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Transmission of Progressive Images Over
Noisy Channels: An End-to-End Statistical
Optimization Framework

Homayoun Yousefi’zadeh, Senior Member, IEEE, Hamid Jafarkhani, Fellow, IEEE, and Farzad Etemadi

Abstract—We present a statistical optimization framework for
solving the end-to-end problem of multiple antenna transmission
of progressive images over noisy channels. Such channels exhibit
temporally correlated loss characteristics and are associated with
wireless communication links. In our study, we protect the progres-
sive bitstream associated with an image source utilizing a family
of rate compatible punctured Reed—Solomon (RS) product codes
along with receiver feedback. We consider the impacts of trans-
mission bit errors as well as packet erasures. To cope with the im-
pact of random bit errors, we formulate an optimization problem
aimed at minimizing the end-to-end expected distortion of a recon-
structed image subject to rate and efficiency constraints. In order
to eliminate the impact of packet erasures, we propose utilizing
an algorithm that is capable of statistically guaranteeing the de-
livery of a number of packet sets associated with a progressive bit-
stream. OQur experiments capture the effects of embedding mul-
tiple antennas in the transmission of progressive images over wire-
less tandem channels. Under identical power constraints, our re-
sults show that increasing the number of antennas on either trans-
mitting or receiving sides improves the quality of a reconstructed
image. Further, the use of receive diversity used in conjunction
with simple communication coding schemes such as Maximum Ra-
tion Combining (MRC) yields more improvements than the use of
transmit diversity used in conjunction with comparable communi-
cation coding schemes such as Space-Time Block Code (STBC). Fi-
nally, the use of receiver feedback can further improve the quality
of an image reconstructed in the absence of feedback.

Index Terms—Multiple antennas, packet erasure, progressive
transmission of images, random bit error, temporally correlated
loss.

I. INTRODUCTION

ROGRESSIVE image transmission relies on the ability of
P a source coder to allow a decoder to progressively recon-
struct its data at different bit rates from the prefixes of a single
bitstream. introduces high sensitivity to transmission noise, i.e.,
the occurrence of the first error in a set of bits can lead to the loss
of progressive property and synchronization as the result of mis-
interpretation of the remaining bits. Therefore when transmitted
over noisy channels, progressive images have to be protected by
relying on appropriate channel coding or joint source-channel
coding schemes. This paper focuses on the identification of
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optimal patterns of progressive image transmission over noisy
channels.

The work of [17] provides a comprehensive review of the
literature material as they pertain to the subject of interest to this
paper. In what follows, we review some of the literature articles
in the context of progressive source coding and transmission
of images. In the area of source coding, the works of [32]
introducing embedded zerotrees of wavelets, [30] proposing
Set Partitioning In Hierarchical Trees (SPIHT), [25] covering
embedded coding of the bitplanes of a wavelet-transformed
image, and [20] suggesting yet another progressive wavelet
coding technique are perhaps most closely related to our work.

In the area of channel coding and joint source-channel
coding, researchers have looked at two closely related but
not exactly identical family of problems. These are namely
minimizing distortion or distortion-optimal problems and
maximizing delivered useful source coding or rate-optimal
problems. Rate-optimal problems have been used by many re-
searchers as lower complexity alternatives to distortion-optimal
problems. The work of [33] represents an example of solving
a rate-optimal problem for a channel with bit errors only. For
channels identified by bit errors only, experimental results
have shown that the distortion of rate-optimal solutions is not
far from the distortion of distortion-optimal approaches for a
relatively large class of channel coders.

In [33], the authors proposed concatenating a source coder
bitstream with an outer Cyclic Redundancy Check (CRC)
coder and an inner Rate Compatible Punctured Convolutional
(RCPC) coder. Focusing on the rate-optimal problems and
variable-length packets with fixed data payloads, the authors
of [10] and [9] proposed the use of dynamic programming
and exhaustive search for protecting the source coder bit-
stream transmitted over Binary Symmetric Channels (BSC)
and channels with memory, respectively. They also solved a
suboptimal problem with dynamic programming. The authors
of [36] provided an algorithm capable of accelerating the
computation of the optimal strategy of [10] for the case of
fixed-length packets. The authors of [5] proposed the use of
a brute-force search algorithm to solve a distortion-optimal
problem in a BSC to protect JPEG2000 coded images with
an outer CRC coder and an inner punctured turbo coder. The
authors of [4] solved the distortion-optimal version of the
problem of [10] for fixed size packets in quadratic time. In [27],
the authors utilized Low Density Parity Check (LDPC) codes
along with a revised version of the algorithm of [5] to transmit
JPEG2000 and SPIHT coded images over channels with and
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without memory. In [42], the authors used a product code with
a turbo coder at the rows to combat bit errors and an RS coder
at the columns to compensate against packet erasures. They
utilized a two-step iterative optimization approach to identify
near-optimal parity assignments of turbo and RS coders. In
[3], the exponential rate-distortion model of an image coder
was used to analytically solve the distortion-optimal problem
for a BSC. In [19], a similar distortion-optimal problem was
solved relying on data fitting techniques for BSCs. When
attempting at applying their approach to the case of channels
with memory, their approach resulted in very conservative esti-
mates of channel error probability. As an alternative to directly
applying channel coding techniques in conjunction with the
source coding techniques, the authors of [35] proposed utilizing
a Maximum A Posteriori (MAP) detector to compensate for the
impacts of spatially correlated compressed bitstreams as well
as temporally correlated channel errors. Their approach called
for the utilization of interleaving techniques when dealing with
temporally correlated channel errors. Without investigating
the optimality of their approach, the authors of [11] showed
the potential advantage of using a hybrid technique for adding
channel coding to wavelet-based zerotree encoded images
and reordering the resulting embedded zerotree bitstream into
packets with a small set of wavelet coefficient trees.

