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ABSTRACT OF THE DISSERTATION

Essays on Information in Dynamic Games and Mechanism Design

by

Daehyun Kim

Doctor of Philosophy in Economics

University of California, Los Angeles, 2019

Professor Ichiro Obara, Chair

This dissertation studies how asymmetric information between economic agents interacts

with their incentive in dynamic games and mechanism design. Chapter 1 and Chapter 2 study

this in mechanism design, especially focusing on robustness of mechanisms when a mechanism

designer’s knowledge on agents’ belief and higher order beliefs is not perfect. In Chapter 1

we introduce a novel robustness notion into mechanism design, which we term confident

implementation; and characterize confidently implementable social choice correspondences.

In Chapter 2, we introduce another robust notion, p-dominant implementation where p ∈

[0, 1]N and N ∈ N is the number of agents, and fully characterize p-dominant implementable

allocations in the quasilinear environment. Chapter 1 and Chapter 2 are related in the

following way: for some range of p, a p-dominant implementable social choice correspondence

is confidently implementable.

In Chapter 3, we study information disclosure problem to manage reputation. To study

this, we consider a repeated game in which there are a long-run player and a stream of

short-run players; and the long-run player has private information about her type, which

is either commitment or normal. We assume that the shot-run player only can observe the

past K ∈ N periods of information disclosed by the long-run player. In this environment, we

characterize the information disclosure behavior of the long-run player and also equilibrium

dynamics whose shape critically depends on the prior.
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3.4 When ᾱ = 1/2, β = 3/4, µ0 = 1/4 and K = 3 . . . . . . . . . . . . . . . . . . . 125

3.5 Player 2’s behavior (probability of playing h) . . . . . . . . . . . . . . . . . . . 128

viii



ACKNOWLEDGMENTS

First and foremost, I am deeply indebted to my advisor, Ichiro Obara. Having him as my

advisor is a great honor and the best thing I did at UCLA. He is not only a brilliant mind

but also a warmhearted person. From the countless meetings we had since the last quarter of

my second year, I learned many things from him, varying from knowledge on various topics

and research skill to his attitude toward students and the profession.

I am also extremely grateful to Moritz Meyer-ter-Vehn. He has always tried to find posi-

tive aspects of my researches and me. Such a feeling has been truly encouraging throughout

my Ph.D. period. Although it was challenging, to prepare myself to convince him about my

research was extremely helpful (and enjoyable). I have been so fortunate to have him in my

committee.

I also would like to express my deepest appreciation to my other committee members. It

is a great honor to have had conversations with Joseph Ostroy, who has been an exemplar

of an economist to me, glancing at his original view to understand the world. Also, Sushil

Bikhchandani has generously shared his valuable time for serving as a member of the com-

mittee and for helpful conversations. I wish I would have met them more often. I also would

like to thank the other UCLA theory group: Simon Board, Tomasz Sadzik, Jay Lu, John

Riley, Marek Pycia for their insightful advices during my presentations and conversations.

Yingju Ma has been a very close friend since we met first. I will not forget many things

we did together during last few years. I want to also thank Rustin Partow for share his

insight and effort for our ongoing project. I learned many things from him. The life in the

school became much more enjoyable after I began to share the office with Diana Van Patten

and Renato Giroldo. I also want to thank my peer and friend Xinyu Fan, Zhouran Lu,

Jonathan Gu, Jinwook Hur, Yun Feng, Keyoung Lee, YongKi Hong, and Jeonghwan Kim.

Last, but not least, I would like to thank my parents, brother, sister-in-law and my niece.

Without their unconditional support, I would not be able to finish this challenge. I will

always remember Byul (2002–2017) who had stayed with my family for a long time.

ix



VITA

2011 Bachelor of Business Administration (with Highest Honors)

Yonsei University, Seoul, South Korea

2013 M.A. in Economics

Yonsei University, Seoul, South Korea

2014 M.A. in Economics

University of California, Los Angeles

2015–2019 C.Phil. in Economics

University of California, Los Angeles

2014–2019 Teaching Assistant, Associate, and Fellow

Department of Economics, University of California, Los Angeles

PUBLICATIONS

Kim, D. (2019). Comparison of information structures in stochastic games with imperfect

public monitoring. International Journal of Game Theory 48 (1), 267–285.

x



CHAPTER 1

Confident Implementation

1.1 Introduction

In mechanism design theory, a type space (Harsanyi, 1967, 1968a,b) is used to model agents

belief and higher order beliefs; and it is implicitly or explicitly assumed that the type space

is common knowledge (Lewis, 1969; Aumann, 1976) between the agents and the designer of

a mechanism. This means that the designer is certain about each agent’s possible private

information about payoff-relevant parameters (called payoff type); and also certain about

agents’ possible beliefs over other agents’ payoff types, ad infinitum. Such a situation is

regarded as an idealization or approximation of reality especially when the type space is

“small.”1 On the other hand, in the relatively recent literature on robust mechanism design,

the “global” approach is mostly employed where a mechanism is required to be robust enough

that in any type space involved incentive compatibilities are satisfied.2 An implication of

this approach is that the designer does not need to have any information about agents.

However, in reality, the designer often has some information from some investigation

about agents with substantial accuracy; at the same time, the designer is hardly certain about

this information, worrying about some unexpected situations in which such information turns

out to be not true; therefore the designer may want to design a mechanism to be robust with

respect to such concern. For instance, the designer is “quite sure” about agents’ possible

1See for example, Monderer and Samet (1989). On the other hand, assuming the common knowledge is
without loss in a particularly “large” type space called the universal type space, which shall be discussed
later in detail.

2There are other researches to take a certain notion of localness. See the literature review which follows
shortly.
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first order beliefs, while admitting that agents might have some unexpected first order belief

with a small probability.

We introduce a novel framework to study mechanism design problems to take into ac-

count this reality. Imagine the situation in which the designer has information about each

agent’s possible first order beliefs. One may consider the approach to model it by first intro-

ducing a particular type space whose induced first order beliefs coincide with the designer’s

information; then assuming that this type space is likely to happen. However, note that

this approach also means that the probability of the event in which such information of

the first order beliefs is common knowledge among agents is also likely, which is not part

of the designer’s original information. We provide an approach to circumvent this problem:

we do not impose a particular type space to describe the designer’s information; rather we

model it as an event in the universal type space (Harsanyi, 1967; Mertens and Zamir, 1985;

Brandenburger and Dekel, 1993) which consists of all possible coherent belief hierarchies and

assuming its common knowledge among agents and the designer is without loss. Note that

an event in the universal type space is generally not belief closed.

Given this, how do we model the designer who is “quite sure” about her information?

In this paper, we take the following approach: whichever a type space turns out to be true,

in the type space the event is sufficiently likely to happen. In other words, the designer

considers every type space in which the event is sufficiently likely to happen.

Our novel local robustness notion which we term confident implementation requires that

a mechanism “approximately” implements a social choice correspondence in any countable

common prior type spaces in which the event is sufficiently likely to happen, but not nec-

essarily probability 1. Here approximation means that in any such type spaces, there is

an equilibrium such that it achieves an element of the social choice correspondence with

probability arbitrarily close to 1. One might think if an event is sufficiently likely, then the

outcome should be similar to when the event is certain. This is not necessarily the case as

it is pointed out by Rubinstein (1989).

After establishing our framework and robustness notion, we characterize social choice

2



correspondences that are confidently implementable with respect to some information given

to the designer, which is modeled a subset E∗ in the universal type space as we mentioned

above. Especially, we focus on the situation where the designer has information about agents’

payoff type and n-th order belief for some finite n ∈ N. Under a condition, which we term

distinguishability, we characterize a subset of social choice correspondence that are confi-

dently implementable with respect to this information; namely p-dominant implementable

social choice correspondences where p ∈ [0, 1]N and
∑
pi < 1. The notion of p-dominant

equilibrium (Morris et al., 1995; Kajii and Morris, 1997) is extended to incomplete informa-

tion games for this purpose. We show that if a social choice correspondence is p-dominant

implementable, where
∑

i pi < 1, in the maximal consistent belief closed subset, which in-

cludes all the consistent belief closed subsets in E∗, then it is confidently implementable with

respect to E∗.

We believe that our local notion of robustness and the sufficient characterization results

are important because of the following two existing results: First, Bergemann and Morris

(2005) shows that a social choice function is globally robust implementable if and only if it

is ex-post implementable. Second, Jehiel et al. (2006) shows that a social choice function is

ex-post implementable if and only if it is constant under a mild assumption.3 Together they

imply that globally robust implementable social choice functions are extremely limited. Our

local notion and the result may open some possibility of robustly implementing social choice

functions as long as the designer’s information is sufficiently accurate.

It is also useful to compare our robustness notion to the existing ones more carefully.

Bergemann and Morris (2005) studies (partial) implementation problem in the situation

where a mechanism designer is assumed to know nothing about agents’ payoff environment.

Thus, their approach is “global” in the sense that the designer wants to make a mechanism

that works for any agents’ beliefs and higher order beliefs; in other words, agents’ incentive

compatibilities hold in the universal type space.4 On the other hand, Oury and Tercieux

3To be more precise, if agents’ signals are at least two-dimensional.

4Bergemann and Morris (2009a) studies full implementation problem using direct mechanisms with the
solution concept of rationalizability. They study general mechanisms in Bergemann and Morris (2011). They

3



(2012) study a local concept of robustness in the following sense. They study conditions

for social choice functions to be approximately implemented when agents’ belief hierarchy

is sufficiently close to the benchmark hierarchy in terms of the product topology on the

universal type space. In this sense, their approach is interim, while ours is ex-ante.5 Perhaps,

the most closest robustness to ours is that of Artemov et al. (2013). They suggest a local

robustness notion which captures situations in which a certain set of first order beliefs are

assumed to be common knowledge between agents and the designer (see also Jehiel et al.

(2012); Lopomo et al. (2009); Ollár and Penta (2017)). Although we also study the designer

has some information about agents’ belief hierarchies; but we do not assume any common

knowledge of this information. Namely, in the case of information regarding first order beliefs,

any first order beliefs might happen with a small chance. In this sense, out local notion is

probabilistic. Lastly, Meyer-ter-Vehn and Morris (2011) considers a situation where an

assumed utility function (in addition to its parameters) may not be accurate or not common

knowledge.

This paper is also related to the literature on robustness of equilibrium. Especially, in

terms of concept of closeness, ours is similar to Kajii and Morris (1997) in which they study

robustness of Nash equilibrium in complete information game by informationally perturbing

complete information games.6 As a sufficient condition of robustness they suggest a Nash

equilibrium to be p-dominant with a certain range of p.7,8 We extend this solution concept

to games with incomplete information; and also introduce a partial implementation notion

using the extended solution concept.

Some papers study mechanisms that capture different types of robustness. For instance,

study a similar question with virtual implementation in Bergemann and Morris (2009b)

5See also Weinstein and Yildiz (2007).

6See also Kajii and Morris (1998). Given a game-form and state space, they study conditions for two dis-
tributions over states by which for any utility function and any equilibrium with one distribution, there exists
an approximate equilibrium which gives approximately the same ex-ante payoff with the other distribution.

7 Morris et al. (1995) first introduce this equilibrium concept to study conditions for “infection argument”
to work.

8For non-common prior perturbation see, Oyama and Tercieux (2010) where they show that a game has
a “robust” equilibrium if and only if this game is dominance solvable.
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Eliaz (2002) considers situations where some agents are irrational which he call faulty. His

k-tolerant implementation is immune to the situations where at most k agents are faulty. As

we will discuss, p-dominant implementation can be interpreted as a robust implementation

notion to capture such a situation, while with a different modeling of the possibility of faulty

agents.

The remaining of the paper is organized as follows: In Section 1.2, we provide an example

by which we (informally) explain our notion of robustness and framework; then we show that

there is a social choice correspondence that is not ex-post implementable but robustly imple-

mentable in our sense. In Section 1.3, we describe the environment of our mechanism design

problem. Then in Section 1.4, we formally introduce our robustness notion called confident

implementation and framework to study this. We also introduce p-dominant implementa-

tion, which shall play an important role in our characterization of confident implementability.

Throughout Section 1.5, our main results are illustrated with the special cases involving the

first order belief and second order belief information. In Section 1.6, we provide our main re-

sult which characterizes confident implementability when the designer has information about

n-th order belief of agents for any finite n ∈ N. In Section 1.7, we discuss an additional suf-

ficient condition for confident implementation. Lastly in Section 1.8, we conclude the paper

with discussion of future directions.

1.2 An Example

To make our discussion more concrete, consider the following example:

Example 1.1. There is a public good which the designer is considering to build. Let

X = {0, 1} where x = 1 and x = 0 represents building the public good and not building it,

respectively; let X = ∆(X) = [0, 1], the probability of x = 1. There are 2 agents who have

interdependent valuation: for each i let vi(θ) := θi + θj, j 6= i, be the value of the public

good to agent i if x = 1; and let Θi = {θh, θl} where θh = 1, θl = −2.9

9Note that there is no money to transfer utility in this example.

5



F θh θl

θh 1 1/2

θl 1/2 0

Figure 1.1: Social choice function for Example 1.1

Suppose that the designer wants to implement the social choice correspondence (in fact,

it is a function) in 1.1.

The designer acquires information indicating that each agent i’s possible pairs of payoff

profile and the first order belief is likely to be in the following set:

∆1
i ≡ {(θh, λ

θh
i ), (θl, λ

θl
i )}

where λθii ∈ ∆({θh, θl}) for each i and θi. Let ∆1 ≡ ∆1
1 × ∆1

2. Note that the designer’s

information does not involve any higher order beliefs beyond the first order. Note that the

designer’s information has the following property: for each θi there is only one first order

belief based on her information. In fact, this is implicitly assumed in the standard type space

(payoff type spaces), which is mostly employed in the mechanism design literature and also

applied models. We also use such particular first order beliefs in this example to emphasize

its relation to the standard type space, although our results do not involve such a restriction.

We further assume in this example, for simplicity, that λθii = (λ, 1 − λ) for each i and θi

where λ ∈ [0, 1] is the probability that each agent, independently of his type, believes the

other agent is θh.

We should emphasize that the designer cannot be certain of this information and this

is the most important distinction from the conventional approach. Namely, with a small

probability, in the true world (true type space), agents may have any other payoff types or

other first order beliefs (or both). In contrast, when the designer is certain of her information

(as it is in the conventional approach), the unique possible type space is the one described

in 1.2. We denote this type space by ((Θ)i∈I , λ̂).10

10Our result does not involve the uniqueness of type space when the designer is certain.
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λ̂ θh θl

θh λ2 λ(1− λ)

θl λ(1− λ) (1− λ)2

Figure 1.2: The type space when the designer is certain in Example 1.1

β θh, s
′
2 θh, s

′′
2 θl, s

′
2 θl, s

′′
2

θh, s
′
1

1
4
(1− ε) 1

12
ε 1

4
(1− ε) 1

12
ε

θh, s
′′
1

1
12
ε 0 1

12
ε 1

6
ε

θl, s
′
1

1
4
(1− ε) 1

12
ε 1

4
(1− ε) 1

12
ε

θl, s
′′
1

1
12
ε 1

6
ε 1

12
ε 0

Figure 1.3: An ε-elaboration of E∗∆
1

when λ = 1/2 in Example 1.1

Here is our main question in this example: can we find a mechanism that “approximately”

implements the social choice correspondence even when the designer is not certain about the

information, but still “quite sure” about it? More precisely, is there a mechanism such that,

for any (common prior countable) type spaces in which agents’ types whose payoff type and

first order belief coincide with the designer’s information are sufficiently likely to happen, it

implements the social choice correspondence with probability close to 1 (not necessarily with

probability 1)? If there is such a mechanism, then we say F is confidently implementable

with respect to the designer’s information.

An example of such type spaces in which ∆1 is likely to happen (here with probability

1 − ε) when λ = 1/2 is depicted in Figure 1.3 . For each i and θi, the first order belief

of type (θi, s
′
i) is (1/2, 1/2), while that of (θi, s

′′
i ) is different. In addition, notice that the

second order belief of s′i, Θi × ∆(Θj × ∆(Θi)) j 6= i is different from the one when ∆1 is

common knowledge (i.e., Figure 1.2) due to the existence of (θj, s
′′
j ). Note that such a type

space can be substantially more complicated as we can see in “e-mail” game-like information

structures (Rubinstein, 1989).

Observe that the social choice correspondence is not ex-post implementable. To see this,

7



by the revelation principle, it is enough to check that the direct mechanism (Θ, f) where

f = F is not ex-post implementable. It can be easily seen by noticing that

ui(f(θh, θl), θh, θl) = −1 < ui(f(θl, θl), θh, θl) = 0.

Namely, in the situation where agent i has the degenerated belief that agent j’s payoff type

is θl, j 6= i, agent i with θh does not have incentive to truthfully report his type.

Nevertheless, we shall show that this social choice function is indeed confidently imple-

mentable w.r.t. the information of the designer as long as the information suggests that each

agent’s first order belief puts a sufficiently high probability on θh (i.e., λ is sufficiently large).

Note that the direct mechanism ((Θ)i∈I , f) satisfies a “stronger” incentive compatibility

if λ is sufficiently large in the sense that truth-telling is still incentive compatible regardless

of the other agents’ report, if λ is at least 1/3. To see this, first observe that the change in the

probability of building the public good from one’s report is independent of the opponent’s

report: regardless of the opponent’s report, reporting θh increases it by 1/2. Thus, for an

agent with θh it is incentive compatible to report θh regardless of the opponent’s report if

and only if
1

2
λ2 +

1

2
(1− λ)(−1) ≥ 0 or λ ≥ 1

3
.

For an agent with θl, reporting θh is weakly dominated. We call this equilibrium 0-dominant

equilibrium in ((Θi)i∈I , λ̂) and we call F is 0-dominant implementable.11

In a later section, we will define more generally p-dominant equilibrium and p-dominant

implementability where p ∈ [0, 1]N . Roughly, a BNE is p-dominant if sending the equilibrium

message is incentive compatible as long as the opponents send the equilibrium message with

at least probability pi, allowing sending arbitrary message with the rest probability. We will

show that if there exist a mechanism and a p-dominant equilibrium where
∑

i pi < 1 that

together implement the social choice correspondence in ((Θi)i∈I , λ̂), then it is confidently

implementable w.r.t. the designer’s first order belief information.

11Note that this solution concept is different from the standard dominant strategy equilibrium with in-
terdependent value, since according to the definition, the incentive compatibility is required to be satisfied
w.r.t. ((Θi)i∈I , λ̂); on the other hand, the standard definition of dominant strategy equilibrium requires it
to be hold at any realization of agents’ payoff types.
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In this example, when λ ≥ 1/3, (Θ, f) is p-dominant implementable for any p ∈ [0, 1]2;

thus (see, e.g., Proposition 1.3), we have the following conclusion: Assume λ ≥ 1/3. Then

the social choice correspondence F in Example 1.1 is confidently implementable w.r.t. the

designer’s first order belief information.

Our main result (Theorem 1.1) substantially extends the discussion in this example; we

consider the designer who has n-th order belief information about agents for some finite n.

Under a condition we term distinguishability, we provide a sufficient condition for a social

choice correspondence to be confidently implementable w.r.t. the designer’s information. The

sufficient condition relates p-dominant implementability with confident implementability.

We gently recommend the readers to read Section 1.5 where we elaborate further the example

in this section with more detailed arguments.

1.3 Setting

1.3.1 Environment

There is a mechanism designer (“she”) and finite set of agents I ≡ {1, 2, 3, . . . , N} (“he”).

Let a nonempty finite set Θi be the set of possible payoff types for i ∈ I. Denote by

Θ ≡
∏

i∈I Θi the set of payoff type profiles. A payoff type of each agent represents the agent’s

private information about payoff-relevant parameters.

Let X be the set of alternatives which we assume finite. Each agent has a preference

relation, which depend on θ ∈ Θ, over the set of lotteries X ≡ ∆(X). We assume that

this preference relation satisfies the conditions for having the representation for the expected

utility maximization; we denote the corresponding von Neumann-Morgenstern utility by

ui(·, θ) : X → R for each i ∈ I and θ ∈ Θ.

The designer wants to achieve a “desirable” outcome, which may depend on agents type

profile, through a mechanism; and such desirability is formally modeled by a social choice

correspondence. A social choice correspondence F is a mapping from Θ to 2X \ {∅}. When

for each θ ∈ Θ, F (θ) is a singleton, we call F is a social choice function.
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Denote Ξ ≡ (I, (Θi)i∈I , (ui)i∈I , X, F ) and let us call this environment and it is common

knowledge among agents and the designer.

1.3.2 Type Space and the Universal Type Space

A type space (Harsanyi, 1967) is a convenient device to model agents’ payoff type and belief

hierarchy.

Definition 1.1. A type space is defined as a tuple T = ((Ti)i, (β̃i)i, (θ̃i)i) where Ti is a

(potentially infinite) set

β̃i : Ti → ∆(T−i)

and

θ̃i : Ti → Θi.

The universal type space (Harsanyi, 1967; Mertens and Zamir, 1985; Brandenburger and

Dekel, 1993) T ∗ = ((T ∗i )i, (β
∗
i )i) is a type space that includes all the belief hierarchies that

are coherent :

T ∗0i ≡ Θi

T ∗1i ≡ Θi ×∆(T ∗0−i)

· · ·

T ∗ni ≡ Θi ×∆(T ∗n−1
−i ),∀n ∈ N. (1.1)

and T ∗i ≡
∏∞

n=0 T
∗n
i , where β∗i the Mertens and Zamir homeomorphism (Mertens and Zamir,

1985).12

In the conventional mechanism design theory, one usually uses a type space which is a

subset of the universal type space; and choice of such a type space represents what kind of

hierarchy of beliefs the designer thinks possible. Any type space T = ((Ti)i, (β̃i)i, (θ̃i)i) space

12Roughly, the homeomorphism assigns a subjective belief over other agents’ belief hierarchy to a type
so that the induced belief hierarchy from the subjective belief coincides with the type in the universal type
space.
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induce belief hierarchy of each agent. Define for each i,

hni : Ti → T ∗ni , ∀n ∈ N

to be the mapping that assigns a n-th order belief to a type in the space; let hi(ti) :=

(θ̃i(ti), h
1
i (ti), . . . ) ∈ T ∗i (i.e., the entire belief hierarchy that corresponds to ti). Also let for

each t ∈ T , h(t) := (hi(ti))i. Although θ̃i, h
n
i and hi depend on type spaces, we shall omit

such dependence for notational convenience.

Given a type space, there might be multiple types of an agent that induce the same payoff

type and belief hierarchy, while it still gives different information about others’ type.

Definition 1.2. A type ti in a type space T = ((Ti)i, (β̃i)i, (θ̃i)i) is redundant if there is

t′i ∈ Ti with t′i 6= ti such that hi(ti) = hi(t
′
i).

It is well known that some solution concepts, for example Bayes Nash equilibrium, are

affected by such redundant types, because payoff-irrelevant information could be used as a

correlation device.13

Definition 1.3. A countable type space T = ((Ti)i, (β̃i)i, (θ̃i)i) allows a common prior if

there exists a common prior β ∈ ∆(T ) such that for each i ∈ I and ti ∈ Ti,

β̃i(t−i|ti) =
β(ti, t−i)∑
t−i
β(ti, t−i)

,∀t−i ∈ T−i

for all ti ∈ Ti s.t.
∑

t−∈T−i βi(ti, t−i) > 0.

The common prior assumption implies that any difference in posterior beliefs only comes

from difference in information; in other words, if agents have the same information, they

should have the same beliefs.14

Definition 1.4. Let T be a subset of T ∗. T is a belief closed subset of T ∗ if

∀i ∈ I, ti ∈ Ti, β∗i (t−i|ti) > 0⇒ (ti, t−i) ∈ T. (1.2)

13Some solution concepts are not affected by redundant types, e.g., interim correlated rationalizability
(Dekel et al., 2007); also see Ely and Peski (2006).

