. A promising approach in this line of work
is to use declarative specifications of the IE tasks [1, 2, 3]. These
earlier efforts in declarative IE, however, lack a unified framework
supporting both a declarative interface as well as the state-of-the-
art probabilistic IE models. There have been efforts to consider
uncertainties in IE, but only in limited settings [23, 24].

The vast majority of IE work in Machine Learning focuses on
improving extraction accuracy using probabilistic techniques, in-
cluding variants of HMM [25] and CRF [12, 14, 15] models. At the
same time, the Machine Learning community has also been moving
in the direction of declarative IE [26, 27] using first-order logic.

Since the early 80’s, a number of PDBSs have been proposed
in an effort to offer a declarative, SQL-like interface for managing
large uncertain-data repositories [4, 5, 6, 7, 8, 9]. Recent PDBS
efforts such as BAYESSTORE [9] and the work of Sen and Desh-
pande [7] represent probabilistic models (based on Bayesian net-
works) as first-class citizens in a relational database, and support
in-database queries and reasoning over the model.

The issue of providing database support for managing IE based
on probabilistic models has not been addressed in existing PDBSs.
Closer to our work, Gupta and Sarawagi [11] give tools for stor-
ing coarse approximations of a CRF model inside a simple PDBS
supporting limited forms of dependencies. Instead, our work aims
to support the full expressive power of CRF models and inference
operations as a first-class PDBS citizen.

8 Conclusions
The need for query processing over data extracted from unstruc-
tured sources is becoming increasingly acute. Previous approaches
to integrating IE with database systems suffered from both perfor-
mance and accuracy limitations. In this paper we proposed two
families of queries over CRF-based IE results. The first uses de-
terministic queries over maximum-likelihood extractions, with op-
timizations to push the relational operators into the Viterbi algo-
rithm. The second extends the Viterbi algorithm to produce a set of
possible extraction “worlds”, from which we compute top-k proba-
bilistic query answers. These approaches provide a design space in
which answer quality and performance can be traded off according
to the needs of the application. As future work, we intend to ex-
plore additional performance enhancements via parallelization of
the algorithms and the development of a cost-based optimizer.
Acknowledgements: This work was supported by the NSF, under
grant NSF IIS-0415175 and IIS-0803690, and a Google Faculty
Research Award. We wish to thank Prof. Aron Culotta of SELU,

who provided assistance with the Contact dataset and the corre-
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Figure 6.13. False negative, false positive rates (Contact) between join-ML.opt and prob-
join algorithms.
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Figure 6.14. Performance comparison (DBLP) between join-ML.opt and prob-join algorithms.

We argue that a probabilistic IE system should support both algorithms, so that the right choice
can be made based on the requirements of the application.

6.5.4 Probabilistic Join: prob-join vs. join-ML

Finally, we describe a set of experiments comparing the answer quality and performance of the
probabilistic join (prob-join) and the optimized join over the ML world (join-ML.opt). Two prob-
join algorithms are prob-join.naive, which joins over top-k worlds, and prob-join.opt, which
performs an incremental join as described in Section 6.4.3.

The experiments for answer quality are conducted on the Contact dataset, and the query is to
find all Contact pairs with the same companyname. The table in Figure 6.13 shows that, for both
prob-join.opt and prob-join.naive, the false negative rate decreases, and the false positive rate
increases as we increase the maximum extraction depth k. prob-join.opt achieves a substantial
(slightly over 33%) reduction in false negatives when k = 20, with only a moderate increase of
the false positive rate. On the other hand, prob-join.naive, although achieving a more significant
reduction of the false negative rate, incurs 5 times increase in the false positive rate compared to
join-ML.opt. Thus, for most purposes, join-ML.opt achieves the best answer quality among the
three algorithms.
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The performance experiments are conducted for join queries on title and proceeding attributes
between two document sets with 10k and 1k documents respectively randomly picked from the
DBLP dataset. As shown in Figure 6.14, for the two join queries with varying settings of k,
the join-ML.opt performs significantly better than both prob-join.naive and prob-join.opt when
k > 1. The optimized algorithm prob-join.opt with the incremental join achieves a significant 2
to 3 times speedup compared to the naive algorithm prob-join.naive. The execution time of both
prob-join.naive and prob-join.opt grows linearly with k. Thus, k provides a tuning knob that can
be used to adjust the accuracy/performance tradeoff of the prob-join approach.

To summarize, the experiments reported in Section 6.5.1 and 6.5.2 demonstrated that inte-
grating the Viterbi inference and relational operators can significantly improve performance of
SPJ-over-ML queries without loss of answer quality. The results in Section 6.5.3 and 6.5.4 showed
that the answer quality (i.e. false negatives) can be improved significantly by probabilistic SPJ
queries. The answer quality comes in some cases (e.g., probabilistic selection) at a moderate cost,
and in others (e.g., probabilistic join) at a higher cost. One advantage of representing the IE model
and inference algorithms in database is that a cost-based query optimizer can choose between the
different execution techniques explored in this chapter.

6.6 Summary

Common industry practice, described in Section 1.4.3 loosely connects statistical IE packages and
database systems to perform probabilistic data analysis over unstructured data. Such an approach
suffers from both performance and accuracy limitations. In this chapter, we proposed two families
of queries over CRF-based IE models in the BAYESSTORE setting. The first query family includes
deterministic queries over maximum-likelihood extractions. We also developed optimizations to
push the relational operators into the Viterbi algorithm. The second query family extends the
Viterbi algorithm to produce a set of possible extraction “worlds”, from which we compute top-
k probabilistic query answers. As the experimental results show, this approach can improve the
runtime efficiency of the first query family and improve the accuracy, especially recall, using the
second query family. These two query families also provide a design space in which answer quality
and performance can be traded off according to the needs of the application.
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Chapter 7

Query Processing and Optimization

with MCMC Inference

In this chapter, we describe the probabilistic query processing algorithms and optimization tech-
niques enabled by the different inference algorithms described in Chapter 5, including the general
MCMC inference. Using these inference algorithms, we are able to extend the limited class of top-
k style probabilistic queries based on Viterbi, described in the previous chapter, to a wider range of
queries involving marginal inference, aggregation, and non-linear-chain CRF models. With mul-
tiple in-database inference algorithms, a query can now be executed using different query plans,
involving different inference algorithms. This opens up the opportunity for query optimization.

First, we describe the template of the extended set of queries that can be supported by
BAYESSTORE. We use examples to justify the need for general inference algorithms, such as
MCMC algorithms. We develop techniques to achieve a deep integration between the MCMC
algorithms with the relational operators. We compare the characteristics of different inference al-
gorithms over CRF models both qualitatively and quantitatively. We describe the hybrid inference
technique, a database rewrite algorithm, which can choose the proper inference algorithm for dif-
ferent subsets of the data for a single probabilistic query. The experimental results show significant
speed-ups using the hybrid inference optimization. These results demonstrate the potential to use
declarative languages and a query optimizer to speed up probabilistic queries that involve both
relational and inference operators.

7.1 Overview

In Chapters 3 to 6, we have described important components in BAYESSTORE to support prob-
abilistic declarative IE applications, including the in-database representation of CRF models, the
in-database implementation of the Viterbi algorithm, and the probabilistic SPJ queries over the
probabilistic extracted entities. However, the techniques described so far are limited by the capa-
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bilities of the Viterbi algorithm, which can only handle top-k-style queries over a limited class of
CRF models—linear chain CRFs.

In order to deal with non-linear CRF models such as skip-chain CRF models to handle repeated
terms in the text [12], complex IE queries that induce cyclic models over the linear-chain CRFs, and
marginal inference queries that produce richer probabilistic outputs than top-k inference, inference
algorithms other than Viterbi are needed. In this chapter, we explore the broader problem of
effectively supporting general probabilistic inference inside a PDB-based declarative IE system.

