Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Efficient Joins with Compressed Bitmap Indexes

Permalink
https://escholarship.org/uc/item/3552s050

Author
Madduri, Kamesh

Publication Date
2010-07-08

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/3552s050
https://escholarship.org
http://www.cdlib.org/

Efficient Joins with Compressed Bitmap Indexes

Kamesh Madduri
Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
KMadduri@lbl.gov

Kesheng Wu
Computational Research Division
Lawrence Berkeley National Laboratory

Berkeley, CA, USA
KWu@lbl.gov

Abstract

We present a new class of adaptive algorithms that use compressed bitmap indexes
to speed up evaluation of the range join query in relational databases. We determine
the best strategy to process a join query based on a fast sub-linear time computation of
the join selectivity (the ratio of the number of tuples in the result to the total number of
possible tuples). In addition, we use compressed bitmaps to represent the join output
compactly: the space requirement for storing the tuples representing the join of two
relations is asymptotically bounded by min(h,n - ¢;), where h is the number of tuple
pairs in the result relation, n is the number of tuples in the smaller of the two relations,
and ¢ is the cardinality of the larger column being joined. We present a theoretical
analysis of our algorithms, as well as experimental results on large-scale synthetic and
real data sets. Our implementations are efficient, and consistently outperform well-
known approaches for a range of join selectivity factors. For instance, our count-only
algorithm is up to three orders of magnitude faster than the sort-merge approach,
and our best bitmap index-based algorithm is 1.2x-80x faster than the sort-merge
algorithm, for various query instances. We achieve these speedups by exploiting several
inherent performance advantages of compressed bitmap indexes for join processing: an
implicit partitioning of the attributes, space-efficiency, and tolerance of high-cardinality
relations.

mailto:KMadduri@lbl.gov
mailto:KWu@lbl.gov

1 Introduction

The join is a fundamental and versatile relational database operation. Informally, it is used
to combine tuples from two (or more) different relations (or tables) based on some common
information [11]. There are several different kinds of joins, and a vast collection of algorithmic
strategies to solve them [11, 13]. In general, the join is considered one of the most difficult
relational operations to implement efficiently.

A join is performed on two input relations R and S, producing a result relation). The
join condition specifies the desired relationship to combine the tuples from R and S. We
denote the join attributes (or join columns) in R by r(a), and the attributes in S by s(b).
The join relation @ is then given by R X,(q)gs) S, where r(a)fs(b) defines the join condition.
Let n and m denote the number of tuples in R and S, respectively. The join selectivity factor
is defined as the ratio of the number of tuples in the resulting join relation (h) to the total
number of possible tuple pairs due to the cross-product of the two tables (mn).

In this paper, we present new algorithms for a specific type of join called the band [5] or
range join. For this join variant, the join condition is of the form r(a) —d; < s(b) < r(a)— s,
for some constants 0; and d,. Note that if §; and d5 are both zero, this reduces to the
commonly-used equijoin.

There are several known approaches for optimizing band joins, and in general the join op-
eration. If the number of join attributes is small and known before-hand, one could construct
a join index, a special relation tailored for answering these queries. Bitmap join indexes are
a specialization of this data structure that use bitmaps (bit vectors), and are extensively
studied [2, 9, 12, 11]. However, by definition, they are only useful in cases involving specific
columns for which the index has been built for; i.e., joins on arbitrary columns cannot benefit
from this specialized index. In addition, join indexes can be significantly larger than regular
bitmap indexes. For instance, in a recent study on a geographical application, Siqueira et al.
found that a specific join index for their data was 1000 times larger than a regular bitmap
index [17]. For these reasons, it is worthwhile to investigate the possibility of using regular
bitmap indexes for computing band joins and other variants.

The other class of algorithms for evaluating joins are robust and general-purpose, requir-
ing no specialized data structures. The nested-loop, sort merge, hash join, and their variants
are some well-known examples [11]. The sort-merge join, as its name suggests, sorts the join
attributes to reduce the number of tuple comparisons. It then merges the tuples according
to the join condition, and if the join selectivity is low (O(n)), this approach is significantly
faster than nested-loop, and is more efficient in 1/O accesses. The execution is typically
dominated by the sorting step, which is O(nlogn) using a generic comparison-based sorting
algorithm. Hash-based algorithms have a linear time complexity, but are known to be diffi-
cult to solve non-equijoins (for instance, band joins). Partitioned band join algorithms [5] try
to minimize the disk I/O time in materializing the join result by partitioning the relations
using a sampling strategy, and then computing band joins on the smaller partitions. This
divide and conquer strategy outperforms the standard sort-merge in several instances, but
still relies on a sort as an inner computational kernel. In comparison, our approaches operate
entirely with bitmap indexes and avoid the sorting kernel.

1.1 Owur Contributions

We present a class of new algorithms for computing range joins using bitmaps indexes.
We directly compute cross-products using bitmaps for answering a join query, whereas the
bitmap join index can be thought of as precomputing such cross-products. Because we keep
the involved bitmaps compressed during every step of the query evaluation process, the
storage requirement is low. We additionally use compressed bitmaps to represent the results
of joins, which keeps the output also compact.

Our motivating applications for this work arise from the domain of scientific data analysis
with predominantly numerical data sets. Here, there is a need to perform multi-dimensional
range join operations on arbitrary attributes of two or more relations. For instance, in astro-
nomical data analysis, we have large catalogs on which queries such as cross matching [10],
cone searches, and spatio-temporal matching [0] are posed, with range joins as one of the
key underlying computational kernels. Our algorithms can use compressed bitmap indexes
already built for range queries, and thus do not require additional storage or preprocessing.
To demonstrate the applicability of our approaches to large-scale astronomy data sets, we
present range join query performance results on the Sloan Digital Sky Survey Release-1 in
this paper.