14For further reading for the common prior assumption, refer to Aumann (1976, 1987, 1998), Gul (1998),
and Morris (1995).
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′
1 α 1

4
α 1

4
0 0

θ′1, s
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′′
1 0 0 (1− α)2

9
(1− α)1

9

Figure 1.4: Two minimal belief subspaces and a non minimal belief subspace that consists

of the two

A belief closed subset is minimal if it has no proper subset that is a belief closed subset

itself.

1.3.3 Mechanism and Implementation

Definition 1.5. A mechanism (a game form) is a pair ((Mi)i∈I , g) where Mi is a nonempty

set for each i ∈ I and g : M → X .

We call Mi the message space for agent i and call g the outcome function. Note that

(M, g) may be an extensive-form.

A particularly simple class of mechanisms is direct mechanisms. In a direct mechanism

agents are supposed to report their type, i.e., Mi = Ti for each i ∈ I.

A type space T and a mechanism, M induce a Bayesian game (M, T ).

Definition 1.6. Given (M, T ), a strategy profile σ = (σi)i∈I , where σi : Ti → ∆(Mi) be

a Bayes Nash equilibrium (henceforth BNE) if for each i ∈ I, ti ∈ Ti and mi ∈ Mi with

σi(ti)[mi] > 0,

mi ∈ arg max
m′i∈Mi

∑
t−i∈T−i

βi(t−i|ti)ui(g(mi, σ−i(t−i)), θ̃i(ti), θ̃−i(t−i)).
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A mechanism (M, g) (partially) implements in BNE a social choice correspondence F in

a common prior type space T , if there exists a Bayes Nash equilibrium σ = (σi)i∈I such that

for any t ∈ T s.t. β(t) > 0,

g(σ(t)) ∈ F (θ̃(t)).

And we call such F is (partially) implementable in BNE. In words, the notion requires the

existence of an equilibrium that yields the desirable outcome for each realization of payoff

type profile.15

1.4 General Framework and Robustness Concept

In this section, we provide a formal framework to study the robustness notion which was

informally introduced in the introduction.

1.4.1 Modeling Designer’s Information

We model designer’s information as a subset of the universal type space. Note that by taking

this approach, we implicitly assume that the designer does not know anything about agents’

payoff-irrelevant private information.

Definition 1.7. Let E∗ ⊆ T ∗ and ε > 0. A countable common prior type space T =

((Ti)i∈I , β) is ε-elaboration of E∗ if

β(E) ≥ 1− ε

where E ≡ {t ∈ T : h(t) ∈ E∗}.

Denote the set of ε-elaboration of E∗ by E(E∗, ε).

We should emphasize that E∗ is typically not belief closed. One such example is that the

designer has information up to agents’ possible first order beliefs. As this does not restrict

agents’ second order belief, agents’ second order belief may put some positive probability

15The notion of partial implementation is different from full implementation, which requires every equi-
librium to achieve the desirable outcome.
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on the other agents’ having some first order belief outside the designer’s information. This

cannot happen if E∗ is belief closed; as such first order information is common knowledge. In

addition, if E∗ is restricted to be belief closed, then β(E) ≥ 1− ε implies that E∗ is common

knowledge with a high probability, which is not a part of the designer’s information: the

designer only has information agents’ first order beliefs, but do not have information about

whether it is any order of mutual knowledge, especially common knowledge. If we only

consider non redundant types, then an ε-elaboration of E∗ is any consistent belief closed

subset in the universal type space in which event E∗ is likely to happen. Any belief closed

subset that is contained within E∗ is also an elaboration; especially, in this case, E∗ is

common knowledge.

We also should note that the notion of ε-elaboration allows any beliefs and belief hierar-

chies of agents may happen, as long as they happen with a small probability. This concept

of localness contrasts with the existing notions, e.g., Artemov et al. (2013) where some first

order belief information is assumed to be commonly known to the agents and the designer;

hence, in their framework, the beliefs and higher order beliefs that are inconsistent with the

information cannot happen.

Lastly, let us make a remark about a subtle point: by adopting this approach, we implic-

itly assume that whichever a type space is true, the type space is common knowledge among

the agents (but not known to the designer).16

1.4.2 Confident Implementation

Definition 1.8. A mechanism M = ((Mi)i∈I , g) confidently implements a social choice

correspondence F : Θ ⇒ X with respect to E∗ ⊆ T ∗ if for any δ > 0, there exists ε̄ > 0 such

that for any ε ≤ ε̄ and for any T ∈ E(E∗, ε), there exists an equilibrium σ = (σi)i∈I s.t.

β({t ∈ T : g(σ(t)) ∈ F (θ̃(t))}) ≥ 1− δ.

16Note that we take account potentially “large” type spaces by considering any countable type spaces.
Nevertheless, we admit we do not relax common knowledge assumption among agents as we do not take into
account the universal type space as it is uncountable.
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In words, in any (countable and common prior) type spaces in which the event, which

corresponds to the designer’s information, is sufficiently likely to happen, the mechanism

achieves an element of the social choice correspondence with probability arbitrarily close to

1.

1.4.2.1 Discussion: Designer’s Information and Implementable Social Choice

Correspondences

The situation in which the designer does not have any information about agents is captured

by E∗ = T ∗. As the designer obtains more and more information, the designer is quite sure

about smaller E∗. Intuitively, if the designer has more information about agents we expect

that the set of confidently implementable social choice correspondences becomes larger. The

following simple observation exploits this intuition.

Proposition 1.1 (Monotonicity). Suppose E∗ ⊆ E∗
′ ⊆ T ∗, if a social choice correspondence

F is confidently implementable w.r.t. E∗
′
, then it is also confidently implementable w.r.t.

E∗.

Proof. See Appendix.

This result also suggests why our question is meaningful given that we know ex-post

implementability is confidently implementable (Bergemann and Morris, 2005). As we shall

show that more social choice correspondences are confidently implementable if the designer

has some information, for example, the first order belief of agents.

Corollary 1.1. If a social choice correspondence is ex-post implementable, then it is confi-

dently implementable w.r.t. any E∗ ⊆ T ∗.

Note that, however, we do not know whether there is some E∗ that makes the set-inclusion

strictly hold. Indeed, we already discussed such an example in Example 1.1.
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1.4.3 p-dominant Implementation

We extend p-dominant equilibrium (Morris et al., 1995; Kajii and Morris, 1997), which was

originally defined in complete information games, to Bayesian games.17

Definition 1.9. Let p ∈ [0, 1]N . Given a game (T ,M), a strategy profile σ ≡ (σi)i∈I where

σi : Ti → ∆(Mi) is a p-dominant equilibrium if for any i ∈ I with ti ∈ Ti, mi ∈ Mi with

σi(ti)[mi] > 0,

mi ∈ arg max
m′i∈Mi

∑
t−i

βi(t−i|ti)ui(g(m′i, φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i)))

for any φ−i(t−i) ∈ ∆(M−i) such that

φ−i(t−i) = q
t−i
i σ−i(t−i) + (1− qt−ii )ψ−i(t−i) (1.3)

for some q
t−i
i ≥ pi and ψ−i(t−i) ∈ ∆(M−i).

In words, a strategy profile constitutes p-dominant equilibrium if for each agent i and θi,

the equilibrium strategy is a best response to any conjecture over the opponents’ message

profile that puts on probability at least pi on the equilibrium strategy profile; for the rest

probability 1−pi, the opponents’ strategies are allowed to be correlated across agents; while

not correlated across types within an agent. Intuitively, this solution concept captures a

kind of lack of confidence of agents about the opponents’ behavior. We will call ψj in (1.3)

babbling of agent j.

In addition, given a mechanism, if σ is a p-dominant equilibrium; then it is also a p′-

dominant equilibrium for any p′ ≥ p.18 In particular, any p-dominant equilibrium is a

Bayesian Nash equilibrium. Clearly, p-dominant equilibrium may not exist.19 With private

value, when p = 0, this notion is equivalent to (weakly) dominant strategy equilibrium.

However, it turns out to be weaker than dominant strategy equilibrium with interdependent

17As noted in Morris et al. (1995), the notion of p-dominance is a generalization of Harsayni and Selten’s
risk-dominance in 2× 2 games in the sense that it coincides risk dominance when p = (1/2, 1/2).

18p′ ≥ p if each p′i ≥ pi for all i.

19In this regard, see also relevant concepts (p-BR, p-MBR) in Tercieux (2006).
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value. In particular, we should emphasize that the set of p-dominant equilibrium depends

on the underlying type space T , even when p = 0.

Definition 1.10. A social choice correspondence F : Θ ⇒ X is p-dominant implementable

in a type space T if there exists a mechanism M = (M, g) and a p-dominant equilibrium σ

in (M, T ) such that for each t ∈ T

g(σ(t)) ∈ F (θ̃(t)).

Note that it is a refinement of partial implementation in BNE (Definition 1.6), simply

because a p-dominant equilibrium is a Bayes Nash equilibrium.

Proposition 1.2 (Revelation principle for p-dominant implementation). Let M = (M, g)

be a mechanism, and let σ = (σi)i∈I where σi : Ti → ∆(Mi) be a p-dominant equilibrium in

(M, T ). Then there exists a direct mechanism M′ = (T, f) such that

(1) Truthful reporting, i.e., σ′i(ti) = ti for all i ∈ I, is a p-dominant equilibrium in (M′, T ).

(2) For every t ∈ T ,

f(t) = g(σ(t)).

Note that if g(σ(t)) ∈ F (θ̃(t)), then f(t) ∈ F (θ̃(t)).

Due to this result, from now on we focus on direct mechanisms when we consider p-

dominant implementability.

1.5 Illustration with First Order Belief and Second Order Belief

Information

1.5.1 First Order Belief Information

In this subsection, we focus on a situation where the designer has some information about

the payoff type and the first order belief of each agent, although she is not certain about it,

meaning that there is some small probability of having “unexpected” event in the true type
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space. This situation is modeled in our framework as follows: for each i ∈ I, let ∆1
i be a

finite subset of T ∗1i (refer to (1.1)) for definition) with a typical element of (θi, λi) ∈ T ∗1i . For

each i ∈ I, define

E
∗∆1

i
i :=

⋃
(θi,λi)∈∆1

i

{ti ∈ T ∗i : h1
i (ti) = (θi, λi)}

and E∗∆
1 ≡

∏
i∈I E

∗∆1
i

i . Note that E
∗∆1

only restricts agents’ belief hierarchy up to the first

order; there is no restriction beyond the first order belief.

We put restrictions on ∆1
i : for all (θi, λi), (θ

′
i, λ
′
i) ∈ ∆1

i ,

(θi, λi) 6= (θ′i, λ
′
i)⇒ θi 6= θ′i.

Put differently, (θi, λi), (θ
′
i, λ
′
i) ∈ ∆1

i ,

θi = θ′i ⇒ λi = λ′i. (1.4)

That is, the designer’s information indicates that each payoff type of agent i is involved with

a unique first order belief. Note that this restriction is implicitly assumed in the standard

type spaces used in the mechanism design which is called by payoff type space by Bergemann

and Morris (2005).

We also impose the following restriction on ∆1
i for each i: for any (θi, λi) ∈ ∆1

i , there is

some type space T = ((Ti)i, β) such that E∗∆
1

happens with probability 1 (i.e., β({t ∈ T :

h(t) ∈ E∗∆1}) = 1), and in this type space (θi, λi) happens with positive probability, i.e.,

∃ti ∈ Ti s.t. h1
i (ti) = (θi, λi). (1.5)

Note that these conditions are satisfied ∆1
i in Example 1.1.

The situation that the designer is “quite sure” about this event, but not necessarily

certain, is formally described in our framework as follows: whenever the true type space is

T = ((Ti)i, β)

β({t ∈ T : h(t) ∈ E∗∆1}) ≥ 1− ε.

We call such a countable and common prior type space an ε-elaboration of E∗∆
1
.
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Given a social choice correspondence, the designer wants to make a mechanism that

“approximately” implements the social choice correspondence in any ε-elaboration of E∗∆
1

for small ε; this question is formally described in our framework as follows: is there any

mechanism M ≡ ((Mi)i, g) such that for any δ > 0, there exists ε̄ > 0 such that for any

ε < ε̄, for any ε-elaboration of E∗∆
1
, there exists an equilibrium σ = (σi)i∈I such that

β({t ∈ T : g(σ(t)) ∈ F (θ̃(t))}) ≥ 1− δ. (1.6)

That is, by informally saying the mechanism “approximately” achieves the social choice

correspondence we mean that the social choice correspondence is achieved with probably ar-

bitrarily close to 1, although not necessary 1, in any ε-elaboration for sufficiently small ε. As

defined previously, if there is such a mechanism, we say that the social choice correspondence

is confidently implementable w.r.t. E∗∆
1
.

How can we identify such a mechanism? Consider the situation where E∗∆
1

is certain to

the designer. This means that the designer is certain that the true type space (given there

is no redundant types) is included in this event, i.e., the true type space corresponds to a

(consistent) belief closed subset in this event. Note that E∗∆
1

is common knowledge in a

belief closed subset.

Let us now examine the implication of condition (1.4). Note that for each payoff type

of agent i, there is a unique first order belief based on the designers’ information, and it

is common knowledge among agents in a belief closed subset; this implies that the second

order and higher order beliefs are also determined only by agents’ payoff type. Thus, we may

describe the common prior equivalently only using each agent payoff types, i.e., λ̂ ∈ ∆(Θ).

Note that this type space ((Θi)i∈I , λ̂) satisfies exactly the definition of a payoff type space.

Suppose that there is a unique belief closed subset in E∗∆
1

(which is the case in Example 1.1).

Then, by a well-known result, there is a unique common prior that is consistent with agents’

belief hierarchies (see Figure 1.2 for Example 1.1). Our main result, which will be provided

in a following section, does not involve the uniqueness of belief closed subset; while it does

involve a generalization of condition (1.4).

At this point, let us provide an overview of our argument for finding a mechanism that
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confidently implements a social choice correspondence F w.r.t. E∗∆
1
. We first find a (direct)

mechanism and a BNE σ ≡ (σi)i∈I that achieves F in the belief closed subset or equivalently

((Θi)i∈I , λ̂). Then, we show that in any ε-elaboration of E∗∆
1
, we can find an equilibrium

σ′ ≡ (σ′i)i∈I in this ε-elaboration in which type profiles in a certain event, which will be

described carefully shortly, play the same action as in σ. Then, we will show that the

probability of the event becomes close to 1 as ε goes to 0, thereby implying that σ′ achieves

F with probability close to 1, i.e., satisfies condition (1.6).

To be more specific, consider the direct mechanism ((Θi)i∈I , f) in ((Θi)i∈I , λ̂), i.e., f :

Θ → X ; and suppose it allows the truth-telling BNE σ ≡ (σi)i∈I , where σi(θi) = θi for all

i ∈ I and θi ∈ Θi, that satisfies a “stronger” incentive compatibility in the following sense:

for a given p ∈ [0, 1]N , for each agent i,

θi ∈ arg max
θ′i∈Θi

∑
θ−i∈Θ−i

λ̂i(θ−i|θi)ui(f(θ′i, φ−i(θ−i)), θi, θ−i) (1.7)

for any φ−i(θ−i) = qiσ−i(θ−i) + (1 − qi)ψ−i(θ−i) where ψ−i(θ−i) ∈ ∆(Θ−i) and qi ≥ pi. In

words, agent i’s equilibrium action (i.e., truth-telling) is a best response to any conjecture

over others’ report that satisfies the condition that truthful reporting happens with at least

probability pi. We call this particular BNE p-dominant equilibrium in type space ((Θi)i∈I , λ̂).

Let T = ((Ti)i, β) be an ε-elaboration. For notational convenience, let Eθi
i ≡ {ti ∈ Ti :

θ̃i(ti) = θi}; Eθ ≡
∏

i∈I E
θi
i ; and also let E

∆1
i

i ≡ {ti ∈ Ti : hi(ti) ∈ E
∗∆1

i
i }. Consider a

strategy profile in T , σ′ ≡ (σ′i)i∈I , where σ′i : Ti → ∆(Θi), such that for each θ ∈ Θ, and

t ∈ Cp(E∆1|Eθ)

σ′i(ti) = σi(θi) = θi

where Cp(E∆1|Eθ) ⊆ E∆1 ∩ Eθ is the event in which every agent i believes E∆1
with

probability at least pi; and believes that every agent j, j 6= i, believes E∆1
with probability

at least pj, with probability at least pi and so on, conditional on Eθ. Formally, given

p ∈ [0, 1]N ,

Bpi
i (E∆1|Eθ) := {ti ∈ Ti : ti ∈ E

∆1
i

i ∩ E
θi
i and βi(E

∆1
−i
−i |ti, E

θ−i
−i ) ≥ pi}

Bp
∗ (E∆1|Eθ) :=

∏
i∈I

Bpi
i (E∆1 |Eθ)
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and

Cp(E∆1|Eθ) :=
⋂
n≥1

[Bp
∗ ]n(E∆1|Eθ).

Note that we have not yet specified strategy profile for types outside Cp(E∆1|Eθ) for some

θ. For the time being, assume that agent with such type reports some arbitrary payoff type.

Let t ∈ Cp(E∆1 |Eθ) and agent i with type ti s.t.

h1
i (ti) = (θi, λ̂i(·|θi)),

we can find such θi in ((Θi)i, λ̂) by condition (1.5). The relevant incentive compatibility is

then

∑
θ−i

λ̂i(θ−i|θi)
∑

t−i∈Cp
−i(E

∆1 |Eθ)

βi(t−i|ti, θ̃−i(t−i) = θ−i)ui(f(θi, θ−i), θi, θ−i)

+
∑
θ−i

λ̂i(θ−i|θi)
∑

t−i∈T−i\Cp
−i(E

∆1 |Eθ)

βi(t−i|ti, θ̃−i(t−i) = θ−i)ui(f(θi, σ
′
i(t−i), θi, θ−i).

But, as t ∈ Cp(E∆1|Eθ)

βi(C
p
−i(E

∆1|Eθ)|ti, Eθ−i
−i ) ≥ pi.

By construction of σ′, this implies that agent i believes that for each θ−i the opponents play

the p-dominant equilibrium strategy σ−i(θ−i) = θ−i with at least probability pi. Thus, by

definition of p-dominant equilibrium, reporting θi is incentive compatible, no matter what

σ′i(t−i) is for t−i /∈ Cp
−i(E

∆1 |Eθ) for some θ−i. With slightly more complicated argument, we

can actually show that there is indeed a BNE σ′ = (σ′i)i∈I , σ
′
i : Ti → ∆(Θi) in which for each

t ∈ Cp(E∆1|F θ), each agent i

σ′i(ti) = σi(θi) = θi.

What is remaining for our result is to show that the probability of the event β(Cp(E∆1|Eθ)|Eθ)

is sufficiently close to 1 for each θ ∈ supp(λ̂). We can show that as ε goes to 0,

β(Eθ)→ λ̂(θ).

This implies that for any θ ∈ supp(λ̂), and for any ε′,

β(E∆1|Eθ) ≥ 1− ε′
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for sufficiently small ε. Then, due to the critical path lemma (Kajii and Morris, 1997), we

know that if p ∈ [0, 1]N satisfies
∑

i∈I pi < 1, then for any δ′ > 0,

β(Cp(E∆1|Eθ)|Eθ) ≥ 1− δ′

if ε′ is sufficiently small (thus if ε is sufficiently small). As a result,

β({t ∈ T : f(σ′(t)) ∈ F (θ̃(t))}|Eθ) ≥ β(Cp(E∆1|Eθ)|Eθ) ≥ 1− δ′

and thus

β({t ∈ T : f(σ′(t)) ∈ F (θ̃(t))}) ≥ 1− δ.

Thus, we have the following result:

Proposition 1.3. Let ((Θi)i∈I , λ̂) be the common prior type space corresponding to the

minimal consistent belief closed subset in E∗∆
1
. If a social choice correspondence F is p-

dominant implementable in ((Θi)i∈I , λ̂) for some p ∈ [0, 1]N s.t.
∑

i∈I pi < 1, then it is

confidently implementable w.r.t. E∗∆
1
.

We shall provide a generalization of this result (Theorem 1.1) and the complete proof in

the following sections.

1.5.2 Second Order Belief Information

Now we consider a situation where the designer is quite sure about agents’ second order

belief. Let for each agent i

∆2
i ⊆ T ∗2i = Θi ×∆(T ∗1−i) ⊆ Θi ×

∏
j 6=i

∆(Θj ×∆(Θ−j))

and be finite. Let ∆2 ≡ (∆2
i )i∈I . Given ∆2,

E
∗∆2

i
i :=

⋃
(θi,δ2

i )∈∆2
i

{ti ∈ T ∗i : h2
i (ti) = (θi, δ

2
i )}

and

E∗∆
2 ≡

∏
i∈I

E
∗∆2

i
i .
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That is, E∗∆
2

is the set of type profiles in the universal type space which are characterized by

a certain set of the payoff types and second order beliefs. Note that it does not say anything

about belief hierarchies higher than the second order. The set is interpreted as the designer

has information about agents’ payoff and up to the second order beliefs.

Since the second order belief also includes the first order belief this means that the

designer now confidently implements weakly larger set of social choice functions (see Propo-

sition 1.1).

Suppose that the designer’s information indicates that for each agent, each possible payoff

type and second order belief has different payoff type. In this case, we can apply the argument

which we used for the first order belief information. Thus, we know that a social choice

correspondence that is p-dominant implementable in E∆1
where λ corresponds to ∆2 (i.e.,

the marginal of δ2
i on Θ−i coincides with some λi) is confidently implementable.

Now in the designer’s information represented by E∗∆
2
, suppose that for some agent there

are some pairs of payoff type and second order belief whose payoff types are the same. For

example, ∆2
i includes

δ2
i ≡

(
θh,

1

2

(
θh,

1

2
θh ⊕

1

2
θl

)
⊕ 1

2

(
θl, θh ⊕

1

2
θl

))
and

δ′i
2 ≡

(
θh,

2

3

(
θh,

2

3
θh ⊕

1

3
θl

)
⊕ 1

3

(
θl,

1

3
θh +

2

3
θl

))
.

In this case, we cannot apply the argument that was employed for the first order beliefs.

In particular, it is not anymore the case that the strategy of each agent can be regarded

determined only by payoff types. How can we approach then?

Here is a possible solution. Suppose that there are no pairs in ∆2
i which have the same

(induced) first order beliefs. We can show that in any belief closed subset, each type of

agent i has different first order belief (see Lemma 1.1 and the relevant discussion around the

lemma). This implies that as long as agents identify the first order belief of an agent in the

belief closed subset, they can identify his strategy.

Now consider any elaboration of E∗∆
2
, T = ((Ti)i, β); consider a strategy profile in which
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if type profile t ∈ Cp(E∆2|E(θ,λ)), where

E∆2 ≡ {t ∈ T : h(t) ∈ E∗∆2}

E
(θi,λi)
i ≡ {ti ∈ Ti : h1

i (ti) = (θi, λi)}

and

E(θ,λ) ≡
∏
i∈I

E
(θi,λi)
i ,

then each agent i employs the same strategy of the type at in the maximal belief closed

subset who has the same first order belief (or equivalently the same second order belief

because such different first order belief implies different second order belief ), i.e., if

t ∈ Cp(E∆2|E(θ,λ))

and

h1
i (ti) = h1(t̂i)

then agent i plays σ′i(ti) = σi(t̂i). Let us check this type’s incentive compatibility:

∑
t−i∈T−i

βi(t−i|ti)ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t−i))

=
∑

(θ−i,λ−i)∈T ∗1−i

∑
t−i:h1

−i(t−i)=(θ−i,λ−i)

βi(t−i|ti)ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t−i))

=
∑

(θ−i,λ−i)∈T ∗1−i

δ2
i (θ−i, λ−i)

∑
t−i:h1

−i(t−i)=(θ−i,λ−i)

βi(t−i|ti, θ−i, λ−i)ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t−i))

Suppose (θi, δ
2
i ) = h2

i (t̂i) for some t̂i ∈ T̂i. Then, δ2
i ∈ ∆(T ∗1−i) only has the positive density

on (θ−i, λ−i) such that there exists t̂−i such that h1
−i(t̂−i) = (θ−i, λ−i). In addition, since

every t̂j has different first order belief, each first order belief on the support is matched only
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one t̂j for each j 6= i. Thus, we may rewrite the expression as∑
t̂−i∈T̂−i

β̂i(t̂−i|t̂i)
∑

t−i:h1
−i(t−i)=h

1
−i(t̂−i)

βi(t−i|ti, h1
−i(t−i) = h1

−i(t̂−i))ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t̂−i))

=
∑

t̂−i∈T̂−i

β̂i(t̂−i|t̂i)

×
( ∑
t−i∈Cp

−i(E
∆2 |E(θ,λ)):h1

−i(t−i)=h
1
−i(t̂−i)

βi(t−i|ti, h1
−i(t−i) = h1

−i(t̂−i))ui(g(m′i, σ−i(t̂−i)), θi, θ̃−i(t̂−i))

+
∑

t−i∈T−i\Cp
−i(E

∆2 |E(θ,λ)):h1
−i(t−i)=h

1
−i(t̂−i)

βi(t−i|ti, h1
−i(t−i) = h1

−i(t̂−i))ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t̂−i))

)

The rest argument is similar to the first order belief case. In addition, this argument will be

generalized in the following sections.