In the following sections, we first describe the template of the extended set of queries that
can be supported by BAYESSTORE. We use examples to justify the need for general inference
algorithms, such as MCMC algorithms. We also develop query-driven techniques to achieve a
deep integration between the in-database MCMC implementation, described in Chapter 5.4.1, with
the relational operators.

We compare the applicability of the four inference algorithms, including two variations of the
general sampling-based Markov chain Monte Carlo (MCMC) inference algorithm—Gibbs sam-
pling and MCMC Metropolis-Hastings (MCMC-MH)—in addition to the Viterbi and the sum-
product algorithms. We study the data and the model parameters that affect the accuracy and
runtime of those algorithms. Based on those parameters, we develop a set of rules for choosing an
inference algorithm based on the characteristics of the model and the data.

We study the integration of relational query processing and statistical inference algorithms,
and demonstrate that, for SQL queries over probabilistic extraction results, the proper choice of IE

inference algorithm is not only model-dependent, but is also query- and text-dependent. Such de-
pendencies arise when relational queries are applied to CRF models, inducing additional variables,
edges, and cycles, and when the model is instantiated over different text data, resulting in model
instances with drastically different characteristics.

To achieve good accuracy and runtime performance, it is imperative for a PDB (probabilistic
database) system to use a hybrid approach to IE even within a single query, employing differ-
ent algorithms for different records. In the context of our CRF-based PDB system, we describe
query processing steps and an algorithm to generate query plans that apply hybrid inference for
probabilistic IE queries.

Finally, we describe example queries and experimental results showing that such hybrid infer-
ence techniques can improve the runtime of the query processing by taking advantage of the ap-
propriate inference methods for different combinations of query, text, and CRF model parameters.
We evaluate our approaches and algorithms using three real-life datasets: DBLP, NYTimes, and
Twitter. The results show that our hybrid inference techniques can achieve up to 10-fold speedups
compared to the non-hybrid standard solutions practiced in industry.

7.2 Query Template

The queries we consider are probabilistic queries, which inference over the probabilistic attribute
labelp in the TOKENTBL table. Each TOKENTBL is associated with a specific CRF model stored
in the MR table. Such CRF-based IE is captured by a sub-query with logic that produces the IE
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SELECT Top-k(T1.docID,[T1.pos|exist]) |

[Marginal(T1.docID,[T1.pos|exist])] |

[Top-k(T1.docID, T2.docID,[T1.pos|T2.pos|exist])] |

[Marginal(T1.docID,T2.docID,[T1.pos|T2.pos|exist])]

FROM TokenTbl1 T1[, TokenTbl2 T2] WHERE T1.label = ’bar1’ [and

T1.token = ’foo1’]

[and T1.docID = X] [and T1.pos = Y]

[and T1.label = T2.label] [and T1.token = T2.token]

[and T1.docID = T2.docID]

GROUP BY T1.docID[, T2.docID] HAVING [aggregate condition]

Figure 7.1. The SQL+IE query template.

results from the base probabilistic TOKENTBL tables. The sub-query consists of a relational part
Qre over the probabilistic token tables TOKENTBL and the underlying CRF models, followed by
an inference operator Qinf . A canonical “query template” captures the logic for the SQL+IE sub-
query in Figure 7.1. The query template supports SPJ queries, aggregate conditions, and two types
of inference operators, Top-k and Marginal, over the probabilistic TOKENTBL tables.

The relational part of a SQL+IE query Qre first specifies, in the FROM clause, the TOKENTBL

table(s) over which the query and extraction is performed.

The WHERE clause lists a number of possible selection as well as join conditions over the TO-
KENTBL tables. These conditions when involve labelp are probabilistic conditions, and determin-
istic otherwise. For example, a probabilistic condition label=’person’ specifies that the entity
type we are looking for is ’person’, while a deterministic condition token=’Bill’ specifies
that the name of the entity we are looking for is ’Bill’. We can also specify a join condition
T1.token=T2.token and T1.label=T2.label indicating that two documents need to contain
the same entity name with the same entity type.

In the GROUP BY and the HAVING clause in the query template, we can specify conditions
on an entire text “document”. An example of such an aggregate condition over a bibliography
document is that all title tokens are in front of all the author tokens. Following the possible
world semantics, described in Section 2.4.1, the execution of these relational operators involve
modification to the original graphical models as will be shown in Section 7.3.

The inference part Qinf , of a SQL+IE query, takes the docID, the pos, and the CRF model
resulting from Qre as input. The inference operation is specified in the SELECT clause, which can
be either a Top-k or a Marginal inference. The inference can be computed over different random
variables in the CRF model: (1) a sequence of tokens (e.g., a document) specified by docID; or
(2) a token at a specific location specified by docID and pos; or (3) the “existence” (exist) of the
result tuple. The “existence” of the result tuple becomes probabilistic with a selection or join over
a probabilistic attribute, where exist variables are added to the model as described in Section 4.
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…… 

Corp. IBM said that IBM for IBM. 

Figure 7.2. A skip-chain CRF model that includes skip-edges between non-consecutive
tokens with the same string (e.g.,“IBM”).

For example, the inference Marginal(T1.docID,T1.pos), for each position (T1.docID,T1.pos)
computed from Qre, returns the distribution of the label variable at that position. The inference
Marginal(T1.docID,exist) computes the marginal distribution of exist variable for each
result tuple. We can also specify an inference following a join query. For example, the inference
Top-k(T1.docID,T2.docID), for each document pair
(T1.docID,T2.docID), returns the top-k highest probability joint extractions that satisfy the
join constraint.

7.3 Cycles from IE Models and Queries

In many IE tasks, good accuracy can only be achieved using non-linear CRF models like skip-chain
CRF models, which model the correlation not only between the labels of two consecutive tokens as
in linear-chain CRF, but also between those of non-consecutive tokens. For example, a correlation
can be modeled between the labels of two tokens in a sentence that have the same string. Such a
skip-chain CRF model can be seen in Figure 7.2, where the correlation between non-consecutive
labels (i.e., skip-chain edges) form cycles in the CRF model.

In simple probabilistic databases with independent base tuples, a class of “safe plans” intro-
duced in [26] gives rise to tree-structured graphical models [29], where the exact inference is
tractable. However, in a CRF-based IE setting, an inverted-file representation of text in TOKENTBL

inherently has cross-tuple correlations. Thus, even queries with “safe plans” over simple linear-
chain CRF models, result in cyclic models and intractable inference problems.

For example, the following query computes the marginal inference Marginal(T1.docID,

T2.docID,exist), which returns pairs of docIDs and the probabilities of the existence (exist)
of their join results. The join query is performed between each document pair on having the same
token strings labeled as ’person’. The join query over the base TOKENTBL tables adds cross-edges
to the pair of linear-chain CRF models underlying each document pair. Figure 7.3(a),(b) shows two
examples of the resulting CRF model after the join query over two different pairs of documents.
As we can see, the CRF model in (a) is tree-shaped, and the one in (b) is cyclic.

Q1: [Probabilistic Join Marginal]

SELECT Marginal(T1.docID,T2.docID,exist)

FROM TokenTbl1 T1, TokenTbl2 T2

WHERE T1.label = T2.label and T1.token = T2.token

and T1.label = ’person’;
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Bill by assigned Clinton today 

Viterbi The Algorithm Dave Forney 

Figure 7.3. (a) and (b) are example CRF models after applying a join query over two
different pairs of documents. (c) is the resulting CRF model from a query with an aggregate
condition.