This paper is organized as follows. We introduce compressed bitmap indexing in Sec-
tion 2, define the problem of computing the cross-product of two bit vectors, and describe a
baseline approach to compute equijoins using compressed bitmap indexes. We then present
the range join problem formulation in Section 3 and outline an algorithm based on cross
products of bit vectors to solve this problem. In Section 3.2, we specialize this approach
and present an algorithm to compute the join selectivity factor quickly, by inspecting com-
pressed bit vectors corresponding to the two attributes being joined. Based on this value,
we present two new strategies for actual expansion of the resulting join table in Section 3.3.
Specifically, we consider the cases where h = O(m) and h = O(mn). In both the cases, we
show how the resulting output can be represented compactly. We then extend the ideas to
multiway range joins in Section 4, and also detail how these join queries can be answered in
conjunction with the search capability of compressed bitmap indexes. Finally, we present a
detailed experimental study in Section 5 comparing our new approaches with the traditional
sort-merge algorithm. With a combination of theoretical and empirical results, we clearly
identify the cases when our approach would be faster than the sort-merge algorithm, and
quantify the speedups achieved. We demonstrate that our best approach is 1.2x-80x faster
than the sort-merge implementation.

2 Compressed Bitmap Indexes

A bitmap index is an indexing scheme that stores data as bit sequences, and answers queries
using bitwise logical operations. The bit sequences are referred to as bitmaps or bit vectors.
Typically, a bitmap index is generated for one attribute of a relation/table, and is comprised
of a bit vector for each distinct value of the attribute. The distinct values are referred to as

the keys. Since the bitmap size will then grow linearly with the number of distinct values,
which is also known as the attribute cardinality, it is efficient only for columns with low
cardinalities. The same restriction also applies to the bitmap join index [12, 11]. There are
a number of commercial implementations of bitmap indexes, and users are often cautioned
to use them only on low cardinality columns.

WAH compression: There are however various approaches to extend the effectiveness
of bitmap indexes to columns with higher cardinalities. The three common ones are binning
[8], encoding [3, 1, 11], and compression [I, 7]. In this work, we use compressed bitmaps with
a compression method called Word-Aligned Hybrid (WAH) [19] for range join evaluation.
In prior research, Wu et al. demonstrated that WAH compression is extremely efficient
for compressing bitmap indexes and optimal for range queries. Our new algorithms are
implemented in a software system built for scientific data, where the majority of the records
are read-only. In this software package FastBit!, all data tables are vertically partitioned to
support efficient ad-hoc queries. In many applications that use FastBit, a compressed bitmap
index is already built for each column that is queried. Thus, our join algorithms require
no additional preprocessing for supporting ad-hoc join queries. Our new join algorithms
extensively use logical operations on WAH compressed bitmaps, which are shown to be very
efficient in FastBit implementations [19].

WAH compression is based on the idea of run-length encoding. Two types of words are
used to store bits: literal words and fill words. The most significant bit of the word is used
to distinguish between a literal and fill word. Let w denote the number of bits in a computer
word. Then, the lower w — 1 bits of a literal word contain bit values, 0’s and 1’s, in an
uncompressed form. The fill word, on the other hand, is used to compactly store 0’a and 1’s
that are multiples of w — 1 bits. The second most significant bit in a fill word indicates the
type of fill, and the rest of the w — 2 bits are used for storing the length of the fill, or the
number of integer multiples of w — 1. If the total number of bits is not a multiple of w — 1,
then the last literal word created has just a few valid bits. This is referred to as an active
word.

We assume that equality encoding is used for the bitmap index. Bitmaps constructed with
range [3] and interval encoding are not as compressible as equality-encoded bitmaps, and the
index size may become prohibitive when doing arbitrary range joins. Binary encoding [14, 5]
would be significantly more expensive than equality encoding for narrow-range queries, which
would be our typical query instances on scientific data sets.

2.1 The cross-product of two bit vectors

We first present a baseline algorithm for an important subroutine, a cross-product of two
WAH-compressed bit vectors. We will discuss equijoin algorithms based on this cross-product
subroutine (denoted as BCP, or Baseline Cross Product) in the following sections.

Consider a join condition that just operates on one join column per relation, i.e., |r(a)| =
|s(b)| = 1. Let a and b denote these attributes in R and S, respectively. Let ¢, and ¢, denote

!More information about FastBit can be found at http://sdm.1bl.gov/fastbit.

http://sdm.lbl.gov/fastbit

Table 1: List of symbols.

Symbol(s) Description

R, S Relations/tables that are being joined.

r(a), s(b) Join attributes/columns in R, S respectively.

n Number of tuples in R, and size of each bit vector in bitmap
index of a.

m Number of tuples in S, and size of each bit vector in bitmap
index of b.

h Number of tuples in the join result.

Cay Cp Number of bit vectors in bitmap index (or attribute cardi-
nalities) of a, b.

a; Bit vector corresponding to value ¢ in bitmap index of a.

C; Bit matrix corresponding to cross product of a; and b;.

l, Number of bits set to 1 in bit vector a.

lo Number of bits set to 1 in the bit matrix.

NCeq Number of bit vector OR operations in CP-EquiJoin.

ne Number of unique b bit vectors touched in Algorithm CP-
FastRangeJoin.

Lyzcol Number of non-empty columns in compact bit matrix rep-
resentation (Algorithm CP-FastRangelJoin).

w Number of bits in a computer word.

mpg, Mg Selection conditions on R, S respectively, in addition to the

join condition.

Ci

mxn m

Figure 1: A simple representation of the cross-product of two uncompressed bit vectors.

the attribute cardinalities of a and b respectively. See Table 1 for a listing of other symbols.

Let a; and b; denote bit vectors corresponding to the value ¢ in attributes a and b re-
spectively. The cross-product of these two bit vectors is defined as a bit matrix C;, with
Ci(p,q) = a;(p)&b;(q), where & denotes the bitwise logical AND operator (illustrated in
Figure 1). Clearly, an uncompressed representation of the bit matrix would quickly become
intractable to store on current workstations, due to the quadratic space complexity. The
performance of any high-level routine that may operate on this cross-product will also be
adversely affected, due to the large memory footprint of the result. However, if we store both
a; and b; in a compressed manner, then computing the cross-product would still be feasible.

Algorithm 1 describes a simple approach to construct the cross-product. At a high level,
the algorithm for computing the cross product is to simply append the bit vector b to the
appropriate location in the result bit matrix. For internal representation of the result matrix,
we linearize it in column-major ordering. This allows us to treat the bit matrix as a long bit
vector and apply the WAH-compression technique.

Algorithm 1: BCP: A simple approach for computing the cross-product of two com-
pressed bit vectors.