Besides the tandem schemes mentioned above, there are also
a large set of Channel Optimized Vector Quantization (COVQ)
literature articles following the work of [14]. The work of [26] is
among such schemes showing relative effectiveness of COVQ in
terms of addressing performance-complexity tradeoff in noisy
channels with and without memory.

Our review of the literature articles reveals that there is a lack
of 1) analysis and quantification of the effects of utilizing mul-
tiple antennas when transmitting progressive images over wire-
less tandem channels and 2) capturing of the effects of utilizing
multiple round feedback transmission.

This paper proposes an end-to-end statistical optimization
framework for multiple antenna transmission of progressive im-
ages over noisy channels. The framework consists of two com-
ponents applied in the form of a product channel code the com-
bination of which is capable of dealing with temporally cor-
related random bit errors and packet erasures. The random bit
error component is materialized by applying a Reed—Solomon
(RS) channel coder for correcting the errors at the row level.
A CRC is further used in a serial concatenation with the RS
coder for detecting bit errors. We note that the combination of
RS+CRC coders can be applied to either a distortion-optimal
or a rate-optimal problem. Further, it can be applied to both
fixed-length and variable-length packet scenarios. The statistical
packet erasure component is materialized by applying an RS
coder at the column level. The component further includes an
algorithm that can guarantee the delivery of a block of packets
formed by a number of symbols with a given probability for
both memoryless channels and channels with memory. We note
that while the use of a product code introduces further decoding
complexity compared to a one dimensional code, its use is justi-
fied considering the fact that ignoring either bit errors or packet
erasures can yield significant performance degradations in the
transmission of multimedia.

Although the framework of this paper may resemble the
works of [13], [28], [29], [38], [42] from the standpoint of
considering transmission over channels with bit errors and
packet erasures, it has to be noted that those articles consider
neither the effects of embedding multiple antennas within an
optimization problem nor the effects of using feedback for
image delivery. Thus, this paper attempts at analyzing and
quantifying performance improvements of end-to-end image
delivery systems over wireless tandem channels as the result of
utilizing multiple antennas as well as multiple round feedback
transmissions.

It is also important to emphasize on the fact that the frame-
work of this paper does not represent a case study. While
different components have been gathered to form a complete
end-to-end transmission system, the framework can transpar-
ently work with different alternatives of each component. For
example, the use of multiple antennas can be considered in
cojunction with other coding schemes such as RCPC codes,
turbo codes, and LDPC codes.

This paper is organized in a top-down fashion, i.e., the overall
functionality in the form of an integrated protocol is described
first. Once an understanding of the system functionality is devel-
oped, the individual components are described in further details.
Accordingly, the outline of the paper follows. In Section II, we
describe our integrated protocol. In Section III, we discuss the
details of calculating the symbol error rates of multiple antenna
links, our hybrid modeling of the channel loss, and the channel
coding technique utilized in our work. In Section IV, we discuss
the random bit error component of our optimization framework.
The discussion of this section introduces a probabilistic formu-
lation of the optimization problem the cost function of which is
derived utilizing the hybrid loss model of Section III. This sec-
tion, also provides a low complexity solution to the optimization
problem. In Section V, we describe the statistical packet erasure
component of our framework. In Section VI, we numerically
validate our results. Finally, Section VII includes a discussion
of concluding remarks and future work.

II. DESCRIPTION OF THE END-TO-END PROTOCOL

In this section, we provide a description of our end-to-end in-
tegrated protocol. We consider the transmission of a bitstream
produced by a progressive image source coder such as SPIHT
[30] or JPEG2000 [41] over a noisy channel. Considering the
progressive nature of the source coder, a reconstruction of the
transmitted source image can be created from a prefix of the
bitstream. The quality of the reconstructed image can be further
enhanced by receiving more information in order. We note that
due to the progressive nature of transmission, the lack of any
number of bits in the final sequence can potentially render sub-
sequently received bits useless. We assume that the bitstream
is packetized into a number of packets with a fixed or a vari-
able number of source bits per packet. We consider errors asso-
ciated with both bit errors and packet erasures. The utilization
of error detection and error correction channel codes can po-
tentially compensate for the error effects at both bit and packet
levels. Examples of such codes are RCPC codes [16]; punc-
tured turbo codes [1] and [22]; or rate compatible punctured RS
codes [43] and [21]. Encoding the information bits of individual
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Fig. 1. Flowchart of the proposed end-to-end protocol.

packets, we note that each packet will contain source coding and
channel coding or parity bits. The calculation of parity bits is
done based on minimizing the expected distortion of the recon-
structed bitstream. While the details of distortion minimization
are discussed in Section IV, we note that the minimization can
be carried out for both variable length and fixed-length packets.
We consider the case of fixed-length packets in our implementa-
tion because it is more challenging and convincingly more prac-
tical from the standpoint of underlying network protocols such
as ATM or even UDP/IP. Further, we propose the use of packet
level channel coding to compensate for the packet erasure im-
pacts on the packetized bitstream. Such coding scheme treats the
collection of information and parity bits in each packet as data
for the purpose of packet erasure compensation. However with
the exception of an interleaving operation, there is no signifi-
cant difference between compensating for bit errors and packet
erasures from the standpoint of channel coding.

