
UCLA
UCLA Electronic Theses and Dissertations

Title
A Declarative Language for Advanced Analytics and its Scalable Implementation

Permalink
https://escholarship.org/uc/item/3545b4qg

Author
Shkapsky, Alexander Philip

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3545b4qg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

A Declarative Language for Advanced Analytics and its
Scalable Implementation

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Alexander Philip Shkapsky

2016

c© Copyright by

Alexander Philip Shkapsky

2016

ABSTRACT OF THE DISSERTATION

A Declarative Language for Advanced Analytics and its
Scalable Implementation

by

Alexander Philip Shkapsky
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Carlo Zaniolo, Chair

Advanced analytics are used to discover hidden patterns and trends in massive datasets. Great

strides have been made by researchers to provide computational models, systems and accompany-

ing languages for analytics. However, there is still a dire need for highly expressive declarative

languages that enable the compilation, optimization and evaluation of advanced analytics over

massive datasets. Specifically, a language for analytics needs (i) to support the expression of an-

alytics over multiple data models (ii) to provide high-level declarative constructs enabling system

optimizations, and (iii) be conducive for iterative or recursive evaluation.

In this dissertation, we propose an expressive Datalog language for advanced analytics, and

compilation and optimization techniques for its efficient evaluation on systems designed for itera-

tive execution. Specifically, this dissertation makes two main contributions:

(i) We develop and demonstrate a next generation Datalog System - the Deductive Application

Language System (DeALS). To extend the range of analytics supported in DeALS, we add

support for aggregation in recursion into our logic-based language. We propose the design and

implementation of several monotonic aggregates that can be used in recursive Datalog rules and

evaluated efficiently using our novel optimization techniques. We demonstrate the effectiveness of

these aggregates and conduct an experimental comparison with other Datalog systems and deter-

mine that DeALS combines superior generality with superior performance.

ii

(ii) We design and implement BigDatalog, a Datalog system on Apache Spark, for large-scale

advanced analytics. We implement BigDatalog for efficient distributed evaluation and to utilize

communication-reduction techniques during evaluation. We propose compilation and optimization

techniques, as well as job scheduling techniques, to support efficiently the evaluation of DeAL

programs on Spark. We conduct an experimental comparison with other state-of-the-art large-

scale Datalog systems and demonstrate the efficacy of our techniques and effectiveness of our

Spark extensions in supporting Datalog-based analytics.

iii

The dissertation of Alexander Philip Shkapsky is approved.

Tyson Condie

Todd D. Millstein

Vwani P. Roychowdhury

Carlo Zaniolo, Committee Chair

University of California, Los Angeles

2016

iv

For my wife

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Overview . 3

1.1.1 Deductive Application Language System 3

1.1.2 Aggregation in Recursion . 4

1.1.3 BigDatalog . 4

1.1.4 Outline . 4

2 Background: Datalog . 6

2.1 Datalog Evaluation . 7

3 The Deductive Application Language System . 10

3.1 System Overview . 11

3.1.1 Declarative Optimizer . 13

4 Optimizing Recursive Queries With Monotonic Aggregates in DeALS 16

4.1 Introduction . 16

4.2 MMIN and MMAX Monotonic Aggregates . 18

4.2.1 Running Example . 19

4.3 Monotonic Aggregate Evaluation . 21

4.3.1 Monotonic Aggregate Semi-Naı̈ve Evaluation 21

4.3.2 Eager Monotonic Aggregate Semi-naive Evaluation 22

4.4 MMIN and MMAX Implementation . 26

4.4.1 Storage Manager Extension . 26

4.4.2 mmin and mmax Implementation . 27

vi

4.4.3 Operational Optimizations . 27

4.5 MMIN & MMAX Performance Analysis . 27

4.5.1 Datalog Implementation Comparison . 29

4.5.2 DeALS Storage Manager Evaluation . 32

4.5.3 Statistical Analysis of Evaluation Methods 32

4.6 MCOUNT and MSUM Monotonic Aggregates 33

4.6.1 Running Example . 34

4.7 MCOUNT and MSUM Implementation . 36

4.7.1 Storage Designs . 36

4.8 MCOUNT and MSUM Performance Analysis . 37

4.8.1 Statistical Analysis of Evaluation Methods 38

4.8.2 Storage Design Evaluation . 39

4.8.3 Discussion . 40

4.9 Formal Semantics . 40

4.9.1 DeAL Interval Semantics . 41

4.9.2 Normal Programs . 43

4.9.3 Normal Program Evaluation . 44

4.10 Mapping DeAL to DatalogFS . 45

4.10.1 DatalogFS . 45

4.10.2 Transformation Rules . 47

4.10.3 Transformation Rules Examples . 50

4.11 Additional Optimizations . 53

4.11.1 Magic Sets . 53

4.11.2 Comparison-Only Monotonic Aggregation 54

vii

4.12 Monotonic Aggregate Rule Rewriting . 55

4.12.1 Rewriting mmax Rules . 56

4.12.2 Rewriting mmin Rules . 57

4.12.3 Rewriting mcount Rules . 57

4.12.4 Rewriting msum Rules . 58

4.13 Additional DeAL Programs . 59

4.14 Syntax Comparison With Other Languages . 61

4.15 Additional Related Work . 64

4.16 Monotonic Aggregates Summary . 64

5 BigDatalog - DeAL on Apache Spark . 65

5.1 Preliminaries . 67

5.1.1 Apache Spark . 67

5.1.2 Challenges for Datalog on Spark . 69

5.2 BigDatalog . 70

5.2.1 Benchmark Programs . 70

5.2.2 BigDatalog API By Example . 71

5.2.3 Parallel Semi-Naı̈ve Evaluation on Spark 71

5.2.4 Compilation and Planning . 73

5.3 Optimizations . 78

5.3.1 Optimizing PSN . 78

5.3.2 Partitioning . 81

5.3.3 Join Optimizations for Linear Recursion 83

5.3.4 Decomposable Programs . 86

5.3.5 Job Optimizations . 90

viii

5.4 Aggregates . 92

5.5 Experiments . 94

5.5.1 Experimental Setup . 95

5.5.2 Datalog Systems Comparison . 96

5.5.3 Additional Scaling Experiments . 100

5.6 Related Works . 104

5.7 Summary of BigDatalog . 105

6 Conclusion and Future Work . 107

References . 109

ix

LIST OF FIGURES

3.1 Interpreter Plan for Program 1. 12

3.2 Optimizer Schema. 14

4.1 edge Facts for Program 3. 19

4.2 Derivations of Program 3, r2 - Iteration 1. 20

4.3 Derivations of Program 3, r2 - Iteration 2. 20

4.4 Derivations of Program 3, r3. 20

4.5 Example of Iteration Boundary of MASN. 23

4.6 EMSN Fact-at-a-time Efficiency. 24

4.7 Execution time and memory utilization of APSP on synthetic graphs. 28

4.8 Execution time of SSSP on Road Networks Datasets. 31

4.9 edge Facts. 34

4.10 Derivations of Program 4, r1 evaluation. 34

4.11 Derivations of Program 4, r2 - Iteration 1. 35

4.12 Ratio SN/EMSN Derivations - Counting Paths. 38

4.13 mcount and msum Storage Design Performance. 39

4.14 Counting Interval Semantics. 41

4.15 +/- Rational Numbers Interval Semantics. 42

4.16 Minimum Interval Semantics. 43

5.1 Example Recursive Query Performance. 66

5.2 Semi-Naı̈ve TC Spark Program. 69

5.3 BigDatalog Program for Spark. 72

5.4 BigDatalog Compilation Workflow. 74

x

5.5 BigDatalog Logical Plans. 75

5.6 BigDatalog Physical Plans. 77

5.7 RDD Lineage Graph for TC Physical Plan. 78

5.8 SetRDD Interface. 79

5.9 SetRDDHashSetPartition Implementation. 81

5.10 PSN with SetRDD Physical Plans. 82

5.11 Plan for TC partitioned on 2nd argument. 83

5.12 Linear Recursion Joins. Numbers 1 and 2 indicate partition ids of the respective

dataset. 84

5.13 SG with Broadcast Joins. 85

5.14 arc Facts for Example Decomposable Evaluation. 87

5.15 Example r1 Derivations for Decomposable TC Evaluation. 87

5.16 Example r2 Derivations for Decomposable TC Evaluation. 87

5.17 Decomposable TC Plan. 88

5.18 RDD Lineage Graph for Decomposable TC Physical Plan. 88

5.19 Multi-Job scheduling of Program 1 (TC). ShuffleMapStages are orange. Result-

Stages, which produce output for a job, are gray. Job 0 is a broadcast of the arc

base relation. 90

5.20 Single-Job scheduling of Program 1 (TC). ShuffleMapStages are orange. Result-

Stages, which produce output for a job, are gray. FixpointResultStages are blue.

Job 0 is a broadcast of the arc base relation. 91

5.21 Single-Job Reuse scheduling of Program 1 (TC). ShuffleMapStages are orange.

ResultStages, which produce output for a job, are gray. FixpointResultStages are

blue. Job 0 is a broadcast of the arc base relation. 92

5.22 TC System Comparison. 97

xi

5.23 SG System Comparison. 98

5.24 System Scaling-up Comparison on RMAT Graphs. 100

5.25 Scaling-out Cluster Size. 101

5.26 Scaling-up TC on Random Graphs. 101

5.27 Scaling-up SG on Random Graphs. 102

xii

LIST OF TABLES

4.1 Execution time and memory utilization of APSP on real-life graphs 31

4.2 Evaluation Type by Storage Configuration . 32

4.3 Storage Design Schemas . 36

4.4 Types of DeAL Rules with Monotonic Aggregates 47

5.1 PSN vs. PSN with SetRDD Performance . 80

5.2 Comparison of TC with Different Partitioning Strategies 83

5.3 Join Optimizations for Linear Recursion . 85

5.4 Comparison of Shuffle vs. Decomposable TC Plans 89

5.5 Comparison of PSN Job Strategies . 92

5.6 TC and SG Synthetic Test Graphs . 95

5.7 TC Scaling Experiments Result Details . 102

5.8 SG Scaling Experiments Result Details . 103

5.9 Impact of Map-side Distinct on SG Scaling Experiments 104

xiii

ACKNOWLEDGMENTS

I give my sincerest thanks and appreciation to my advisor Professor Carlo Zaniolo. I am grate-

ful for his time and patience. I am grateful for his insights on my work and for his thoughtful

advice on how to be a better researcher and better market my research.

I would like to thank my committee, Professor Tyson Condie, Professor Todd Millstein, and

Professor Vwani Roychowdhury, for their advice and suggestions on my research.

I would like to thank my fellow students. I am sure I am forgetting some who helped me along

the way, but this list includes Muhao Chen, Hsuan Chiu, Ariyam Das, Shi Gao, Jiaqi Gu, Matteo

Interlandi, Nikolay Laptev, Neng Lu, Giuseppe Mazzeo, Hamid Mousavi, Barzan Mozafari, Jin

Wang, Mohan Yang, Kai Zeng.

I thank my wife Tricia for her love and patience during my years as a student. Without her

strength and support I would not been have able to complete this dissertation.

xiv

VITA

2001 Bachelor of Science in Commerce, Emphasis in Operations and Management

Information Systems, Santa Clara University, Santa Clara, California.

2001-2002 Junior Software Engineer, Data Systems & Solutions, San Diego, California.

2003-2004 Software Developer, First American Default Technologies, Anaheim, California.

2004-2005 Lead Developer, First American Default Technologies, Anaheim, California.

2005-2007 Senior Software Engineer, BDS Marketing, Irvine, California.

2008-2009 Senior Software Developer, Vendor Resource Management, Pomona, California.

2009 Master of Science in Computer Science, UCLA.

2009-2011 Lead Developer, Vendor Resource Management, Pomona, California.

2011-2012 Graduate Student Researcher, UCLA International Institute, UCLA.

2012 Software Engineer Intern, Commission Junction, Los Angeles, California.

2012-2015 Graduate Student Researcher, Computer Science Department, UCLA.

xv

PUBLICATIONS

Mohan Yang, Alexander Shkapsky, Carlo Zaniolo. Parallel Bottom-Up Evaluation of Logic Pro-

grams: DeALS on Shared-Memory Multicore Machines. In Proceedings of the Technical Com-

munications of the 31st International Conference on Logic Programming. (ICLP), Cork, Ireland,

August 31 - September 4, 2015.

Alexander Shkapsky, Mohan Yang, Carlo Zaniolo. Optimizing recursive queries with monotonic

aggregates in DeALS. In Proceedings of the 31st IEEE International Conference on Data Engi-

neering (ICDE), Seoul South Korea, April 13-17, 2015.

Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. Graph Queries in a Next Generation Datalog

System. Demo. In Proceedings of the 39th International Conference on Very Large Data Bases

(VLDB), Rival del Garda, Trento, August 26-30, 2013.

xvi

CHAPTER 1

Introduction

The high velocity of the modern world requires accurate, timely and sophisticated analytics to

support informed decision making, better allocation of resources and identification of new op-

portunities. In fact, analytics is responsible for many of the advanced applications we use daily.

Analytics is a broad term and includes tasks from data analysis, data mining and machine learn-

ing. Using web analytics to track user visits and page views, websites can better allocate resources

and balance load across their clusters of web servers. Network intrusion detection systems need

to quickly process network and server logs to identify unwanted visitors. Algorithms such as

PageRank [PBM99] are used to identify the most influential members in a social network graph or

important websites in a web graph.

The development of advanced analytics is an iterative process that requires tuning a pipeline

of subtasks and can involve a variety of systems and tools. Common subtasks include i) filter-

ing, joining and aggregating multiple datasets, ii) designing, implementing and testing complex

learning models and iii) ensuring the application can properly scale. Moreover, a single analyt-

ics application can require elements of multiple data models, such as both relational and graph

datasets.

Big Data is a rich application area for analytics due in part to the massive and continually

growing datasets and the variety of data available. Both industry and academia have proposed

many scalable systems and computational models for Big Data analytics. Google’s MapReduce

[DG04], and its open source version Hadoop MapReduce [had15], have led the charge by providing

practitioners with a powerful framework for distributed parallel processing of large-scale batch

jobs. Platforms supporting a larger or more general operator set than MapReduce [BEH10, IBY07]

1

or extending the MapReduce framework with iterative constructs [BHB12, ELZ10, pro15, RPB13,

SKH12, ZGG12, ZGG11] have also been presented. Parallel RDBMS [CDD09, FPC09, LFV12],

designs based on parallel database systems [BCG11] and hybrid MapReduce/RDBMS models

[ABH10, YYT10] have also emerged. Distributed in-memory designs for low-latency data analysis

and iterative machine learning [PL10, ZCD12] have appeared. For large-scale graph analytics

and graph machine learning, systems for both parallel [KBG12, LGK10] and distributed [gir15,

GLG12, LBG12, MAB10, SWL13, TBC13] processing have been proposed.

However, even with these powerful systems available, advanced analytics still requires bet-

ter support from powerful high-level programming languages with advanced built-in constructs

backed by declarative semantics that are amenable to parallelization on multiple platforms. We

identify three language challenges for advanced analytics:

First, as the needs for analytics applications can vary greatly from acyclic batch processing over

relational data to long-running iterative and recursive workflows on graphs, a language should be

expressive enough to support both relational and graph data models. For example, using a MapRe-

duce system for many types of graphs processing is inefficient, whereas the vertex-centric models

used by some graph-based systems are not suitable for many other types of analytics; it is also dif-

ficult to express graph queries using SQL. Often programmers are plagued with unnecessary code

complexity from having to compensate for a computational model that quickly becomes subopti-

mal in terms of execution performance and scalability. Furthermore, this results in the programmer

having to stitch together application subcomponents written in different APIs or executed by dif-

ferent systems. Supporting multiple data models at the language level increases logical data inde-

pendence, reduces portability concerns and helps mitigate the need to migrate from one language

or low-level API to another, which is often a major engineering effort.

Second, a language should provide high-level declarative constructs enabling system optimiza-

tion. A noticeable construct lacking from most languages proposed for analytics is recursion. Re-

cent work has proposed moving analytics into the RDBMS using built-in or user-defined function

for analytics [HRS12, FKR12], but these approaches inherit the RDBMS’s poor support for re-

cursion. Although domain specific languages (DSL) such as ScalOps [WCR11] are a step in the

2

right direction, other language integrated APIs [YIF08, ZCD12] embedded in another high-level

language inherit support for iteration through the language’s control flow (e.g., C# or Scala). By

enabling the user to specify what they want to do and tasking the system with how to do it, the sys-

tem is given the best opportunity to provide optimized execution plans. We see this in declarative

languages, such as SQL and Datalog, as optimizers can more easily identify declarative constructs

and apply well-known optimization techniques.

Lastly, to enable the efficient support of sophisticated analytics, which include data mining

and machine learning algorithms, the language must be evaluated by a system that efficiently sup-

ports iteration. One approach has been to port existing languages, such as SQL, to large-scale

platforms for batch processing. However, the ported language is limited to efficiently support-

ing only the applications the platform can support efficiently. For example, high-level languages

[BEG11, GNC09, TSJ09] and frameworks [cas15a, cas15b, sca15] for Hadoop efficiently support

pipelines of acyclic batch jobs but poorly support iterative jobs. Another example is how RDBMS

and their compiler optimizers targeting acyclic executions poorly support recursive queries. A sys-

tem designed for iteration and/or recursion can more naturally and efficiently support a wide-range

of complex analytics tasks.

1.1 Overview

In this dissertation, we made the following contributions towards the challenges outlined above.

1.1.1 Deductive Application Language System

We have developed the Deductive Application Language System (DeALS) for analytics. DeALS

builds on earlier Deductive Database technology [AOT03] to efficiently support DeAL, a DAT-

ALOG language that supports recursion, aggregation, negation and advanced constructs includ-

ing user-defined aggregates and non-monotonic aggregation in recursion via XY-stratified Datalog

[ZAO93]. DeALS supports the expression and evaluation of a wide range of complex applications

including relational, aggregate, graph and recursive queries – all within a single unified declarative

3

language.

1.1.2 Aggregation in Recursion

Aggregates in recursive queries are essential in many important applications including shortest

paths computations, link and graph structure analysis and bill of materials queries. To enable the

expression of these and many other analytics programs in our language, we design and efficiently

implement a set of monotonic aggregates that are based on recent theoretical results [MSZ13a,

MSZ13b] that use the set-containment semantics of standard DATALOG, and therefore can be used

in recursive rules and evaluated efficiently. We provide novel optimization techniques to evaluate

recursive rules with monotonic aggregates efficiently. We conduct an experimental comparison

with other DATALOG systems which showed that our implementation in DeALS indeed provides

superior performance, especially on sparse graphs.

1.1.3 BigDatalog

To support complex analytics on a scalable runtime over large datasets, we design and implement

BigDatalog, a Datalog system on Apache Spark. We propose efficient compilation and optimiza-

tion techniques specifically for Spark to enable the efficient evaluation of BigDatalog programs,

including recursive programs with monotonic aggregates. We propose system-level optimizations

in Spark to increase the efficiency of recursive query evaluation. We conduct an experimental com-

parison with (i) other large-scale state-of-the-art DATALOG systems, (ii) native Spark programs,

and (iii) Spark’s graph processing module GraphX. The results show that BigDatalog outperforms

the other systems on classical recursive queries such as transitive closure, and also outperforms on

many important analytics queries on large datasets.

1.1.4 Outline

The remainder of this dissertation is organized as follows. Chapter 2 reviews Datalog preliminaries.

Chapter 3 presents our contributions toward DeAL and its system (DeALS). Chapter 4 presents

4

the design and implementation of monotonic aggregates that can be used in recursive Datalog

programs. Chapter 5 presents BigDatalog. We conclude and present future work in Chapter 6.

5

CHAPTER 2

Background: Datalog

A DATALOG program is a finite set of rules. A rule r has the form h ← b1, . . . , bn, where h is the

head of r and b1, . . . , bn is the body. h and each bi are literals with the form pi(t1, . . . , tj) where

pi is a predicate and t1, . . . , tj are terms which can be constants, variables or functions. We say r

is a rule of predicate h, unless it has an empty body, and then it is a fact. The comma separating

literals in a body is a logical conjunction (AND). A successful assignment of all variables in the

body produces a fact for the head’s predicate. Predicates are also considered relations and w.l.o.g.

throughout this dissertation we will use the terms predicate and relation interchangeably. A query

indicates the desired predicate to evaluate. As a convention, predicate and function names begin

with lower case letters, and variable names begin with upper case letters.

Datalog by Example. Program 1 is Transitive Closure (TC), the quintessential DATALOG pro-

gram. TC recursively produces all pairs of vertices that are connected by some path in a graph.

Program 1. Transitive Closure

r1 .tc(X, Y)← arc(X, Y).

r2 .tc(X, Y)← tc(X, Z), arc(Z, Y).

Program 1 is explained as follows. r1 is an exit rule because it serves as a base case of the

recursion. In r1, the arc predicate represents the edges of the graph – arc is a base relation (i.e.,

a table in RDBMS). r1 produces a tc fact for each arc fact. r2 is a recursive rule since it has the

tc predicate in both its head and body. r2 will recursively produce tc facts from the conjunction

(i.e., equi-join in relational terminology) of previously produced tc facts and arc facts. The

query to evaluate TC is of the form tc(X,Y). Lastly, this program uses a linear recursion in r2,

since there is a single recursive predicate literal, whereas a non-linear recursion will have multiple

6

recursive literals in its body. The number of iterations required to evaluate Program 1 is equal to

the longest simple path in the graph.

2.1 Datalog Evaluation

DATALOG is a declarative language and therefore rules are independent of the operators used to

implement them (e.g., type of join used). Furthermore, rules are independent of the particular

evaluation order and technique used as long as the monotonic w.r.t. set-containment1, and least

fixpoint, semantics of DATALOG is maintained. Lastly, the order of literals in a rule body provides

no semantic meaning and most implementations, including this work, evaluate literals in a left-to-

right fashion.

A naı̈ve evaluation of Program 1 will execute r1 and then repeatedly evaluate r2, joining arc

facts with already discovered tc facts in each iteration, until no new facts are produced – a fix-

point has been reached. This approach will inefficiently re-produce known facts in every iteration.

We can instead use the well-known Semi-Naı̈ve Evaluation (SN) [Ban86] which is efficient and

produces no duplicates. Both the naı̈ve evaluation and SN are bottom-up evaluation techniques,

which start from the initial database and perform a repeated application of the rules until a fixpoint

is reached.

Algorithm 1 is SN. M is the initial model (database), S contains all facts obtained thus far, δS

and δS ′ contain facts obtained during the previous and current iteration, respectively, and TE and

TR are the Immediate Consequence Operator (ICO) for the exit rule(s) and the recursive rule(s),

respectively. The algorithm evaluates as follows. Firstly, TE (i.e. the exit rules) is applied to M

to derive the first set of new δ facts δS (line 2). Then, until no new facts are derived during an

iteration, TR is evaluated on δS to derive new facts to be used in the next iteration. The new set of

δ facts (δS ′) is produced only after the removal of facts found in previous steps (line 5). Then, δS ′

is merged into S (line 6) and becomes the set of facts used in the next iteration (line 7).

Next, we walk through an application of SN using Program 1 as our target. To enable SN,

1With set-containment monotonicity, evaluation only grows a predicate’s set of facts.

7

Algorithm 1 Semi-Naı̈ve Evaluation
1: S := M ;

2: δS := TE(M);

3: S := S ∪ δS;

4: do

5: δS ′ := TR(δS)− S;

6: S := S ∪ δS ′;

7: δS := δS ′;

8: while (δS 6= ∅)

9: return S;

a (symbolic) rewriting [ZCF97] is applied to the rules of the original program to produce a new

recursive rule that maintains program correctness. In the specific case of Program 1, the new

rule only evaluates facts of the recursive predicate (tc) produced during the previous iteration

(indicated with δ) and has the form tc(X, Y)← δtc(X, Z), arc(Z, Y).

Algorithm 2 Semi-Naı̈ve Evaluation of Program 1

1: δtc := arc(X, Y)

2: tc := δtc

3: do

4: δtc′ := πX,Y(δtc(X, Z) 1 arc(Z, Y))− tc

5: tc := tc ∪ δtc′

6: δtc := δtc′

7: while (δtc 6= ∅)

8: return tc

Algorithm 2 is the SN framework applied to Program 1. Note that the rules have been converted

to a relational operator form (lines 1,4). In Algorithm 2 tc is the set of all facts produced for the

recursive predicate and δtc (δtc′) is the set of facts produced for tc during the previous (current)

iteration. The exit rules are evaluated first. The facts of arc become the initial set of facts for

8

both δtc (line 1) and tc (line 2). Then, SN iterates until a fixpoint is reached (line 7). Each

iteration begins by joining δtc with arc and projecting X, Y terms to produce candidate tc facts

(line 4). These facts are then set-differenced with tc to eliminate duplicates and produce δtc′ (line

4), which is unioned into tc (line 5) and becomes δtc (line 6) for the next iteration.

9

CHAPTER 3

The Deductive Application Language System

In this dissertation we describe our contributions toward the next generation of Datalog systems

demonstrated by the Deductive Application Language (DeAL) and the DeAL System1 (DeALS)

we have developed at UCLA. Unlike other recent systems that target DATALOG at a specific do-

main [SGL13, EF10], DeALS has been designed as a general system seeking to satisfy many

needs. In fact, DeALS builds off the lessons learned in the course of a long experience with logic-

based data languages, and the LDL [CGK90] and LDL++ [AOT03] experiences in particular, and

is based on this earlier Deductive Database technology [AOT03]. Specifically, DeAL is a DATA-

LOG language that supports recursion, non-monotonic aggregates, negation and several advanced

language constructs. These include user-defined aggregates, which enabled important knowledge

discovery applications [GMT04], XY-stratified DATALOG [ZAO93], a form of local stratification

that supports non-monotonic aggregation in recursion, choice [GZG92], which is backed by for-

mal stable-model semantics and was found quite useful in program analysis [Hel10] and monotonic

aggregates that can be used in recursive rules, which are the topic of Chapter 4.

In addition to a rich set of constructs, DeALS was also designed to support a roster of opti-

mization techniques including magic sets, supplementary magic sets and existential quantification.

With support for many powerful constructs, a wide range of complex applications can be declar-

atively expressed and efficiently executed in our system. DeAL’s support for graph queries was

demonstrated at VLDB [SZZ13].
1http://wis.cs.ucla.edu/deals

10

3.1 System Overview

In this section, after we briefly discuss the configurations for running DeALS, we review the type

system and present a high level overview of the system architecture.

