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ABSTRACT
Deviations of local structure and chemistry from the average crystalline unit cell are increasingly recognized to have a significant influence on
the properties of many technologically important materials. Here, we present the vector pair correlation function (vPCF) as a new real-space
crystallographic analysis method, which can be applied to atomic-resolution scanning transmission electron microscopy (STEM) images to
quantify and analyze structural order/disorder correlations. Our STEM-based vPCFs have several advantages over radial PCFs and/or 3D pair
distribution functions from x-ray total scattering: vPCFs explicitly retain crystallographic orientation information, are spatially resolved, can
be applied directly on a sublattice basis, and are suitable for any material that can be imaged with STEM. To show the utility of our approach,
we measure partial vPCFs in Ba5SmSn3Nb7O30 (BSSN), a tetragonal tungsten bronze (TTB) structured complex oxide. Many TTBs are known
to be classical or relaxor ferroelectrics, and these properties have been correlated with the presence of superlattice ordering. BSSN, specifically,
exhibits relaxor behavior and an incommensurate structural modulation. From the vPCF data, we observe that, of the cation sites, only the
Ba (A2) sublattice is structurally modulated. We then infer the local modulation vector and reveal a marked anisotropy in its correlation
length. Finally, short-range correlated polar displacements on the B2 cation sites are observed. This work introduces the vPCF as a powerful
real-space crystallography technique, which enables direct, robust quantification of short-to-long range order on a sublattice-specific basis
and is applicable to a wide range of complex material types.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058928

I. INTRODUCTION

The manner in which local structure and chemistry deviate
from the average crystalline unit cell has a great influence on the
properties of many functional materials. This is particularly true for
technologically important material categories, such as classical and
relaxor ferroelectrics. These materials find applications in energy
storage capacitors, computer memory, transducers, and actuators,
among others. Tetragonal tungsten bronze (TTB) is a metal-oxide

structure compatible with a wide range of compositions, similar to
the widely studied perovskite structure, including many lead-free
compositions with ferroelectric or relaxor behavior.1,2 Addition-
ally, various TTB compositions are known to exhibit other unique
properties, such as very high Curie temperatures relative to most
perovskite-based ferroelectrics,3 pyroelectricity,4 photorefractivity,5
and second harmonic generation.6 TTBs are, however, much more
structurally complex than perovskites and commonly exhibit mod-
ulated superlattices.1,7 The prototypical tetragonal unit cell has four
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main types of cation sites, as shown in Fig. 1. These are often fully
occupied, though many “unfilled” TTBs exist, which have a large
fraction of vacancies, primarily on the A1 sites. Octahedral con-
nectivity is a complex corner-shared network in the a–b plane with
direct corner-sharing along the c axis. In modulated TTBs, the true
c lattice parameter is doubled from the prototype cell, primarily as a
result of alternating octahedral tilts along that axis.2,7 Other observed
deviations from the high symmetry tetragonal structure result in an
orthorhombic unit cell due to symmetry breaking from octahedral
tilts, displacements of the A2 sites along the [110] type directions,
and a small (4 pm) lattice parameter difference between the a and b
axes.2

As shown by Zhu et al., the A-site cation sizes are predictive
of either commensurate or incommensurate modulations.1 They
demonstrated that, with increasing average A-site cation size and
A1 site tolerance factor, the onset of incommensurately modu-
lated structures coincides with relaxor behavior. Relaxors are known
to have small polar regions with length scales on the order of
nanometers. It is thought that chemical or structural disorder in
the lattice disrupts polar ordering, preventing the formation of
long-range ferroelectric domains.8 In addition to chemical disor-
der on the A or B sites, in TTBs the structural disorder inherent
to incommensurate modulations may also contribute to the dis-
ruption of long-range ferroelectric correlations and favor relaxor
behavior.1