Our integrated protocol is categorized under type II hybrid
Automatic Repeat reQuest (ARQ) and Forward Error Correc-
tion (FEC) protocols. In a type II hybrid protocol, a retransmis-
sion request is responded by transmitting a codeword containing
extra parity bits for a previously transmitted codeword. Relying
on the discussion of RS codes in [43] and [7] together with re-
ceiver feedback and erasure decoding, we propose the use of
systematic rate compatible punctured RS codes in our protocol
to compensate for both random bit errors and packet erasures.
We note that the systematic rate compatible punctured RS codes
together with erasure decoding outperform non-systematic RS
codes of [21].

Fig. 1 depicts the flowchart of our end-to-end protocol. We
assume that a bit budget Br and a per round probability of de-
livering a packet set IT are given. Our round-based protocol,
with variable R keeping track of the round number, consists

of two components. The first component or the outer loop is
used to compensate for random bit errors. The second compo-
nent or the inner loop is utilized to recover erased packets. In
the first round, a bitstream is initialized to the progressively en-
coded image data.

Assuming a fixed packet length of L, a bitstream size
of BSgr generated by the image coder, and a total of
BS, source coding bits delivered so far, the number
of packets to transmit the bitstream is chosen as N
min(|aBr /L], |BSg — BS4/L|, Npraz) where 0 < o < 1
is a design parameter effectively splitting the available budget
By between the two components of the protocol and N4z
is a per round upper bound on the number of transmitted
packets. The number of per packet parity symbols minimizing
the expected distortion of the image under bit errors only is
then calculated according to the discussion of Section IV. For
packet 7 in the set of N formed packets, quantities b; and C;
represent the number of bits allocated to source coding and
parity, respectively. Next, the total number of data and parity
packets N’ required to statistically guaranteeing the delivery
of the packet set is calculated according to the discussion of
Section V. After updating transmission budget B, announcing
the start time and the duration of the round, the source proceeds
with the transmission of the coded packet set to the receiver.
Each packet includes a sequence number. The receiver waits
for the duration of the round before determining whether it
has received N packets required to recover the packet set.
The variable BS tracks the total number of source coding
bits embedded in the packet set. At the end of the round, the
receiver sends the packet numbers of the erased packets to the
source in a single packet NAK message if it has not been able
to recover the block of packets. We also note that utilization
of similar error detection and correction codes along with the
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employment of timeout mechanisms can effectively cope with
the impacts of random bit errors and packet erasures in the
transmission of single packet NAK and control messages. For
simplicity, we assume that the transmission of single packet
NAK and control messages are error free in the rest of our
discussion. The NAK message includes a two bit per packet
bitmap associated with the individual packets of the set. The
receiver sets the M SB bit associated with a packet to zero if
it has been able to recover the packet. With the M S B bit set
to one, the receiver sets the LS B bit to one if it has not been
able to recover the packet due to an erasure. The source then
retransmits an extra number of packets in order to compensate
for packet erasures in the channel. The number of extra packets
is again calculated from the statistical guarantee algorithm of
Section V. Notice that the RS code applied to the columns is
also a rate compatible punctured RS code, and extra redun-
dant packets can be generated if necessary. Because of the
Maximum Distance Separable (MDS) property of RS codes
[43], any N received packets can be used in the RS erasure
decoder to recover the first N packets and the packet loop can
be terminated. Once the receiver has recovered the block of
packets, it aims at recovering the source coding bits in each
packet. In the first round, each packet contains source coding
bits and parity bits and is directly decoded to recover the data. In
the second and later rounds, each packet includes incremental
redundant bits. The variable C/ indicates the total number of
parity packets received in multiple rounds associated with the
source coding bits of the original packet . The receiver thus
needs to append them to the previously uncorrectable packets.
In either case, the contents of the receiver buffer are decoded.
If there are no uncorrectable packets and BS 4 is less than
BSg, another set of rounds is initiated starting from the first
round. However, if Np uncorrectable packets exist containing
a total of BSF source coding bits, the receiver requests extra
redundant bits for those packets. If uncorrectable packets exist
but their RS code has reached the length of the mother code,
the transmission of the current set is started from the first
round after checking the available budget. Otherwise, another
round of delivering extra redundant bits initiates. The amount
of redundancy is determined by increasing the error correcting
capability of each packet of the first round to an amount cal-
culated from the optimization algorithm of Section IV for the
second round and beyond. Next, the source packetizes extra
parity bits using appropriate header paddings and choosing
N = min(Np, |aBr/L|, Nyras)- It will then transmits the
packets to the receiver. The entire set of rounds and conse-
quently the image transmission terminate under one of the two
following conditions: 1) the entire bitstream of the size BSg
has been received with no uncorrectable blocks, and 2) the
transmission budget is exhausted. The image is reconstructed
using all of the packets preceding the first uncorrectable packet
immediately after the transmission is terminated.

In Sections III-V, we provide a detailed description of the
components of our protocol.

III. CHANNEL CODING AND LOSS ANALYSIS

In this section, we first describe the properties of our proposed
channel coder. We then continue by discussing the impacts of

utilizing multiple antennas. We finish this section by providing
an analysis of temporally correlated channel loss relying on the
Bernoulli and Gilbert-Elliott [12], [15] models.

In a round-based transmission scheme with R rounds, a rate
compatible punctured RS channel coder converts k informa-
tion symbols (packets) into a sequence of n;-symbol (n;-packet)
blocks where ¢« = 1, ..., R. Each symbol consists of a number
of bits and each packet con51sts of a number of symbols. For the
first sequence, (n1 — k) parity symbols (packets) are appended
to k data symbols (packets). The sequences n; forj = 2,..., R
are obtained by appending n; — nj_; symbols (packets) to the
previous 11 symbols (packets). We also note that a combined
channel code n; is capable of correcting up to |n; — k/2] errors
when applied to symbols and up to n; — k errors when applied
to packets.