1.6 Confident Implementation w.r.t. n-th Order Belief Informa-

tion

Let us consider the situation where the designer has n-th order belief information about each

agent for some finite n.

Definition 1.11. An n-th order belief event for agent i is defined by

E
∗∆n

i
i :=

⋃
(θi,δni )∈∆n

i

{ti ∈ T ∗i : hni (ti) = (θi, δ
n
i )}

where ∆n
i is a finite subset of T ∗ni . Define n-th order belief event by

E∗∆
n ≡

∏
i∈I

E
∗∆n

i
i

where ∆n ≡ (∆n
i )i and for each i, ∆n

i is a finite subset of T ∗ni .

Definition 1.12. n-th order belief event E∗∆
n

is regular if

(i) It has a nonempty consistent belief closed subset.

(ii) For any agent i and ti ∈ E
∗∆n

i
i , there exists a consistent belief closed subset in E∗∆

n
,

((T̂i)i∈I , β̂) and t̂i ∈ T̂i with
∑

t̂−i∈T̂−i β̂(t̂i, t̂−i) > 0 such that hni (ti) = hni (t̂i).
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The first condition requires that if the designer’s information is correct, there exists a

common prior type space that is consistent to the information. The second condition says

that the designer’s information should be “consistent” in the sense that if the designer’s

information is correct, there should be a consistent belief closed subset in which there is a

type whose n-th order belief coincides the designer’s information.

Assumption 1.1 (Regularity). n-th order belief event E∗∆
n

is regular.

We maintain this assumption throughout this section. To motivate this assumption, let

us consider the following example.

Example 1.2. Suppose that there are two agents I = {1, 2} with two payoff types Θi ≡

{θh, θl} for each agent i. Consider the following designer’s information about agents’ first

order belief:

∆1
1 =

{(
θh,

(
2

3
,
1

3

))
,

(
θl,

(
1

3
,
2

3

))}
∆1

2 =

{(
θh,

(
1

2
,
1

2

))
,

(
θl,

(
1

2
,
1

2

))}
.

We claim that there is no consistent belief closed subset in the corresponding E∗∆
1

where

∆1 ≡ ∆1
1 ×∆1

2. As each payoff type of each agent corresponds only one belief hierarchy, we

may focus on a prior on Θ. Suppose that there is a common prior p ∈ ∆(Θ) that induces

such beliefs. Let α ≡ p(θh, θh) + p(θh, θl). In order to have the first order belief of agent 2

with θh,
(

1
2
, 1

2

)
,

α 2
3

α 2
3

+ (1− α)1
3

=
1

2

Then, α = 1
3
< 1/2. But, then it violates the first belief of agent 2 with θl,

α 1
3

α 1
3

+ (1− α)2
3

=
1

5
6= 1

2
.

Hence, a contradiction. This is related to the first condition for the regularity. Now, consider

∆̃1
1 =

{(
θh,

(
2

3
,
1

3

))
,

(
θl,

(
1

3
,
2

3

))
,

(
θh,

(
1

2
,
1

2

))
,

(
θl,

(
1

2
,
1

2

))}
and let ∆̃1

2 = ∆1
2. In this case, we can easily see that there is a nonempty consistent

belief closed subset in E∗∆̃
1

with a prior for which each payoff type is independently and
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identically drawn for each agent with equal probability. However, some information about

agent 1,
(
θh,
(

2
3
, 1

3

))
,
(
θl,
(

1
3
, 2

3

))
, cannot be possible in a consistent belief closed subset; thus

E∗∆̃
n

is still not regular by the second condition for the regularity.

1.6.1 Distinguishability by k-th Order Belief

Definition 1.13. An n-th order belief event for agent i E
∗∆n

i
i is distinguishable by k-th order

belief for some k ≤ n if for each ti, t
′
i ∈ E

∗∆n
i

i ,

hki (ti) = hki (t
′
i)⇒ hni (ti) = hni (t′i).

Given n-th order belief event E∗∆
n ≡ E

∗∆n
i

i , if for each agent i, E
∗∆n

i
i is distinguishable by

k-th order belief, then we call E∗∆
n

is distinguishable by k-th order belief.

In words, the designer’s information about agent i, ∆n
i , indicates that each possible n-th

order belief (this includes lower order beliefs) is distinguishable by a lower k-th order belief.

In the first order belief event case, if there are two possible first order beliefs that have

the same payoff type, then it is not distinguishable by 0-order belief (i.e., payoff types). In

this case, it is only distinguishable by the first order beliefs.

Note that if the designer’s information is distinguishable by k-th order belief where k < n,

then it is also distinguishable by k′-th order belief for any k ≤ k′ ≤ n. This is simply because

for ti, t
′
i ∈ E

∗∆n
i

i if hk+1
i (ti) = hk+1

i (t′i) then hki (ti) = hki (t
′
i).

The next observation relates k-th order belief distinguishability of designer’s information

to the properties of the possible type spaces (in other words, possible belief hierarchies) when

the designer is certain about her information: Suppose that the designer is certain of her

information which satisfies the distinguishability condition; then this information is common

knowledge. Based on the designer’s information, for each agent i and k-th order belief, there

is a unique (k + 1)-th order belief. In this sense, his (k + 1)-th order belief is determined

by his k-th order belief. Consider his (k + 2)-th order belief, which is a distribution over

(k + 1)-th order beliefs. Since (k + 1)-th order belief of j 6= i is determined by their k-th

order belief and it is known to every agent, agent i’s (k+ 2)-th order belief is essentially the
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same to his (k + 1)-th order belief. Thus, (k + 2)-th order belief is also determined by k-th

order belief. This argument goes on infinitely. That is, agent i’s entire belief hierarchy is

determined (or summarized) by his k-th order belief.20 Thus, in a belief closed subset each

agent’s type (i.e., payoff type and belief hierarchy) can be identified by payoff type and k-th

order belief. As a result, different types of each agent should have different k-th order belief.

Lemma 1.1. Suppose n-th order belief event E∗∆
n

is distinguishable by k-th order belief

where k < n. Then,

(1) In each belief closed subset in E∗∆
n
, T̂ =

∏
i∈I T̂i ⊆ E∗∆

n
, each agent i’s type has

different k-th order belief, i.e., for all t̂i, t̂
′
i ∈ T̂i,

t̂i 6= t̂′i ⇒ hki (t̂i) 6= hki (t̂
′
i).

(2) Every belief closed subset in E∗∆
n

is finite. In addition, the number of the belief closed

subsets in E∗∆
n

is finite.

Proof. The first item of the lemma is immediate from the discussion right before the lemma.

The second item comes from the fact that ∆n
i is finite.

We should emphasize that the above discussion is only when the designer is certain about

her information.

1.6.2 Common p-belief

Let T = ((Ti)i, β) be a type space. An event is E ⊆ T is simple if E =
∏

i∈I Ei for some

Ei ⊆ Ti for each i ∈ I. Given a simple event E ⊆ T and F ⊆ T , we straightforwardly extend

the belief operator (Monderer and Samet, 1989) in a way to allow conditioning on F .21

Bpi
i (E|F ) := {ti ∈ Ti : ti ∈ Ei ∩ Fi and βi(E−i|ti, F−i) ≥ pi}.

20Note that payoff type spaces satisfy 0-th order distinguishability. In this sense, this condition generalize
payoff type spaces, although the condition applies to any subsets in the universal type space.

21Kajii and Morris (1997) extends it by allowing asymmetric p.
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Let Bp
∗ be the set of states in which every i believes event E with probability at least pi, i.e.,

Bp
∗ (E|F ) :=

∏
i∈I

Bpi
i (E|F ).

Let Cp(E|F ) be the set of states in which E is common p-belief conditional on F , i.e.,

Cp(E|F ) :=
⋂
n≥1

[Bp
∗ ]n(E|F )

and event E is common p-belief conditional on F at t ∈ T if t ∈ Cp(E|F ).

An event E is p-evident conditional on F if it is p-believed whenever it is true, i.e.,

E ∩ F ⊆ Bp
∗ (E|F ).

Lemma 1.2. An event E is common p-belief conditional on F at t ∈ T if and only if there

exists p-evident event E ′ conditional on F such that t ∈ E ′ ⊆ Bp
∗ (E|F ).

1.6.3 Common p-belief and p-dominant Implementation

Definition 1.14. A belief closed subset T̂ in E∗ ⊆ T ∗ is maximal if it is the union of every

belief closed subset in E∗, i.e.,

T̂ :=
⋃
α∈A

T̂α

where T̂α is a belief closed subset in E∗. A belief closed subset T̂ is the maximal consistent

belief closed subset if it is the union of every consistent belief closed subsets in E∗.

By the regulaity assumption, there is always non empty maximal consistent belief subset.

Proposition 1.4. Let E∗∆
n

be a n-th order belief event for some n ≥ 1 and it is distin-

guishable by k-th order belief for some k < n. Let M = (M, g) be a mechanism. Suppose

σ = (σi)i∈I is a p-dominant equilibrium in (M, T̂ ) for some p ∈ [0, 1]N where T̂ is the type

space that corresponds to the maximal belief closed subset.

Consider a countable type space T = ((Ti)i, β) s.t. there exists E ′ ⊆ T s.t. h(E ′) ⊆ E∗∆
n

and p-evident conditional on Ek(t̂) ≡ {t ∈ T : hk(t) = hk(t̂)} for each t̂ ∈ T̂ . Then, there
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exists a BNE σ′ = (σ′i)i, where σ′i : Ti → ∆(Mi) in (M, T ) such that for all t ∈ E ′ and

i ∈ I,

hki (ti) = hki (t̂i)⇒ σ′i(ti) = σi(t̂i).

Let us briefly explain the intuition behind this result.22 We are claiming the existence of

a particular equilibrium in any countable type space (note that this result does not involve

common prior assumption; so T in the statement does not need to be an ε-elaboration.) in

which the equilibrium strategy coincides with the p-dominant equilibrium for type profiles

that are included in the event that agents n-th order belief coincides with the designer’s

information is p-evident, i.e., the set of type profiles (state of the world) that each agent

believes that the opponents’ n-th order belief is the same as the designer’s information at

least probability pi whenever it is true. A stronger incentive compatibility that is required

by the p-dominant equilibrium is exploited to satisfy the incentive compatibility of such type

profile.

Let us also explain how the condition of distinguishability by k-th order belief is ex-

ploited. By Lemma 1.1, if the designer’s information satisfies this condition, in any belief

closed subsets, in particular, in the maximal belief closed subset T̂ , any type of agent i has

different k-th order belief (and so different k′ > k-th order belief). This implies that the

equilibrium strategy of agent i in this type space can be identified by agent i’s k-th order

belief (measurable by k-th order belief). Thus, it is just enough to have “right” (k + 1)-th

order belief to make “right” conjecture about the opponents’ play. As n ≥ k + 1, any agent

with n-th order belief can do this. Our “approximation” of p-dominant equilibrium (thus,

approximation of the social choice correspondence of interest) in any type space exploits this

observation. Note that we have not discussed that how likely the p-evident event happens.

This will be discussed in the following subsection shortly.

Lastly, we shall explain why we consider the maximal belief closed subset. When we

consider the social choice function, it is true that the social choice function is p-dominant

22A similar argument is exploited in the robust prediction literature, e.g., Monderer and Samet (1989) and
Kajii and Morris (1997). We will explain what is added more in our argument.
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implementable in each minimal belief closed subset if and only if it is implementable in any

belief closed subset; especially the maximal one. However, we conjecture that this is not

the case for social choice correspondences. The thing is when a social choice correspondence

is implemented in each minimal belief closed subset, they might achieve different selection

of the social choice correspondence. Thus the direct mechanism induced may be different.

On the other hand, if a social choice correspondence is p-dominant implementable in the

maximal belief closed subset, then it obviously implies that it is p-dominant implementable

in any belief closed subset.

Proof. To construct σ′ = (σ′i)i∈I , first consider a modified game in which each agent i with

ti ∈ E ′i such that hki (ti) = hki (t̂i) is fixed to play σi(t̂i). Then, from a well-known result for

countable type spaces, there exits a BNE, σ′′ = (σ′′i )i∈I where σ′′i : Ti \ E ′i → ∆(Mi). Now

define σ′i : Ti → ∆(Mi) in the original game as follows:

σ′i(ti) =

 σi(t̂i) if ti ∈ E ′i and hki (ti) = hki (t̂i),

σ′′i (ti) if ti ∈ Ti \ E ′i.

Note that for ti ∈ E ′i, this strategy is well-defined, because there is at most one t̂i by (1) of

Lemma 1.1; and there is at least one such t̂i by the regularity assumption (Assumption 1.1).

Let us consider the incentive compatibility of agent i. If ti ∈ Ti \ E ′i, the incentive

compatibility is satisfied by construction. To check incentive compatibility for ti ∈ E ′i, note

that

∑
t−i∈T−i

βi(t−i|ti)ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t−i))

=
∑

t∗k−i∈T ∗k−i

∑
t−i:hk−i(t−i)=t

∗k
−i

βi(t−i|ti)ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t−i))

=
∑

t∗k−i∈T ∗k−i

δk+1
i (t∗k−i)

∑
t−i:hk−i(t−i)=t

∗k
−i

βi(t−i|ti, θ−i, λ−i)ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t

∗k
−i))

(For notation T ∗k−i refer to (1.1)). Suppose δk+1
i (·) = hk+1

i (t̂i) for some t̂i ∈ T̂i. Then, δi

only has the positive density for t∗k−i such that there exists t̂−i such that hk−i(t̂−i) = t∗k−i. In

addition, since every t̂j has different k-th order belief by distinguishability, each n-th order
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belief on the support is matched only one t̂j for each j 6= i. Thus, we may rewrite the

expression as

∑
t̂−i∈T̂−i

β̂i(t̂−i|t̂i)
∑

t−i:hk−i(t−i)=h
k
−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i))ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t̂−i))

=
∑

t̂−i∈T̂−i

β̂i(t̂−i|t̂i)
( ∑
t−i∈E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i))ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t̂−i))

+
∑

t−i∈T−i\E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i))ui(g(m′i, σ
′
−i(t−i)), θi, θ̃−i(t̂−i))

)

=
∑

t̂−i∈T̂−i

β̂i(t̂−i|t̂i)
( ∑
t−i∈E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i))ui(g(m′i, σ−i(t̂−i)), θi, θ̃−i(t̂−i))

+
∑

t−i∈T−i\E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i))ui(g(m′i, σ
′′
−i(t−i)), θi, θ̃−i(t̂−i))

)

Since ti ∈ E ′i, note that and E∗ is conditional p-evident given F (t̂) for each t̂ ∈ T̂ ,

qtii ≡
∑

t−i∈E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i)) ≥ pi.

Define

φ−i(t−i) := qtii σi(t̂−i) + (1− qtii )ψ−i(t̂−i)

where ψ−i : T̂−i → ∆(M−i),

ψ−i(t̂−i) :=
1

1− qtii

∑
t−i∈T−i\E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i))σ
′′
−i(t̂−i, s−i).

Note that

∑
m−i

ψ−i(t̂−i)[m−i]

=
1

1− qtii

∑
t−i∈T−i\E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i))
∑
m−i

σ′′−i(t̂−i, s−i)[m−i]

=
1

1− qtii

∑
t−i∈T−i\E′−i:hk−i(t−i)=hk−i(t̂−i)

βi(t−i|ti, hk−i(t−i) = hk−i(t̂−i)) = 1.
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Using this notation, the above equation is now∑
t̂−i∈T̂−i

β̂i(t̂−i|t̂i)ui(m′i, φ−i(t̂−i)), θi, θ−i)

Thus, if σi(t̂i)(mi) > 0, then, by definition of p-dominant equilibrium, it also maximizes this

expression.

1.6.4 p-dominant Implementation and Confident Implementation

In the previous section, we show that in any countable type space, there is an equilibrium in

which each agent plays the same action (or sends the same message) as in the p-dominant

equilibrium in the maximal belief closed subset whenever their type profile is included in the

event where the designer’s information about agents n-th order belief is p-evident. In this

subsection, we show such event happens with probability arbitrarily close to 1 conditional

on each k-th order belief as ε is sufficiently small and when p is not too big.

We proceed this in two steps. Recall that under the condition of the distinguishability

by k-th order belief, there is a unique k + 1-th order belief (and higher up to n) of agent i

based on the designer’ information about agent i. We first show that for any small ε ≥ 0,

for any ε-elaboration, the distribution over k-th order belief is “close” to some type space

that corresponds to some belief closed subset. That is, we show that the distribution of k-th

order belief is close to some convex combination of the priors for the minimal consistent belief

closed subset. Recall that any types of agent i in the belief closed subset under the condition

of distinguishability by k-th order belief has different k-th order belief (see Lemma 1.1). Let

(T̂α)nαα=1 be the consistent minimal belief closed subsets in E∗∆
n

where nα ∈ N is the number

of the minimal belief closed subsets (note that it is finite by Lemma 1.1) . For each T̂α, let

T̂ α = ((T̂i)
α, β̂α) be the common prior type space that corresponds to T̂α.

Lemma 1.3. Fix η > 0. Then, there exists ε̄η > 0 s.t. for all ε ≤ ε̄η, for any ε-elaboration of

E∗∆
n
, T ε = ((Ti)

ε
i , β

ε), we can find (wα)nαα=1 (it may depend on ε and T ε), where wα ∈ [0, 1]

and
∑

αwα = 1, s.t. for any t̂ ∈ T̂α,

|βε({t ∈ T ε : hk(t) = hk(t̂)})− wαβ̂α(t̂)| < η.
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Proof. See Appendix.

Corollary 1.2. Fix η > 0. Then, there exists ε̄ > 0 s.t. for all ε ≤ ε̄,

βε(t ∈ T ε : ∃t̂ ∈ T̂ s.t. hk(t) = hk(t̂)) > 1− η.

Proof. It is proven during the proof of Theorem 1.1, especially in deriving (1.10).

Note that this does not mean that the distribution of each belief hierarchy converges to

that of t̂.

In addition, since each k-th order belief has a unique (k + 1)-th order belief in the

designer’s information, this means that in an ε-elaboration, conditional on each k-th order

belief, only n-th order belief that coincides with the designer’s information occurs with a

high probability.

We exploit the following important result comes from Kajii and Morris (1997) (Proposi-

tion 4.2). We slightly extend theirs in a way to allow conditioning on an event. This result

provides a connection between the ex-ante probability of an event and the ex-ante probabil-

ity that the event is common p-belief (conditional on an event): if p satisfies some condition

(roughly, it cannot be too large), then the probability of any event in any type space to be

common p-belief is arbitrarily close to 1, if the ex-ante probability of that event is arbitrarily

close to 1. This result comes at surprising especially taking account Rubinstein (1989).23

Given a type space T = ((Ti)i, β), an event E ⊆ T is simple if E =
∏

i∈I Ei where

Ei ⊆ Ti for each i ∈ I. Also for an event F with β(F ) > 0, let β(E|F ) := β(E∩F )
β(F )

.

Lemma 1.4 (Critical Lemma). For p ∈ [0, 1]N , suppose that
∑

i∈I pi < 1 and let χ(p) =

1−mini∈I pi
1−
∑
i∈I pi

. Then, for any common prior type space ((Ti)i, β), any simple event E and F with

β(F ) > 0,

β(Cp(E|F )|F ) ≥ 1− χ(p)(1− β(E|F )).

The proof is a straightforward extension of Kajii and Morris (1997), applying the same

line of arguments except conditioning on F . Thus, we omit it here.

23Here the restriction of elaboration to common prior type spaces is crucial.
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Theorem 1.1. Let E∗∆
n ⊆ T ∗ be an n-th order belief event for some n ≥ 1 and distin-

guishable by k-th order belief for some k < n. Then, if a social choice correspondence F is

p-dominant implementable where
∑

i∈I pi < 1 in T̂ where T̂ is the maximal consistent belief

closed subset in E∗∆
n
, then it is confidently implementable w.r.t. E∗∆

n
.

The crux of the proof is to apply the critical lemma for each event Ek(t̂) ≡ {t ∈ T :

hk(t) = hk(t̂)} “whenever it is possible.” The complication arises because the definition of

ε-elaboration does not rule out the possibility that for some t̂ ∈ T̂ , the probability Ek(t̂) is

arbitrarily close to 0, thus the conditional probability of Ek+1(t̂) conditional on Ek(t̂) does

not need to be close to 1, which makes applying the critical lemma difficult. The proof

circumvents this difficulty in the following way. We divide T̂ into two groups, where for any

t̂ in the first group happens with probability at least some threshold real value (which is

chosen to be substantially small); while for t̂ in the second group does not. If ε is sufficiently

small, the conditional probability of Ek+1(t̂) conditional on Ek(t̂) should be close to 1 so

for these t̂ we apply the critical lemma and our previous result. For the probability of the

second group can be made arbitrarily small by choosing sufficiently small threshold. Thus,

in total, the probability of achieving the social choice correspondence is arbitrarily close to

1 as ε is sufficiently small.

Proof. Fix δ > 0. Let M ≡ |T̂ | which is finite by Lemma 1.1. Let x̄δ ≡ δ
4M

and ηδ ≡ δ
4M

.

Note that for any ε-elaboration T = ((Ti)i, β), for any t̂ ∈ T̂ s.t. β(Ek(t̂)) ≥ x̄δ where

Ek(t̂) ≡ {t ∈ T : hk(t) = hk(t̂)}, by definition of ε-elaboration,

ε ≥ β(T \ Ek+1(t̂)|Ek(t̂))β(Ek(t̂)) ≥ β(T \ Ek+1(t̂)|Ek(t̂))x̄δ

Thus,

β(T \ Ek+1(t̂)|Ek(t̂)) ≤ ε

x̄δ
(1.8)
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where β(E ′|E) := β(E∩E′)
β(E)

for any E ′ ⊆ T and E with β(E) > 0. Observer that

∑
t∈T

β({t ∈ T : g(σ(t)) ∈ F (θ̃(t))) ≥
∑

t̂∈T̂ :β(Ek(t̂))≥x̄δ

β({t ∈ T : g(σ(t)) ∈ F (θ̃(t))|Ek(t̂))β(Ek(t̂))

≥
∑

t̂∈T̂ :β(Ek(t̂))≥x̄δ

β(Cp(Ek+1(t̂)|Ek(t̂))|Ek(t̂))β(Ek(t̂))

≥
∑

t̂∈T̂ :β(Ek(t̂))≥x̄δ

(
1− χ(p)(1− β(Ek+1(t̂)|Ek(t̂)))

)
β(Ek(t̂))

≥
∑

t̂∈T̂ :β(Ek(t̂))≥x̄δ

(
1− χ(p)

ε

x̄δ

)
β(Ek(t̂)).

where the second and third inequlities come from Proposition 1.4 and Lemma 1.4, respec-

tively; while the last comes from (1.8). We shall show that this is greater than 1 − δ if ε is

sufficiently small. Note that

∑
t̂:β(Ek(t̂))≤x̄δ

β(E(t̂)) ≤ x̄δ|T̂ | ≤
δ

4M
M =

δ

4
. (1.9)

In addition, observe that by Lemma 1.3, there exists ε̄1 > 0 s.t. for any ε ≤ ε̄1 and each

ε-elaboration, there exists (wα)nαα=1 s.t.∣∣∣∣∣∣
∑

α∈{1,...,nα}

∑
t̂∈T̂α

(
β(Ek(t̂))− wαβ̂α(t̂)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

α∈{1,...,nα}

∑
t̂∈T̂α

β(Ek(t̂))− 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
t̂∈T̂

β(Ek(t̂))− 1

∣∣∣∣∣∣
≤

∑
α∈{1,...,nα}

∑
t̂∈T̂α

∣∣∣β(Ej(t̂))− wαβ̂α(t̂)
∣∣∣

≤ |T̂ |ηδ = M
δ

4M
=
δ

4
.

