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Dr. Weiwei Zhang, Chairperson 
 
 
 
 
 

Human memories do not always precisely correspond to exceedingly rich contents 

in the external environment. This variability of internal representations, especially in 

working memory (WM) – a system that maintains a small amount of information over a 

short time period at the service of other mental activities, sets an important functional 

limit in human cognition. However, neurocognitive mechanisms underlying this WM 

precision bottleneck remain unclear. One class of theories attributes WM precision to 

noisy sustained neural activity that supports WM retention (i.e., neural noise hypothesis). 

Another class of theories maintains that WM retention and precision are supported by 

independent neural mechanisms. Specifically, WM precision and its manifestation as a 

certain level of noise in sustained neural activity may be supported by pattern separation, 
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a computation potentially implemented in the hippocampus to orthogonalize similar 

memories into non-overlapping representations. This pattern separation hypothesis is 

preliminarily supported by 3 lines of evidence in 4 experiments of the current 

dissertation. First, in Experiment 1, observers with better pattern separation performance 

in a behavioral task tend to have higher precision in both WM and long-term memory 

(LTM), in contrast to a lack of significant association between pattern separation 

behavioral performance and the probability of successful remembering in either WM or 

LTM. Second, using functional Magnetic Resonance Imaging (fMRI), Experiment 2 

shows that the hippocampus, along with several other regions in a distributed neural 

network, increases activity as the task demand on WM precision increases. This 

hippocampal sensitivity to WM precision task demand seems to be primarily driven by 

the DG/CA3 subfield – where pattern separation most likely occurs – in Experiment 3 

using high-resolution fMRI. Third, Experiment 4 further demonstrates that the 

hippocampal DG/CA3, during WM delay period, retains decodable item-specific 

information, which further predicts activity in the visual cortices, potentially linking 

pattern separation to sensory recruitment for precise visual WM representations. Overall, 

these findings support a novel hippocampal pattern separation mechanism for WM 

precision, which is central to the ongoing debate on the nature of WM storage limitations. 

Articulating this potential mechanism may provide a better understanding of 

compromised mental clarity, manifested as reduced memory precision, in clinical 

populations such as schizophrenia and pathological aging, etc.   
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Chapter 1 

Precision of Working Memory Representations: An Inquiry into Mental Clarity 

 

Memories are not always veridical representations of the past. How faithfully a 

given memory representation corresponds to a past event – mnemonic precision – may 

underlie mental clarity and its functional values in our everyday lives. For example, 

losses in mnemonic precision are often described as increases in “brain fog,” such as the 

mind being “forgetful,” “cloudy,” and “lack of a focus” (Ocon, 2013; Ross, Medow, 

Rowe, & Stewart, 2013; Theoharides, 2015). These phenomenological experiences are 

frequently observed in compromised physical and mental health conditions, including 

coeliac disease (e.g., Yelland, 2017), chronic fatigue syndrome (e.g., Ocon, 2013), neuro-

inflammation (e.g., Mackay, 2015; Theoharides, 2015; Theoharides, Stewart, 

Panagiotidou, & Melamed, 2016), fibromyalgia (e.g., Walitt et al., 2016), autism (e.g., 

Theoharides, Tsilioni, Patel, & Doyle, 2016), schizophrenia (e.g., Migliorati, Salvador, 

Adolescent, 2012, 2012), and aging (e.g., Maki & Henderson, 2016), etc. Although 

“brain fog” is an illustrative and easily-understood metaphor for reduced mental clarity 

(Parker et al., 2010), the mechanisms underlying these commonly-observed symptomatic 

complaints often vary across conditions and remain to be specified. To fill this gap in the 

literature, the current dissertation intends to examine a neurocognitive mechanism for 

precise mental representations retained in working memory (WM). 

Working Memory and Its Roles in Cognition 

WM, a concept popularized by Baddeley and Hitch (1974) to better capture short-
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term memory (STM), is a system that supports temporary information retention (in the 

order of seconds) at the service of other ongoing mental activities (Atkinson & Shiffrin, 

1968). Because STM representations are rarely maintained without prospective uses 

(Fuster, 2009), the term “working” is often preferred over “short-term” to describe 

processes and representations associated with active information maintenance (Baddeley, 

2012). In comparison, long-term memory (LTM) is considered a system that primarily 

supports passive information storage for later uses in a more distant future (e.g., in hours 

or days after a memory event, Atkinson & Shiffrin, 1968). This distinction between WM 

and LTM in supporting different states/forms (active vs. passive) of memory 

representations has remained one of the primary research topics in cognitive psychology 

(Jonides et al., 2008).  

Classical memory models consider WM as a unique cognitive system that is 

separate from the LTM system (e.g., the modal model, Atkinson & Shiffrin, 1968). As 

such, the neural mechanisms underlying active information maintenance and those 

underlying passive storage of memory representations may be independent of one 

another. This system view is supported by neuropsychological studies in brain-lesion 

patients. For example, patients with medial temporal lobe (MTL) lesions (e.g., H. M.) 

often exhibited anterograde amnesia with relatively intact WM task performance 

(Scoville & Milner, 1957); whereas, patients with prefrontal lobe lesions can manifest 

deficits in both WM (Voytek & Knight, 2010) and LTM (see a review in Simons & 

Spiers, 2003). However, an emerging state view of memory postulates that WM may be 

better conceptualized as activated LTM under the focus of attention (Cowan, 2001; 
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Oberauer, 2002). According to this view, WM as active LTM does not necessarily rely on 

different neural underpinnings as compared to passive LTM (Nee & Jonides, 2013a; 

2013b). Supporting this conceptualization, recent human neuroimaging and 

neurophysiological recording studies have showed the involvement of MTL in some WM 

tasks (Hannula, Tranel, & Cohen, 2006; Libby, Hannula, & Ranganath, 2014; Kamiński, 

Sullivan, Chung, Ross, Mamelak, & Rutishauser, 2017). Furthermore, brain regions for 

LTM retrieval have also been shown to support maintenance of the same memory content 

in WM (e.g., Lewis-Peacock & Postle, 2008).  

Notwithstanding these different theoretical viewpoints (system vs. state) on the 

architecture of human memory, WM (or active LTM) has several characteristics that are 

not necessarily shared by other cognitive processes. First, WM seems to be limited in 

storage capacity (G. A. Miller, 1956), such that only a small amount of information can 

be retained in WM (e.g., about 3 to 4 colors in visual WM, Cowan, 2001; Luck & Vogel, 

1997; Zhang & Luck, 2008; but see Bays & Husain, 2008; Ma, Husain, & Bays, 2014; 

Oberauer & Lin, 2017). This limitation is in sharp contrast to a vast amount of 

information that can be stored in LTM (Brady, Konkle, Alvarez, & Oliva, 2008; 

Standing, 1973). Second, WM shows a complete loss of some retained information after a 

few seconds (Donkin, Nosofsky, Gold, & Shiffrin, 2015; Nosofsky & Donkin, 2016; 

Zhang & Luck, 2009). In comparison, LTM representations can be stored for days, 

months, or even years, and the primary reason for LTM forgetting may be interference 

instead of decay (Underwood, 1957). Third, WM – as a system integrating both bottom-

up (stimuli-driven) and top-down (motivation and cognitive control) mental processes 
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(Baddeley, 2012; Cowan, 2001; Miyake & Shah, 1999) – has unique functional roles in 

cognition in that it supports a wide range of cognitive and affective functions. For 

example, larger WM storage capacity has been associated with more effective attentional 

allocation (Kane, Poole, Tuholski, & Engle, 2006), higher fluid intelligence (A. R. A. 

Conway, Kane, & Engle, 2003), more optimal processing of affective information (Lynn 

et al., 2016; Xie et al., 2017), and better emotional regulation (Schmeichel, Volokhov, & 

Demaree, 2008), etc.  

Give the central role of WM in human cognition (Cowan, 2001), research 

articulating how precise mental representations can be actively retained in WM may thus 

reveal a key mechanism underlying mental clarity. This line of research may further 

provide translational insights to increased “brain fog” in some clinical conditions. Hence, 

the current dissertation will primarily focus on precision of mental representations in WM 

as a proxy toward a scientific inquiry into mental clarity. The following sections will 

introduce the operationalization of WM precision and discuss the nature of WM 

representations for later inquiries about potential mechanisms underlying WM precision 

in Chapter 2.  

Quantitative and Qualitative Aspects of Memory Representations 

 When it comes to memory, both quantity and quality matter (Koriat & Goldsmith, 

1996). The quantitative aspect of memory refers to the likelihood that a given stimulus is 

encoded into and retrieved from the mental storehouse, whereas the qualitative aspect of 

memory refers to the correspondence between internal mental representations and the 

corresponding external stimuli/events (Koriat & Goldsmith, 1994; 1996; Koriat, 
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Goldsmith, & Pansky, 2000). Although the qualitative aspect of mental representations, 

such as strength and vividness of memory, has been studied throughout the history of 

experimental psychology (Macmillan & Creelman, 2005), most empirical and theoretical 

research has emphasized the quantitative aspect of cognition (e.g., the number of items 

that one can remember in memory). Historically, this may be partly due to reductionism 

from the cognitive revolution (Bickle, 1998) and the movement away from Gibson’s 

ecological approach (Koriat & Goldsmith, 1996). In memory research, this manifests as 

the declaration of the “bankruptcy of everyday memory” (Koriat & Goldsmith, 1996) and 

the popular storehouse approach (Koriat et al., 2000; Koriat & Goldsmith, 1996) that 

focuses on the quantitative aspect of internal representations and processes (e.g., Is a 

stimulus encoded into memory and properly retrieved?). However, the recently renewed 

interests in the qualitative aspect of memory (M. A. Conway, 1991; Gruneberg, Morris, 

& Sykes, 1991; Loftus, 1991) have profoundly shaped memory research in basic science 

(e.g., recognition memory, Parks & Yonelinas, 2007) and applied domains (e.g., 

eyewitness memory, Loftus, 2013).  

For instance, recent studies have made substantial progress in developing models 

of these two aspects of memory representations to address theoretical and empirical 

questions (Bays & Husain, 2008; van den Berg, Awh, & Ma, 2014; Wilken & Ma, 2004; 

Zhang & Luck, 2008). One prominent model assesses the qualitative and quantitative 

aspects of memory based on their independent contributions to overall memory recall 

performance in a delayed estimation task (Zhang & Luck, 2008; 2009; 2011). In this task, 

observers memorize surface features of some briefly presented memory items, such as 
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colored squares, and then recall a given memory item after a delay of seconds (e.g., 

Zhang & Luck, 2008) or minutes (e.g., Brady, Konkle, Gill, Oliva, & Alvarez, 2013; Xie 

& Zhang, 2017b; 2018), by reproducing the remembered feature of the memory item on a 

continuous feature space, such as a circular color spectrum (Prinzmetal, Amiri, Allen, & 

Edwards, 1998; Wilken & Ma, 2004). According to the mixture model (Zhang & Luck, 

2008; 2009; 2011), participants’ recall performance across trials in this task reflects 

mixed contributions of both the quality and quantity of retained memory representations 

(Xie & Zhang, 2017a). Specifically, the qualitative aspect can be conceptualized as 

precision of retrieved memory, which is inversely related to the variability of recall 

performance based on retained memory. The quantitative aspect can be measured as the 

probability of successful memory retrieval, calculated as the probability of random 

responses subtracted from one.  

Distinguishing these two aspects of memory using the mixture model is helpful to 

quantify different experimental effects on memory representations, such as memory 

impairments in clinical populations (e.g., J. M. Gold et al., 2010) and effects of 

sociobiological factors on memory, including sleep deprivation (e.g., Wee, Asplund, & 

Chee, 2013), emotion (e.g., Spachtholz, Kuhbandner, & Pekrun, 2014; Xie & Zhang, 

2016; 2017b), and aging (e.g., Peich, Husain, & Bays, 2013), etc. Furthermore, this 

model can also clarify the dynamics of memory processes, such as encoding (Zhang & 

Luck, 2008) and forgetting (Zhang & Luck, 2009). For example, the gradual increase in 

the overall variability of memory performance in visual WM across retention intervals 

may be better accounted for by a decline in the likelihood of successful memory retrieval 
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(Donkin et al., 2015; Zhang & Luck, 2009) rather than by a decline in the quality of 

memory representations (Cornelissen & Greenlee, 2000; B. Lee & Harris, 1996; Paivio & 

Bleasdale, 1974).  

Quantity and Quality: Independent or Integrated Aspects of Working Memory?  

Using this mixture modeling approach, recent studies have further examined 

theoretically significant questions regarding the nature of WM limitations. That is, 

whether WM is constrained by a quantitative limit (i.e., capacity-limit, Zhang & Luck, 

2008), a qualitative limit (i.e., precision-limit, Bays & Husain, 2008; van den Berg et al., 

2014), or both (Alvarez & Cavanagh, 2004).  

In this debate, capacity-limit theories attribute the storage limit in WM to capacity 

in that only a small number of discrete representations can be simultaneously retained in 

WM (Cowan, 2001; Luck & Vogel, 1997; Zhang & Luck, 2008). In contrast, precision-

limit theories attribute the bottleneck of WM to the limit in the total amount of cognitive 

resource that can be flexibly divided among different WM representations (Bays & 

Husain, 2008). As the total pool of cognitive resource is finite, the amount of resource 

each representation receives would continuously decrease as the number of retained 

representations increases, leading to progressively reduced precision for each retained 

representation. As a by-product of this resource-sharing principle, observers could choose 

to remember either a small number of high-precision representations or a large number of 

low-precision representations (Bays & Husain, 2008; Ma et al., 2014), a tradeoff between 

the number and precision of retained memories. In contrast, capacity-limit theories 

suggest against this arbitrary tradeoff beyond WM storage capacity, such that the limit in 
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the number of items that an observer can retain in WM should be independent of the 

precision of those retained WM representations, even though more precise 

representations can be retained at the cost of reduced number of representations (but not 

vice versa). The core of this debate is thus whether the quantity (number) and quality 

(precision) of retained WM representations should be considered as independent or 

integrated aspects of WM.  

Two distinctive approaches have been used in the literature to resolve this issue. 

First, a behavioral dissociation approach has been used to examine the independence 

between WM quantity and quality. According to this approach, if behavioral measures of 

these two aspects of WM are differentially associated with different experimental 

manipulations or individual differences, it is very likely that these two aspects of WM 

representations are supported by different (and likely to be independent) underlying 

mechanisms. For instance, interrupting the process of transferring fragile sensory 

information into WM (i.e., WM consolidation) using pattern masks at different time 

points following memory onsets can selectively affect the number, but not precision, of 

retained WM representations. In contrast, simultaneous white-noise masking of the 

memory array (e.g., random colors dots overlaying on top of to-be-remembered color 

squares) can reduce WM precision without reducing the number of retained WM items 

(Xie & Zhang, 2017a; Zhang & Luck, 2008). With a similar rationale, a growing 

literature has documented dissociable effects of individual differences in WM deficits 

due to certain health-related factors. For instance, sleep deprivation has been shown to 

compromise WM quantity instead of quality (Wee et al., 2013). In contrast, schizotypal 
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traits – as subclinical characteristics of schizophrenia spectrum disorders – has been 

associated with reduced WM quality instead of quantity (Xie et al., 2018). These 

empirical double dissociations between the quantitative and qualitative measures of WM 

thus provide important evidence for the independent nature of these two aspects. 