Woike et al. refined the structure of the unfilled TTB,
Sr1−xBaxNb2O6 (SBN) with x = 0.39, from primary x-ray reflections
and first-order satellite peaks. They used the super-space approach
to quantify the modulation, refining the structure as tetragonal,
and found it has two distinct wave vectors, which are related to
each other by the lattice symmetry: q1 = α(a∗ + b∗) + 1

2 c∗ and q2
= α(a∗ − b∗) + 1

2 c∗. Furthermore, in agreement with previous stud-
ies of TTB materials, they concluded that the structural modulation
is primarily on the oxygen and the A2 sub-lattices. Since they were
not able to integrate higher-order satellite spots in their refinement,
it remained an open question whether the material was truly tetrag-
onal, having two continuous modulation vectors, or if it had an
orthorhombic structure with two possible modulative orientations.7
For SBN with x = 0.5, Bursill and Lin determined the presence of two

orthorhombic variants using a combination of electron diffraction
and dark-field imaging.9

Due to their structural complexity, TTBs have primarily been
studied experimentally by low spatial resolution methods, such as
x-ray diffraction,2,7 parallel-beam electron diffraction, and conven-
tional dark-field transmission electron microscopy (TEM).1,9 While
these techniques are valuable, they tend to average the structure over
large length scales and cannot directly observe local correlations,
which are key to understanding the origin of relaxor ferroelectricity.
Here, we apply aberration-corrected scanning transmission electron
microscopy (STEM) to study Ba5SmSn3Nb7O30 (BSSN) directly at
the atomic scale. We use BSSN as a model material to develop anal-
ysis methods for quantifying and visualizing short- to long-range
structural correlations, such as modulations, from atomic resolution
STEM images.

BSSN is a TTB exhibiting an incommensurate superstructure
and relaxor behavior prototypical of its class. The relaxor behav-
ior is evidenced by a broad and frequency-dispersed maximum
of the dielectric permittivity below 250 K. At room temperature,
however, BSSN displays linear PE loops, indicating a paraelectric
phase, though the incommensurate modulation is maintained.10 The
incommensurate nature of BSSN is apparent from the superlattice
reflections in the [110] selected area diffraction pattern (SADP) in
Fig. 2. Atomic resolution STEM offers unique and complementary
insights for understanding local structure when compared to other
methods that may achieve higher accuracy but tend to average the
structure over large length scales. For thin samples, STEM high-
angle annular dark-field (HAADF) images are directly quantifiable
and atomic columns can be located with sub-pixel accuracy by fit-
ting with a two-dimensional Gaussian function.11 Scanning tech-
niques, however, are subject to a number of image distortions, such
as drift (from thermal or charging effects), scan-line origin noise,
and scan vector misalignment.12,13 Therefore, care must be taken to
correct these to enable accurate measurements beyond a range of
1–2 nm, particularly important for modulated structures.14 The pro-
cesses used for drift and distortion correction in this study, as well
as atomic column position determination, are detailed in Sec. V. The
question we seek to answer in this work is whether STEM imaging
is able to quantify structural information accurately from short- to

FIG. 1. [001] axis projection of the tetragonal tungsten bronze unit cell and the cation column projection along the [110] zone axis. Note the two types of A2 columns in
projection.
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FIG. 2. (a) [110] SADP from BSSN show-
ing incommensurate superlattice spots.
(b) Dark-field TEM image of a grain near
the [110] zone axis imaged using a pair
satellite spots. (c) HOLZ ring from the
[001] zone axis diffraction pattern. The
intense spots on the right side of the
pattern are main reflections, while
the faint ring on the left contains satellite
reflections in the 1

2
c∗ plane of the

reciprocal lattice. Note that four satellite
spots (circled) per reciprocal lattice
cell are visible. (d) Representation of
the reciprocal lattice indicating the two
unique modulation vectors.

long-range length scales, and on a sublattice basis, while retaining
vectorized orientation information. We are motivated to perform
this analysis in real space so that it can be applied to heterogeneous
materials for which ensemble information is not sufficient.