Input: Two compressed bit vectors a and b.
Output: The cross-product of a and b, stored in C.
1 C + ¢; (initialize an empty compressed bit vector)
2 zv < b & 0; (initialize a compressed bit vector representing m zero bits.)
3 fori=1tondo
4 if a[i] =1 then
C « Append(b);
else
C « Append(zv);

B = R

Analysis: Let [, and [, denote the number of bits that are set to 1 in each vector. Since

Bitmap Index of a

ai az as a4 ai

Bitmap Index of b
b1 b2 bj

C1

Cross-product bit matrices

Figure 2: Computing an equijoin through a series of logical OR operations on bit vector
cross-products.

Algorithm 1 simply replicates b [, times, we can easily show that the size of the WAH-
compressed cross-product is O(l,lp). The running time of Algorithm 1 is dominated by
step 5, which is executed [, times. Thus we have the following theorem.

Theorem 1 The space and time requirements to compute a cross product C of two bit vectors
a and b are both O(lc), where l¢ is the number of bits that are 1.

2.2 Equijoin from cross-product bit matrices

We generate explicit cross-products of bit vectors as described in Algorithm 1, since they
provide a simple interface to implement joins (and other queries) using compressed bit vec-
tors. Consider the illustration in Figure 2. The set bits in the cross-product C; of bit vectors
a; and b; correspond to tuples in the join result for which the values match. It is evident
that the resulting relation from an equijoin can be obtained by performing a series of logical
operations of bit vectors corresponding to values that match in both the join attributes.
Using compressed bit vectors to represent the cross-products helps us store the result in a
space-efficient manner, and also lets us leverage previous work on efficient bitwise logical
operations.

Thus, we are obtaining the result of a join operation by extracting a subset of the Carte-
sian product of the two join attributes r(a) and s(b). The output bit matrix gives the pairs
of tuple identifiers from the two columns which satisfy the join condition. The resulting join
table can then be materialized by accessing the data, which may reside in main memory
or secondary storage. Algorithm 2 formally lays out this bit vector cross-product based
approach.

Analysis: We assume that all the distinct values in these columns (the index keys) are
stored in a sorted array and can be accessed in constant time. This information is typically

Algorithm 2: BCP-EqJoin: An equijoin algorithm using explicit cross-products of bit

vectors.
Input: Bitmap indexes of join attributes a and b from relations R and S respectively.

Output: Pairs of tuple identifiers from R and S that satisfy the join condition. The
result tuples are represented as a compressed bit matrix C, denoting a
subset of the the Cartesian product.

1 C < ¢; (initialize an empty compressed bit vector for storing the join tuple pair
identifiers)
21+ 1;7 1,
3 while (1 <¢,) & (j <¢) do
4 ko < Fetch_Next_Key(a,1);
ky <— Fetch_Next_Key(b, j);
if k, < k; then
141+ 1;
if k, < k, then
J=i+1L
10 if k, = k;, then
11 C+C|a®bj;

© W N O w;

available to us as an auxiliary data structure from the bitmap index corresponding to the join
attribute. We inspect keys in both a and b by stepping though the arrays in sorted order (we
assume Fetch_Next_Key in Algorithm 2 provides us with these values in constant time). In
step 11, we perform a cross-product on bit vectors corresponding to the matches, followed by
a logical OR of this matrix with a running copy of the result C'. From Theorem 1, we know
that the size and running time of each intermediate cross-product computation is bounded
by O(l¢;), where lo; is the number of set bits in an intermediate result bit matrix. The
logical OR operation can be efficiently computed on the compressed bit vectors in optimal
O(lei + ler) time [19], where lo, is the number of set bits in the running OR result. Let
Nceq denote the total number of OR operations that are performed. By definition, we know
that E?:qulCi = h. In the worst case, nce, = min(c,, ¢p). Also, note that the l¢, term grows
during the execution of the algorithm. Since this cost is incurred in every OR computation,
it would be wise to defer the evaluation of cross-products leading to a significant number of
set bits to latter stages of the algorithm. This leads us to an upper bound on the execution
time, as well as an optimal ordering for computing the cross-products.

Theorem 2 The ezecution time of BCP-EqJoin is given by O(nceq - h), where nee, <
min(cg, cp) and h is the number of set bits in the result relation. The space requirements

of the algorithm are O(h).

We assume a worst-case ordering of the OR’s to compute this bound. In practice, we
can scan through the lists in O(c, + ¢) time to determine the number of matches and
the intermediate result sizes. We could then order the OR computations according to the

Table 2: Possible compressed result words created from a bit-level combination of uncom-
pressed a; and ay bit vectors when evaluating a; ® by|as ® bs.

Bit value in a@; Bit value in as Result word(s)

0 0 0-fill word, value w,,
0 1 by

1 0 bl

1 1 bl ’bg

estimated result matrix sizes, starting with the smallest one first. Note that the average-case
running time here is dependent on characteristics of the join attributes.

2.3 Improvements to the cross-product based equijoin algorithm

Algorithm 2 is useful as a baseline approach for comparison to the new join algorithms we
present in this paper. From the worst case theoretical bounds, we expect this cross-product
based algorithm to either outperform or be competitive with the traditional approaches such
as sort-merge and hash-join in the following scenarios:

e The number of OR operations performed is a constant value, or much smaller than
logn (n is the number of tuples in the input relation).

e Low join selectivity factors.

e A skewed distribution of cross-product output sizes, i.e., the presence of a very few
large cross-product computations that may be deferred to the end.

The multiplicative factor of nceq, the number of OR operations that have to be performed,
is the primary performance concern for this equijoin approach. We now investigate techniques
to speed up this equijoin algorithm by first exploring approaches to reduce the computational
complexity.

Step 11 of Algorithm 2 involves a cross-product computation followed by a logical OR
operation on potentially large vectors. To answer most join queries, we need to perform
bitwise ORs of several different bit matrices. Consider an OR operation c¢i|cy; where ¢; =
a1 ® by and ¢ = as ® by. Table 2 lists all possible outcomes of the output based on a bitwise
comparison of the uncompressed bits in a; and as.

We see from the table that it is possible to compute the result of the OR operation by
just comparing bits of the uncompressed a; and as vectors. Further, the result of the OR
operation need not be explicitly stored, as the output words are possibly one of the following
four combinations: a 0-fill word, by, by, or by|bs. We can compute the join result size by just
determining the number of by, by, and by |by occurrences in the result, and the number of 1’s
in each of these vectors.