Using DeALS. DeALS can be run as a standalone process and service requests from the DeALS

driver, which is an external API forDeALS. Using the driver, programmers can build client-server

DeALS applications, and in fact, this is how the DeALS command line client is implemented.

DeALS can also be used as a library and embedded within an application. With this option, the

DeALS system API is programmed directly against and DeALS runs within the application’s

process. DeALS is implemented in Java and uses several third party libraries including ANTLR

[ant15], Log4J [log15] and JUnit [jun15].

Type System. DeALS supports a rich type system consisting of the following types: byte, {2,

4, 8, 16, 32} byte integers, double precision floating point decimal, string, list, complex

(i.e., composite objects), and datetime. As a Datalog system, fast equality comparisons are

essential and therefore variable-length types are encoded as a fixed-length value (e.g., as integer).

For example, strings are variable-length and are dictionary encoded as integers. During compila-

tion, data types for variables will be inferred starting from the definitions of the base relations up

through the program rules.

Next, we discuss the three main components of the system – the compiler, the interpreter, and

the storage manager.

Compiler. Given a database declaration, which consists of schema definitions for base relation(s),

a program and a query form, the DeAL compiler performs the following steps: First, the database

declaration and program rules are parsed and the base relation definitions are loaded into the stor-

age manager. An example database declaration for Program 1 is database({arc(X : integer, Y :

integer)}). Second, rules with aggregates are expanded and rewritten into two rules, which is

necessary to support the head aggregate syntax used by DeAL. An example of this w.r.t. mono-

tonic aggregate rules can be found in Section 4.12. Next, the programs rules are analyzed and

11

grouped by predicate. Then, rules are formed into a Predicate Connection Graph (PCG), which is

a type of AND/OR tree where OR nodes represent predicate occurrences in rule bodies and AND

nodes represent rule heads [AOT03]. The PCG is analyzed and a binding passing analysis will be

conducted to determine if any optimizations such as magic set rewriting (e.g., if the query form

was presented with bound arguments) can be applied. Lastly, the Program Generator will use the

PCG to produce an execution object graph ofDeAL interpreter framework objects, which we refer

to as an Interpreter Program (IP). IP will be evaluated to produce the result set for the program.

Interpreter. The interpreter evaluates programs in main-memory and uses tuple-at-a-time pipelin-

ing. The interpreter is a bottom-up evaluator and evaluates nodes of IP in a left-to-right manner

with intelligent backtracking [CGK90]. During evaluation, IP nodes retrieve and store facts in the

storage manager.

Figure 3.1: Interpreter Plan for Program 1.

Figure 3.1 is the IP for Program 1 and can be understood as follows. OR nodes are rectangles

and AND nodes are circles. The compiler has identified the exit rule (r1) and recursive rule (r2) and

placed their subtrees under the Semi-Naı̈ve Recursion (OR) node. The exit rule subtree retrieves

facts from the arc base relation and loads them into tc’s relation via the Semi-Naı̈ve node. The

recursive rule subtree representing r2 will join the facts produced by the recursive literal and the

arc base relation on Z and project facts with (X,Y) which will be added to tc’s relation.

12

Storage Manager. The DeALS storage manager provides support for main memory storage and

indexing for predicate relations. DeALS supports several B+Tree data structure variants for tuple

storage and indexing. A B+Tree stores fixed-size keys in internal and leaf nodes and non-key

attributes in leaf nodes. Leaf nodes have pointers to their right neighbors to enable fast scanning

of the tree. Through testing we determined our implementations perform best on average using a

linear key search at both internal and leaf nodes with 256 bytes allocated for keys (e.g., 32 64-bit

long keys) in each node, which results in shallow trees. DeALS supports B+Tree TupleStores,

which store tuples in a B+Tree. DeALS also supports an Unordered Heap TupleStore (UHT)

where tuples are stored as fixed-size entries in insertion order in large byte arrays. UHT can be

given multiple indexes (e.g., B+Tree), which they remain synchronized with at all times. UHT

enable a highwatermark approach for SN where each iteration is a contiguous range of tuples.

Lastly, the interpreter uses nested loops joins and will automatically create an index and use an

index nested loops join if the argument binding passing analysis identifies a bound join argument.

For instance, for r2 in Program 1, arc will be indexed on Z (first argument) which is bound by tc.

3.1.1 Declarative Optimizer

Although the Program Generator can be made to construct an optimized IP, our experience taught

us that encoding the logic to optimize IP into the same procedure that construct IP can be difficult

to implement and expensive to maintain. Continuing, rather than write the optimizer in Java, we

instead added a declarative optimizer framework to DeALS. Using our framework, the logic

to determine if an optimization should be applied is encoded as a DeAL program. Procedural

“hooks” are still needed, both to trigger the evaluation of the optimizer program and to apply the

necessary changes to an IP based on the output of the optimizer program. Now, after the Program

Generator produces an IP, the optimizer applies a set of optimizations to produce the final IP for

the interpreter to evaluate.

To enable DeAL programs to evaluate an IP, facts describing it are created and loaded into

base relations. The schema for the optimizer base relations is displayed as Figure 3.2. Facts for

base relations are produced by recursively traversing an IP.

13

predicate(predicateId:integer, name:string, depth:integer, type:string),

predicateDependency(predicateId:integer, childPredicateId:integer),

argument(argumentId:integer, type:string, name:string, datatype:string),

argumentPredicate(predicateId:integer, argumentId:integer),

binding(argumentId:integer, predicateId:integer, index:integer, binding:string)

Figure 3.2: Optimizer Schema.

Program 2 is an exampleDeAL optimizer program to determine if a recursive predicate’s node

should be materialized instead of pipelined if there are multiple occurrences of the predicate in the

program (i.e., the recursion will be computed multiple times otherwise).

Program 2. DeAL Optimizer Program to Materialize Recursion Nodes

r1 .nodesToMaterialize(ID)← predicate(ID, Name, D, ‘RecursiveOrNode’),

predicateCount(Name, ‘RecursiveOrNode’, N), N > 1,

predicateDependency(ID, ChildID),

predicate(ChildID, , D + 1, ‘SeminaiveNode’),

firstOccurrence(ID, Name), hasAllFreeBindings(ID).

r2 .predicateCount(Name, Type, count〈Name〉)← predicate(, Name, , Type).

r3 .firstOccurrence(ID, Name)← predicate(ID, Name, ,),

∼ earlierOccurrence(ID, Name).

r4 .earlierOccurrence(ID, Name)← predicate(ID2, Name, ,), ID2 < ID.

r5 .hasAllFreeBindings(ID)← allBindingCount(ID, N), freeBindingCount(ID, N).

r6 .freeBindingCount(ID, count〈ID〉)← binding(, ID, , ‘f’).

r7 .allBindingCount(ID, count〈ID〉)← binding(, ID, ,).

Program 2 is executed with the evaluation of the nodesToMaterialize predicate (r1).

This predicate identifies a RecursiveOrNode, the node type that manages a recursive predicate,

that has been added to the IP multiple times and has a child Semi-Naı̈ve recursion node type that

performs the actual recursion (DeALS supports several types of recursive nodes). r1 only produces

the first occurrence of the node, since it will be evaluated first by the interpreter, and it must not

have any bound arguments. Note, in r3, ∼ is the symbol used for negation in DeAL.

There are currently several optimizer programs and this list is expected to grow as new opti-

14

mization techniques are developed and as the system is extended to support new constructs. Ex-

amples of optimizer programs include:

• The counterpart of Program 2 - identify nodes to replace with read-only nodes that will read

from the materialized node.

• Determining if a base relation is only used once and can have its secondary index removed

and the relation converted to a more efficient B+tree storage structure.

• Identifying aggregate nodes to materialize because the same aggregate is used multiple times

in the program.

• Identifying if a monotonic aggregate program (c.f. Chapter 4) that compares the produced

aggregate value can be optimized for short-circuit evaluations.

15

CHAPTER 4

Optimizing Recursive Queries With Monotonic Aggregates in

DeALS

4.1 Introduction

The growing demand for analytics has placed renewed focus on improving support for aggregation

in recursion. Aggregates in recursive queries are essential in many important applications and are

increasingly being applied in areas such as computer networking [LCG09] and social networks

[SGL13]. Many significant applications require iterating over counts or probability computations,

including machine learning algorithms for Markov chains and hidden Markov models, and data

mining algorithms such as Apriori. Besides these new applications, we can mention a long list of

traditional ones such as Bill of Materials (BOM), a.k.a. subparts explosion: this classical recursive

query for DBMS requires aggregating the various parts in the part-subpart hierarchy. Finally, we

have problems such as computing the shortest paths or counting the number of paths between

vertices in a graph, which are now covered as foundations by most CS101 textbooks.

Although aggregates were not covered in E.F. Codd’s definition of the relational calculi [Cod72],

it did not take long before early versions of relational languages such as SQL included support for

aggregate functions, namely count, sum, avg, min and max, along with associated constructs

such as group by. However, a general extension of recursive query theory and implementation

techniques to allow for aggregates proved an elusive goal, and even recent versions of SQL that

provide strong support for OLAP and other advanced aggregates disallow the use of aggregates in

recursion and only support queries that are stratified w.r.t. to aggregates.

The desirability of extending aggregates to recursive queries was widely recognized early and

16

many partial solutions were proposed over the years for Datalog languages [GZ01, Kol91, CM90,

MPR90, MS95, RS92, ZCF97]. The fact that, in general, aggregates are non-monotonic w.r.t. set-

containment led to proposals based on non-monotonic theories, such as locally stratified programs

and perfect models [ZAO93, LLM98], well-founded models [Gel92] and stable models [FPL11].

An alternative approach was proposed by Ross and Sagiv [RS92], who observed that particular

aggregates, such as continuous count, are monotonic in lattices other than set-containment and thus

can be used in non-stratified programs. However practical difficulties with this approach were soon

pointed out, namely that determining the correct lattices by programmers and compilers would

be quite difficult [Van93], and this prevented their utilization in practical query languages for a

long time. Fortunately, we recently witnessed some important developments change the situation.

Firstly, Hellerstein et al., after announcing a resurgence of Datalog, showed that monotonicity

in special lattices can be very useful in proving formal properties such as eventual consistency

[CMA12]. Secondly, we see monotonic aggregates making a strong comeback in practical query

languages thanks to the results published in [MSZ13a, MSZ13b] and in [SGL13], summarized

next.

The formalization of monotonic aggregates proposed in [MSZ13a, MSZ13b] preserves mono-

tonicity w.r.t. set-containment, and it is thus conducive to simplicity and performance that follow

respectively from the facts that (i) users no longer have to deal with lattices, and (ii) the query opti-

mization techniques, such as SN and magic sets remain applicable [MSZ13a]. SociaLite [SGL13]

also made an important contribution by showing that shortest path queries and other algorithms

using aggregates in recursion, can be implemented very efficiently so that in many situations us-

ing DATALOG becomes preferable to that of hand-coding Big Data analytics in some procedural

language.

In this chapter, we describe how we introduced powerful monotonic aggregates and their ac-

companying efficient evaluation techniques into DeALS. We show how we retrofitted DeALS,

which already supported a rich set of constructs and optimizations, to also support these new opti-

mization techniques for monotonic aggregates. We demonstrate how DeALS now achieves both

performance and generality, and we will underscore this by comparing not only with SociaLite

17

but also with systems such as DLV[FPL08] and LogicBlox[GAK12] that realize different perfor-

mance/generality tradeoffs.

Overview. The first of two main parts of this chapter begins with Section 4.2 which presents the

syntax and semantics for the min (mmin) and max (mmax) monotonic aggregates. Section 4.3

discusses the evaluation and optimization of monotonic aggregate programs. Section 4.4 presents

implementation details for mmin and mmax and theDeALS storage manager. Section 4.5 presents

experimental results for Sections 4.2-4.4. The second part of this chapter begins with Section 4.6

discussing the count (mcount) and sum (msum) monotonic aggregates, followed by their im-

plementation in Section 4.7 and experimental validation in Section 4.8. Section 4.9 presents the

formal semantics on which our aggregates are based. Section 4.10 describes how DeAL programs

are mapped into DatalogFS programs. Section 4.11 presents additional optimizations for programs

with monotonic aggregates. Section 4.12 presents rule rewriting techniques used to support mono-

tonic aggregates. Section 4.13 provides additional DeAL program examples. Additional related

works are reviewed in Section 4.15 and we conclude in Section 4.16.

4.2 MMIN and MMAX Monotonic Aggregates

An mmin or mmax monotonic aggregate rule has the form:

p(K1, . . . , Km, aggr〈T〉)← Rule Body.

In the rule head, K1, . . . , Km are the zero or more group-by arguments we also refer to as K, aggr ∈

{mmax, mmin} is the monotonic aggregate, and T, the aggregate term, is a variable.

The aggregate functions mmin and mmax map an input set or multiset, we will call G, to an

output set, we will call D. Then, given G, for each element g ∈ G mmin will put g into output

set D if g is less than the least value mmin has previously computed (observed) for G. Similarly,

given an input set G, for each element g ∈ G mmax will put g in output set D if g is greater

than the greatest value mmax has previously computed for G. The mmin and mmax aggregates

are monotonic w.r.t. set-containment and can be used in recursive rules, and G should be viewed

18

as a set containing the union of all values for a single group (group-by key) across all iterations.

These aggregates memorize the most recently computed value and thus require a single pass1 over

G. When viewed as a sequence, the values produced by mmin and mmax are monotonic.

4.2.1 Running Example

The All-Pairs Shortest Paths (APSP) program has received much attention in the literature [CM90,

RS92, Gel92, GGZ91, SR91]. APSP calculates the length of the shortest path between each pair

of connected vertices in a weighted directed graph.

Program 3. APSP with mmin

r1 .spaths(X, Y, mmin〈D〉)← edge(X, Y, D).

r2 .spaths(X, Y, mmin〈D〉)← spaths(X, Z, D1), edge(Z, Y, D2), D = D1 + D2.

r3 .shortestpaths(X, Y, min〈D〉)← spaths(X, Y, D).

Program 3 is the DeAL APSP program with the mmin aggregate. The edge predicate denotes

the edges of the graph. The intuition for this program is as follows. In the recursion (r1, r2), an

spaths fact will be derived if a path from X to Y is either i) new or ii) has length shorter than the

currently known length from X to Y. r1 finds the shortest path for each edge. r2 is the left-linear

recursive rule that computes new shortest paths for spaths by extending previously derived paths

in spaths with an edge. Logically, this approach can result in many facts spaths for X, Y, each

with a different length. Therefore, the program is stratified using a traditional (non-monotonic)

min aggregate (r3) to select the shortest path for each X, Y.

APSP By Example. Next, we walk through an evaluation using SN for Program 3.

edge(a, b, 1). edge(a, c, 3). edge(a, d, 4). edge(b, c, 1). edge(b, d, 4). edge(c, d, 1).

Figure 4.1: edge Facts for Program 3.

First, r1 in Program 3, the exit rule, is evaluated on the edge facts in Figure 4.1. In the rule head

in r1, X and Y, the non-aggregate arguments, are the group-by arguments. The mmin aggregate is
1SQL 2003 max, min, count and sum aggregates on the unlimited precedingwindow are similar toDeAL’s

monotonic aggregates.

19

applied to each of the six edge facts and six spaths facts are successfully derived (not displayed

to conserve space) because no aggregate values had been previously computed (memorized) and

each group (i.e. (a, b)) was represented among the facts only once. For the spaths predicate,

mmin is now initialized with a value for each group.

spaths(a, c, 2) ← spaths(a, b, 1), edge(b, c, 1), 2=1+1.

FAIL← spaths(a, b, 1), edge(b, d, 4), 5=1+4. [i]

FAIL← spaths(a, c, 3), edge(c, d, 1), 4=3+1. [ii]

spaths(b, d, 2) ← spaths(b, c, 1), edge(c, d, 1), 2=1+1.

Figure 4.2: Derivations of Program 3, r2 - Iteration 1.

SN evaluates the recursive r2 rule in Program 3 using the six spaths facts derived by r1. Figure

4.2 displays four derivations attempted by r2 in its first iteration. Derivations not displayed failed to

join spaths and edge facts. The first attempt results in a new spaths fact because spaths(a, c, 2)

has an aggregate value less than the previous value for (a, c), which was 3 (from r1). The failures

denoted [i] and [ii] occurred because the facts to be derived would have aggregate values not less

than the previous value for (a, d), which is 4. Finally, spaths(b, d, 2) is derived (2 < 4 for (b, d)).

spaths(a, d, 3)← spaths(a, c, 2), edge(c, d, 1), 3=2+1.

Figure 4.3: Derivations of Program 3, r2 - Iteration 2.

Using the two facts derived in Figure 4.2, SN performs a second iteration using r2. As displayed

in Figure 4.3, spaths(a, d, 3) is derived because (3 < 4) for (a, d). Now, no new facts can be

derived and a fixpoint is reached.

shortestpaths(a, c, 2)← {spaths(a, c, 3), spaths(a, c, 2)}

shortestpaths(a, d, 3)← {spaths(a, d, 4), spaths(a, d, 3)}

shortestpaths(b, d, 2)← {spaths(b, d, 4), spaths(b, d, 2)}

Figure 4.4: Derivations of Program 3, r3.

20

Lastly, r3 is evaluated over the spaths facts derived during recursion and uses a stratified

min aggregate to derive only the fact with the shortest path for each group. Figure 4.4 displays

derivations of r3 on groups that had multiple facts derived in recursion showing why rules like r3

are necessary with our semantics. In Section 4.4, we will discuss optimizations so rules such as r3

do not have to be evaluated.

4.3 Monotonic Aggregate Evaluation

In this section, we present optimized evaluation techniques for programs with monotonic aggre-

gates.

SN (Chapter 2) can be used to evaluate DeAL programs with monotonic aggregates. Symbolic

differentiation rules [ZCF97] are applied to monotonic aggregate rules in a straightforward manner

to produce rules for SN. However, even though SN efficiently evaluates general Datalog programs,

monotonic aggregate programs can be evaluated with even greater efficiency than SN provides.

The max-based optimization [MSZ13b] identified that counting only needs to be performed on

maximum (max) values if only monotonic arithmetic and boolean functions are used. In this work,

we expand this observation which we refer to as the Monotonic Optimization. The intuition behind

the Monotonic Optimization is that with our monotonic aggregates, monotonicity is preserved and

values other than the max (mmax) or min (mmin) will add no new results and thus can be ignored.

Only the max (min) intermediate values need to be used in derivations to produce the final max

(min) value. In fact, the last fact produced by the aggregate for a group contains the greatest

(mmax) or least (mmin) aggregate value, making this fact the only fact for the group that we need

to produce for the next iteration.

4.3.1 Monotonic Aggregate Semi-Naı̈ve Evaluation

The Monotonic Optimization enables an optimized SN for monotonic aggregates we call Mono-

tonic Aggregate Semi-Naı̈ve Evaluation (MASN).

21

Algorithm 3 Monotonic Aggregate Semi-Naı̈ve Evaluation (MASN)
1: S := M ;

2: δS := getLast(TE(M));

3: S := S ∪ δS;

4: do

5: δS ′ := getLast(TR(δS))− S;

6: S := S ∪ δS ′;

7: δS := δS ′;

8: while (δS 6= ∅)

9: return S;

Algorithm 3 is MASN, which closely resembles SN. The main difference from SN is that

for MASN we use getLast()2 to produce, from the input set, a set containing (i) all facts from

predicates that do not have monotonic aggregates and (ii) the last derived fact for each group from

monotonic aggregate predicates. Now after the TE or TR produces a set of facts, getLast will be

applied to produce the actual new δS ′.

4.3.2 Eager Monotonic Aggregate Semi-naive Evaluation

MASN employs a level-by-level iteration boundary of a breadth-first search (BFS) algorithm where

δ facts derived during the current iteration will be held for use until the next iteration. However,

facts produced from monotonic aggregate rules can be used immediately upon derivation. Looking

at the derivations in the walk-through evaluation of APSP in Section 4.2.1 one can see a case where

SN, and in this case MASN as it would have evaluated the same as SN, did not capitalize on this

property of monotonic aggregates.

Figure 4.5 shows the derivations of interest extracted from Figure 4.2. We see the second

derivation performed using spaths(a, c, 3) (from δS) and resulting in failure because the value

for (a, d) was 4. However, at the time the derivation is attempted, spaths(a, c, 2), the result of the

2DeALS supports MASN by maintaining a single fact per group in δS′.

22

Program 3 r2 evaluation with SN or MASN

spaths(a, c, 2)← spaths(a, b, 1), edge(b, c, 1), 2=1+1.

FAIL← spaths(a, c, 3), edge(c, d, 1), 4=3+1.

Figure 4.5: Example of Iteration Boundary of MASN.

immediately previous derivation, existed. Had spaths(a, c, 2) been used, spaths(a, d, 3) would

have been derived here, instead of requiring another iteration (Figure 4.3).

To further capitalize on the Monotonic Optimization, we propose Eager Monotonic Aggregate

Semi-Naı̈ve Evaluation (EMSN). With EMSN, facts produced from monotonic aggregate rules are

immediately available to be used in derivations. EMSN evaluates recursive rules with monotonic

aggregates in a fact-oriented (fact-at-a-time) manner and the facts to use in an iteration are deter-

mined by the set of groups (keys) that had aggregate facts derived during the previous iteration.

With EMSN, derivations with monotonic aggregates are always performed with the current aggre-

gate value for the group.

Algorithm 4 is EMSN. In EMSN, recursive rules with monotonic aggregates are evaluated fact-

at-a-time and all other recursive rules are evaluated using SN. Rules are partitioned into two sets,

each with its own ICOs – TEA
and TRA

are the ICO for the monotonic aggregate exit and recur-

sive rules, respectively, and TEN
and TRN

are the ICO for the remaining exit and recursive rules,

respectively. TRA
will be applied on one fact at a time. δSA and δS ′

A are the sets of facts obtained

during the previous and current iteration, respectively, for the monotonic aggregate rules, while δS

and δS ′ are the sets of facts obtained during the previous and current iteration, respectively, for the

remaining rules. δSAKeys
is the set of keys for the aggregate groups that had facts derived during

the previous iteration. M is the initial model, S contains all facts obtained thus far. newfact is a

fact derived from a single application of TRA
.

Important points of Figure 4 are as follows. We use getKeys() to project out the aggre-

gate value from the aggregate facts to produce the set of facts representing groups (keys) to

use in derivations in the next iteration. For example, getKeys({spaths(a, b, 1)}) would pro-

duce {spaths(a, b)}. getKeys() is applied to the set produced by TEA
(M) to produce the initial

23

Algorithm 4 Eager Monotonic Aggregate Semi-Naı̈ve Evaluation (EMSN)
1: S := M ;

2: δSA := TEA
(M);

3: δSAKeys
:= getKeys(δSA);

4: δS := TEN
(M);

5: S := S ∪ δS ∪ δSA;

6: do

7: for all key ∈ δSAKeys
do

8: while (newfact := TRA
(getFact(key))) do

9: δS′
A := δS′

A ∪ {newfact};

10: δS′ := TRN
(δS)− S;

11: S := S ∪ δS′ ∪ δS′
A;

12: δSAKeys
:= getKeys(δS′

A);

13: δS := δS′;

14: δS′
A := ∅;

15: while (δS 6= ∅ and δSAKeys
6= ∅)

16: return S;

δSAKeys
(line 3). TEN

(remaining rules) is applied to M to produce the initial δS (line 4). Once in

the recursion, individually, each key in δSAKeys
is used to retrieve its group’s current fact from the

aggregate relation (getFact(key)), which TRA
is then applied to (line 8). Successful derivations

result in newfact being added to δS ′
A (line 9). Then, TRN

(remaining rules) is applied to δS and

duplicates are eliminated producing δS ′, the set of non-monotonic-aggregate facts to be used in

the next iteration (line 10). getKeys(δS ′
A) produces the set of keys to be used in derivations in the

next iteration (line 12). This process repeats until no new facts are produced during an iteration.

Program 3 r2 evaluation with EMSN

spaths(a, c, 2)← spaths(a, b, 1), edge(b, c, 1), 2=1+1.

spaths(a, d, 3)← spaths(a, c, 2), edge(c, d, 1), 3=2+1.

Figure 4.6: EMSN Fact-at-a-time Efficiency.

24

Now, consider the same scenario from Figure 4.5, but this time using EMSN. As shown in

Figure 4.6, now after spaths(a, c, 2) is produced, it is immediately used in the next derivation

resulting in spaths(a, d, 3) being derived an iteration earlier than with SN or MASN. Moreover,

spaths(a, c, 3) will not be used in any further derivations as it would result in the derivations of

facts that will not lead to a final answer now with the existence of spaths(a, c, 2).

Discussion. With the application of the ICO for recursive monotonic aggregate rules (TRA
) on an

individual fact, rather than on a set of facts, EMSN can use facts immediately upon derivation.

Although EMSN is based on SN, and therefore BFS, EMSN has depth-first search (DFS) charac-

teristics. Like BFS, EMSN still uses a level-at-a-time (iteration) approach guided by facts in δS

and δSA that were derived during the previous iteration. However, because EMSN uses the most

recent aggregate value for the group, regardless of when the value was computed, EMSN can eval-

uate deeper than a single level of the search space during an iteration of evaluation. The result is

higher (mmax) or lower (mmin) aggregate values being derived earlier in evaluation, which in turn

prunes the search space to avoid derivation of facts that will not result in final values.

We considered an alternative approach for EMSN that instead maintains the set of aggregate

facts derived during an iteration (δS ′
A) where modification to the aggregate relation results in either

an update or insert to δS ′
A. However, with each iteration δS ′

A would become δSA and a new δS ′
A

would be started, therefore every modification to the aggregate relation would require both δSA

and the new δS ′
A to be searched to be updated with the new value, even if the aggregate group is

not present in δSA. Although δSA and δS ′
A are generally smaller than the aggregate relation, if an

aggregate group has many new results during an iteration, efficiency gained from searching smaller

sets instead of searching a larger aggregate relation to retrieve the aggregate value when needed

(line 8 in Figure 4) would be offset by searching these sets many times. Furthermore, this requires

a more complicated implementation to properly synchronize facts in multiple data structures.

25

4.4 MMIN and MMAX Implementation

This section contains details of our system implementation for supporting the mmin and mmax

aggregates.

4.4.1 Storage Manager Extension

Early experimentation found aggregation using either i) UHT (Chapter 3) with B+Tree or Lin-

ear Hashing-based secondary indexes or ii) B+Tree TupleStores lacking in execution time per-

formance. The B+Tree Aggregator TupleStore (B+AT) is a B+Tree TupleStore optimized for

pipelined aggregation in recursive queries that provides both good read and write performance.