Another example is a simple query to compute the top-k extraction conditioned on an aggregate
constraint over the label sequence of each document (e.g., all “title” tokens are in front of “author”
tokens). This query induces a cyclic model as shown in Figure 7.3(c).

Q2: [Aggregate Constraint Top-k]

SELECT Top-k(T1.docID)

FROM TokenTbl1 T1

GROUP BY docID

HAVING [aggregate constraint] = true;

7.4 Query-Driven MCMC Sampling

In Section 5.4, we described two general MCMC inference algorithms for such cyclic models.
Moreover, in Section 6.3, we developed query-driven techniques to integrate probabilistic selection
and join conditions into the Viterbi algorithm over linear-chain CRF models. However, the kinds
of constraints that Viterbi can handle are limited and specific to the Viterbi.

In this section, we explore query-driven techniques for the sampling-based MCMC inference
algorithms. Query-driven sampling is needed to compute inference conditioned on the query con-
straints. Such query constraints can be highly selective, where most samples generated by the basic
MCMC methods do not “qualify” (i.e., satisfy the constraints). Thus, we need to adapt the MCMC
methods by pushing the query constraints into the sampling process. Note that our adapted, query-
driven MCMC methods still converge to the target distribution as long as the proposal function can
reach every “qualified” world that satisfies the constraints in a finite number of steps.
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There are three types of query constraints: (1) selection constraints; (2) join constraints; and
(3) aggregate constraints. Both (1) and (2) were studied for Viterbi in the last chapter. The follow-
ing query contains an example selection constraint, which is to find the top-k highest likelihood
extraction that contains a ’person’ entity ’Bill’.

Q3: [Selection Constraint Top-k]

SELECT Top-k(T1.docID)

FROM TokenTbl1 T1

WHERE token = ’Bill’ and label = ’person’

An example of a join constraint can be found in Q1 in Section 7.3, and an example of an
aggregate constraint can be found in Q2 in the same Section.

The naive way to answer those conditional queries using MCMC methods is to: first, generate
a set of samples using Gibbs sampling or MCMC-MH regardless of the query constraint; second,
filter out the samples that do not satisfy the query constraint; last, compute the query over the
remaining qualified samples.

In contrast, our query-driven sampling approach pushes the query constraints into the MCMC
sampling process by restricting the worlds generated by GENINITWORLD(), GENPROPOSALS()
and GENSAMPLES() functions, so that all the samples generated satisfy the query constraint. One
of the advantages of the MCMC algorithms is that the proposal and sample generation functions
can naturally deal with the deterministic constraints, which might induce cliques with high tree-
width in the graphical model. Such cliques can easily “blow up” the complexity of known inference
algorithms [10]. We exploit this property of MCMC to develop query-driven sampling techniques
for different types of queries.

The query-driven GENINITWORLD() function generates an initial world that satisfies the con-
straint. There are two possible ways to generate the first qualified sample:

• Special Values: It turns out that, for most query constraints, we can directly set the variable
values to those specified in the query. For Q3, it sets the labels for all ’Bill’ tokens to ’person’
in each document. For Q1, it sets the labels for a pair of common tokens to ’person’ in each
document pair. To satisfy the aggregate constraint in Q2, it sets the labels for all tokens to be
’title’.

• Random Sample: In the general case, we can fall back to generating random samples until
one that satisfies the constraint is found.

The query-driven GENPROPOSAL() and GENSAMPLES() functions are called iteratively to
generate new samples that satisfy the constraint. There are two possible ways to generate the
next qualified jump (i.e., new sample):

• Restricted Jumps: One way is to apply restrictions on which labels can be assigned to the
variables from which to draw the next sample. For Q3, it requires that the label for at least
one ’Bill’ token in each document is ’person’. For Q1, it requires that the labels for at least
one pair of common tokens in each document pair are ’person’.
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inference Top-k Marginal Constraints
algorithm Chain Tree Cyclic Chain Tree Cyclic Some Arbitrary

Viterbi X X
sum-product X X X

MCMC-Gibbs X X X X X X X
MCMC-MH X X X X X X X

Table 7.1. Applicability of different inference algorithms for different queries (e.g., top-k,
marginal) over different model structures (e.g., linear-chain, tree-shaped, cyclic), and in
handling query constraints.

• Random Jumps: In the general case, we can generate samples according to the Gibbs or the
MCMC-MH algorithm, and reject ones which do not satisfy the query constraint. We apply
this rejection-based technique for aggregate constraints like the one in Q2.

In some cases, the query constraints divide the space of the conditional distribution into multi-
ple disconnected regions, which cannot be reached from one to the other within finite single jumps
(i.e., changing the value of a single variable). In those cases, MCMC Metropolis-Hastings can be
adapted to take multiple jumps, changing values of multiple variables in one sample, while Gibbs
sampling cannot be. One example constraint that needs proposal functions with multiple jumps is
the join constraint in Q1. This is one advantage of the MCMC-MH algorithm over Gibbs, i.e., that
it handles arbitrary query constraints.

7.5 Choosing Inference Algorithms

Different inference algorithms over probabilistic graphical models have been developed in a
diverse range of communities (e.g., natural language processing, machine learning, statistical
physics, etc). The characteristics of these inference algorithms (e.g., applicability, accuracy, con-
vergence rate, runtimes) over different model structures have since been studied to help modeling
experts select an appropriate inference algorithm for a specific problem [10].

In this section, we first compare the characteristics of the four inference algorithms we have
developed over CRF models. Next we introduce parameters that capture important properties of
the model and data. Using these parameters, we then describe a set of rules to choose among
different inference algorithms.

7.5.1 Comparison between Inference Algorithms

We have implemented four inference algorithms over CRF models for IE applications: (1) Viterbi,
(2) sum-product, and two sampling-based MCMC methods: (3) Gibbs Sampling and (4) MCMC
Metropolis-Hastings (MCMC-MH). In Table 7.1, we show the applicability of these algorithms
to different inference tasks (e.g. top-k, or marginal) on models with different structures (e.g.,
linear-chain, tree-shaped, cyclic).

As we can see, Viterbi, Gibbs and MCMC-MH can all compute top-k queries over linear-chain
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CRF models; sum-product, Gibbs and MCMC-MH can all compute marginal queries over linear-
chain and tree-shaped models; while only MCMC algorithms can compute queries over cyclic
models. Although there are heuristic adaptations of the sum-product algorithm for cyclic models,
past literature found MCMC methods to be more effective in handling complicated cyclic models
with long-distance dependencies and deterministic constraints [74, 75]. In terms of handling query
constraints, the Viterbi and sum-product algorithms can only handle selection constraints, Gibbs
sampling can handle selection constraints and aggregate constraints that do not break the distribu-
tion into disconnected regions. On the other hand, MCMC-MH can handle arbitrary constraints in
SQL+IE queries.

7.5.2 Parameters

Next, we introduce a list of parameters that affect the applicability, accuracy and runtime of the
four inference algorithms that we have just described:

1. Data Size: the size of the data is measured by the total number of tokens in information
extraction;

2. Structure of Grounded Models: the structural properties of the model instantiations over
data:

(a) shape of the model (i.e., linear-chain, tree-shaped, cyclic),

(b) maximum size of the clique,

(c) maximum length of the loops (e.g., skip-chain in linear CRF)

3. Correlation Strength: the relative strength of transitional correlation between different la-
bel variables;

4. Label Space: the number of possible labels.

The data size affects the runtime for all the inference algorithms. The runtime of the Viterbi
and sum-product algorithms is linear in the data size. The MCMC algorithms are iterative opti-
mizations that can be stopped at any time, but the number of samples needed to converge depends
linearly on the size of the data.