However, critics of the behavioral dissociation approach argue that this approach 

is primary confirmatory in nature and often fail to consider all alternative models. Thus, 

the second approach uses formal model comparison and focuses on how well can 

competing models account for empirical data. For instance, to test competing 

hypotheses/theories, a recent study has tried to perform a factorial model comparison that 

assesses goodness-of-fit for models with different combination of assumptions (e.g., 

capacity-limit vs. capacity-unlimited, fixed precision across memory items vs. allowing 

precision to vary across memory items, van den Berg et al., 2014). Although there are 

great merits in this model comparison approach, a fundamental problem with this 

approach is that goodness of fit, while can serve as a good starting point for theory 

development, should not be the ultimate goal of cognitive science (Pitt & Myung, 2002; 

Roberts & Pashler, 2000; 2002; Rodgers & Rowe, 2002). As often observed in the 

literature, lots of competing models with fundamentally different conceptualizations of 

the underlying representations and processes can fit empirical data adequately well (Pitt 

& Myung, 2002). It is thus pivotal to establish the psychological meaning and validity of 

model parameters and to formulate testable predictions of a model (Roberts & Pashler, 

2000; 2002) as advocated by the behavioral dissociation approach, which has 

unfortunately received little attention by the model comparison approach. 
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A similar theoretical dilemma can be found in the recognition memory literature, 

in which it is under heated debate whether recognition performance is supported by one 

process (i.e., memory strength, Wixted, 2007) or two different processes (Parks & 

Yonelinas, 2007; Yonelinas & Parks, 2007). The two competing theories, the unitary-

process versus dual-process theories, again can account for various findings in the 

recognition memory literature adequately well, rendering the model comparison approach 

less informative (Yonelinas, Aly, Wang, & Koen, 2010). To move the field forward, 

cognitive neuroscience research using a neural dissociation approach has been proposed 

to evaluate the underlying cognitive and neural mechanisms supporting different aspects 

of a given model (Yonelinas et al., 2010). With this effort, recent neuropsychological and 

neuroimaging findings have shown that different aspects of recognition performance 

(e.g., remembering/knowing, source/item memory) may be differentially supported by 

the hippocampus and its surrounding structures (e.g., parahippocampus), mapping 

respectively to recollection and familiarity processes (Diana, Yonelinas, & Ranganath, 

2007). As such, the dual-process theory that predicts dissociable cognitive and neural 

processes underlying recognition memory, as opposed to the unitary-process theory, may 

be able to better account for these observed neural patterns. Hence, demonstrating how 

different aspects of behaviors can be supported by different neural mechanisms may thus 

be informative in model selection (Yonelinas et al., 2010) beyond a mere focus on 

goodness-of-fit measures.  

Similarly, if the quantitative and qualitative aspects of WM representations are 

supported by overlapping neurocognitive mechanisms, it is highly possible that the two 
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aspects are different manifestations of the same process. However, if the quantitative and 

qualitative aspects of WM are dissociable at the physical implementation level (Marr, 

1982), it is possible that capacity and precision are independent constraining factors of 

WM representations. This neural dissociation approach is thus timely and critical for the 

current heated debate regarding the nature of WM representations. Furthermore, it may 

also provide a clue to a mechanism underlying mental clarity supported by precise WM.  

Overview of the Current Dissertation 

Going beyond behavioral dissociation and model comparison approaches, this 

dissertation will investigate a neurocognitive mechanism supporting WM precision, 

which may potentially be independent of the mechanism underlying WM capacity. 

Chapter 2 will elaborate this possible mechanism and an alternative hypothesis. Chapter 3 

to 5 will describe studies designed to test predictions based on the proposed mechanism 

using different analytical or methodological approaches. Last, Chapter 6 will discuss 

some follow-up studies, translational significance, and future directions. Overall, by 

examining a plausible neurocognitive mechanism underlying WM precision, this 

dissertation research may provide better understandings for the nature of WM 

representations and for mental clarity that relies on precise WM.  
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Chapter 2 

Neural Noise Hypothesis and Pattern Separation Hypothesis 

 

Neural Noise Hypothesis 

A recently developed neural noise hypothesis attributes WM precision to the 

variability of sustained neural activity underlying WM retention (Bays, 2014). 

Specifically, given that stimulus-selective persistent neural activity (Goldman-Rakic, 

1995) or a propensity to produce persistent neural activity (Christophel, Klink, Spitzer, 

Roelfsema, & Haynes, 2017) has been considered as the neural correlate of WM 

retention, the variability of persistent neural activity is thus a natural candidate for the 

neural mechanism underlying the variability of retained WM presentations (Koyluoglu, 

Pertzov, Manohar, Husain, & Fiete, 2017; Veldsman, Mitchell, & Cusack, 2017), which 

is inversely related to WM precision. For example, persistent neuronal activity in the 

prefrontal cortex, which presumably underlie spatial WM performance, exhibits 

fluctuations during WM delay interval and produces systematic shifts in WM 

representations and variability in behaviors (Wimmer, Nykamp, Constantinidis, & 

Compte, 2014). Consequently, frontal and parietal mechanisms that reduce internal noise 

via attention modulation (see N. E. Myers, Stokes, & Nobre, 2017 for a review) or 

distraction inhibition (N. E. Myers, Stokes, Walther, & Nobre, 2014; Poliakov, Stokes, 

Woolrich, Mantini, & Astle, 2014) can increase WM precision. This neural noise 

hypothesis for WM precision can thus be naturally integrated into the mechanism for 

WM retention. That is, properties of the neural mechanisms for sustained neural activity 
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may give rise to both capacity and precision limits in WM. For instance, the upper limit 

in sustained activity during WM retention may be associated with WM capacity (Todd & 

Marois, 2004; Vogel & Machizawa, 2004), whereas the variability in sustained neural 

activity may account for WM precision (Bays, 2014; 2015). Another prediction of the 

neural noise hypothesis is that neural noise in multiple brain regions can be related to 

WM precision, given the distributed nature of WM retention in the brain (Eriksson, 

Vogel, Lansner, Bergström, & Nyberg, 2015; Veldsman et al., 2017). This integrated 

mechanism thus makes it straightforward to account for some previously observed 

relationships between WM quantity and quality, such as the dynamic tradeoff between 

the number and precision of retained WM representations (Banta Lavenex, Boujon, 

Ndarugendamwo, & Lavenex, 2015; M. A. Cohen, Konkle, Rhee, Nakayama, & Alvarez, 

2014; Roggeman, Klingberg, Feenstra, Compte, & Almeida, 2014).  

However, there are at least two concerns about the neural noise hypothesis. First, 

variability of sustained neural activity in the cerebral cortex can be the consequence or 

downstream effect of memory precision (i.e., neural manifestation of noisy memory 

representation), rather than the cause. For instance, decreased visual WM precision due 

to aging (Noack, Lövdén, & Lindenberger, 2012; Peich et al., 2013) may be a 

consequence of aging-related decline in the mid-brain dopaminergic function, which can 

manifested as an increased level of neural noise in the cortex (S.-C. Li, Lindenberger, & 

Sikström, 2001). Second, since WM retention is supported by a wide range of neural 

substrates (Courtney, Ungerleider, Keil, & Haxby, 1997; Eriksson et al., 2015; Mackey & 

Curtis, 2017; Veldsman et al., 2017), precision of WM representations can also be 
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affected by multiple factors, including precision of perceptual encoding (Emrich, Riggall, 

LaRocque, & Postle, 2013; Ester, Anderson, Serences, & Awh, 2013; FitzGerald, Moran, 

Friston, & Dolan, 2015; Pratte, Park, Rademaker, & Tong, 2017) and attentional control 

(see N. E. Myers et al., 2017 for a review) in parietal (Galeano Weber, Peters, Hahn, 

Bledowski, & Fiebach, 2016) and prefrontal (Sarma, Masse, Wang, & Freedman, 2015) 

regions. Although these factors are all important for maintaining precise WM 

representations, they may not be the de facto mechanism for WM precision. For instance, 

the significant decrease in precision of internal representations from perception to WM 

(Brady et al., 2013; Cappiello & Zhang, 2016; Chang, Armstrong, & Moore, 2012; Zhang 

& Luck, 2008) suggests potentially different mechanisms for WM precision and 

perceptual encoding. The latter can be significantly modulated by attentional mechanisms 

(Luck, Girelli, McDermott, & Ford, 1997; Palmer, 1990; Prinzmetal et al., 1998) such as 

gain control of neural activity in extrastriate visual cortices (Hillyard & Anllo-Vento, 

1998), which can be independent of memory-related mechanisms.  

Pattern Separation Hypothesis 

In contrast to the integrated mechanisms for WM capacity and precision from the 

neural noise hypothesis, it is possible that the underlying mechanism for WM retention 

(e.g., neural oscillation, Raffone & Wolters, 2001) and that for WM precision are 

independent of each other, especially if the latter involves a universal computation to 

ensure efficient information processing. One plausible candidate for this universal 

computation is pattern separation, a process that orthogonalizes overlapping 

representations into more distinct forms (Marr, 1971). This computational process is 
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especially important for retaining precise memories in the presence of interference from 

highly similar distractors (Aimone, Deng, & Gage, 2011; Johnston, Shtrahman, Parylak, 

Gonçalves, & Gage, 2016), potentially including those in WM (Gilbert & Kesner, 2006). 

This memory resolving power seems to preferentially come from the hippocampus 

(Yassa & Stark, 2011), especially the Dentate Gyrus (DG). The three properties of the 

DG, including abundant granule cells, strong inhibitory interneurons, and powerful 

mossy fiber synapses, provide a highly efficient coding scheme to convert interference-

susceptible population-coded information into interference-resistant sparse-coded 

representations (Aimone et al., 2011; Deng, Aimone, & Gage, 2010; Rolls, 2013; 2016). 

As a result of this pattern separation computation, precise individual representations can 

be retained in the hippocampus and later transferred to cortical regions to support 

accurate memory response (Marr, 1971). Consistent with this idea, some recent findings 

suggest that the hippocampus is important for remembering precise spatial and contextual 

information in LTM (Aimone et al., 2011; Johnston et al., 2016; Reagh & Yassa, 2014; 

Yassa & Stark, 2011). For instance, in the animal literature, lesions to the hippocampus, 

especially the DG, can impair mice’s ability to recognize new spatial information that is 

similar to previously learned information (Clelland et al., 2009; Gilbert, Kesner, & Lee, 

2001). Furthermore, human neuroimaging studies also demonstrate similar hippocampal 

sensitivity to pattern separation in object recognition memory tasks (e.g., Bakker, 

Kirwan, Miller, & Stark, 2008; Lacy, Yassa, Stark, Muftuler, & Stark, 2011; Reagh & 

Yassa, 2014).  
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However, this hippocampus-based mechanism for memory precision has been 

largely neglected by contemporary theories of WM, primarily due to the prominent 

system view of the dissociation between WM and LTM. According to the system view of 

memory, the MTL, especially the hippocampus, is exclusively involved in LTM but not 

in WM (Jeneson & Squire, 2012; Squire, 2017; Squire & Zola-Morgan, 1991). This 

system view is strongly supported by neuropsychological evidence showing that damages 

in the MTL (especially the hippocampus) often result in selective deficits in episodic 

LTM but not in WM (Baddeley & Warrington, 1970; Scoville & Milner, 1957; Sullvan & 

Sagar, 1991). It, however, has recently been challenged by some neuroimaging findings 

showing increased activities in MTL, including the hippocampus, in WM tasks 

(Axmacher et al., 2007; Barense, Gaffan, & Graham, 2007). Nonetheless, these findings 

could not rule out an alternative interpretation. Specifically, task performance in a WM 

task is often supported by various cognitive processes including WM. Consequently, 

hippocampal involvement in a WM task could reflect processes other than WM. For 

instance, MTL activities in WM tasks can be obtained when WM task load (e.g., set size 

or complexity) is high or when retention interval is relatively long (see Ranganath & 

Blumenfeld, 2005 for a review). As such, hippocampal involvement in a WM task with a 

large number of memory stimuli may thus result from LTM support for supra-capacity 

information (Jeneson & Squire, 2012; Jeneson, Mauldin, & Squire, 2010; Jeneson, 

Mauldin, Hopkins, & Squire, 2011; Jeneson, Wixted, Hopkins, & Squire, 2012). 

Similarly, hippocampal involvement in WM tasks for relational or complex information 

(Libby et al., 2014) could also simply be a result of increased capacity demand for 
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relational/complex information, instead of its specific involvement in WM. To address 

this alternative interpretation, it is pivotal to articulate the specific computational process 

that the hippocampus contributes to WM representations when LTM involvement is 

minimized (e.g., short delay period and low WM load).  

Testing the Pattern Separation Hypothesis 

The pattern separation hypothesis postulates that the hippocampus contributes to 

WM with its pattern separation computation to retain precise WM representations by de-

correlating similar sensory inputs. This hypothesis and its three critical predictions will 

be tested in the present dissertation research.  

Prediction #1: Increases in hippocampal pattern separation should be coupled 

with higher WM precision.  

Prediction #2: The hippocampus, especially its DG/CA3subfield that has been 

implicated for pattern separation (Yassa & Stark, 2011), should be sensitive to different 

task demands on WM precision. That is, the hippocampus should be more involved when 

a WM task requires higher WM precision. 

Prediction #3: The hippocampus should contain decodable WM content that 

reflects precise item-specific information retained during the delay period of a WM task. 

Prediction# 1 can manifest as similar changes in pattern separation and WM 

precision due to certain experimental manipulations. For instance, induced negative 

emotion has been shown to improve both pattern separation (Segal, Stark, Kattan, Stark, 

& Yassa, 2012) and WM precision (Xie & Zhang, 2016). Alternatively, it could manifest 

as shared variance across the two constructs using an individual-differences approach. 
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That is, observers with better hippocampal pattern separation tend to show higher WM 

precision. To test this prediction, Experiment 1 in Chapter 3 thus uses a set of established 

behavioral paradigms to obtain measures about hippocampal pattern separation function 

and WM precision.  

Moving beyond individual differences, Prediction# 2 is tested using a 

combination of experimental and neuroimaging methods in Experiment 2 and 3 of 

Chapter 4. Specifically, Experiment 2 uses functional Magnetic Resonance Imaging 

(fMRI) methods in a visual WM task to identify brain regions, potentially including the 

hippocampus, that exhibit higher activity with increased task demands on WM precision. 

Experiment 3 will further pinpoint the hippocampal subfield(s) that potentially drive 

hippocampal contributions to WM precision using high-resolution fMRI.  