In order to calculate the error rate of an RS(n, k) coder block,
we utilize a hybrid model consisting of the single-state Bernoulli
and the two-state Gilbert-Elliott (GE) error models. In our dis-
cussion below, we describe the modulation symbol error rate
and channel coding symbol loss rates. We distinguish between
the two types of symbols by noting that a channel coding symbol
typically consists of a number of modulation symbols. For ex-
ample, an 8-bit RS channel coding symbol may consist of eight
BPSK modulation symbols.

A. Calculation of the Symbol Error Rate for Multiple Antenna
Systems

In [45], the authors calculate closed-form expressions
describing the modulation symbol error rate ¢ of a mul-
tiple-transmit multiple-receive antenna system in terms of the
number of signal points in the constellation M and the average
signal-to-noise ratio S N R. We carry out our calculations under
the assumption of facing a slow fading Rayleigh channel and
utilizing the PSK modulation scheme. In what follows we
provide a brief review of our discussion. First, we introduce
the symbol error rate of a single-transmit N-receive antenna
system using Maximum Ratio Combining (MRC) as

j (3) mrom

J
N—-1 j o
+ sin(tan Z ”
_]:1 =1
x [cos(tan™* E)]z(j_i)+1} (1)
where ¥ = SNRsin?(x/M), ¢ = \/9/1 + 9 cotw/M, and
oij = 2‘] / 2(3‘?_ ) 442(j — i) + 1]. From (1), one can

calculate the symbol error rate of a single-transmit single-re-
ceive antenna system as well as a single-transmit double-receive
antenna system by setting N to 1 and 2, respectively. Relying on
a discussion of diversity gains, we also argue that the modula-
tion symbol error rate of the Space—Time Block Codes (STBCs)
of [2] and [40] can be calculated from (1) by proper mapping
of the values of SN R. For example, the symbol error rate of

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 8, 2010 at 14:13 from IEEE Xplore. Restrictions apply.



224 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 2, NO. 2, APRIL 2008

a double-transmit single-receive antenna system can be calcu-
lated by replacing SN R with SN R/2 and setting N to 2 in (1).
Similarly, the symbol error rate of a double-transmit double-re-
ceive antenna system can be calculated by replacing SN R with
SNR/2 and setting N to 4 in (1).

B. Discussion of the Hybrid Loss Model

As pointed out in many research articles, the pattern of
random bit errors in a fading wireless channel is bursty rep-
resenting temporal correlation. The two-state GE loss model
provides an elegant mathematical model to capture the error
pattern of such channel. In the GE model, the loss of a bit
is described by a two-state Markov chain. The two states are
denoted by state G and B. State GG represents a bit error rate
of e while state B represents a bit error rate of eg where
ep > eg. State G also introduces a self-transitioning proba-
bility of v and a transitioning probability of 1 — « to state 5.
Similarly, state B introduces a self-transitioning probability of
[ and a transitioning probability 1 — [ to state G. Per state
bit error rates of the GE model e and g can be expressed as
a function of modulation symbol error rates ¢ and ¢p. For
example, for the BPSK modulation scheme, i.e., M = 2 in
(1), e¢ = pg and e = @p. The parameters v and (3 can be
typically measured from the observed loss rates and average
burst lengths of the channel [18].

For the GE loss model, the probability of receiving exactly &
bits from 7 transmitted bits is described by

P(n,k) = P(n,k,G)+ P(n,k, B). (2)

Further, the recursive probabilities of receiving exactly k bits
from n transmitted bits and winding up in state G and B are
respectively given by

P(n,k,G)
+ (1 — €G)
X[yPn—1,k—1,G)+ (1 - pB)P(n—1,k —1,B)]
€)]
and
P(n,k,B)
+ (1 — EB)
x[(1=9)P(n—1,k—1,G)+ BP(n—1,k -1, B)]
4
for n > k > 0 and the initial conditions
P(0,0,G) = 9ss = Qi;gg
P(O'/ 07 B) = bSS = 2_];—zﬁ . (5)
P(1,0,G) = eg[vgss + (1 = ()bss]
P(1,0,B) = eB[(1 — 7)gss + Bbss]

In what follows, we model the loss pattern of the channel
coding symbols under the assumption that the loss pattern of the
communication channel at the bit level is described by the GE
model. Suppose the RS coder generates a set of channel coding
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Fig. 2. Comparison of calculated and observed average byte loss for a channel
coding symbol size of eight bits and BPSK modulation.

symbols where each symbol consists of s bits. A channel coding
symbol is received error free if all of its s bits are received free
of errors. The probability of receiving a channel coding symbol
free of error under the GE model is obtained from (2) with
n = k = s as P(s,s). Note that we assume not having ac-
cess to the information about the initial bit of a given channel
coding symbol and hence also capturing the inter-symbol tem-
poral correlation in the expression P(s, s). Relying on a hybrid
loss model in which inter-symbol temporal correlation is not
deemed significant compared to intra-symbol temporal correla-
tion, we can obtain the probability of channel coding symbol
block loss from

n—tc—1 n—tc—1 n
_ S\ (n—1) AT
Y(n,to,e) = Z; P(n,i) = Z; ( ; ) € (1—¢)
(0)
where ¢ = 1 — P(s,s). It is important to note that in (6),

the probabilities of receiving error free channel coding symbols
P(s, s) are calculated independently for each channel coding
symbol but intra-symbol temporal correlation is captured in the
calculation of P(s,s).