The structure of the grounded model can be quantified with three parameters: the shape of the
model, the maximum size of the clique, and the maximum length of the loops. The first parameter
determines the applicability of the models, and is also the most important factor in the accuracy and
the runtime of the inference algorithms over the model. In addition, the maximum clique size and
the length of the loops play an important role in the runtime of several known inference algorithms
(including, for example, the junction tree and the loopy belief propagation algorithms) [10]. In this
chapter, we ignore the latter two parameters.

The correlation strength is the relative strength of the transition correlation between different
label variables over the state correlation between tokens with their corresponding labels. The
correlation strength does not influence the accuracy or the runtime of the Viterbi or the sum-product
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algorithm. However, it is a significant factor in the accuracy and runtime of the MCMC methods,
especially the Gibbs algorithm. Weaker correlation strengths result in faster convergence for the
Gibbs sampler. At the extreme, zero transition correlation results in complete label independence,
rendering consecutive Gibbs samples independently, which would converge very quickly.

The size of the label space of the model is also an important factor of the runtime of all the
inference algorithms. The runtime of the Viterbi and sum-product algorithms is quadratic in the
size of the label space, while the runtime of the Gibbs algorithm is linear in the label space because
each sampling step requires enumerating all possible labels.

7.5.3 Rules for Choosing Inference Algorithms

Among the parameters described in the previous section, we focus on (1) the shape of the model,
(2) the correlation strength, and (3) the label space, because the rest are less influential in the
four inference algorithms we study in this chapter. The data size is important for optimizing the
extraction order in the join over top-k queries as described in [76]. However, since the complexity
of the inference algorithms we study in this chapter are all linear in the size of the data, it is not an
important factor for choosing inference algorithms.

Based on the analysis in the previous section, we use the following rules to choose an inference
algorithm for different data and model characteristics, quantified by the three parameters, and the
query:

• For cyclic models:

– If cycles are induced by query constraints, choose query-driven MCMC-MH over
Gibbs Sampling;

– Otherwise, choose Gibbs Sampling over MCMC-MH. As shown in our experiments in
Sections 7.7.2-7.7.3, the Gibbs Sampler converges much faster than the random walk
MCMC-MH for computing both top-k extractions and marginal distribution;

• For acyclic models:

– For models with small label space, choose Viterbi over MCMC methods for top-k and
sum-product over MCMC methods for marginal queries;

– For models with strong correlations, choose Viterbi and sum-product over MCMC
methods;

– For models with both a large label space and weak correlations, choose Gibbs Sampling
over MCMC-MH, Viterbi, and sum-product.

For a typical IE application, the label space is small (e.g., 10 to 20), and the correlation strength
is fairly strong. For example, title tokens are usually followed by the author tokens in a bib-
liography string. Moreover, strong correlation exists with any multi-token entity names (e.g., a
person token is likely to be followed by another person token). Thus, we believe that the above
rules translate in most cases in IE to: choose Viterbi and sum-product over MCMC methods for
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acyclic models for top-k and marginal queries respectively; choose Gibbs Sampling for cyclic
models unless the cycles are induced by query constraints, in which case choose query-driven
MCMC-MH. In this thesis, we use heuristic rules to decide the threshold for a “small” label space
and for a “strong” correlation for a data set.

7.6 Hybrid Inference

Typically, for a given model and dataset, a single inference algorithm is chosen based on the
characteristics of the model. In this section, we first show that in the context of SQL queries over
probabilistic IE results, the proper choice of IE inference algorithm is not only model-dependent,
but also query- and text-dependent. Thus, to achieve good accuracy and runtime performance, it is
imperative for a PDB system to use a hybrid approach to IE even within a single query, employing
different inference algorithms for different records.

We describe the query processing steps that employ hybrid inference for different documents
within a single query. Then we describe an algorithm, which, given the input of a SQL+IE query,
generates a query plan that applies the hybrid inference. Finally, we show the query plans with hy-
brid inference generated from three example SQL+IE queries to take advantage of the appropriate
IE inference algorithms for different combinations of query, text and CRF models.

7.6.1 Query Processing Steps

In the context of SQL queries over probabilistic IE results, the proper choice of the IE inference
algorithm depends on many factors. In addition to the probabilistic model, this choice also depends
on the query and the text as we explain below.

First, the relational sub-query Qre augments the original model with additional random vari-
ables, cross-edges and factor tables, making the model structure more complex, as we explained in
Section 7.3. The characteristics of the model may change after applying the query over the model.
For example, a linear-chain CRF model may become a cyclic CRF model, as happens with the join
query in Q1 and the query with aggregate constraint in Q2.

Second, when the resulting CRF model is instantiated (i.e., grounded) over a document, it could
result in a grounded CRF model with drastically different model characteristics. For example, the
CRF model resulting from a join query over a linear-chain CRF model, when instantiated over
different documents can result in either a cyclic or a tree-shaped model, as we have shown in
Figure 7.3(a) and (b).

The applicability, accuracy and runtime of different inference algorithms vary significantly over
models with different characteristics, which can result from different data for the same query and
model. As a result, to achieve good accuracy and runtime, we apply different inference algorithms
(i.e., hybrid inference) for different documents within a single query. The choice of the inference
algorithm over a document is based on the characteristics of its grounded model, and rules for
choosing inference algorithms we described in Section 7.5.3.

The main steps in query processing with hybrid inference are as follows:
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1. Apply Query over Model: Apply the relational part of the query Qre over the underlying
CRF model;

2. Instantiate Model over Data: Instantiate the resulting model from the previous step over
the text, and compute the important characteristics of the grounded models;

3. Partition Data: Partition the data according to the properties of grounded models from
the previous step. In this thesis, we only partition the data according to the shape of the
grounded model. More complicated partitioning techniques, such as one based on the size
of the maximum clique can be considered for future work;

4. Choose Inference: Choose the inference algorithms to apply according to the rules in Sec-
tion 7.5.3 over the different data partitions based on the characteristics of the grounded mod-
els;

5. Execute Inference: Execute the chosen inference algorithm over each data partition, and
return the union of the results from all partitions.

7.6.2 Query Plan Generation Algorithm

We envision that the query parser takes in a SQL+IE query and outputs, along with other non-
hybrid plans, a query plan which applies hybrid inference over different documents.

The algorithm in Figure 7.4 generates a hybrid inference query plan for an input SQL+IE
query Q, consisting of the relation part Qre, and the subsequent inference operator Qinf . In Line
1, the relational operators in Qre are applied to the CRF models underlying the base TOKENTBL

tables, resulting in a new CRF model CRF ∗. In Lines 2 to 3, selection and join conditions on
the deterministic attributes (e.g., docID, pos, token) are applied to the base TOKENTBL tables,
resulting in a set of tuples T , each of which represents a document or a document pair. In Line
4, the model instantiation is applied over T using CRF ∗ to generate a set of “ground” models
groundCRFs. In Line 5, a split operation is performed to partition the groundCRFs according to
their model structures into linearCRFs, treeCRFs and cyclicCRFs.

Lines 6 to 19 capture the rules for choosing inference algorithms we described in Section 7.5.3.
Finally, a union is applied over the result sets from different inference algorithms for the same
query.