Experiment 4 in Chapter 5 will test Prediction #3 by using a novel decoding 

model and high-resolution fMRI. It is expected that precise item-specific information that 

is actively retained in WM can be decoded from the hippocampus, especially from the 

DG/CA3 subfield that has been implicated for pattern separation in human observers 

(Yassa & Stark, 2011). 

These empirical tests of the three critical predictions from the pattern separation 

hypothesis will be summarized in Chapter 6. Additional predictions of the pattern 

separation hypothesis and potential follow-up experiments will also be discussed.  
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Chapter 3 

Behavioral Association between Pattern Separation and Memory Precision 

 

This chapter aims at establishing the behavioral association between pattern 

separation and mnemonic precision in visual memory. Pattern separation is often assessed 

using the mnemonic similarity task (S. M. Stark, Yassa, Lacy, & Stark, 2013). This task 

begins with an incidental study phase in which observers view a series of everyday 

objects and categorize these objects as “indoor” versus “outdoor” items. In a subsequent 

test phase, observers are presented with items that have been shown before (i.e., old), 

lures that are similar with but not identical to the old ones (i.e., similar), and foils that 

have never been presented in the previous study phase (i.e., new). Observers are asked to 

classify these items into corresponding categories (i.e., old, similar, or new) based on 

their memory. From these memory responses, pattern separation can be defined as a Lure 

Discrimination Index (LDI), which is the difference between the probability of reporting 

lure items as “similar” and the probability of reporting foil items as “similar.” Using this 

paradigm, previous studies have shown that signals in the hippocampal DG/CA3 subfield 

could differentiate lures and old items (i.e., pattern separation), even when the similarity 

between lures and old items was high (Lacy et al., 2011). Furthermore, reduction in LDI 

has also been associated with compromised hippocampal functions in aging population 

(e.g., Yassa et al., 2010) and in hippocampus-damaged patients (e.g., Kirwan et al., 

2012). Therefore, the LDI is often considered a behavioral measure for hippocampal 

pattern separation function (S. M. Stark et al., 2013). 
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Although hippocampal pattern separation has been hypothesized as the underlying 

computational process supporting mnemonic precision (Aimone et al., 2011; Severa, 

Parekh, James, & Aimone, 2017), the behavioral association between pattern separation 

and mnemonic precision has not been formally evaluated. To fill this gap in the literature, 

Experiment 1 correlates the behavioral measure of pattern separation, namely the LDI, 

and mnemonic precision of visual memory estimated from the recall paradigm for both 

WM and LTM. Previous studies have demonstrated that LTM also retains detailed 

feature information (Brady et al., 2008), which could be as precise as WM 

representations (Brady et al., 2013). According to the hippocampal pattern separation 

hypothesis, pattern separation serves as an underlying mechanism for mnemonic 

precision in both short-term and long-term memories. Consequently, it is expected that 

the LDI will be correlated with behavioral measures of mnemonic precision, but not with 

the quantitative aspect (i.e., probability of successful retrieval), of WM and LTM. In 

contrast, the neural noise hypothesis predicts no reliable relationship between pattern 

separation and mnemonic precision.  

Experiment 1: Correlations Between Behavioral Measures of  

Pattern Separation and Memory Precision 

Method  

Participants. Sixty college students (19.58 ± 1.87 [Mean ± SD] years old, 22 

males) participated in Experiment 1 for course credits at University of California, 

Riverside. All participants had normal color vision and normal (or corrected-to-normal) 

visual acuity. They provided written informed consent prior to the study.  
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Procedure. Each participant performed three tasks, namely the mnemonic 

similarity task (S. M. Stark et al., 2013), the WM color recall task (Zhang & Luck, 2008), 

and the LTM color recall task (Brady et al., 2013). The mnemonic similarity task was 

always run first. Two recall tasks followed the mnemonic similarity task with the order 

counterbalanced across participants. In all tasks, all stimuli were presented on a 60Hz 

LCD monitor (calibrated using an X-Rite I1Pro spectrophotometer) on a gray background 

(6.1 cd/m2) at a viewing distance of 57 cm.  

Mnemonic Similarity Task. An incidental study phase and a recognition test 

phase were presented in this task (Figure 1a). In the study phase, 128 images of everyday 

objects (2.9° to 12.9° of visual angle in width and 4.0° to 12.8° of visual angle in height) 

were sequentially presented in a random order at the center of the screen for 2,000 ms per 

image with a 500-ms inter-stimulus interval (S. M. Stark et al., 2013). Participants 

reported whether the image contained an indoor object or an outdoor object by pressing 

the “V” and “N” buttons on a standard keyboard, respectively. They were allowed up to 

2,500 ms to make such a response following the presentation of the object. Participants 

were asked to respond as accurately as possible within the given time window. If the 

participant was unsure, they were instructed to make the best guess possible and to try to 

make a response to each image. In the subsequent test phase, 192 objects were 

sequentially presented in a random order at the center of the screen for 2,000 ms, each 

with a 500-ms inter-stimulus interval. One-third of the objects were exact repetitions of 

objects presented in the study phase (old items), one-third of the objects were new objects 

not previously seen (foils), and one-third of the objects were similar to those seen during 
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the study phase but not identical (lures). Participants categorized the presented test items 

into these corresponding categories, namely “old,” “similar,” and “new,” by pressing the 

“V,” “B,” and “N” keys, respectively. Accuracy was stressed as long as participants 

responded within the appropriate time window (2,500 ms).  

 WM Color Recall Task. In this task (Figure 1b), participants were instructed to 

memorize a memory array with 5 color squares simultaneously presented on the screen 

for 400 ms. These colors were randomly chosen from 180 iso-luminant colors evenly 

distributed in the Commission Internationale de l’Eclairage Lab (CIELAB) color space 

(see Zhang, 2007 for details). Locations of the color squares were randomly selected 

from a set of eight possible locations that were equally spaced on an invisible circle (5.5° 

of visual angle in radius). After a short delay of 1,000 ms with a blank screen, an arrow 

cue was presented pointing to the location of a randomly selected memory item, along 

with a continuous color wheel with all 180 colors. Participants were required to report the 

color at the cued location using a computer mouse to click on the color wheel. 

Immediately afterwards, an arrow was drawn outside of the color wheel pointing to the 

correct color for 1000 ms as feedback. All participants completed 3 blocks of 50 trials, 

yielding 150 trials in total.  

LTM Color Recall Task. One-hundred-and-twenty unique objects were randomly 

chosen from Brady et al.’s (2013) stimuli set which included 540 pictures of categorically 

distinct objects for the LTM task. These objects (6.5° × 6.5° of visual angle) could be 

recognized in arbitrary colors allowing their colors to be randomly rotated in hue space, 

yielding a different color appearance. The LTM color recall task also included a study 
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phase and a test phase. On each trial in the study phase, a random color value from 120 

evenly distributed and iso-luminant color hues in a 360-degree CIELAB color space was 

assigned as the initial color of each object. These study objects were sequentially 

presented at the center of the screen for 2,000 ms with a 500-ms inter-stimulus-interval. 

Participants were explicitly told to remember the colors of the presented objects.  

In a subsequent test phase (Figure 1c), participants saw an object from the study 

phase and tried to reconstruct its color on each trial. Each object was initially presented in 

gray scale. Participants rotated the mouse cursor, initially located at the center of the 

object, on an adjustment ring (7° of visual angle in diameter) centered on the test object, 

to continuously adjust the color of the object on a predefined invisible color wheel. The 

object’s color was determined by the angular position of the mouse cursor (i.e., the angle 

of the line connecting the center of the test item and the location of the cursor). When the 

object was colored in a hue that participants believed to best match their memory, they 

clicked the left mouse button and the color value of the test item was recorded. Online 

feedback (1,000 ms) was provided as the difference between the color participants chose 

(indicated by a gray bar marking the angular position of the chosen color on the 

adjustment ring) and the actual color of the test object (indicated by a thicker black bar on 

the adjustment ring marking the angular position of the original color of the test object 

from the study phase). Participants proceeded at their own pace and were instructed to be 

as precise as possible to report the objects’ colors. The order of objects in the test phase 

was independent of the order of objects in the study phase. There were two study-and-test 

blocks with 60 different objects per block, yielding a total of 120 recall trials.  
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Data Analysis. Participants’ ability to perform pattern separation computation 

was assessed using the LDI, calculated as the difference between the probability of 

“similar” responses on the lure trials and the probability of “similar” responses on the foil 

trials (Kirwan et al., 2012). This score reflects how well can an observer tease part similar 

lures from old items (correctly identifying lures as “similar”) after correcting for the 

general bias in “similar” responses (i.e., “similar” response to new items). Thus, a high 

LDI indicates better pattern separation ability.  

 Participants’ performance in the recall tasks can be quantified by a recall error on 

each trial, calculated as the angular difference between the presented color in the memory 

array and an observer’s reported color (ranged from -180° to 180°). The distributions of 

these recall errors across trials were fitted with Zhang and Luck’s (2008) mixture model 

using Maximum Likelihood Estimation (MLE) procedure, separately for each subject at 

each condition. As previously introduced, in this model, the overall distribution of recall 

errors is conceptualized as a weighted summation of two components, namely a von 

Mises distribution representing graded and noisy memory representations for probed 

items that are encoded in memory and a uniform distribution for guessing responses 

when the probed items cannot be successfully retrieved from memory. The 

proportion/weight of the von Mises distribution represents the probability that the probed 

item is successfully retrieved (Pm). The width of the von Mises distribution, defined as 

the standard deviation (SD) of the von Mises distribution, is inversely related to 

mnemonic precision. That is, a smaller SD indicates higher memory quality. Overall, this 

mixture model accounted for more than 97% of the variance in the observed data 
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(adjusted R2). Note, to keep consistent, both WM and LTM recall data were fitted with 

the same model. Critically, as formally tested in Richter et al. (2016) for LTM recall data, 

this mixture model (von Mises + uniform) substantially outperformed other competing 

models.  

Results and Discussion 

 As summarized in Figure 2, Pearson correlations were calculated for the variables 

of interest (i.e., LDI, PmLTM, PmWM, SDLTM, and SDWM). Of primary interest, LDI was 

significantly correlated with the precision measures of both LTM (LDI and SDLTM: r = -

.38 [-.58, -.14], p = .0031) and WM (LDI and SDWM: r = -.28 [-.50, -.03], p = .032). 

However, LDI was not significantly correlated with the probability of successful memory 

retrieval in LTM or WM (all ps > .60). Not surprisingly, the precision measures of LTM 

and WM from the two recall tasks were highly correlated with one another (SDLTM and 

SDWM: r = .37 [.13, .57], p = .0035). In contrast, probability of successful memory 

retrieval was not significantly correlated with each other (r = .10 [-.35, 16], p = .44). 

Critically, the correlation between LDI and SDWM was significantly larger than the 

correlation between LDI and PmWM (Z = 1.84, p = .033, one-tailed), based on a one-tailed 

test on correlated correlations (Meng, Rosenthal, & Rubin, 1992). Similarly, the 

correlation between LDI and SDLTM was also significantly stronger than the correlation 

between LDI and PmLTM (Z = 2.55, p = .0054, one-tailed). Furthermore, recognition 

accuracy of the new and old responses from the mnemonic similarity task was not 

significantly correlated with any measures of LTM or WM performance (PmLTM, PmWM, 

SDLTM, and SDWM; all ps > .20). These highly specific correlation patterns suggest that 
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the associations in task performance between the mnemonic similarity task (a recognition 

memory paradigm) and the recall tasks may be specifically driven by the qualitative 

aspects of memories, instead of by omnibus task performance such as accuracy. 

Conclusion 

Overall, this chapter demonstrates a considerate amount of shared variance in 

qualitative aspects of memory representations across visual LTM and WM (i.e., LDI, 

SDLTM, and SDWM). Furthermore, these measures of memory quality do not necessarily 

correlate with measures of memory quantity or compound measures of memory 

performance (i.e., PmLTM, PmWM, and recognition accuracy). These findings are 

consistent with the hypothesis that pattern separation computation underlies mnemonic 

precision across LTM and WM.  
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Chapter 4 

The Hippocampus is Sensitive to Task Demands on Working Memory Precision 

 

Building on the behavioral association between hippocampal pattern separation 

function and mnemonic precision, using fMRI, Chapter 4 aims to directly establish 

hippocampal involvement in visual WM precision by testing how the hippocampus 

responds to an experimental manipulation of task demands on WM precision. If the 

hippocampus contributes to WM precision, it is expected that hippocampal activity in a 

visual WM task will increase as the task demand on WM precision increases. In contrast, 

the neural noise hypothesis predicts comparable hippocampal activations under different 

task demands on WM precision, given that other brain regions beyond the hippocampus 

(e.g., frontal and parietal cortices) may support WM retention (Fuster & Alexander, 1971; 

Todd & Marois, 2004; Y. Xu & Chun, 2005; but see Kamiński et al., 2017). 

Following this rationale, Experiment 2 and 3 directly manipulate the level of 

precision needed to correctly perform the color recall WM task by varying 

discriminability between memory and lure colors in a delayed estimation task (Zhang & 

Luck, 2011). Specifically, across different task demands on WM precision (Figure 3), to-

be-remembered colors are randomly sampled from and later matched to either 1) 180 

continuously varying colors used in Experiment 1 (precise memory for color shade is 

necessary for accurate recall, high-precision load condition), 2) 15 evenly distributed 

colors spokes from the 180 colors (less precise memory of color is sufficient for accurate 

recall, medium-precision load condition), or 3) 6 evenly distributed color spokes from the 
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180 colors (lower memory precision is enough to support accurate recall, low-precision 

load condition). A perceptual and motor control condition is also included, in which a 

color randomly sampled from the 180 colors is to be matched onto a simultaneously 

presented color wheel. In this control condition, while the memory component is 

minimized, the perceptual encoding and motor response components are comparable to 

the three memory conditions. To maximize the effectiveness of these manipulations, 

these different experimental conditions are blocked, with the order counterbalanced 

across participants using a Latin-squared design.  

Considering that distributed brain regions are involved in WM (Eriksson et al., 

2015), Experiment 2 adopts a whole-brain fMRI approach to identify a set of potential 

brain regions, including the hippocampus, that may be sensitive to task demands on WM 

precision. To further isolate the contributions of hippocampal subfields (especially 

DG/CA3) to visual WM precision, Experiment 3 uses a high-resolution fMRI sequence 

(Reagh, Murray, & Yassa, 2017) by focally scanning the temporal regions of the brain 

with a 1.8 ´ 1.8 mm2 in-plate resolution in a 3-Tesla scanner. Considering the 

complicated folding structure of hippocampal subfields, larger voxel sizes from standard 

fMRI sequences (e.g., 3 mm3) may contain signals from various subfields, making it 

difficult to isolate subfield-specific contributions to WM precision. The high-resolution 

fMRI approach (Carr, Rissman, & Wagner, 2010) is thus essential for the current testing 

hypothesis regarding the association between hippocampal DG/CA3, where pattern 

separation computation is most likely to occur (Yassa & Stark, 2011), and visual WM 

precision.  
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Experiment 2: The Hippocampus Can Track Task Demands on 

Visual Working Memory Precision 

Method 

Participants. Twenty right-handed participants (12 female, on average 23.07 ± 

3.89 years old) were recruited from the Orange County community, Irvine, CA. All 

participants reported having normal color vision and normal (or corrected-to-normal) 

visual acuity. They also reported no history of neurological or psychiatric disorders and 

no history of psychostimulant use. The sample size of this study is predefined based on 

previous similar functional MRI studies (e.g., Reagh et al., 2017; Reagh & Yassa, 2014). 