II. METHOD DEVELOPMENT: VECTOR PAIR
CORRELATION FUNCTION

Our approach to answer this question is to develop and imple-
ment the vector pair correlation function (vPCF) method to quantify
the structural modulation and other displacive correlations in BSSN
from STEM images. To place this in context, we will first describe
the well-known radial PCF (rPCF). The rPCF is the ratio of the local
to the average density [ρ(r) and ρ0, respectively] as a function of
distance (r) from a reference atom,15

g(r) = ρ(r)
ρ0
= 1

ρ04πNr2∑
v
∑

u
δ(r − rvu), (1)

where N is the number of atoms in the system and δ is the Dirac
delta function. The sums being over all the atoms in the system,
the PCF yields an ensemble average representation of the local
“neighborhood” at distance r from a reference atom. A rPCF derived
from a perfect lattice exhibits delta functions at the exact lattice spac-
ing distances (indicating perfect ordering), while a completely ran-
dom system would manifest as g(r) = 1 (indicating no correlation
between positions, regardless of distance). An amorphous atomic
structure will exhibit some order in the rPCF, as indicated by an
initial intense peak (due to the nearest-neighbor bond length) and a

few subsequent, increasingly broad peaks. Longer correlations, how-
ever, are absent in amorphous structures, and g(r) tends to unity
with increasing r. In an imperfect crystalline structure, peaks in the
PCF will broaden. In the case of a modulated crystal, or for struc-
tures with discrete displacements, peak splitting may occur. Overall,
PCFs offer a simple and concise way to summarize local structural
deviations from the global structure. Historically, PCFs have been
primarily developed and used to analyze the structure of amorphous
materials, such as liquids and glasses from x-ray or neutron scat-
tering data. PCFs are increasingly applied to crystalline scattering
data as the influence of local structure on many materials’ properties
becomes ever more apparent.15

The one-dimensional rPCF described above is helpful in under-
standing the degree of crystallinity, quantifying short-range order in
a system, or for structure determination from total scattering data
using Monte Carlo methods.16 The concept has also been applied to
real-space STEM data, by directly computing the projected rPCFs
from specific zone-axis lattice images. Radial PCFs, however, do
not explicitly preserve orientational information.17,18 Additionally,
interpretation of an rPCF can be complicated by overlapping peaks,
especially at increasing distances. rPCFs, therefore, are of limited
utility for studying complex or long range disorder phenomena. An
example of radial partial PCFs from [110] zone axis STEM images of
BSSN is shown in Fig. 3. Note that the peaks have a significant width
and that some are wider than others, indicating more variability in
displacements along the corresponding crystallographic directions.
Additionally, note that the apparent single peak at 12 Å is actually
two peaks separated by only 4 pm in the average BSSN structure.
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FIG. 3. Radial partial PCFs from the [110] STEM image of BSSN.

To capitalize on the usefulness of STEM image-derived rPCFs
while avoiding the noted drawbacks, we have extended the concept
to multiple dimensions as the vPCF. This is similar in concept to 3D
pair distribution functions (PDFs), which may be derived from 3D
single crystal scattering data acquired with synchrotron or neutron
sources.16 In this paper, we present a two-dimensional vPCF applied
to atomic-column locations in a STEM image, in principle, however,
the method could be applied to 3D atomic position data, resulting
in a 3D vPCF. Adapting from Eq. (1), a vPCF is mathematically
described by

g(r̄) = ρ(r̄)
ρ0
= 1

ρ0N∑v
∑

u
δ(r̄ − r̄vu). (2)

Here, r̄ − r̄vu is the inter-atomic column vector relative to the vu
atom column. To compute the vPCF from a finite-sized image, two-
dimensional column-to-column vectors are binned into pixels of
dimensions Δx, Δy. g(r̄) is, then, normalized by the chosen pixel
size.