Lines 11 to 14 deals with a special set of queries, which compute the top-k results over a
simple query with aggregate conditions that induce cycles over the base linear-chain CRFs. The
intuition is that it is always beneficial to apply the Viterbi algorithm over the base linear-chain
CRFs as a fast filtering step before applying the MCMC methods. In Line 12, it first computes
the top-k extractions res without the aggregate constraint using Viterbi. In Line 13, it applies the
constraint to the top-k extractions in res, which results in a set of top-k extractions that satisfy the
constraints in res1. In Line 14, the query-driven MCMC-MH is applied to the documents in T
with extractions that do not satisfy the constraint: (res-res1).T. An example of this special case
is described in Section 7.6.3.
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HYBRID-INFERENCE-PLAN-GENERATOR (Q)

1 apply Qre over the base CRF models→ CRF∗

2 apply deterministic selections in Q over base TOKENTBLs→ {Ti}

3 apply deterministic joins in Q over {Ti} → T

4 apply model instantiation over T using CRF ∗ → groundCRFs

5 apply split operation to groundCRFs→ linearCRFs, treeCRFs, cyclicCRFs

6 if Qinf is Marginal then

7 apply sum-product to (linearCRFs + treeCRFs)→ res2

8 apply Gibbs to (cyclicCRFs)→ res3

9 else if Qinf is Top-k then

10 apply Viterbi to (linearCRFs)→ res1

11 if Qre contains aggregate constraint but no join then

12 apply Viterbi to (cyclicCRFs + treeCRFs)→ res

13 apply aggregate constraint in Q over res→ res1

14 apply query-driven MCMC-MH to (res− res1).T → res3

15 else

16 apply Gibbs to (cyclicCRFs + treeCRFs)→ res3

17 endif endif

18 if Qinf is Top-k then

19 apply union of res1 and res3

20 else if Qinf is Marginal then

21 apply union of res2 and res3

22 endif

Figure 7.4. Pseudo-code for the hybrid inference query plan generation algorithm.
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Complexity: The complexity of generating the hybrid plan depends on the complexity of the
operation on Line 5 in Figure 7.4, where the groundCRFs are split into subsets of linearCRFs,
treeCRFs and cyclicCRFs. The split is performed by traversing the ground CRFs to determine
their structural properties, which is linear to the size of the ground CRF O(N), where N is the
number of random variables. The complexity of choosing the appropriate inference (lines 6 to 21)
is O(1).

On the other hand, the complexity of Viterbi, sum-product algorithms over linearCRFs and
treeCRFs is O(N) with a much larger constant, because of the complex computation (i.e., sum,
product) over |Y | × |Y | matrices, where |Y | is the number of possible labels. The complexity of
the exact inference algorithm over cyclicCRFs is NP-hard. Thus the cost of generating the hybrid
plan is negligible from the cost of the inference algorithms.

7.6.3 Example Query Plans

In this section, we describe three example queries and show the query plans with hybrid inference
generated from the algorithm in Figure 7.4, which take advantage of the appropriate inference
algorithms for different combinations of query, text and CRF models.

Skip-Chain CRF

In this query, we want to compute the marginal distribution or the top-k extraction over an under-
lying skip-chain CRF model as shown in Figure 7.2. The query is simply:

Q4: [Skip-Chain Model]

SELECT [Top-k(T1.docID) | Marginal(T1.pos|exist)]

FROM TokenTbl T1

As described in [68], the MCMC methods are normally used to perform inference over skip-
chain CRF models for all the documents, like the query plan in Figure 7.5(b). The Viterbi algorithm
fails to apply because a skip-chain CRF model contains skip-edges, which make the CRF model
cyclic.

However, the existence of such skip-edges in the grounded models, instantiated from the docu-
ments, is dependent on the text! There exist documents, like the one shown in Figure 7.2, in which
one string appears multiple times. Those documents result in cyclic CRF models. But, there also
exist documents, in which only unique tokens are used except for “stop-words”, such as “for”, “a”.
Those documents result in linear-chain CRF models.

The query plan generated with hybrid inference is shown in Figure 7.5(a). After the model
instantiation, the ground CRF model is inspected: if no skip-edge exists (i.e., no duplicate strings
exist in a document), then the Viterbi or the sum-product algorithm is applied; otherwise, the Gibbs
algorithm is applied to the cyclic ground CRFs. Compared to the non-hybrid query plan, the query
plan with hybrid inference is more efficient by applying more efficient inference algorithms (e.g.,
Viterbi, sum-product) over the subset of the documents, where the skip-chain CRF model does not
induce cyclic graphs. The speedup depends on the performance of Viterbi/sum-product compared
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TokenTbl Skip-Chain CRF 

model instantiation 

zero skip-edge (linear) at least one skip-edge (cyclic) 

Sum-Product/Viterbi Gibbs/MCMC-MH 

Union 

TokenTbl Skip-Chain CRF 

Gibbs/MCMC-MH 

model instantiation 

(a) (b) 

Figure 7.5. The query plan for an inference, either top-k or marginal, over a skip-chain
CRF model.

to Gibbs Sampling, and on the percentage of such documents that instantiate a skip-chain CRF
model into a grounded linear-chain CRF models.

Join over Linear-chain CRF

In this example, we use the join query Q1 described in Section 7.3, which computes the marginal
probability of the existence of a join result. The join query is performed between each document
pair on having tokens with the same strings labeled as ’person’.

Such a join query over the underlying linear-chain CRF models induces cross-edges and cycles
in the resulting CRF model. A typical non-hybrid query plan, shown in Figure 7.6 with black
edges, perform MCMC inference over all the documents.

However, as we see in Figure 7.3(a) and (b), depending on the text, the joint CRF model can
be instantiated into either a cyclic graph or a tree-shaped graph. The red edge in Figure 7.6 shows
the query plan with hybrid inference for the join query Q1. As we can see, instead of performing
MCMC methods unilaterally across all “joinable” document pairs (i.e., contain at least 1 pair of
common tokens), the sum-product algorithm is used over the document pairs that contain only 1
pair of common tokens. Compared to the non-hybrid query plan, the hybrid inference reduces the
runtime by applying the more efficient inference (i.e., sum-product) when possible. The speedup
depends on the performance of sum-product compared to the MCMC methods, and the percentage
of the “joinable” document pairs that only share one pair of common tokens that are not “stop-
words”.
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TokenTbl1 TokenTbl2 CRF1 CRF2 

CRF1-2 model instantiation 

only 1 cross-edge (tree) more than 2 cross-edges (cyclic) 

Join(token1=token2) Join(token1=token2 & label1=label2) 

Sum-product Gibbs/MCMC-MH 

Union 

Figure 7.6. The query plan for the probabilistic join query followed by marginal inference.

Aggregate Constraints

In this example, we use Q2, the query with an aggregate constraint, described in Section 7.3. As
shown in Figure 7.3(c), the aggregate constraints can induce a big clique including all the label
variables in each document. In other words, regardless of the text, based on the model and the
query, each document is instantiated into a cyclic graph with high tree-width.

Again, typically, for such a high tree-width cyclic model, MCMC-MH algorithms are used over
all the documents to compute the top-k extractions that satisfy the constraint. Such a non-hybrid
query plan is shown in Figure 7.7(b).

However, this query falls into the special case described in the query plan generation algorithm
in Section 7.6.2 for hybrid inference. The query is to return the top-k extractions over the cyclic
graph induced by an aggregate constraint over a linear-chain CRF model. Thus, the resulting query
plan is shown in Figure 7.7(a).

In the query plan with hybrid inference, the Viterbi algorithm runs first to compute the top-k
extraction without the constraint. Then, the results are run through the aggregate: those that satisfy
the constraint are returned as part of the results, and those that do not satisfy the constraint are fed
into the query-driven MCMC-MH algorithm.