Table 3: Possible cases to consider in the compressed-word implicit cross-product and OR
computation a; ® by|ay ® by.

Word type in Word type in Result words # of result words
ai %
0-fill, value p 0-fill, value ¢ 0-fill, value min(p, q) - up. 1
0-fill, value p 1-fill, value ¢ by replicated min(p,q) - (w — 1) (w—1)-min(p,q) - uy
times.
0-fill, value p literal word O0-fill words (value w,) and by runtime
(LW) replicates (equal to # of 1’s in
LW).
1-fill, value p O-fill, value ¢ by replicated min(p,q) - (w — 1) (w—1)-min(p,q) - up
times.
1-fill, value p 1-fill, value ¢ by|be replicated min(p,q)-(w—1) (w—1)-min(p,q)-up
times.
1-fill, value p LW by or by|by replicates (equal to # runtime
of 1’s in LW).
LW O-fill, value ¢ 0-fill words (value wp) and b; runtime
replicates (equal to # of 1’s in
LW).
LW 1-fill, value ¢ by or by|by replicates (equal to # runtime
of I’s in LW).
LW LW 0-fill words, by, bs, and by|by repli- runtime
cates.

Operating on individual bits is expensive. Consider working with WAH-compressed a,

and ay vectors, and performing the OR operation without expanding the cross-product.
Table 3 lists all possible combinations of word-level OR operations, assuming WAH com-
pression. To simplify the analysis, we assume that there are no active words in the a or
b bit vectors. The number of new words created in the result, and the composition of the
result for each combination, is listed in the table. As noted earlier, any contiguous section
of compressed words in the result array can only be one of four different possibilities: a 0-fill
word, by, by, or by|by. This leads to a further optimization. As illustrated in Figure 3, if we
just store the type of the pattern (one of these four possibilities) and a running sum of the
position offset associated with its location, we can reconstruct the result array.
Analysis: The implicit cross-product approach we describe above is a replacement to line
11 of the BCP-EqJoin algorithm. We first evaluate pairwise combinations of the n¢,, result
vectors in this manner, and then perform OR operations on the resulting compressed bit
vectors. In terms of storage, we need n pointers to compressed bit vectors of m bits each.
The n pointers require O(n) words, and the size of each m-bit vector is proportional to the
number of set bits in it.

10

Compressed Cross-product representation Pattern
Look-up table

" LI

Logical
representation |

of b replicates = (g-p)/nwb a

Figure 3: A scheme to further compress the cross-product bit matrix.

The percentage of literal and fill words in each of the a; vectors, and the actual mix of
operations performed in Table 3, would give us a better estimate of the execution time. We
can apply an OR ordering similar to the BCP-EqJoin algorithm, deferring expensive OR’s
to latter stages of the algorithm. By working on compressed bit vectors instead of bitwise
comparisons (i.e., operations in Table 3 instead of Table 2), we achieve a multiplicative factor
execution time saving proportional to the word size. The worst case occurs when both the
a; vectors are composed of only literal words. Then we need to look at each bit to expand
the result, and so the time for one cross-product would be O(n).

The compact output representation sketched out in Figure 3 leads to significant space
savings. Consider a single cross-product OR computation. By not expanding the b’s explic-
itly, we can cut down on the result space requirements by a multiplicative factor of O(ly).
We refer to this improved equijoin algorithm as CP-EqJoin.

3 Range Join Query Processing

The most general form of the range join takes an arbitrary distance function and a threshold,
and finds all pairs of tuples chosen from the input relations whose values are within the
specified threshold. In this paper, we focus on a more restrictive form of the range join
that can be specified as a set of pairwise joins. This is equivalent to decomposing the
distance function into individual dimensions. We denote each pairwise join condition between
attributes r(a) and s(b) as a =5 b, which indicates a result relation that has merged tuples
with attributes a and b within ¢ of each other. In SQL, the same join may be expressed as
“a between b— 9 and b+ 9.” The equijoin discussed in the previous section is a special case.
If the join involves more than two attributes, we call it a multiway range join. Our focus is
on ad-hoc joins that will work on arbitrary pairs of columns.

In the equijoin examples, we did not explicitly specify the keys corresponding to the bit
vectors in a bitmap. However, for range joins, we need to examine the values of keys to
determine the bit vectors to use in the cross-product.

11

3.1 Basic Algorithm

Algorithm 3 gives the pseudo-code for range join evaluation using cross-products of bit
vectors. Depending on the size of the band (the value of §), we may need to evaluate a series
of cross-products with the same left-hand-side a; ® b,|a; ® by11] Instead, performing the
logical OR operations before the cross-products (as depicted on line 4 of the algorithm) is
much more efficient.

Typically, there is an additional set of selection conditions on the relations R and S.
We evaluate these conditions using bitmap indexes and produce two bit vectors (denoted
by mgr and mg in the algorithm) to represent them. Note that these masks resemble the
Positionally Encoded Record Filters (PERF) used in the PERF join algorithm [10]. However,
the two major differences in our approach are that these masks can be efficiently computed
using logical operations on bitmaps, and we can store these masks compactly with WAH
compression. To reduce the cost of the cross-product function, we usually apply the masks
before each invocation of the cross-product function.

Algorithm 3: CP-RangelJoin: A generic two-way range join algorithm based on cross-
products of bit vectors.
Input: Bitmap indexes of join attributes a and b from relations R and S respectively.
Additional masks on the relations, mp and mg.
Output: Relation Q corresponding to a range join on attributes a and b. The join
condition specifies a threshold parameter . The result is stored in a
compressed bit matrix C'.
1 C + ¢; (initialize an empty compressed bit vector for storing the join output)
2 fori=1 to ¢, do
3 Check whether k,, satisfies the join condition;
4 Examine keys of b to determine the largest interval (p, ¢) such that
[]{pr...k’bq] g [kai —(Skal—F(S]?
vp = Mg & (by|bp1] - - [by);
6 v, < mp & a;;
7 C+ C | v, ® vy,

Analysis: The algorithm iterates over each bit vector (key) of a and identifies the keys of b
for which the join condition is satisfied. Thus, the outer for loop executes ¢, times. However,
if there is a range condition on a, for instance a < a < 3, then the number of keys inspected,
and consequently the amount of work done in the cross-product, is reduced. Similarly, step
4 prunes some of the keys in b.