B+AT store fixed-size keys in internal and leaf nodes and fixed-size aggregate values in leaf nodes.

Keys are unique and only one aggregate value per key is maintained. Leaf nodes have pointers to

their right neighbors and linear search is used in both internal and leaf nodes. In a B+AT, aggre-

gation is performed in the leaves, therefore only one search of the tree is needed to retrieve the

previous value, compare it with the new value and perform the update.

Unlike with UHT, facts in B+AT are not easily tracked by reference or range because of node

splitting. Therefore, during evaluation of recursive queries with EMSN, after an aggregate value is

modified, the B+AT inserts the modified entry’s key into the set of keys, which is also a B+Tree3, to

process for the next iteration (δSAKeys
in Figure 4). This approach requires two tree searches with

an aggregate value modification – one B+AT search which results in a modified aggregate value

and one δSAKeys
search to record the key. Should no modification occur, then only the B+AT is

searched. To retrieve aggregate facts to use in derivations (line 8 in Figure 4), a specialized cursor

scans δSAKeys
, using each key to retrieve the key’s aggregate value from the B+AT.

Hash table approaches can be an appealing alternative to B+Trees. In Section 4.5 we present

experimental results comparing DeALS with a system that utilizes a hash table approach and

highlight some of key differences between using B+Trees and hash tables.

3Since we scan the set, we use a B+Tree which stores the keys in order and can benefit EMSN.

26

4.4.2 mmin and mmax Implementation

The mmin and mmax implementation tracks the least (mmin) or greatest (mmax) value computed

for each group where each group has one tuple in the TupleStore. We use a single relation schema

with one column for each of the predicate’s group-by argument and a column for the aggregate

value. Specifically, B+AT keys are the group-by arguments with the aggregate value stored in

the leaf. UHT are given indexes with the group-by arguments as keys. For instance, spaths in

Program 3 uses B+AT with keys (X, Y) and each X, Y is stored with its current value (D) in a leaf

node.

4.4.3 Operational Optimizations

Non-Redundant Relation Storage. Due to the Monotonic Optimization, we only need to maintain

a single fact per group and when a new value for the group is successfully derived, we overwrite

the previous value. If the recursive predicate and monotonic aggregate use separate stores, with

EMSN and pipelining, the result is the recursive relation store is merely being synchronized with

the aggregate relation store. Therefore, we do not allocate the recursive predicate a store, and

instead have it read from the monotonic aggregate store.

Final Results via Monotonic Aggregate. Since the monotonic aggregate maintains the value for

each group in its TupleStore, when a fixpoint is reached, its TupleStore contains the final results.

For instance, instead of evaluating r3 in Program 3 the recursion is materialized by the system, as it

would have been by the stratified aggregate, and the final values are retrieved from the monotonic

aggregate’s TupleStore.

4.5 MMIN & MMAX Performance Analysis

All experiments on synthetic graphs were run on a machine with an i7-4770 CPU and 32GB

memory running Ubuntu 14.04 LTS 64-bit. The experiments on real-life graphs were run on a

machine with four AMD Opteron 6376 CPUs and 256GB memory running Ubuntu 12.04 LTS 64-

27

 10
2

 10
3

 10
4

 10
5

 10
6

 10
7

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
10

G
11

G
12

G
13

G
14

G
15

G
16

G
17

G
18

T
im

e
 (

m
s
)

2
5

 2
7

 2
9

 2
11

 2
13

 2
15

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
10

G
11

G
12

G
13

G
14

G
15

G
16

G
17

G
18

M
e
m

o
ry

 (
M

B
)

SociaLite DLV DeALS

SociaLite DLV DeALS

Directed acyclic graphs (DAGs): G1(10K/20K) G2(10K/50K) G3(10K/100K)

G4(20K/40K) G5(20K/100K) G6(20K/200K)

Random graphs: G7(10K/20K) G8(10K/50K) G9(10K/100K)

G10(20K/40K) G11(20K/100K) G12(20K/200K)

Scale-free graphs: G13(10K/20K) G14(10K/50K) G15(10K/100K)

G16(20K/40K) G17(20K/100K) G18(20K/200K)

Figure 4.7: Execution time and memory utilization of APSP on synthetic graphs.

bit. Memory utilization is collected by the Linux time command. Execution time and memory

utilization are calculated by performing the same experiment five times, discarding the highest and

lowest values, and taking the average of the remaining three values. All experiments on systems

written in Java were run using Java 1.8.0 except for SociaLite (0.8.1) which did not support Java

1.8.0. Experiments for SociaLite were run using Java 1.7.0.

Datasets. An n-vertex graph used in experiments has integer vertex labels ranging from 0 to n−1.

We used three kinds of synthetic graphs — 1) directed acyclic graphs (DAGs), generated by con-

necting each pair of vertices i and j (i < j) with (edge) probability p; 2) random graphs, generated

by connecting each pair of vertices with (edge) probability p; 3) scale-free graphs, generated using

GTgraph4. The graphs are shuffled after generation where one random permutation is applied to

the vertex labels and another random permutation is applied to the edges. The real-life graphs are

not shuffled but we relabeled graphs whose vertex labels are beyond the range of [0, n− 1] while

4GTgraph, http://www.cse.psu.edu/˜madduri/software/GTgraph/.

28

http://www.cse.psu.edu/~madduri/software/GTgraph/

maintaining the original edge order. A text description such as “10K/20K” indicates the graph has

10,000 vertices and 20,000 edges.

Configuration. B+AT and B+Tree indexes for UHT were configured with 256 bytes allocated

for keys in each node (internal and leaf). Other than experiments in Section 4.5.2, DeALS used

EMSN with B+AT.

4.5.1 Datalog Implementation Comparison

DeALS is a sequential, interpreted, main memory Java implementation. We compare DeALS

execution time and memory utilization performance against three Datalog implementations sup-

porting aggregates in recursion — 1) the DLV system5, the state-of-the-art implementation of

disjunctive logic programming; 2) the commercial LogicBlox system, which supports aggregates

in recursion using staged partial fixpoint semantics6. From log files produced during execution

of recursive queries with aggregates, we determined LogicBlox indeed uses an approach akin to

SN, which uses only new facts found in the current iteration in derivations in the next iteration;

3) the SociaLite7 graph query language, which is compiled into code-generated Java, efficiently

evaluates single-source shortest paths (SSSP) queries using an approach with Dijkstra’s algorithm-

like efficiency [SGL13] and supports a left-linear recursive APSP which it evaluates using SN. We

used SociaLite 0.8.1 as it had the best sequential execution time performance of SociaLite versions

available to us.

APSP on Synthetic Graphs. Figure 4.7 shows the results of APSP on synthetic graphs with

random integer edge costs between 1-100 executed with DeALS, SociaLite and DLV. We experi-

mented with two versions of LogicBlox — 3.10.15 and 4.1.3. The former does not support aggre-

gates in recursion and although we can express APSP in a stratified program, it only terminates on

DAGs, and only G1(0.286s) and G2(18.328s) finish within 24 hours. The latter supports aggregates

5DLV with recursive aggregates support, http://www.dbai.tuwien.ac.at/proj/dlv/
dlvRecAggr/.

6LogicBlox 4 migration guide, https://download.logicblox.com/wp-content/uploads/2014/
05/LB-MigrationGuide-40.pdf.

7https://sites.google.com/site/socialitelang/

29

http://www.dbai.tuwien.ac.at/proj/dlv/dlvRecAggr/
http://www.dbai.tuwien.ac.at/proj/dlv/dlvRecAggr/
https://download.logicblox.com/wp-content/uploads/2014/05/LB-MigrationGuide-40.pdf
https://download.logicblox.com/wp-content/uploads/2014/05/LB-MigrationGuide-40.pdf
https://sites.google.com/site/socialitelang/

in recursion however, only G1(4.809s), G2(6.697m), G7(4.774h) and G13(3.977h) finish within 24

hours. We do not report LogicBlox results in Figure 4.7 nor for the remaining experiments.

Among the 18 graphs described in Figure 4.7, we found SociaLite has the fastest execution

time on three graphs and DeALS has the fastest execution time on the remaining 15 graphs.

DeALS is more than two times faster than SociaLite on sparse graphs where the average degree of

each vertex is only two (e.g., G7, G10 and G16). This advantage decreases as the average degree

increases from two to ten. The main reason for this change is due to the different designs used by

DeALS and SociaLite. SociaLite uses an array of hash tables with an initial capacity of around

1,000 entries to maintain the delta relations, whereas DeALS uses a B+Tree. The initialization

cost of a hash table is higher than that of a B+Tree, while the cost of accessing a hash table is

lower than that of a B+Tree. For graphs with small average degree, the initialization cost may

account for a large percentage of the execution time, thus DeALS is faster than SociaLite. The

impact of the initialization cost reduces as the average degree increases, and thus SociaLite is

faster than DeALS on denser graphs. However, this faster execution time comes at the expense

of higher memory utilization. SociaLite uses more than two times the memory as DeALS on all

18 graphs. Although the C-based DLV has significantly lower memory utilization than both Java-

based DeALS and SociaLite, DLV is extremely slow compared with both DeALS and SociaLite

on DAGs. These results suggest that DeALS achieves the best execution time versus memory

utilization trade-off on sparse graphs among the three compared systems.

APSP on Real-life Graphs. Table 4.1 shows the results of APSP on three real-life graphs from

the Stanford Large Network Dataset Collection8. The provided graphs do not have edge costs,

therefore we assigned unit cost to each edge. The results are similar to that of synthetic graphs

— DeALS executes fastest while DLV has the lowest memory utilization. These results suggest

that on real-life workloads the B+Tree-based design (low initialization cost) adopted by DeALS

is more favorable than the hash table-based design used by SociaLite.

SSSP on Real-Life Graphs. Figure 4.8 shows the results of SSSP on five real-life graphs from the

8Stanford large network dataset, http://snap.stanford.edu/data/index.html.

30

http://snap.stanford.edu/data/index.html

Table 4.1: Execution time and memory utilization of APSP on real-life graphs

HepTh Gnutella Slashdot

S1 S2 S3 S1 S2 S3 S1 S2 S3

Time(h) 0.98 17.72 0.39 13.31 4.69 0.49 >24.00 >24.00 2.72

Mem(GB) 12.76 0.99 7.19 41.57 0.48 23.46 >89.59 >1.06 64.70

S1, S2, S3 represent SociaLite, DLV and DeALS respectively.

HepTh(28K/353K): High-energy physics theory citation network.

Gnutella(63K/148K): Gnutella peer-to-peer network.

Slashdot(82K/549K): Slashdot social network.

USA road networks datasets9. For each graph, we evaluate SSSP on ten randomly selected vertices,

and we report the min / (geometric) average / max execution time in the form of error bars. Since

execution time captured for DLV includes time for loading the graph, evaluating the query and

outputting the result, and query evaluation only accounts for a small percentage of overall time

observed, timing for DLV is less informative for this experiment and thus we only report results

for SociaLite and DeALS. SociaLite generates a Java program that evaluates the query using

the Dijkstra’s algorithm. The generated code achieves more than one order of magnitude speedup

comparing to LogicBlox [SGL13]. However, our interpreted DeALS is faster than the code-

generated SociaLite for SSSP on the road network graphs as shown in Figure 4.8. This result is not

surprising in the sense that EMSN optimizes SN, and the Bellman-Ford algorithm (equivalent to

SN) usually yields comparable performance with the Dijkstra’s algorithm on large sparse graphs.

USA road networks:
NY(264K/734K)

E(3,598K/8,778K)

W(6,262K/15,248K)

CTR(14,082K/34,292K)

USA(23,947K/58,333K) 10

 10
2

 10
3

 10
4

NY E W CTR USA

T
im

e
 (

m
s
)

SociaLite DeALS

Figure 4.8: Execution time of SSSP on Road Networks Datasets.

9USA road networks, http://www.dis.uniroma1.it/challenge9/download.shtml.

31

http://www.dis.uniroma1.it/challenge9/download.shtml

4.5.2 DeALS Storage Manager Evaluation

This experiment shows i) how EMSN performs relative to MASN and ii) how B+AT perform

relative to UHT. We evaluated APSP on synthetic graphs G1, G2, G7, G8, G13 and G14 from

Figure 4.7. The (geometric) average execution time and memory utilization over the six graphs are

displayed in Table 4.2. Using UHT with B+Tree indexes, EMSN has a lower average execution

time than MASN by 13%. A noticeable difference in performance is observed when using B+AT

vs. UHT for EMSN. B+AT is 2.6 times faster than UHT and requires only approximately 25% of

memory needed by UHT.

Table 4.2: Evaluation Type by Storage Configuration

Evaluation Type Storage Configuration Time (s) Memory (GB)

MASN UHT w/ B+Tree index 77.743 4.087

EMSN UHT w/ B+Tree index 68.927 4.131

EMSN B+AT 26.450 1.048

4.5.3 Statistical Analysis of Evaluation Methods

To provide a characterization of the relative performance of EMSN compared to SN, we perform

an analysis over sets of graphs using the statistical estimation technique from [GKS91]. Statistics

calculated10 are 1) total number of facts derived by the recursive predicate (derived facts) and 2)

total aggregate size of δS across all iterations (δ facts). These two statistics help to quantify the

amount of computation the evaluation method must perform. For each statistic and each vertex

number/edge probability combination, after each run of the program, the statistic is included in the

average (m̄) until a statistically significant number (30) of different graphs has been used AND m̄

is within 5% error with 95% confidence11.
10For these statistics, we assume a normal distribution (N(µ, σ2), with mean µ and variance σ2).
11As in [GKS91], m̄ is accepted when ε < (0.05 ∗ m̄), where ε = (1.96 ∗ σ)/

√
k. σ is standard deviation. k is

the number of graphs used. 1.96, from the tables for standard normal distribution for 0.975, gives the 95% confidence
coefficient.

32

We perform the analysis comparing APSP evaluated using EMSN to APSP evaluated using

SN. We use randomly generated DAGs and random graphs with edge probability between 0.1 and

0.9 (increments of 0.1) and random integer edge cost between 1-50. EMSN and SN use the same

sequence of graphs. On DAGs, SN requires 3-11% more derived and δ facts and on random graphs

requires 13-18% more derived and δ facts than EMSN, respectively.

4.6 MCOUNT and MSUM Monotonic Aggregates

With efficient support for monotonic count and sum aggregates, DeALS supports many exciting

applications.

An mcount or msum monotonic aggregate rule has the form:

p(K1, . . . , Km, aggr〈(T, PT)〉)← Rule Body.

In the rule head, K1, . . . , Km are the zero or more group-by arguments (K), aggr ∈ {mcount,

msum} is the monotonic aggregate, and (T, PT) is the aggregate term pair passed from the body

where T is a variable and PT is a constant or a variable indicating the partial count/sum contributed

by T.

As with mmin and mmax, the mcount and msum aggregates are monotonic w.r.t. set- con-

tainment and can be used in recursive rules. When viewed as a sequence, the values produced by

mcount and msum are monotonic. The mcount and msum aggregate functions map an input

set or multiset, we will call G, to an output set, we will call D. Elements g ∈ G have the form

(J,NJ), where NJ indicates the partial count/sum contributed by J . Note, J maps to T and NJ

maps to PT in the definition of the aggregate term above. Now, given G, for each element g ∈ G, if

NJ > NJprev , where NJprev is the memorized previous count (sum) for J or 0 if no previous count

(sum) for J exists, mcount (msum) computes the count (sum) for G by summing the maximum

partial count (sum) NJ for all J . Since only the maximum NJ for each J is summed, no double

counting (summing) occurs. Lastly, msum only computes with positive numbers, thereby ensuring

its monotonicity.

33

4.6.1 Running Example

Program 4 is the DeAL program to count the paths between pairs of vertices in an acyclic graph.

This program is not expressible with Datalog with stratified aggregation [MS95]. We will use

Program 4 as our running example for mcount to explain monotonic counting in DeAL.

Program 4. Counting Paths in a DAG

r1 .cpaths(X, Y, mcount〈(X, 1)〉)← edge(X, Y).

r2 .cpaths(X, Y, mcount〈(Z, C)〉)← cpaths(X, Z, C), edge(Z, Y).

r3 .countpaths(X, Y, max〈C〉) ← cpaths(X, Y, C).

In Program 4, r1 counts each edge as one path between its vertices. In r2, any edge(Z, Y) that

extends from a computed path count cpath(X, Z, C) establishes there are C distinct paths from X to

Y through Z. The mcount〈(Z, C)〉 aggregate in the head sums the count of paths from X to Y through

every Z to produce the count from X to Y. Lastly, r3 indicates only the maximum count for each

path X, Y in cpaths is desired. As explained in Section 4.4.3, r3 does not have to be evaluated.

Counting Paths By Example. Next, we walk through an evaluation of Counting Paths in Program

4 using EMSN to further explain mcount; this explanation is easily generalizable to msum. The

edge facts in Figure 4.9 are the example dataset.

First, r1 in Program 4 is evaluated and results in the six cpaths derivations as shown in the

Facts

edge(a, b).

edge(a, c).

edge(a, d).

edge(b, c).

edge(b, d).

edge(c, d).

Figure 4.9: edge Facts.

r1 Successful Derivations Partial Count

cpaths(a, b, 1)← edge(a, b). (a, 1) for (a, b)

cpaths(a, c, 1)← edge(a, c). (a, 1) for (a, c)

cpaths(a, d, 1)← edge(a, d). (a, 1) for (a, d)*

cpaths(b, c, 1)← edge(b, c). (b, 1) for (b, c)

cpaths(b, d, 1)← edge(b, d). (b, 1) for (b, d)

cpaths(c, d, 1)← edge(c, d). (c, 1) for (c, d)

Figure 4.10: Derivations of Program 4, r1 evaluation.

34

Figure 4.10. Each cpaths fact has a count of 1 indicating one path between each pair of vertices

connected by edge facts. Displayed in the right column of Figure 4.10 is the memorized partial

count (recall (J,NJ)) for each group. For example, in the first derivation, J=a, NJ=1, (a, 1) is

memorized for group (a, b).

r2 Successful Derivations Partial Count

cpaths(a, c, 2)← cpaths(a, b, 1), edge(b, c). (b, 1) for (a, c)

cpaths(a, d, 2)← cpaths(a, b, 1), edge(b, d). (b, 1) for (a, d)*

cpaths(a, d, 4)← cpaths(a, c, 2), edge(c, d). (c, 2) for (a, d)*

cpaths(b, d, 2)← cpaths(b, c, 1), edge(c, d). (c, 1) for (b, d)

Figure 4.11: Derivations of Program 4, r2 - Iteration 1.

EMSN evaluates the recursive r2 rule from Program 4 using the cpaths derived by r1. Figure

4.11 shows the successful derivations performed by r2. As each cpaths fact is derived, it replaces

the previous fact for the group (i.e. cpaths(a, c, 2) replaces cpaths(a, c, 1)). Note the derivation

of cpaths(a, d, 2) from joining cpaths(a, b, 1) and edge(b, d). It represents a count of two for

(a, d), even though the rule body contributed only one path count. However, looking at the *-ed

entry in Figure 4.10, we see a partial count of (a, 1) towards (a, d) was accrued during evaluation

of r1. Therefore, when computing the new count for (a, d), (a, 1) and the newly derived (b, 1)

are summed to result in cpaths(a, d, 2). Next, we observe the benefits of using EMSN with

the derivation of cpaths(a, d, 4). Since cpaths(a, c, 2) existed even though it was derived this

iteration, it was used and successfully joined with edge(c, d). Then, the partial counts for (a, d),

which are (a, 1), (b, 1), and (c, 2), are summed to produce cpaths(a, d, 4). Finally, with no new

facts produced after those in Figure 4.11, a fixpoint is reached, and since there is no need to evaluate

r3 (Section 4.4.3) we have our result.

35

4.7 MCOUNT and MSUM Implementation

In this section, we present implementation details for the mcount and msum aggregates. We

use definitions from Section 4.6 (e.g., G). Note, G is a single group produced from the implicit

group-by for a distinct assignment of K, the zero or more group-by arguments. We will also refer

to the TupleStore descriptions from Section 4.4.1. Lastly, although we use mcount to present our

efficient count/sum technique, this discussion is generalizable to msum.

For mcount and msum, we use an approach based on delta-maintenance (∆-Maintenance)

techniques. Recalling our explanation for mcount in Section 4.6, given a new partial count NJ

> NJprev , mcount will sum all maximum partial counts to compute the new total count for G.

However, rather than recompute the total count, we can instead use ∆-Maintenance to increase N

(the current total count for G) by NJ −NJprev and put the updated count, now the total current

count for G, into output set D. This produces the same result as if the maximum partial count NJ

for all J are summed to produce the total count N for G, however avoids the re-summation of all

NJ with each greater NJ . This requires memorizing both N for G and NJ for all J .

4.7.1 Storage Designs

Table 4.3 displays storage designs we investigated for mcount and msum. Here we use N to

indicate the current count/sum for the group-by arguments (K). As in Section 4.6, each T contributes

a partial count/sum PT towards a distinct assignment of K (group).

Table 4.3: Storage Design Schemas

Name Schema Indexes

Double (K, N) | (K, T, PT) K | (K, T)

List (K, N,List [(T, PT)]) K

B+Tree (K, N,B+Tree[(T, PT)]) K

Hashtable (K, N,Hashtable[(T, PT)]) K

36

Double uses two relations, one relation (K, N) indexed on K to store tuples containing the group’s

total aggregate value and a second relation (K, T, PT) indexed on (K, T) to store the partial count

PT for each distinct assignment of (K, T). Early testing showed Double using UHT without ∆-

Maintenance taking 2-5 times longer to execute than with ∆-Maintenance.

We investigated designs using KeyValue type columns as a more efficient way of managing

(T, PT) pairs. We developed three single relation designs (K, N, KeyValue[(T, PT)]), where N is

the total count for K and KeyValue[(T, PT)] is a reference to the tuple’s own KeyValue-type data

structure. The relation is indexed on K and each group has a single tuple. The KeyValue-types each

represent a different retrieval time complexity; a List (O(n)) type, a B+Tree (O(log(n))) type, and

a Hashtable(O(1)) type. Hashtable is based on Linear Hashing and stores the hashed key in the

bucket to avoid rehashing. B+Tree stores keys (T) in internal and leaf nodes and non-key attributes

(PT) in leaf nodes, and uses linear search. Lastly, List stores (T, PT) pairs ordered by T and uses a

linear search. These are main memory structures, so designs attempt to limit the number of objects

(e.g., List uses byte arrays). KeyValue designs use ∆-Maintenance.

For the designs shown in Table 4.3, DeALS supports List, HashTable and B+Tree with B+AT

and all designs with UHT indexed as shown. For example, using r1, r2 from Program 4, with

B+Tree, the B+AT would have X, Y as keys and each entry in a leaf would have the current total

count N and a reference to a B+Tree KeyValue-type to store (T, PT) pairs. This design is essentially

a B+Tree of B+Trees.

4.8 MCOUNT and MSUM Performance Analysis

Configuration. B+Tree TupleStores and indexes, B+AT and the B+Tree KeyValue design were

configured with 256 bytes allocated for keys in each node (internal and leaf). The Hashtable

KeyValue design used a directory and segment size of 256, 16 initial buckets and load factor of 10.

37

1.5

2.0

2.5

3.0

3.5

4.0

 0.2 0.4 0.6 0.8

R
a
ti
o

Edge probability

250
200
150
100

(a) Derived Facts.

2.0

2.5

3.0

3.5

4.0

 0.2 0.4 0.6 0.8

R
a
ti
o

Edge probability

250
200
150
100

(b) δ Facts.

Figure 4.12: Ratio SN/EMSN Derivations - Counting Paths.

4.8.1 Statistical Analysis of Evaluation Methods

We also perform the statistical analysis described in Section 4.5.3 comparing the evaluation of

Counting Paths (Program 4) using EMSN to Counting Paths using SN. The experiment uses ran-

domly generated DAGs of 100-250 vertices (increments of 50) and edge probability between 0.1

and 0.9 (increments of 0.1). EMSN and SN use the same sequence of graphs.

Figure 4.12a and Figure 4.12b show the results of the analysis. Each point on a line represents

the ratio of SN to EMSN for number of derived facts (Figure 4.12a) or number of δ facts (Figure

4.12b) for the size of the graph indicated by the line and edge probability indicated by the x-axis.

For example, in Figure 4.12b, SN produces more than three times as many δ facts as EMSN for

graphs of 200 and 250 vertices starting at 0.2 (20%) edge probability. Figure 4.12a and Figure

4.12b show that for the test graphs, Counting Paths using SN derives 1.94 to 3.48 times more facts

than EMSN. As edge probability increases, so does the ratio between SN and EMSN because the

higher edge probability allows EMSN to derive and use facts earlier, which prunes the search space

faster.

38

4.8.2 Storage Design Evaluation

This experiment tests how each of the storage designs presented in Section 4.7.1 performed on

DAGs. Figure 4.13 shows the (geometric) average execution time and memory utilization, along

with minimum and maximum values, on 45 random 250-vertex DAGs (5 graphs for each edge

probability from 0.1 to 0.9) for each design. In Figure 4.13 results are shown in left-to-right order

from worst to best average execution time performance.

D1: Double (B+Tree)

D2: Double(UHT)

D3: List (UHT)

D4: Hashtable (UHT)

D5: B+Tree (UHT)

D6: HashTable (B+AT)

D7: List (B+AT)

D8: B+Tree (B+AT)

 10
3

 10
4

 10
5

D1 D2 D3 D4 D5 D6 D7 D8

T
im

e
 (

m
s
)

 2
8

 2
9

 2
10

 2
11

D1 D2 D3 D4 D5 D6 D7 D8

M
e

m
o

ry
 (

M
B

)

Figure 4.13: mcount and msum Storage Design Performance.

Recall the TupleStore descriptions from Section 4.4.1 and storage designs from Section 4.7.1.

D2 is the Double design as described in Table 4.3 executed using UHT with B+Tree indexes. D1

is Double using a B+Tree TupleStore for the (K, T, PT) relation12. D3-D5 and D6-D8 are KeyValue

designs executed using UHT and B+AT, respectively. In Figure 4.13 we see D6-D8, the three

B+AT KeyValue designs, have the best execution time performance. D7 and D8 have the lowest

average execution time performance with B+Tree having better maximum (51s vs. 62s) execution

time. Compared with D7, D8 has slightly better memory average utilization (969MB vs. 989MB)

but lower maximum memory utilization (1.4GB vs. 2GB). Note, D1 and D2 have lowest average

12In Double, the (K, T, PT) relation will contain many times more tuples than the (K, N) relation (still UHT), so we
focused on optimizing the larger.