7.7 Experimental Results

So far, we have described the query-driven optimization of the MCMC algorithms, and the query
plans for the hybrid inference algorithms. We now present the results of a set of experiments aimed
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TokenTbl 

CRF with cliques 

Viterbi & Model 
instantiation 

aggregate condition 

Query-Driven  
MCMC-MH 

Union 

Linear-chain CRF 

satisfy 

un-satisfy 

aggregate condition 

Model instantiation 

TokenTbl CRF with cliques 

Query-Driven  
MCMC-MH 

Linear-chain CRF 

aggregate condition 

Model instantiation 

(a) (b) 

Figure 7.7. The query plan for the aggregate selection query followed by a top-k inference.

to (1) evaluate the effectiveness of the query-driven sampling techniques in improving the runtime
of the MCMC algorithms; (2) compare the accuracy and runtime of the four inference algorithms:
Viterbi, sum-product, Gibbs and MCMC-MH, for the two IE tasks—top-k and marginal; and (3)
analyze three real-life text datasets to quantify the potential speedup of a query plan with hybrid
inference compared to one with non-hybrid inference.

Setup and Dataset: We implemented the four inference algorithms: Viterbi, sum-product, Gibbs
and MCMC-MH in PostgreSQL 8.4.1. We conducted the experiments reported here on a 2.4 GHz
Intel Pentium 4 Linux system with 1GB RAM.

For evaluating the effectiveness of the query-driven optimizations of the MCMC methods, and
for comparing the accuracy and runtime of the inference algorithms, we use the DBLP dataset [69]
and a CRF model with 10 labels and features similar to those in [20]. The DBLP database contains
more than 700, 000 papers with attributes, such as conference, year, etc. We generate bibliography
strings from DBLP by concatenating all the attribute values of each paper record.

For quantifying the speedup of query plans with hybrid inference, we examine the New York
Times (NYTimes) dataset, and the Twitter dataset in addition to the DBLP dataset. The NYTimes
dataset contains ten-million tokens from 1, 788 New York Times articles from the year 2004. The
Twitter dataset contains around 200, 000 tokens from over 40, 000 tweets obtained in January 2010.
We label both corpora with 9 labels, including person, location, etc.

7.7.1 Query-Driven MCMC-MH

In this experiment, we evaluate the effectiveness of the query-driven MCMC-MH algorithm de-
scribed in Section 7.4 with the basic MCMC-MH in generating samples that satisfy the query
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Figure 7.8. The number of qualified samples generated by the query-driven MCMC-MH
and the basic MCMC-MH algorithm in 1 second for different documents in DBLP.

constraint. The query we use is Q2 described in Section 7.3, which computes the top-1 extractions
that satisfy the aggregate constraint that all title tokens are in front of the author tokens.

We run the query-driven MCMC-MH and the basic MCMC-MH algorithm over a randomly
picked 10 documents from the DBLP dataset. Figure 7.8 shows the number of qualified samples
that are generated by each algorithm in 1 second. As we can see, the query-driven MCMC-MH
generates more qualified samples, roughly 1200 for all the documents, and for half of the docu-
ments the query-driven MCMC-MH generates more than 10 times more qualified samples than
basic MCMC-MH.

7.7.2 MCMC vs. Viterbi on Top-k Inference

This experiment compares the runtime and the accuracy of the Gibbs, the MCMC-MH and the
Viterbi algorithms in computing top-1 inference over linear-chain CRF models. The inference is
performed over 45, 000 tokens in 1000 bibliography strings from the DBLP dataset. We measure
the “computation error” as the number of labels different from the exact top-1 labelings according
to the model 1. The Viterbi algorithm only takes 6.1 seconds to complete the exact inference over
these documents, achieving zero computation error.

For the MCMC algorithms, we measure the computation error and runtime for every 10k more
samples, starting from 10k to 1 million samples over all documents. As we can see in Figure 7.9,
the computation error of the Gibbs algorithm drops to 22% from 45, 000 to 10, 000 when 500k
samples are generated. This takes around 75 seconds, more than 12 times longer than the runtime
of the Viterbi algorithm. The MCMC-MH converges much slower than the Gibbs Sampling. As
more samples are generated, the top-1 extractions generated from the MCMC algorithms get closer
and closer to the exact top-1, however very slowly. Thus, Viterbi beats the MCMC methods by

1The top-1 extractions with zero computation error may still contain mistakes, which are caused by
inaccurate models.
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linear-chain CRFs for top-1 inference on DBLP.

far in computing top-1 extractions with linear-chain CRF models: more than 10 times faster with
more than 20% fewer computation errors.

7.7.3 MCMC vs. Sum-Product on Marginal Inference

This experiment compares the runtime and the accuracy of the Gibbs, MCMC-MH and the sum-
product algorithms over tree-shaped graphical models induced by a join query similar to Q1, de-
scribed in Section 7.3. The query computes the marginal probability of the existence of a join
result for each document pair in DBLP, joining on the same ’publisher’. The query is performed
over a set of 10, 000 pairs of documents from DBLP, where the two documents in each pair have
exactly one token in common.

The sum-product algorithm over these 10, 000 tree-shaped graphical models takes about 60
seconds. As an exact algorithm, the sum-product algorithm achieves zero computation error. We
measure the “computation error” as the difference between the marginal probabilities of join com-
puted from the MCMC-MH algorithms and the sum-product algorithm, averaging over all docu-
ment pairs.

For the MCMC algorithms, we measure the computation error and runtime for every 200k
more samples, starting from 200k to 2 million samples over all document pairs. As we can see in
Figure 7.10, the probability difference between Gibbs and sum-product converges to zero quickly:
at 400 second, the probability difference is dropped to 0.01. The MCMC-MH on the other hand,
converges much slower than the Gibbs.

This experiment shows that the MCMC algorithms perform relatively better in computing
marginal distributions than in computing top-1 extractions. However, the sum-product algorithm
still out-performs the MCMC algorithms in computing marginal probabilities over tree-shaped
models: more than 6 times faster with about 1% less computation error.
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7.7.4 Exploring Model Parameters

In this experiment, we explore how different correlation strengths, one of the parameters we dis-
cussed in Section 7.7.4, affect the runtime and the accuracy of the inference algorithms. As we
explained earlier, the correlation strength does not affect the accuracy or the runtime of the Viterbi
algorithm. On the other hand, weaker correlation between different random variables in the CRF
model leads to faster convergence for the MCMC algorithms. The setup of this experiment is the
same as in Section 7.7.2.

In Figure 7.11, we show the runtime-accuracy graph of the Viterbi and the Gibbs algorithm to
compute the top-1 extractions over models with different correlation strengths. We synthetically
generated models with correlation strengths of 1, 0.5, 0.2 and 0.001 by dividing the original scores
in the transition factors by 1, 2, 5 and 1000 respectively. As we can see, the weaker correlation
strengths lead to faster convergence for the Gibbs algorithm. When correlation strength is 0.001
the computation error reduces to zero in less than twice that of the Viterbi runtime.

The correlation strength of the CRF model depends on the dataset on which the CRF model is
learned. The model we learned over NYTimes and DBLP dataset both contains strong correlation
strength.

7.7.5 Hybrid Inference for Skip-chain CRFs

In this and the next two sections, we describe the results, in terms of runtime speed-ups, comparing
the query plan generated by hybrid inference with a non-hybrid solution. Table 7.2 summarizes
the results of hybrid inference for different queries over different models.

The query we use in this experiment is Q4 over the skip-chain CRF model, described in Sec-
tion 7.6.3. Given that the Viterbi is more than 10 times more efficient than Gibbs with zero com-
putation error, as we showed in Section 7.7.2, the speed-up enabled by the hybrid inference for Q4
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Data Skip-chain Probabilistic Aggregate
Corpora CRF Join Constraint

NYTimes ×5.0 ×4.5 ×10.0
Twitter ×5.0 ×2.6 N/A
DBLP ×1.0 ×1.0 N/A

Table 7.2. Speed-ups achieved by hybrid inference for different queries.
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is determined by the percentage of the documents that do not contain duplicate non-“stop-word”
tokens.