We assume that the result bit matrix is generated using the cross-product algorithms
described in the previous section. In comparison to the equijoin algorithm, this approach
performs more work in evaluating the range join condition in step 5. Having the key informa-
tion of b readily available through the bitmap index is certainly advantageous. In the worst
case, step 5 will have to sift through all the keys of b, leading to an asymptotic time com-
plexity of O(h- ¢y, - ¢,). Clearly, the straight-forward approach of creating the cross-product

12

matrix will only be useful for attributes of low cardinalities.

3.2 Determining the Join Selectivity Factor

For all the algorithms proposed so far, cross-product evaluation becomes expensive for large
(h >> O(n)) join selectivity factors. From Theorem 1, we have an estimate of the size of the
join result. Further, if we assume equality encoding, then there is no overlap between the
bit vectors. It leads us to a significant reduction in the complexity of range join evaluation.
Note the following result for WAH-compressed data with equality encoding;:

Lemma 1 Let by, by, ..., by denote the bit vectors corresponding to the bitmap index of an
attribute b. Then, b; & b; is a null vector for all 1 <1i # j < k.

This result implies that the the number of set bits in any OR computation of two a; or
b; bit vectors is the sum of the set bits in the individual vectors, as these vectors do not
overlap in their uncompressed form. This lets us very efficiently compute the tuple count in
the join result for a range join (see Algorithm 4).

Algorithm 4: CP-JoinCount: A fast algorithm to determine the join selectivity factor.
Input: Bitmap indexes of join attributes a and b from relations R and S respectively.
Output: The number of tuples in the relation Q, corresponding to a range join on

attributes @ and b. The join condition specifies a threshold parameter §.

1 count < 0;

2 fori=1 to ¢, do

3 Examine keys of b to determine the largest interval (p, ¢) such that

[kbp"'kbq] Q [kai —5ka1+5],

4 county < count(by) + count(byi1) + ... + count(b,);

count, < count(a;);

6 count < count + count, - county;
) count
7 Jsf < ;
m-n

The count algorithm requires inspection of the keys of b on every iteration of the outer
loop to evaluate the join condition. However, we can assume that the set bit counts in the
bit vectors of b are readily available. The inner loop computation is thus O(c,,), leading to
an overall asymptotic complexity of O(c, - ¢,,). Note that if we have additional masks to
apply to the bit vectors, this nice relation will not hold. In that case, we need to explicitly
compute the bit vector OR’s. If we use WAH compression, we know that the cost of a bitwise
logical operation is in the worst case a linear function of the total size (bytes or words) of the
two input bit vectors. This leads us to an asymptotic time complexity of O(h). The memory
footprint of this algorithm is smaller than a full cross-product evaluation, as we only need
to operate on a few bit vectors in every iteration. We assume that mg and mg are available
in main memory, and the b bit vectors can be loaded as required.

13

3.3 Faster Algorithms for Range Join

We can design faster algorithms for the full evaluation of range join if we assume that we
are given an equality-encoded compressed bitmap index for the join attributes. Algorithm 4
provides us with the exact join selectivity factor and requires linear space to compute in most
cases. If we know that the result count is significantly large (quadratic space requirements),
we can try out alternate strategies for representing the cross-product output. The non-
overlapping nature of the bit vectors again proves helpful. In Algorithm 1 (and Figure 2), we
detail the approach of constructing a bit matrix cross-product. Observe that each column of
the bit matrix in its uncompressed form is a result of an OR computation on some bit vectors
of b. Further, since the bit vectors are non-overlapping, we can defer the OR computations
until the latter stages of the algorithm. Instead we use ¢, bits per column to store the bit
vector identifiers of attribute b that we need to perform OR operations on. Algorithm 5
details a two-phase algorithm for the range join that first estimates or exactly computes the
count, and then performs a full range join evaluation with the OR computation.

Algorithm 5: CP-FastRangeJoin: A memory-efficient algorithm for computing the
range join.

Input: Equality-encoded bitmap indexes of join attributes a and b from relations R

and S respectively; Threshold parameter ¢ for the range join.

Output: The output relation Q, corresponding to a range join on attributes a and b.
1 count < 0;
2 Q¢ < ¢; (a list of compressed column vectors)
3 nzcol < ¢; (an uncompressed bit vector to keep a track of columns that are non-zero)
a4 fori=1 toc, do
5 Examine keys of b to determine the largest interval (p, ¢) such that

[kbp-"kbq] g [kai _(Skal+5]7

6 if ¢g—p > 0 then
7 county, < count(b,) + ... + count(b,);
8
9

count, <+ count(a;);
count < count, - county;

10 nzcol < a; | nzcol,
11 for each set bit 7 in a; do
12 Qclj] + Append(by, byi1, .., by);

13 for each set bit i in nzcol do
14 for each set bit j in Qc do

15 Q] < QU] | bj;

Analysis: The first phase of this range join algorithm computes the result tuple count. In
addition, it is also helpful to maintain a list of the b bit vectors that would appear at least
once in a column of the result matrix. Let us denote this count by ne. In case of an equijoin,
the number of cross-product OR’s we need to compute is given by nce,. It is easy to see
that for a range join, ng, Neeg < ¢ and ne > Neeg-

14

We initialize a list of pointers to the column vectors in uncompressed form to store the
different non-zero columns of the bit matrix. nzcol is a bit vector in the algorithm that
indicates whether a column is present in the result bit matrix. If it is present, then we
require ng bits per column to keep a track of the different b bit vectors that appear in this
column. Note that this is a complete representation of the result which can be expanded into
an uncompressed bit vector or matrix if required. Deferring the OR computation lets us cut
down the space requirement of the result from O(h) (for a linearized, compressed bit vector
representation of the bit matrix) to O(n - n¢) (for this new two-dimensional data structure
that is uncompressed in one dimension). Clearly, this representation is superior to the O(h)-
space structure for cases with large join selectivity factors (h >> O(n)). Thus, based on the
value of this count, we can choose an appropriate compressed bit vector representation for
the result.