All participants provided written informed consent following the procedure approved by 

the Institutional Review Board of both the University of California, Irvine and University 

of California, Riverside, and they received monetary compensation for their participation.  

Behavioral Task. The behavioral paradigm was modified from the WM color 

recall task (Figure 3, also see Experiment 1 in Zhang & Luck, 2011). Each trial of the 

task started with a 2-second blank screen with a fixation point on the screen. Afterwards, 

4 perceptually different color squares were briefly presented for 200 ms in 4 randomly 

selected locations from a set of 8 equally-spaced locations on an invisible circle (5.5° 

radius). This memory array was followed by an 1,800-ms delay interval with only a 

fixation circle on the screen. Immediately after this delay interval, a test array containing 

4 placeholders at the original locations of the study colors was presented along with a 

color wheel. One of the placeholders was bolded. Participants were instructed to recall 

the color that was originally presented in the bolded placeholder (i.e., target color) based 



 30 

 

on their memory, by using button presses to adjust the location of a cursor on the color 

wheel to land the cursor on the target color as precisely as possible. This cursor was 

initially presented at a random location on the wheel at the onset of the test display. By 

using the right index and middle fingers to press different buttons that mapped with the 

finger positions, participants moved the cursor clockwise and counterclockwise, 

respectively. They used the ring finger to press a third key to confirm their response. If 

participants did not confirm their response within the given response time window (3,750 

ms), the last location of the cursor on the wheel was treated as their response. On 

average, participants’ response time (onset of test display till the confirm response) was 

2742 ms (std. = 441), which was within the response time window. 

Three memory conditions were included to manipulate the load of WM precision. 

In the high encoding precision load condition, the study colors were randomly sampled 

from all 180 colors (with a minimum of 20° difference from one another) in the 360° 

color space (see Zhang & Luck, 2008 for details). In the medium encoding precision load 

condition, the study colors were randomly sampled from 15 fixed colors evenly 

distributed in the 360° color space (with a 24° difference for two adjacent colors). And in 

the low encoding precision load condition, the study colors were randomly sampled from 

6 fixed colors that evenly distributed in the 360° color space (with a 60° difference for 

two adjacent colors). Note, in the low encoding precision load condition, the 6 fixed 

colors were chosen to be as close as possible to center around the self-report color 

categories in the set of 180 colors in an independent group of observers (see Zhang, 

2007). In the test phase of these memory conditions, a corresponding color wheel was 
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presented matching the number of colors that was used to sample the study colors. A 

fourth perceptual/motor control condition was included, in which participants 

experienced similar trial events as those in the high encoding precision load condition. 

However, they had no need to remember items from the memory display, because in the 

later test display, the tested color would remain on the screen with the correct color 

marked on the color wheel at the onset of the test with a white arrow. Participants only 

needed to move the cursor to the target color through button presses. 

Each block consisted of 50 trials of one of the four conditions. Participants were 

told at the beginning of each experimental block what condition they were in. There were 

2 sequential blocks for each memory conditions and 1 block for the perceptual/motor 

control condition, in total 7 blocks/runs (350 trials). The order of different conditions was 

counterbalanced with a Latin-square design across participants. Before going into the 

scanner, participants completed additional 50 trials for each memory condition (across 6 

blocks, 25 trial each) and additional 25 trials for the perceptual/motor control condition (1 

block) for practice.  

MRI Data Acquisition. Neuroimaging data were acquired on a 3.0 Tesla Philips 

Achieva scanner, using a 32-channel sensitivity encoding (SENSE) coil at the 

Neuroscience Imaging Center at the University of California, Irvine. A high-resolution 

3D magnetization-prepared rapid gradient echo (MP-RAGE) structural scan (0.65 mm 

isotropic voxels) was acquired at the beginning of each session and used for co-

registration. Functional MRI scans consisted of a T2*-weighted echo planar imaging 

(EPI) sequence using blood-oxygenation-level-dependent (BOLD) contrast: repetition 
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time (TR) = 2000 ms, echo time (TE) = 26 ms, flip angle = 70 degrees, 34 slices, 200 

dynamics per run, 3 ´ 3 mm in-plane resolution, field of view (FOV) = 184 mm ´ 118 

mm ´ 184 mm. Slices were acquired as a partial axial volume and without offset or 

angulation. A total of 7 functional runs were acquired for each participant, 6 for the 

memory conditions and 1 for the perceptual/motor control condition (order 

counterbalanced). Each functional run lasted 6 minutes and 40 seconds excluding 4 initial 

dummy scans acquired to ensure T1 signal stabilization.  

Data Analysis for the Behavioral Task. As in Experiment 1, participants’ 

behavioral performance on each trail in the continuous recall task was measured as the 

recall error capturing the angular difference between presented color in the memory array 

and reported color (ranged from -180° to 180°). Note, since the number of recall options 

was reduced in the medium encoding precision load and low encoding precision load 

conditions, participants’ recall errors tended to cluster around a few bins even though 

they could choose freely on the wheel in between 2 color spokes. This introduced an 

artificial clustering nature of recall error distribution, making it difficult to reliably 

estimate the precision of retrieved memory representation especially in the low precision 

load condition (Zhang & Luck, 2011). That said, it was still possible to estimate the 

proportion of uniform distribution given that responses due to guessing would still evenly 

distributed across different bins. Thus, participants’ recall error distributions under each 

experimental condition were divided into 12 bins and fitted with the mixture model 

separately for each subject at each condition based on binned data using simplex method 

(Lagarias, Reeds, Wright, & Wright, 1998).  
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Preprocessing of fMRI Data. All neuroimaging data were preprocessed and 

analyzed using the Analysis of Functional NeuroImages (AFNI, Cox, 1996) software on a 

Mac OSX platform, based on the standardized afni_proc.py pipeline. Specifically, 

despiked data (3dDespike) were corrected for motion (3dvolreg) and slice timing shifts 

(3dTshift), and masked to exclude voxels outside the brain (3dautomask). Functional 

scans were aligned to each subject’s skull-stripped anatomical image (MP-RAGE) with 

align_epi_anat.py, and wrapped into the Montreal standard alas space (MNI-152) for 

later group analysis (3dvolreg, 3dAllineate). These functional data were smoothed with a 

6.0 mm Gaussian FWHM kernel (3dmerge) and normalized to percentage change from 

the mean signal, which was rescaled to be 100, from each voxel within a volume (3dTstat 

and 3dcalc). Consequently, beta weights fitted to these scale data captured the maximal 

extent of BOLD signal variability within subjects relatively to the mean 100 (i.e., 

percentage of signal change).  

Univariate Activation Analysis of fMRI Data. Preprocessed functional data 

were then compared across experimental conditions following a monotonic linear 

contrast for high (+0.75), medium (+0.25), low (-0.25), and control (-0.75) conditions 

using a generalized linear model in 3dREMLfit for each participant (first-level analysis), 

after controlling for variance in head motion (regress_apply_mot_types demean deriv). In 

addition, time points in which significant motion events occurred (movement exceeded 

about 3° of rotation or 3 mm of translation in any direction relative to prior acquisition ± 

1 time point) or excessive number of voxels that were considered as outliers (more than 

10%) were censored from analyses (regress_censor_motion 0.3; regress_censor_outliers 
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0.1). That said, excluding the motion correction procedure in general yielded comparable 

results. Group-level statistics were then calculated using 3dMEMA. The statistical 

threshold was determined by using 3dClustSim to estimate the cluster-size threshold for a 

given voxel-wise p-value considering the actual smoothness and reconstructed voxel size 

of the EPI data (regress_est_blur_epits). Based on this simulation, significance level a 

was set as .01 after the correction of multiple comparisons, which was equivalent to 

uncorrected p values smaller than .005 with a cluster size of at least 55 voxels. A stricter 

corrected a level was chosen here because prior knowledge about the involved brain 

regions for task demands on visual WM precision was relatively limited.  

Psychophysiological Interaction (PPI) Analysis. PPI analysis was performed to 

examine the correlational structures across brain regions in relation to the hippocampal 

sensitivity to task demands on WM precision. This analysis examined the effective 

connectivity between brain regions after partialling out the main effect difference in brain 

activities across experimental conditions (Cisler, Bush, & Steele, 2014; McLaren, Ries, 

Xu, & Johnson, 2012). Thus, PPI results were independent of that from the univariate 

activation analysis. In this analysis, left hippocampus was chosen as a seed region based 

on the results from the whole-brain activation analysis. Given potentially different 

structural and function connectivity of the anterior and posterior hippocampus with other 

brain regions (Poppenk, Evensmoen, Moscovitch, & Nadel, 2013), we conducted the PPI 

analysis separately using left anterior hippocampus (aHPC) and left posterior 

hippocampus (pHPC) as seed regions. In brief, the anterior and posterior parts of the 

hippocampus were identified using a coordinate-based segmentation approach based on 
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the location of uncal apex in the MNI (y = -21) neuroanatomical atlas (Poppenk et al., 

2013). The average time series of a region of interest (ROI) was then extracted and de-

convoluted based on the canonical hemodynamic function to obtain the underlying 

“physiological” time series. This “physiological” variable then multiplied with the time 

series of an experimental condition (“psychological” variable) to produce an interaction 

term for the given experimental condition. These psychophysiological interaction terms 

were then included in the analysis that was similar to the previous univariate activation 

analysis using 3dREMLfit for each participant. Group-level analysis was then combined 

for group analysis using 3dMEMA with a linear contrast capturing functional connectivity 

between brain regions and hippocampal ROIs across experimental conditions (i.e., +0.75, 

+0.25, -0.25, and -0.75). Based on the contrast analysis, a positive PPI result would 

suggest an increase in functional connectivity between a brain region and hippocampal 

ROIs as mnemonic precision load increases from perceptual/motor control condition to 

low, medium, and then high memory conditions, and vice versa.  

Several aspects of the PPI analysis should be noted. First, the interaction term can 

capture the association between the seed region and a target region under experimental 

influences, or the effect of experimental condition on a target region under the influence 

of the seed region (Friston, 2011). Although these two interpretations are both possible, 

the former is more biologically plausible. Second, the PPI analysis includes several more 

predictors in the analysis, and thus is less power-efficient (Cisler et al., 2014). Thus, a 

more liberal criterion (a = .05) was applied to determine significance after the correction 

of family-wise errors in the current study (e.g., Reagh et al., 2017). Specifically, group-
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level results were corrected to a a level as .05, equivalent to p smaller than .05 with a 

cluster threshold of at least 150 contiguous voxels based on 3dClustSim. 

Results and Discussion 

Behavioral Results. Of primarily interest, as summarized in Figure 4a, 

participants seemed to retain a comparable amount of information across different 

precision load memory conditions, as indicated by comparable tails of the recall error 

distributions across conditions. Repeated-measured ANOVAs on Pm showed a non-

significant difference across the three memory conditions, regardless of whether only the 

trials performed inside the scanner (100 trials per condition per subject) were included in 

data analysis (F(2, 38) = 1.79, p = .18, h2
p = .086) or all the trials from inside and outside 

the scanner (150 trials per condition per subject) were included in data analysis (F(2, 38) = 

2.43, p = .10, h2
p = .114). These results were consistent with a model-free data analysis 

approach by directly comparing the last three bins on each side of the recall error 

distribution across conditions using a Chi-squared test (all ps > .10). These results, along 

with the constant number of memory items across different precision load conditions, 

suggest that differences across experimental conditions may be unlikely driven by 

differences in visual WM capacity.  

Univariate fMRI Results. As summarized in Figure 5 (also see Table 1), a 

univariate whole-brain activation analysis revealed several key brain regions that 

monotonically changed in BOLD activity in response to the precision load manipulation. 

Specifically, at a relatively conservative threshold (p corrected to .01 level), univariate 

analysis revealed significant regions of activation following the manipulation of 
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mnemonic precision across conditions (predefined contrast: +0.75, +0.25, -0.25, -0.75, 

for high, medium, low, and control conditions, respectively), including the left 

hippocampus-amygdala complex, left precuneus, bilateral middle prefrontal cortex, and 

bilateral angular gyrus (see Table 1 for details in MNI coordinates and voxel sizes). 

These regions were commonly reported in the literature to support the encoding/retrieval 

of episodic LTM representation with high fidelity for real-life objects (Reagh et al., 2017; 

Reagh & Yassa, 2014; Richter et al., 2016).  

 PPI Results. Experiment 2 further examined how the hippocampus was 

functionally connected with other brain regions as a function of the encoding precision 

manipulation using psychophysical interaction (PPI) analysis. Specifically, given that the 

anterior and posterior parts of the hippocampus may structurally and functionally connect 

with other brain regions in different ways (Poppenk et al., 2013; Strange, Witter, Lein, & 

Moser, 2014), the PPI analysis was conducted using the left anterior hippocampus 

(aHPC) and the left posterior hippocampus (pHPC) as separate seeds. After partialling 

out the main effect of precision load on fMRI BOLD signals, as shown in Figure 6, pHPC 

was positively associated with bilateral mPFC and superior parietal lobule (SPL) as WM 

precision load increased (see Table 2 details in MNI coordinates and voxel sizes). In 

contrast, aHPC was negatively associated with the left anterior cingulate cortex (ACC) 

and the right putamen, as WM precision load increased. These findings seem to be in line 

with some previous demonstrations of the dissociable functional connectivity (Di Martino 

et al., 2008; Reagh et al., 2017; Strange et al., 2014) and differentiable structural 

connection (M. Li, Long, & Yang, 2015; Poppenk et al., 2013; Preston & Eichenbaum, 
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2013) of aHPC versus pHPC with other brain regions. These dissociable connectivity 

effects may reflect different contributions of various structures (e.g., frontal-striatal 

circuit vs. frontal-parietal pathway) in the memory network to WM representations (Nee 

& Brown, 2012), potentially including to the precision aspect of WM. This speculation 

needs to be systematically tested in future research.  

Experiment 3: Working Memory Precision Related Neural Activity  

Across Hippocampal Subfields 

Method 

Participants. Another eighteen right-handed participants (22.92 ± 3.06 years old, 

11 females), normal color vision and normal (or corrected-to-normal) visual acuity were 

recruited from the Orange County community, Irvine, CA for Experiment 3. These 

participants reported no history of neurological or psychiatric disorders and no history of 

psychostimulant use. All participants provided written informed consent following the 

procedure approved by the Institutional Review Board of both the University of 

California, Irvine and University of California, Riverside, and they received monetary 

compensation for their participation.  