39

memory utilization but their average execution times are nearly twice that of D7 and D8. Of the de-

signs, D8, the B+Tree design using B+AT, best balances good average execution time performance

with good average memory utilization.

4.8.3 Discussion

Finding other systems to perform an experimental comparison with mcount and msum proved

challenging. Support in Datalog implementations for count and sum aggregates that can be used

in recursion is not as mature as that of min and max aggregates. Using LogicBlox version 4, we

were able to execute the Counting Paths program but experienced similar slow performance as with

APSP (Section 4.5.1). Using SociaLite, we were unable to execute the Counting Paths program,

and BOM queries such as subparts explosion, produced results different from ground truth. Lastly,

we were able to execute a version of the Counting Paths program using DLV, but again the results

were different from ground truth.

4.9 Formal Semantics

So far we have worked with the operational semantics of our monotonic aggregates and shown

how this is conducive to the expression of algorithms by programmers. While most users only

need to work at this level, it is important that we also show how this coincides with the formal

semantics discussed in those two DatalogFS papers [MSZ13a, MSZ13b], inasmuch as properties

such as least fixpoint and stable models will follow from it.

We start with the example inspired by [RS92] (Party Invitations) for determining who will come

to a party. In the DeAL Program 5, some people will come to the party for sure, whereas others

only join when at least three of their friends are coming. The idea is that with cntComing each

person watches the number of their friends that are coming grow, and once that number reaches

three, the person will then come to the party too. To count the number of friends, rather than the

final count used in [RS92], we can use the mcount continuous count aggregate that enumerates

all the integers until the actual maximum, i.e. it returns I , the actual maximum, representing the

40

integer interval [1, I].

Program 5. Who will come to the party?

r1 .willcome(X)← sure(X).

r2 .willcome(X)← cntComing(X, N), N ≥ 3.

r3 .cntComing(Y, mcount〈X〉)← friend(Y, X), willcome(X).

Here the use of mcount over count is justified on the grounds of performance, since it is

inefficient to count all friends of people if only three are required. More importantly though, while

count is non-monotonic (unless we use the special lattices suggested by [RS92]), mcount is

monotonic in the lattice of set containment used by the standard Datalog. So no ad hoc semantic

extension is needed and concepts and techniques such as magic sets, perfect models and stable

models can be immediately generalized to programs with mcount.

4.9.1 DeAL Interval Semantics

The lessons learned with mcount tell us that we can derive the monotonic counterpart of an ag-

gregate by simply assuming that it produces an interval of integer values, rather than just one value.

In the following we (i) apply this idea to max and min to obtain mmax and mmin, and then (ii)

generalize these monotonic aggregates to arbitrary numbers, and show that the least fixpoint com-

putation under this formal interval-based semantics can be implemented using the SN semantics

used in Section 4.2 under general conditions that hold for all our examples. Due to space limita-

tions the discussion is kept at an informal level: formal proofs are given in [MSZ13a, MSZ13b].

Figure 4.14: Counting Interval Semantics.

Before we introduce DeAL’s interval semantics, consider the following example of interval

semantics for counting, based on the DatalogFS interval semantics, depicted in Figure 4.14. If

41

r2 in Program 4 produced cpaths(a, b, 3) and then cpaths(a, b, 4), we cannot sum the aggre-

gate values to get a new count for group (a, b). Instead, with the counts for cpaths(a, b, 3) and

cpaths(a, b, 4) represented by [1, 3] and [1, 4], respectively, [1, 3] ∪ [1, 4] = max(3, 4) = 4. Thus

cpaths(a, b, 4) represents (a, b)’s count.

Figure 4.15: +/- Rational Numbers Interval Semantics.

+/- Rational Numbers. Computations on numbers in mantissa * exponent representation is tanta-

mount to integer arithmetic on their numerators over a fixed large denominator. For instance, for

floating point representations, the smallest value of exponent supported could be −95, whereby

every number can be viewed as the integer numerator of a rational number with denominator 1095.

However, because of the limited length of the mantissa, this numerator will often be rounded-off

— a monotonic operation that preserves the existence of a least-fixpoint semantics for our pro-

grams [MSZ13a]. Thus floating-point-type representation in programming languages can be used

without violating monotonicity [MSZ13a, MSZ13b].

Now, say Lb represents the lower bound for all negative numbers supported by the system

architecture. We can use the interval [Lb,N] to represent any number regardless of its sign. The

result of unioning the sets representing these numbers is a set representing the max, independent of

whether this is positive or negative. Using Figure 4.15 as an example, with N1 and N2 represented

by [Lb,N1] and [Lb,N2], respectively, then [Lb,N1]∪ [Lb,N2] represents the larger of the two, i.e.

max(N1, N2) = N2. Thus, we can support negative numbers.

Minimum. Now, say Ub represents the upper bound for all positive numbers supported by the

system architecture. We can represent the set of all numbers between N and Ub, i.e. the interval

[N,Ub], as the number N . Observe that a number smaller than N is represented by an interval that

contains the interval [N,Ub]. As before, if we take a union of two or more such representations,

42

Figure 4.16: Minimum Interval Semantics.

the result is the largest interval. Using Figure 4.16 as an example, with N1 and N2 represented by

[N1, Ub] and [N2, Ub], respectively, then [N1, Ub]∪ [N2, Ub] represents the smaller of the two, i.e.,

min(N1, N2) = N2.

As another example of these semantics, consider the first derivation in Figure 4.2. Here

spaths(a, c, 2) was derived because the previous value for (a, c) was 3. In the interval semantics,

spaths(a, c, 2) would be represented as [2, Ub], and 3 as [3, Ub], thus we have [2, Ub] ∪ [3, Ub] is

min(2, 3) = 2.

4.9.2 Normal Programs

DeAL programs that only use monotonic arithmetic and monotonic boolean (comparison) func-

tions on values produced by monotonic aggregates will be called normal13. All practical algorithms

we have considered only require the use of normal DeAL programs. Two classes of normal pro-

grams exist.

Class 1. This class of normal programs uses monotonic aggregates to compute the max (min)

values for use outside the recursion (e.g., to return the facts with the final max (min) values).

Programs in this class include Programs 3 - 19 which are expressed using a stratified max (min)

aggregate to select the max (min) value produced by the recursive rules when a fixpoint is reached.

Examining the intermediate results of Class 1 programs: at each step of the fixpoint iteration, we

have (i) the max (min) value and (ii) values less than the max value (greater than the min value).

However, we do not need (ii), as long as the values in the head are computed from those in the

13The compiler can easily check if a program is normal when the program contains only arithmetic and simple
functions (e.g. addition, multiplication).

43

body via an arithmetic function that is monotonic.

Class 2. Values produced by monotonic aggregates in Class 2 normal programs are not passed to

rule heads, but are tested against conditions in the rule body. Here too, as long as the functions

applied to the values are monotonic, rules are satisfied if and only if they are satisfied for the max

(min) values. Program 5 is a Class 2 normal program.

4.9.3 Normal Program Evaluation

Recall the algorithm for MASN in Figure 3. Let us call L the set produced by TE(M) or TR(δS)

and F the set produced from applying getLast() to L. For SN, δS will be L, whereas for MASN,

δS will be F . Let W = L − F . W = ∅ when, for facts of monotonic aggregate predicates, each

group with facts derived during the iteration has only one fact. For an iteration, if W = ∅, MASN

evaluates the program the same as SN. Otherwise, W contains facts that will not lead to final

answers for Class 1 normal programs and for Class 2 normal programs, any condition satisfied (in

a rule body) by a fact in W will also be satisfied by the fact of the same group in F . Thus, MASN

does not need to evaluate W . In the next iteration, SN will derive all of the same facts as MASN,

but also derive facts evaluating W . We have already established that these facts, because they were

derived from W , will not lead to final answers, and thus MASN does not need to derive facts with

these either.

Theorem 1. A normal program with monotonic aggregates evaluated using MASN will produce

the same result as that program evaluated using SN.

Recall the algorithm for EMSN in Figure 4. Assume we are evaluating a normal program

with SN. Let us call KSN the set of facts used in derivations (∪ of all δS) by SN. Now assume

we are evaluating the same normal program with EMSN. Let us call KEMSN the set of all facts

used in derivations by EMSN, which means KEMSN contains facts that were retrieved from the

aggregate’s relation, meaning they had the current value for the group at the time the fact was

used in a derivation. Now, let C = KSN − KEMSN . If C = ∅, EMSN evaluates the program

the same as SN. Otherwise, C contains facts that were not used by EMSN because at the time

44

of derivation, the values in the aggregate’s relation for those facts’ groups were greater (mmax,

mcount, msum) or lesser (mmin) than the aggregate value in the fact. We knowKSN∩KEMSN =

KEMSN and KEMSN ⊂ KSN because EMSN will ignore facts to use in derivations that SN will

use in derivations, but EMSN will not use different facts than SN. Stated another way, SN will

attempt derivations with all facts EMSN attempts derivations with. Therefore, for Class 1 normal

programs, facts in C are not going to lead to final answers. For Class 2 normal programs, any

condition satisfied (in a rule body) by a fact in C would have also been satisfied by the value that

was instead used. EMSN does not need to evaluate C. We have:

Theorem 2. A normal program with monotonic aggregates evaluated using EMSN will produce

the same result as that program evaluated using SN.

4.10 Mapping DeAL to DatalogFS

In this section, we show how DeAL programs can be mapped into DatalogFS programs. Before

presenting the transformation rules, we review DatalogFS syntax and relevant language constructs.

4.10.1 DatalogFS

Here we provide additional background on DatalogFS syntax and constructs.

Syntax Like a Datalog program, a DatalogFS program is a set of rules. Rule heads can either be an

atom or an FS-assert statement. An FS-assert statement describes multi-occurring predicates and

is an atom followed by : K, where K is either a constant or a variable. Body literals can be atoms,

negated atoms or FS Goals. FS Goals can be either:

• Running-FS Goal with the form K : [b-expression]

• Final-FS Goal with the form K =![b-expression]

A b-expression is shorthand for bracket expression, which is either an individual or a conjunc-

tion of positive atoms. K :, the Running-FS term, is either a constant or a variable not contained

45

in the b-expression. This syntax allows for very concise program expression, especially when the

program would otherwise require specifying a large number of conjunctions. For a Running-FS

Goal, the head of the rule must belong to a stratum that is not lower than that of every predicate in

the b-expression. For a Final-FS Goal, the head of the rule must belong to a stratum that is strictly

higher than that of every predicate in the b-expression.

Running-FS Goals We review the Running-FS Goal construct using Program 6, the DatalogFS

version of the DeAL program in Program 5 (also Program 8 from [MSZ13b]). This program finds

friends who will go to a party if at least three of their friends will go. The predicate friend(Y, X)

denotes person Y views person X as a friend. The predicate sure(X) denotes X will go to the party.

Program 6. Who will come to the party? in DatalogFS

r1 .willcome(X)←sure(X).

r2 .willcome(Y)←3 : [friend(Y, X), willcome(X)].

In r2, the goal is a Running-FS Goal, with the Running-FS term of 3 : and the b-expression of

friend(Y, X), willcome(X). The two kinds of variables in DatalogFS are present in r2. Y, a

Global variable, appears in the head of the rule (outside of the b-expression) and has rule-level

scope. Local variable X, appears only within the b-expression, also its scope. In r2, with the

Running-FS term of 3 :, we view X as an existential variable enforcing the constraint that there

must exist at least three distinct occurrences of friend(Y, X), willcome(X).

To ensure the proper semantics of a program with a Running-FS Goal, at least K is the correct

comparison. Because Running-FS Goals are monotonic and therefore, only an increasing number

of new instances of distinct variable assignments will be found, using equals K or at most K could

result in incorrect or unexpected program behavior. Final-FS Goals allow for the use of an equality

comparison.

Final-FS Goals A Final-FS Goal, with the form K =![b-expression], is used to find the total

count of satisfying predicates from b-expression. This construct does not increase expressive

power, but allows the programmer to express queries in a compact manner.

Program 7. Counting Paths in a DAG in DatalogFS

46

r1 .path(X, Y) : 1← edge(X, Y).

r2 .path(X, Y) : K← K : [edge(X, Z), path(Z, Y)].

r3 .countpaths(X, Y, K)←K =![path(X, Y)].

In Program 7, the DatalogFS version of the DeAL program in Program 4, (also Program 17 in

[MSZ13b]), K =![path(X, Y)] finds exactly the number K for each distinct variable assignments of

X, Y that make [path(X, Y)] true.

At this point, the reader has sufficient background on the syntax and language constructs of

DatalogFS so we can introduce the transformation rules to map DeAL programs into DatalogFS

programs. Note, because DatalogFS is based on monotonic w.r.t. set-containment semantics, we

are only concerned with mapping DeAL rules with mmax and mcount into DatalogFS programs.

We refer the reader to [MSZ13b] for more details on DatalogFS .

4.10.2 Transformation Rules

Monotonic aggregates are found in three types ofDeAL program rules. If a monotonic aggregate is

an argument in a rule head or an MA-Value is used in a rule goal, we say the head and/or the body is

FS, otherwise, it is Normal. By typing DeAL rules as such, we can identify which transformation

rule to apply. Table 4.4 contains the rule types.

Rule Head Rule Body Rule Type

FS Normal Normal-to-FS

FS FS FS-to-FS

Normal FS FS-to-Normal

Table 4.4: Types of DeAL Rules with Monotonic Aggregates

We have identified five transformation rules. Before we delve into the details of each rule, the

following are some general rules of thumb. When transforming rule heads, monotonic aggregates

are removed and corresponding FS-assert statements are added. When transforming rule bodies,

first MA-Values are removed, then the goal is added to the b-expression of a Running or Final-FS

47

Goal. The variable removed from the goal will be assigned from the FS goal. Normal Datalog

goals are left unchanged.

Our transformation rules are presented with rule bodies with singular goals. Cases for rule

bodies with multiple goals can be easily extrapolated.

TR-N2FS.1 - Transformation Rule Normal-to-FS #1

In rule type Normal-to-FS with an mmax aggregate in the DeAL rule head, the mmax aggregates

are removed and the head is made into an FS-assert statement.

head(Y1, . . . , Ym, mmax〈N〉)

to

head(Y1, . . . , Ym) : N

TR-N2FS.2 - Transformation Rule Normal-to-FS #2

Rule type Normal-to-FS with an mcount aggregate in the head requires removing the mcount

aggregates from the head, making the head into an FS-assert statement, and adding a Running-FS

Goal to the body to generate the multi-occurring predicate. The goals required to maintain the

semantics of the original rule are added to the Running-FS Goal’s b-expression. The Running-FS

term variable is the same as the variable in the FS-assert statement.

head(Y1, . . . , Ym, mcount〈X〉)

where X is an argument Y1, . . . , Ym from the body

to

head(Y1, . . . , Ym) : 1

However, if X is not a variable in the head, i.e. not a grouping variable, then body is treated as

FS and TR-FS2FS is applied under the case for mcount〈(Yk, X)〉. This ensures all eligible distinct

assignments within the body will get counted and properly returned from the rule.

48

TR-FS2FS - Transformation Rule FS-to-FS

In rule type FS-to-FS, for the rule head, we do the same as in TR-N2FS, but the variable is

renamed.

head(Y1, . . . , Ym, mmax〈X〉)

or

head(Y1, . . . , Ym, mcount〈(Yk, X)〉)

where Yk is an argument from the body

to

head(Y1, . . . , Ym) : K

For the rule body, for goals with an MA-Value, the argument is first removed from the goal, then the

goal is added to the b-expression of the Running-FS Goal. Lastly, the variable from the FS-assert

statement is set as the Running-FS term.

goal(Y1, . . . , Ym, N)

where N is an MA-Value

to

K : [goal(Y1, . . . , Ym)]

TR-FS2N.1 - Transformation Rule FS-to-Normal #1

In rule type FS-to-Normal, if the DeAL rule head has a stratified max aggregate, it will be trans-

formed into a DatalogFS rule head as follows:

head(Y1, . . . , Ym, max〈N〉)

to

head(Y1, . . . , Ym, K)

where K is the result of a Final-FS Goal.

The rule body will be transformed to have a Final-FS Goal with the goal added to the b-expression

as follows:

49

However, if we used the standard goal(Y1, . . . , Ym, N)

where N is an MA-Value

to

K=![goal(Y1, . . . , Ym)]

TR-FS2N.2 - Transformation Rule FS-to-Normal #2

A second case applies to FS-to-Normal rules if a goal’s argument is an MA-Value which is evalu-

ated inside the body and not passed to the head. Then, the head is left unchanged and the rule body

will be transformed from:

goal(Y1, . . . , Ym, N), N ≥ C

where N is an MA-Value and C is a constant

to

C : [goal(Y1, . . . , Ym)]

4.10.3 Transformation Rules Examples

Using the transformation rules from Section 4.10.2, we now show step-by-step examples ofDeAL

programs being transformed into DatalogFS programs. The first example is Program 8, a Bill of

Materials (BOM) example.

Program 8. How many days until delivery?

r1 .delivery(Part, mmax〈Days〉)← basic(Part, Days).

r2 .delivery(Part, mmax〈Days〉)← assbl(Part, Sub,), delivery(Sub, Days).

r3 .actualDays(Part, max〈Days〉)←delivery(Part, Days).

r1 is a Normal-to-FS rule with an mmax aggregate therefore, TR-N2FS.1 is applied. The mono-

tonic aggregate in the head (mmax〈Days〉) is removed and the rule head becomes an FS-assert term

using the variable Days from the aggregate. r1 from Program 8 is converted from

delivery(Part, mmax〈Days〉)← basic(Part, Days).

to

50

delivery(Part) : Days← basic(Part, Days).

Applying TR-FS2FS to r2, mmax〈Days〉 is removed and Days is used in the FS-assert term. The

delivery(Sub, Days) goal is added to the b-expression of a Running-FS Goal, but only after the

Days argument is removed. Days is set as the Running-FS term. r2 from Program 8 is converted

from

delivery(Part, mmax〈Days〉)← assbl(Part, Sub,), delivery(Sub, Days).

to

delivery(Part) : Days← assbl(Part, Sub,), Days : [delivery(Part)].

Lastly, TR-FS2N.1 is applied to r3 because of the stratified max aggregate in the head. max〈Days〉

is exchanged with Days in the head. Before the delivery(Part, Days) goal is added to the b-

expression of a Final-FS Goal, Days is removed and is assigned the result of the Final-FS Goal.

actualDays(Part, max〈Days〉)← delivery(Part, Days).

to

actualDays(Part, Days)← Days =![delivery(Part)].

Program 9. Program 8 transformed to DatalogFS

r1 .delivery(Part) : Days← basic(Part, Days).

r2 .delivery(Part) : Days← assbl(Part, Sub,), Days : [delivery(Part)].

r3 .actualDays(Part, Days)←Days =![delivery(Part)].

To show how TR-FS2N.2 is applied, we walk through the transformation of the DeAL Program

5, also displayed as Program 10 for the reader’s convenience. TR-FS2N.2 is needed for programs

such as Program 10 that evaluate the result of an FS Goal inside the body, and do not pass it to the

head, and therefore do not have an aggregate in the head requiring transformation.

Program 10. Who will come to the party?

r1 .willcome(X)← sure(X).

r2 .willcome(X)← cntComing(X, N), N ≥ 3.

r3 .cntComing(Y, mcount〈X〉)← friend(Y, X), willcome(X).

51

In Program 10, r2 is an FS-to-Normal rule and TR-FS2N.2 is applied. Since N in cntComing(Y, N)

is an MA-Value, N is removed and cntComing(Y) is added to the b-expression of a Running-FS

Goal. 3 is set as the Running-FS term and the comparison predicate is removed.

willcome(Y)← cntComing(Y, N), N ≥ 3.

to

willcome(Y)← 3 : [cntComing(Y)].

r3 is a Normal-to-FS rule, therefore TR-N2FS is applied. However, this is the special case where

X is not in the head, therefore TR-FS2FS is applied. mcount〈X〉 is removed from the head and an

FS-assert statement is added with variable N. A Running-FS Goal is added to the body and since

both goals are required to count the friends coming, both are added to the b-expression.

countwillcome(Y, mcount〈X〉)← friend(Y, X), willcome(X).

to

countwillcome(Y) : N← N : [friend(Y, X), willcome(X)].

After transforming r2 and r3, we have an equivalent DatalogFS program as shown in Program 11.

Program 11. Program 5/10 transformed to DatalogFS

r1 .willcome(X)← sure(X).

r2 .willcome(Y)← 3 : [cntComing(Y)].

r3 .cntComing(Y) : N←N : [friend(Y, X), willcome(X)].

Reducing DatalogFS rules Although they are equivalent programs, the Program 11 has three

rules, whereas the Program 6 has two rules. This is because the DeAL program it originated from

required an additional rule (r3) to compute the aggregation. While DatalogFS rules can perform

an aggregation, capture the result of the aggregation and perform a comparison against the result in

one rule, such as r2 in Program 6, DeAL’s head aggregate syntax doesn’t allow for this. Instead,

rules such as r3 in Program 10 must be written to perform the aggregation, and a second rule, such

as r2 in Program 10, must receive the result and perform the comparison.

52

Fortunately, in Program 11 we can reduce the program to two rules without changing the mean-

ing of the program. Because both rule bodies are a single Running-FS Goal, we substitute the

b-expression of the Running-FS Goal in r2 with the b-expression of the Running-FS Goal of r3

and eliminate r3. Finally, the resulting program is the DatalogFS Program 6.

This concludes our presentation of how to map DeAL programs into DatalogFS programs.

Through syntactic transformation rules, we have shown how DeAL programs are indeed equiva-

lent to DatalogFS programs. Combined with the semantics of DeAL’s monotonic aggregates from

Section 4.9, the reader should recognize that DeAL does indeed support DatalogFS .

4.11 Additional Optimizations

In this section, we present optimizations for programs with monotonic aggregates.

4.11.1 Magic Sets

The preservation of the standard Datalog semantics via the interval semantics of our aggregates

have made it possible for DeALS to preserve the powerful optimization techniques of Datalog,

one being the Magic Sets [BMS86] optimization. Furthermore, the use of head notation for mono-

tonic aggregates simplifies the compile-time rewriting used to implement the Magic Set method.

For example, with Program 8 to find out how long part p22 will require for delivery, we use the

following query: ?actualDays(p22, AD). After a binding passing analysis, the compiler derives

the following rules from the query form and r2 respectively:

m.delivery(p22).

r2m.m.delivery(Sub)←assbl(Part, Sub), m.delivery(Part).

These Magic Set rules will generate all the subparts of p22, so that the final computation of r3,

will now be filtered by an m.delivery predicate:

r1 .delivery(Part, mmax〈Days〉)←basic(Part, Days), m.delivery(Part).

r2 .delivery(Part, mmax〈Days〉)←assbl(Part, Sub,), delivery(Sub, Days),

m.delivery(Part).

53

As an additional example, using Program 4 we can find the number of paths from node7 with the

query ?countpaths(node7, Y, C). The compiler will generate the following:

m.cpaths(node7).

r3 .countpaths(node7, Y, max〈(C)〉 ←cpaths(node7, Y, C).

The first argument of r3 is bound to node7 and the magic predicate containing node7 is generated

and added to the body of both r1 and r2 as follows:

r1 .cpaths(X, Y, mcount〈X〉)← m.cpaths(X), arc(X, Y).

r2 .cpaths(X, Z, mcount〈(Y, C)〉)←m.cpaths(X), cpaths(X, Y, C), arc(Y, Z).

As the magic set contains only the constant node7, the original program can now be specialized as

follows:

r1 .cpaths(node7, Y, mcount〈X〉)← arc(node7, Y).

r2 .cpaths(node7, Z, mcount〈(Y, C)〉)←cpaths(node7, Y, C), arc(Y, Z).

4.11.2 Comparison-Only Monotonic Aggregation

In cases where an MA-Value is only evaluated inside the body of a rule, and not passed to the head,

there is an opportunity for optimization. For example, Program 12 is the hindex query to find all

researchers with at least 13 publications that have been cited 13 times. The refer relation contains

the citations from PnFro to PnTo and the author relation contains the author(s) of each paper Pno.

r1 counts the number of citations paper number PnTo has received from other papers. r2, counts

the number of papers cited at least 13 times for each author. Finally, r3 determines if an author has

at least 13 papers cited 13 times.

Program 12. Find researchers with hindex of at least 13

r1 .numCite(PnTo, mcount〈PnFro〉)← refer(PnFro, PnTo).

r2 .numCite13X(Auth, mcount〈Pno〉)← author(Auth, Pno), numCite(Pno, N), N >= 13.

r3 .hindex13(Auth)← numCite13X(Auth, K), K >= 13.

Notice in r3, K is not passed to the head, but only evaluated inside the body (K >= 13). After

K reaches 13 for an assignment of Auth, it will stay at 13 or increase, and >= is a monotonic

54

boolean function such that once it is true, it will stay true forever. These stable properties ensure

that no further evaluation need be performed for this author. However, the aggregate is unaware

of this as it is simply executing the underlying author predicate, which will assign Auth to the

next author only after it has exhausted all Pno for the current Auth14. A change in the assignment

of Auth must be forced, which can be achieved using rewriting as follows:

r3 . hindex13(Auth)← hindex13 author(Auth), numCite13X(Auth, N), N >= 13.

r3c.hindex13 author(Auth)← author(Auth,).

Now hindex13 author, which is the set of all authors, is responsible for assigning Auth. And,

once the predicate N >= 13 in r3 is satisfied, the next execution of r3 will result in an assignment

of Auth to the next author. The execution trade off here is that although a scan of author is still

being performed, now by hindex13 author, an index lookup is now used on author and the

program only aggregates the minimum count necessary to satisfy the N >= 13 condition.

We conducted an experiment of this approach using a citation network15. After a best-effort

extraction of the authors from the abstracts, we computed hindexes up to 45 on the graph. We

found this technique to have better performance up until hindex 9 (< 1% of authors had 9), at

which point it became more costly in terms of query execution time by on average 10%.

4.12 Monotonic Aggregate Rule Rewriting

We utilize compiler rewriting techniques to provide support for monotonic aggregate functions in

DeALS. Our rewriting approach relies on a combination of straightforward rule rewriting tech-

niques paired with specialized built-in predicates. After rewriting monotonic aggregate rules, no

changes are required to rules invoking monotonic aggregate rules because the original signature

(predicate name and arity) is left unchanged by the rewriting. All rewriting is done during compi-

lation before program execution begins.