Thus, ∑
t̂∈T̂

β(Ek(t̂)) ≥ 1− δ

4
. (1.10)

Combining (1.9) and (1.10), we can conclude that if ε ≤ ε̄1,

∑
t̂∈T̂ :β(Ek(t̂))≥x̄δ

β(Ek(t̂)) ≥ 1− δ

2
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Thus, then we can find ε̄ < ε̄1 such that for any ε ≤ ε̄,∑
t̂∈T̂ :β(Ek(t̂))≥x̄δ

(
1− χ(p)

ε

x̄δ

)
β(Ek(t̂)) ≥ 1− δ

and as a result, ∑
t∈T

β({t ∈ T : g(σ(t)) ∈ F (θ̃(t))) ≥ 1− δ.

1.7 Discussion

1.7.1 Another Sufficient Condition for Confident Implementability

Definition 1.15 (Liu (2015)). Given a common prior type space T = ((Ti)i, β) and a

mechanism M = ((Mi)i, g), a recommendation policy ν ∈ ∆(T ×M) is a belief-invariant

Bayes correlated equilibrium (BCE) of (M, T ) if for each i ∈ I,∑
t∈T

β(t)
∑
m∈M

ν(m|t)ui(g(mi,m−i), θ̃(t)) ≥
∑
t∈T

β(t)
∑
m∈M

ν(m|t)ui(g(φi(ti,mi),m−i), θ̃(t))

(1.11)

for all φi : Ti ×Mi →Mi and for each mi; and∑
m−i

ν(mi,m−i|t−i, ti) (1.12)

is independent of t−i.

Proposition 1.5. Let T̂ = (T̂ , β) be the maximal consistent type space in E∗. Suppose

that a mechanism M = (M, g) implements a social choice correspondence F in BNE in

the maximal consistent belief closed subset in E∗. Suppose also that there exists a unique

belief-invariant BCE of (M, T̂ ). Then, F is confidently implementable w.r.t. E∗.

It is known that belief-invariant BCE is invariant (Theorem 2 of Liu (2015)), i.e., it only

depends on belief hierarchy on Θ.

Lemma 1.5. For any η > 0, there exists ε̄ > 0 such that for any ε-elaboration T = (T, β)

with ε ∈ [0, ε̄] and any equilibrium σ ≡ (σi)i of (M, T ),
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ν(m, t̂) :=
∑

t∈T :h(t)=t̂

β(t)
∏
i∈I

σi(mi|ti),∀m ∈M, ∀t̂ ∈ T̂ .

is a η-belief-invariant BCE of (M, T̂ ).

∑
t∗∈E∗

β̂(t∗)
∑
m∈M

ν(m|t∗)ui(g(m), θ̃(t∗))−
∑
t∗∈E∗

β̂(t∗)
∑
m∈M

ν(m, t∗)ui(g(φi(t
∗
i ,mi),m−i), θ̃(t

∗)) ≥ −η

(1.13)

and satisfies (1.12).

Proof. Fix η > 0 and let ε > 0 be small enough so that ε < η
2B

where B is the bound for

utility i.e., |ui(x, θ)| ≤ B for all i, x and θ. Consider an ε-elaboration, T = (T, β)

∑
t∈T

β(t)ui(g(σi(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i)) ≥
∑
t∈T

β(t)ui(g(σ′i(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i))

Let E ≡ {t ∈ T : h(t) ∈ E∗}. Then,

∑
t∈E

β(t)ui(g(σi(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i)) +
∑
t∈T\E

β(t)ui(g(σi(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i))

≥
∑
t∈E

β(t)ui(g(σ′i(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i))+
∑
t∈T\E

β(t)ui(g(σ′i(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i))

Note that

∑
t∈T\E

β(t)
(
ui(g(σ′i(ti), σ−i(t−i)), θ̃(t))− ui(g(σi(ti), σ−i(t−i)), θ̃(t))

)
≤
∑
t∈T\E

β(t)2B

≤ ε2B < η.

Thus, we have

∑
t∈E

β(t)ui(g(σi(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i))

−
∑
t∈E

β(t)ui(g(σ′i(ti), σ−i(t−i)), θ̃i(ti), θ̃−i(t−i)) ≥ −η (1.14)
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Note that without loss ti = (t∗i , si) where t∗i = hi(ti) and si ∈ Si for some Si. That is,

we can decompose it into the payoff relevant private information and irrelevant one. Let

S ≡
∏

i∈I Si.

Define ν : T ∗ → ∆(M)

ν(m|t∗) =
1

β̂(t∗)

∑
s∈S

β(t∗, s)
∏
i∈I

σi(mi|ti),∀m ∈M, ∀t̂ ∈ T̂ (1.15)

where

β̂(t∗) ≡
∑
s∈S

β(t∗, s).

Note that given t∗,
∑

m∈M ν(m|t∗) = 1.

First we show that the obedience condition (1.11) holds. Suppose not. Then, there exists

φi : Ti ×Mi →Mi s.t.

∑
t∗∈E∗

β̂(t∗)
∑
m∈M

ν(m, t|t∗)ui(g(mi,m−i), θ̃(t
∗)) + η <

∑
t∗∈E∗

β̂(t∗)
∑
m∈M

ν(m, t|t∗)ui(g(φi(ti,mi),m−i), θ̃(t
∗))

⇐⇒
∑
t

∑
m

β(t)σ(m|t)ui(g(mi,m−i), θ̃(t)) + η <
∑
t

∑
m

β(t)σ(m|t)ui(g(φi(ti,mi),m−i), θ̃(t))

⇐⇒
∑
t

∑
m

β(t)ui(g(σi(ti), σ−i(t−i), θ̃(t)) + η <
∑
t

∑
m

β(t)ui(g(σ′i(ti), σ−i(t−i), θ̃(t))

where σ′i(m
′
i|ti) :=

∑
mi∈Mi

σi(mi|ti)φi(m′i|ti,mi); this is a contradiction to (1.14). Thus we

have

∑
t∗∈E∗

β̂(t∗)

β̂(E∗)

∑
m∈M

ν(m|t∗)ui(gi(m), θ̃(t∗)) ≥
∑
t∗∈E∗

β̂(t∗)

β̂(E∗)

∑
m∈M

ν(m|t∗)ui(g(φi(t
∗
i ,mi),m−i), θ̃(t

∗))

Let

T̃i := {t∗i ∈ T ∗i : ∃t∗−i ∈ T ∗−i s.t. β̂(t∗i , t
∗
−i) > 0}

Then, ((T̃i)i,
β̂

β̂(E)
) be a common prior type space in T̂ . We also need to check (1.12).

∑
m−i∈M−i

ν(mi,m−i|t∗) =
1

β̂(t∗i , t
∗
−i)

∑
si∈Si,s−i∈S−i

β((t∗i , si), (t
∗
−i, s−i))σi(mi|t∗i , si)

=
1

β̂(t∗i , t
∗
−i)

∑
si∈Si

 ∑
s−i∈S−i

β(t∗−i, s−i|t∗i , si)

Pr(t∗i , si)σi(mi|t∗i , si)
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where

Pr(t∗i , si) ≡
∑
t∗−i,s−i

β((t∗i , si), (t
∗
−i, s−i)) and β(t∗−i, s−i|t∗i , si) ≡

β((t∗i , si), (t
∗
−i, s−i))

Pr(t∗i , si)
.

Since ∑
s−i∈S−i

β(t∗−i, s−i|t∗i , si) = β̂(t∗−i|t∗i )

by the definition of t∗ and s,∑
m−i∈M−i

ν(mi,m−i|t∗i , t∗−i) =
1

β̂(t∗i , t
∗
−i)

β̂(t∗−i|t∗i )
∑
si∈Si

Pr(t∗i , si)σi(mi|t∗i , si)

=
1

Pr(t∗i )

∑
si∈Si

Pr(t∗i , si)σi(mi|t∗i , si)

which is independent of t∗−i as desired.

Corollary 1.3. Assume E∗ is countable. Consider a sequence (εk)k such that εk → 0 and

εk-elaboration of E∗, T k = ((T ki )i, β
k). For each k consider a BNE σk ≡ (σki )i of (M, T k).

Then, (σk)k converges to a belief-invariant BCE of (M, T̂ ).

Proof. Let (ηl)l with ηl → 0. By Lemma 1.5, we can find a subseqeunce kl such that for each

l ∑
t∗∈E∗

β̂kl(t∗)
∑
m∈M

νkl(m|t∗)ui(g(m), θ̃(t∗))

≥
∑
t∗∈E∗

β̂kl
∑
m∈M

νkl(m, t∗)ui(g(φi(t
∗
i ,mi),m−i), θ̃(t

∗))− ηl

As we assume that E∗ is countable and β̂kl(t∗) and νkl(m|t∗) is clearly bounded, there exists

a subsequence such that

β̂kl(t∗)→ β̂(t∗),∀t∗ ∈ E∗

νkl(m|t∗)→ ν(m|t∗),∀m ∈M, t∗ ∈ E∗

and∑
t∗∈E∗

β̂(t∗)
∑
m∈M

νkl(m|t∗)ui(g(m), θ̃(t∗)) ≥
∑
t∗∈E∗

β̂(t∗)
∑
m∈M

ν(m, t∗)ui(g(φi(t
∗
i ,mi),m−i), θ̃(t

∗)).
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Now prove the proposition.

Proof. Suppose not. Then, we can find some δ > 0 and a sequence (εk)k where εk → 0 such

that there exists some BNE σk of (M, T k) such that

βk(t ∈ T k : g(σk(t)) /∈ F (θ)) > δ

for each k. By define νk : T ∗ → ∆(M) as in (1.15),

∑
t∗∈E∗

β̂k(t∗)
∑

m∈M :g(m)/∈F (θ̃(t∗))

νk(m|t∗) +
∑

t∗∈T\E∗

β̂k(t∗)
∑

m∈M :g(m)/∈F (θ̃(t∗))

νk(m|t∗) > δ

For sufficiently large k

1

β̂(E∗)

∑
t∗∈E∗

β̂k(t∗)
∑

m∈M :g(m)/∈F (θ̃(t∗))

νk(m|t∗) > δ

Then, by Corollary 1.3, there exists a convergent subsequence∑
t∗∈E∗

β̂(t)
∑

m∈M :g(m)/∈F (θ̃(t∗))

ν(m|t∗) ≥ δ (1.16)

Note that the unique belief-invariant in the maximal belief closed subset should be a BNE

σ∗ ≡ (σ∗i )i, because we assume countable type space, there exists always a BNE. Since M

implements F in the maximal consistent belief closed subset, this unique BNE should satisfy

β̂(t ∈ T̂ : g(σ∗) ∈ F (θ̃(t))) = 1

In other words,∑
t∗∈T ∗

β̂(t∗)
∑

m∈F (θ̃(t∗)

∏
i∈I

σi(mi|t∗i ) =
∑
t∗∈T ∗

β̂(t∗)
∑

m∈M :g(m)∈F (θ̃(t∗)

ν(m|t∗) = 1,

which is a contradiction to (1.16).

1.8 Conclusion

In this paper, we introduce a novel notion of robustness into mechanism design theory

which we call confident implementation, and provide a framework to study this. We also
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introduce p-dominant implementation and show that when the designer has information

about agents’ n-th order belief, p-dominant implementability with certain range of p is a

sufficient condition for a social choice correspondence to be confidently implementable with

respect to the designer’s information. Also, using this characterization, we identify social

choice correspondences that are confidently implementable but not ex-post implementable.

We conclude this paper by providing future directions which we are pursuing. In this

paper, we only consider common prior type spaces for ε-elaboration. We are working on

the cases of allowing non-common prior type spaces. Also, we are working for more results

for p-dominant implementability, especially to know to which sense or to the extent of

p-dominant implementability is also necessary for confident implementability or the other

robustness foundations we suggested.

1.9 Appendix

1.9.1 Omitted Proofs

1.9.1.1 Proof of Proposition 1.1

Proof. Fix δ > 0. Since F is confidently implementable w.r.t. E∗
′
, there exists ε̄ > 0 such

that for any ε ≤ ε̄ and any T ∈ E(E∗
′
, ε) theres exists σ such that

β({t ∈ T : g(σ(t)) ∈ F (θ̃(t))}) ≥ 1− δ.

Observe that since E∗ ⊆ E∗
′
, for any T , β(E) ≤ β(E ′). Thus, for any ε, if T ∈ E(E∗, ε), then

T ∈ E(E∗
′
, ε). Let ε ≤ ε̄ and consider T ∈ E(E, ε). Then, by the observation, T ∈ E(E∗

′
, ε),

and we know there exists σ that satisfies the above condition.

1.9.1.2 Proof of Lemma 1.3

Proof. Suppose not. Then we can find some sequence (εl)∞l=0 such that εl → 0 and some

sequence of εl-elaboration of E∗∆
n
, T l = ((T li )i, β

l) s.t. for any (wα)nαα=1 with wα ≥ 0 and
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∑nα
α=1 wα = 1,

|βl({t ∈ T l : hk(t) = hk(t̂)})− wαβ̂α(t̂)| ≥ η. (1.17)

Consider a subsequence of (T l)∞l=1 such that

βl({t ∈ T l : hk(t) = hk(t̂)})→ β′(t̂) ∈ [0, 1],∀t̂ ∈ T̂ .

(we use the same notation for the subsequence for notational convenience). Such a subse-

quence exists because 1) βl({t ∈ T l : hk(t) = hk(t̂)}) ∈ [0, 1] for each l and [0, 1] is compact;

and 2) T̂ is finite. Moreover, for each εl-elaboration,

1 ≥ βl({t ∈ T : h(t) ∈ E∗∆n}) = βl({t ∈ T : ∃t̂ ∈ T̂ s.t. hk(t) = hk(t̂)}) ≥ 1− εl

where the equality comes from the regularity of E∗∆
n

(Assumption 1.1) and Lemma 1.1.

Hence, β′ ∈ ∆(T̂ ).

Claim 1.1. Given α ∈ {1, . . . , nα}, suppose that t̂i ∈ T̂αi satisfies

∑
t̂−i∈T̂−i

β′(t̂i, t̂−i) > 0 (1.18)

and

hk+1
i (t̂i) = (θi, δ

k+1
i ) ∈ T ∗k+1

i .

Then,

β′i(t̂−i|t̂i) :=
β′(t̂i, t̂−i)∑

t̂−i∈T̂−i β
′(t̂i, t̂−i)

= β̂αi (t̂−i|t̂i) = δk+1
i (t̂−i),∀t̂−i ∈ T̂−i. (1.19)

In words, the conditional probability of the limit distribution, β̂′i(·|t̂i) coincides with

βαi (·|t̂i) if t̂i ∈ T̂αi .

Proof. Given εl-elaboration, T l = ((Ti)i, β
l), denote

Ek
i (t̂i) ≡ {ti ∈ Ti : hki (ti) = hk(t̂i)},∀i ∈ I,∀k, ∀t̂i ∈ T̂i.
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To see (1.19),

β′i(t̂−i|t̂i) ≡
βl(Ek

i (t̂i)× Ek
−i(t̂−i))

βl(Ek
i (t̂i)× T l−i)

+ εl0

=
βl(Ek+1

i (t̂i)× Ek
−i(t̂−i)) + βl((Ek

i (t̂i) \ Ek+1
i (t̂i))× Ek

−i(t̂−i))

βl(Ek+1
i (t̂i)× T l−i) + βl((Ek

i (t̂i) \ Ek+1
i (t̂i))× T l−i)

+ εl0

=
βl(Ek+1

i (t̂i)× Ek
−i(t̂−i)) + εl1

βl(Ek+1
i (t̂i)× T−i) + εl2

+ εl0

= δk+1
i (t̂−i) + εl3.

for some small positive εl0, εl1, εl2 and εl3. The third equality holds because T l is εl-elaboration:

βl((Ek
i (t̂i) \ Ek+1

i (t̂i))× Ek
−i(t̂−i)) ≤ βl((Ek

i (t̂i) \ Ek+1
i (t̂i))× T l−i)

≤ βl({t ∈ T : h(t) /∈ E∗∆n})

≤ εl,

where the second inequality comes from the assumption the distinguishability with k-th

order belief.

Let us prove the last equality. Observe that for any ti ∈ Ek+1
i (t̂i)

βli(E
t̂−i
−i |ti) ≡

βl({ti} × E t̂−i
−i )

βl({ti} × T−i)
= δk+1

i (t̂−i).

Equivalently,

βl({ti} × Ek
−i(t̂−i)) = δk+1

i (t̂−i)β
l({ti} × T−i),∀ti ∈ Ek+1

i (t̂i).

From this∑
ti∈Ek+1

i (t̂i)

βl({ti} × Ek
−i(t̂−i)) = δk+1

i (t̂−i)
∑

ti∈Ek+1
i (t̂i)

βl({ti} × T−i), ∀ti ∈ Ek+1
i (t̂i)

Simply

βl(Ek+1
i (t̂i)× Ek

−i(t̂−i)) = δk+1
i (t̂−i)β

l(Ek+1
i (t̂i)× T−i).

Hence,
βl(Ek+1

i (t̂i)× Ek
−i(t̂−i))

βl(Ek+1
i (t̂i)× T−i)

= δk+1
i (t̂−i).

As we assume (1.18), the denominator βl(Ek
i (t̂i)×T−i)+ εl2 > 0 for sufficiently large l. Thus,

“0/0 situation” does not happen.
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Claim 1.2. Given some α ∈ {1, . . . , nα}, suppose there exists t̂ ∈ T̂α s.t.

β′(t̂) > 0.

Then, for any t̂′ ∈ T̂α,

βα(t̂′) > 0 ⇐⇒ β′(t̂′) > 0.

Proof. Since β′(t̂) > 0. For each i ∈ I, by Claim 1.1,

β′i(·|t̂i) = β̂αi (·|t̂i).

In particular, it should be true that

β′i(t̂
′
−i|t̂i) > 0 ⇐⇒ β̂αi (t̂′−i|t̂i) > 0.

Hence,

β′(t̂i, t̂
′
−i) > 0 ⇐⇒ β̂α(t̂i, t̂

′
−i) > 0

for any (t̂i, t̂
′
−i). If there is no t̂′−i 6= t̂−i ∈ T̂α−i such that (t̂i, t̂

′
−i) ∈ supp β̂α, we stop.

Otherwise, we apply the same argument for some (t̂i, t̂
′
−i) ∈ supp β̂α. And so on.

For each α ∈ {1, . . . , nα}, define

wα :=


∑

t̂∈T̂α β
′(t̂) if ∃t̂ ∈ T̂α s.t. β′(t̂) > 0

0 o.w.
.

Claim 1.3. Given some α ∈ {1, . . . , nα}, suppose there exists t̂ ∈ T̂α s.t.

β′(t̂) > 0.

Then, 1
wα
β′ ∈ ∆(T̂α) and

1

wα
β′(t̂) = β̂α(t̂),∀t̂ ∈ T̂α.

Proof. Recall that for each α, β̂α is a common prior for a minimal consistent belief closed

subset. It is known that such a common prior is unique (Corollary 4.7 of Mertens and Zamir

(1985)). By Claim 1.1 and by Claim 1.2, we know that 1
wα
β′ is a common prior for (β̂αi )i∈I

for the same minimal consistent belief closed subset; hence, it should be the same as β̂α.
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Note that
nα∑
α=1

wα = 1.

By the series of claims above we show that

βl({t :∈ T : hk(t) = hk(t̂)})→ wαβ
α(t̂).

This is a contradiction to (1.17).

1.9.1.3 Proof of Proposition 1.2

Proof. Consider agent the incentive compatibility of agent i with type ti. By definition of

p-dominant equilibrium,

∑
t−i∈T−i

βi(t−i|ti)ui(g(σi(ti), φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i))

≥
∑
t−i

βi(t−i|ti)ui(g(m′i, φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i)),∀m′i ∈Mi

for any φ−i(t−i) ∈ ∆(M−i) such that each player j 6= i with tj plays σj(tj) with probability

at least pi and arbitrarily with the rest probability. In particular,

∑
t−i∈T−i

βi(t−i|ti)ui(g(σi(ti), φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i))

≥
∑

t−i∈T−i

βi(t−i|ti)ui(g(σi(t
′
i), φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i)),∀t′i ∈ Ti

This implies

∑
t−i∈T−i

βi(t−i|ti)ui(g(σi(ti), φ
′
−i(t−i)), θ̃iti, θ̃−i(t−i))

≥
∑

t−i∈T−i

βi(t−i|ti)ui(g(σi(t
′
i), φ

′
−i(t−i)), θ̃(ti), θ̃−i(t−i)),∀ti ∈ T ′i

where φ′−i(t−i) ∈ ∆(M−i) where each j 6= i plays σj(tj) with at least probability pi and plays

arbitrarily mj from

M ′
j ≡ {mj ∈Mj : ∃tj ∈ Tj, σj(tj)[mj] > 0}.

That is, the set of messages which are sent by some t′j in σj with positive probability.
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Define

f(ti, t−i) := g(σi(ti), σ−i(t−i)),∀ti ∈ Ti, t−i ∈ T−i.

Then the above inequality implies

∑
t−i∈T−i

βi(t−i|ti)ui(f(ti, φ̃−i(t−i)), (θ̃i(ti), θ̃−i(t−i))

≥
∑

t−i∈T−i

βi(t−i|ti)ui(f(t′i, φ̃−i(t−i)), (θ̃i(ti), θ̃−i(t−i)),∀t′i ∈ Ti (1.20)

for any φ̃−i(t−i) such that any j 6= i reports truthfully at least probability pi. Lastly, observe

that

f(t) = g(σ(t)) ∈ F (θ̃(t)).
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CHAPTER 2

p-dominant Implementation

2.1 Introduction

Strategic uncertainty (that is, uncertainty about others’ actions and others’ belief and higher

order beliefs about others’ action) of agents has been regarded as an important consideration

in designing robust mechanisms.1 In the private value case in which each agent’s valuations

to alternatives are fully determined by his/her own private information about payoff-relevant

parameters, requiring dominant strategy equilibrium is most robust solution concept one can

employ in this regard in that each agent’s equilibrium strategy is a best response regardless

of the other agents’ strategy. By doing so, such mechanism is robust even when some agents

may not be fully rational or make mistakes.

On the other hand, in the interdependent value case, where each agent’s value to items

may depend on the other agents’ private information, ex-post equilibrium (Crémer and

McLean, 1985) has been regarded as a corresponding notion to dominant strategy equilib-

rium. This notion requires that incentive compatibility holds for any realization of the other

agents’ types. Especially, when we consider direct mechanisms, in the private value case,

the two notions are equivalent since in this case for each agent’s action space is his/her type

space. In this sense, ex-post equilibrium is a generalization of dominant strategy equilibrium

to the interdependent value case.