From distortion-corrected STEM images, it is relatively
straightforward to calculate the vPCF once atomic column locations
have been determined. Depending on the types and ordering of dis-
placements, different methods to quantify the vPCF peak shape may
be appropriate. In general, it is likely that PCF peaks do not rep-
resent Gaussian distributions, so determining shape by Gaussian
function fitting could lead to analytical errors. vPCF peak quantifi-
cation can be accurately and efficiently accomplished using central
moments.19 First-order moments are used to calculate the mean of
a distribution, while second-order moments give information about
the width of the distribution and orientation of anisotropy. From the
second-order moments, the covariance matrix can be constructed
and eigenvalue decomposition can be used to find the axes of the
equivalent ellipse. The orientation and eccentricity of this ellipse will
be primarily used in this study. Figure 4 illustrates these concepts.

To illustrate how various structures will affect the resulting
vPCF, a model lattice system was generated. A random, Gaussian
distribution of displacements was added to the lattice to mimic
experimental measurement error and the presence of defects. For
the purposes of explanation, we use large displacement distributions
(relative to those observed experimentally in BSSN) for these mod-
els. All vPCFs are presented as a axis projections of an orthonormal

FIG. 4. A simulated, discrete 2D Gaussian distribution and its equivalent ellipse
calculated using moments.

lattice so that b and c are in the plane of the image. The resulting
vPCFs are shown in Fig. 5.

Figure 5(a) presents a model vPCF for a lattice with only ran-
dom displacements. The geometry of the peaks is the same as the
lattice geometry, and isotropic peak spreading is present due to the

FIG. 5. Model vPCFs having modulative displacements in the b direction with
various modulation wave vectors: (a) q = 0; (b) q = 1

2
c∗; (c) q = 1

3
b∗ + 1

2
c∗.

Background shading indicates the modulation wave phase.
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random displacements in both the x and y directions. In Fig. 5(b), a
vPCF from a lattice with a structural modulation vector of q = 1

2 c∗
with alternating displacements in the b direction is illustrated. Peak
splitting is observed for vPCF peaks at odd multiples of c from
the origin due to the anti-correlated relationship to the displace-
ment of the origin atom column. At even multiples of c, which are
highlighted by the horizontal phase lines, displacements are corre-
lated, so no splitting or additional broadening occurs. Figure 5(c)
presents a vPCF for the case of a commensurate modulation vector
having components in both the x and y directions, q = 1

3 b∗ + 1
2 c∗.

Here, the modulation phase lines are shown and intersect lattice
points at multiples of 2b and 3c from the origin. In this vPCF,
peaks midway between the constant phase lines show the broadest
spreading or splitting, while those progressively closer have nar-
rower, more isotropic distributions. The moments described previ-
ously were used to calculate the eccentricity of each peak, with the
coloring of the peaks indicating this value.

It should be noted that atomic pair correlation vector informa-
tion is included in the electron diffraction pattern (Fig. 2) and that
it is possible to calculate a vPCF directly from such data. However,
a number of challenges make this difficult experimentally, particu-
larly the presence of multiple scattering of electrons and the limited
dynamic range of the detectors available in most instruments. More-
over, it is not possible to produce partial vPCFs by this method, and
we will show that the ability to quantify sublattice-specific informa-
tion is a substantial advantage of vPCFs calculated from direct lattice
images.

III. RESULTS AND DISCUSSION
Figure 2 shows the [110] SADP from BSSN exhibiting incom-

mensurate satellite spots. Note that the pairs of satellite diffraction
spots visible in this pattern are of the same modulation vector type
(i.e., either q1 or q2). The opposite modulation vector type lies in a
perpendicular plane of the reciprocal lattice, as shown in Fig. 2(d),
and so corresponding spots do not appear in the diffraction pat-
tern. In Fig. 2(b), a conventional dark-field TEM image formed
using a pair of satellite spots reveals a mottled intensity distribu-
tion in the grain. This indicates that only the bright regions have
the specific modulation vector corresponding to the diffraction spots
used to form the image. Figure 2(c) shows a section of the first-
order Laue zone ring from an [001] zone axis SADP. In this case,
sets of four satellite spots are visible, indicating that the diffracting
region of the sample possesses both types of modulation vectors.
Thus, it is most likely that a modulation is present throughout the
entire grain, but that it fluctuates between q1 and q2 locally cor-
responding to two variants of orthorhombic symmetry. The ideal
orientation to observe the effects of the modulation at the atomic
scale is the [110] zone axis, where one of the modulation vectors
will be parallel to the image plane. The other modulation vector,
however, is out-of-plane, and corresponding regions will appear
unmodulated.