14base relations are sorted
15http://snap.stanford.edu/data/cit-HepTh.html

55

4.12.1 Rewriting mmax Rules

After the compiler validates the aggregate rules, the compiler rewrites an aggregate rule into two

rules. We will explain our approach by applying the rewriting to r1 from Program 8, also below

for the reader’s convenience.

r1 .delivery(Part, mmax〈Days〉)←basic(Part, Days).

From r1, the compiler produces the rules in Program 13.

Program 13. Rules produced from rewriting r1

r11 .fs aggr delivery(Part, Days, nil)← basic(Part, Days).

r12 .delivery(Part, AggrVal)←

g1 . fs aggr delivery(Part, Days, OldMaxVal),

g2 . fsmax(Days, OldMaxVal, NewMaxVal),

g3 . fs aggr delivery(Part, NewMaxVal, AggrVal).

In Program 13, r11 is the Inner rule, which is given the body of the original rule. r12 is the Outer

rule. The first goal of the Outer rule, g1 , is a special built-in predicate16, called a Read-Aggregate

predicate. For a K (Part) this predicate will 1) compute the next value to aggregate by executing

the Inner rule (r11) and 2) retrieve the previous value from the aggregate’s storage, if a value exists.

A Read-Aggregate predicate is true when a new value is found.

If g1 is true, Days will be bound to a new value and OldMaxVal will be bound to the previous

value for the assignment of Part or to nil if there was no previous value. g2 , the fsmax built-in

predicate, compares Days and OldMaxVal to determine if Days is indeed a new maximum value.

If OldMaxVal is nil or Days > OldMaxVal, then g2 is true and NewMaxVal is bound to the

value assigned Days, otherwise, g2 is false. g3 is also a special built-in predicate called a Write-

Aggregate predicate, which writes the value assigned to NewMaxVal to the aggregate’s storage as

the value for the assignment of Part. This predicate will also bind AggrVal to the value assigned

16built-in predicates enable rapid prototyping of different logical and physical implementations. The rule rewriting
processes are insulated from changes with each new approach - especially helpful for prototyping mcount.

56

to NewMaxVal17. Invocations of the Outer rule return true when a new maximum value is found

for the assignment of Part.

4.12.2 Rewriting mmin Rules

The rewriting of aggregate rules with mmin is similar to that of rules with mmax. Looking at

Program 13, for g2, in place of the mmax built-in predicate, the mmin built-in predicate with the

same form will be used. The mmin built-in predicate compares its first and second arguments and

will be true when the second argument is nil or when the first argument is less than the second

argument. When true, the third argument will be bound to the value assigned to the first argument.

Variables will be named accordingly (OldMinVal instead of OldMaxVal, NewMinVal instead of

NewMaxVal).

4.12.3 Rewriting mcount Rules

Aggregate rules with mcount are also rewritten in a way similar to rules with mmax. The seman-

tics of mcount require producing only the maximum value, therefore mcount rewritten rules also

utilize the fsmax built-in predicate. The noticeable difference in the rules produced for mcount

is that because the mcount aggregate term is a pair (Section 4.6), the pair is also written into the

predicate arguments in the new rules.

Program 14. Form of aggregate rule with mcount

p(K1, . . . , Km, mcount〈(J, N)〉) ← Rule Body.

Program 14 is the form of an aggregate rule with mcount. In the aggregate term (J, N), J is an

extra grouping argument. mcount utilizes different built-in Read-Aggregate and Write-Aggregate

predicates than mmax and mmin. The mcount Read-Aggregate predicate retrieves the value

stored for the combined K and J. The mcount Write-Aggregate predicate writes the new value

for the combined K and J to the aggregate’s storage and then binds the AggrVal argument to the

17Using AggrVal and NewMaxVal instead of having NewMaxVal in the head keeps mmax and mcount rule rewriting
consistent.

57

aggregated value for only the K.

As a concrete example of mcount rewriting, consider the rules produced by rewriting r2 from

Program 4 (also below) in Program 15.

r2 .cpaths(X, Z, mcount〈(Y, C)〉)←cpaths(X, Y, C), arc(Y, Z).

Program 15. Rewritten rules from r2 in Program 4

r21 .fs aggr cpaths 2(X, Z, (Y, C), nil)← cpaths(X, Y, C), arc(Y, Z).

r22 .cpaths(X, Z, AggrValue)←

g1 . fs aggr cpaths 2(X, Z, (Y, C), OldMaxVal),

g2 . fsmax(C, OldMaxVal, NewMaxVal),

g3 . fs aggr cpaths 2(X, Z, (Y, NewMaxVal), AggrVal).

There are several things to take note of in Program 15. First, the original rule r2 was a recursive

rule, so r21 and r22 are mutually recursive. Next, the rewriting has separated r2 into an aggregate

relation (fs aggr cpaths 2) and a recursive relation (cpaths). Third, the complete aggregate

term (Y, C) was copied to the head of the Inner rule and to g1 , the Read-Aggregate predicate, which

will assign these variables. The term is kept as a pair so the compiler can more easily identify it

as a value instead of as a key variable. Lastly, because r2 is the second rule in its relation, the rule

head for the Inner rule r21 , as well as the goals for the Read-Aggregate (g1) and Write-Aggregate

(g3) predicates, have had a 2 suffix added to ensure that Outer rules only call Inner rules created

from rewriting the same original rule.

4.12.4 Rewriting msum Rules

Aggregate rules with msum are rewritten similarly to mcount rules. As reviewed in Section 4.6,

msum is operationally the same as mcount with the exception that msum operates on positive

numbers only. Therefore, for rules with msum, a predicate is added to the body to ensure only

positive numbers are being aggregated, thereby maintaining msum’s monotonicity.

58

4.13 Additional DeAL Programs

This section includes additional programs to showDeAL’s expressiveness and support for a variety

of applications.

Program 16. Company Control

r1 .cshares(A, B, dirct, mmax〈P〉)← ownedshares(A, B, P).

r2 .cshares(A, C, indrct, mcount〈(B, P)〉)← bought(A, B), cshares(B, C, , P).

r3 .bought(A, B)← cshares(A, B, , P), P > 50, A 6= B.

Traditional Database Management System recursive queries are efficiently implemented using

DeAL. In the Company Control program proposed in [MPR90], companies can purchase owner-

ship shares of other companies. In addition to the shares that company A owns directly, company

A also controls the shares controlled by company B when A has a controlling majority (> 50%) of

B’s shares.

Program 17. What is the maximum cost of a part?

r1 .cost(Part, msum〈(Part, Cost)〉)← basic(Part, , Cost).

r2 .cost(Part, msum〈(Sub, Cost)〉) ← assb(Part, Sub, Num), cost(Sub, Scost),

Cost = Scost ∗ Num.

r3 .totalCost(Part, max〈Cost〉) ← cost(Part, Cost).

Program 17 is the Bill of Materials (BOM) program for finding the days required to deliver a

part and the program for computing the max cost of a part from the cost of its subparts, respectively.

The assb predicate denotes each part’s required subparts and number required and basic denotes

the number of days for a part to be received and the part’s cost.

Program 18. Viterbi Algorithm

r1 .calcV(0, X, mmax〈L〉)← s(0, EX), p(X, EX, L1), pi(X, L2), L = L1 ∗ L2.

r2 .calcV(T, Y, mmax〈L〉)← s(T, EY), p(Y, EY, L1), T1 = T− 1, t(X, Y, L2),

calcV(T1, X, L3), L = L1 ∗ L2 ∗ L3.

r3 .viterbi(T, Y, max〈L〉)← calcV(T, Y, L).

59

Program 18 is the Viterbi algorithm for hidden Markov models. Four base predicates are used

— t denotes the transition probability L2 from state X to Y; s denotes the observed sequence of

length L+1; pi denotes the likelihood L2 that X is the initial state; p denotes the likelihood L1 that

state X (Y) emitted EX (EY). r1 finds the most likely initial observation for each X. r2 finds the most

likely transition for observation T for each Y. r3 finds the max likelihood for T, Y.

Program 19. Max Probability Path

r1 .reach(X, Y, mmax〈P〉)← net(X, Y, P).

r2 .reach(X, Y, mmax〈P〉)← reach(X, Z, P1), reach(Z, Y, P2), P = P1 ∗ P2.

r3 .maxP(X, Y, max〈P〉) ← reach(X, Y, P).

Program 19 is the non-linear program for computing the max probability path between two

nodes in a network. The net predicate denotes the probability P of reaching Y from X.

Many Data Mining and Machine Learning applications use graphs as the underlying model,

such as a Markov chain; and many graph analytics queries use a probability model. A Markov

chain is represented by the transition matrix W of s×s components where wij is the probability to

go from state i to state j in one step. A Markov chain is called irreducible if for each pair of states

i, j, the probabilities to go from i to j and from j to i in one or more steps is greater than zero.

Computing stabilized probabilities of a Markov chain has many real-world applications, such as

estimating the distribution of population in a region, and determining the PageRank of web nodes.

Let P be a vector of stabilized probabilities of cardinality s, the equilibrium condition in terms of

matrices is: P = W · P . Although computing this fixpoint is far from trivial, irreducible chains

can be modeled quite naturally in DeAL. If p state(X, K) denotes that K is the rank of node

X, 1 ≤ X ≤ s, and w matrix(Y, X, W) denotes that there is an arc from Y to X with weight W. Then,

we compute the fixpoint using Program 20.

Program 20. Markov Chains

60

r1 .p state(X, mmax〈P〉)← p state init(X, P).

r2 .p state(X, msum〈(Y, K)〉)← p state(Y, C), w matrix(Y, X, W), K = C ∗ W.

r3 .rank(X, max〈K〉)← p state(X, K).

r4 .sum rank(sum〈A〉)← rank(, A).

r5 .p norm(X, Pr)← sum rank(SR), rank(X, R), Pr = R/SR.

Note that each fixpoint of such a program is an equilibrium P = W ·P of the Markov Chain rep-

resented by matrixW . In order to find a non trivial fixpoint (6= 0) for program P , we start with facts

such as p state init(1, 0.1)., p state init(2, 0.1), . . . , p state init(s, 0.1), which provide

the baseline set facts of the least fixpoint TPbl. For each irreducible Markov chain there exists a non

trivial fixpoint, therefore TP has one that is not null at every node, and there exists a finite fixpoint

for TPbl. We compute this fixpoint using r1 and r2. r3 produces only the maximum probability for

each node X. Then rules r4 and r5 normalize the probabilities to produce the final result.

4.14 Syntax Comparison With Other Languages

Here we present examples showing the syntactic differences between using DeAL’s monotonic

aggregates and other implemented approaches. The example programs shown compute the shortest

paths on a directed graph. Recall, the DeAL program using monotonic aggregates for Shortest

Paths is Program 3. In the interest of space, we omit structural declarations and rules to establish

the 0 cost path between a vertex and itself. With the exception of Program 21, the programs will

terminate on cyclic graphs with positive cost edge weights.

Program 21. Stratified Shortest Paths

r1 .spaths(X, Y, D)← edge(X, Y, D).

r2 .spaths(X, Z, D)← spaths(X, Y, D1), edge(Y, Z, D2), D = D1 + D2.

r3 .shortestpaths(X, Z, min〈D〉)← spaths(X, Z, D).

Program 21 is a DeAL program that first computes the transitive closure of the graph with the

cost of each path (r1, r2) and then uses a stratified min aggregate to find the shortest path between

two vertices (r3).

61

Program 22. XY-Stratified Shortest Paths

r1 .delta sp(0, X, Y, C)← edge(X, Y, C).

r2 .delta sp(J+1, X, Z, min〈C〉)← delta sp(J, X, Y, C1), edge(Y, Z, C2),C=C1+C2,

if(all sp(J, X, Z, C3) then C3 > C).

r3 .all sp(J+1, X, Z, C)← all sp(J, X, Z, C),¬delta sp(J+1, X, Z,).

r4 .all sp(J, X, Z, C)← delta sp(J, X, Z, C).

r5 .lastsp(I)← delta sp(I, , ,),¬delta sp(I+1, , ,).

r6 .shortestpaths(X, Y, C)← lastsp(I), all sp(I, X, Y, C).

Program 22 is the XY-Stratified DeAL program. XY-Stratified programs [AOT03, ZAO93]

are executed using an iterative state machinery that processes facts across two states (J, J+1)

and can therefore support a wide range of algorithms, but can suffer from inefficient performance.

The intuition for Program 22 is after each iteration, a stratified min aggregate is used to select

the new shortest paths (delta sp) and the non-shortest paths from earlier iterations are discarded.

all sp represents all shortest paths found and when no new shortest paths are found, the program

terminates.

In Program 22, r1 copies all edge facts into the initial state of delta sp. r2 joins the paths

in delta sp with edge to find new paths shorter than paths already in all sp18. r2 also applies

a stratified min aggregate to find the shortest paths between two vertices discovered at state J to

bring to the next state J+1. r3 says that paths in all sp at state J+1 consist of paths from all sp

at state J except for new shortest paths just found (delta sp) because these are shorter, and the

longer paths already in all sp must be deleted. The expressive power of XY-Stratified rules comes

at the expense of a larger program and having to specify procedural-like rules such as r4 , which

copies facts between relations, r5 which finds the final iteration at which a fixpoint is reached, and

r6 which retrieves the results from the final state.

Program 23. Shortest Paths in LogiQL

r1 .path(x, y, d)← edge(x, y, d);

edge(x, z, d1), spath[z, y] = d2, d = d1 + d2.

r2 .spath[x, y] = dist← agg〈〈dist = min(d)〉〉 path(x, y, d).

18The conditional if (then) predicate is the logical equivalent of two rules, one with and one without negation.

62

Program 23 is the LogicBlox’s LogiQL program to compute the shortest path in a directed

graph. LogicBlox has recently included support for aggregation in recursion 19. This program uses

what they term a staged partial fixpoint semantics and syntactically exhibits a mutual recursion

between r1, which generates the paths, and r2 which applies the min aggregate to find the shortest

path between two vertices.

Program 24. Shortest Paths in BloomL

r1 .path <= edge{|e|[e.from,e.to,MinLattice.new(e.c)]}

r2 .path <= (path * edge).pairs(:to => :from) do |p,e|

[p.from, e.to, p.c + e.c]

end

r3 .shortestpaths <= path {|p| [p.from, p.to, p.c]}

Program 24 is the BloomL [CMA12] program for shortest paths which utilizes the MinLattice

lattice type to find the minimum cost path between two vertices. r1 identifies edge facts as path

facts using the MinLattice to track the minimum cost for each pair of vertices. r2 the generates

new shortest paths by concatenating edge facts with existing path facts. Although designed for

distributed programming, the semantics of the lattice types used in BloomL share many similarities

with the semantics proposed in [RS92]. We refer the reader to [CMA12] for more details on lattice

types in BloomL.

Discussion. From the examples in Section 4.14, the reader should observe that Program 3, the

DeAL program using monotonic aggregates, pushes the aggregation inside the recursion. This is

particularly noticeable when comparing Program 3 with Example 21. The monotonic aggregate is

more concise than the XY-Stratified program (Program 22). From a syntactic point of view, the

LogiQL program is concise but iterates over building a set of paths and then pruning suboptimal

paths from the set. This is more similar to the XY-stratified program than to the monotonic aggre-

gate approach as the monotonic aggregates only build the set of paths and refine the costs. The

19Found in LogicBlox 4.0 migration guide https://download.logicblox.com/content/docs4/release-notes/4-0-
Migration/pdf/LB-MigrationGuide-40.pdf. We renamed predicate e to edge to match the other programs.

63

BloomL program is concise and the syntax requires only specifying the type of the cost argument

in the base case of the program.

4.15 Additional Related Work

We have previously discussed the contributions of many works on supporting aggregation in re-

cursion including [SGL13, RS92, FPL08]. For extrema aggregates, [GGZ91] proposes rewriting

programs by pushing the aggregate into the recursion and Greedy Fixpoint evaluation to select the

next min/max value to execute. Another approach proposes using aggregate selections to identify

irrelevant facts that are to be discarded by an extended version of SN [SR91]. Nondeterministic

constructs and stable models have been proposed to define monotone aggregates [ZW99]. The

DRed [GMS93] algorithm incrementally maintains recursive views that can include negation and

aggregation. The BloomL distributed programming language [CMA12] uses logical monotonicity

via built-in and user-defined lattice types to support eventual consistency.

4.16 Monotonic Aggregates Summary

In this chapter, we have shown how monotonicity can be extended to the aggregate involved in re-

cursive computations while preserving the syntax, semantics, and optimization techniques of tradi-

tional Datalog. The significance of this result follows from the fact that this problem had remained

long unsolved, and that many new applications can be expressed with the proposed extensions that

make them amenable to parallel execution on multiprocessor and distributed systems.

64

CHAPTER 5

BigDatalog - DeAL on Apache Spark

In this chapter, we extend DeALS for distributed evaluation to support advanced analytics over

massive datasets. To support efficient distributed DATALOG evaluation, we must utilize a dis-

tributed engine designed for iteration. Towards this end, we select Apache Spark [apa15b] as our

execution engine. Spark is attracting a great deal of interest as a general platform for large-scale

analytics, particularly because of its support for in-memory iterative analytics. By utilizing Spark

we are attempting to maximize the potential usage of DeAL and the impact of the lessons we

learned.

One could expect that as a system designed for iterative applications, Apache Spark would

also be well suited for recursive applications such as shortest paths computations, and link and

graph structure analysis. However this ignores three decades of recursive query evaluation and

optimization techniques. Spark’s support of recursion through iteration is inefficient: in an iterative

Spark application, a new job is submitted for every iteration and thus the system has only limited

visibility over an application’s entire execution. From a programming perspective, the development

of efficient recursive applications in Spark requires the programmer to have a deep understanding

of (1) the algorithm being implemented, (2) the Spark API, and (3) Spark internals. Nevertheless,

Spark is a promising system for recursive applications because it provides many features essential

for recursive evaluation, including dataset caching and low task startup costs. Along those lines,

as we implement BigDatalog, we examine how Spark can be made to efficiently support recursive

applications.

BigDatalog is a full DATALOG language implementation on Spark. BigDatalog provides logical

abstraction and enables the concise and declarative expression of relational and recursive queries

65

while maintaining an efficient execution. BigDatalog enables a host of declarative language opti-

mization techniques and it exploits semantic extensions for programs with aggregation in recursion

[MSZ13a, MSZ13b] and programs that can be evaluated without communication [SL91]. Further-

more, since BigDatalog supports relational algebra, aggregation and recursion, the Spark program-

mer can now implement complex analytics pipelines of relational, graph and machine learning

tasks in a single language instead of having to stitch together programs written in different APIs of

Spark subsystems such as SparkSQL [AXL15] and GraphX [GXD14].

Motivating Example. As an example of the performance improvement that BigDatalog achieves

for the evaluation of recursive queries consider Figure 5.1. This figure shows the execution time

required to compute a 100 million vertex pair transitive closure of a graph using a highly opti-

mized handwritten Spark program versus the BigDatalog version (cluster specs. in Section 5.5).

This example shows how BigDatalog is both considerably better than its host framework and also

performs quite well when compared with large-scale DATALOG systems, namely Myria [WBH15]

and SociaLite [SPS13] in our test environment. This order of magnitude speed-up is achieved by

employing the efficient evaluation techniques and optimizations of DATALOG in Spark.

BigDatalog

Spark

Myria

SociaLite

0 250 500 4500 4750 5000
Time (s)

22

340

424

4736

Figure 5.1: Example Recursive Query Performance.

Contributions and Outline. In this chapter we make the following contributions:

• We design and implement the BigDatalog compiler. We show how BigDatalog programs are

compiled into recursive physical plans for Spark.

66

• We present a parallel evaluation technique for DATALOG evaluation on Spark. We introduce

recursion operators and data structures to efficiently implement the technique on Spark.

• We propose physical planning and scheduler optimizations for recursive queries on Spark.

• We present distributed monotonic aggregates, an accompanying evaluation technique, and

data structures to support DATALOG programs with aggregates on Spark.

Outline. In Section 5.1, we review Spark. Section 5.2 introduces BigDatalog and the distributed

evaluation technique used to evaluate BigDatalog programs, and shows how BigDatalog programs

are compiled into physical plans for execution on Spark. Section 5.3 presents evaluation, physical

plan and job scheduling optimizations. Section 5.4, describes our aggregate design and implemen-

tation. Section 5.5 presents experimental results including comparisons of BigDatalog with other

large-scale DATALOG systems. Section 5.6 reviews related works. Section 5.7 presents a summary

for BigDatalog and plans for future work.

5.1 Preliminaries

In this section, we review Spark and discuss the challenges of using Spark as a DATALOG runtime.

5.1.1 Apache Spark

Spark provides a language-integrated Scala API enabling the expression of programs as dataflows

of transformations (e.g., map, filter) on Resilient Distributed Datasets (RDD) [ZCD12]. An

RDD is a distributed shared memory abstraction representing a partitioned dataset; RDDs are

immutable, and transformations are coarse-grained and thus apply to all items in the RDD to

produce a new RDD. Spark executes transformations lazily: a job is submitted for execution only

when actions such as count or reduce are called by the user’s program. Once a job is submitted,

the scheduler groups transformations that can be pipelined (e.g., map over a join) into a single

stage. The stages composing a dataflow are executed synchronously in a topological order: a stage

will not be scheduled until all stages it is dependent upon have finished successfully. Between

67

stages, Spark shuffles the dataset to repartition it among the nodes of the cluster. When a stage can

be run, the scheduler creates a set of tasks (i.e., execution units) consisting of one task for each

input partition, and launches the tasks on worker nodes.

RDDs can be explicitly cached by the programmer in memory or on disk at workers. RDDs

provide fault tolerance by recomputing the sequence of transformations for the missing partition(s).

Spark has libraries for structured data processing (SparkSQL), streaming [ZDL13], machine learn-

ing (MLlib), and graph processing (GraphX).

SparkSQL. Spark’s structured data and relational processing module, supports a subset of SQL.

SparkSQL provides logical and physical relational operators. SparkSQL physical operators use a

pipelined iterator model and are implemented as functions applied over the iterator from an up-

stream operator. The Catalyst framework [AXL15] supports the compilation and optimization

of SparkSQL programs into physical plans. In this work, we use and extend SparkSQL opera-

tors. We also propose BigDatalog operators that are implemented using the Catalyst framework so

BigDatalog can use Catalyst planning features on recursive plans.

Iterative Spark Programs. Spark iterative applications are implemented by having a driver pro-

gram iterate over a sequence of transformations terminated by an action. Each iteration is a new

job that operates on cached RDD(s) produced by the previous iteration. Iteration terminates after a

user-defined number of iterations or based on a user-defined predicate that determines when con-

vergence has been reached. Examples of algorithms supported by this approach include PageRank,

logistic regression, and the Semi-Naı̈ve TC shown in Figure 5.2.

Figure 5.2 is explained as follows. After some initial setup including distributing the graph

among nodes of the cluster (line 1) and preparing the edges of the graph for joins (line 2), the

program enters a do-while loop. It will iterate by executing a new job for each count action,

until an iteration produces no new results (line 9). In each iteration, the program will join facts

from the previous iteration (deltaTC) with arcs (line 5), project the pair of vertices (line 6), and

eliminate duplicates (line 7). The set of all previously produced pairs is then combined with the

newly produced pairs (line 8). Reused RDDs are cached (lines 2, 7, 8).

68

1 var tc = sc.parallelize(graph, numPartitions)

2 val arcs = tc.map(x => (x._2, x._1)).cache()

3 var deltaTC = tc

4 do {

5 deltaTC = deltaTC.join(arcs)

6 .map(x => (x._2._2, x._2._1))

7 .subtract(tc).distinct().cache()

8 tc = tc.union(deltaTC).cache()

9 } while (deltaTC.count() > 0)

10 tc

Figure 5.2: Semi-Naı̈ve TC Spark Program.

Note the simplicity of the DATALOG program in Program 1 compared to the Spark program

in Figure 5.2. Spark requires the programmer (1) be familiar with semi-naı̈ve evaluation, (2)

directly express a dataflow’s physical plan composed of properly ordered operations and (3) handle

memory management (RDD caching) to obtain better performance. Instead, BigDatalog enables

high-level specification amenable to optimizations and rescues the programmer from extensive

coding, debugging and maintenance effort.

5.1.2 Challenges for Datalog on Spark

Now that we have provided background on Spark, we can discuss the three main challenges we

face with implementing DATALOG in Spark.

1. Acyclic Plans: Supporting compilation, optimization and evaluation of DATALOG programs

on Spark requires features not currently supported. A recursive, rule-based syntax requires a dif-

ferent compiler front-end than SparkSQL language queries. SparkSQL lacks recursion operators,

operators are designed for acyclic use, and the Catalyst optimizer is targeted for non-recursive

plans.

2. Scheduling: Spark uses a synchronous stage-based scheduler that issues tasks for a stage only

69

after all tasks of the previous stages have completed. For (monotonic) DATALOG programs, like

the ones studied in this chapter, this can be seen as unnecessary coordination because monotonic

DATALOG programs are eventually consistent [ANB11].

3. RDD Immutability & Memory Utilization: Each iteration of recursion will produce a new

RDD representing the facts obtained thus far during evaluation of the recursive predicate. This

RDD will contain both new facts and all the facts produced in earlier iterations, which are already

contained in earlier RDDs. If poorly managed, recursive applications on Spark can experience

memory utilization problems.

5.2 BigDatalog

BigDatalog is a distributed DATALOG language implementation for analytics. With BigDatalog,

programs are expressed as DATALOG rules, then compiled, optimized and executed on Spark.

BigDatalog will manage the persistence of datasets and make partitioning decisions. BigDatalog

uses set-semantics and supports recursion, non-monotonic aggregation (count, sum, min, max,

avg) and aggregation in recursion with monotonic aggregates (cf. Section 5.4).

5.2.1 Benchmark Programs

In this chapter, we focus on monotonic (positive) programs which include classical recursive

queries from the literature as well as aggregate queries, some of which are long studied (e.g.,

shortest paths) and others studied more recently (connected components) [SPS13, WBH15].

Classical Recursive Queries

• Transitive Closure (TC) (Program 1)

• Same Generation (SG) identifies pairs of vertices where both are the same number of hops

from a common ancestor.

• Reachability (REACH) produces all nodes connected by some path to a given source node.

Aggregation in Recursion Queries

70

• Single-Source Shortest Paths (SSSP) computes the length of the shortest path from a source

vertex to each vertex it is connected to.

• Connected Components (CC) identifies connected components in the graph.