However, ex-post equilibrium does not capture strategic uncertainty which dominant

strategy equilibrium does. This is because, ex-post equilibrium requires that each agent’s

1Refer to Yamashita (2015) and references therein for more about strategic uncertainty and structural
uncertainty.
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equilibrium strategy is a best response only to the other agents’ equilibrium strategy. Instead,

this notion captures robustness to uncertainty in information structures of agents by requiring

the incentive compatibility to hold for any realization of (payoff) types. In the literature,

such an uncertainty is called structural uncertainty.

The main contribution of the present paper is to provide a notion in the interdependent

value case which captures robustness to strategic uncertainty only. We provide such a no-

tion by extending p-dominant equilibrium (Morris et al., 1995; Kajii and Morris, 1997) to

incomplete information games.2 Importantly, this notion is defined with respect to a given

type space in contrast to ex-post equilibrium; so this notion does not concern informational

robustness. This notion is defined as follows: a strategy profile is p-dominant equilibrium

in a type space where p ∈ [0, 1]N when there are N ∈ N agents, if for each agent, playing

equilibrium strategy is a best response as long as the other agents play their equilibrium

strategy with probability at least pi (and arbitrarily play for the rest probability).

We provide a logical relationship between this notion and the existing well known con-

cepts. As can be easily seen, when p = 1, the notion reduces to Bayes Nash equilibrium.

When p = 0, this notion is different from both dominant strategy equilibrium and ex-post

equilibrium. More precisely, for general p 6= 1, in particular p = 0, ex-post equilibrium and

p-dominant equilibrium are logically orthogonal. In the literature, in the interdependent

value case, dominant strategy equilibrium is defined to capture both strategic uncertainty

and informational uncertainty by requiring incentive compatibility holds regardless of the

other agents’ play and types.3 Thus, in the interdependent value case, dominant strategy

equilibrium is stronger than the other two notions.

Our second main contribution is to completely characterize p-dominant implementable

allocation in the quasilinear environment with a single item to be allocated in which each

agent’s private information, called payoff-type, is one-dimensional and each agent’s valuation

is a weighted sum of their own payoff type and the others’. To be more precise, we assume

2See also relevant concepts p-best response (Tercieux, 2006); and p-rationalizability (Hu, 2007).

3See, for example, Definition 5 of Bergemann and Morris (2005).
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common prior payoff type spaces and independence of types. In this environment, it is well-

known that Bayesian implementable allocation is fully characterized by the monotonicity

condition, which requires that each agent’s interim expected allocation rule is (weakly) in-

creasing in each agent’s reported type. To obtain an extension of this result,4 we first define

p-monotonicity, which requires each agent i’s interim expected allocation to be increasing in

his report for any reporting strategy of the opponents for which they truthfully report with

probability at least pi.

We find that p-monotonicity alone does not characterize p-dominant implementation

allocation. More precisely, the former is necessary but not sufficient for the latter; and we

find that we need an additional condition for this. This additional condition requires that

the independence of agent’s valuation is sufficiently small.

We then turn to p-dominant implementable allocation in continuous type spaces. Perhaps

surprisingly, we find that for any p ∈ [0, 1]N for which pi < 1 for all i, p-dominant incentive

compatibility is equivalent to 0-dominant incentive compatibility. Thus, we only need to

focus on 0-dominant implementable allocation rules in this case. Given this observation, we

make a similar characterization to the one in the discrete type case, but a stronger form:

even with arbitrarily small interdependence, 0-dominant implementable allocation requires

the derivative of the allocation with respect to each agent’s report to be independent of

the other agents’ report. Using this characterization, we also characterize the constrained

efficient p-dominant implementable allocation when there are two agents.

The concept of p-dominant implementation naturally captures strategic uncertainty of

agents. The degree of strategic uncertainty of agent i is represented by pi. We provide formal

foundations for p-dominant implementation: in Chapter 1 we already provide one: a social

choice correspondence is confidently implementable with respect to some subset E∗ of the

universal type space if there exists a mechanism such that for any type spaces in which the

higher order belief of a realized type profile is sufficiently likely to be in E∗, there exists a

Bayes Nash equilibrium whose outcome is an element of the social choice correspondence

4Recall that when p = 1, p-dominant equilibrium coincides with BNE.
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with probability arbitrarily close to 1. We then show that if a social choice correspondence

is p-dominant implementable in the maximal belief closed subset in E∗ where
∑

i pi < 1 is

confident implementable with respect to E∗. We also provide two more formal foundations

for p-dominant implementation.

Crémer and McLean (1985) studies ex-post implementable allocation rules in the quasi-

linear environment. They find that an allocation rule is ex-post implementable if and only if

it satisfies ex-post monotonicity. Comparing to this, p-dominant implementable allocation

is completely characterized by p-monotonicity and the extra condition that restricts the

interdependence. Since 0-monotonicity coincides with ex-post monotonicity, ex-post mono-

tonicity is most stringent in terms of the monotonicity, i.e., ex-post monotonicity implies any

p-monotonicity. However, due to the presence of the extra condition on the interdependence,

in general, ex-post implementable allocation does not need to be p-dominant implementable,

and vice versa.

Some similar conditions on the interdependence can be found in the literature. For exam-

ple, in Bergemann and Morris (2009a), for an efficient allocation to be robust implementable

in their sense, the interdependence should not be too large (see also Ollár and Penta (2017)).

Interestingly, they study full implementation and the condition bites for this. For partial

implementation version of their robustness concept in Bergemann and Morris (2005), such a

condition does not appear, as long as ex-post monotonicity holds. On the other hand, in this

paper we studies partial implementation; but still it requires the interdependence condition.

The rest of the paper is organized as follows. In Section 2.2, we present the model. In

Section 2.3, we introduce the main concept of this paper, p-dominant implementation. We

provide some preliminary result and introduce p-monotonicity in Section 2.4. We completely

characterize p-dominant implementable allocations in Section 2.5 and Section 2.6 in discrete

type spaces and continuous type spaces, respectively. We provide a couple of robustness

foundation in Section 2.7; then, conclude the paper in Section 2.8 with a brief discussion of

future directions.
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2.2 Setting

2.2.1 Environment

There is a mechanism designer (“she”) and there is a finite set of agents I = 1, 2, . . . , N

(each of them is called “he”). There is a finite set of alternatives X. Each agent’s preference

over X ≡ ∆(X) satisfies conditions for the expected utility representation and depends on

payoff-relevant parameters. Each agent has private information about the parameters which

is called payoff type of agent i and let Θi be the set of payoff types for agent i with a typical

element of θi.

The designer’s goal is represented by a social choice correspondence F : Θ ⇒ X .

In later sections, we shall focus on the quasilinear environment with a single item to

be assigned (e.g., auction): X = [0, 1]N × RN with a typical element of (q, τ); here, q :

Θ → [0, 1]N and τ : Θ → RN are called allocation rule and transfer rule, respectively. An

allocation rule q is feasible if
∑

i∈I qi(θ) ≤ 1 for any θ ∈ Θ. In addition, each agent’s utility

is given as

ui((q, τ), θ) = vi(θ)qi + τi,∀(q, τ),∀θ ∈ Θ

where vi : Θ→ R which call valuation of agent i.5

In this environment, we assume that the designer only cares about implementable allo-

cation rules (see Definition 2.8).

2.2.2 Type Space

A type space is a tuple ((Ti)i∈I , (β̃i)i∈I , (θ̃i)i∈I) where β̃i : Ti → ∆(T−i) and θ̃i : Ti → Θi for

each i. A payoff type space is a type space where θ̃i is a bijection for every i.

Note that in a type space, there may be two types whose payoff types are the same but

have different beliefs, i.e., there exist ti, t
′
i ∈ Ti and β̃i(ti) = β̃′i(t

′
i) while θ̃i(ti) 6= θ̃i(t

′
i).

5Note that each agent is risk neutral in money. This justifies our restriction of X to [0, 1]N × RN .
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2.2.3 Mechanism and Implementation

Definition 2.1. A mechanism (a game form) is a pair ((Mi)i∈I , g) where Mi is a nonempty

set for each i ∈ I and g : M → X .

We call Mi the message space for agent i and call g the outcome function. Note that

(M, g) may be an extensive-form.

A particularly simple class of mechanisms is direct mechanisms. In a direct mechanism

agents are supposed to report their type, i.e., Mi = Ti for each i ∈ I.

A type space T and a mechanism M induce a Bayesian game (M, T ).

Given a Bayesian game (M, T ), a strategy of agent i, σi, is defined as a mapping from

Ti to ∆(Mi).

Definition 2.2. Given (M, T ), a strategy profile σ = (σi)i∈I is a Bayes Nash equilibrium

(henceforth BNE) if for each i ∈ I, ti ∈ Ti and mi ∈Mi with σi(ti)[mi] > 0,

mi ∈ arg max
m′i∈Mi

∑
t−i∈T−i

βi(t−i|ti)ui(g(mi, σ−i(t−i)), θ̃i(ti), θ̃−i(t−i)).

Definition 2.3. A mechanism (M, g) (partially) implements in BNE a social choice cor-

respondence F in a common prior type space T , if there exists a Bayes Nash equilibrium

σ = (σi)i such that for any t ∈ T s.t. β(t) > 0,

g(σ(t)) ∈ F (θ̃(t)).

And we call such F is (partially) implementable in BNE. In words, the notion requires the

existence of an equilibrium that yields the desirable outcome for each realization of payoff

type profile.6

6The notion of partial implementation is different from full implementation, which requires every equi-
librium to achieve the desirable outcome.
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2.3 p-dominant Implementation

In this section, we first introduce p-dominant equilibrium in Bayesian games and the corre-

sponding implementation notion. Then we provide a revelation principle for this new notion

of implementation.

2.3.1 p-dominant Equilibrium in Bayesian Games

We extend p-dominant equilibrium (Morris et al., 1995; Kajii and Morris, 1997), which was

originally defined in complete information games, to games with incomplete information in

order to employ it in mechanism design.7 There may be potentially more ways to extend

the notion; the reason why we chose this way will be clear shortly.

Definition 2.4. Let p ∈ [0, 1]N . Given a game (T ,M), a strategy profile σ ≡ (σi)i where

σi : Ti → ∆(Mi) is a p-dominant equilibrium if for each i ∈ I, ti ∈ Ti and mi ∈ Mi with

σi(ti)[mi] > 0,

mi ∈ arg max
m′i∈Mi

∑
t−i

βi(t−i|ti)ui(g(m′i, φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i)))

for any φ−i : T−i → ∆(M−i) such that for each t−i ∈ T−i

φ−i(t−i) = q
t−i
i σ−i(t−i) + (1− qt−ii )ψ−i(t−i) (2.1)

for some q
t−i
i ≥ pi and ψ−i(t−i) ∈ ∆(M−i).

In words, a strategy profile constitutes p-dominant equilibrium if for each agent i and ti,

the equilibrium strategy is a best response to any conjecture over the opponents’ message

profiles that puts on probability at least pi on the equilibrium strategy profile; for the rest

probability 1− pi, the opponents’ strategies are allowed to be correlated across agents (but

not correlated within types of an agent). We will call ψ−i in (2.1) babbling of −i.

7As noted in Morris et al. (1995), the notion of p-dominance is a generalization of Harsayni and Selten’s
risk-dominance in 2× 2 games in the sense that it coincides risk dominance when p = (1/2, 1/2).
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In addition, given a mechanism, if σ is a p-dominant equilibrium; then it is also a p′-

dominant equilibrium for any p′ ≥ p.8 In particular, any p-dominant equilibrium is a

Bayesian Nash equilibrium. Clearly, p-dominant equilibrium may not exist.9 With private

value, when p = 0, this notion is equivalent to (weakly) dominant strategy equilibrium.

However, it shall be shown momentarily in Section 2.3.3 that the notion is weaker than

dominant strategy equilibrium with interdependent value. In particular, we should emphasize

that the set of p-dominant equilibrium depends on the underlying type space T , even when

p = 0.

Definition 2.5. A social choice correspondence F : Θ ⇒ X is p-dominant implementable

in a type space T if there exists a mechanism M = (M, g) and a p-dominant equilibrium σ

in (M, T ) such that for each t ∈ T

g(σ(t)) ∈ F (θ̃(t)).

Note that it is a refinement of partial implementation in BNE (Definition 2.3), simply

because a p-dominant equilibrium is a Bayes Nash equilibrium.

2.3.2 Revelation Principle for p-dominant Implementation

There are infinite number of mechanisms to be checked in order to see whether a social choice

correspondence is p-dominant implementable. In the (partial) implementation in BNE, the

revelation principle allows us to focus on the direct mechanism for this purpose. In this

subsection, we make a parallel observation for p-dominant implementability.

Proposition 2.1 (Revelation principle for p-dominant implementation). Let M = (M, g)

be a mechanism, and let σ = (σi)i∈I where σi : Ti → ∆(Mi) be a p-dominant equilibrium in

(M, T ). Then there exists a direct mechanism M′ = ((T )i∈I , f) such that

(1) Truthful reporting, i.e., σ′i(ti) = ti for all i ∈ I, is a p-dominant equilibrium in (M′, T ).

8p′ ≥ p if each p′i ≥ pi for all i ∈ I.

9In this regard, see also relevant concepts (p-BR, p-MBR) in Tercieux (2006).
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(2) For every t ∈ T ,

f(t) = g(σ(t)).

Note that if g(σ(t)) ∈ F (θ̃(t)), then f(t) ∈ F (θ̃(t)). The argument is quite standard; if

anything is nonstandard, it would be the part dealing with the babbling of the opponents.

Note that with the original indirect mechanism, agents have more messages to send in the

sense that in the induced direct mechanism the messages corresponding to an agent’s reported

types is a subset of the message space of the original indirect mechanism, so agent i effectively

needs to consider a smaller set of babbling of the opponents in the indirect mechanism.

Proof. See Appendix.

Due to this result, from now on we focus on direct mechanisms when we consider p-

dominant implementability.

2.3.3 Discussion: Dominant Strategy Equilibrium, Ex-post Equilibrium and

0-dominant Equilibrium

As previously mentioned, we extend the existing notion of p-dominant equilibrium, which

is initially defined in complete information games, to games with incomplete information

games. In doing so, we find that 0-dominant equilibrium is logically orthogonal to ex-

post equilibrium; and also different from dominant strategy equilibrium generally. In this

subsection, we discuss their relationships. For this purpose, let us first define the two other

solution concepts formally.

Definition 2.6. A direct mechanism ((Θi)i∈I , f) is ex-post incentive compatible if for all

i ∈ I, θi ∈ Θi,

ui(f(θi, θ−i), θi, θ−i) ≥ ui(f(θ′i, θ−i), θi, θ−i),∀θ′i ∈ Θi, θ−i ∈ Θ−i.

Definition 2.7. A direct mechanism ((Θi)i∈I , f) is dominant strategy incentive compatible

if for all i ∈ I, θi ∈ Θi,

ui(f(θi, θ
′
−i), θi, θ−i) ≥ ui(f(θ′i, θ

′
−i), θi, θ−i), ∀θ′i ∈ Θi, θ−i ∈ Θ−i, θ

′
−i ∈ Θ−i.
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F θh θl

θh 1 0

θl 0 0

Figure 2.1: Social choice function in Example 2.1

By the revelation principles for each equilibrium concept, a social choice correspondence

is implementable in each solution concept if there exists a direct mechanism that achieves

it.10

In the following example, we show that there is a social choice correspondence that is

ex-post implementable but not 0-dominant implementable.

Example 2.1. There are two agents i ∈ {1, 2} and for each i, let Θi = {θh, θl} where

θh = 1 and θl = −2. Assume that types are independently drawn across agents and let

Pr(θh) = λ ∈ [0, 1]. Consider a social choice correspondence (in fact function) in Figure 2.1.

Let X ≡ {0, 1} where x = 1 represents build a public good; while x = 0 represents not

building it. We assume that agents have interdependent value with vi(θi, θj) = θi + θj for

each i, j 6= i.

Let us first see that the direct mechanism (Θ, f) where f = F is ex-post implementable:

to see this, consider incentive compatibility of agent i with θh:

ui(f(θh, θh), θh, θh) = 1 > ui(f(θl, θh), θh, θh) = 0

ui(f(θh, θl), θh, θl) = 0 = ui(f(θl, θl), θh, θl) = 0

For agent i with θl, it is weakly dominant to truthfully report. Thus, this social choice

function is ex-post implementable.

To show that this social choice function is not 0-dominant implementable it is sufficient

to show that there exists a babbling ψj : Θj → Θj, j 6= i, with which incentive compatibility

10The employed definitions come from Bergemann and Morris (2005) (see also their footnote 10 for more
references for ex-post equilibrium). We define relevant implementability roughly. Refer to the same paper
for the exact definitions of them.
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of agent i is violated. Consider the following babbling: ψj(θh) = θl and ψj(θl) = θh, i.e.,

each type of agent j reports the opposite type. In this case, when agent i reports truthfully

his utility is

λui(f(θh, θl), θh, θh) + (1− λ)ui(f(θh, θh), θh, θl)) < 0

Thus, truth-telling is not 0-dominant equilibrium; thus the social choice function is not

0-dominant implementable (note that we use the revelation principle for p-dominant imple-

mentation Proposition 2.1 here).

Proposition 2.2. Let ((Θi)i∈I , f) be a direct mechanism. There are following logical rela-

tionship between dominant strategy equilibrium, ex-post equilibrium and 0-dominant equilib-

rium.

(1) With private value, three solution concepts are equivalent.

(2) With interdependent value, any dominant strategy equilibrium strategy profile is an

ex-post equilibrium. But, the converse is not true.

(3) With interdependent value, any dominant strategy equilibrium strategy profile is a

0-dominant equilibrium. But, the converse is not true.

(4) With interdependent value, neither ex-post equilibrium implies nor implied by 0-

dominant equilibrium.

(5) There is a game and a strategy profile which is both ex-post and 0-dominant equilib-

rium but not a dominant strategy equilibrium.

See Figure 2.2 for a schematic exposition of the proposition.

Proof. For (1), the equivalence of ex-post equilibrium and dominant strategy equilibrium

with private value is pointed out by Bergemann and Morris (2005). Thus we need to only

show the equivalence of dominant strategy equilibrium and 0-dominant equilibrium with

private value. This is simply because the additional incentive constraints by varying the

opponents’ payoff type do not bite by definition of private value.
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Dominant strategy equilibrium

0-dominant equilibrium

Ex-post equilibrium

p-dominant equilibrium

BNE

(5)

(2), (4)

(3), (4)

Figure 2.2: A schematic exposition of Proposition 2.2

It is clear that dominant strategy equilibrium is stronger than ex-post equilibrium and

0-dominant equilibrium. For the second part of (2), as dominant strategy equilibrium is

stronger than 0-dominant equilibrium, it is enough to show that there is an ex-post equilib-

rium but not 0-dominant equilibrium, which is already shown in Example 2.1.

For the second part of (3), as dominant strategy equilibrium is stronger than ex-post

equilibrium, it is sufficient to show there is 0-dominant equilibrium that is not ex-post

equilibrium. We already have seen such case through Example 1.1 when λ ≥ 1/3 in the

example.

We have already shown (4) in proving (2) and (3).

We prove (5) in Example 2.2.

Example 2.2. Suppose that there are two agents i = 1, 2. Their payoff type is given by

Θi = {θl, θh} where θl = 0 and θh = 1/2. Agents’ type is independently and identically

drawn; denote λ ≡ Pr(θh). Let X = {0, 1/2, 1} and for each agent i,

ui(x, (θi, θj)) = −|x− (θi + θj)|,∀x ∈ X, θi ∈ Θi, θj ∈ Θj

and the social choice function is given by Figure 2.3.

Truthful-reporting of their type is an ex-post equilibrium, because the social choice func-

tion assigns the best alternative for each payoff type profile.
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F θh θl

θh 1 1/2

θl 1/2 0

Figure 2.3: Social choice function in Example 2.2

We next claim that truthful-reporting is 0-dominant equilibrium if and only if λ = 1/2.

To see this, consider incentive of player 1 with type θh. Consider agent 2’s babbling ψ2(θh) =

θl and ψ2(θl) = θh. In this case, the expected utility is

− λ
∣∣∣∣12 − (θh + θh)

∣∣∣∣− (1− λ)|1− (θh + θl)| = −
1

2

≥ −λ|0− (θh + θh)| − (1− λ)

∣∣∣∣12 − (θh + θl)

∣∣∣∣ = −λ.

Now consider the incentive compatibility of agent 1 with type θl with the same babbling of

agent 2:

− λ|0− (θl + θh)| − (1− λ)

∣∣∣∣12 − (θl + θl)

∣∣∣∣ = −1

2

≥ −λ
∣∣∣∣12 − (θl + θh)

∣∣∣∣− (1− λ)|1− (θl + θl)| = −(1− λ).

Thus both incentive compatibilities hold only when λ = 1/2. We can check incentive com-

patibilities for the other babbling of agent 2 in a similar way and can find when λ = 1/2

they hold.

As p-dominant equilibrium is defined with respect to a given type space, when λ = 1/2,

truth-telling is both ex-post and 0-dominant equilibrium. However, it is not dominant

strategy equilibrium, because it does not satisfy incentive compatibility for agent 1 with θh,

for example, when agent 2’s type is θl and reports θh

−|1− (θh + θl)| = −
1

2
< −

∣∣∣∣12 − (θh + θl)

∣∣∣∣ = 0.
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2.4 Preliminary Result and p-monotonicity in Quasilinear Envi-

ronment

2.4.1 Basic Characterization

The following simple observation significantly reduces the number of incentive compatibility

conditions to be checked.

Lemma 2.1. f : T → X satisfies p-dominant incentive compatibility (i.e., (2.12)) if and

only if for each i, ti ∈ Ti and ψ−i : T−i → T−i.

ti ∈ arg max
t′i∈Ti

pi

∑
t−i

βi(t−i|ti)ui(f(t′i, t−i), (ti, t−i))


+ (1− pi)

∑
t−i

βi(t−i|ti)ui(f(t′i, ψ−i(t−i)), ti, t−i)

 .

Proof. See Appendix.

Recall that the original definition of p-dominant incentive compatibility requires that

truthful-reporting is a best response to any conjecture about the opponents report with at

least pi of truthful reporting. This proposition reduces the number of incentive compati-

bilities in two ways: first, it is only needed to check when the opponents exactly reports

truthfully pi and with the rest probability they arbitrarily report; second, for the arbitrary

report part, it is sufficient to consider “pure” report of each type.

Due to this characterization, henceforth we will only consider the simplified incentive

compatibility.

We characterize the set of allocation rules that are p-dominant implementable in the

quasilinear environment. We study both private value and interdependent value cases.

We first study here discrete type case. Especially, there is a single item to be allocated

to N agents: X = [0, 1]N and Θi = {θ0
i , θ

1
i , . . . , θ

Ki
i } ⊆ R where θ0

i ≤ θ1
i · · · ≤ θKii for each

i ∈ I where Ki ∈ N ∪ {0}.

Throughout this section, we maintain the following assumptions:

61



Assumption 2.1 (One-dimensional payoff type space). For each agent i, Θi ⊆ R. In

addition, Ti = Θi and β̃i(·|θi) = λi(·|θi) ∈ ∆(Θ−i) and θ̃i(θi) = θi, ∀i ∈ I, θi ∈ Θi.

Assumption 2.2 (Linearly interdependent utility). Each agent i’s valuation vi : Θ → R

has the following form:

vi(θ) = θi + γ
∑
j 6=i

θj,∀θ ∈ Θ

where γ ≥ 0.

Namely, each agent’s valuation for the item is a weighted sum of the agent’s own payoff

type and the sum of the other agents’ payoff types.

Definition 2.8. An allocation rule q = (qi)i∈I is p-dominant implementable if for each agent

i, there exists τi : Θ→ R which makes (q, τ) satisfies p-dominant incentive compatibility.