HAADF STEM images of BSSN were acquired along the [110]
zone axis. At this orientation, two projections of A2 columns are
present, and we refer to these as the A21 and A22 sublattices in this
work. (See Fig. 1 for an illustration of this lattice projection.) The
A21 columns are those that have the long axis of their distorted
pentagonal coordination polyhedron (largest corner-to-corner

distance) perpendicular to the zone axis. Displacements are known
to occur primarily along this axis and therefore are visible in the
STEM images.2 A22 columns’ long polyhedral axes are parallel to the
viewing direction, and, as a result, the imaging mode is not sensitive
to the expected displacements on these sites.

Atomic column displacement vectors are a common way to
display position data in STEM images. Often, this vector is mea-
sured relative to the average position of near-neighbor columns of
a different sublattice type. For example, in perovskites, B-site dis-
placements may be measured from the average position of the four
nearest-neighbor A-site columns. Some of the atomic columns in
[110]-oriented BSSN images, however, have no obvious sublattice
from which to measure the relative displacement. Therefore, in this
study, we define displacements as the vector from a rigid global refer-
ence lattice point to the atomic column position found by Gaussian
fitting. Rough registration of the reference lattice was made using
the FFT and an atom column selected from the image as the origin.
To achieve an accurately reference lattice, its basis vectors and origin
position were subsequently refined by least-squares minimization of
the displacements on the A1 sites. This sublattice was chosen because
it appears as prominent peaks in the image and it is expected that the
site has minimal modulative displacements, as evident in Fig. 3. Dis-
placement vector plots shown here are based on the final, refined
reference lattice. Figure 6 shows representative displacement vector
plots for the A1, A21, and B2 sublattices. A1 exhibits random and
relatively small displacements. A21 shows a large degree of displace-
ment ordering, which we will show to be consistent with the mod-
ulation. Finally, on the B2 sublattice, displacements are small over-
all, but we measure short-range correlated displacements primarily
along [001].

Figure 7 presents the quantified local structure mapped onto
the STEM image where colored lines show deviations of the A1 and
A21 near-neighbor distances from the average structure. Compar-
ing the two plots, A1 distances vary much less than those of A21.
No clear pattern of distance variations is seen for A1. On the other
hand, it is immediately obvious that in the leftmost portion of the
image, the A21 sublattice is modulated, while weak or no modulation
is observed in other regions of the image. Note that the alternating
long and short NN distances (indicated by red and blue lines) along
the [001] direction agree with the 1

2 c∗ component of the modulation.
Columns of unit cells with NN distances close to the ideal sepa-
ration appear approximately every three unit cells along the [11̄0]
direction in the modulated region, agreeing with the ≈ 0.3(a∗ + b∗)
component. These observations are consistent with our hypothesis
of modulation domains corresponding to two orthorhombic vari-
ants. Also note the much longer correlation length of the modulation
along [001] as compared to [11̄0]. While the expected modulation
can be observed in this plot, it is possible to quantify it more precisely
using vPCFs.

Figure 8 presents partial vPCFs for the A1, A21, B1, and B2 sub-
lattices. Peaks are represented by ellipses proportional to the size
and shape of each peak’s calculated equivalent ellipse. The color
of the markers indicates the ellipse eccentricity. In the A1 and B1
partial vPCFs, peaks are generally small and no strong peak shape
pattern emerges, as expected for a sublattice without correlated dis-
placements. In the A21 partial vPCF, the orientation of the ellipses
is along the [11̄0] direction, as expected from the known displace-
ment direction on the site. The 1

2 c∗ component of the modulation
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FIG. 6. Displacement vector plots for various BSSN sublattices: (a) A1, (b) A21, and (c) B2.