The programs selected can be separated into two categories. The first category includes pro-

grams such as TC and SG which produce large result sets, even from small graphs. For TC and SG

we will use graphs that are relatively small in terms of number of vertices or edges. The second

category includes programs such as REACH, CC, and SSSP that produce result sets smaller than

the input graphs, and so for this category we experiment with large graphs. Next, we show how

Program 1 is executed on Spark using the BigDatalog API.

5.2.2 BigDatalog API By Example

The program snippet shown in Figure 5.3 computes the size of the transitive closure of the graph us-

ing the BigDatalog API for Spark. In a driver program, the user first gets a BigDatalogContext

(line 1), which wraps the SparkContext (sc) – the entry point for writing and executing Spark

programs. The user then specifies a database schema definition for base relations and program

rules (lines 2-4). Lines 3-4 implement TC from Program 1. The database definition and rules are

given to the BigDatalog compiler which loads the database schema into a relation catalog (line 5).

Next, the data source path (e.g., local or HDFS file path, or RDD) for the arc relation is provided

(line 6). Then, the query to evaluate is given to the BigDatalogContext (line 7) which com-

piles it and returns an execution plan used to evaluate the query. As with other Spark programs,

evaluation is lazy – the query is evaluated when count is executed (line 8).

5.2.3 Parallel Semi-Naı̈ve Evaluation on Spark

BigDatalog programs are evaluated using a parallel version of SN we call Parallel Semi-Naı̈ve

Evaluation (PSN). PSN is an execution framework for a recursive predicate and it is implemented

using RDD transformations. Since Spark evaluates synchronously, PSN will evaluate one itera-

tion at a time, where an iteration will not begin until all tasks from the previous iteration have

71

1 val bdCtx = new BigDatalogContext(sc)

2 val program = "database({arc(X:Integer, Y:Integer})."

3 + "tc(X,Y) <- arc(X,Y)."

4 + "tc(X,Y) <- tc(X,Z), arc(Z,Y)."

5 bdCtx.datalog(program)

6 bdCtx.datasource("arc", filePath)

7 val tc = bdCtx.query("tc(X,Y).")

8 val tcSize = tc.count()

Figure 5.3: BigDatalog Program for Spark.

completed.

The two types of rules for a recursive predicate – the exit rules and recursive rules – are com-

piled into separate physical plans (plans) which are then used in the PSN framework. Plans are

composed of SparkSQL and BigDatalog operators. A plan produces an RDD representing the

plan’s transformations. The RDD for the exit rules plan is first evaluated once. Then, each itera-

tion until a fixpoint is reached, the recursive rules plan is used to produce a new RDD, which is

evaluated to produce the facts for the iteration. This design allow BigDatalog to apply the same

sequence of transformations over different RDDs each iteration without the cost of re-compilation,

logical planning or physical planning. Lastly, note that as with SN, PSN will also evaluate sym-

bolically rewritten rules (e.g., tc(X, Y)← δtc(X, Z), arc(Z, Y).).

Algorithm 5 is the psuedocode for the PSN using RDDs and is explained as follows. The

exitRulesPlan (line 1) and recursiveRulesPlan (line 5) are plans for the exit rules and recur-

sive rules, respectively. We use toRDD() (lines 1,5) to produce the RDD for the plan. Each iteration

produces two new RDDs – an RDD for the new results produced during the iteration (delta) and

an RDD for all results produced thus far for the predicate (all). The updateCatalog (lines 3,8)

stores new all and delta RDDs into a catalog for plans to access. The exit rule plan is evaluated

first. The result is de-duplicated (distinct) (line 1) to produce the initial delta and all RDDs

(line 2), which are used to evaluate the first iteration of the recursion. Each iteration is a new job

72

Algorithm 5 PSN Framework with RDDs - Psuedocode

1: delta = exitRulesPlan.toRDD().distinct()

2: all = delta

3: updateCatalog(all, delta)

4: do

5: delta = recursiveRulesPlan.toRDD()

6: .subtract(all).distinct()

7: all = all.union(delta)

8: updateCatalog(all, delta)

9: while (delta.count() > 0)

10: return all

executed by count (line 9). First, the recursiveRulesPlan is evaluated using the delta RDD

from the previous iteration. This will produce an RDD that is set-differenced (subtract) with the

all RDD (line 6) and de-duplicated to produce a new delta RDD. With lazy evaluation, the union

of all and delta (line 7) from the previous iteration is evaluated prior to its use in subtract (line

6).

We have implemented PSN to cache RDDs that will be reused, namely all and delta, but we

omit this from Algorithm 5 to simplify its presentation. Lastly, in cases of mutual recursion, when

two or more rules belonging to different predicates reference each other (e.g., A ← B, B ← A),

one predicate will “drive” the recursion with PSN and the other recursive predicate(s) will be an

operator in the driver’s recursive rules plan.

5.2.4 Compilation and Planning

The BigDatalog compiler supports the parallel, distributed bottom-up evaluation of DATALOG pro-

grams. Figure 5.4 depicts the compilation workflow for BigDatalog programs. The input for the

compiler is a database schema definition, a set of rules and a query. From this, the compiler creates

a logical plan for the program, which is optimized using database techniques such as projection

73

pruning. The logical plan for a non-recursive BigDatalog query is mapped into a SparkSQL plan

and executed accordingly. However, logical plans for recursive queries are converted to BigDatalog

physical plans.

Figure 5.4: BigDatalog Compilation Workflow.

5.2.4.1 Logical Plans

Here, we use Program 1 (TC) to describe how the compiler produces a logical plan. Given the

query tc(X,Y), the program is first compiled into a Predicate Connection Graph (PCG) (Section

3) to identify the exit rules (r1) and recursive rules (r2) of the tc recursive predicate. From the

PCG, the logical query plan is produced by mapping it into a tree of relational and recursion (e.g.,

SN) operators. A recursion operator has two child logical (sub)plans: one plan for the predicate’s

exit rules and the other for the predicate’s recursive rules. Figure 5.5(a) is the logical plan produced

by the BigDatalog compiler for Program 1. The left side of Figure 5.5(a) is the exit rules plan with

only the arc relation, representing r1. The right side of Figure 5.5(a) is the recursive rules plan

made up of relational operators to produce one iteration of r2.

Program 25. Same Generation

r1 .sg(X, Y)← arc(P, X), arc(P, Y), X ! = Y.

r2 .sg(X, Y)← arc(A, X), sg(A, B), arc(B, Y).

Consider Program 25, the Same Generation (SG) program. The exit rule r1 produces all X,Y

pairs with the same parents (i.e. siblings) and the recursive rule r2 produces new X,Y pairs where

both X and Y have parents of the same generation. For PSN, r2 is (symbolically) rewritten as

sg(X, Y) ← arc(A, X), δsg(A, B), arc(B, Y). The left side of Figure 5.5(b) is the exit rules plan

74

with a self-join of arc to find siblings. The right side of Figure 5.5(b) is the recursive rules plan

which includes a three-way join of δsg and arc.

(a) TC (b) SG

Figure 5.5: BigDatalog Logical Plans.

5.2.4.2 Physical Plans

BigDatalog translates logical plans into physical plans comprised of SparkSQL and BigDatalog

physical operators. Like SparkSQL operators, BigDatalog operators use the SparkSQL Row type.

Most logical-to-physical operator mapping is straightforward, however recursion, join and shuffle

operators require discussion.

Recursion Operators. The Recursion Operator (RO) is a special driver operator that runs on the

master and executes PSN, i.e., the psuedocode from Algorithm 5. An RO has two child physical

(sub)plans, the Exit Rules Plan (ERP) and the Recursive Rules Plan (RRP). A Recursive Relation

operator represents a recursive predicate in the RRP and produces the recursive relation when

evaluated (i.e., the plan version of a recursive predicate body literal).

Join Operators. BigDatalog uses binary hash join operators where one input is loaded into a

lookup hashtable and tuples of the other input are streamed; the hash of the tuple’s join key at-

tributes is used to probe the lookup table for matches. Since rules, PCG and logical plans all

75

support multi-way joins, but physical join operators are binary operators, we convert a multi-way

logical join operator into a hierarchy of binary physical join operators, in a left-to-right fashion.

In a linear recursion, where only one join input is a recursive relation, the non-recursive input

is loaded into lookup tables and the recursive relation is streamed. For instance, from the logical

plan for TC in Figure 5.5(a), the RRP will have a join where δtc is streamed and arc is loaded

into lookup tables. To help explain our approach for non-linear recursions, we use the following

non-linear program. In this program, r2 creates new tc facts of the form (X, Y) by joining tc facts

of the form (X, Z) with tc facts of the form (Z, Y).

Program 26. Non-Linear Transitive Closure

r1 .tc(X, Y)← arc(X, Y).

r2 .tc(X, Y)← tc(X, Z), tc(Z, Y).

In Program 26, r2 will be (symbolically) rewritten for SN, as:

tc(X, Y)← δtc(X, Z), tc(Z, Y).

Since both inputs to the join are recursive relations, δtc will be loaded into lookup tables and tc

will be streamed. We choose this approach because loading the smaller of the two into lookup

tables is less expensive and after a few iterations, tc is likely to be much larger than δtc. Program

26 performs the logarithm of the number of iterations of the linear TC Program 1.

Shuffle Operators. After mapping the logical operators into physical operators, the last step to

produce a physical plan for execution is to add shuffle operators for distributed evaluation. Shuffle

operators are used to repartition the dataset when there is a mismatch between an operator’s re-

quired input partitioning and a child operator’s output partitioning. For example, a shuffle operator

is needed to repartition an input to a join if the input is not partitioned on the join keys. We use a

Catalyst feature to analyze the physical plan and add shuffle operators where needed. We use hash

partitioning and a static number of partitions throughout evaluation. Future work is to investigate

dynamically adjusting the number of partitions during evaluation.

Example Plans. The physical plans produced for Program 1 (TC) and Program 25 (SG) are

displayed in Figure 5.6(a) and 5.6(b), respectively. Using Figure 5.6(a) as our point of reference,

76

(a) TC (b) SG

Figure 5.6: BigDatalog Physical Plans.

we explain how our operators from above are used in plans. The root of the plan is the RO for the

tc recursive predicate. In the RRP, δtc is a recursive relation and when evaluated will produce

tc’s facts from the previous iteration. Both inputs to the hash join are shuffled. The subscript

Z, [N] indicates the partitioning key is the Z argument (from the program rule), and there will be N

partitions. Here Z is the join argument so that tuples of arc and δtc having the same key will be

co-located on the same worker.

Figure 5.7 depicts the RDD lineage graph produced when evaluating the physical plan shown in

Figure 5.6(a) up through two iterations of PSN. Mapping the evaluation of Figure 5.6(a) with PSN

into RDDs is straightforward, however some important points are the following. The reader should

notice the box with ERP (RRP) in the corner encloses the ERP (RRP) RDDs and transformations.

RDDs (and transformations) not enclosed in boxes are produced by the PSN framework. We use a

dashed line to indicate tc0 is the same RDD as δtc0. Evaluation begins by reading in an input file

and partitioning it via coalesce into a user-defined number of partitions (e.g., number of cpu

cores in the cluster) to create the arc RDD. Lastly, note that in addition to the shuffle operations

prior to the join of arc and δtc, the subtract and distinct transformations applied by PSN

also shuffle.

77

Figure 5.7: RDD Lineage Graph for TC Physical Plan.

5.3 Optimizations

This section presents optimizations to improve the performance of BigDatalog programs. Details

on the datasets used in experiments in this section can be found in Section 5.5.

5.3.1 Optimizing PSN

As shown with Algorithm 5, PSN can be implemented with RDDs and transformations such as

subtract, distinct and union. However, using standard RDD transformations is inefficient

because each iteration the results of the recursive rules are set-differenced with the entire recursive

relation (line 6 in Algorithm 5), which is growing each iteration. Since an RDD stores facts in

an array, expensive data structures must be created each iteration. We propose instead to use the

SetRDD, a specialized RDD for storing distinct Rows and tailored for set operations needed for

78

PSN. Each partition of SetRDD is a single set data structure.1 By storing facts in a set, SetRDD

efficiently supports set-difference and de-duplication operations. By caching SetRDD, the need to

rebuild expensive data structures each iteration is eliminated. SetRDD methods include union2,

which unions two SetRDDs to produce a new SetRDD, and diff, which produces a new SetRDD

containing rows from the input RDD not already in the SetRDD. Converting PSN to use SetRDD

is straightforward.

class SetRDD(partitionsRDD: RDD[SetRDDPartition[Row]])

extends RDD[Row] {

def diff(other: RDD[Row]): SetRDD

override def union(other: RDD[Row]): SetRDD

...}

abstract class SetRDDPartition[T] {

def diff(iter: Iterator[T]): SetRDDPartition[T]

def union(other: SetRDDPartition[T]): SetRDDPartition[T]

...}

object SetRDD {

def apply(rdd: RDD[Row], schema: Schema): SetRDD = {

new SetRDD(rdd.mapPartitions[SetRDDPartition[Row]] (

iter => Iterator(SetRDDHashSetPartition(iter, schema)),

true))

}

Figure 5.8: SetRDD Interface.

In SetRDD, facts are efficiently stored using type-specific data structures to store primitive

types sufficient to capture the schema or, in the case of larger schema, Row objects themselves.

For instance, the recursive relation of either TC or SG will store pairs of vertices with a schema of

two 4-byte integers. We combine the two 4-byte integers into one 8-byte integer (long) and use a

1This design is inspired by GraphX’s specialized RDD for vertices (VertexRDDImpl) which stores multiple data
structures (e.g., bitset, array) in each RDD partition.

2This is a set union i.e., it removes duplicates.

79

HashSet from fastutil [fas15] optimized for long. Storing primitives saves memory and garbage

collections as compared to storing more expensive wrapper types (e.g., java.lang.Long) and

provides fast existential checks for de-duplication. SetRDD can be configured to also utilize spe-

cialized B+trees for int, long, and byte arrays (for larger schema). Row objects are produced

from the primitive types by a schema-aware iterator.

Figure 5.8 displays the interfaces for the SetRDD and SetRDDPartition classes and Fig-

ure 5.9 displays the implementation of SetRDDHashSetPartition. Note the HashSet-

typed argument in the constructor to SetRDDHashSetPartition - this is a type-specific

HashSet structure and has methods size, insert(Row) and contains(Row). The design

of SetRDDBPlusTreePartition is similar and uses a B+Tree instead of HashSet.

Monotonicity and RDD Immutability. We can apply an optimization enabled by DATALOG

set-containment semantics to efficiently produce a new SetRDD for the union transformation. Al-

though an RDD is intended to be immutable, we make SetRDD mutable under the union operation.

From union, a new SetRDD will be produced with partitions referencing the same HashSets as

its creator. For example, in Figure 5.9 both union methods add facts to the partition’s existing

HashSet. In the event that a task performing the union fails and must be re-executed, it will not lead

to incorrect results because union is monotonic and facts can be added only once to a relation. This

design saves system memory because only one HashSet exists per partition across all iterations.

Table 5.1: PSN vs. PSN with SetRDD Performance

Time (s)
TC SG

Tree17 Grid150 G10K Tree11 Grid150 G10K

PSN 244 OOM 208 OOM 230 1129

PSN with SetRDD 41 134 20 59 61 130

Table 5.1 displays the results of evaluating TC and SG with both PSN and PSN with SetRDD.

PSN with SetRDD outperforms PSN significantly in all cases.

80

class SetRDDHashSetPartition(set: HashSet, schema: Schema)

extends SetRDDPartition[Row] {

override def union(otherPartition: SetRDDPartition[Row]):

SetRDDHashSetPartition = {

otherPartition match {

case otherPartition: SetRDDHashSetPartition => {

new SetRDDHashSetPartition(

set.union(otherPartition.set), schema)

}

case other => union(otherPartition.iterator)

}

}

override def union(iter: Iterator[Row]):

SetRDDHashSetPartition = {

while (iter.hasNext)

set.insert(iter.next())

new SetRDDHashSetPartition(set, schema)

}

...}

Figure 5.9: SetRDDHashSetPartition Implementation.

5.3.2 Partitioning

The initial version of PSN used RDD transformations (e.g., distinct, subtract) that per-

formed the necessary shuffling operations. That approach was sufficient to produce a correct re-

sult, but could be inefficient to evaluate. Now, SetRDD’s diff and union transformations are

designed to require properly partitioned input (i.e., they will not shuffle). Therefore, none of the

transformations used in PSN will repartition inputs so shuffle operators need to be placed into ERP

and RRP to produce properly partitioned output for PSN transformations. This approach allows

for a simplified and generalized PSN framework and brings the insertion of shuffle operators to

81

the workflow under the control of the BigDatalog compiler. With full control over shuffle operator

placement, (i.e., communication decisions), BigDatalog can produce very efficient evaluations.

Earlier DATALOG research showed a good partitioning strategy (i.e., the arguments on which to

partition) for a recursive predicate was important for efficient parallel evaluation [CW89, GST90,

GST92, WO90]. In general, we seek a partitioning strategy that limits shuffling. The default

partitioning strategy employed by BigDatalog is to partition the recursive predicate on the first

argument. Now we can produce plans for PSN that will terminate with a shuffle operator if the

output of the plan does not match the partitioning strategy of the predicate. Figure 5.10(a) is the

plan for Program 1 for PSN with SetRDD. With the recursive predicate (tc) partitioned on the first

argument notice how both the ERP and RRP terminate with a shuffle operator.

(a) TC (b) SG

Figure 5.10: PSN with SetRDD Physical Plans.

User-Defined Partitioning. In the plan in Figure 5.10(a) δtc requires shuffling prior to the join

since it is not partitioned on the join key (Z) because the default partitioning is the first argument

(X). However, if the second argument were instead made the default, the inefficiency with Fig-

ure 5.10(a) would be resolved but then other programs such as SG in Figure 5.10(b) would suffer

(δsg would require a shuffle prior to the join). Therefore, to support programs where the default

partitioning will lead to inefficient execution, BigDatalog allows the user to define a recursive

82

predicate’s partitioning via a configuration option. For example, by overriding the default parti-

tioning and making tc’s second argument the partitioning strategy, the shuffle for δtc before the

join in Figure 5.10(a) will not be inserted to the plan and the plan shown in Figure 5.11 would be

produced.

Figure 5.11: Plan for TC partitioned on 2nd argument.

Table 5.2 shows the results of TC evaluated with the plan in Figure 5.10(a) versus the same

plan, but using the second argument as tc’s partitioning strategy. In fact, on all graphs from Table

5.6, the plan using the second argument matched or outperformed the other.

Table 5.2: Comparison of TC with Different Partitioning Strategies

Time (s) Tree17 Grid250 G10K

1st Argument 41 370 20

2nd Argument 26 265 19

5.3.3 Join Optimizations for Linear Recursion

Input Caching. Since we use a static number of partitions and because non-recursive inputs do

not change during evaluation, for a join implementing a linear recursion, the non-recursive join

input can be cached. This can lead to significant performance improvements since input partitions

83

no longer have to be shuffled and loaded into lookup tables prior to a join each iteration. Table 5.3

shows the improved performance of caching. For TC on Tree17, shuffling and loading lookup

tables for join each iteration is a significant part of the execution time, even though there are only

17 iterations. Grid250 benefits because it requires 500 iterations and now only needs to load the

lookup tables once.

(a) Shuffle Join (b) Broadcast Join

Figure 5.12: Linear Recursion Joins. Numbers 1 and 2 indicate partition ids of the respective

dataset.

Broadcast Joins. Figure 5.12 depicts two approaches where the non-recursive input is a base

relation and each input dataset has two partitions. For linear recursions, instead of joining partitions

as described earlier and depicted in Figure 5.12(a), each partition of a recursive relation can be

joined with an entire relation as depicted in Figure 5.12(b). We now refer to the former type

of join as a shuffle join and the latter as a broadcast join3. In both scenarios, the non-recursive

input is loaded into a lookup table. For a broadcast join, the cost of loading the entire relation

into a lookup table is amortized over the recursion because the lookup table is cached and then

reused every iteration. However, to execute a broadcast join the relation must fit in memory. With

large memories currently available, we believe broadcast joins are acceptable for many DATALOG

programs.

Figure 5.13 shows an RRP for Program 25 (SG) where the three-way join from the logical

plan (Figure 5.5(b)) has been converted to a two-level broadcast join. In the event that a broadcast

3Broadcast joins are supported with Spark’s broadcast variable infrastructure.

84

Figure 5.13: SG with Broadcast Joins.

relation is used multiple times in a plan, as in Figure 5.13, BigDatalog will broadcast it once and

all broadcast join operators joining the relation will use it.4

Table 5.3 shows the results of using broadcast joins compared to shuffle joins on tree and grid

graphs for TC and SG. SG greatly benefits on both graphs from using broadcast joins because three

shuffles are eliminated from the plan and these graphs require minimal broadcast time. However,

broadcast joins proved inefficient for Tree17 for TC because the job to load the lookup table and

broadcast it to workers takes half of the execution time. Nevertheless, broadcast join is the default

join operator for linear recursion, but shuffle join can be selected via configuration setting.

Table 5.3: Join Optimizations for Linear Recursion

Time (s)
TC SG

Tree17 Grid250 Tree11 Grid250

Shuffle join no caching 26 265 59 107

Shuffle join caching 17 196 56 81

Broadcast join 53 197 45 54

4We extend SparkSQL’s broadcast join operator with support for sharing a broadcast relation between join
operators.

85

5.3.4 Decomposable Programs

Previous research on parallel evaluation of DATALOG programs determined some programs are

decomposable and thus evaluable in parallel without redundancy (a fact is only produced once)

and without processor communication or synchronization [WS88]. Techniques for evaluating de-

composable programs are appealing for BigDatalog because data-parallel systems like Spark can

scale to utilize many machines and large numbers of cpu cores. Furthermore, mitigating the cost

of synchronization and shuffling can lead to significant execution time speedup.

Program 1 (linear TC) is a decomposable program [WS88] and the following example demon-

strates this. This example is based on the example in [WS88]. Using the facts from Figure 5.14, we

make the evaluation of the exit rules result in two partitions. Figure 5.15 shows the derivations of

the r1 exit rule. One task creates a partition only with odd numbers for the first argument (left side

of Figure 5.15) and a second task creates a partition only with even numbers for the first argument

(right side of Figure 5.15). In Figure 5.15 we use an expression with a modulo operator in the

exit rule to identify the partition number, however BigDatalog will actually use a shuffle operator

to achieve this. Now entering the recursive part of the program, the work is partitioned for the

evaluation of two independent TC evaluations, as long as arc is available for each evaluation. This

is illustrated in Figure 5.16. One task produces the TC for vertex pairs starting at even numbered

vertices, the other produces the TC for vertex pairs starting at odd numbered vertices. It should be

clear how this approach can be extended to any number of tasks (i.e., use mod N where N is the

number of tasks).

However, even if a program is decomposable, the system still needs to be able to produce

physical plans to evaluate it as such. We consider a BigDatalog physical plan decomposable if

RRP has no shuffle operators. The physical plan for Program 1 shown in Figure 5.10(a) has shuffle

operators in RRP. Instead, BigDatalog can produce a decomposable physical plan for Program

1 by partitioning tc on the first argument and using a broadcast join. The partitioning strategy

(first argument) divides the recursive relation so each partition can be evaluated independently and

without shuffling, and the broadcast join allows each partition of the recursive relation to join with

86

Facts: arc(0, 2). arc(1, 2). arc(2, 3). arc(4, 2).

Figure 5.14: arc Facts for Example Decomposable Evaluation.

r1 Derivations

Partition 0 (even) Partition 1 (odd)

tc(0, 2)← arc(0, 2), 0 mod 2 = 0. FAIL← arc(0, 2), 0 mod 2 6= 1.

FAIL← arc(1, 2), 1 mod 2 6= 0. tc(1, 2)← arc(1, 2), 1 mod 2 = 1.

tc(2, 3)← arc(2, 3), 2 mod 2 = 0. FAIL← arc(2, 3), 2 mod 2 6= 1.

tc(4, 2)← arc(4, 2), 4 mod 2 = 0. FAIL← arc(4, 2), 4 mod 2 6= 1.

δtc0 : {tc(0, 2). tc(2, 3). tc(4, 2).} δtc1 : {tc(1, 2).}

Figure 5.15: Example r1 Derivations for Decomposable TC Evaluation.

r2 Successful Derivations

Even Partition Odd Partition

1st Iteration tc(0, 3)← tc(0, 2), arc(2, 3). tc(1, 3)← tc(1, 2), arc(2, 3).

tc(4, 3)← tc(4, 2), arc(2, 3).

δtc0 : {tc(0, 3). tc(4, 3).} δtc1 : {tc(1, 3).}

2nd Iteration NONE NONE

δtc0 : {∅} δtc1 : {∅}

Fixpoint Reached

Figure 5.16: Example r2 Derivations for Decomposable TC Evaluation.

the entire arc base relation. Figure 5.17 is the decomposable physical plan for Program 1. Since

we do not pre-partition base relations, the ERP has a shuffle operator to repartition the arc base

relation into N partitions by arc’s first argument X.

Figure 5.18 depicts the RDD lineage graph produced when evaluating the physical plan shown

in Figure 5.17 up through two iterations of PSN. Mapping the evaluation of Figure 5.17 with PSN

into RDDs is straightforward, however there are some important points to take note of. Firstly,

the shuffle in the ERP is the only shuffle in this RDD lineage graph. Secondly, the broadcast arc

87

Figure 5.17: Decomposable TC Plan.

relation is copied to each worker where it is cached and reused each iteration.

Figure 5.18: RDD Lineage Graph for Decomposable TC Physical Plan.

Table 5.4 displays the execution times using the shuffle join plan and the decomposable plan in

Figure 5.17. With the exception of Tree17, the decomposable plan greatly outperforms the plan

88

using shuffle joins.

Table 5.4: Comparison of Shuffle vs. Decomposable TC Plans

Time (s) Tree17 Grid250 G10K G10K-0.01 G20K

Shuffle 26 265 19 121 101

Decomposable 49 55 7 22 19

Although linear TC is decomposable, not all linear recursions are. Unary (single argument)

predicates such as reach in Program 27 are not decomposable. The Reachability (REACH) pro-

gram identifies all nodes reachable from the given source node. r1 initializes the recursion from

0. Then, in r2 previously computed reach facts are joined to arc to find new vertices reachable

from 0.

Program 27. Reachability

r1 .reach(Y)← Y = 0.

r2 .reach(Y)← reach(X), arc(X, Y).

Identifying Decomposable Programs. BigDatalog identifies decomposable programs via syntac-

tic analysis of program rules using techniques presented in the generalized pivoting work [SL91].