Next, we experimentally validate our hybrid loss model.
Fig. 2 provides sample validation results of our hybrid loss
model. For a channel coding symbol size of eight bits, BPSK
modulation, and three different choices of transmitted byte
lengths L, the figure compares the calculated average byte
loss from our hybrid model with the observed average byte
loss over a range of values of SN R¢ in the GE model with
SNRg = 10SN Rp. The other parameters of the GE model
are set as v = 0.99873 and # = 0.875 representing a burst
length of eight. The averages are calculated over one million
experiments. As observed from the plots, the values of calcu-
lated and observed average byte loss match in all three cases.
Note that while the choice of channel coding symbol size
affects our validation results, the error correcting capabilities of
the utilized channel coding scheme has no effect on our results.
While not shown here, we have observed consistent results in
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a large set of validation experiments for a variety of the GE
model parameter settings.

At the end of this section, we note that the Gilbert model of
[15] with trivial per state error probabilities of e¢ = 0 and
ep = 1 is used to describe the packet loss of the underlying
channel.

IV. BIT ERROR CORRECTION

In this section, we discuss the protection of the source coding
bits in a packet set associated with a progressive bitstream. The
bitstream is packetized into a number of packets with fixed-
lengths. In order to protect source coding bits against random bit
errors, we propose the use of rate compatible punctured RS error
correction codes in each packet. As pointed out in Section II, our
protocol calls for an ordered round-based transmission of packet
sets. Leaving the details of compensating for packet erasures
to the next section, we discuss the details of random bit error
compensation going from one round to another in this section.
Hence, the main goal of this section is to introduce an optimiza-
tion framework that minimizes the expected distortion of the
reconstructed image due to random bit errors in a single round
of transmission.

A. Optimization Formulation

Consistent with Section II, we assume the original size of the
bitstream generated by the image source is BSg and so far B.S 4
bits of the bitstream have been delivered. Hence, the remaining
number of the bits in the bitstream have to be packetized into
N fixed-length packets with length L. The choice of packet
length L has to avoid segmentation in the data link, network,
and transport layer protocols in order to preserve the effective-
ness of channel coding operation at the bit level.

Once the packet length L is chosen, the number of
packets N for the first round is selected such that the col-
lection of packets contains a number of source coding
bits less than or equal BSp — BSs. We set N =
min(|aBr/L|, |BSgr — BSa/L], Npyrax) wWhere the parame-
ters are defined in Section II. Denoting b; and C; respectively
as the source and the channel coding bits associated with
packet i for i € {1,...,N}, we observe that b; + C; = L.
We recall that utilizing our proposed channel coding scheme
introduces a channel code rate of r; = b;/L for packet i. The
optimization problem is aimed at finding the parity assignment
of each packet C; such that a measurement of the expected
distortion is minimized. The expected distortion can be cal-
culated as the probabilistic average of distortions associated
with recovering the first ¢ — 1 packets in a given packet set
and failing to recover packet ¢ with ¢ € {1,...,N + 1}.
Generally speaking, the distortion of events associated with
recovering consecutive packets are not mutually independent
for a channel with memory. However, the use of the hybrid loss
model of the previous section allows us to assume such events
are mutually independent with a relative accuracy. Thus, the
expected distortion can be expressed as

N+1 i—1
E[D] = Do¥y + Z U,D; 4 H(1 —0,). @)
i=2 j=1

In (7), ¥; withi € {1,..., N} is the failure probability of re-
covering packet 4, U 41 2 1, D; with ¢ > 1 is the distortion
of a reconstructed image with the first i packets, and Dy = o2
is the source variance. The distortion D; is a function of the
aggregate received bits T; = E;Zl b;. While the data associ-
ated with the function D; can be extracted directly from SPIHT
or other coders, it can also be approximated utilizing data fitting
techniques. The advantage of using a closed-form approximated
function for distortion is to reduce the time complexity of our
optimization problem. In [3], the authors propose an approxi-
mation of the rate-distortion function of the SPIHT codec in the
form of

4
Di(T;) =Y hje™h™ ®)
j=1

where h; and [; are parameters that are identified indepen-
dently for different classes of images. We note that the same
approach can be used to approximate the rate-distortion func-
tion of other image codecs. Further, the probabilities ¥; for
i = {l,...,N} can be expanded in terms of channel loss
characteristics as described in Section II. In the case of utilizing
the hybrid Bernoulli-GE loss model and calculating the bit error
probability e = P(s,s), ¥, is calculated from (6) by setting
n = L and t¢ = |C;/2]. Making note that for the fixed-length
packet 7 specifying the bits allocated to data b; is equivalent
to specifying the bits allocated to parity C;, the optimization
problem of the first round is expressed as

e, P ®
N

Subject To : Z(L —C;))<BSgp—BS, (10
=1

0<Ci<L, ie{l,...,N}. (11)

While Constraint (10) shows that the number of source coding
bits in the N packets adds up to no more than the number of
bits in the remaining part of bitstream, Constraint (11) places a
lower and an upper bound on the per packet channel coding bits.
We note that the problem of (9) is subject to discrete constraints
applied to available channel coding variables C1,...,Cy. It
is hence categorized under Mixed Integer NonLinear Program-
ming (MINLP). Under the assumption of feasibility, the solu-
tion to the standard problem can provide a close estimate of
the MINLP solution. Assuming the solution to the optimiza-
tion problem of the first round specifies a per packet set of
channel coding bits {C', ..., Cn} and source coding bits { L —
Cy,...,L — Cy}, the optimization problem of the rounds be-
yond the first round are specified with the same cost function as
(7) for the per packet source coding bits of the first round but a
different number of channel coding bits, ¥; = 0 for previously
delivered packets, and the following constraint set:

> (Ci-Ci)< NL (12)
i€EF
Cl=0C;, ieR (13)
Oi < Cll < Liax — (L — Cz), R (14)
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where N = min(Np, |aBr/L|, Nyrax)s Linas is the mother
code length, F and R indicate the set of failed and recovered
packets, C; and C/ with i € F U R denote the current and the
previous collective number of parity bits for packet ¢, respec-
tively. While the formulations of this section specify a distor-
tion-optimal problem, they can be easily changed to reflect a
rate-optimal problem. Further, we note that the formulation of
(9) can be applied to a variable-length packet scenario in which
the number of data bits in a packet is fixed and the number of
parity bits are obtained by solving the optimization problem. In
the rest of our discussion, we focus on the distortion-optimal
problem of (9) along with the constraint set (10) and (11) for a
fixed-length packet scenario.

B. Optimization Solution

In this section, we provide a discussion of solving the opti-
mization problems of Section IV-A. Relying on the Lagrangian
theory [6], we convert the problem of the first round to an opti-
mization problem without constraints. We define the Lagrangian
function of (9) as

N
LGp = E[D]+ A <NL ~-Y Ci-BSp+ BSA>
i=1
+p1(Cr = L)+ ---4+pun(Cy — L) (15)
where the parameters ), p1, . .., and p v are the Lagrange mul-
tipliers in the Lagrangian (15). The unconstrained minimization
problem for Q@ = {C1,...,Cx} is defined as

N
ménLGD = mén{E[D]—l—)\ <NL — ZCi — BSR—I—BSA)

i=1

N
+> (Ci - L)} (16)
=1

where Q = {C4,...,Cy} and the parameters A, 1. .., 4N
are the Lagrange multipliers.

Taking into consideration the discrete nature of our problem
and considering the fact that (9)—(11) are convex!, we propose
deploying Sequential Quadratic Programming (SQP) technique
to solve the problem. In SQP, the necessary conditions for opti-
mality are represented by Karush—-Kuhn—Tucker (KKT) condi-
tions described below.

VLGp(Q*)
~ [0LGp OLGp OLGp OLGp OLGp .
=50 a0 o o ae |~
N
2\ (NL—ZC;‘—BSR+BSA> =0
=1
pi (CF—L)=0
A pp > 0. (17)

IThe function f : C —— R™ defined over the convex set C C R™ is called
convex if Yoy, 22 € C and 0 < 5y < 1 the inequality f(nzq1 + (1 — n)as2) <
nf(1) + (1= ) f(x2) holds.

Further, \*, uf > Ofor¢ = 1,..., N if associated with an active
inequality at the optimal point 2%, i.e.,

A*=0: otherwise
wi>0: ifCr=1L
{ ui =0: otherwise. (19)

A variant of the quasi-Newton method [31] can then be used to
iteratively find the solution to the optimization problem. We note
that utilizing a variant of the quasi-Newton method is equivalent
to solving a quadratic estimation of the problem in every itera-
tion. The time complexity of solving the optimization problem
is O(Idlogd) where I indicates the number of iterations and
d indicates the degree of the overall quadratic estimation2. The
solution to the optimization problem of the second round and
beyond is similar and is skipped here. We have observed that an
average of ten and no more than twelve iterations are required
for the convergence of our proposed optimization algorithm of
the first round. The associated numbers for the algorithm of the
second round and beyond depend on the number of lost packets
but are generally smaller than the ones in the first round. Hence,
the worst case complexity results are quite good compared to
other recursive optimization approaches such as dynamic pro-
gramming introducing a worst case time complexity in the order
of O(d?).

At the end of this section, it is important to note that our op-
timization approach is loosely coupled with the choice of error
model through the choice of coefficients ¥; in (7). While in our
work the expressions of U; are calculated relying on the expres-
sions of (6), (2), (3), and (4) for the hybrid Bernoulli-GE loss
model, one can work with an alternate error model such as a fi-
nite-state Markov chain model by updating the expressions of
U, accordingly. Thus, our optimization approach can be trans-
parently used in conjunction with any error model.

V. STATISTICAL RECOVERY FROM PACKET ERASURES

We now turn our focus on the statistical recovery of the
packets associated with the bitstream of a progressive source
coder in an erasure channel. We assume that the individual
packets of the set contain both source coding and parity bits.
For the purpose of packet erasure compensation, we treat the
collection of source coding and parity bits as data. Focusing
on ordered delivery of consecutive packet sets, we propose
utilizing rate compatible punctured RS codes at the packet level
to compensate for packet erasures. However, our approach
in this section relies on providing a statistical guarantee for
delivering a packet set. The term statistical guarantee of the
packet set delivery is used to indicate that a packet set can be
successfully delivered with a probability better than a given
threshold assuming the specifications of the packet erasure
channel are known. Our earlier work of [44] introduces the
following algebraic placement algorithm with a time com-
plexity of O(zk) to calculate the smallest number of required
transmitted packets u = k + z in order to guarantee the receipt

2We note that the optimization problem can also be solved relying on a table
look up approach in case distortion data is directly read from SPIHT coder as
oppose to relying on the approximated function of (8).
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of at least k& packets with a probability II or better for a system
governed by the Gilbert loss model.