2.4.2 p-monotonicity

Given an allocation rule (qi)i where qi : Θ → [0, 1], p ∈ [0, 1]N and a function ψ−i : Θ−i →

Θ−i, denote

Qpi
i (θi, ψ−i) := pi

∑
θ−i

λi(θ−i|θi)qi(θi, θ−i)


+ (1− pi)

∑
θ−i

λi(θ−i|θi)qi(θi, ψ−i(θ−i)),∀θi ∈ Θi.

That is, Qpi
i (θi, ψ−i) is the interim expected allocation of agent i with type θi when the

opponents truthfully report with probability pi and babble according to ψ−i with the rest

probability.

We introduce the following concept:

Definition 2.9. An allocation rule q = (qi)i∈I satisfies p-monotonicity if for each i, Qpi
i (θi, ψ−i)

is increasing in θi for any ψ−i : Θ−i → Θ−i.

In words, this definition requires that for any (pure) babbling of the opponents, the

expected allocation is increasing in agent i’s report. Note that when pi = 1 for every i ∈ I,

this definition reduces to the standard monotonicity for implementability in BNE.
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By the following observation, it is sufficient to check the monotonicity of babbling “uni-

formly” for checking the p-monotonicity. We define uniform babbling of agent j if agent j

reports the same report regardless of his true type, i.e.,

ψj(θ
′
j) = θj,∀θ′j ∈ Θj.

In this case, we denote

Qpi
i (θi, θ−i) ≡ Qpi

i (θi, ψ−i)

where ψ−i(θ
′
−i) = θ−i for all θ′−i.

Lemma 2.2. An allocation rule q = (qi)i∈I satisfies p-monotonicity if and only if for each

agent i, Qpi
i (θi, θ−i) is increasing in θi for any θ−i ∈ Θ−i.

Proof. See Appendix.

The following is immediate from the lemma.

Corollary 2.1. 0-monotonicity is equivalent to ex-post monotonicity.

2.5 Characterization of p-dominant Implementability with Dis-

crete Payoff type Spaces

Definition 2.10. A payoff type space ((Θi)i∈I , λ) is independent if for each θ ∈ Θ,

λ(θ) =
∏
i∈I

λi(θi),∀θ ∈ Θ

where λi(θi) ≡
∑

θ−i
λi(θi, θ−i).

We assume that ((Θi)i∈I , λ) is independent for this subsection.

2.5.1 Private Value

It turns out that the analysis for the interdependent value case is substantially more compli-

cated. Thus, we first study the private value case where each agent’s valuation of the item
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does not depend on others’ type. Formally, agent i’s valuation is private if

vi(θi, θ−i) = θi, ∀θ−i ∈ Θ−i.

Proposition 2.3. Suppose that each agent’s valuation is private. Then, an allocation rule

q ≡ (qi)i∈I is p-dominant implementable if and only if q satisfies p-monotonicity.

Proof. This result is subsumed by Theorem 2.1; hence the proof is omitted.

In words, the only condition that bites for an allocation rule to be p-dominant imple-

mentable is p-monotonicity in the private value case as it is the case in implementability in

BNE. Note that this includes the standard characterization of Bayesian implementability as

a special case p = 1.

2.5.2 Interdependent Value

Lemma 2.3. In this environment, an allocation rule q = (qi)i∈I is p-dominant imple-

mentable, then q satisfies p-monotonicity.

Proof. See Appendix.

The proof is standard except that we need to consider incentive constraints for every

babbling of other agents: suppose p-monotonicity does not hold. This means that there is

some babbling of the opponents, and the expected allocation given this babbling violates

the monotonicity, i.e., there are two types for which the lower type’s expected allocation is

higher than that for the higher type; then by incentive compatibility, the lower type prefers

this higher allocation and payment, which implies the higher types does due to the single

crossing property. A contradiction.

Is p-monotonicity also sufficient as it is in the private value case? It turns out that it is

not the case. The following example illustrates this.

Example 2.3. In this example, we show that 0-monotonicity is not sufficient for an allo-

cation rule to be p-dominant implementable. Let N = 2 and Θ1 = {θh, θl} where θh > θl,

64



Θ2 = {θu, θd} where θu > θd. Types are independently drawn and equally likely. Let γ = 1,

i.e., vi = θi + θj, j 6= i. Let us first introduce the following notations:

∆q1(θu) ≡ q1(θh, θu)− q1(θl, θu)

; and similarly for ∆q1(θl) Similarly, define

∆t1(θu) = t1(θh, θu)− t1(θl, θu)

The ICs for agent 1 is as follows: when agent 2 uniformly babbles θu(
θh +

1

2
θu +

1

2
θd

)
∆q1(θu) ≥ t1(θu) ≥

(
θl +

1

2
θu +

1

2
θd

)
∆q1(θu)

and uniformly babbles θd(
θh +

1

2
θu +

1

2
θd

)
∆q1(θd) ≥ ∆t1(θd) ≥

(
θl +

1

2
θu +

1

2
θd

)
∆q1(θd)

From these,

R̄ ≡
(
θh +

1

2
θu +

1

2
θd

)(
1

2
∆q1(θu) +

1

2
∆q1(θd)

)
≥ 1

2
∆t1(θu) +

1

2
∆t1(θd)

≥
(
θl +

1

2
θu +

1

2
θd

)(
1

2
∆q1(θu) +

1

2
∆q1(θd)

)
≡ L̄.

Now consider other types of babbling in which each type reports a different type, i.e., θh

reports θl; and θl reports θh. In this case,

R(ψ2) ≡ θh

(
1

2
∆q1(θu) +

1

2
∆q1(θd)

)
+

1

2
θu∆q1(θd) +

1

2
θd∆q1(θu)

≥ 1

2
∆t1(θu) +

1

2
∆t1(θd)

≥ θl

(
1

2
∆q1(θu) +

1

2
∆q1(θd)

)
+

1

2
θu∆q1(θd) +

1

2
θd∆q1(θu) ≡ L(ψ2)

Note that the middle expression of these inequalities and the above are the same. It should

be

max{L(ψ2), L̄} ≤ min{R(ψ2), R̄}

65



Otherwise, the intersection of the above inequalities is empty. Suppose

∆q1(θu) > ∆q1(θd)

and all of them are greater than 0, i.e., it satisfies 0-monotonicity. To see which is smaller

between R(ψ2) and R̄, note that for making it smaller, “anti-assortative” is better; i.e.,

match bigger θu with smaller ∆q1(θd).

R(ψ2) = θh

(
1

2
∆q1(θu) +

1

2
∆q1(θd)

)
+

1

2
θu∆q1(θd) +

1

2
θd∆q1(θu)

≥ L̄ =

(
θl +

1

2
θu +

1

2
θd

)(
1

2
∆q1(θu) +

1

2
∆q1(θd)

)
if and only if

(θh − θl)
(

1

2
∆q1(θu) +

1

2
∆q1(θd)

)
≥ 1

2
∆q1(θu)(E[θ2]− θd) +

1

2
∆q1(θd)(E[θ2]− θu).

Suppose

∆q1(θu) = 10 > ∆q1(θd) = 1

and

θu = 10, θd = 0

so E[θ2] = 5 Then the inequality is

(θh − θl)
1

2
(10 + 1) ≥ 1

2
10× 5 +

1

2
1(−5) =

45

2
.

If θh − θl is small enough this inequality is trivially not satisfied. So, there is no t1 satisfies

all the inequalities above.

Recall that the basic intuition involving monotonicity is that an allocation rule that

satisfies the monotonicity provides a larger marginal benefit of reporting a higher type when

the true type is higher. This allows us to come up with the transfer rule by which the marginal

cost of reporting a higher type to be between those marginal benefits; as a result, providing

incentive to report the true type. Here, we need to consider incentive constraints for every

babbling of other agents, and the previous example shows that sometimes it is impossible to

find a transfer rule that is consistent to every incentive constraint. We precisely characterize

how such additional consideration restricts the implementable allocations in the next result.
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Theorem 2.1. An allocation rule q ≡ (qi)i∈I is p-dominant implementable if and only if

(1) q satisfies p-monotonicity

(2) For each i ∈ I and θki , θ
k−1
i ∈ Θi,

θki − θk−1
i ≥ γmax

ψ−i

∣∣∣∣∣∣
∑
θ−i

(1− pi)λ(θ−i)∆qi(θ
k
i , ψ−i(θ−i))

pi∆Qi(θki , ψ
∗
−i) + (1− pi)∆Qi(θki , ψ−i)

∑
j 6=i

(θj − µj)

∣∣∣∣∣∣ . (2.2)

Proof. See Appendix.

Comparing to the condition for the standard Bayesian implementability, there is an addi-

tional condition, the second condition involving γ and q. It turns out that this condition

exactly comes from the fact that we need to consider every babbling possibility with the in-

terdependent value: with the interdependent value, agents’ payoff depends on the true types

of other agents; even though an agent has the same belief over the other agents’ report, it

is possible that he has different beliefs over which types are more likely to report a certain

type. For instance in Example 2.3, an agent has the belief that the other agent reports each

type equally likely. However, he might have belief that each agent reports truthfully report;

or exactly opposite report; and this makes his marginal benefit from reporting high type

different. Note that for both beliefs, the expected increase in payment is the same. This

implies that the difference in the marginal benefit between high and low types should be

large enough to take into account all the belief about the other agents’ report.

A closer look at the second condition suggests which determines the size of this impact

of interacting interdependent value and babbling. Obviously, smaller γ makes it smaller.

Especially, when γ = 0, the condition does not bite; thus, the monotonicity is the only quali-

fication for p-dominant implementability as we already discussed in the previous subsection.

Perhaps more interestingly, the second condition involves the marginal increase of an agent’s

allocation reporting a higher type (i.e., ∆qi(θi, θ−i)) rather than the absolute level of this.

Intuitively, given a babbling of the opponents, if the other agents’ report makes big difference

in the marginal increase in the allocation, then the impact of the babbling combining with

different true types on the difference of the marginal benefit is large.
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Corollary 2.2. For any i ∈ I and θki , if ∆qi(θ
k
i , θ−i) = ∆qi(θ

k
i , θ
′
−i) for all θ−i, θ

′
−i, then the

second condition in the proposition does not bite.

Proof. See Appendix.

Given γ, it might not be easy to check whether q satisfies the sufficient condition. The

following proposition provides a sufficient condition on γ which can be applied regardless of

q. That is, under this sufficient condition, p-monotonicity is enough.

Corollary 2.3 (A uniform sufficient condition). Suppose

γ ≤ min
i∈I

min
k

(θki − θk−1
i )

(
pi

1− pi
minθ−i λi(θ−i)

maxθ−i λi(θ−i)
+ 1

)
1

maxθ−i

∣∣∣∑j 6=i(θj − µj)
∣∣∣ .

Then, q is p-dominant implementable if and only if q satisfies p-monotonicity.

Proof. See Appendix.

The uniform sufficient condition may be unnecessarily strong for a particular q, but it is

convenient (as we will see in Example 2.4) .

2.5.2.1 Constrained Efficient p-dominant Allocation Rule

Consider the single item environment. An allocation rule q∗ ≡ (q∗i )i is efficient if

q∗(θ) ∈ arg max
∑
i∈I

vi(θ)q
∗
i (θ)

where the maximization is taken over feasible allocations, i.e., qi : Θ→ [0, 1] for each i and∑
i qi ≤ 1. An allocation rule q = (qi)i∈I where qi : Θ → [0, 1] is constant if for any i ∈ I

and θ ∈ Θ, qi(θ) = ki for some ki ∈ [0, 1].

Lemma 2.4. If γ < 1, then an efficient allocation satisfies ex-post monotonicity. If γ > 1,

then a non-constant efficient allocation violates ex-post monotonicity.

Proof. See Appendix.
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Intuitively, when γ < 1, efficiency requires the item to be assigned to an agent with

a higher payoff type; while when γ > 1, giving it to a lower payoff type is more efficient.

Since ex-post monotonicity implies p-monotonicity for any p ∈ [0, 1]N , we have the following

result.

Corollary 2.4. If γ < 1, an efficient allocation rule satisfies p-monotonicity for any p ∈

[0, 1]N .

Lemma 2 of Crémer and McLean (1985) shows that if q satisfies ex-post monotonicity,

then it is ex-post implementable. Combining this with Lemma 2.4, we have the following

result.

Corollary 2.5. An (non-constant) efficient allocation rule is ex-post implementable if and

only if γ ≤ 1.

Example 2.4. In this example, we characterize the most efficient allocation rule that is

p-dominant implementable for each p ∈ [0, 1].11 There are two agents i ∈ {1, 2} and for each

agent i, vi(θ) = θi + 2θj, j 6= i. Suppose θi ∈ {1, 15} for each i and equally probable.

Note that to maximize the social surplus the item should be assigned to the agent with

lower type. But this allocation rule violates the Bayesian monotonicity (see Figure 2.4). The

constrained efficient allocation rule that is implementable in BNE and ex-post implementable

(also implementable in dominant strategy equilibrium) are also described in the same figure.

Given some p ∈ [0, 1]N , what is the constrained efficient allocation rule that is p-dominant

implementable? Due to Theorem 2.1, we can obtain it by solving the following optimization

problem:

max
{wi,xi,yi,zi}2i=1

1

4
((3z1 + 31y1 + 17x1 + 45w1) + (3z2 + 17y2 + 31x2 + 45w2))

= max
{wi,xi,yi,zi}2i=1

1

4
(3(z1 + z2) + 31(y1 + x2) + 17(x1 + y2) + 45(w1 + w2))

11We adapt an example in Gershkov et al. (2013) in a way to allow p-dominant implementable with interior
p. They originally characterize most efficient allocation rule for BNE and ex-post equilibrium.
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q1 θh θl

θh 1/2 0

θl 1 1/2

q1 θh θl

θh 1/2 1/4

θl 3/4 0

q1 θh θl

θh 1/2 1/2

θl 1/2 1/2

Figure 2.4: The left one is the efficient allocation; the middle one is the most efficient

implementable allocation in BNE; the right one is the most efficient ex-post implementable

allocation

subject to 1) the well-defined as an allocation rule, i.e.,

w1 + w2 ≤ 1, x1 + x2 ≤ 1, y1 + y2 ≤ 1, z1 + z2 ≤ 1

wi,xi,yi, zi ≥ 0

for i = 1, 2 and 2) the p-monotonicity (Definition 2.9) and 3) the second condition in

Theorem 2.1. For notations, see below.

qi θh θl

θh wi xi

θl yi zi

To make our exercise simpler let us focus on when p1 = p2 = p. We first claim that the

second condition in Theorem 2.1 is satisfied in this case regardless of q. To see this, we use

the uniform version of the sufficient condition (i.e., Corollary 2.3): this amounts to

γ ≤ (θh − θl)
(

p

1− p
min{λh, λl}
max{λh, λl}

+ 1

)
1

max{θh − µ, µ− θl}

Since λh = λl = 1/2, µ = 1
2
(θh + θl), this condition amounts to

γ ≤ 2

(
p

1− p
+ 1

)
.

Since in this example γ = 2, this condition is satisfied regardless of q.

We focus on symmetric allocation rules:

w1 = w2, x1 = y2, y1 = x2, z1 = z2.
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Note that for the purpose of obtaining a constrained efficient allocation rule, assuming sym-

metry is in fact without loss.12 Given this, the problem amounts to

max
w1,x1,y1,z1

1

4
(2(3z1 + 31y1 + 17x1 + 45w1))

s.t. the feasibility and the p-monotonicity. By Lemma 2.2, it is sufficient to consider p-

monotonicity when the other agent uniformly babbles: when ψ2(θ2) = θl for all θ2,

p

(
1

2
x1 +

1

2
w1

)
+ (1− p)x1 ≥ p

(
1

2
z1 +

1

2
y1

)
+ (1− p)z1 (2.3)

and when ψ2(θ2) = θh for all θ2,

p

(
1

2
x1 +

1

2
w1

)
+ (1− p)w1 ≥ p

(
1

2
z1 +

1

2
y1

)
+ (1− p)y1 (2.4)

and from the symmetry, the feasibility is now

w1 ≤
1

2
, z1 ≤

1

2
, x1 + y1 ≤ 1 (2.5)

where the last one comes from x1 + x2 ≤ 1 and y1 + y2 ≤ 1.

Proposition 2.4. The efficient allocation rule which is p-dominant implementable has the

following structure:

(1) When p ≥ 3
7
, the optimal solution is z1 = 0, y1 = p3

4
+ (1 − p)1

2
(and x1 = 1 − y1,

w1 = 1/2), and the maximum social surplus is strictly increasing in p ∈ [3/7, 1];

in particular, when p = 1, it coincides with the most efficient BNE implementable

allocation rule.

(2) When p < 3/7, z1 = 1/2, y1 = 1/2 (x1 = 1/2, w1 = 1/2), which are the same as the

most efficient ex-post implementable allocation rule; the maximum surplus is constant

for p ∈ [0, 3/7].

Proof. See Appendix.

In this example, the second condition in Theorem 2.1 does not bite. Hence, the constrained

allocation is only determined by p-monotonicity. See Figure 2.5.

12This is because of the linearity of objective function and the symmetry between agent 1 and agent 2: if
there is an asymmetric constrained efficient allocation rule, the the allocation rule in which the role of agent
1 and agent 2 is changed is also constrained efficient. Then, we make the average of the two; and it is still
constrained efficient because of the linearity of the objective.
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0.0 0.2 0.4 0.6 0.8 1.0
p

23.5

24.0

24.5

25.0
Surplus

Figure 2.5: The social surplus of the most efficient p-dominant implementable allocation for

p ∈ [0, 1] in Example 2.4

2.6 p-dominant Implementability with Continuous Payoff Type

Spaces

In this section, we study p-dominant implementability with continuous type spaces. Through-

out this section, we assume that there is a probability space and θ is a random variable whose

range is [0, 1]N . We further assume θ is absolutely continuous w.r.t. the Lebesgue measure,

and let λ be the corresponding density.

First, we generally study p-dominant incentive compatibility. Then, we focus on the

quasilinear environment, and characterize the set of p-dominant allocation rules.

2.6.1 Dichotomy Result

We first look at the private value case.

Proposition 2.5. With private value and continuous type space, for any p with pi < 1 for

all i, any p-dominant implementable social choice correspondence must be dominant strategy

implementable.

Proof. See Appendix.

In words, there are only two cases, depending on pi: if pi = 1, then it is the same as BIC
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incentive compatibility; for any other cases, it requires dominant incentive compatibility.

In particular, it is also true when each pi is arbitrarily close to 1, but not exactly 1. Put

differently, there is a discontinuity at p = 1, i.e., as long as an agent believes that the

other agents babble with arbitrarily small probability, the result shows that it should be the

truth-telling report must be (weakly) dominant.

To understand such a discontinuity, it is enough to observe that for any pi < 1, the

incentive compatibility requires that the derivative with respect to i’s report involving the

babbling part should be the same for every babbling. Then, why the derivative for this part

should be 0? This is because, for the babbling part, we also need to consider the babbling

that corresponds to the truthful-reporting. Thus, the derivative should be 0.

Note that this result exhibits substantial difference with that for the discrete type case in

which we already observe that the set of p-dominant implementable social choice functions

may be strictly increasing for some 1 > p′ > p (e.g., Example 2.4). Such a difference comes

from the fact that we only need inequality for incentive compatibility in the discrete type

case, i.e., every babbling does not need to give exactly the same marginal utility; agent i is

only required to weakly prefer truthful-reporting for every babbling.

It turns out that a similar account also applies to the interdependent case:

Proposition 2.6. With interdependent value and continuous type space, for any p with

pi < 1 for all i, any p-dominant social choice correspondence is 0-dominant implementable.

Proof. See Appendix.

2.6.2 Characterization of p-dominant Implementable Allocations with quasilin-

ear environment

Based on the previous subsection, it is without loss to only consider dominant implementabil-

ity and 0-dominant implementability for the private value and interdependent value case,

respectively. As dominant implementability has been extensively studied in the literature (for

example, VCG mechanisms), here we focus on characterizing 0-dominant implementability,
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assuming the interdependent value.

We assume that qi : Θ→ [0, 1] and τi : Θ→ R to be piecewise differentiable w.r.t. θi as

usually assumed in the literature. Note that most generally they are differentiable almost

everywhere, as qi necessarily satisfies ex-post monotonicity for 0-dominant implementability,

which will be shown and we can show τi is also differentiable at the points qi is differentiable.13

Definition 2.11. An allocation rule q = (qi)i∈I satisfies slope independence if for each agent

i ∈ I, if qi is differentiable w.r.t. θi at some θ̂i, then

∂qi(θi, θ−i)

∂θi

∣∣∣∣
θi=θ̂i

does not depend on θ−i.

Theorem 2.2. Suppose γ > 0. An allocation rule q = (qi)i∈I is 0-dominant implementable

if and only if q satisfies ex-post monotonicity and slope independence.

We prove this by a sequence of the propositions and lemmas. We have already shown

that the monotonicity is necessary (Lemma 2.3). Proposition 2.7 is about the sufficiency;

and Proposition 2.8 and Lemma 2.5 together gives the necessity.

Before we provide a formal proof for this result, it may be useful to provide an informal

account behind it. In fact, the intuitions are similar to the discrete type case (i.e., Theo-

rem 2.1). Recall that in the discrete type case, the marginal benefit of reporting a higher

type depends on the babbling; the difference of the marginal benefit between high type and

low type also depends on it. The impact of this can be divided into the private value part

and the interdependent part, and the latter depends on the true type of the other agents;

that is, the former part only depends on the report of other agents, while the latter depends

on which type reports which type, i.e., babbling. The availability of a transfer rule that

yields the marginal cost that can be between the marginal benefit for all the babbling, the

impact of babbling on the interdependent value should be small enough so that it can be

covered by the private part. As the difference of the marginal benefit between two close

13Recall that a monotone function is differentiable almost everywhere.
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types, the difference of the marginal benefit of this part becomes close too; eventually this

part becomes 0. On the other hand, the babbling effect on the interdependent part remains

strictly positive.

We can also think directly the continuous type. The marginal benefit and cost together

are represented by the derivative of the expected payoff w.r.t. agent i’s report. For any

babbling, the derivative should be the same as 0; in particular, for any two babblings that

induce the same distribution over the other agents’, the derivative should be the same.

However, two different babblings typically induce different expected marginal benefits, just

because the interdependent part in payoff also depends on the other agents true type profile.

In turn, this implies that in order to make a mechanism 0-dominant implementable, it

is necessary that different babbling does not yields different derivative; and a sufficient

condition for this is the derivative of allocation does not depend on others’ report.

Proposition 2.7 (sufficiency). Suppose q satisfies slope independence. Then, if q satisfies

ex-post monotonicity, then it is 0-dominant implementable.

Proof. See Appendix.

Let us turn to the necessity.

Proposition 2.8. Let q = (qi)i be an allocation rule and 0-dominant implementable. Then,

for all i ∈ I, θi, ψ−i : Θ−i → Θ−i,

γEθ−i

[(∑
j 6=i

µj

)
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
= γEθ−i

[(∑
j 6=i

θj

)
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
. (2.6)

Proof. See Appendix.

Lemma 2.5. Assume γ > 0. Suppose that q does not satisfy slope independence. That is,

there exist some i ∈ I, θi ∈ Θi and θ′−i, θ−i′′ ∈ Θ−i such that

∂qi(θi, θ
′′
−i)

∂θi
>
∂qi(θi, θ

′
−i)

∂θi
.

Then, condition (2.6) is violated.
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Proof. See Appendix.

The following is a corollary of the theorem,

Corollary 2.6. In this environment, any p-dominant implementable allocation rule where

pi < 1 for all i ∈ I is ex-post implementable.

2.6.3 Constrained Efficient 0-dominant Implementable Allocation Rule

We have the following observation immediately from Theorem 2.2 and Proposition 2.8.

Proposition 2.9. Suppose γ > 0 and γ 6= 1. Then, the efficient allocation rule is not

p-dominant implementable for any p such that pi < 1 for all i ∈ I.