For NYTimes dataset, we use the sentence breaking function in NLTK toolkit [77], and the full-
text stop-word list from MySQL [78]. Over all sentences, only about 10.3% contain duplicate non-
“stop-word” tokens. Thus, the optimizer will use the Viterbi algorithm for 89.7% of the sentences,
while using the Gibbs algorithm for the rest. This hybrid inference plan can achieve a 5-fold
speedup compared to the non-hybrid solution, where the Gibbs algorithm is used over all the
documents.

We did the same analysis on the Twitter dataset. The number sentences that contains non-“stop-
word” duplicate tokens is 10.0%, which leads to a similar 5-fold speedup. On the other hand, for
DBLP dataset, the number of documents that contains non-“stop-word” duplicates is as high as
96.9%, leading to a 3% speedup.

7.7.6 Hybrid Inference for Probabilistic Join

The query used in this experiment is the join query Q1, described in Section 7.6.3. Given that the
sum-product is more than 6 times more efficient than Gibbs with zero computation error, as we
showed in Section 7.7.3, the speed-up enabled by the hybrid inference for Q1 is determined by the
percentage of the “joinable” document pairs that share only one pair of common non-“stop-word”
tokens.

For the NYTimes dataset, about 6.0% “joinable” sentence pairs share more than one pair of
non-“stop-word” common tokens. Thus, the sum-product algorithm can be applied to the other
93.6% of the sentences, achieving a 4.5 times speedup compared to the non-hybrid approach of
running Gibbs over the joint CRF model of all the document pairs.

For the Twitter datset, around 25.6% “joinable” sentence pairs share more than one pair of
tokens. This is much lower than NYTimes dataset mainly because tweets contain a lot of com-
mon shorthands. Thus the speedup is around 2.6 times. For DBLP dataset, on the other hand,
the speedup is little due to the high percentage of document pairs contain more than one pair of
common words.

7.7.7 Hybrid Inference for Aggregate Constraint

The query used in this experiment is Q2 with an aggregate constraint described in Section 7.6.3.
We performed this query over the DBLP dataset. Out of all the top-1 extractions of the 10, 000
bibliography strings, only 25 of them do not satisfy the aggregate constraint that all title tokens
are in front of all author tokens. Thus, although the aggregate constraint in the query induce a big
clique in the CRF model, which calls for MCMC algorithms, the MCMC is not needed for most of
the cases. To perform Q2 over DBLP, MCMC only needs to be performed over 25 out of 10, 000
documents, which leads to a 10-fold speedup.

The results in Section 7.7.1 show that the query-driven sampling techniques can effectively
generate more samples that satisfy query constraints for conditional queries. Section 7.7.2 and
Section 7.7.3 show that the Viterbi and sum-product algorithms are by far more efficient and more
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accurate than the MCMC algorithms over linear-chain and tree-shaped models in IE. Lastly, based
on the text analysis over NYTimes, Twitter and DBLP datasets, we conclude that the query plans
with hybrid inference can achieve up to a 10-fold speed-up compared to the non-hybrid solutions
in cases where the MCMC inference algorithms are only applied over a very small percentage of
the data, whereas Viterbi or Sum-Product is applied over the majority of the data.

7.8 Summary

In this chapter, we show that general inference algorithms, such as MCMC inference, are needed to
execute probabilistic queries beyond the top-k-style queries, involving marginal inference, cyclic
models, and aggregation operators. Using the in-database implementation of the MCMC algo-
rithms, we show that such native implementations enable efficient probabilistic query processing
with a tight integration of the inference and relational operators. The hybrid inference optimiza-
tion demonstrates the feasibility and potential of using a query optimizer to support a declarative
query language for different inference operations over probabilistic graphical models. Results from
three real-life datasets demonstrate that the hybrid inference can achieve up to a 10-fold speed-up
compared to the non-hybrid solutions in cases where the MCMC inference algorithms are only
applied over a very small percentage of the data, whereas Viterbi or Sum-Product is applied over
the majority of the data.
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Chapter 8

Future Work

In this Chapter, we discuss directions of future research related to query-driven machine learning
systems and extensile framework and interface design for probabilistic databases.

Query-Driven Machine Learning System Based on our experience in BAYESSTORE, we en-
vision a query-driven machine learning (QDML) system, which can (1) integrate ML methods
with query processing; (b) optimize ML methods given user queries; (3) incorporate user feed-
back to improve the ML models and improve the inference results; and (4) compose ad-hoc com-
plex queries that involve multiple ML methods and relational query operators. The BAYESSTORE

system took the first steps to explore the possibilities and benefits of a QDML system in two
application domains. However, this QDML approach can enable many other novel and useful
functionalities for ML-based data analysis, which has not been explored in BAYESSTORE to date.

First, learning algorithms need to be implemented in databases (BAYESSTORE only supports
inference algorithms). We are especially interested in the class of learning algorithms called online
learning algorithms, which can modify the model as new training data comes in without recon-
structing the whole model from the scratch. Combining model learning functions with relational
operators, we can specify any subset of the data on which the model is to be learned. Moreover,
we can build a set of models using the GROUP BY operator – one for each group. Finally, we can
define model factors as views over the data, which enables the model to be updated as soon as the
data is updated.

Second, query-driven inference techniques need to be developed for ML models and infer-
ence algorithms other than CRFs and Viterbi, so that these inference algorithms can be computed
efficiently over the models at query-time. Such query-driven ML system also enables users to
compose complex queries over the output of multiple ML models and algorithms.

Third, cost-based optimizer needs to be developed to optimize various statistical models and
methods. For example, given a text analysis task, there are different models and tools with dif-
ferent accuracy and runtime tradeoffs. We start to explore this tradeoff for the different inference
algorithms over linear-chain CRF models in the BAYESSTORE work. However, the optimization
we came up with results in a heuristic optimizer for a single ML model and task. We see the need

123



of a cost-based optimizer to optimize multiple statistical models and methods. Furthermore, with
the extension to the in-database learning operators, the optimizer should also be able to pick which
learning algorithm and even which statistical model to use to best answer a user query.

Extensible Framework: As we have described in Section 2.1, probabilistic graphical models are
a class of important and widely used statistical models for probabilistic data analysis in real-life
applications. The BAYESSTORE project has been focused on how to efficiently support two types
of PGM’s (i.e., FOBN and CRF) in two BAYESSTORE sub-systems. These two BAYESSTORE

systems both represent the uncertain data as incomplete relations and the model as factor tables.
However, we implemented different inference and relational algorithms in these two sub-systems
for different PGM models and methods.

There are many other different types of PGM’s such as naive Bayes, hidden Markov mod-
els, logistic regression, and Markov networks. Each type of model has different characteristics,
which are tuned towards different types of applications. Moreover, more models are being devel-
oped to solve new problems. Thus, to develop an in-database model representation and inference
algorithms in a BAYESSTORE-like system for each particular model from scratch is very time con-
suming. What we need is an extensible architecture in which new models can be plugged into this
architecture by specifying a set of model-specific functions.

Future work is needed to come up with this set of functions, as well as to design a framework
with an effective development environment to plug in a new PGM model and its methods. This
framework should also be able to support scalable deployment of these models and methods, as
well as efficient optimizations between them and the relational operators. Another very important
research direction is to come up with user interfaces and visualization tools for non-IT people (i.e.,
those without ML, DB, or Map-Reduce knowledge) who are experts in their application domains
(e.g., environmentalists, doctors, social scientists) to be able to interact with their data, easily apply
different ML methods, and to effectively give feedback to the results of data analysis.
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Chapter 9

Concluding Remarks

In this thesis, we proposed, built, and evaluated BAYESSTORE, a probabilistic database system that
natively supports SML models and various inference algorithms to perform advanced data analysis.
This marriage of database and SML technologies creates a declarative and efficient probabilistic
processing framework for applications dealing with large-scale uncertain data. We explored a
variety of research challenges, including extending the database data model with probabilistic data
and statistical models, defining relational operators (e.g., select, project, join) over probabilistic
data and models, developing joint optimization of inference operators and the relational algebra,
and devising novel query execution plans. We used sensor networks data analysis and information
extraction over text as the two driving applications.