Statistical Guarantee for Packet Delivery Algorithm

1—vy
2—y—p

* Initialize ®(k, k) = 7" =549 (1 - B)
o for (z = 1tok){

— Calculate P(k + z, k)

— Update ®(k + z,k) = ®(k+ z — 1, k) + P(k + 2, k)

— If ®(k + 2, k) > II, then Break

}/* for (z = 1tok)*/
* Report the number of required packets, n = k + z

The quantities of interest in the algorithm above are described
as follows. P(k + z, k) the probability of receiving k packets
from k + z transmitted packets is given by (2) and recursive (3)
and (4) in the case of utilizing Gilbert model. Further, ®(k +

z, k) the probability of receiving k packets or more from k + z
transmitted packets is defined as

k+z
O(k+2k) =Y P(k+i,i).
i=k

(20)

It is important to note that there is a one-to-one relationship
between the choice of the parameter Il in our statistical guar-
antee algorithm and the bandwidth split factor parameter «.
In other words, specifying one of the parameters automatically
identifies the other parameter.

It also is important to note that the choice of error model
does not affect the operation of the algorithm described above.
By calculating the values of P(k + z, k) from the recursive or
closed-form expressions of an alternate error model of choice,
one can utilize that error model instead of the Gilbert model.

VI. NUMERICAL ANALYSIS

In this section, we present our simulation results based on
the protocol of Section II and the discussion of the sections
following it. For our simulation, we consider the transmission
of SPIHT [30] encoded class of gray scale images including
512 x 512 x 8bpp Lena, Zelda, and Barbara images over a
channel characterized by correlated loss.

In our experiments, we use rate compatible punctured RS
codes with a maximum length 255 over GF(256) and a
symbol size of 8 bits. We utilize hybrid Bernoulli-GE and
Gilbert loss models to describe bit errors and packet era-
sures, respectively. We set the transition probabilities of both
models as v = 0.99873 and = 0.875 corresponding to
an average burst length of 8. Besides the trivial choice of
error probabilities in the case of Gilbert model, per state
error probabilities of the GE model are calculated based on
the results of (1) for BPSK modulation with M = 2 and
SNRg = 10SNRp. Hence, we set e = ¢g and eg = g
in our hybrid Bernoulli-GE error model. Further, we set
Nifar = 50 and BSg = 512 x 512/8 Bytes for a compression
ratio of 8. For our statistical packet delivery algorithm, we set

Optimization Results
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Fig. 3. Open-loop plots of PSN R versus SN R in the case of Lena image

for four different antenna configurations.

II = 0.9988 translating to &« = 0.72. Our choices of packet
lengths guarantee that there is no segmentation/reassembly
of UDP or ATM packets over Ethernet and/or IEEE 802.11
frames. This is due to the fact that transmitting UDP/IP packets
on top of Ethernet and IEEE 802.11 frames introduces a
maximum allowable packet size of L = 1476 Bytes without
facing segmentation. The set of parameters associated with
the Lena image in (8) are set as (hy, ho, hs, hq,l1,1l2,13,14)=
(1276.7,117.2,26.9,279.1,331.85,11.27,1.58,50.28). Sim-
ilarly, the set of parameters for Zelda and Barbara images are
set as (1144.5,175.91,13.57,52.68,393.52,61.55,1.24,12.93)
and (1337.1,391.71,272.96,97.43,531.91,76.00,8.33,2.22),
respectively.

We validate and present our results as follows. First, we study
the behavior of our single round protocol without receiver feed-
back. We refer to the latter scenario as an open-loop scenario.
We conduct our open-loop experiments for an erasure free
channel and a channel with packet erasures. Second, we look
at the behavior of our multiple round protocol with receiver
feedback to which we refer to as a closed-loop scenario.

A. Open-loop Results

In an open-loop scenario, we transmit a bitstream in a single
round and evaluate the quality of the reconstructed image at the
receiver. We start by transmitting the bitstream over an erasure
free channel. We have two compelling reasons to study the be-
havior of our protocol for such a scenario. First, we are able to
validate the effectiveness of our bit error optimization scheme.
Second, we can show the mere advantage of utilizing multiple
antenna transmission. While this section only reports our results
in the case of Lena image, we have obtained similar results in
the case of other images including Zelda and Barbara.

Fig. 3 compares the plots of PSNR = 10log;, 255%/£[D]
versus SN R in the case of Lena image for a packet length of
L = 100 Bytes, By = 5,000 Bytes, and four antenna config-
urations: 1) a Single-Transmit Single-Receive (ST/SR) antenna
system, 2) a Double-Transmit Single-Receive (DT/SR) antenna
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Fig. 4. Closed-loop plots of PSN R versus SN R in the case of Lena image
for four different antenna configurations.

system, 3) a Single-Transmit Double-Receive (ST/DR) antenna
system, and 4) a Double-Transmit Double-Receive (DT/DR) an-
tenna system. For a fair comparison, all systems use the same
transmission power. Every point in the curves indicates an av-
erage value taken over 20 simulations. While not shown here,
the expected values of PSNR = 10log,, 2552/£[D] match
the real values of PSNR = 10log;, 2552/ D observed in our
experiments with an accuracy of no worse than 2 dB.

Comparing the results of the figures, we observe that the
PSNR of a DT/DR antenna system is higher than that of the
rest. In addition, the PSN R of an ST/SR antenna system is
lower than that of the rest. Comparing the P.SN R of an ST/DR
antenna system with that of a DT/SR antenna system, we ob-
serve that the former introduces a higher PSN R. From the re-
sults of [45], we recall that the diversity gain is in the order of
the product of the transmit and the receive antennas. Hence, both
ST/DR and DT/SR scenarios achieve a diversity gain of order
two. However, from the signal-to-noise ratio standpoint the ef-
ficiency of the latter scenario suffers a 3 dB loss compared to
that of the former scenario because the transmission power is
divided between antennas. This justifies the higher PSN R of
an ST/DR antenna system compared to that of a DT/SR antenna
system. Since the channel coding effects saturate beyond a cer-
tain SN R, we also observe that the performance advantage
of utilizing multiple antennas in lower values of SNR is more
significant than that of higher values of SNR. However due to
lack of packet erasures, the expected quality is relatively good in
all four cases even with the small transmission budget of 5000
Bytes.