Let [,,.coi denote the number of set bits in nzcol. The total number of possibilities of
bit vector OR’s grows exponentially with n¢, precisely as 2"¢~!. Contingent on the size of
the resulting columns, one possibility is to precompute all possible bit vector OR’s and step
through nzcol assigning the appropriate pointers. This approach is certainly feasible in the
case of very small values of n¢ (< 10), and advantageous when l,..., = O(n). The other
extreme would be to compute bit vectors using OR’s as we go along identifying non-zero
nzcol values. We expand [,,..,; columns in total, and the work done is proportional to the
number of set bits, since the operation being performed is a compressed bit vector OR.
Thus, the total amount of work done is again O(h) in this case. However, in comparison
to the CP-RangeJoin algorithm, the memory footprint of the individual OR computations
is significantly lower, as we defer all expansion to the end and we process one column at a
time.

Finally, observe that we can possibly achieve a multiplicative speedup factor of O(l,.cor)
for the expansion (this case arises when the same bit vector OR pattern occurs in every
column, and we just compute it once and reuse it for the remaining /,,,.,; — 1 cases). In-
tuitively, a range join would introduce bands of contiguous (in the key values) b vectors on
which we need to perform OR operations on. Any greedy heuristic that tries to minimize the
computation must be cognizant of the fact that the total amount of work to be performed in
the straight-forward approach is still O(h). Depending on the relative values of [, and n¢,
and the total amount of main memory available on the computing system, we may possibly
precompute and store a few recurring bit vector patterns. From the various counts, we can
estimate the running time and memory overhead for any heuristic. One greedy approach we
use that appears to work well in practice, is to order the OR’s by the size of the resulting
vector, and store a selected number of the larger pairwise OR’s that are reused.

15

4 Extensions

4.1 Filtering and Projections

Since most queries involving joins also contain additional conditions on the participating
relations, an obvious way to take advantage of bitmap indexes is to use them to evaluate
the range conditions. We will refer to the conditions on each relation participating in the
joins as the selection conditions on the relation, or simply the selection conditions. The
tuples satisfying the selection conditions are called the selected rows. After evaluating these
selection conditions, we can apply one of the above cross-product based join algorithms.

A second possible approach to evaluate range joins is to project out the selected tuples
of the join attributes. For most modest size joins, these projections often can be stored in
memory and we may subsequently apply a traditional in-memory join algorithm. Assuming
we can compute the in-memory join on the projection efficiently, this approach should be
efficient overall. We use the nested-loop and sort-merge join algorithms to evaluate range
joins on the projections. In both cases, if we only want to count the result tuple sizes, we do
not need to access any identifiers of the selected rows. However, if we need the create a new
relation satisfying the join conditions, we will need to maintain two sets of row identifiers, one
for relation R and the other for relation S. By definition, the projection from R has ng tuples
and the projection from S has mg tuples. Thus, we expect the nested-loop join algorithm to
take O(ng - mg) time if we do not need to generate the output bit matrix C'. Similarly, the
sort-merge join algorithm on the projections would take O(nglog(ng) + mglog(mg)) time.

4.2 Multiway Joins

In many range joins, the distance functions are defined on multiple attributes. For example,
in a query on network traffic data, one might perform a join on three out of four octets
of source and destination IP addresses, such as, “R.sourcelP_A g, S.destinationIP_A and
R.sourcelP_B xq S.destinationIP_B and R.sourcelP_C x(S.destinationIP_C.” While the
join operator is still applied on two tables, multiple range join operators X are specified.
A common strategy to process these queries is to evaluate one of the join operators using
indexes and then scan the base data to resolve the remaining join conditions. We can use
one of the cross-product based approaches to construct a compressed bit matrix of the result
for one pairwise join. An alternative strategy is to process each join operator separately and
then combine the results with an AND operation on the compressed bit vectors. In both
cases, we can apply Algorithm 4 to estimate the counts for each pairwise join operation.

5 Experimental Study

We implement the new join algorithms discussed in this paper as subroutines of the FastBit
bitmap indexing package. In this section, we provide a detailed performance analysis of the
bit vector cross-product computation and the various join algorithms on both synthetic and

16

Table 4: A summary of the asymptotic complexity of new algorithms proposed in this paper.

Name Description Complexity (O)
Execution time Space

BCP Cross-product construction us- h h
ing compressed bit vectors.

BCP-EqJoin Equijoin using explicit OR. op- min(cq, cp) - h h
erations on cross-product bit
matrices.

CP-RangelJoin Range join using cross-product Ca-Cp-h h
bit matrices.

CP-JoinCount Algorithm for determining the Ca* Cp n

number of tuples in result.

CP-FastRangeJoin Faster algorithm for range join min(h- ¢, - cp,n-) min(h,n - c)
using implicit OR and cross-
product computation.

real data. Table 4 summarizes the asymptotic worst-case complexities of the new compressed
bit vector based algorithms presented in this paper. In addition, we also have implementa-
tions of the sort-merge and nested loop algorithms for performing equijoins and range joins.
We observe that the sort-merge algorithm outperforms nested loop algorithm variants for
all the queries studied in this paper, and hence we compare our new join algorithm only
with the in-memory sort-merge algorithm. In future work, we will compare our algorithms
to specialized join algorithms (such as indexed nested-loop join [13] and radix cluster join)
that are tuned to answer particular classes of join queries efficiently.

We will mostly focus on joins involving two attributes in this section. The following are
the key data parameters that determine the performance of our approaches: a) the number
of tuples in the input relations, n and m; b) The attribute cardinalities ¢, and ¢p; ¢) The
range threshold parameter §; d) The join selectivity factor and the size of the result relation.

5.1 Test Setup

We use three sets of test data for our timing measurements: a synthetic data set with random
integer values, a data set from a network traffic monitoring application, and a data set from
the Sloan Digital Sky Survey. The synthetic data has random integers following the Zipf
distributions. We experiment with several different table sizes and attribute cardinalities
using three Zipf exponents (0, 1, 2). The network traffic data is collected using an intrusion
detection system called BRO? [15]. The network data used here is a small fraction of the
data logs collected at a mid-sized research organization. It contains IP address information,

2Information about BRO is also available at http://bro-ids.org.

17

 http://bro-ids.org

port numbers, and timestamp information. The sky observations data was obtained from
the Sloan Digital Sky Survey Data Release-1° and corresponds to three columns roughly of
size 50 million tuples each.