Note that, by Proposition 2.6, this means that for any p where pi < 1 for any i ∈ I,

the efficient allocation is not p-dominant implementable. This might come as a surprise,

because we know that when p = 1, the efficient allocation is implementable as long as γ < 1

(Maskin, 1992) through what he called the generalized VCG mechanism. The result says

that this positive result is not robust in the sense that it is not p-dominant implementable

even for p arbitrarily close to 1.

Given this result, a natural important question is what is the most efficient allocation

rule that is 0-dominant implementable. In the rest of this subsection, we study this question.

In doing so, we also show the distinctive feature of slope independent allocation rules.

To study this question, a natural starting point is to consider (potentially random) con-

stant allocation rules; namely, no agents affect the allocation. Obviously, they are imple-

mentable in dominant strategy equilibrium, so 0-dominant implementable.

Example 2.5 (Constant random allocation is not constrained efficient). It will be shown

shortly that a constant random allocation rule (i.e., giving the item randomly to agents)

is not constrained efficient; Suppose that there are two agents i = 1, 2 and their payoff

types are i.i.d drawn from the uniform distribution on [0, 1]. For simplicity, let us assume

that the item will be given to an agent with equal probability. Obviously, it is 0-dominant
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implementable. In this case, the corresponding ex-ante expected social surplus is

E
[

1

2
(θ1 + γθ2) +

1

2
(θ2 + γθ1)

]
=

1

2
+ γ

1

2
. (2.7)

To show that the the constrained inefficiency of this allocation rule, consider instead the

following allocation rule,

q1(θ1, θ2) = θ1

q2(θ1, θ2) = 1− q1(θ1, θ2) = 1− θ1

As q satisfies slope independence and it satisfies the monotonicity, it is 0-dominant imple-

mentable by the above proposition. In this case, the social surplus is

E[θ1(θ1 + γθ2)] + E[(1− θ1)(θ2 + γθ1)] = E[θ2
1 + γθ1θ2] + E[(1− θ1)θ2 + γ(1− θ1)θ1]

=
1

3
+ γ

1

4
+

1

2

1

2
+ γ

(
1

2
− 1

3

)
=

7

12
+ γ

5

12
.

Compare this to the value in (2.7).

1

2
+ γ

1

2
<

7

12
+ γ

5

12
⇐⇒ γ < 1.

That is, if γ < 1, then the latter allocation rule is more efficient.

We can “symmetrize” this mechanism as follows: with probability 1/2, approach to agent

1 and exercise the above mechanism, and with the rest probability approaches to agent 2

and do similarly. The resulting mechanism is

q1(θ1, θ2) =
1

2
θ1 +

1

2
(1− θ2) =

1

2
+

1

2
(θ1 − θ2)

q2(θ1, θ2) =
1

2
+

1

2
(θ2 − θ1).

2.6.3.1 Asking only one agent

A meaningful observation is “asking only one agent” mechanism (more precisely, allocation

rule) like the above is 0-dominant implementable.
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Corollary 2.7. Any allocation rule that only depends on one and only one agent’s report

and satisfies ex-post monotonicity is 0-implementable.

Is the above mechanism most efficient in this class? It turns out that there is more

efficient allocation rule that is 0-dominant implementable: fix an agent, say agent 1, and

approach only to agent 1 and ask his/her type and if it is bigger than the other agent’s mean,

then give the item to agent 1; otherwise give it to agent 2. Let us see whether it gives a

higher social surplus:

E[(θ1 + γθ2)1{θ1>1/2} + (θ2 + γθ1)1{θ1≤1/2}] =

∫ 1/2

0

(1/2 + γθ1)dθ1 +

∫ 1

1/2

(θ1 + γ1/2)dθ1

=
5

8
+ γ

3

8
.

Note that
5

8
+ γ

3

8
>

7

12
+ γ

5

12

as long as γ > 1. In fact we will show that this allocation rule is most efficient among the

“asking only one agent” 0-dominant implementable allocation rules.

Proposition 2.10. Suppose N = 2 and γ ∈ (0, 1). Fix i ∈ I. Suppose an allocation

rule q = (qi)i only depends on θi. Then, the following allocation rule is the most efficient

0-dominant allocation rule under this assumption:

qi(θ) = 1{θi>µj}

qj(θ) = 1− qi(θ) = 1{θi≤µj}

where j 6= i. In this case, the ex-ante expected social surplus is

V i := µj + γµi +

∫
θi>µj

((θi + γµj)− (µj + γθi))λi(θi)dθi (2.8)

Proof. Since allocation rule does not depend on θj where j 6= i, without loss of generality,

we can assume that

qi(θ) = y(θi)

and due to efficiency

qj(θ) = 1− y(θi)
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where y : Θi → [0, 1] and increasing. The corresponding expected social surplus is

E[(θi + γθj)y(θi) + (θj + γθi)(1− y(θi))] = E[(θi + γµj)y(θi) + (µj + γθi)(1− y(θi))]

= µj + γµi +

∫ 1

0

((θi + γµj)− (µj + γθi))y(θi)λi(θi)dθi.

Note that under our assumption γ < 1

θi + γµj > µj + γθi ⇐⇒ θi > µj

As y(θi) ∈ [0, 1], the pointwise maximization gives that the optimal y(θi) is 1 if θi > µj;

otherwise 0. Note that it is increasing in θi as desired.

From this proposition, we now know that what is the most efficient allocation rule that

is 0-dominant implementable among “asking only one agent”:

Corollary 2.8. The most efficient 0-dominant allocation rule among “asking only one

agent” can be obtained by maximizing the social surplus that corresponds to the mechanism

in the proposition over i.

Intuitively, the mechanism that only asks agent i can be interpreted as if the designer

has the opportunity cost which is the same as the mean of θj + γµi, j 6= i.

2.6.3.2 General mechanism

Proposition 2.11 (Efficient 0-dominant allocation rule when N = 2). Assume N = 2.

Then, the constrained efficient 0-dominant implementable allocation rule is

qi(θ) = 1{θi>µj}

qj(θ) = 1− qi(θ) = 1{θi≤µj}

where i ∈ I is such that

i ∈ arg max
i∈{1,2}

V i

where V i is the expression in (2.8).

Proof. See Appendix.
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2.7 Discussion: Formal Robustness Foundation of p-dominant Im-

plementation

2.7.1 Robust Foundations for p-dominant Implementation

We find that there are some social choice correspondences (especially functions) that are

ex-post implementable, but not p-dominant implementable in some type space with some

p ∈ [0, 1]N . This implies (by Corollary 1 of Bergemann and Morris (2005)) that there is some

social choice function that is implementable in BNE in any (non redundant) type spaces;

nevertheless, it is not p-dominant implementable. On the one hand, this suggests that p-

dominant implementability is unnecessarily strong to capture robustness to uncertainty in

information structure. On the other hand, it suggests that p-dominant implementability

may capture “additional” robustness beyond payoff environment. In this subsection, we

provide two additional robustness concern that p-dominant implementability may capture.

2.7.2 Irrational Agents

Eliaz (2002) studies situations where some agents might be faulty in the sense that they do

not choose their action according to incentives. His approach is to study mechanisms that

are immune to the possibility of at most k ≤ N faulty agents. Here we take a different

approach. We call an agent irrational if he is faulty in the sense of Eliaz. We assume that

if an agent is irrational, he/she chooses some arbitrary action potentially mixed.14

Consider the following type space. Tr ≡ ((Si)i∈I , (βi)i∈I) where

Si = {r} ∪Mi,∀i ∈ I

where Mi is the message space for agent i. Here si = r represents rational type and si = ai

represents irrational type who is supposed to play ai ∈Mi regardless of θ.15

14In some context (e.g., some reputation models), such irrationality is captured by a particular preference;
however, with interdependent value, information about payoff-relevant parameter, i.e., payoff type, seems
conceptually different from our notion of irrationality.

15One may extend or reduce it, i.e., including some mixed action profile, still holding Si countable.
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Note that by this modeling, we allow that rationality of agents are correlated. Define

Sr ≡ {(r, . . . , r)}.

That is, the event that every agent is rational (and each agent knows he is rational). The

standard mechanism design problem implicitly or explicitly assume that every agent is ra-

tional and it is common knowledge; this can be modeled as S = {(r, . . . , r)}. Here we relax

this assumption.

Given a payoff type space ((Θi)i∈I , (βi)i∈I), define

Ti := Θi × Si

πi(θ−i, s−i|θi, si) := λi(θ−i|θi)βi(s−i|si).

Let us modify the definition of Bayes Nash equilibrium to accommodate irrational agents so

that we do not concern about irrational agents’ incentive compatibility.

Proposition 2.12. Let M = (M, g) be a mechanism and σ ≡ (σi)i∈I be a p-dominant

equilibrium in (M, ((Θi)i∈I , λ)). Consider Tr = (S, (βi)i) defined above. Suppose Sr =

{(r, . . . , r)} is p-evident event. Then there is a BNE, σ′ ≡ (σ′i)i∈I of the auxiliary game with

((Ti)i, (πi)i) such that

σ′i(r, θi) = σi(θi), ∀i ∈ I, θi ∈ Θi.

Proof. In order to construct σ′ ≡ (σ′i)i∈I , consider a modified game in which every agent i

with type (θi, r) is fixed to play σi(θi). In this Bayesian game, we know that there exists an

Bayes Nash equilibrium. Let us call this σ′′ ≡ (σ′′i )i∈I . For each i, construct σ′i as follows:

σ′i(θi, r) := σi(θi),∀θi ∈ Θi

and for any si 6= r,

σ′i(θi, si) := σ′′i (θi, si),∀θi ∈ Θi.

By construction, for any type (θi, si) with si 6= r with si = r, the incentive compatibility is
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satisfied. To see this for (θi, r), note that∑
s−i

βi(s−i|si)
∑
θ−i

λi(θ−i|θi)ui(g(m′i, σ
′
−i(s−i, θ−i)), θi, θ−i)

=
∑

s−i=r−i

βi(s−i|si)
∑
θ−i

λi(θ−i|θi)ui(g(m′i, σ−i(s−i, θ−i)), θi, θ−i)

+
∑

s−i 6=r−i

βi(s−i|si)
∑
θ−i

λi(θ−i|θi)ui(g(m′i, σ
′′
−i(s−i, θ−i)), θi, θ−i)

=
∑
θ−i

λi(θ−i|θi)

 ∑
s−i=r−i

βi(s−i|si)σ−i(θ−i) +
∑

s−i 6=r−i

βi(s−i|si)σ−i(θ−i, s−i)


× ui(g(m′i,m−i), θi, θ−i)

=
∑
θ−i

λi(θ−i|θi)ui(g(m′i, q
si
i σ−i(θ−i) + (1− qsii )φsi−i(θ−i)), θi, θ−i)

where

qsii ≡
∑

s−i∈S∗−i

βi(ω, s−i|si)

φsi−i(θ−i) ≡
1

1− qsii

∑
s−i∈S−i\S∗−i

βi(s−i|si)σ−i(θ−i, s−i).

Note that φsi−i(θ−i) is a distribution over M−i.
16 Note that qsii ≥ pi, because S∗ is p-evident.

By definition of p-dominant equilibrium,

mi ∈ arg max
m′i∈Mi

∑
θ−i

λi(θ−i|θi)ui(g(m′i, q
si
i σ−i(θ−i) + (1− qsii )φsi−i(θ−i)), θi, θ−i).

To provide a version of the converse, we slightly extend Tr = (S, βi) in the following way;

we extend βi so that βi : Θi × S−i → ∆(Θ−i × S−i) such that for all i, θi and si∑
s−i

βi(θ−i, s−i|θi, si) = λ−i(θ−i|θi),∀θ−i. (2.9)

16To see this,

1

1− qisi

∑
(ω, s−i) ∈ Ω× (S−i \ S∗−i)βi(ω, s−i|si)

∑
m−i

σ−i(θ−i, s−i)(m−i) =
1

1− qisi
(1− qisi) = 1.
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Namely, si and θi may be correlated, but observing si does not give further information

about θ−i given θi.

Proposition 2.13. Let p ∈ [0, 1]N and M ≡ (M, g) be a mechanism, and suppose a BNE

σ ≡ (σi)i∈I in (M, ((Θi)i∈I , λ)) is not a p-dominant equilibrium. Then, there exists Tr =

(S, (βi)i∈I) such that the event Θ × Sr is common p-belief and there is no equilibrium such

that when s ∈ Sr, σ is played for every θ.

In words, if a BNE σ = (σi)i∈I is not a p-dominant equilibrium, then we can find

some information structure in which the rationality of each agent is common p-believed;

nevertheless, σ does not satisfy Bayesian incentive compatibility for some realization of θi

for some agent i given that the other agent plays according to σj as far as they are rational.

Proof. Since σ is not a p-dominant equilibrium, there exists i ∈ I, θi ∈ Θi, mi ∈ Mi with

σi(θi)[mi] > 0, m′i ∈Mi such that

∑
θ−i

λi(θ−i|θi)ui(g(m′i, φ−i(θ−i), θi, θ−i) >
∑
θ−i

ui(g(mi, φ−i(θ−i)), θi, θ−i) (2.10)

for some φ−i : Θ−i → ∆(M−i) such that φ−i(θ−i) = q
θ−i
i σi(θ−i) + (1 − qθ−ii )ψ−i(θ−i) where

q
θ−i
i ≥ pi for any θ−i.

We construct Tr as follows: for each θ−i,

βi(θ−i, r−i|θi, r) = q
θ−i
i λi(θ−i|θi)

βi(θ−i,m−i|θi, r) = (1− qθ−ii )ψ−i(θ−i)[m−i]λi(θ−i|θi).

Note that

∑
s−i

βi(θ−i, s−i|θi, r) = q
θ−i
i λi(θ−i|θi) + (1− qθ−ii )

∑
m−i

ψ−i(θ−i)[m−i]

λi(θ−i|θi)

= λi(θ−i|θi).

For all other (θ′i, si) 6= (θi, r) and for j 6= i define βj(θ−j, s−j|θj, sj) = λj(θ−i|θj) when

s−j = (r, . . . , r); otherwise 0.
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Note that Sr = (r, . . . , r) is p-evident by observing

βi(Θ−i × {r−i}|θi, r) ≥ min
θ−i

q
θ−i
i ≥ pi

and for any j ∈ I and (θj, r) 6= (θi, r),

βj(Θ−i × {r−j}|θj, r) = 1.

Consider any strategy σ′ ≡ (σ′i)i∈I in Tr which satisfies σ′j(θj, sj) = σj(θj) for sj 6= s∗j ;

otherwise arbitrary. We need to check sending mi is not incentive compatible for i with θi.

Let si = r. ∑
θ−i,s−i

βi(θ−i, s−i|θi, r)ui(g(mi, σ
′
−i(θ−i, s−i)), θi, θ−i)

=
∑

θ−i,s−i:s−i=r−i

βi(θ−i, s−i|θi, r)ui(g(mi, σ
′
−i(θ−i, s−i)), θi, θ−i)

+
∑

θ−i,s−i:s−i 6=r−i

βi(θ−i, s−i|θi, r)ui(g(mi, σ
′
−i(θ−i, s−i)), θi, θ−i)

=
∑

θ−i,s−i:s−i=r−i

βi(θ−i, s−i|θi, r)ui(g(mi, σ−i(θ−i)), θi, θ−i)

+
∑

θ−i,m−i

βi(θ−i,m−i|θi, r)ui(g(mi,m−i), θi, θ−i)

=
∑

θ−i,s−i:s−i=r−i

q
θ−i
i λi(θ−i|θi)ui(g(mi, σ−i(θ−i)), θi, θ−i)

+
∑

θ−i,m−i

(1− qθ−ii )ψ−i(θ−i)[m−i]λi(θ−i|θi)ui(g(mi,m−i), θi, θ−i).

Thus, by (2.10), sending m′i is a profitable deviation.

2.8 Conclusion

In this paper, we completely characterize p-dominant implementability with payoff type

spaces and quasilinear environment. In particular, we find an extra condition other than the

monotonicity for an allocation to be p-dominant implementable. Interestingly, p-dominant
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implementability and ex-post implementability do not generally imply each other. This

suggests that p-dominant implementability may capture robustness to uncertainty of payoff-

environment. We also provide a formal robustness foundation for p-dominant implementabil-

ity.

There are some future directions which we believe worth working on. p-dominant im-

plementable we study in this paper is a partial implementation concept, but still requiring

the interdependence condition. To best our knowledge, this condition does not appear in

other research on robust partial implementation (e.g., Bergemann and Morris (2005)). As

mentioned, a version of the condition can be found in full implementation literature (e.g.,

Bergemann and Morris (2009a); Ollár and Penta (2017)). It would be interesting to clarify

this point.

2.9 Appendix

2.9.1 Omitted Proofs

2.9.1.1 Proof of Lemma 2.1

The necessity part is trivial as they are a subset if ICs needs to be checked.

For the sufficiency part, consider incentive of agent i with ti ∈ Ti when report t′i when

the other agents babble φ−i(t−i) ∈ ∆(T−i)∑
t−i

λi(t−i|ti)
∑
t′−i

φ−i(t
′
−i|t−i)ui(f(θ̃i(t

′
i), θ̃−i(t

′
−i)), θ̃i(ti), θ̃−i(t−i)).

For notational convenience, let f̃(ti, t−i) ≡ f(θ̃i(ti), θ̃−i(t−i)). By definition of p-dominant

equilibrium, φ−i(t−i)[t−i] ≥ pi,

pi

∑
t−i

λi(t−i|ti)ui(f̃(t′i, t−i), ti, t−i)


+ (1− pi)

∑
t−i

λi(t−i|ti)
∑
t′−i

φ̃−i(t
′
−i|t−i)ui(f̃(t′i, t

′
−i)), ti, t−i) (2.11)
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where

φ̃−i(t−i)[t
′
−i] :=

1

1− pi
φ−i(t−i)[t

′
−i],∀t′−i 6= t−i

φ̃−i(t−i)[t−i] :=
1

1− pi
(φ−i(t−i)[t−i]− pi) ≥ 0.

Then note that

∑
t′−i∈T−i

φ̃−i(t−i)[t
′
−i] =

∑
t′−i 6=t−i

1

1− pi
φ−i(t−i)[t

′
−i] +

1

1− pi
(φ−i(t−i)[t−i]− pi)

=
∑

t′−i∈T−i

1

1− pi
φ−i(t−i)[t

′
−i] +

−pi
1− pi

=
1

1− pi
+
−pi

1− pi
= 1.

That is, given t−i, the last term of (2.11) is a convex combination of ui(f̃(t′i, t
′
−i), ti, t−i) with

the weight φ̃−i(t−i)[t
′
−i]. Thus,

ti ∈ arg max
t′i∈ti

pi

∑
t−i

λi(t−i|ti)ui(f̃(t′i, t−i), ti, t−i)


+ (1− pi)

∑
t−i

λi(t−i|ti)ui(f̃(t′i, ψ−i(t−i)), ti, t−i),∀ψ−i : T−i → T−i

implies

ti ∈ arg max
t′i∈ti

pi

∑
t−i

λi(t−i|ti)
∑
t′−i

ui(f̃(t′i, t
′
−i), ti, t−i)


+ (1− pi)

∑
t−i

λi(t−i|ti)
∑
t′−i

φ̃−i(t
′
−i|t−i)ui(f̃(t′i, t

′
−i), ti, t−i).

2.9.1.2 Proof of Lemma 2.2

“Only if” part is trivial, as uniform babbling is subset of babbling.

For “if” part, given any function ψ−i : Θ−i → Θ−i, note that

Qpi
i (θi, ψ−i) =

∑
θ−i

λi(θ−i|θi)Qpi
i (θi, ψ−i(θ−i))

Thus, if Qpi
i (θi, θ−i) is monotone in θi for any θ−i, then Qpi

i (θi, ψ−i) is also monotone in θi.
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2.9.1.3 Proof of Proposition 2.1

Consider agent the incentive compatibility of agent i with type ti. By definition of p-

dominant equilibrium,

∑
t−i∈T−i

βi(t−i|ti)ui(g(σi(ti), φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i))

≥
∑
t−i

βi(t−i|ti)ui(g(m′i, φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i)),∀m′i ∈Mi

for any φ−i(t−i) ∈ ∆(M−i) such that each player j 6= i with tj plays σj(tj) with probability

at least pi and arbitrarily with the rest probability. In particular,

∑
t−i∈T−i

βi(t−i|ti)ui(g(σi(ti), φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i))

≥
∑

t−i∈T−i

βi(t−i|ti)ui(g(σi(t
′
i), φ−i(t−i)), (θ̃i(ti), θ̃−i(t−i)),∀t′i ∈ Ti

This implies

∑
t−i∈T−i

βi(t−i|ti)ui(g(σi(ti), φ
′
−i(t−i)), θ̃iti, θ̃−i(t−i))

≥
∑

t−i∈T−i

βi(t−i|ti)ui(g(σi(t
′
i), φ

′
−i(t−i)), θ̃(ti), θ̃−i(t−i)),∀ti ∈ T ′i

where φ′−i(t−i) ∈ ∆(M−i) where each j 6= i plays σj(tj) with at least probability pi and plays

arbitrarily mj from

M ′
j ≡ {mj ∈Mj : ∃tj ∈ Tj, σj(tj)[mj] > 0}.

That is, the set of messages which are sent by some t′j in σj with positive probability.

Define

f(ti, t−i) := g(σi(ti), σ−i(t−i)),∀ti ∈ Ti, t−i ∈ T−i.

Then the above inequality implies

∑
t−i∈T−i

βi(t−i|ti)ui(f(ti, φ̃−i(t−i)), (θ̃i(ti), θ̃−i(t−i))

≥
∑

t−i∈T−i

βi(t−i|ti)ui(f(t′i, φ̃−i(t−i)), (θ̃i(ti), θ̃−i(t−i)),∀t′i ∈ Ti (2.12)
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for any φ̃−i(t−i) such that any j 6= i reports truthfully at least probability pi. Lastly, observe

that

f(t) = g(σ(t)) ∈ F (θ̃(t)).

2.9.1.4 Proof of Lemma 2.3

Consider agent i’s incentive compatibility when the opponents employ ψ−i : Θ−i → Θ−i as

their babbling. Let θ′i > θi and suppose

Qpi
i (θi, ψ−i) > Qpi

i (θ′i, ψ−i). (2.13)

Consider the incentive compatibility of agent i with type θi.

piEθ−i

[(
θi + γ

∑
j 6=i

θj

)
qi(θi, θ−i)

]
+(1−pi)Eθ−i

[(
θi + γ

∑
j 6=i

θj

)
qi(θi, ψ−i(θ−i))

]
−T pii (θi, ψ−i)

≥ piEθ−i

[(
θi + γ

∑
j 6=i

θj

)
qi(θ

′
i, θ−i)

]
+(1−pi)Eθ−i

[(
θi + γ

∑
j 6=i

θj

)
qi(θ

′
i, ψ−i(θ−i))

]
−T pii (θ′i, ψ−i)

where

T pii (θ′i, ψ−i) ≡ piEθ−i [τi(θ′i, θ−i)] + (1− pi)Eθ−i [τi(θ′i, ψ−i(θ−i))]

This can be written as follows:

θi(Q
pi
i (θi, ψ−i)−Qpi

i (θ′i, ψ−i))

+ E−i

[
γ

(∑
j 6=i

θj

)
(pi(qi(θi, θ−i)− qi(θ′i, θ−i)) + (1− pi)(qi(θi, ψ−i(θ−i)− qi(θ′i, ψ−i(θ−i)))

]

− (T pii (θi, ψ−i)− T pii (θ′i, ψ−i)) ≥ 0

Note that the second term does not involve θi. By (2.13), as θ′i > θi,

θ′i(Q
pi
i (θi, ψ−i)−Qpi

i (θ′i, ψ−i))

+E−i

[
γ

(∑
j 6=i

θj

)
(pi(qi(θi, θ−i)− qi(θ′i, θ−i)) + (1− pi)(qi(θi, ψ−i(θ−i)− qi(θ′i, ψ−i(θ−i)))

]
−(T pii (θi, ψ−i)− T pii (θ′i, ψ−i)) > 0

That is, θ′i has incentive to deviate to reporting θi. Contradiction.
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2.9.1.5 Proof of Theorem 2.1

We introduce following notations:

• Given θ−i, ∆qi(θ
k
i , θ−i) ≡ qi(θ

k
i , θ−i)− qi(θk−1

i , θ−i), for all k ≥ 1

• Given θ−i, ∆τi(θ
k
i , θ−i) ≡ τi(θ

k
i , θ−i)− τi(θk−1

i , θ−i) for all k ≥ 1

• Given a babbling ψ−i : Θ−i → Θ−i,

∆Qi(θ
k
i , ψ−i) ≡ Eθ−i [∆qi(θki , ψ−i(θ−i)]

∆Ti(θ
k
i , ψ−i) ≡ Eθ−i [∆τi(θki , ψ−i(θ−i)]

• Denote the truthful-reporting by ψ∗i , i.e., ψ∗i (θi) = θi for each θi

Lemma 2.6. The local ICs are sufficient for the global ICs.