B. Closed-Loop Results

In this section, we study the performance of our closed-loop
protocol over a channel introducing bit errors and packet
erasures. With the exception of By = 20,000 Bytes, we
apply identical settings of other parameters as before to our
experiments.

Zelda Image
! T T | T T

PSNR (dB)
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Fig. 5. Closed-loop plots of PSN R versus SN R in the cases of (a) Zelda
and (b) Barbara images for four different antenna configurations.

We start by investigating the effects of utilizing different com-
binations of multiple antennas in the transmitter/receiver pairs.
Figs. 4 and 5 show the plots of PSNR = 10log;,255%/D
versus SN R¢ in the case of Lena, Zelda, and Barbara images
for the four antenna configuration scenarios, ST/SR, DT/SR,
ST/DR, and DT/DR. Comparing the results of figures, we ob-
serve the same qualitative pattern of behaviors as our open-loop
experiments. The best quality is achieved by DT/DR configu-
ration followed by ST/DR, DT/SR, and ST/SR. In all of the
curves, there is almost a linear transition regime from a low
quality region to a high quality region. The quality of the recon-
structed image remains in a low quality region for any choice of
SN R below alow threshold. As SN R increases, the quality
improves until reaching to a high threshold. The quality of the
reconstructed image remains in a high quality region for any
choice of SN R beyond the high threshold.
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Fig. 6. ST/SR closed-loop plots of PSN R versus SN R¢ in the case of Lena
image for two different choices of the packet size.

Albeit the existence of packet erasures, the main difference
compared to our open-loop results is that because of the higher
transmission budget of 20 000 Bytes in closed-loop cases and
the use of feedback the quality of reconstructed images have
improved by a factor of up to 4 dB in PSN R scale compared
to their open-loop case. Once again, our experiments indicate
the performance advantage of utilizing multiple antennas in the
same order observed in our open-loop experiments with the
amount of performance gain depending on the value of SN R.
While for small values of SN R the neighboring curves are
more than few dB’s apart from each other in PSN R scale, the
difference for large values of SN R is less than 1 dB.

Next, we study the effects of the choice of packet size in the
performance of our end-to-end protocol. Fig. 6 shows the plots
of PSNR = 10log,, 255% /D versus SN R for two different
values of the packet length L in the case of Lena image. For a
given packet size, the plots describe how the quality of the re-
constructed image improves as the average signal-to-noise ratio
increases. Again, every point in the curves indicates an average
value taken over 20 simulations. The plots show a similar pat-
tern with different choices of the packet size. Once more, we ob-
serve alinear transition regime from a low quality region to ahigh
quality region with the effect of larger packet sizes shifting the
curve to the right. We also observe a slightly lower high quality
value for L. = 200 Bytes that can be potentially justified as the
result of getting close to the maximum mother code length. Fig. 7
shows sample images corresponding to the low, medium, and
high PSN R regions in Fig. 6 for the choice of . = 100 Bytes.

In order to study the behavior of the protocol under different
assignments of the bandwidth to the random bit error and packet
erasure components of the protocol, we have also performed a
set of open-loop experiments with different values of « in the
range of [0.2, 0.8] while keeping the other parameters fixed uti-
lizing the class of images that includes Lena, Zelda, and Bar-
bara images. While we do not report our results here due to
lack of space, our experiments show similar qualitative behav-
iors as the ones reported here. The main observation is that for

Fig. 7. Comparison of the original and reconstructed sample Lena images of
the ST/SR plots of Fig. 6 utilizing L = 100 Bytes. Clockwise from the top
left: the original image, the reconstructed image at SN R equal to 6 dB, 9 dB,
and 13 dB, respectively.

a specific choice of a which is experimentally approximated
to be 0.72, the performance results are optimized in terms of
achieved PS N R. The results are more complicated in the case
of closed-loop experiments although the same choice of « still
represents an appropriate selection of the parameter. Exploiting
the optimal choice of « is the subject of our future research
work.

VII. CONCLUSION

In this paper, we presented a statistical optimization frame-
work for multiple antenna transmission of progressive images
over noisy channels. Relying on rate compatible punctured RS
codes, our framework was able to compensate for random bit
errors as well as packet erasures. We considered the impacts
of transmission over channels with memory represented by a
hybrid Bernoulli and Gilbert-Elliott model. In order to cope
with random bit errors, we introduced an optimization frame-
work to minimize the expected distortion of a reconstructed
image. We were able to solve our optimization problem with
a worst case time complexity better than that of dynamic pro-
gramming and exhaustive search. Next, we provided an algo-
rithm that was capable of statistically compensating for packet
erasures. Relying on the receiver feedback, we integrated our bit
error and packet erasure results in the form of a type II hybrid
FEC-ARQ algorithm. Finally, we numerically validated our re-
sults by transmitting images over lossy channels characterized
by temporally correlated loss. In addition we investigated the
effects of multiple antenna diversity in transmission scenarios
of progressive images over such channels. Simulation results
demonstrated a great performance improvement as the result
of using multiple antennas. Our future research work relates
to the accommodation of real-time deadlines in our protocol
framework for the transmission of video and point-to-multipoint
transmission scenarios.
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