All the tests were conducted on an Intel Core2 quad-core workstation running at 2.4 GHz.
This system has 8 GB main memory and 4 MB of L2 cache. We built our codes with the
GNU C compiler (version 4.2.4) and aggressive optimization enabled. We report wall-clock
running time computed to a six-digit accuracy. Note that we perform in-memory joins on
all the data sets, and do not time the 1/O accesses for loading the bitmap indexes. The
running time is dominated by in-memory computation for the problem instances we tested
on. We compare our approaches with the compute-time for an in-memory sort-merge join
algorithm, and in both cases, an identical procedure can be followed to materialize the final
join table after the result tuple list is determined. Our compressed bitmap-based algorithms
are a replacement to existing range join approaches such as the sort-merge algorithm, and
can be combined with other techniques to alleviate the I/O time of materializing the join
table.

5.2 Analysis

Since the running times of the algorithms are highly query-dependent, we first correlate
them with run-time performance counts that accurately model the performance. Consider
first the cost of evaluating just the join count using Algorithm 4. Figure 4 plots the execution
time for various queries. On the X-axis, we indicate the expected number of bit vector OR
operations that have to be performed to expand the entire join result. We observe that the
running times are linear correlated with this count, and these results are consistent with the
worst-case bounds given in Table 4.

Next, we study performance of the cross-product based algorithms for different types of
join queries and input datasets. The queries on the real data sets are self-joins on different
attributes. We observe that the two parameters introduced in Section 3.3, l,..qs and ng,
capture variations in running time very effectively. As indicated in Table 4, the asymptotic
upper bound is achieved when these two parameters reach their highest values.

In Figure 5, we plot the average execution time of four different range queries on synthetic
data sets of different sizes. The values of [,..,; and nc for each query are indicated as
the X-axis label tuple. We report performance of two variants of the CP-FastJoinCount
algorithm: Defer OR and On-the-fly. CP On-the-fly implicitly evaluates cross-product OR’s
as they occur, while CP Defer OR applies ordering strategies and heuristics to defer OR
computation to latter stages of the algorithm. We observe that in all four cases, CP On-
the-fly outperforms the basic sort-merge join implementation. The speedup varies from 60 x
(in the case of the query with the least [,.,., value) to 1.23x, with the selectivity factor
being the third parameter influencing the performance. Also note that we do not explicitly
produce a new result tuple list as output in the sort-merge algorithm, whereas the cross-
product based relations compactly store the result in a bit matrix. Even with this work

3SDSS SkyServer: http://skyserver.sdss.org/drl/en/sdss/release/.

18

http://skyserver.sdss.org/dr1/en/sdss/release/

X Execution time(s)
— — Linear regression

0.8 1 %

0.6 -~

0.4 1 -

0.2 A -

Execution time (seconds)

0.0 ¥

-0.2 T T T T T
-30x10° 200x10° 400x10® 600x10%® 800x10°® 1000x10% 1x10°

of bit vector OR operations

Figure 4: Performance of the join count algorithm for queries on both real and synthetic
data, correlated with the number of bit vector OR operations.

imbalance, it is remarkable that the performance of the cross-product based approaches is
significantly better. As expected, when there are fewer OR computations (lower [,,,., values),
the speedup is higher. We also observe that the running time of the Defer OR variant gets
comparable to On-the-fly for larger values of [,,..,; and nc. Lower values indicates that there
is comparatively lesser room for reordering and precomputing heuristics. Finally, for both
the implementations, as the product of [,.., and ne increases, the running time goes up as
well.

Figure 6 considers problem instances that are three orders of magnitude larger. In this
case, we observe that the CP Defer OR is consistently faster than CP On-the-fly, and the
reordering strategies pay off. We also observe that Defer OR outperforms Sort-merge for all
the queries, with the speedup ranging from 1.37x to 44.7x. The queries are ordered in the
increasing order of the join selectivity factor, starting with one that is O(n). As expected
from the theoretical analysis, the bitmap index based approaches are faster than Sort-merge
for high join-selectivity queries.

Since CP-JoinCount is a lower bound on the execution time, we indicate the ratio of
these two running times in the performance charts. This number gives us an estimate of the
potential speedup that we can achieve in processing this query.

We next evaluate join performance on the network data (Figure 7), where the attributes
have nearly 30 million tuples and varying column cardinalities. We report the average
performance of ten different queries falling in three categories: low join selectivity values,
high ne, and high join selectivity values. We plot the average running time of CP Defer OR
and Sort-merge for these three cases, and observe that Defer OR is faster than Sort-merge
for high nc (similar to the results observed in Figure 5) and high join selectivity values (in

19

0.030 mmmm CP defer OR
mmmm CP on-the-fly
o 0.025 A s Sort-merge
o
c
3
S 0.020 -
L
° 1.53
£ 0.015 -
c
o
= 0.010 1
=}
I3}
15}
X
W 0.005 4
I 1.26
0.000 ’—_—v—.

r(83, 10804) (100, 1009872) r(1772, 10550) r(6313, 19952)

Query Instance

Figure 5: Performance of range join queries on synthetic Zipf data. The numbers above the
bars indicate the speedup achieved by CP On-the-fly over Sort-merge, and the X-axis labels
indicate values of ng and [,.., respectively.

mmmm CP defer OR
141 mmmm CP on-the-fly

” I Sort-merge
L 1.2 -

c

3

S 1.0 A

L

© 08 -

£

=

c 06 -

el

=

]

O 04 -

[0

n

0.2 1 137
226 7.51
: 44.7

eq1 eq2 eq3 eq4d

Query Instance
Figure 6: Performance of equijoin queries on a synthetic data set of 10 million tuples. The

numbers above the bars indicate the speedup achieved by CP defer-OR over Sort-merge, and
the queries on X-axis are ordered in increasing join selectivity values.

20

S — —| mmmm CP defer OR
mmmm Sort-merge

79.25

Average Execution time (seconds)
w

Low JSF High nC High JSF

Query Category

Figure 7: Average performance of join queries on the network data set. The numbers above
the bars indicate the speedup achieved by CP defer-OR over Sort-merge, and three different
query categories are indicated on the X-axis.

accordance with results in Figure 6). However, for the case of low join selectivity factor (in
addition to l,,,q;), the sort-merge algorithm is expectedly faster than the Defer OR variant.
The observed performance is consistent with our theoretical analysis of the bounds. Note
that we have not given the performance of sub-optimal approaches such as BCP-EqJoin and
the nested loop algorithm. These approaches only get competitive with the CP Defer OR
algorithm for cases where h = O(m - n), and in these scenario we already demonstrate a
significant speedup over the Sort-merge algorithm.