Behavioral Task. The behavioral stimuli and task procedure were identical to 

Experiment 2. 

MRI Data Acquisition. Neuroimaging data were acquired using the same 

scanner as that in Experiment 2. The scanning protocol was adapted to enable high-

resolution fMRI data acquisition for the temporal region of the brain. The scanning 

sequence was as follows. First, the MP-RAGE structural scan protocol was the same as 



 39 

 

Experiment 2. Second, a high-resolution functional scan protocol was used with these 

following parameters: TR = 2500 ms, TE = 26 ms, flip angle = 70 degrees, 37 slices, 160 

dynamics per run, 1.8 ´ 1.8 mm2 in-plane resolution, 1.8 mm slice thickness with a 0.2 

mm gap, FOV = 180 mm ´ 74 mm ´180 mm. The timing of the behavioral task and 

functional scans (7 functional runs, each lasting for 6 minutes and 40 seconds excluding 4 

initial dummy scans) were kept the same as that in Experiment 2.  

MRI Data Preprocessing. The neuroimaging data preprocessing protocol with 

AFNI (Cox, 1996) was mostly similar to that in Experiment 2 with some modifications 

for ROI analysis of high-resolution fMRI data in the native (subject) space. Briefly, 

functional data were despiked (3dDespiked), slice timing corrected (3dtshift), co-

registered to the structure scan (align_epi_anat.py), motion corrected (3dvolreg), blurred 

to 2 mm isotropic (3dmerge) with a Gaussian FWHM kernel, and masked to exclude 

voxels outside the brain (3dautomask). We then obtained models of ongoing BOLD 

activity per subject using the same univariate analysis procedure as detailed in 

Experiment 2 (3dREMLfit). 

Anatomical Hippocampal Subfield ROI Segmentations. Hippocampal subfield 

segmentation was implemented using a joint label fusion (JLF) approach (H. Wang et al., 

2015) based on a set of 17 atlas sets. Each of these atlas sets consists of a T1-weighted 

image (0.75 ´ 0.75 ´ 0.75 mm3), a T2-weighted image (0.47 ´ 0.47 ´ 2 mm3) angled 

perpendicular to the long axis of the hippocampus (see Yushkevich et al., 2010 for 

details), and a set of manually annotated labels for bilateral hippocampal subfields, 

including DG/CA3, CA1, and subiculum (defined in the space of the corresponding T2 
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image). DG and CA3 subfields were combined as a single label because of the 

uncertainty in separating signals from these two subfields in later fMRI data even at 1.8 ´ 

1.8 mm2 in-plate resolution (Reagh et al., 2017).  

JLF was performed in a T1-weighted image for individual participants by warping 

each atlas (T1-weighted image + label set) to individual-specific T1-weighted images 

using the open-source software, Advanced Normalization Tools (ANTs, 

http://stnava.github.io/ANTs/). Prior to this warping, the target individual-specific T1 

image was preprocessed with bias correction (Tustison et al., 2010), skull stripping 

(Tustison et al., 2014), and de-noising (Manjón, Coupé, Martí-Bonmatí, Collins, & 

Robles, 2009) procedures. After these preprocessing steps, JLF performed a weighted 

voting at each voxel based on a patch-based intensity similarity while minimizing the 

informational redundancy between atlas contributions. To minimize the number of 

registrations required for JLF, an optimal shape/intensity template (Avants et al., 2010) 

was generated offline from the set of 17 atlas sets using an pseudo-geodesic approach 

(Tustison & Avants, 2013). The rigid transform between the atlas T1/T2-weighted image 

pairs (Avants et al., 2014) was also further calculated offline. Using the atlas-based set of 

T1/T2 rigid transforms and the T1/template non-linear transforms, transformation 

between the target individual-specific T1-weighted image and the atlas T1-weighted 

template was calculated to warp the entire set of atlas labels and T1-weighted images to 

the target subject for subsequent JLF.  

Hippocampal Subfield ROI Analysis. Extracted BOLD signals were compared 

using contrast analysis procedures as previously described (also see Rosenthal, Rosnow, 
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& Rubin, 2000 for details). That is, instead of omnibus ANOVAs, we directly tested the a 

priori hypothesis that a brain region sensitive to task demands on WM precision should 

follow a monotonic decreasing pattern in response to the high-precision (+1), medium-

precision (+0), and low-precision (-1) conditions, after subtracting out the individual 

differences in the perceptual/motor control condition. Since there was no significant 

hemisphere by precision load condition interaction (all ps > 0.10), data from different 

hemispheres were combined for each hippocampal ROI. Therefore, in the following 

analyses, subfield location (i.e., DG/CA3, CA1, and subiculum) was treated as a factor to 

examine whether there was an interaction between the location of the hippocampus and 

the task-related monotonic pattern of the BOLD signals.  

Results and Discussion 

 Behavioral Results. Participants’ behavioral performance in Experiment 3 was 

consistent with that in Experiment 2, as summarized in Figure 4b. That is, participants 

retained a comparable amount of information across different precision load memory 

conditions, as suggested by repeated-measures ANOVAs on Pm estimated from the trials 

(100 trials per condition) during the scanning session (F(2, 34) = 0.45, p = .64, h2
p = .026) 

and all trials collected during and before the scanning sessions (150 trials per condition in 

total, F(2, 34) = 2.08, p = .14, h2
p = .109). Again, analyses with the model-free approach of 

directly comparing the last three bins on each side of the recall error distribution across 

conditions using a Chi-squared test also yielded similar findings (all ps > .10). Overall, 

participants’ performances in Experiment 2 and 3 seem to be comparable.  
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Activities of Hippocampal ROIs. BOLD signals in DG/CA3 seemed to decrease 

monotonically in response to the precision load manipulation after correcting for the 

baseline offset in the perceptual/motor control condition (see Figure 7). This pattern was 

supported by a significant linear contrast across memory conditions (F(1, 17) = 5.20, p = 

.036, h2
p = .234). In comparison, the BOLD signals in the CA1 and subiculum were not 

significantly modulated by precision load manipulation (Fs < 1). These observations were 

further supported by a significant interaction between the linear contrast of the BOLD 

signals between DG/CA3 and CA1 (F(1, 17) = 7.30, p = .015, h2
p = .300) and between 

DG/CA3 and subiculum (F(1, 17) = 4.55, p = .048, h2
p = .211). These results therefore 

suggest that the precision-related hippocampal activity may be attributed to the DG/CA3 

subfield, instead of the CA1 or the subiculum.  

General Discussion 

Experiment 2 and 3 have demonstrated that the hippocampus, especially its 

DG/CA3 subfield, could track the task demands on WM precision. That is, as the task 

demand on WM precision increases, hippocampal activities also increase accordingly, 

potentially to engage pattern separation computation in the DG/CA3 to disambiguate 

overlapping mnemonic representations to ensure a certain level of precision for optimal 

task performance.  

However, this interpretation may be complicated by the lack of significant 

behavioral precision effects due to the precision manipulation, although this is a 

replication of previous findings using similar manipulation (Zhang & Luck, 2009; 2011). 

As previously mentioned, it is difficult to precisely estimate the precision parameter in 
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the color spokes conditions (i.e., medium and low precision load conditions). 

Specifically, each spoke (response option) covers 24 and 60 degrees in the 15-spoke and 

6-spoke conditions, respectively, setting a limit on the ability to estimate SD as 

determined by the Nyquist–Shannon sampling theorem.  

Another potential problem with the current findings is that the monotonic increase 

in hippocampal activity due to the precision load manipulation could result from 

increases in cognitive effort instead of increases in the task demands on precision. That 

is, although recall performance is comparable across the three precision load conditions 

in both experiments, participants may devote more efforts in the high-precision load 

condition, as compared to lower-precision load conditions, simply because the high load 

condition is more demanding (Kurzban, Duckworth, Kable, & Myers, 2013). 

It is thus pivotal to demonstrate that hippocampal activities can be directly linked 

to the behavioral measure of WM precision. To evaluate this possibility, we tested 

whether hippocampal activities could predict WM precision from the high-precision load 

condition in which WM precision could be more accurately estimated (Zhang & Luck, 

2008) .To keep consistency between Experiment 2 and 3, this analysis focused on the 

activity of the whole left hippocampus (similar results were obtained when bilateral 

hippocampi were combined) and its correlation between WM precision. The whole left 

hippocampal ROI was determined anatomically based on Freesurfer labels. To correct 

for individual differences in baseline neural activities, overall hippocampal activation in 

the high-precision WM task was defined as the difference in the beta values in the high-

precision load condition relative to the perceptual/motor control condition (BHigh-Control). 
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The correlation between the behavioral measure of WM precision (SD in the high-

precision load condition) and the hippocampal activation level (BHigh-Control) was first 

computed separately for each experiment and then combined meta-analytically, instead of 

simply aggregated, to avoid the Simpson paradox (H. Cooper & Patall, 2009). 

As shown in Figure 8, in both Experiment 2 and 3, participants with higher WM 

precision (smaller SD) in the high-precision load condition tended to have greater 

hippocampal activation levels (BHigh-Control). Although this correlation was not statistically 

significant in Experiment 2 (r = -.23, p =.17, n = 20), it was statistically significant in 

Experiment 3 (r = -.48, p =.016, n = 18). After combining these two correlations meta-

analytically in a fixed-effect model to increase statistical power (n = 38), there was a 

significant correlation between behavioral estimates of WM precision and hippocampal 

activation levels (r = -.35, p =.019). In contrast, hippocampal activity was not 

significantly correlated with Pm separately in each experiment (all ps > .20) or when 

results from two experiments were meta-analytically combined (r = -.03, p =.42).  

Together, this robust association between hippocampal activity and WM precision 

provides strong evidence supporting the critical role of the hippocampus in retaining 

precise WM representations. It also addresses the two potential concerns of the main 

findings. First, hippocampal activity is predictive of WM precision across subjects, even 

though the significant effects of the precision manipulation on hippocampal BOLD 

activity may not lead to significant behavioral effects. Second, the correlation between 

hippocampal activation and overall WM precision is obtained from a memory condition 

(i.e., the high-precision load condition) relative to the control condition, ruling out the 
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alternative effort account that attributes the significant effects on hippocampal BOLD 

activity to changes in efforts across different WM conditions.  

Conclusion 

Findings from Experiment 2 and 3 have provided direct evidence for the 

contribution of the hippocampus to WM precision in that 1) BOLD activity in the 

hippocampus – especially its DG/CA3 subfield that has been implicated in pattern 

separation – increases with the task demands on WM precision; and 2) hippocampal 

activity can predict WM precision, but not WM capacity, across subjects. These findings 

are unlikely due to LTM’s involvement as argued by some previous studies (Jeneson et 

al., 2011; 2012), given the short delay interval (i.e., 1.8 seconds) and the reasonable 

memory set size (i.e., 4 colors) in the current experiments.  
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Chapter 5. 

Decoding Precise Item-specific Working Memory Representations from 

Hippocampal DG/CA3 

 

The elevated hippocampal activation in response to the increased task demands on 

WM precision in Experiment 2 and 3 implies that the hippocampus is involved in 

retaining precise WM representations, in line with some previous findings suggesting 

hippocampal involvement in WM (Ranganath & Blumenfeld, 2005; Yonelinas, 2013). 

However, these fMRI activation-based effects do not necessarily mean that WM 

information is retained in the hippocampus. These effects, for example, could be a 

manifestation of top-down modulation of hippocampal activity from the prefrontal cortex 

due to increased cognitive load (E. K. Miller & Cohen, 2001). Furthermore, considerable 

evidence has been cumulating in the neuroimaging literature for the functional 

independence between fMRI BOLD effects and decoding effects in visual WM 

(Bettencourt & Xu, 2015; Ester, Sprague, & Serences, 2015; Harrison & Tong, 2009; 

Rose et al., 2016). For example, a given brain region such as the primary visual cortex 

can carry feature-specific information manifested as decodable representations using 

Multi-Voxel Pattern Analysis (MVPA), even when the same region does not show 

measurable effects in BOLD activity, or vice versa (Harrison & Tong, 2009; Serences, 

Ester, Vogel, & Awh, 2009). One possibility is that fMRI BOLD and decoding effects 

may reflect different memory states (Stokes, 2015) that are supported by different 
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underlying neural mechanisms (e.g., sub-threshold synaptic activities versus spiking 

activities, Rose et al., 2016).  

Thus, beyond the fMRI BOLD evidence supporting hippocampal involvement in 

WM precision, Experiment 4 in this chapter will try to decode trial-by-trial item-specific 

WM content from the hippocampal DG/CA3 subfield. To achieve this goal, Experiment 4 

will take advantage of two methodological innovations.  

First, Experiment 4 adopts a novel Inverted Encoding Model (IEM) approach to 

decode trial-by-trial item-specific information retained in visual WM. This method 

leverages rich neurophysiological knowledge about neural population coding (i.e., how a 

population of neurons encodes simple object features, such as orientations, colors, and 

spatial locations) to decode feature-specific information from the overall neural response 

profile captured by fMRI BOLD signals. Specifically, based on findings using single unit 

recordings, we can assume that a simple surface feature (e.g., orientation) may be 

encoded by a pool of feature-selective neurons (captured by different voxels in the fMRI 

data), each of which is tuned to a specific feature value (i.e., encoding model). Observed 

overall neural response profile elicited by a specific feature (e.g., 30-degree orientation) 

can be considered a weighted summation of activities from these different groups of 

feature-specific neurons (voxels), forming a bell-shaped distribution along the entire 

feature space (e.g., -90 to +90 degrees). Based on this population encoding principle, it is 

possible to estimate how these different groups of feature-specific neurons (voxels) 

contribute to overall response profiles with different weights. We may then approximate 

which feature value is encoded by a neuron population by applying the estimated weights 
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to its overall neural response profile at a different time point (i.e., inverted encoding 

model). Using this method, previous studies have identified a set of distributed brain 

regions containing item-specific information during the delay period of a visual WM task 

(e.g., Ester et al., 2015). For instance, orientation representations in visual WM can be 

recovered from fMRI BOLD activities sampled at a coarser spatial resolution (3 mm3 

voxel) in the visual, parietal, and prefrontal regions of the brain (Ester et al., 2015; 

Harrison & Tong, 2009), even though orientation selectivity primarily resides at finer 

spatial scales (e.g., columns of neurons) in the visual cortex. However, due to 

complicated folding and reduced number of voxels (at 3 mm3 resolution) in the 

hippocampus, conventional fMRI protocols in previous studies were unable to reveal 

significant hippocampal contributions to decodable visual WM content (Ester et al., 

2015).  