FIG. 7. Deviations from ideal near-neighbor distances for the (a) A1 and (b) A21 sublattices. (c) Blowup of region from (b); arrows indicate unit cell columns with minimal
deviations, occurring approximately every three unit cells.

is readily obvious, as indicated by alternating round and elliptical
peaks along the c axis of the partial vPCF. Example peaks are shown
in the insets. Note the multimodal distribution of the highly ellip-
tical peaks, which is consistent with strongly modulated displace-
ments. The peak eccentricity pattern along the [11̄0] axis exhibits
minima at multiples of three unit cells, consistent with α ≈ 0.3. Fur-
thermore, we note that along the [001] direction, the eccentricities
retain a strongly alternating pattern for at least 20 unit cells (note:
Fig. 8 only displays the vPCF for eight lattice vectors in this direc-
tion). Along the [11̄0] axis, on the other hand, the pattern rapidly
decays, showing an anisotropy in the correlation length of the mod-
ulation. This anisotropy is likely a result of long-range coordinated
tilts along [001] oxygen octahedral chains, while the complex octa-
hedral connectivity in the a–b plane frustrates the corresponding tilt
coordination. To measure the modulation vector components from
the vPCF, we performed Bayesian inference, modeling the periodic
eccentricity pattern as

ecc =A
√
∣ sin(ϕ(r̄, q̄)/2)∣ + b, (3)

whereA is the amplitude, b is the bias, and ϕ(r̄, q̄) is the phase angle
found by the projection of vPCF lattice vectors onto the modulation
vector according to

ϕ(r̄, q̄) = 2πr̄ ⋅ q̄. (4)

Only peaks in the region of the vPCF 0 ≤ x ≤ 4 lattice cells (along the
[11̄0] direction) were used for inference because of the anisotropic
and limited correlation length observed. The inference revealed α
= 0.314 with 95% predictive interval [0.310, 0.318], in close agree-
ment with the SADP. The eccentricity phase angle data are plot-
ted in Fig. 8(e) along with the model (using the mean inferred
parameter values). This plot highlights the strong periodicity of
the vPCF peak shapes. Note the loss of coherence between the
model (red line) and experimental data for the set of peaks at
x > 4 lattice cells along [11̄0] [gray data points in Fig. 8(e)]. For
x ≤ 4 [blue data points in Fig. 8(e)], the model and data are highly
coherent to more than nine multiples of the modulation vector.
This further illustrates the correlation length anisotropy of the
modulation.

Finally, considering the B2 partial vPCF, we observe a short-
range correlation in displacements along the [001] axis over a dis-
tance of approximately two unit cells. This is indicated by the
small eccentricities of the [001] and [002] peaks, but with pre-
dominantly eccentric peaks elsewhere with the major axis along
the [001] direction. Despite the near-zero remnant polarization for
BSSN at room temperature,20 short-range order on the B2 sub-
lattice indicates the presence of residual local polar distortions
persisting from the lower-temperature relaxor behavior. This is
consistent with other relaxors, which have been shown to retain
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FIG. 8. Experimental partial vPCFs for
(a) A1, (b) A21, (c) B1, and (d) B2 sub-
lattices with color indicating the peak
eccentricity. The shaded background in
(b) represents the relative phase of the
modulation. Example round and highly
eccentric peaks, respectively, from the
red and blue highlighted regions of (b)
are shown as blowups. Note the multi-
modal distribution of the eccentric peak,
which is expected for a modulated struc-
ture. (e) Plot showing the periodicity of
the A21 partial vPCF eccentricities using
the best-fit modulation vector with α
= 0.314.