In Figure 8, we summarize the speedup achieved by our index based counting strategy
(algorithm CP-JoinCount) over the sort-merge algorithm for the various query instances dis-
cussed previously. If we just need to determine the count of a join result, our approach is
extremely fast and can result in a speedup up to three orders of magnitude in practice (for
queries with high join selectivity factors). These speedup figures are also an indicator of
the heuristic optimizations of our cross-product based approaches over the Sort-merge algo-
rithm. For instance, the query class of low join selectivity factors may benefit from further
reordering or deferred OR computation, as we obtain a speedup of 9.6x for a count-only
query.

Figure 9 is an illustration of the optimization parameter space for the cross-product based
algorithms. Based on the theoretical analysis and experimental results, we indicate regions
where we observe one approach to perform better significantly better than the other. As the
experiments indicate, there is still some performance to be realized from the bottom-right
corner for large ng and [,,.., values, as well as low join selectivity factors.

21

10000

1000 A

100 ~

Speedup of CP-JoinCount
over Sort-merge

r1 r2 r3 r4 eql eq2 eq3 eq4 LISF HnC HJISF

Query Instance

Figure 8: Average speedup (logarithmic scale) achieved by CP-JoinCount over Sort-merge for
various query instances.

Inzcol: # of non-empty columns in bit matrix

>
1 n
1 Precompute all possibilities
=
o 5 “GTJ
$ 2 <
o O w Defer OR computation
c 2 = . ..
s 8 o Ordering heuristics
]
© £ 5 o
= 2 o &
e 2 g RN
€ > O \ &
RN
SE
L cb §

Figure 9: A depiction of the optimization state space for the CP-FastRangeJoin algorithm.

22

6 Conclusions

We present a set of new algorithms in this paper that utilize bitmap indexes efficiently to
evaluate range joins. Our approaches are faster in practice than well-known algorithms such
as sort-merge based approaches. With a combination of theoretical and empirical results,
we attempt to characterize the join query and algorithm space, and reduce the performance
gap between simple counting and full join result expansion.

In future work, we will conduct a deeper theoretical study and experiment with other
heuristics for the deferred OR computation join algorithm. Several algorithms discussed
in this paper are amenable to parallelization, and it would be interesting to see what the
bottlenecks to performance would be on current parallel systems. We also wish to extend
our current prototype implementations of join algorithms to process large-scale partitioned
datasets and more diverse query workloads.

Acknowledgments

This work was supported by the Director, Office of Science, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

References

[1] G. Antoshenkov. Byte-aligned bitmap compression. U.S. Patent number 5,363,098,
1994.

[2] P. Bizarro and H. Madeira. The Dimension-Join: A new index for data warehouses. In
Proc. XVI SBBD, pages 259-273, Rio de Janeiro, Brazil, Oct 2001.

[3] C.-Y. Chan and Y.E. loannidis. Bitmap index design and evaluation. SIGMOD Rec.,
27(2):355-366, 1998.

[4] C.-Y. Chan and Y.E. loannidis. An efficient bitmap encoding scheme for selection
queries. SIGMOD Rec., 28(2):215-226, 1999.

[5] D.J. DeWitt, J.F. Naughton, and D.A. Schneider. An evaluation of non-equijoin algo-
rithms. In Proc. VLDB, pages 443-452, Barcelona, Spain, Sep 1991.

[6] J. Gray et al. There goes the neighborhood: Relational algebra for spatial data search.
Technical report, Microsoft Research, 2004. MSR-TR-2004-32.

[7] T. Johnson. Performance measurements of compressed bitmap indices. In Proc. VLDB,
pages 278-289, Edinburgh, Scotland, Sep 1999. Morgan Kaufmann.

[8] N. Koudas. Space efficient bitmap indexing. In Proc. CIKM, pages 194-201, McLean,
VA, Nov 2000. ACM.

23

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

N. Koudas and K.C. Sevcik. Size separation spatial join. SIGMOD Rec., 26(3):324-335,
1997.

Z. Li and K.A. Ross. PERF join: an alternative to two-way semijoin and bloomjoin. In
Proc. CIKM, pages 137-144, Baltimore, MD, Nov—Dec 1995. ACM.

P. Mishra and M.H. Eich. Join processing in relational databases. ACM Comput. Surv.,
24(1):63-113, 1992.

P. O’Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD
Rec., 24(3):8-11, 1995.

P. O’Neil and E. O’Neil. Database: principles, programming, and performance. Morgan
Kaufmann, 2nd edition, 2000.

P. O'Neil and D. Quass. Improved query performance with variant indexes. SIGMOD
Rec., 26(2):38-49, 1997.

V. Paxson. Bro: A system for detecting network intruders in real-time. Computer
Networks, 31(23-24):2435-2463, 1999.

R. Power. Large catalogue query performance in relational databases. Publications of
the Astronomical Society of Australia (PASA), 24(1):13-20, 2007.

T. Siqueira, R. Ciferri, V. Times, and C. Ciferri. Investigating the effects of spatial
data redundancy in query performance over geographical data warehouses. In Proc.
GFEOINFO, Rio de Janeiro, Brazil, Dec 2008.

H.K.T. Wong, H.-F. Liu, F. Olken, D. Rotem, and L. Wong. Bit transposed files. In
Proc. VLDB, pages 448457, Stockholm, Sweden, Aug 1985.

K. Wu, E.J. Otoo, and A. Shoshani. On the performance of bitmap indices for high
cardinality attributes. In Proc. VLDB, pages 24-35, Toronto, Canada, Sep 2004. Morgan
Kaufmann.

24

	1 Introduction
	1.1 Our Contributions

	2 Compressed Bitmap Indexes
	2.1 The cross-product of two bit vectors
	2.2 Equijoin from cross-product bit matrices
	2.3 Improvements to the cross-product based equijoin algorithm

	3 Range Join Query Processing
	3.1 Basic Algorithm
	3.2 Determining the Join Selectivity Factor
	3.3 Faster Algorithms for Range Join

	4 Extensions
	4.1 Filtering and Projections
	4.2 Multiway Joins

	5 Experimental Study
	5.1 Test Setup
	5.2 Analysis

	6 Conclusions