Thus, second, a new MRI sequence will be used to get more optimal signals with 

higher in-plane resolution (1.5 ´ 1.5 mm2) for partitioning hippocampal subfields. In 

addition, This high-resolution fMRI protocol is also important for decoding analysis, 

because decoding relies on multivariate patterns instead of overall average BOLD signals 

such that an reasonably increased number of voxels due to reduced voxel size may boost 

decoding accuracy (Haynes, 2015). Together, by combining a novel IEM approach and a 

state-of-the-art high-resolution fMRI sequence, Experiment 4 may thus provide a better 

evaluation for the prediction that the hippocampus, especially its pattern separation 

related DG/CA3 subfield, contains item-specific information retained in visual WM.  
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Experiment 4: Decoding Working Memory Content in Hippocampal Subfields 

Using Inverted Encoding Model and High-resolution fMRI 

Method 

Participants. A new group of 16 participants (8 females, on average 21.62 ± 3.06 

years old) were recruited from University of California, Riverside campus for Experiment 

4 with monetary compensation. This sample size is determined according to previous 

studies using similar methods (e.g., Sprague, Ester, & Serences, 2014; Ester et al., 2015). 

All participants reported normal color vision, normal (or corrected-to-normal) visual 

acuity, no history of neurological or psychiatric disorders, and no previous or recent 

psychostimulant use. All participants provided written informed consent following the 

procedure approved by the Institutional Review Board of the University of California, 

Riverside.  

Behavioral Task. Experiment 4 adapted an orientation WM task that has been 

previously established in several studies for decoding item-specific information 

(orientation in this case) using the IEM method (Ester et al., 2015; Serences et al., 2009). 

The use of orientation instead of color is to follow practice from previous studies (Ester 

et al., 2015; Harrison & Tong, 2009; Serences et al., 2009), and to generalize the findings 

of Experiment 2 and 3 from color to another feature dimension that is also void of strong 

LTM influence (e.g., orientation). Specifically, in this orientation WM task (Figure 9), 

two sine-wave gratings (radius: 4.5°, contrast: 80%, spatial frequency: ~1 cycle per 

degree in visual angle, randomized phase) were sequentially presented at the center of the 

screen on each trial. Each of the grating stimuli was presented on the screen for 200 ms 
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with a 400-ms blank screen in between. They were oriented at different orientations that 

were randomly sampled from 9 possible predefined orientations (0 to 160° in 20° 

increments) with a small angular jitter at presentation (±1° to 5°; randomly chosen on 

each trial). A digit cue (“1” or “2”) appeared 400 ms after the offset the second grating 

and stayed on the screen for 550 ms to indicate which gating orientation should be 

remembered over the delay period (8750 ms). Participants were asked to retain only the 

cued grating and ignore the other grating. After the delay period, a test grating starting at 

a random orientation was presented on the screen. Participants used button presses to 

adjust the orientation of the test grating with similar visual attributes as the to-be-

remembered grating but starting at a random orientation to reconstruct the to-be-

remembered orientation of the cued grating from WM. Specifically, they used the right 

index finger to press a button to rotate the grating clockwise and the right middle finger 

to press a button to rotate the grating counter clockwise. They were asked to make a 

response within 3500 ms following the onset of the test grating, and the orientation of the 

test grating at the end of this interval was taken as the participant’s final response. Visual 

feedback was presented at the end of the response interval by presenting a bar outside the 

test grating at the correct orientation of the to-be-remember grating. Different trials were 

separated by a random inter-trial interval that lasted for 3500 ms or 5250 ms (randomized 

across trials). All participants completed 10 blocks with 18 trials in each block. All 

experimental factors, namely the position of cue item (first or second items) and the 

orientation of presented gratings, were randomly intermixed within each experimental 
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block. Participants’ recall errors across trials were analyzed using the Zhang and Luck 

(2008) model as previously described.  

MRI Data Acquisition. Neuroimaging data were acquired on a 3.0 Tesla 

Siemens Prisma scanner, using a 32-channel sensitivity encoding (SENSE) coil at the 

Center for Advanced Neuroimaging at the University of California, Riverside. Scanning 

sequence was optimized for high-resolution functional MRI with whole-brain coverage. 

Specifically, following a MP-RAGE structural scan (0.8 mm isotropic voxels) at the 

beginning an experimental session, 10 functional runs were acquired with these following 

settings: TR = 1750 ms, TE = 32 ms, flip angle = 74°, 69 slices, 189 dynamics per run, 

1.5 ´ 1.5 mm2 in plane resolution with 2 mm gap, FOV read = 222 mm, FOV phase = 

86.5%. Each functional run lasted 5 minutes and 30.75 seconds excluding initial dummy 

scans acquired to ensure T1 signal stabilization. In addition, following the last functional 

run, two additional functional scans with opposite phases were acquired for correction of 

EPI distortions (Irfanoglu et al., 2015). 

fMRI Data Preprocessing and Hippocampal Subfield ROI Extraction. The 

neuroimaging data preprocessing protocol was comparable as the previous experiments 

except for the inclusion of correction for EPI distortions (Irfanoglu et al., 2015). 

Specifically, functional data were despiked (3dDespiked), slice timing corrected 

(3dtshift), reverse-blip registered (blip), aligned (align_epi_anat.py), and motion 

corrected (3dvolreg). To avoid introducing artificial auto-correlation in later decoding 

analysis, functional data were not smooth and were kept in original grid size (1.5 ´ 1.5 ´ 

2 mm3). The same anatomical hippocampal subfield segmentation protocol was used as 
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Experiment 3. Again, DG and CA3 subfields were grouped as a single ROI. Bilateral 

hippocampal ROIs were combined for later analysis as Experiment 3.  

Inverted Encoding Model. This analysis was implemented to explicitly examine 

whether a brain region contain item-specific information regarding the to-be-remember 

orientation from the average fMRI signals in the last 3 TRs of the visual WM delay 

period (Figure 9). This time window was chosen to minimize signals primarily due to 

visual perceptual processing of the task stimuli (Ester et al., 2015). For the IEM, a linear 

encoding modeling was first used to construct orientation-selective response in each 

predefined ROIs as previously described in Ester et al. (2015). In brief, the response of 

each voxel in a ROI was assumed to be a linear summation of 9 idealized information 

channel (9 smooth sinusoids as detailed in Ester et al., 2015). That is, observed signals 

from raw EPI data (without deconvolution), B (m voxels ´ n trials), would be a weighted 

summation of predicted responses, C (k channels ´ n trials), for each information channel 

on each trial with a set of weights W (m voxels ´ k channels), namely, 

B = WC 

The predicted responses C were estimated by a set of base function consisting of 

9 half-wave rectified sinusoids centered at different orientations to approximate the 

tuning profile of orientation sensitive neurons (Ringach, Shapley, & Hawken, 2002). 

Given B1 and C1 from a set of training dataset, the weight matrix was further estimated as 

! =	$%	&'%	(&%	&'%)*% 
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These weights were then applied to an independent test dataset, in which the 

observed signals B2 and the weights	!	were used to calculate the channel responses in 

these observed data using ordinary least-squares regression, 

&+ = 		 (!,	!)*%!,	$+ 

A “leave-one-out” cross-validation routine was used to obtained reliable estimate 

channel responses for all trails in the experiment based on independent datasets (Figure 

9). Specifically, in every iteration, all but one experimental blocks were treated as B1 for 

the estimation of !, while the remaining block was treated as B2 for the estimation of C2. 

This analysis yielded estimated channel responses C2 for all experimental trials. These 

estimated channel responses C2 were then shifted to center at 0° and averaged across 

trials, forming a bell-shaped channel response pattern when decoding was successful 

(Figure 9).  

Statistical significance of the reconstructed representations of the to-be-

remembered orientation, to-be-forgotten orientation, and the difference between these 

two was evaluated using a bootstrapping method. Specifically, the average reconstructed 

representations of a random sample from the recruited subjects (with replacement) were 

fitted to an exponential cosine function (see Ester et al., 2015 for details), yielding an 

estimate of the tuning function amplitude. This procedure was repeated 2000 times, 

yielding an empirical distribution of amplitude estimates based on the observed data. 

Whether a given ROI contained item-specific information regarding the to-be-

remembered/to-be-forgotten orientation was evaluated by the proportion of resampled 

amplitude estimates that was greater than 0 (a = 0.05, one-tailed). Here, one-tailed tests 
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were used because negative reconstructed tuning amplitudes were less interpretable 

(Ester et al., 2015). Similar approach was used to evaluate whether amplitude estimates 

were higher for the to-be-remembered relative to to-be-forgotten orientations by 

computing the amplitude estimates based on the difference score between these two 

reconstructed representations (Ester et al., 2015).  

Searchlight Analysis. With whole-brain high-resolution fMRI, a roving 

searchlight procedure in combination with the IEM analysis was performed to further 

identify other brain regions that contained item-specific information regarding the to-be-

remembered orientation. First, before the searchlight analysis, individual structural data 

were normalized to a common space using a high-resolution MNI template (0.8 mm 

isotropic voxels) using the ANTs that applied multi-step nonlinear diffeomorphic 

transformations (Avants et al., 2008). Parameters from these transformations were also 

used to transform functional data into the template MNI space for later group-level 

comparison (e.g., Reagh et al., 2017). Second, in the subsequent searchlight analysis, 

roving spherical clusters (8 mm radius) centered on each voxel in a cortical mask 

containing only gray matter voxels for each participant (Ester et al., 2015) were used to 

decode item-specific information from the averaged fMRI BOLD signals in the last 3 

TRs of the delay period in each trial. Specifically, for each searchlight sphere, IEM 

analysis was repeated to estimate the responses of nine hypothetical orientation channels 

corresponding to the to-be-remembered orientations and to fit the resulting 

reconstructions (i.e., amplitude of the tuning fitted tuning curve) with the approach 

described before. Spheres with fewer than 100 voxels were discarded, yielding an 
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average cluster size of 209 voxels (with a maximum size of 257 voxels). Last, group-

level results were evaluated by calculating a one-sample t-test at each voxel (3dMEMA) 

to identify regions that robustly contained item-specific information regarding the to-be-

remembered orientation during WM delay period (Ester et al., 2015). The decodability 

map measured by group-level t values was then projected to a cortical surface in the MNI 

space. Based on a simulation using 3dClustSim, significance level a was set as .05 (one-

tailed) after the correction of multiple comparisons based on the actual smoothness level 

of the data, which was equivalent to uncorrected one-tailed p values smaller than .05 with 

a cluster size of at least 40 voxels. 

Granger Causality Analysis. This analysis was to reveal the functional dynamics 

between the hippocampus and the visual cortex, where robust reconstruction of item-

specific information during visual WM retention interval has been reported in the 

literature studies (Ester et al., 2015; Harrison & Tong, 2009; but see Bettencourt & Xu, 

2015). Granger causality analysis is an exploratory method that can be used to study 

directional influences between different brain regions (Deshpande, LaConte, James, 

Peltier, & Hu, 2009). The idea is that, if past values of time series X can predict the 

current and future values of time series Y, then a directional causal influence from time 

series X to time series Y can be inferred (Granger, 1969). The present analysis protocol 

was modified based on previous studies (e.g., Sathian, Deshpande, & Stilla, 2013; 

Deshpande et al., 2009). 

First, BOLD signal time series were averaged and extracted from different ROIs. 

Here, the hippocampal DG/CA3 ROIs were analytically based on the segmentation 
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procedure as previously described. The visual cortex ROIs were functionally defined as 

spheres with an 8-mm radius centered at the cluster (i.e., center of mass) containing 

robust reconstructed visual WM representations in bilateral occipital lobes based on the 

group-level searchlight results. Second, ROI-specific Hemodynamic Response Functions 

(HRFs) related to WM delay period were then estimated based on a robust inverse-logit 

method (Lindquist & Wager, 2007). Third, neural signals related to information 

maintenance in WM were then extracted by deconvolving the raw BOLD signals based 

on the ROI-specific HRFs using a Weiner filter (Glover, 1999). Fourth, pair-wise 

Granger causality analysis was conducted based on the deconvolved BOLD time serials 

using a first order dynamic multivariate autoregressive (MVAR) model (i.e., using time 

point t to predict maximally only the next time point, t + 1, with the temporal gap as 1 TR 

= 1.75s). Here, the first order model was applied because causal influences arising from 

neural delay often occur less than 1 TR. The order of 1 in the MVAR may thus be the 

best approximation for the underlying neural connectivity based on the nature of the 

observed fMRI data (Feng et al., 2015; Goodyear et al., 2017). Fifth, the resulting 

effective connectivity values of each trial during the delay period were then averaged 

across the last 3 TRs of the delay period to match with those selected for IEM analysis. A 

positive value indicates that BOLD signals between two regions change in the same 

direction during these 3 TRs; whereas, a negative value means that BOLD signals 

between two regions change in the opposite direction during these 3 TRs. Last, these 

values were then further compared against with 0 across trials for each participant using a 

one-sample t-test (two-tailed due to unknown direction) to reveal whether the effective 
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connectivity during WM retention significantly deviated from 0 (theoretically null value). 

The directional Z values based on p values (uncorrected) estimated from each subject for 

each pair of ROIs were then combined using Stouffer's Z-score method for group-level 

analysis, equivalent to a fixed-effect meta-analysis across 16 subjects (Goh, Hall, & 

Rosenthal, 2016; Rosenthal & DiMatteo, 2001). The meta-analytically combined p-

values at the group level were then Bonferroni corrected to adjusted for pair-wise 

multiple comparison.  

Results and Discussion 

Behavioral Performance. As summarized in Figure 10a, the overall 

performances in this task was highly accurate (Pm = 95%, std. = 5%; SD = 13.23o, std. = 

2.29o). Critically, task performance in terms of Pm or SD did not seem to vary with the 

order of the test item (ps > .30). That is, regardless of whether the test item was presented 

as the first or second item, participants performed equally well. 

Hippocampal ROIs. Using the IEM method (Sprague et al., 2014; Sprague, 

Ester, & Serences, 2016), Experiment 4 tested whether activity patterns during the delay 

period in hippocampal subfields could predict which of the two orientations was held in 

visual WM. For each hippocampal subfield ROI (DG/CA3, CA1, and Subiculum), 

reconstructions of the remembered and non-remembered orientation from hippocampal 

subfields are plotted in Figure 10b. We obtained robust reconstructed representations for 

the remembered orientation (p < .0005, one-tailed), but not for the non-remembered 

orientation (p = .53, one-tailed), from the DG/CA3 subfield. Critically, reconstruction 

amplitudes were reliably higher for the remembered relative to the non-remembered 
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orientation in the DG/CA3 subfield (p = 0.005, one-tailed). In contrast, signals from 

hippocampal CA1 and subiculum subfield failed to show robust reconstruction of the 

remembered orientation (ps > .13, one-tailed). Note, although CA1 had a larger number 

of voxels (range: 625 to 1006), the numbers of voxels in the DG/CA3 (range: 262 to 379) 

and subiculum (range: 255 to 430) ROIs were more or less comparable. The observation 

of better decodability in DG/CA3, therefore, could not be attributed to an advantage 

stemming from larger numbers of voxels for decoding analysis (Haynes, 2015).  