The authors of [SL91] show that the existence of a generalized pivot set (GPS) for a program is a

sufficient condition for decomposablility and present techniques to identify GPS in arbitrary DAT-

ALOG programs. We have implemented the techniques described in [SL91] to determine the GPS

for BigDatalog programs. When a BigDatalog program is submitted to the compiler, the compiler

will apply the generalized pivoting solver to determine if the program’s recursive predicates have

GPS. If they indeed do, we now have a partitioning strategy and, in conjunction with broadcast

joins, we can efficiently evaluate the program with these settings. For example, Program 1 has a

GPS which says to partition the tc predicate on its first argument.

Note that this technique is enabled by using DATALOG which allows BigDatalog to analyze the

program at the logical level. The Spark API is unable to provide this type of support alone because

programs are written in terms of physical operations.

89

5.3.5 Job Optimizations

Lineage. Since RDDs produced during an iteration are input for the next iteration, RDD lineage

can grow long for recursive programs. Since lineage is inspected frequently during execution, for

long running recursions we found this can result in a stack overflow. The standard solution is to

checkpoint the RDD which clears the lineage after being written to disk, however a disk write is

not always acceptable. To address this problem we implement a technique for cached RDDs that

will clear lineage, but does not require checkpointing.5 We sacrifice some degree of fault tolerance

in favor of execution time performance, although this technique can still utilize cache replication

and disk backup. Otherwise, we leverage the standard fault tolerance mechanisms provided by

Spark.

Figure 5.19: Multi-Job scheduling of Program 1 (TC). ShuffleMapStages are orange. ResultStages,

which produce output for a job, are gray. Job 0 is a broadcast of the arc base relation.

Scheduler-Aware Recursion. With PSN as shown in Algorithm 5, the scheduler is unaware that

subsequent iterations could be required and therefore is unable to optimize recursive execution.

We now refer to this approach as Multi-Job PSN, which is depicted in Figure 5.19 for evaluating

Program 1. To address the inefficiency with Multi-Job PSN, we investigate pushing the recursion

into the scheduler so recursive queries are supported as Single-Job PSN. We extend the Spark

scheduler to use a special type of stage for recursion (FixpointStage) and support a fixpoint job,

which is different from normal jobs in that 1) each iteration, the scheduler evaluates a new RDD

over the previous iteration’s results and 2) the scheduler will issue iterations until evaluation of

the RDD results in an empty RDD indicating a fixpoint has been reached. Figure 5.20 depicts

5A solution to this problem in Spark 1.5.0 is to use Local Checkpointing, i.e., checkpointing on the local worker.

90

evaluating Program 1 in this manner. Lastly, checkpointing is applied at the end of a job, so

previously each iteration of Multi-Job PSN could be checkpointed. To support checkpointing an

iteration in Single-Job PSN, checkpointing is also pushed into the scheduler.

Figure 5.20: Single-Job scheduling of Program 1 (TC). ShuffleMapStages are orange. Result-

Stages, which produce output for a job, are gray. FixpointResultStages are blue. Job 0 is a broad-

cast of the arc base relation.

Optimizing Single-Job PSN. With Single-Job PSN, the scheduler is now aware that multiple

iterations could be required. If a program is partitioned such that it does not require shuffling

in the recursion, the scheduler will not create stages with shuffle operators. When the scheduler

detects this situation, it configures the stage’s tasks to iterate on workers and execute the same RDD

until a fixpoint is reached. To support reusing the same RDD, the RDD partitions in the local cache

from the previous iteration are overwritten with the RDD partitions produced during the current

iteration. We call this Single-Job PSN Reuse. This approach eliminates the cost of scheduling

and task creation for subsequent iterations. Figure 5.21 depicts this approach for Program 1 (TC)

evaluated with the plan from Figure 5.17.

Table 5.5 displays results of the execution times of TC and SG using the Multi-Job PSN, Single-

Job PSN and Single-Job PSN Reuse. For datasets that require many iterations, such as Grid250,

the performance improvement is substantial.

Note that this scheduler optimization is used on decomposable programs. Being able to identify

a decomposable program (i.e., generalized pivoting) is independent from this optimization and thus

this can be used in general to evaluate a decomposable plan, not just by BigDatalog.

91

Figure 5.21: Single-Job Reuse scheduling of Program 1 (TC). ShuffleMapStages are orange. Re-

sultStages, which produce output for a job, are gray. FixpointResultStages are blue. Job 0 is a

broadcast of the arc base relation.

Table 5.5: Comparison of PSN Job Strategies

Time (s)
TC SG

Tree17 Grid250 Tree11 Grid250

Multi-Job PSN 51 111 53 75

Single-Job PSN 49 55 53 53

Single-Job PSN Reuse 45 26 N/A N/A

5.4 Aggregates

Traditional SQL aggregates (min, max, sum, count, avg) are non-monotonic and thus cannot

be used in recursion. Researchers have recently proposed aggregates that are monotonic w.r.t.

set containment, the same monotonicity used by standard Datalog, meaning these aggregates can

be used in recursive rules and evaluated using techniques such as SN and magic sets [MSZ13a,

MSZ13b]. A sequential version of these aggregates was presented in Chapter 4. In this chapter we

present a distributed version of the aggregates.

BigDatalog supports the same four monotonic aggregates asDeALS - mmin, mmax, mcount,

msum. The declarative semantics allows the aggregates inside the recursion so long as monotonic-

ity w.r.t. set containment is maintained. Therefore, during evaluation the monotonic aggregates

can produce new higher (mmax, mcount, msum) or lower (mmin) values with each input fact and

thus an outer non-monotonic aggregate (min or max) is necessary to produce only the final value.

92

An example of this can be seen in Program 28, the single-source shortest paths program (SSSP).

Note, BigDatalog uses aggregates functions in rule heads with the non-aggregate arguments as the

grouping arguments.

Program 28. Single-Source Shortest Paths

r1 .sssp2(Y, mmin〈D〉)← Y = 1, D = 0.

r2 .sssp2(Y, mmin〈D〉)← sssp2(X, D1), arc(X, Y, D2), D = D1 + D2.

r3 .sssp(X, min〈D〉)← sssp2(X, D).

The SSSP program computes the length of the shortest path from a source vertex to all vertices

it is connected to. This program uses a mmin monotonic aggregate. Here the arc predicate in r2

denotes edges of the graph (X, Y) with edge cost D2. r1 seeds the recursion with starting vertex 1.

Then, r2 will recursively produce all new minimum cost paths to a node Y though node X. Lastly,

r3 produces only the minimum cost path for each node X, however in our actual implementation,

we do not have to evaluate r3 since at the completion of the recursion, sssp2’s relation will contain

the shortest path from 1 to each vertex.

Evaluation and Implementation. Programs with monotonic aggregates in recursive rules are

evaluated with an aggregate version of PSN we call Parallel Semi-Naı̈ve - Aggregate (PSN-A).

Compared with PSN, PSN-A is a simpler framework. Since new facts are only produced when a

greater (mmax, mcount, msum) or lesser (mmin) value than the previous value for the (aggregate)

group is produced, de-duplication is unnecessary. Furthermore, the union operation performed in

PSN is unnecessary in PSN-A because new results are added to the aggregate relation during

aggregate evaluation. We implement PSN-A in an aggregate version of an RO. Also, we use a

specialized RDD called an AggregateSetRDD, in which each partition is a key/value map where

each entry represents a unique group and its current value. We use B+trees as the data structures for

the maps and cache the AggregateRDD to avoid the expense of reloading the maps each iteration.

Additionally, since the aggregates functions are monotonic, as with SetRDD’s union operation,

AggregateSetRDD is mutable under aggregate evaluation. Furthermore, an AggregateSetRDD

will reference the same maps as its creator. Should a task fail during evaluation, any changes to the

93

RDD partition will not result in incorrect results since a value can only be updated if it is higher

(mmax, mcount, msum) or lower (mmin) than previously computed values.

For efficient distributed evaluation, monotonic aggregates require a partitioning strategy such

that a group exists in only one partition. If a group is allowed in multiple partitions, a task could

produce a value even though a better value exists. If the input partitioning does not match the

aggregate’s grouping arguments, the aggregate’s input is shuffled. At the end of an iteration, the

aggregate will produce a set containing the last entry made by any group updated during the itera-

tion. This set is then used in the next iteration (i.e., δ).

Program 29. Connected Components

r1 .cc2(X, mmin〈X〉)← arc(X,).

r2 .cc2(Y, mmin〈Z〉)← cc2(X, Z), arc(X, Y).

r3 .cc(X, min〈Y〉)← cc2(X, Y).

The connected components (CC) program is for identifying the connected components of a

graph. This program works by initially assigning the node’s id to itself (r1) and then propagating

a new lower node id for any edge the node is connected to. r3 is necessary to select only the

minimum node id Y for each X found in cc2.

Lastly, in addition to the aggregate programs presented in this chapter, BigDatalog also supports

programs such as Programs 4 and 5 presented in Chapter 4.

5.5 Experiments

In this section, we present experimental results comparing BigDatalog against other large-scale

DATALOG systems. Additionally, we perform experiments to understand how BigDatalog scales

as either cluster size or dataset size increases.

94

5.5.1 Experimental Setup

Our experiments are conducted on a 16 node cluster. Each node runs Ubuntu 14.04 LTS and has an

Intel i7-4770 CPU (3.40GHz, 4 core/8 thread), 32GB memory and a 1 TB 7200 RPM hard drive.

Nodes of the cluster are connected with 1Gbit network. BigDatalog is implemented using Spark

1.4.0 and Hadoop 1.0.4.

Table 5.6: TC and SG Synthetic Test Graphs

Name Vertices Edges TC SG

Tree11* 71,391 71,390 805,001 2,086,271,974

Tree17* 13,766,856 13,766,855 237,977,708

Grid150* 22,801 45,300 131,675,775 2,295,050

Grid250* 63,001 125,500 1,000,140,875 10,541,750

G5K 5,000 24,973 24,606,562 24,611,547

G10K* 10,000 100,185 100,000,000 100,000,000

G10K-0.01* 10,000 999,720 100,000,000 100,000,000

G10K-0.1* 10,000 9,999,550 100,000,000 100,000,000

G20K 20,000 399,810 400,000,000 400,000,000

G40K 40,000 1,598,714 1,600,000,000 1,600,000,000

G80K 80,000 6,399,376 6,400,000,000 6,400,000,000

Datasets. Table 5.6 displays the synthetic graphs used for TC and SG experiments. We use

these graphs to understand how BigDatalog evaluates TC and SG on graphs exhibiting specific

structural properties. Tree11 and Tree17 are trees of height 11 and 17 respectively, and the

degree of a non-leaf vertex is a random number between 2 and 6. Grid150 is a 151 by 151 grid

while Grid250 is a 251 by 251 grid. The Gn-p graphs are n-vertex random graphs (Erdős-Rényi

model) generated by randomly connecting vertices so that each pair is connected with probability

p. Gn-p graph names omitting p use default probability 0.001. Graphs in Table 5.6 with an asterisk

were taken from [YZ14].

Experiments on REACH (Program 27), CC (Program 29) and SSSP (Program 28) use the

RMAT graphs RMAT-n for n ∈ {1M, 2M, 4M, 8M, 16M, 32M, 64M, 128M} generated by the

RMAT graph generator [gtg15] with parameters (a, b, c) = (0.45, 0.25, 0.15). RMAT-n has n

vertices and 10n directed edges with uniform integer weights range from [0, 100).

95

5.5.2 Datalog Systems Comparison

In this section, we report experimental results comparing BigDatalog against other large-scale

DATALOG systems. The purpose of this comparison is to show that with the enhancements and

optimizations proposed in this dissertation Spark is indeed an efficient runtime for DATALOG and

recursive applications. Next, we present the systems we compared with.

Myria has been extended to support asynchronous DATALOG evaluation [WBH15]. Its runtime

is a pipelined, parallel, distributed execution engine that evaluates a graph of operators which is

broken down into fragments, where each fragment is executed in a separate thread on worker

nodes. Datasets are sharded and stored in PostgreSQL instances at worker nodes and read entirely

into memory during evaluation. Myria uses hash partitioning.

Distributed SociaLite is a DATALOG language implementation for social network analysis

[SPS13]. SociaLite programs are code generated and evaluated with a parallel engine on each

worker. SociaLite supports range and hash partitioning and uses message passing to transfer data

between workers.

For our experiments we also compare with native Spark and use two approaches. For TC and

SG, we use optimized Semi-Naı̈ve programs written in the Spark API. These programs attempt

to reduce any unnecessary shuffling. For the experiments on REACH, CC and SSSP, we use

programs for GraphX, Spark’s graph processing module that implements Pregel [MAB10] on top

of Spark. [GXD14] showed GraphX outperforms native Spark on these types of programs, which

we validated in our experimental environment.

For each system, one machine was dedicated as the master and each of the 15 worker nodes

was allowed 30 GB RAM and 8 CPU cores (120 total cores). Myria was configured with one

instance of Myria and PostgreSQL per node, since each node has one disk, which was confirmed

as appropriate by the author of [WBH15]. For Spark programs and BigDatalog, we evaluate with

one partition per available CPU core. BigDatalog uses Single-Job PSN with SetRDD.

96

5.5.2.1 TC and SG Experiments

We perform experiments comparing the execution time of BigDatalog for TC and SG programs

with Myria, SociaLite and handwritten Spark programs on graphs listed in Table 5.6. Although

these graphs appear small in terms of number of vertices and edges, TC and SG are capable of

producing result sets many orders of magnitude larger than the input dataset. BigDatalog is the

only system that finishes the evaluation for TC and SG on all graphs in Table 5.6, except SG on

Tree17 since the size of the result is larger than the total disk space of the cluster. Figure 5.22 and

Figure 5.23 display the evaluation times for TC and SG, respectively, for all four systems. Note,

larger graphs are used in experiments later in this section, albeit they are only evaluated using

BigDatalog, and we do not display those results here.

 1

 10

 10
2

 10
3

 10
4

 10
5

Tree17 Grid150 Grid250 G10K G10K-0.01 G10K-0.1 G20K

T
im

e
 (

s
)

4
9

2
5 5

5

7

2
2

1
4

9

1
9

2
4

4

O
u

t
o

f
M

e
m

o
ry

O
u

t
o

f
M

e
m

o
ry

6
3

3
4

0

4
3

5
4

3
7

1

9
1

2
2

6
8

6

5
0

4
2

4

4
8

0
7

O
u

t
o

f
M

e
m

o
ry

S
to

p
p

e
d

 A
ft

e
r

1
 D

a
y

4
6

5

6
3

0
5

6
5

4 4
7

3
6 2
9

8
5

2

5
3

3
5

BigDatalog Spark Myria SociaLite

Figure 5.22: TC System Comparison.

Aside from Grid150, BigDatalog has the best execution time on all graphs for TC, and on four

of the remaining six graphs outperforms the other systems by an order of magnitude. BigDatalog

uses the decomposed plan from Figure 5.17 for TC, which only performs an initial shuffle of the

dataset. This design shows to be effective for evaluating TC on these graphs. However, if the

evaluation requires many iterations while very little work is performed in each iteration, the over-

head of scheduling takes a significant portion of execution time, and thus BigDatalog performs

slightly slower compared to Myria on Grid150. If BigDatalog instead evaluates Grid150 with

Single-Job PSN Reuse (Section 5.3.5), the execution time drops to thirteen seconds. The handwrit-

ten Spark programs are also affected by the overhead of scheduling on Grid150 and Grid250,

which require 300 and 500 iterations, respectively, but also suffer memory utilization issues related

to dataset caching and run out of memory. For the remaining five graphs, the native Spark pro-

grams are slower compared with BigDatalog due to the overhead of shuffling. The same amount

97

of data is also transmitted via shuffling or message passing for both Myria and SociaLite. But

their performance is less stable compared with Spark, e.g., Myria runs out of memory on G20K

and SociaLite is always more than 10X slower, since the implementation of their communication

subsystem is less robust compared to Spark’s.

 1

 10

 10
2

 10
3

 10
4

 10
5

Tree11 Grid150 Grid250 G10K G10K-0.01

T
im

e
 (

s
)

5
3

3
4 5
3 7
2

3
9

2
3

O
u

t
o

f
M

e
m

o
ry 1
9

5
5

O
u

t
o

f
M

e
m

o
ry

4
3

0

O
u

t
o

f
M

e
m

o
ry

6
6

6

4

1
0

4
0

8

3
8

7
5

1

O
u

t
o

f
M

e
m

o
ry

1
7 4

6

O
u

t
o

f
M

e
m

o
ry

O
u

t
o

f
M

e
m

o
ry

BigDatalog Spark Myria SociaLite

Figure 5.23: SG System Comparison.

SG is a “harder” program than TC, because shuffling is required and two joins are evaluated

each iteration. BigDatalog uses the plan with broadcast joins whose RRP is shown in Figure

5.13. BigDatalog performs the best on graphs other than Grid150 and Grid250. BigDatalog

is slower than Myria and SociaLite on both graphs partly due to the overhead of scheduling, but

the evaluation of these two graphs produces the smallest result sets as well as the least amount

of intermediate results. Unlike with TC on Grid150, the handwritten SG Spark program can

evaluate Grid150 because there is half as many iterations with SG than with TC and therefore

less caching is necessary. However, SG with native Spark is over 50X slower than BigDatalog

on Grid150 since BigDatalog only requires a single shuffle per iteration due to the broadcast

joins, whereas the Spark program has to shuffle between two nested-loop joins. Additionally,

the handwritten SG Spark program runs out of memory on three graphs due to caching. Lastly,

BigDatalog is faster than Myria and SociaLite on Tree11, G10K and G10K-0.01 partly due to

the more robust shuffling implementation Spark provides.

Map-side Distinct. Recall the RRP for SG in Figure 5.13. Within a task, two joins will be

evaluated and the projected output will be input to a shuffle. The joins can generate a massive

amount of intermediate duplicate results, however de-duplication occurs after the shuffle (in PSN).

Therefore, to prevent a large amount of data being written to disk for the shuffle, we place a

distinct operator into the plan immediately before the shuffle, much like a map-side combiner.

98

This has no effect on program correctness because of DATALOG’s set semantics. This has a minor

affect on execution time performance on the smaller graphs (i.e., Grid150) but allows BigDatalog

to better support larger graphs.

5.5.2.2 REACH, CC and SSSP Experiments

We perform experiments comparing the execution time of BigDatalog for REACH, CC and SSSP

programs with Myria, SociaLite and GraphX programs on RMAT graphs. These results also help

us understand how BigDatalog scales on different programs as the graph sizes increase compared

to other systems. Figure 5.24 shows the experimental results in which the x-axis represents test

graphs from RMAT-1M to RMAT-128M. For each system, we report the total time of evaluation

starting from loading the data from persistent storage, i.e., from PostgreSQL for Myria and from

HDFS for the remaining three systems, until the evaluation completes. For Figure 5.24(a) and

Figure 5.24(c) each point represents the average time to evaluate the program on the test graph

over a set of randomly selected vertices. A point is not reported in a figure if a system runs out of

memory for the experiment.

We use three graph queries in this comparison. REACH (Program 27) finds all vertices con-

nected by some path to a given source vertex with a simple linear recursion; CC (Program 29)

uses a label propagation approach to determining the lowest vertex id a vertex is connected to, thus

establishing membership in a component, and this program uses a monotonic mmin aggregate in

the recursion. SSSP (Program 28) also uses a mmin aggregate and a linear recursion. All three

programs require shuffling during evaluation. Let n, m and d be the number of vertices, number

of edges, and diameter of a graph, respectively. The number of intermediate results produced dur-

ing evaluation is O(m), O(dm) and O(nm) for REACH, CC and SSSP, respectively. Figure 5.24

displays the results for the three programs by increasing order of the amount of communication as

1 ≤ d ≤ n.

Figure 5.24(a) shows that Myria performs the best on all test instances for REACH. BigDatalog

narrows the execution time gap with Myria as the size of the graph increases due to the increased

99

BigDatalog GraphX Myria SociaLite

 1

 4

 16

 64

 256

 1024

1 2 4 8 16 32 64 128

T
im

e
 (

s
)

of Million Vertices

(a) REACH

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

1 2 4 8 16 32 64 128

of Million Vertices

(b) CC

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

1 2 4 8 16 32 64 128

of Million Vertices

(c) SSSP

Figure 5.24: System Scaling-up Comparison on RMAT Graphs.

amount of communication. As the amount of communication further increases in CC and SSSP,

BigDatalog outperforms Myria starting from RMAT-8M for CC and RMAT-4M for SSSP as shown

in Figure 5.24(b) and Figure 5.24(c), respectively. SociaLite’s performance on all three experi-

ments is impacted because of loading and initialization of base relations and SociaLite takes sig-

nificantly longer at this task than the other systems. As explained to us by an author of [SPS13], the

cause of this is that SociaLite is implemented for a much faster network connection than we have

available. However, none of the other systems suffer from these same inefficiencies. In general,

as with TC and SG, BigDatalog benefits from Spark’s efficient shuffling implementation com-

pared to the less efficient message passing implementations used by Myria and SociaLite. Finally,

BigDatalog always outperforms GraphX on these experiments. BigDatalog has less scheduling

overhead by using a single job versus a job for each iteration in GraphX. Additionally, BigDatalog

uses more efficient data structures, w.r.t. size in memory, compared to GraphX’s vertex and edge

RDDs, which each require maintaining more data structures than the SetRDD/AggregateSetRDD

design used in BigDatalog.

5.5.3 Additional Scaling Experiments

We have shown how BigDatalog scales for REACH, CC and SSSP on RMAT graphs. In this

section, we report additional experimental results of how BigDatalog scales over different cluster

100

and dataset sizes for TC and SG.

 1

 2

 4

 8

 16

1 2 4 8 15

S
p

e
e

d
u

p

of Workers

(a) TC on G20K

 1

 2

 4

 8

 16

1 2 4 8 15

S
p

e
e

d
u

p

of Workers

(b) SG on G10K

Figure 5.25: Scaling-out Cluster Size.

Scaling-out. We investigate how BigDatalog scales over different cluster sizes. We use the largest

Gn-p graphs that could be evaluated on all cluster sizes. Figure 5.25(a) shows the speedup for TC

on G20K as the number of workers increases from one to 15 (all with one master) w.r.t. using only

one worker, and Figure 5.25(b) shows the same experiment run for SG with G10K. Both figures

show a linear speedup. Using 15 workers, TC and SG are 12X and 14X faster, respectively, than

with a single worker.

 1

 10
 10

2
 10

3

G5K
G10K

G20K
G40K

G80K

T
im

e
 (

s
)

5 7
19

123
1123

Figure 5.26: Scaling-up TC on Random Graphs.

Scaling-up. We use the full cluster to see how BigDatalog scales over random graphs from Table

5.6 of increasing sizes for TC and SG. Broadcasting the arc relation requires between one second

for G5K to twelve seconds for G80K. In this experiment, with each successively larger graph

size (e.g.,G5K to G10K), the size of the transitive closure quadruples, but we do not observe a

quadrupling of the evaluation time. Instead, evaluation time increases first less than 1.5X (G5K

101

to G10K), then 3X (G10K to G20K), 6X (G20K to G40K) and 9X (G40K to G80K). Rather than

focus on the size of the TC w.r.t. execution time, the reason for the increase in execution time is

explained by examining the results in Table 5.7.

Table 5.7: TC Scaling Experiments Result Details

Graph Time - broadcasta (s) TC Generated Facts Generated Facts / TC Generated Facts / Sec.

G5K 4 24,606,562 122,849,424 4.99 30,712,356

G10K 6 100,000,000 1,001,943,756 10.02 166,990,626

G20K 17 400,000,000 7,976,284,603 19.94 469,193,212

G40K 119 1,600,000,000 50,681,485,537 31.68 425,894,836

G80K 1112 6,400,000,000 510,697,190,536 79.80 459,673,439
a - execution time not including the time to broadcast arc.

Among the items displayed in Table 5.7 is the execution time minus the time to broadcast

arc, which is the total time the program required to actually evaluate TC. Table 5.7 also shows

the number of generated facts, which is the number of total facts produced prior to de-duplication

and is representative of the actual work the system must perform to produce the TC (i.e., HashSet

lookups), the ratio between TC size and generated facts, and the number of generated facts per

second (time - broadcast time), which should be viewed as the evaluation throughput. These details

help to explain why the execution times increase at a rate greater than the increase in TC size – the

number of generated facts is increasing at a rate much greater than the increase in TC size. The last

column shows that even with the increase in number of generated facts, BigDatalog still maintains

good throughput throughout. Continuing, the first two graphs are too small to stress the system,

but once the graph is large enough (e.g., G20K) the system exhibits a much greater throughput,

which is stable across the larger graphs.

 1

 10
 10

2
 10

3

G5K
G10K

G20K

T
im

e
 (

s
)

12
74

907

Figure 5.27: Scaling-up SG on Random Graphs.

102

Figure 5.27 displays the scaling up experimental results for SG. Since we double the size of the

graph starting from G5K, random graphs larger than G20K exceed our cluster’s resources. For these

experiments, the broadcast of the arc relation was a less significant part of the overall execution

time requiring between one second for G5K and two seconds for G20K.

Table 5.8: SG Scaling Experiments Result Details

Graph Time - broadcasta (s) SG Generated Facts Generated Facts / SG Generated Facts / Sec.

G5K 11 24,611,547 612,891,161 24.90 55,717,378

G10K 73 100,000,000 10,037,915,957 100.38 137,505,698

G20K 905 400,000,000 159,342,570,063 398.36 176,069,138

Table 5.8 displays the same details as Table 5.7 but for SG. Table 5.8 displays the execution

time-minus the broadcast time of arc, the result set size, the number of generated facts as well

as statistics for the ratio of generated facts for each SG fact and generated fact per second of

evaluation (throughput). With SG, the number of generated facts is much higher than we observe

with TC, reflecting the greater amount of work SG requires. For example, on G10K and G20K SG

produces 10X and 20X the number of generated facts, respectively, than TC produces. We also

observe a much greater rate of increase in generated facts between graph sizes for SG compared

to TC. For example, from G10K to G20K we see a 16X increase in generated facts for SG versus

only an 8X increase for TC. For SG, we do not achieve as high a throughput as with TC, which is

explained in part by the fact that SG requires shuffling, whereas our TC program evaluates purely

in main memory after an initial shuffle.

Lastly, to evaluate these graphs for SG, we used the map-side distinct optimization described

in Section 5.5.2.1. Table 5.9 shows the impact of using this optimization. The trade off here is

that the distinct operator will filter out duplicates prior to being shuffled and de-duplicated in PSN.