The main contributions of this thesis include: (1) we designed an efficient in-database repre-
sentation for uncertain data and for probabilistic models; (2) we invented new algorithms for prob-
abilistic relational operators, including select, project, and join over probabilistic models and data;
(3) we developed native in-database implementations for four inference algorithms over probabilis-
tic graphical models, including Viterbi, sum-product, MCMC Metropolis Hastings, and MCMC
Gibbs sampling; (4) we crated query-driven techniques for executing PDA queries that involve
both inference operators and relational operators; and (5) we developed a query optimization tech-
nique called “hybrid inference”, which can choose among the different inference algorithms we
implemented in BAYESSTORE.

This thesis work shows that: First, sophisticated statistical methods, involving recursive and
iterative procedures, can be efficiently implemented in a set-oriented data processing framework
like PostgreSQL and achieve comparable runtime to open source implementation of the same algo-
rithms in procedural languages; Second, querying over distributions rather than the top-1 highest-
probability results can reduce false negatives (i.e., missing results) by as much as 80%; Third,
the query-driven inference techniques can achieve orders-of-magnitude speed-up on large-scale
datasets compared to the batch process used in the common practice of loose coupling for PDA;
Lastly, query optimization techniques for inference queries can achieve significant speed-ups com-
pared to standard algorithms used in the SML literature.

The thesis not only shows the design and implementation of a probabilistic database system
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based on PGMs for probabilistic data analysis, but also opens up the opportunity of deeper inte-
gration between database systems and a wide range of ML methods to perform more advanced and
scalable data analysis. Moving forward, we believe it is important to further develop the query-
driven inference techniques to a broader class of ML models and algorithms in order to build a
query-driven machine learning system that can support efficient and scalable ad-hoc data analy-
sis queries. We also see the need to develop an extensible framework that can support various
statistical ML models and their inference and learning algorithms.
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Appendix A

Pseudo-codes

A.1 In-database Implementation of MCMC-MH

A.2 Probabilistic Projection followed by Top-k Inference over CRF
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1 CREATE FUNCTION MCMC-MH (int) RETURN VOID AS

2 $$

3 -- compute the initial world: getInitialWorld()

4 insert into MHSamples

5 select setval(’world_id’,1) as worldId, docId, pos, token,

trunc(random()*num_label+1) as label

6 from tokentbl;

7 -- compute N sample proposals: genProposals()

8 insert into Proposals

9 with X as (

select id, docID, trunc(random()*docLen(docID)) as pos

from (

10 select generate_series as id,

((generate_series-1)/($1/numDoc)+1) as docID

11 from generate_series(1,$1)) foo )

12 select X.id,S.docId,S.pos,S.token,

trunc(random()*numLabel+1) as label,

null::integer[] as prevWorld, null::integer[] as factors

13 from X, tokentbl S

14 where X.docID = S.docID and X.pos = S.pos;

15 -- fetch context: initial world and factor tables

16 update proposals S1

17 set prev_world = (select * from getInitialWorld(S1.docId))

18 from proposals S2

19 where S1.docId <> S2.docId and S1.id = S2.id+1;

20 update proposals S1

21 set factors = (select * from getFactors(S1.docId))

22 from proposals S2

23 where S1.docId <> S2.docId and S1.id = S2.id+1;

24 -- accept/reject proposals: getAlpha()

25 insert into MHSamples

26 select worldId, docId, pos, token, label

27 from (

28 select nextval(’world_id’) worldId, docId, pos, token, label,

getalpha_agg((docId,pos,label,0.0,prev_world,factors)

::getalpha_io) over (order by id) alpha

29 from (select * from proposals order by id) foo) foo

30 where (foo.alpha).docID <> -1;

31 $$

32 LANGUAGE SQL;

Figure A.1. The SQL implementation of MCMC Metropolis-Hasting takes input N – the
total number of samples to generate in MHSAMPLES table.
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TOP1PROBPROJECT (doc, χ)

1 V (1, y1)[1].score← MR(doc.x1, y1,−1);V (1, y1)[1].prev = {−1,−1};

2 for each token doc.xi(i = 2, ..., T ) do

3 for each cur label y ∈ Y do

4 GET-NEXT-U(V, i, y, χ); GET-NEXT-V(V, i, y, χ);

5 endfor endfor

6 Tmp← ∪yT∈Y V (T, yT );Tmp← Tmp ∪ GET-NEXT-U(V, T + 1,−1, χ);

7 sort Tmp by score desc; y∗[T ]← Tmp[1];

8 for i = T − 1; i >= 0; i−− do

9 label← y∗[i+ 1].prev.label;

10 if label = ’don’t care’ then y∗[i]← U(i, y∗[i+ 1].label)[1];

11 else y∗[i]← V (i, label)[1];

12 endif endfor

13 return y∗

GET-NEXT-V (V, i, y, χ)

1 maxidx← V (i, y).length;

2 if maxidx > 0 then

3 py ← V (i, y).prev.label; pidx← V (i, y).prev.idx;

4 if py = ’don’t care’&&pidx = U(i, y).length then GET-NEXT-U(V, i, y, χ);

5 else if py 6= ’don’t care’&&pidx = V (i− 1, py).length then GET-NEXT-V(V, i− 1, py, χ);

6 endif endif

7 Tmp← ∪y′∈Y \χV (i− 1, y′);

8 for each te = {score, label, prev} ∈ Tmp do

9 te.score← te.score+ MR(xi, te.label, y
′);

10 endfor

11 Tmp← Tmp ∪ U(i, y); sort Tmp by score desc;

12 V (i, y)← V (i, y) ∪ Tmp[maxidx+ 1];

Figure A.2. Algorithm for computing top-1 result for probabilistic projection queries.
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GET-NEXT-U (V, i, y, χ)

1 maxidx← U(i, y).length; labels[i]← χ;

2 for l = 1; true; l + + do

3 upper ← Σy∈χV (i, y′).GET-LAST().score;

4 // UT is the rank-join buffer

5 score← UT (i, y)[1].score;

6 if upper 6 score then

7 U(i, y)[maxidx+ 1]← {score, y, UT (i, y)[1].prev};

8 UT (i, y)← UT (i, y)− UT (i, y)[1]; break;

9 endif

10 Tmp← ∪y′∈χV (i− 1, y′).GET-LAST();

11 for each te = {score, label, prev} ∈ Tmp do

12 te.score← te.score+ MR(xi, te.label, y
′);

13 endfor

14 sort Tmp by score desc;max← Tmp[1];

15 for j = i− 2; j >= 0; j −− do

16 if max.prev.label = ’don’t care’ then

17 max← U(j,max.label)[max.prev.idx];

18 label[j]← χ;

19 else

20 max← V (j,max.prev.label)[max.prev.idx];

21 label[j]← max.prev.label;

22 endif endfor

23 score← MARGINALIZE(i, labels);

24 UT (i, y)← UT (i, y) ∪ {score, y, Tmp[1].prev};

25 GET-NEXT-V(V, i− 1, Tmp[1].label, χ);

26 endfor

Figure A.3. Algorithm for computing the next highest-probability entry in U(i, y) used in
TOP1PROBPROJECT(). 135