In fact, when all hippocampal voxels across hemispheres were combined to 

increase the number of voxels, hippocampal decodability for visual WM content was not 

improved (Figure 10c). This whole-hippocampal ROI has yielded similarly poor 

decoding performance as that in an adjacent control region, the amygdala, which might 

not be sensitive to emotionally-neutral visual features (e.g., orientation). This lack of 

decodability in the bilateral whole hippocampi might be related to the complicated 

folding structures in the hippocampus, which could add heterogeneity in neural signals 

that compromised decoding performance. Hence, using high-resolution fMRI to separate 

subfield specific signals may thus be critical to reveal hippocampal contribution to visual 

WM representation and/or retention.  

Searchlight Analysis. Beyond the hippocampus, reconstructions of the 

remembered orientation across other areas of the brain were also evaluated using a 

searchlight analysis (Ester et al., 2015). This analysis showed highly consistent findings 

as previous studies (Bettencourt & Xu, 2015; Ester et al., 2015; Harrison & Tong, 2009), 

such that widely distributed brain regions, including frontal, parietal, and occipital 
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cortices, contained decodable item-specific information for the remembered orientation 

(see Figure 11 and Table 3).  

Granger Causality Analysis. Given the robust decoding results in the visual 

cortices that are consistent with some previous findings (Ester et al., 2015; Harrison & 

Tong, 2009), it is of great interest to examine the dynamic relationship between signals in 

the hippocampal DG/CA3 subfield and those in the visual cortex during the visual WM 

delay period. As shown in Figure 12, signals in the hippocampal DG/CA3 subfield could 

robustly predict signals in the ipsilateral visual cortex ROIs at a later time point during 

the WM delay period (ps < .0001, after Bonferroni correction). Although left visual 

cortex ROI also contained information that was predictive of that in the left hippocampal 

DG/CA3 (p = .0003, after Bonferroni correction), the overall dynamic connectivity was 

stronger from the hippocampus to the visual cortex than that from the visual cortex to the 

hippocampus. Specifically, for each subject on each trial, two average effective 

connectivity values were separately calculated to represent the overall dynamic 

connection from the hippocampus to the visual cortex and from the visual cortex to the 

hippocampus. A paired-sample t-test across trials was then calculated for each participant 

to evaluate whether these two effective connectivity values systematically differed from 

one another in terms of magnitude. The group-level results combined meta-analytically 

across individual tests showed that the average effective connectivity from the 

hippocampus to the visual cortex was substantially more robust, as compared to that from 

the visual cortex to the hippocampus (p < .0001). This directional pattern, although at a 

coarse temporal scale, may provide some support for the sensory recruitment hypothesis 
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(see a recent review in Scimeca, Kiyonaga, & D'Esposito, 2018), such that visual cortices 

may be recruited to support visual WM retrieval rather than being a region to maintain 

these representations. The current finding suggests that this sensory recruitment may be 

contingent on hippocampal DG/CA3 activity.  

Conclusion 

Using high-resolution fMRI and a multivariate IEM decoding method, 

Experiment 4 provides by far the first evidence that the hippocampal DG/CA3 subfield 

carries precise item-specific information retained in visual WM. Furthermore, signals in 

the hippocampal DG/CA3 also seem to occur earlier than signals in visual cortices, which 

contain item-specific information potentially due to a sensory recruitment mechanism 

(Harrison & Tong, 2009; Scimeca et al., 2018; Serences et al., 2009). Overall, these 

findings support the hippocampal pattern separation hypothesis for the retention of 

precise visual WM representations. 
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Chapter 6.  

General Discussion 

 

Summary of Findings 

 The dissertation research has demonstrated three lines of evidence supporting 

hippocampal pattern separation as a neurocognitive mechanism underlying the precision 

of retained WM representations (i.e., pattern separation hypothesis). First, at the 

behavioral level, estimates of mnemonic precision but not the probability of memory 

retrieval across WM and LTM are highly correlated with the estimate of pattern 

separation function in Experiment 1. These correlations suggest a substantial amount of 

shared variance among these measures, which may be related to a latent construct 

regarding memory quality or mental clarity.  

Second, Experiment 2 has demonstrated that the increase in task demands on WM 

precision can lead to higher fMRI BOLD activity in the hippocampus, along with several 

other brain regions (e.g., prefrontal cortex, angular gyrus, and the precuneus). This 

hippocampal involvement may be further localized to DG/CA3 subfield (Experiment 3), 

where pattern separation computation most likely takes place. Critically, across 

individuals, higher hippocampal activation in the high-precision load condition (relative 

to the perception/motor control condition) is significantly associated with WM precision 

when all data are meta-analytically combined from Experiment 2 and 3 (n = 38). 

Together, these fMRI findings (i.e., increased hippocampal BOLD activities due to WM 

precision load and larger changes in hippocampal activity for more precise WM across 
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individuals) suggest that the hippocampus is a critical node in the brain network 

supporting precise WM. 

Third, using a combination of whole-brain high-resolution fMRI and a novel IEM 

method, Experiment 4 shows that item-specific information for a simple surface feature 

(i.e., orientation) can be reliably decoded from the hippocampal DG/CA3 subfield, a 

hypothesized locus for pattern separation computation, among other previously reported 

regions, including the visual cortex, the prefrontal cortex, and the parietal cortex (Ester et 

al., 2015). This finding may rule out an alternative interpretation that the hippocampal 

findings in Experiment 2 and 3 reflect increases in perceived task difficulty (see more 

discussions in Chapter 4). The findings from Experiment 4 thus provide direct evidence 

that the hippocampus carries precise item-specific information in WM.  

Together, these findings are in line with the hippocampal pattern separation 

hypothesis for WM precision. In addition, they shed light on the recent re-evaluation of 

the traditional system view of memory and on the recent debate regarding the nature of 

WM representations.  

Functional Roles of the Hippocampus in Human Cognition 

Early knowledge about the role of the hippocampus in human cognition comes 

from studies on neurological patients with MTL lesions (Scoville & Milner, 1957). These 

patients could carry on a coherent conversation, supported by temporary information 

maintenance in WM, but moments later were unable to recall that the conversation took 

place or to whom they spoke, indicating disrupted declarative LTM. These findings have 

provided strong support for the conventional system view of human memory, according 
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to which LTM and WM are independent memory processes/systems supported by 

different neural mechanisms (Squire, 1986). As such, memory modulation hypothesis 

postulates that the hippocampus primarily supports episodic LTM and uses LTM 

representations as a “currency” to interact with other cognitive processes (Shohamy & 

Turk-Browne, 2013). For example, the hippocampus can support transient information 

processing by reactivating related experiences from the past to make them available to 

active processes (Fortin, Wright, & Eichenbaum, 2004; Frankland & Bontempi, 2005; 

McClelland, McNaughton, & OReilly, 1995). Furthermore, it can support more 

permanent information processing by transferring active mental representations to more 

durable ones through of cortical and subcortical consolidation (McClelland et al., 1995; 

Takashima et al., 2006). 

In contrast, an emerging adaptive function hypothesis argues that the 

hippocampus serves as a representational hub to support a certain aspect of mental 

representations/processes, as opposed to serving as a dedicated functional module 

reserved particularly for declarative LTM (Shohamy & Turk-Browne, 2013; Yonelinas, 

2013). According to this hypothesis, the hippocampus – with specific physiological and 

computational properties including recurrence, sparse coding, rapid binding, and massive 

interconnectedness (Eichenbaum, 2014; Eichenbaum & Cohen, 2014; see summaries in 

Eichenbaum, Yonelinas, & Ranganath, 2007) – is useful for the processing of mental 

representations, irrespective of the time course and content of these representations. For 

example, beyond the blurred boundary between WM and LTM in the hippocampus 

(Kamiński et al., 2017), another line of research on implicit memory (e.g., Addante, 
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2015; Degonda et al., 2005) also challenges the established system view that the 

hippocampus only contributes to conscious/explicit mnemonic representations/processes 

(e.g., facts, daily episodes, etc.) but not to unconscious/implicit mnemonic 

representations/processes (e.g., conditioning, procedural skills, etc., Knowlton, Mangels, 

& Squire, 1996; Squire, 1986; Squire & Dede, 2015). Furthermore, pushing this 

boundary further, some recent studies have demonstrated hippocampal contributions to 

fine perceptual discrimination (Graham, Barense, & Lee, 2010; Lee, Yeung, & Barense, 

2012; Lee, Barense, & Graham, 2005), primarily via the functional connection between 

the hippocampus and sensory cortices (e.g., Hindy, Ng, & Turk-Browne, 2016).  

Nevertheless, the exact mental representations/processes that the hippocampus 

may contribute to WM remain unclear. On the one hand, some studies suggest that the 

hippocampus may be involved to support relational over item information in WM (see 

Yonelinas, 2013 for a review). Supporting this view, damage in the hippocampus can 

impair patients’ WM task performance for complex events that require combining 

elements together, such as object-location binding (Olson, Moore, Stark, & Chatterjee, 

2006), face-scene and object-scene relations (Hannula et al., 2006), and topographical 

stimuli (Hartley et al., 2007). On the other hand, whether the distinction between item 

versus relational information successfully identify qualitatively distinct forms of memory 

is still controversial (Squire, Wixted, & Clark, 2007; Wixted, 2007), because this 

distinction critically relies on behavioral differentiation between two forms of recognition 

(i.e., familiarity vs. recollection) under a dual-process framework (Yonelinas, 2002; 

Yonelinas et al., 2010; Yonelinas & Parks, 2007). Some recent studies have further 
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shown evidence against the distinction of item versus relational WM deficits in MTL-

damaged patients (e.g., Squire, 2017).  

The current dissertation research thus adds to this emerging literature with a novel 

precision account for the hippocampal involvement in WM. That is, the hippocampus 

supports precision of WM representation with its pattern separation computation in its 

DG/CA3 subfield. Previous findings regarding the hippocampus involvement in 

remembering complex stimuli may be critically related to increased demands on 

representational precision in these stimuli, as compared to much simpler stimuli. 

Supporting this precision load account, damages in the MTL including the hippocampus 

were found to impair WM precision (Zhang & Yonelinas, 2012), resembling findings of 

compromised performance for complex stimuli due to MTL damages in previous studies 

(Hannula et al., 2006; Hartley et al., 2007; Olson et al., 2006). Can this precision account 

also explain different task performances in item and relational memory reported in the 

literature (see Yonelinas, 2013 for a review)? One possibility is that the binding of 

multiple items in relational memory may reduce the precision of retained memory 

representation, due to the pooling of mnemonic variance. This is similar to the Signal 

Detection Theory interpretation of feature versus conjunction search in the visual search 

literature (see Verghese, 2001 for a review). That is, searching for a conjunction of 

features may depend more on precise representation of each single feature, thus possibly 

posing a higher demand on the representational precision as compared to searching for a 

single feature. Future computational and experimental research is needed to directly 

address this issue.  
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Precision and Capacity as Independent Aspects of Working Memory 

 Beyond informing theories about the architecture of human memory, the current 

results also contribute to the recent debate concerning whether WM is primarily limited 

by the number of items that can be simultaneously retain in the mind (i.e., capacity limit) 

or by the graded fidelity of these retained mental representations (i.e., precision limit, see 

Chapter 1 for details).  

 Decades of research using computational modeling (e.g., Raffone & Wolters, 

2001), electrophysiology (Bastos, Loonis, Kornblith, Lundqvist, & Miller, 2018; 

Buschman, Siegel, Roy, & Miller, 2011), and functional  imaging (e.g., Roux, Wibral, 

Mohr, Singer, & Uhlhaas, 2012) suggest that WM storage capacity may primarily result 

from a constraint in synchronizing information processing across brain regions (Luck & 

Vogel, 2013; E. K. Miller & Buschman, 2015). According to one computational model 

(Raffone & Wolters, 2001), neurons encoding different features across the brain can fire 

in synchronized patterns as cell assemblies. Oscillation of these neural assemblies 

provides a neural mechanism for sustained activity (and hence information retention) for 

WM. Consequently, the number of WM representations that can be simultaneously 

maintained may be constraint by the number of cell assemblies that can be fitted in a 

phase period of an oscillation with enough phase separation in between. This mechanism 

is essential to 1) keep different cell assemblies from firing at the same time to avoid 

interference, and to 2) prevent long delays between successive firings of a given cell 

assembly so that it does not decay too far. This model (Raffone & Wolters, 2001) has 

been partially supported by electrophysiological studies that found independent neural 
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oscillation patterns for capacity-determining mechanisms, such as retention of relevant 

information and suppression of distracting information (Roux & Uhlhaas, 2014; Sauseng 

et al., 2009). This oscillatory mechanism, however, does not provide an explanation for 

the qualitative aspect of WM.  

The current dissertation research adds to this literature by providing converging 

evidence for the hippocampal mechanism underlying WM precision, which may be 

theoretically independent of neural oscillations (Buschman et al., 2011; Roux & Uhlhaas, 

2014) and sustained neural activity (Todd & Marois, 2004; Y. Xu & Chun, 2005) in the 

posterior parietal and prefrontal cortices that support WM retention capacity (or effective 

storage capacity due to extremely large precision variability, Galeano Weber et al., 2016). 

That is, WM capacity and precision may be better considered as independent aspects 

suggested by capacity-limit theories (Cowan, 2001; Xie & Zhang, 2017a; Zhang & Luck, 

2008), instead of as integrated aspects suggested by precision-limit theories (Bays & 

Husain, 2008), of WM representations.  

 Critically, the current cognitive neuroscience evidence favoring the dissociation 

between capacity-limit theories and precision-limit theories does not extensively rely on 

the model used to fit the behavioral recall data, thus void of concerns regarding which 

model may quantitatively yield better fits (see critics in van den Berg et al., 2014). 

Specifically, the critical evidence in Experiment 2 and 3 is based on within-subject 

comparison across precision load manipulation conditions. Due to reduced sampling 

resolution in the low precision load condition, fitting the data with available models 

would be less appropriate. This reliance on effectiveness of precision load manipulation 
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in Experiment 2 and 3 is mitigated by the decoding evidence from Experiment 4, such 

that the hippocampus not only is sensitive to task demands on WM precision but also 

contains precise item-specific information that can be directly decoded from the 

DG/CA3. Overall, using the cognitive neuroscience approach, the current dissertation 

provides novel evidence to more rapidly advance the understanding about the nature of 

WM representations.  