polar regions several hundred degrees above their permittivity
maximum.21

IV. CONCLUSIONS
Here, we have developed the vPCF as a real-space method for

visualizing and quantifying the local to long-range disorder of com-
plex structures from STEM lattice images. Furthermore, we have
demonstrated its utility when applied on a sublattice basis as a partial
vPCF. We have shown that the globally observed tetragonal struc-
ture of BSSN is locally broken by two variants of orthorhombic
symmetry, which are related to the incommensurate modulation.
From quantified STEM images and electron diffraction, we deduce
that the incommensurate modulation is discontinuous, with both
orthorhombic symmetries coexisting in the same grain. By analy-
sis of the vPCFs, we observe that, among the cation sublattices, only
the A2 site is modulated. Furthermore, the vPCF reveals the corre-
lation length of the modulation to be anisotropic, and we infer that
this is a result of the complex connectivity of the oxygen octahedral
network in the a–b plane. In the B2 partial vPCF, we observe short-
range displacement correlations in the [001] direction, indicating the
presence of residual polar distortions.

V. METHODS
A. Sample preparation

Sample Preparation: Details of the ceramic processing methods
have been described previously.20 TEM samples were cut from bulk
ceramic pellets using a low speed diamond saw and mechanically
wedge polished with diamond lapping films down to a grit of 0.1 μm
until distinct optical thickness fringes were apparent. A Gatan PIPS
II was used to further thin the samples and remove damage from

mechanical polishing. Samples were liquid nitrogen cooled during
ion milling; accelerating voltages of 1 kV, 500, and 100 V were used
sequentially to achieve the thinnest possible sample with minimal
residual damage.

B. STEM image acquisition and correction
STEM imaging was performed using an aberration-corrected

ThermoFisher Titan S/TEM operated at 200 kV with the camera
length set to give a HAADF collection angle of 70–200 mrad. Drift
and scan distortion corrections were done using a non-linear drift
correction code.12 Sets of five images were collected in a serial acqui-
sition with the scan orientation being rotated 90○ between subse-
quent images in the set. Strong charging-related drift was present in
the first acquisition of each set but thereafter reached equilibrium.
While the code was capable of correcting this drift, it slightly reduced
the useful area of the final image. Since including the first image was
not necessary to correct distortion or improve the signal to noise
ratio, only the remaining four images were used to produce the final
drift-corrected image. Drift correction alone does not remove scan
coil calibration errors so, to enable long-range correlations to be
measured in BSSN, an image series of a silicon standard sample was
also collected to measure the misalignment of the scan vectors.14

This was done during the same instrument session and with iden-
tical imaging parameters to those used for the BSSN images. A peak
finding algorithm was applied to the drift-corrected silicon images
by and the average crystallographic basis vectors were determined
from the peak positions. The required transformation to recover the
known silicon crystallographic basis was calculated as that needed
to transform the basis vectors to be orthogonal and of equal mag-
nitudes. This correction was then applied to the BSSN images. The
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final error in the scan vector distortion after correction of the silicon
images was < 10−3 for both the scaling and shear components.

C. Image quantification
Atomic column location and indexing was performed using a

custom PythonTM code. First, the image was filtered using a Lapla-
cian of Gaussian filter to differentiate closely spaced columns. Then,
the watershed algorithm23 was used to segment the image along
minima between the atomic column peaks. This produced a segmen-
tation map, labeling the pixels that belong to each intensity peak in
the image. In order to simultaneously index the atomic columns and
avoid fitting peaks that represent noise in the background intensity, a
structural reference lattice was registered to the image. The reference
lattice was oriented and scaled using the FFT and then fixed laterally
by selecting an appropriate atom column in the image as the origin.
Next, for each projected column in the reference lattice, the segmen-
tation region with the closest center of mass was found and used
to mask the original, unfiltered, distortion-corrected image. A 2D
Gaussian function was then fit to the isolated peak by least squares
minimization. The center of the Gaussian fit was taken to indicate
the atom column location. The fitting parameters along with the ref-
erence lattice point coordinates and sublattice indexing label were
all stored in a data frame format using the pandas24 module. This
data structure enabled many filtering, sorting, and plotting options
for further analysis of the data, as well as the storage of additional
data derivatives.
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