The trade off here is the memory required for the distinct operator versus the additional disk space

required to shuffle the un-deduplicated results. From Table 5.9 we see the effect on execution time

is minimal on the smallest graph tested (one second). However as the graph size increases and the

number of facts shuffled greatly increases, the effect on execution time is substantial.

103

Table 5.9: Impact of Map-side Distinct on SG Scaling Experiments

Map-side Distinct = true Map-side Distinct = false

Graph Time (s) Facts Shuffled Time (s) Facts Shuffled Ratio

G5K 12 226,350,156 13 612,891,161 2.71

G10K 74 1,982,954,558 121 10,037,915,957 5.06

G20K 907 9,894,980,670 6645 159,342,570,063 16.10

5.6 Related Works

We first review works on parallel DATALOG evaluation and then discuss related systems for large-

scale data analysis.

Parallel Datalog Evaluation. We have previously discussed the contributions of [WS88] with de-

composable programs and the work of generalized pivoting [SL91]. Early work on parallelization

of bottom-up evaluation of DATALOG programs was largely of a theoretical nature for instance

[Van86] proposed a message passing framework for parallel evaluation of logic programs. Tech-

niques to partition program evaluation efficiently among processors [WO90], the tradeoff between

redundant evaluation and communication [GST90, GST92] and classifying how certain types of

DATALOG programs can be evaluated [CW89] were also studied. A parallel Semi-Naı̈ve fixpoint

has been proposed for a message passing design [WO90] that includes a step for sending and re-

ceiving tuples from other processors during computation. The PSN used in this work applies the

same program over different partitions of the database at each worker and uses shuffle operators in

place of processor communication.

[BBC12] showed how to use XY-stratified DATALOG to support computational models for

large-scale machine learning, although no full DATALOG language implementation on a large-scale

system was provided. Recent theoretical work on recursive query evaluation showed a version

of non-linear transitive closure that is more efficient than linear versions for distributed settings

[AU12], however this work never addresses the problem of how to convert arbitrary programs

to this desirable form. The BloomL [CMA12] distributed programming language uses various

104

monotonic lattices to identify program elements not requiring coordination.

Systems for Large Scale Data Analysis. We have previously discussed [AXL15, SPS13, WBH15,

ZCD12] in earlier sections. DryadLINQ [YIF08] provides a high level imperative/declarative

language that relies on control flow in its host language to support iteration. Extended MapRe-

duce system designs providing API support include Haloop [BHB12] (loop-aware scheduling and

caching), PrIter [ZGG11] (prioritized execution of high priority nodes), and Twister [ELZ10] (in-

memory iterative MapReduce with cachable tasks). Incremental iterations were integrated into

Stratosphere (now Apache Flink ([apa15a]) to support iterative algorithms with sparse compu-

tational dependencies [ETK12]. ScalOps [WCR11], a Scala DSL designed for machine learn-

ing, supports a loop construct to include iteration in a recursive query plan executed on Hyracks

[BCG11], a distributed dataflow engine. Naiad [MMI13] uses a time-based dataflow computa-

tional model with a vertex-based programming model to support iterative workflows and incremen-

tal updates. The SCOPE [ZBW12] system includes a SQL-like language that provides map and

reduce-style operators and allows user defined aggregates (UDA) to be recursive. REX [MIG12],

a distributed parallel engine, provides a SQL-based language and supports incremental updates

and recursive queries via a UDA framework. [OKH13] presents an extension of SQL that in-

cludes constructs to specify incrementally computable views for more efficient MapReduce execu-

tion. Lastly, systems for both parallel [KBG12, LGK10] and distributed [gir15, GLG12, LBG12,

MAB10, TBC13] graph analytics have been proposed however, these systems only support graph

workloads and require programming against a low-level API.

5.7 Summary of BigDatalog

In this chapter, we presented BigDatalog, a DATALOG language implementation on Apache Spark.

Using our system Spark programmers can now benefit from using a declarative, recursive language

to implement their distributed algorithms, while maintaining the efficiency of highly optimized

programs. On our large test graph instances BigDatalog outperforms other state-of-the-art DAT-

ALOG systems on the majority of our tests. Moreover, our experimental results confirmed that

105

among Spark-based systems BigDatalog outperforms both GraphX and native Spark for recursive

queries.

Addressing our Challenges. We addressed the challenges for using Spark as a DATALOG runtime

as outlined in Section 5.1.1 as follows: now with BigDatalog, recursive queries are compiled and

optimized for efficient evaluation on Spark, which was verified with our experimental results in

Section 5.5 (Challenge 1). We implemented BigDatalog to identify and produce physical plans

for efficiently evaluating decomposable programs. In addition, we propose a new type of job for

recursive programs to allow the scheduler greater control over iterations (Challenge 2). Lastly, we

propose the SetRDD and AggregateSetRDD, specialized RDDs that utilize DATALOG semantics

to support memory-efficient recursive evaluation in Spark (Challenge 3).

106

CHAPTER 6

Conclusion and Future Work

In this dissertation, we have presented our contributions towards the language challenges for ad-

vanced analytics as outlined in our introduction.

We have developed DeALS, a DATALOG system for analytics. We have designed and imple-

mented a set of monotonic aggregates in DeALS that can be used in recursion. These aggregates

expand the range of programs DeALS can efficiently support, which includes many graph queries

and graph analytics that were otherwise difficult to express or inefficient to evaluate using previous

constructs. We have demonstrated the efficiency of DeALS through an experimental comparison

with other DATALOG systems and found that DeALS shows it is possible to provide a general

DATALOG system capable of supporting a wide range of programs, that also provides superior

performance.

We have designed and implemented BigDatalog – DeALS on Apache Spark. We presented

compiler and optimizer techniques to efficiently evaluate BigDatalog programs on Spark. We

proposed job scheduling optimizations and show how certain DATALOG programs can be evalu-

ated without communication during recursion in Spark. We conducted an experimental evaluation

and compared BigDatalog with other large-scale DATALOG systems on both classical recursive

queries, such as transitive closure, as well as aggregate queries. Compared with the other sys-

tems, BigDatalog outperformed them on many types of programs, including the classical recursive

queries on larger graphs. Compared with native Spark programs, BigDatalog exhibited at least

an order of magnitude improvement for almost every graph tested, and also outperformed Spark’s

GraphX module. Lastly, the experiments verified that our approach in general is quite effective in

supporting DATALOG-based analytics on Spark.

107

In the course of conducting the research for this dissertation, several opportunities for excit-

ing new research has been identified. In the area of distributed DATALOG evaluation, one first

direction is to extend BigDatalog to support XY-DATALOG and realize the vision of [BBC12] to

use DATALOG to support complex machine learning analytics such as logistic regression over a

massively parallel system. Another direction is to investigate system extensions for provenance

and fault tolerance enabled by efficient monotonic DATALOG constructs. Lastly, an exciting area

for future research that builds on this dissertation’s work on supporting declarative languages over

multiple runtimes is to provide (i) a rule-based or cost-based optimizer to determine the appropri-

ate runtime (e.g., sequential, distributed, etc.) and (ii) an accompanying scheduler to provide an

optimized evaluation for DeAL users.

108

REFERENCES

[ABH10] Azza Abouzied, Kamil Bajda-Pawlikowski, Jiewen Huang, Daniel J. Abadi, and Avi
Silberschatz. “HadoopDB in Action: Building Real World Applications.” In SIG-
MOD, pp. 1111–1114, 2010.

[ANB11] Tom J. Ameloot, Frank Neven, and Jan Van den Bussche. “Relational Transducers for
Declarative Networking.” In PODS, pp. 283–292, 2011.

[ant15] “antlr.” http://www.antlr.org/, 2015.

[AOT03] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. “The De-
ductive Database System LDL++.” TPLP, 3(1):61–94, 2003.

[apa15a] “Apache Flink.” http://flink.apache.org, 2015.

[apa15b] “Apache Spark.” http://spark.apache.org, 2015.

[AU12] Foto N. Afrati and Jeffrey D. Ullman. “Transitive closure and recursive Datalog im-
plemented on clusters.” In EDBT, pp. 132–143, 2012.

[AXL15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. “Spark SQL: Relational Data Processing in Spark.” In SIGMOD, pp. 1383–
1394, 2015.

[Ban86] Francois Bancilhon. “Naive Evaluation of Recursively Defined Relations.” In
Michael L Brodie and John Mylopoulos, editors, On Knowledge Base Management
Systems, pp. 165–178. Springer-Verlag, 1986.

[BBC12] Yingyi Bu, Vinayak R. Borkar, Michael J. Carey, Joshua Rosen, Neoklis Polyzotis,
Tyson Condie, Markus Weimer, and Raghu Ramakrishnan. “Scaling Datalog for Ma-
chine Learning on Big Data.” CoRR, abs/1203.0160, 2012.

[BCG11] Vinayak R. Borkar, Michael J. Carey, Raman Grover, Nicola Onose, and Rares Ver-
nica. “Hyracks: A flexible and extensible foundation for data-intensive computing.”
In ICDE, pp. 1151–1162, 2011.

[BEG11] Kevin S. Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Y.
Eltabakh, Carl-Christian Kanne, Fatma Özcan, and Eugene J. Shekita. “Jaql: A Script-
ing Language for Large Scale Semistructured Data Analysis.” PVLDB, 4(12):1272–
1283, 2011.

[BEH10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel
Warneke. “Nephele/PACTs: a programming model and execution framework for web-
scale analytical processing.” In SoCC, pp. 119–130, 2010.

109

http://www.antlr.org/
http://flink.apache.org
http://spark.apache.org

[BHB12] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. “The HaLoop
approach to large-scale iterative data analysis.” VLDB Journal, 21(2):169–190, 2012.

[BMS86] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. “Magic
Sets and Other Strange Ways to Implement Logic Programs.” In PODS, pp. 1–15,
1986.

[cas15a] “Cascading.” http://www.cascading.org, 2015.

[cas15b] “Cascalog.” http://cascalog.org, 2015.

[CDD09] Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb Welton.
“MAD Skills: New Analysis Practices for Big Data.” PVLDB, 2(2):1481–1492, 2009.

[CGK90] Danette Chimenti, Ruben Gamboa, Ravi Krishnamurthy, Shamim A. Naqvi, Shalom
Tsur, and Carlo Zaniolo. “The LDL System Prototype.” IEEE Trans. Knowl. Data
Eng., 2(1):76–90, 1990.

[CM90] Mariano P Consens and Alberto O Mendelzon. “Low complexity aggregation in
GraphLog and Datalog.” In ICDT, pp. 379–394, 1990.

[CMA12] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David
Maier. “Logic and lattices for distributed programming.” In SoCC, 2012.

[Cod72] E. F. Codd. “Relational Completeness of Data Base Sublanguages.” In: R. Rustin
(ed.): Database Systems: 65-98, Prentice Hall and IBM Research Report RJ 987, San
Jose, California, 1972.

[CW89] S. Cohen and O. Wolfson. “Why a Single Parallelization Strategy is Not Enough in
Knowledge Bases.” In PODS, pp. 200–216, 1989.

[DG04] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on
Large Clusters.” In OSDI, pp. 137–150, 2004.

[EF10] Jason Eisner and Nathaniel Wesley Filardo. “Dyna: Extending Datalog for Modern
AI.” In Datalog Reloaded, pp. 181–220, 2010.

[ELZ10] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy
Qiu, and Geoffrey Fox. “Twister: a runtime for iterative MapReduce.” In HPDC, pp.
810–818, 2010.

[ETK12] Stephan Ewen, Kostas Tzoumas, Moritz Kaufmann, and Volker Markl. “Spinning Fast
Iterative Data Flows.” PVLDB, 5(11):1268–1279, 2012.

[fas15] “fastutil.” http://fastutil.di.unimi.it/, 2015.

[FKR12] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. “Towards a unified
architecture for in-RDBMS analytics.” In SIGMOD, pp. 325–336, 2012.

110

http://www.cascading.org
http://cascalog.org
http://fastutil.di.unimi.it/

[FPC09] Eric Friedman, Peter Pawlowski, and John Cieslewicz. “SQL/MapReduce: a practical
approach to self-describing, polymorphic, and parallelizable user-defined functions.”
PVLDB, 2(2):1402–1413, August 2009.

[FPL08] Wolfgang Faber, Gerald Pfeifer, Nicola Leone, Tina Dell’Armi, and Giuseppe Ielpa.
“Design and implementation of aggregate functions in the DLV system.” TPLP, 8(5-
6):545–580, 2008.

[FPL11] Wolfgang Faber, Gerald Pfeifer, and Nicola Leone. “Semantics and complexity of
recursive aggregates in answer set programming.” Artif. Intell., 175(1):278–298, 2011.

[GAK12] Todd J. Green, Molham Aref, and Grigoris Karvounarakis. “LogicBlox, Platform and
Language: A Tutorial.” In Datalog 2.0, pp. 1–8, 2012.

[Gel92] Allen Van Gelder. “The Well-Founded Semantics of Aggregation.” In PODS, pp.
127–138, 1992.

[GGZ91] Sumit Ganguly, Sergio Greco, and Carlo Zaniolo. “Minimum and Maximum Predi-
cates in Logic Programming.” In PODS, pp. 154–163, 1991.

[gir15] “Apache Giraph.” http://giraph.apache.org, 2015.

[GKS91] Sumit Ganguly, Ravi Krishnamurthy, and Abraham Silberschatz. “An analysis tech-
nique for transitive closure algorithms: A statistical approach.” In ICDE, pp. 728–735,
1991.

[GLG12] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
“PowerGraph: Distributed Graph-parallel Computation on Natural Graphs.” In OSDI,
pp. 17–30, 2012.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. “Maintaining Views
Incrementally.” In SIGMOD, pp. 157–166, 1993.

[GMT04] Fosca Giannotti, Giuseppe Manco, and Franco Turini. “Specifying Mining Algo-
rithms with Iterative User-Defined Aggregates.” IEEE Trans. Knowl. Data Eng.,
16(10):1232–1246, 2004.

[GNC09] Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan Narayanam,
Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and Utkarsh Srivastava.
“Building a HighLevel Dataflow System on top of MapReduce: The Pig Experience.”
PVLDB, 2(2), 2009.

[GST90] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. “A Framework for the Par-
allel Processing of Datalog Queries.” In SIGMOD, pp. 143–152, 1990.

[GST92] Sumit Ganguly, Abraham Silberschatz, and Shalom Tsur. “Parallel Bottom-Up Pro-
cessing of Datalog Queries.” J. Log. Program., 14(1&2):101–126, 1992.

111

http://giraph.apache.org

[gtg15] “GTgraph.” http://www.cse.psu.edu/˜kxm85/ software/GTgraph,
2015.

[GXD14] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. “GraphX: Graph Processing in a Distributed Dataflow
Framework.” In OSDI, pp. 599–613, 2014.

[GZ01] Sergio Greco and Carlo Zaniolo. “Greedy Algorithms in Datalog.” TPLP, 1(4):381–
407, 2001.

[GZG92] Sergio Greco, Carlo Zaniolo, and Sumit Ganguly. “Greedy by Choice.” In PODS, pp.
105–113, 1992.

[had15] “Apache Hadoop.” http://hadoop.apache.org, 2015.

[Hel10] Joseph M. Hellerstein. “The declarative imperative: experiences and conjectures in
distributed logic.” SIGMOD Record, 39(1):5–19, 2010.

[HRS12] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and
Arun Kumar. “The MADlib Analytics Library or MAD Skills, the SQL.” PVLDB,
5(12):1700–1711, 2012.

[IBY07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. “Dryad:
distributed data-parallel programs from sequential building blocks.” In EuroSys, pp.
59–72, 2007.

[jun15] “junit.” http://junit.org/, 2015.

[KBG12] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. “GraphChi: Large-scale Graph
Computation on Just a PC.” In OSDI, pp. 31–46, 2012.

[Kol91] Phokion G. Kolaitis. “The expressive power of stratified logic programs.” Info. and
Computation, 90(1):50–66, 1991.

[LBG12] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. “Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud.” PVLDB, 5(8):716–727, 2012.

[LCG09] Boon Thau Loo, Tyson Condie, Minos N. Garofalakis, David E. Gay, Joseph M.
Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and Ion Stoica.
“Declarative Networking.” Commun. ACM, 52(11):87–95, 2009.

[LFV12] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier, Lyric
Doshi, and Chuck Bear. “The Vertica Analytic Database: C-Store 7 Years Later.”
PVLDB, 5(12):1790–1801, 2012.

112

http://www.cse.psu.edu/~kxm85/
software/GTgraph
http://hadoop.apache.org
http://junit.org/

[LGK10] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. “GraphLab: A New Framework For Parallel Machine Learn-
ing.” In UAI, pp. 340–349, 2010.

[LLM98] Georg Lausen, Bertram Ludäscher, and Wolfgang May. “On Active Deductive
Databases: The Statelog Approach.” In Transactions and Change in Logic Databases,
pp. 69–106, 1998.

[log15] “log4j.” http://logging.apache.org/, 2015.

[MAB10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. “Pregel: A System for Large-scale Graph
Processing.” In SIGMOD, pp. 135–146, 2010.

[MIG12] Svilen R. Mihaylov, Zachary G. Ives, and Sudipto Guha. “REX: Recursive, Delta-
based Data-centric Computation.” PVLDB, 5(11):1280–1291, July 2012.

[MMI13] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martı́n Abadi. “Naiad: A Timely Dataflow System.” In SOSP, pp. 439–455, 2013.

[MPR90] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. “The Magic of
Duplicates and Aggregates.” In VLDB, pp. 264–277, 1990.

[MS95] Inderpal Singh Mumick and Oded Shmueli. “How Expressive is Stratified Aggrega-
tion?” Annals of Mathematics and AI, 15:407–435, 1995.

[MSZ13a] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. “A declarative extension of horn
clauses, and its significance for datalog and its applications.” TPLP, 13(4-5):609–623,
2013.

[MSZ13b] Mirjana Mazuran, Edoardo Serra, and Carlo Zaniolo. “Extending the Power of Datalog
Recursion.” VLDB J., 22(4):471–493, 2013.

[OKH13] Makoto Onizuka, Hiroyuki Kato, Soichiro Hidaka, Keisuke Nakano, and Zhenjiang
Hu. “Optimization for iterative queries on MapReduce.” PVLDB, 7(4), 2013.

[PBM99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. “The PageRank
Citation Ranking: Bringing Order to the Web.” Technical Report 1999-66, Stanford
InfoLab, November 1999.

[PL10] Russell Power and Jinyang Li. “Piccolo: Building Fast, Distributed Programs with
Partitioned Tables.” In OSDI, pp. 1–14, 2010.

[pro15] “Project Daytona.” http://research.microsoft.com/en-us/
projects/daytona, 2015.

[RPB13] Joshua Rosen, Neoklis Polyzotis, Vinayak R. Borkar, Yingyi Bu, Michael J. Carey,
Markus Weimer, Tyson Condie, and Raghu Ramakrishnan. “Iterative MapReduce for
Large Scale Machine Learning.” CoRR, abs/1303.3517, 2013.

113

http://logging.apache.org/
http://research.microsoft.com/en-us/projects/daytona
http://research.microsoft.com/en-us/projects/daytona

[RS92] Kenneth A. Ross and Yehoshua Sagiv. “Monotonic Aggregation in Deductive
Databases.” In PODS, pp. 114–126, 1992.

[sca15] “Scalding.” http://twitter.com/scalding, 2015.

[SGL13] Jiwon Seo, Stephen Guo, and Monica S. Lam. “SociaLite: Datalog extensions for
efficient social network analysis.” In ICDE, pp. 278–289, 2013.

[SKH12] Marianne Shaw, Paraschos Koutris, Bill Howe, and Dan Suciu. “Optimizing Large-
Scale Semi-Naı̈ve Datalog Evaluation in Hadoop.” In Datalog, pp. 165–176, 2012.

[SL91] Jürgen Seib and Georg Lausen. “Parallelizing Datalog Programs by Generalized Piv-
oting.” In PODS, pp. 241–251, 1991.

[SPS13] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. “Distributed Socialite: A
Datalog-based Language for Large-scale Graph Analysis.” PVLDB, 6(14):1906–1917,
2013.

[SR91] S. Sudarshan and Raghu Ramakrishnan. “Aggregation and Relevance in Deductive
Databases.” In VLDB, pp. 501–511, 1991.

[SWL13] Bin Shao, Haixun Wang, and Yatao Li. “Trinity: A Distributed Graph Engine on a
Memory Cloud.” In SIGMOD, pp. 505–516, 2013.

[SZZ13] Alexander Shkapsky, Kai Zeng, and Carlo Zaniolo. “Graph Queries in a Next-
Generation Datalog System.” PVLDB, 6(12):1258–1261, 2013.

[TBC13] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and
John McPherson. “From ”Think Like a Vertex” to ”Think Like a Graph”.” PVLDB,
7(3):193–204, 2013.

[TSJ09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. “Hive - A Warehousing
Solution Over a Map-Reduce Framework.” PVLDB, 2(2):1626–1629, 2009.

[Van86] Allen Van Gelder. “A Message Passing Framework for Logical Query Evaluation.” In
SIGMOD, pp. 155–165, 1986.

[Van93] Allen Van Gelder. “Foundations of Aggregation in Deductive Databases.” In DOOD,
pp. 13–34, 1993.

[WBH15] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. “Asynchronous and
Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines.” PVLDB,
8(12):1542–1553, 2015.

[WCR11] Markus Weimer, Tyson Condie, and Raghu Ramakrishnan. “Machine learning in
ScalOps, a higher order cloud computing language.” In BigLearn, December 2011.

114

http://twitter.com/scalding

[WO90] Ouri Wolfson and Aya Ozeri. “A New Paradigm for Parallel and Distributed Rule-
Processing.” In SIGMOD, pp. 133–142, 1990.

[WS88] Ouri Wolfson and Abraham Silberschatz. “Distributed Processing of Logic Programs.”
In SIGMOD, pp. 329–336, 1988.

[YIF08] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Ku-
mar Gunda, and Jon Currey. “DryadLINQ: A System for General-Purpose Distributed
Data-Parallel Computing Using a High-Level Language.” In OSDI, pp. 1–14, 2008.

[YYT10] Christopher Yang, Christine Yen, Ceryen Tan, and Samuel Madden. “Osprey: Imple-
menting MapReduce-style fault tolerance in a shared-nothing distributed database.” In
ICDE, pp. 657–668, 2010.

[YZ14] Mohan Yang and Carlo Zaniolo. “Main Memory Evaluation of Recursive Queries on
Multicore Machines.” In IEEE Big Data, pp. 251–260, 2014.

[ZAO93] Carlo Zaniolo, Natraj Arni, and KayLiang Ong. “Negation and Aggregates in Recur-
sive Rules: the LDL++ Approach.” In DOOD, pp. 204–221, 1993.

[ZBW12] Jingren Zhou, Nicolas Bruno, Ming-Chuan Wu, Per-Ake Larson, Ronnie Chaiken,
and Darren Shakib. “SCOPE: Parallel Databases Meet MapReduce.” VLDB Journal,
21(5):611–636, October 2012.

[ZCD12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. “Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing.” In NSDI,
2012.

[ZCF97] Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard Thomas Snodgrass, V. S.
Subrahmanian, and Roberto Zicari. Advanced Database Systems. Morgan Kaufmann,
1997.

[ZDL13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion
Stoica. “Discretized streams: fault-tolerant streaming computation at scale.” In SOSP,
pp. 423–438, 2013.

[ZGG11] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. “PrIter: A Distributed
Framework for Prioritized Iterative Computations.” In SOCC, pp. 13:1–13:14, 2011.

[ZGG12] Yanfeng Zhang, Qixin Gao, Lixin Gao, and Cuirong Wang. “iMapReduce: A Dis-
tributed Computing Framework for Iterative Computation.” Journal of Grid Comput-
ing, 10(1):47–68, 2012.

[ZW99] Carlo Zaniolo and Haixun Wang. “Logic-Based User-Defined Aggregates for the
Next Generation of Database Systems.” In Krzysztof R. Apt, Victor Marek, Mirek
Truszczynski, and David S. Warren, editors, The Logic Programming Paradigm, pp.
401–426. Springer Verlag, 1999.

115

	Introduction
	Overview
	Deductive Application Language System
	Aggregation in Recursion
	BigDatalog
	Outline

	Background: Datalog
	Datalog Evaluation

	The Deductive Application Language System
	System Overview
	Declarative Optimizer

	Optimizing Recursive Queries With Monotonic Aggregates in DeALS
	Introduction
	MMIN and MMAX Monotonic Aggregates
	Running Example

	Monotonic Aggregate Evaluation
	Monotonic Aggregate Semi-Naïve Evaluation
	Eager Monotonic Aggregate Semi-naive Evaluation

	MMIN and MMAX Implementation
	Storage Manager Extension
	mmin and mmax Implementation
	Operational Optimizations

	MMIN & MMAX Performance Analysis
	Datalog Implementation Comparison
	DeALS Storage Manager Evaluation
	Statistical Analysis of Evaluation Methods

	MCOUNT and MSUM Monotonic Aggregates
	Running Example

	MCOUNT and MSUM Implementation
	Storage Designs

	MCOUNT and MSUM Performance Analysis
	Statistical Analysis of Evaluation Methods
	Storage Design Evaluation
	Discussion

	Formal Semantics
	DeAL Interval Semantics
	Normal Programs
	Normal Program Evaluation

	Mapping DeAL to DatalogFS
	DatalogFS
	Transformation Rules
	Transformation Rules Examples

	Additional Optimizations
	Magic Sets
	Comparison-Only Monotonic Aggregation

	Monotonic Aggregate Rule Rewriting
	Rewriting mmax Rules
	Rewriting mmin Rules
	Rewriting mcount Rules
	Rewriting msum Rules

	Additional DeAL Programs
	Syntax Comparison With Other Languages
	Additional Related Work
	Monotonic Aggregates Summary

	BigDatalog - DeAL on Apache Spark
	Preliminaries
	Apache Spark
	Challenges for Datalog on Spark

	BigDatalog
	Benchmark Programs
	BigDatalog API By Example
	Parallel Semi-Naïve Evaluation on Spark
	Compilation and Planning

	Optimizations
	Optimizing PSN
	Partitioning
	Join Optimizations for Linear Recursion
	Decomposable Programs
	Job Optimizations

	Aggregates
	Experiments
	Experimental Setup
	Datalog Systems Comparison
	Additional Scaling Experiments

	Related Works
	Summary of BigDatalog

	Conclusion and Future Work
	References