Translational Relevance 

 The current dissertation research also has significant transitional implications that 

may shed light on commonly observed complaints about blurred memories or comprised 

mental clarity in a variety of health-related conditions. Although various factors such as 

fatigue may contribute to compromised mental clarity (e.g., Ross et al., 2013), a more 

fundamental neurocognitive mechanism underlying these effects of reduced mental 

clarity may be related to neurodevelopmental abnormality or pathological aberration in 

the hippocampus. For example, individuals with schizophrenia spectrum disorders often 

show structural and functional abnormality in the hippocampus (Dickey et al., 2007; 

Hickie, 2005; Keshavan et al., 2002; Modinos et al., 2009; Suzuki, 2005), which is often 

accompanied by reduced pattern separation function (Das, Ivleva, Wagner, Stark, & 

Tamminga, 2014) and worsened visual WM precision (Xie et al., 2018). It is thus 

possible that compromised hippocampal function associated with neurodevelopmental 

abnormality may account for reduced memory quality in schizophrenia spectrum 

disorders. Similarly, age-related declines in hippocampal functional has also been 
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associated with blurred memory (Leal & Yassa, 2018), which could account for reduced 

WM precision in older adults (Peich et al., 2013).  

As such, WM precision may serve as a sensitive measure to investigate WM 

impairments in both clinical (e.g., schizophrenia spectrum disorders) and aging 

populations. The efforts to establish the relationship between aberrant memory precision 

and these devastating conditions, along with their neurobiological manifestations in 

MTL, would potentially promote the development of a Research Domain Criteria 

(RDoC) outcome in the cognitive domain to pave the way for improving diagnosis and 

defining novel targets (e.g., hippocampal metabolic compounds) for future interventions 

(Leal & Yassa, 2018).  

Future Research Directions 

As a modest step forward, the current dissertation research reveals the critical role 

of the hippocampus, especially its DG/CA3 subfield, in supporting precise WM 

representations. However, there are several outstanding questions to be addressed in 

future studies.  

First, of primary interest, how does pattern separation computation directly 

contribute to WM precision? One critical assumption in the pattern separation literature is 

that the conversion from cortical-level population codes to hippocampal sparse codes 

may serve as fundamental limiting factor for precise memories. This change in coding 

scheme is equivalent to the conversion of an image file from a high-resolution format that 

uses a large number of pixels to encode the pictorial information to a more compressed 

format that uses a less number of pixels. As such, when information is transferred from a 
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perceptual representation in cortical regions to a mnemonic representation in subcortical 

regions (e.g., hippocampus), there may be a certain level of information loss over the 

conversion. This may account for the reduction of precision from perception to WM, 

even just after a 1-second delay between study and test (Brady et al., 2013; Cappiello & 

Zhang, 2016; J. M. Gold et al., 2010). However, it is difficult to directly test this 

mechanistic explanation of WM precision even with high-resolution fMRI (Carr et al., 

2010). Future studies using computational modeling and intracranial electrophysiology 

will need to further examine this coding issue.  

Second, how does the hippocampal pattern separation process relate to neural 

noise at the cortical level? As discussed in Chapter 2, the pattern separation hypothesis 

and neural noise hypothesis may describe processes or computations that occur at 

different stages of information processing, and consequently it is possible that increased 

hippocampal pattern separation computation may manifest as reduced cortical neural 

noise, leading to improved representational precision. For instance, a recent 

neuroimaging study showed that hippocampal signals in the DG/CA3 subfield may 

predict successful information encoding in the early visual cortex during statistical 

learning (Hindy et al., 2016). Similarly, using Granger causality analysis, Experiment 4 

in the current dissertation research also shows that information from the hippocampal 

DG/CA3 subfield may contain information that can be predictive of that in the visual 

cortex during the visual WM retention interval. Nonetheless, the temporal information 

about the interactions between the hippocampus and sensory regions using fMRI is 

highly limited, even though the functional association is evaluated based on deconvolved 
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time serial data (Deshpande et al., 2009; Deshpande, Hu, Stilla, & Sathian, 2008; 

Goodyear et al., 2017). Future research with more advanced neuroimaging methods or 

electrophysiological recording may shed light on these potential functional dynamics.  

Last but not the least, is the reduction of precision from perceptual representations 

to mnemonic representations a “design flaw” of human cognition, or does it serve some 

functional roles that entail further specification? Conventionally, variability is often 

considered as noise, which is detrimental for detecting a signal. However, adding noise 

sometimes may paradoxically boost the likelihood of detecting a signal based on the 

principle of stochastic resonance (Hänggi, 2002). Specifically, when the frequency of 

random noise corresponds to the frequency of a target signal, the noise and signal will 

resonate with each other, amplifying the original signal while not amplifying the random 

noise and hence increasing the signal-to-noise ratio (Moss, 2004). Consequently, 

increasing variability by introducing noise in a mental representation may in fact make 

the represented signal more prominent from intrinsic background neural noise. 

Furthermore, a less precise representation may also allow more flexible switching across 

different but similar representations/concepts, which is a key component of cognitive 

flexibility (Scott, 1962). Given the central role of WM in human cognition, how does 

WM precision potentially support flexible cognitive control and decision making will be 

an interesting future research direction.   
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Table 1. Brain areas activated monotonically to visual working memory precision load 
manipulation in Experiment 2 

Region (MNI labels) L/R Brodmann 
area 

MNI Coordinates 
(center-of-mass) Cluster 

size Peak t 
x y z 

Frontal         

 Medial Prefrontal Gyrus  R & L 10 2 54 14 107 3.31 

Parietal         

 Angular Gyrus R 39 54 -65 33 60 3.48 

  L 39 -52 -61 24 163 3.21 

 Precuneus  L 31 -6 -54 30 77 3.81 
Temporal         

 
Hippocampus-Amygdala 
Complex L 53/54 -20 -4 -21 57 3.49 

 
Note. Coordinates were displayed in the MNI space. L-Left; R-Right. Family-wise-error 
cluster correction to a significance level of .01 (two-sided), equivalent to uncorrected p 
<.005 with a clusters size >= 55.  



 

Table 2. Results from psychophysiological interaction (PPI) analysis using the anterior and posterior hippocampi as separate 
seed regions in Experiment 2. 

 

 

 

 

 

 

 

 

Note. Coordinates were displayed in the MNI space. aHPC = anterior hippocampus; pHPC = posterior hippocampus. Family-
wise-error cluster correction to a significance level of .05 (two-sided), equivalent to uncorrected p <.05 with a clusters size >= 
150. a. Polarity refers to the direction of the PPI effects. A positive (negative) PPI result would suggest an increase (decrease) 
in functional connectivity between the target region and the seed region as mnemonic precision load increases.  

 

Region (MNI labels) Polarity L/R Brodmann 
area 

MNI Coordinates  
(center-of-mass) Cluster 

size Peak t 
x y z 

Left aHPC Seed         
 Anterior Cingulate Cortex  - L 32 -4 45 6 225 2.88 

 Putamen - R 49 31 -1 10 158 4.06 

 Cerebellum - R  17 -42 -32 161 2.42 

Left pHPC Seed         

 Medial Prefrontal Gyrus + R 9/10 38 48 31 304 4.31 

  + L 10 -38 45 32 153 2.18 

 Superior Parietal Lobule + R 7 17 -46 77 259 3.43 

  + L 7 -28 -58 71 157 2.89 
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Table 3. Brain areas containing visual working memory content in Experiment 4. 

Region (MNI labels) L/R Brodmann 
area 

MNI Coordinates 
(center-of-mass) Cluster 

size Peak t 
x y z 

Frontal 
 

      

 
Anterior Cingulate Cortex L 32 -2 28 26 43 4.45 

 
Inferior Frontal Gyrus L 46 -44 33 17 44 5.59 

 
Middle Frontal Gyrus L 8 -44 13 41 40 4.61 

Parietal  
 

 
     

 
Angular Gyrus L 39 -43 -67 36 73 3.89 

 
Precuneus R 7 6 -48 56 73 4.07 

 
Superior Parietal Lobule L 7 -18 -69 59 109 12.76 

  
L 7 -33 -52 68 106 5.26 

  
R 7 21 -69 55 1314 11.57 

  
R 7 22 -54 70 80 4.78 

 
Inferior Parietal Lobule L 39 -33 -75 45 84 7.29 

  
R 40 47 -42 53 105 3.56 

 
Supra Marginal Gyrus R 40 59 -25 44 109 4.07 

Temporal 
       

 
Middle Temporal Gyrus L 39 -55 -69 21 54 4.44 

  
R 39 64 -49 17 116 6.37 

  
R 19 52 -77 13 66 5.55 

 
Inferior Temporal Gyrus L 20 -47 -45 -28 71 5.52 

Occipital 
       

 
Calcarine Gyrus L/R 17 5 -87 -1 2517 9.49 

  
L 17/18 -20 -66 17 56 6.11 

  
R 17 16 -63 10 344 5.82 

 
Lingual Gyrus L 18 -7 -63 3 74 4.22 

  
R 19 40 78 -17 213 7.45 

  
R 19 14 -43 -8 175 5.92 

 
Middle Occipital Gyrus L 19 -28 -85 16 167 6.91 

  
L 39 -29 -75 30 79 4.34 

Occipital-Temporal 
       

 
Fusiform Gyrus L 37 -25 -60 -14 315 10.80 

  
L 19 -40 -76 -17 58 4.29 

  
R 37 25 -65 -15 100 4.95 

Note. Coordinates were displayed in the MNI space. L-Left; R-Right. Family-wise-error 
cluster correction to a significance level of .05 (one-sided), equivalent to uncorrected p 
<.05 with a clusters size >= 40. 
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Figure 1. Behavioral paradigms used in Experiment 1. a) Mnemonic similarity task 
(MST); b) Working memory (WM) color recall task; c) Long-term memory (LTM) object 
color recall task. The mnemonic similarity task was always tested first, and the order of 
the WM and LTM color recall tasks was counter-balanced across subjects.  
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Figure 2. Associations among behavioral measures of pattern separation (i.e., lure 
discrimination index, LDI), mnemonic precision (SD), and the probability of successful 
remembering (Pm) across working memory (WM) and long-term memory (LTM) in 
Experiment 1. SD is an inverse estimate of mnemonic precision for retained memory 
representations. Pm stands for the probability of remembering. The red solid lines 
indicate significant associations, whereas black dashed lines indicate non-significant 
associations. The blue square indicates WM measures and the green square indicates 
LTM measures. *. p < .05; **. p < .01.  
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Figure 3. Behavioral paradigm used in Experiment 2 and 3. In this task, visual working 
memory (WM) precision was manipulated by varying the number of non-memory items 
in the stimulus feature space (color). Specifically, while participants remembered the 
same number (four) of colors in the WM conditions, these colors were randomly sampled 
from 180, 15, and 6 colors in the high, medium, and low precision load conditions, 
respectively. An additional perceptual and motor control condition (the last row) had the 
same perceptual and motor components but without a memory component as compared to 
that in the WM conditions. These different experimental conditions were blocked, with 
the sequence randomized by a Latin-squared design across individuals. 
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Figure 4. Recall error distributions and model fits across experimental conditions for data combining both inside scanner trials 
(100 trials per condition) and outside scanner trials (50 trials per condition) in Experiment 2 (a) and Experiment 3 (b). 
Participants seemed to retained a comparable amount of information across different precision load conditions, as indicated by 
comparable tails of the recall error distributions across conditions. The error bars represent standard errors of the binned data 
across subjects. Overall, data from Experiment 2 and Experiment 3 were highly consistently.
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Figure 5. Brain areas activated as a function of working memory precision load 
manipulation in Experiment 2 (p corrected to .01 level, two-tailed, equivalent to 
uncorrected p < .005 with cluster size > =55 based on 3dClustSim). Activations are 
displayed on the cortical surface using SUMA (https://afni.nimh.nih.gov/Suma). 
Coordinates of these brain regions can be found in Table 1.  



 82 

 
 
Figure 6. Psychophysiological Interaction (PPI) results obtained by using the left anterior hippocampus (left aHPC, masked in 
yellow) and the left posterior hippocampus (left pHPC, masked in pink) as seed regions. The left aHPC decoupled with the left 
ACC and right putamen, while the left HPC coupled with bilateral mPFC (middle prefrontal cortex) and SPL (Superior Parietal 
Lobule), as WM (working memory) precision load increased. Brain areas were considered as significance at .05 level with 
uncorrected p < .05 and a cluster size >= 150. Coordinates of these brain regions can be found in Table 2. Coordinates were 
displayed in the MNI space in this figure.  
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Figure 7. Activation in the DG/CA3 was monotonically modulated by precision load 
manipulation in Experiment 3. This monotonically-decreasing pattern, however, was not 
significant in the CA1 and subiculum. There were also significant interaction effects 
between DG/CA3 versus CA1 and between DG/CA3 versus subiculum, in terms of the 
linear contrast across experimental conditions. *. p < .05 
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Figure 8. Correlations between hippocampal activity and visual working memory 
probability of remembering, Pm (a) and precision, SD (b) in the high precision-load 
condition across Experiment 2 and 3. Hippocampal activity in the high-precision load 
condition is calculated relative to that in the perceptual/motor control condition. The red 
dots represent data from Experiment 2 and the blue squares represent data from 
Experiment 3. The linear regression fits with 95% confidence intervals are calculated and 
plotted separately for each data. The results were meta-analytically combined for 
inference (see General Discussion in Chapter 4 for details).  
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Figure 9. Paradigm and the Inverted Encoding Model analysis in Experiment 4. On each trial (left side), participants memorize 
the orientation of two sequentially presented gratings and then only maintain one (remembered) while ignoring the other (non-
remembered), based on a number cue presented afterwards. After a short delay, participants report the to-be-remembered 
orientation from memory by reproducing its orientation on a test grating using the method of adjustment. In a leave-one-run-
out cross-validation procedure, fMRI signals in training runs during visual working memory retention interval will be modeled 
as a weighted sum of 9 hypothetical orientation channels. These trained weights will be applied to an independent test run, 
such that orientation channels can be reconstructed. If a region contains decodable item-specific information, it is expected that 
the reconstruction of response channels should peak at 0, after centering these channels at 0.   
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Figure 10. Behavioral and region-of-interest (ROI) analysis results in Experiment 4. (a) 
Participants recall error distributions across all trials, when the test item was the first 
item, and when the test item was the second item; (b) Reconstructions of the remembered 
and non-remembered orientations in each hippocampal ROI; (c) Reconstructions of the 
remembered and non-remembered orientations in the whole hippocampus and the 
amygdala. Data were averaged across samples obtained in the last 3 TRs following the 
onset of the sample display before modeling. 
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Figure 11. Brain areas that contained decodable visual working memory content during 
the delay period in Experiment 4 based on a whole-brain searchlight analysis (p corrected 
to .05 level, one-tailed, equivalent to uncorrected p < .05 with cluster size >= 40 based on 
3dClustSim). Activations are displayed on the cortical surface using SUMA 
(https://afni.nimh.nih.gov/Suma). Coordinates of these brain regions can be found in 
Table 3. 
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Figure 12. Granger causal relationship during the last 3TRs of the visual working 
memory delay period between hippocampal DG/CA3 and visual cortex ROIs extracted 
from the searchlight analysis. The arrows indicate directionality. The green solid line 
indicates a significant association after Bonferroni correction (corrected p < .05). 
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