Proof. By Lemma 2.3 we know p-monotonicity is necessary. Consider the downard ICs when

babbling is ψ−i. By a similar argument in Lemma 2.3, for any m > k > l, if θki does not have

incentive to report θli, then θmi either. Thus, it is sufficient to see the case when k = l+1.

By this lemma, from now on, we focus on the local upward and downward ICs. Consider agent

i’s local incentive compatibility involving θk and θk−1 when the other employs a babbling

ψ−i : Θ−i → Θ−i

pi

(
θki ∆Qi(θ

k
i , ψ

∗
−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , θ−i)

])

+ (1− pi)

(
θki ∆Qi(θ

k
i , ψ−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , ψi(θ−i)

])

≥ pi∆Ti(θ
k
i , ψ

∗
−i) + (1− pi)∆Ti(θki , ψ−i)

≥ pi

(
θk−1
i ∆Qi(θ

k
i , ψ

∗
−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , θ−i)

])

+ (1− pi)

(
θk−1
i ∆Qi(θ

k
i , ψ−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k−1
i , ψi(θ−i)

])
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Note that how the independent assumption simplifies this expression. In particular, when

ψ−i is a uniform babbling, i.e., ψ−i(θ−i) = θ′−i for all θ−i,

pi

(
θki ∆Qi(θ

k
i , ψ

∗
−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , θ−i)

])

+ (1− pi)

(
θki ∆qi(θ

k
i , θ
′
−i) + γ

(∑
j 6=i

µj

)
∆qi(θ

k
i , θ
′
−i)

)

≥ pi∆Ti(θ
k
i , ψ

∗
−i) + (1− pi)∆τi(θki , θ′−i)

≥ pi

(
θk−1
i ∆Qi(θ

k
i , ψ

∗
−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , θ−i)

])

+ (1− pi)

(
θk−1
i ∆qi(θ

k
i , θ
′
−i) + γ

(∑
j 6=i

µj

)
∆qi(θ

k
i , θ
′
−i)

)

First of all, given a babbling ψ−i, to have τi to satisfy the inequality, the LHS should be

(weakly) bigger than the RHS; this amounts to

pi∆Qi(θ
k
i , ψ

∗
−i) + (1− pi)∆Qi(θ

k
i , ψ−i)

is positive. As it should be the case for any agent, any different two types, this means that

p-monotonicity is a necessary condition.

Note also that for any babbling of −i, the expected payment should be a linear combi-

nation of those of the uniform babblings, i.e.,

pi∆Ti(θ
k
i , ψ

∗
−i) + (1− pi)∆Ti(θki , ψ−i)

=
∑
θ−i

λ(θ−i)(pi∆Ti(θ
k
i , ψ

∗
−i) + (1− pi)∆τi(θki , ψ−i(θ−i))) (2.14)

Given a babbling ψ−i, denote the right end of the interval which the corresponding inequality

induces by R(ψ−i) and the left end by L(ψ−i); with an abuse of notation, for a uniform

babbling ψ−i(θ−i) = θ′−i for all θ−i; denote each by R(θ′−i) and L(θ′−i).

Our question is whether we can find τi(θ
k
i , θ
′
−i) and τi(θ

k−1
i , θ′−i) (or equivalently, ∆τi(θ

k
i , θ
′
−i))

for each θ′−i which satisfies all the local incentive compatibilities (i.e., for every babbling of

−i).
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Lemma 2.7. By the linear relationship (2.14), such τi exists if and only if for each ψ−i,

[L̄(ψ−i), R̄(ψ−i)] ∩ [L(ψ−i), R(ψ−i)] 6= ∅ (2.15)

where

L̄(ψ−i) ≡
∑
θ−i

λ(θ−i)L(ψ−i(θ−i))

R̄(ψ−i) ≡
∑
θ−i

λ(θ−i)R(ψ−i(θ−i))

i.e., each of them are a linear combination of the left (the right) end of the uniform babblings,

corresponding to θ−i.

Proof. The necessary part is obvious. For the sufficiency, we can first pin down each

∆τi(θ
k
i , θ−i) for each θ−i using the inequality for uniform babbling. By the condition, we

know that this satisfies the other inequalities for non-uniform babblings.

Note that condition (2.15) is satisfied if and only if

min{R̄(ψ−i), R(ψ−i)} ≥ max{L̄(ψ−i), L(ψ−i)} (2.16)

Suppose R̄(ψ−i) ≥ R(ψ−i). Note that this implies L̄(ψ−i) ≥ L(ψ−i). Then, (2.16) amounts

to

pi

(
θki ∆Qi(θ

k
i , ψ

∗
−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , θ−i)

])

+ (1− pi)

(
θki ∆Qi(θ

k
i , ψ−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , ψ−i(θ−i)

])

≥ pi

(
θk−1
i ∆Qi(θ

k
i , ψ

∗
−i) + γEθ−i

[(∑
j 6=i

θj

)
∆qi(θ

k
i , θ−i)

])

+ (1− pi)

(
θk−1
i ∆Qi(θ

k
i , ψ−i) + γ

(∑
j 6=i

µj

)
∆Qi(θ

k
i , ψ−i)

)
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if and only if

(θki − θk−1
i )(pi∆Qi(θ

k
i , ψ

∗
−i) + (1− pi)∆Qi(θ

k
i , ψ−i))

≥ (1− pi)γ
∑
θ−i

λ(θ−i)

(∑
j 6=i

(θj − µj)

)
∆qi(θ

k
i , ψ−i(θ−i))

= (1− pi)γEθ−i

[∑
j 6=i

(θj − µj)∆qi(θki , ψ−i(θ−i))

]
.

Similarly, if we also consider the case R(ψ−i) ≥ R̄(ψ−i), altogether we have

(θki − θk−1
i )(pi∆Qi(θ

k
i , ψ

∗
−i) + (1− pi)∆Qi(θ

k
i , ψ−i))

≥ (1− pi)γ

∣∣∣∣∣Eθ−i [∆qi(θki , ψ−i(θ−i))∑
j 6=i

(θj − µj)]

∣∣∣∣∣ .
Rearranging this, and noting the condition should hold any ψ−i,

θki − θk−1
i ≥ (1− pi)γmax

ψ−i

∣∣∣∣∣∣
∑
θ−i

λ(θ−i)∆qi(θ
k
i , ψ−i(θ−i))

pi∆Qi(θki , ψ
∗
−i) + (1− pi)∆Qi(θki , ψ−i)

∑
j 6=i

(θj − µj)

∣∣∣∣∣∣ .
This completes the necessary part of the proof. Suppose q satisfies p-monotonicity and for

each θk,

2.9.1.6 Proof of Corollary 2.2

Proof. Note that in this case ∆Qi(θ
k
i , ψ−i) = ∆qi(θ

k
i , θ−i) for all ψ−i. Then, for each ψ−i,∣∣∣∣∣∣

∑
θ−i

(1− pi)λ(θ−i)∆qi(θ
k
i , ψ−i(θ−i))

pi∆Qi(θki , ψ
∗
−i) + (1− pi)∆Qi(θki , ψ−i)

∑
j 6=i

(θj − µj)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(1− pi)
∑
θ−i

λi(θ−i)
∑
j 6=i

(θj − µj)

∣∣∣∣∣∣ = 0.
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2.9.1.7 Proof of Corollary 2.3

Proof. Note that for each ψ−i,∣∣∣∣∣∣
∑
θ−i

(1− pi)λ(θ−i)∆qi(θ
k
i , ψ−i(θ−i))

pi∆Qi(θki , ψ
∗
−i) + (1− pi)∆Qi(θki , ψ−i)

∑
j 6=i

(θj − µj)

∣∣∣∣∣∣
≤
∑
θ−i

(1− pi)λ(θ−i)∆qi(θ
k
i , ψ−i(θ−i))

pi∆Qi(θki , ψ
∗
−i) + (1− pi)∆Qi(θki , ψ−i)

∣∣∣∣∣∑
j 6=i

(θj − µj)

∣∣∣∣∣
≤ (1− pi)λ(θ−i)∆Qi(θ

k
i , ψ−i)

pi∆Qi(θki , ψ
∗
−i) + (1− pi)∆Qi(θki , ψ−i)

max
ψ−i

∣∣∣∣∣∑
j 6=i

(θj − µj)

∣∣∣∣∣
=

1

pi
1−pi

∆Qi(θki ,ψ
∗
−i)

∆Qi(θki ,ψ−i)
+ 1

max
ψ−i

∣∣∣∣∣∑
j 6=i

(θj − µj)

∣∣∣∣∣
Lemma 2.8. For any qi(θi, ),

∆Qi(θi, ψ
′
−i)

∆Qi(θi, ψ−i)
≥

minθ−i λi(θ−i)

maxθ−i λi(θ−i)
,∀ψ−i, ψ′−i.

Also, the bound is tight.

Proof. For the proof of the lemma, we rename each θ−i so that

λi(θ
1
−i) ≥ λi(θ

2
−i) ≥ · · · ≥ λi(θ

M
−i)

and

∆qi(θi, θ−i,1) ≥ ∆qi(θi, θ−i,2) ≥ · · · ≥ ∆qi(θi, θ−i,M)

(so we reorder θ−i in two different ways) where M =
∏

j 6=i |Θj|. Note that to minimize the

fraction we should minimize the numerator and maximize the denominator. To this end, the

numerator should be “anti-assortative”, while the denominator should be “assortative”:

λi(θ
1
−i)∆qi(θi, θ−i,M) + λi(θ

2
−i)∆qi(θi, θ−i,M−1) + · · ·+ λi(θ

M
−i)∆qi(θi, θ−i,1)

λi(θ1
−i)∆qi(θi, θ−i,1) + λi(θ2

−i)∆qi(θi, θ−i,2) + · · ·+ λi(θM−i)∆qi(θi, θ−i,M)

By the non-constant assumption, there exits i and θi such that ∆qi(θi, θ−i, 1) > 0. Note

that by the independent assumption, λi(θ
M
−i) > 0. For notational convenience, rewrite the

expression as
c1xM + c2xM−1 + · · ·+ cMx1

c1x1 + c2x2 + · · ·+ cMxM
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where cm = λi(θ
m
−i) and xm = ∆qi(θi, θ−i,m). Recall that x1 > 0. We first show that xM = 0.

Note that
d

dxM

(
c1xM + y

z + cMxM

)
=

c1z − cMy
(z + cMxM)2

where

y ≡ c2xM−1 + · · ·+ cMx1

z ≡ c1x1 + c2x2 + · · ·+ cM−1xM−1

Note that z ≥ y > 0 (the last inequality comes from x1 > 0) and thus if c1 > cM then the

equality is strict. Thus, the value of the derivative is positive. Note that c1 = cM requires

c1 = c2 = · · · = cM . Suppose c1 > cM ; then xM = 0 as the derivative is strictly positive. If

c1 = cm and z = y, then the derivative is 0; so in this case, our choice of cM does not affect

the value. So, we choose xM = 0. Then, we have

c2xM−1 + · · ·+ cMx1

c1x1 + · · ·+ cM−1xM−1

we apply the same argument to have xM−1 = 0. Repeat inductively this step until we have

only x1. As a result, we have
cMx1

c1x1

=
cM
c1

.

2.9.1.8 Proof of Lemma 2.4

Proof. We first show that an efficient allocation rule satisfies ex-post monotonicity if and

only if γ ≥ 1. First we show that “if” part: we claim that for each i, q∗i (θi, θ−i) > 0 only

if θi ≥ maxj 6=i θj. For the contradiction, suppose not; there exists j 6= i such that θj > θi.

Then, it increases the social surplus to reduce q∗i (θi, θ−i) and increase q∗j (θi, θ−i) (which is

strictly less than 1), because by doing so the net change is

θj + γθi − θi − γθj = (1− γ)(θj − θi).
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For a similar reason, if θi > maxj 6=i θj, then q∗i (θi, θ−i) = 1.

Next, we prove “only if” part: Suppose γ > 1. By the non-constant qualification and

ex-post monotonicity, there exists i ∈ I and θ′i, θi with θ′i > θi and θ−i such that q∗i (θ
′
i, θ−i) >

q∗i (θi, θ−i). Then, note that for some j 6= i, θj + γ
∑

k 6=j θk ≥ θi + γ
∑

j 6=i θj. Otherwise,

q∗i (θi, θ−i) = 1 for efficiency; a contradiction. From this and γ > 1, we know that

θj + γθi ≥ θi + γθj ⇐⇒ θi ≥ θj

thus θ′i > θj. This implies that

θj + γθ′i > θ′i + γθj ⇐⇒ θj + γ
∑
k 6=j

θk ≥ θ′i + γ
∑
j 6=i

θj

Thus, q∗i (θ
′
i, θ−i) = 0. Contradiction. Given this we know that 0-monotonicity implies any

p-monotonicity. This completes the proof for the first part of the lemma.

2.9.1.9 Proof of Proposition 2.4

Proof. Let us make the following simple observations:

Claim 2.1. w1 = 1/2.

To see this, suppose w1 < 1/2. Then, we can increase w1 and increase the objective

without sacrificing any conditions.

Claim 2.2. x1 + y1 = 1.

Suppose it is not true. Then, increase x1, which increases the objective.

Claim 2.3. As long as z1 ≤ 1/2, which is true from (2.5), (2.4) implies (2.3).

To see this, note that if

(1− p)w1 − (1− p)y1 ≤ (1− p)x1 − (1− p)z1

Then, (2.4) implies (2.3). As w1 = 1/2 by Claim 1, and x1 = 1− y1 by Claim 2,

1

2
− y1 ≤ (1− y1)− z1 ⇐⇒ z1 ≤

1

2
.
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Claim 4: (2.4) should be hold with equality.

By Claim 3, we know that we can ignore (2.3). Then, note that when y1 = 1 (so, x1 = 0),

p

(
1

2
0 +

1

2

1

2

)
+ (1− p)1

2
< p

(
1

2
z1 +

1

2

)
+ (1− p)

Thus, y1 should be less than 1. Thus, if the inequality does not hold with equality, we could

increase y1 slightly so as to increase the objective without violating the inequality.

Thus,

p

(
1

2
(1− y1) +

1

4

)
+ (1− p)1

2
= p

(
1

2
z1 +

1

2
y1

)
+ (1− p)y1

⇐⇒ y1(−p− (1− p)) = −p
(

1

2
+

1

4

)
− (1− p)1

2
+ p

1

2
z1

⇐⇒ y1 = p
3

4
+ (1− p)1

2
− p1

2
z1.

Substituting it into the objective,

1

2

(
3z1 + 31y1 + 17(1− y1) +

45

2

)
=

1

2

(
3z1 + 14

(
p

3

4
+ (1− p)1

2
− p1

2
z1

)
+ 17 +

45

2

)
=

1

2

(
z1

(
3− 14

2
p

)
+ 14

(
p

3

4
+ (1− p)1

2

)
+ 17 +

45

2

)
.

As it is linear in z1, if
(
3− 4− 14

2
p
)
≥ 0 or p ≤ 3

7
then z1 = 1

2
, while z1 = 0 when p > 3

7
.

2.9.1.10 Proof of Proposition 2.5

Proof. Consider agent i’s first order condition:

piEθ−i
[
ui(f(θi, θ−i), θi)

∂θi

]
+ (1− pi)

∂ui(f(θi, θ
′
−i), θi)

∂θi
= 0,∀θ′−i

Suppose for some θ′′−i,
∂ui(f(θi, θ

′′
−i), θi)

∂θi
= k 6= 0.

From the FOC, it implies that for any θ′−i,
∂ui(f(θi,θ

′′
−i),θi)

∂θi
= k. In turn, this also implies

Eθ−i
[
ui(f(θi,θ−i),θi)

∂θi

]
= k; thus the LHS of the FOC amounts to k 6= 0; a contradiction.
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2.9.1.11 Proof of Proposition 2.6

Proof. Consider agent i’s first order condition:

piEθ−i
[
ui(f(θi, θ−i), θi, θ−i)

∂θi

]
+(1−pi)Eθ−i

[
∂ui(f(θi, ψ−i(θ−i)), θi, θ−i)

∂θi

]
= 0,∀ψ−i : Θ−i → Θ−i

Suppose for some ψ′−i : Θ−i → Θ−i,

Eθ−i
[
∂ui(f(θi, ψ

′
−i(θ−i)), θi)

∂θi

]
= k 6= 0.

From the FOC, it implies that for any ψ−i, Eθ−i
[
∂ui(f(θi,ψ−i(θ−i)),θi)

∂θi

]
= k. In particular, when

ψ−i(θ−i) = θ−i (i.e., babbling reports true type), i.e.,

Eθ−i
[
ui(f(θi, θ−i), θi, θ−i)

∂θi

]
= k

This implies LHS of the FOC is equal to k 6= 0; a contradiction.

2.9.1.12 Proof of Proposition 2.7

Proof. Because qi satisfies slope independence, we may write it as

qi(θi, θ−i) = ki(θ−i) + yi(θi)

for some ki : Θ−i → [0, 1] and yi : Θi → [0, 1] s.t. ki(θ−i)+yi(θi) ∈ [0, 1] for all θ−i ∈ [0, 1]N−1

and θi ∈ [0, 1] and yi is increasing. Fix θ′−i ∈ Θ−i,

Ui(θi; θ
′
−i) ≡ Eθ−i

[
(θi + γθ−i)(ki(θ

′
−i) + yi(θi))

]
− τi(θi, θ′−i)

=

(
θi + γ

(∑
j 6=i

µj

))
(ki(θ

′
−i) + yi(θi))− τi(θi, θ′−i)

From this, by the standard argument, we can show that Ui is concave in θi and thus it is

almost everywhere differentiable; and

U ′i(θi, θ
′
−i) = ki(θ

′
−i) + yi(θi)

From this

Ui(θi; θ
′
−i) = Ui(0, θ

′
−i) + ki(θ

′
−i)θi +

∫ θi

0

yi(x)dx
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where Ui(0, θ
′
−i) ∈ R. Define

τi(θi, θ
′
−i) :=

(
θi + γ

(∑
j 6=i

µj

))
(ki(θ

′
−i) + yi(θi))− Ui(0, θ′−i)− ki(θ′−i)θi −

∫ θi

0

yi(x)dx.

We shall show that with this transfer rule, agent i’s incentive compatibility holds for any ψ−i :

Θ−i → Θ−i. Fix ψ−i : Θ−i → Θ−i. Let us consider the relevant incentive compatibility of

agent i between reporting θi and θ′i (note that we are considering global incentive constraints)

Eθ−i

[(
θi + γ

∑
j 6=i

θj

)
(ki(ψ−i(θ−i) + yi(θi))

]
− Eθ−i [τi(θi, ψ−i(θ−i))]

≥ Eθ−i

[(
θi + γ

∑
j 6=i

θj

)
(ki(ψ−i(θ−i)) + yi(θ

′
i))

]
− Eθ−i [τi(θ′i, ψ−i(θ−i))]

⇐⇒ Eθ−i

[(
θi + γ

∑
j 6=i

θj

)
(ki(ψ−i(θ−i)) + yi(θi))

]
−Eθ−i [(θi+γ

∑
j 6=i

µj)(ki(ψ−i(θ−i))+yi(θi))]

+ Ui(0, ψ−i) + ki(ψ−i)θi +

∫ θi

0

yi(x)dx

≥ Eθ−i

[(
θi + γ

∑
j 6=i

µj

)
(ki(ψ−i(θ−i)) + yi(θ

′
i))

]
−Eθ−i

[(
θ′i + γ

∑
j 6=i

µj

)
(ki(ψ−i(θ−i)) + yi(θ

′
i))

]

+ Ui(0, ψ−i) +Ki(ψ−i)θ
′
i +

∫ θ′i

0

yi(x)dx

⇐⇒ Eθ−i

[(∑
j 6=i

θj −
∑
j 6=i

µj

)
(ki(ψ−i(θ−i)) + yi(θi)

]
+Ui(0, ψ−i)+ki(ψ−i)θi+

∫ θi

0

yi(x)dx

≥ θiki(ψ−i) + θiyi(θ
′
i) + Eθ−i

[
γ

(∑
j 6=i

θj

)
ki(ψ−i(θ−i))

]
+ γ(

∑
j 6=i

µj)yi(θ
′
i)

−

(
θ′iki(ψ−i) + θ′iyi(θ

′
i) + γ(

∑
j 6=i

µj)Eθ−i [ki(ψ−i(θ−i))] + γ

(∑
j 6=i

µj

)
yi(θ

′
i)

)

+ Ui(0, ψ−i) +Ki(ψ−i)θ
′
i +

∫ θ′i

0

yi(x)dx

⇐⇒ Eθ−i

[(∑
j 6=i

(θj − µj)

)
(ki(ψ−i(θ−i)) + yi(θi)

]
+ Ui(0, ψ−i) + ki(ψ−i)θi +

∫ θi

0

yi(x)dx

≥ (θi−θ′i)Ki(ψ−i)+(θi−θ′i)yi(θ′i)+Eθ−i

[
γ
∑
j 6=i

(θj − µj)ki(ψ−i(θ−i))

]
+Ui(0, ψ−i)+ki(ψ−i)θ

′
i+

∫ θ′i

0

yi(x)dx
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⇐⇒
∫ θi

0

yi(x)dx ≥ (θi − θ′i)yi(θ′i) +

∫ θ′i

0

yi(x)dx

⇐⇒
∫ θ′i

θi

yi(x)dx ≤ (θ′i − θi)yi(θ′i)

where

Ui(0, ψ−i) ≡ Eθ−i [Ui(0, ψ−i(θ−i))]

Ki(ψ−i) ≡ Eθ−i [ki(ψ−i(θ−i)].

This holds as yi is increasing.

2.9.1.13 Proof of Proposition 2.8

Proof. Suppose not, i.e., there exists i ∈ I, θi and ψ−i : Θ−i → Θ−i such that

γEθ−i

[
µ
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
6= γEθ−i

[(∑
j 6=i

θj

)
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
(2.17)

Suppose there is a transfer rule τ = (τi)i together which q is a 0-dominant mechanism.

Consider the first order condition for i, θi:

Eθ−i

[
θi
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
+ γEθ−i

[(∑
j 6=i

θj

)
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]

− Eθ−i

[
∂τi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
= 0. (2.18)

Consider also the uniform babbling ψ−i(·) = θ′−i for some θ′−i ∈ [0, 1]N−1. In this case, the

first order condition is

θi
∂qi(θ

′
i, θ
′
−i)

∂θ′i

∣∣∣∣
θ′i=θi

+ γ
∑
j 6=i

µj
∂qi(θ

′
i, θ
′
−i)

∂θ′i

∣∣∣∣
θ′i=θi

−
∂τi(θ

′
i, θ
′
−i)

∂θ′i

∣∣∣∣
θ′i=θi

= 0.

We can obtain a similar equation for any θ′−i ∈ [0, 1]N−1. In particular, for a given θ−i,

θi
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

+ γµ
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

− ∂τi(θ
′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

= 0
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And so,∫
[0,1]N−1

θi
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

λi(θ−i)dθ−i+

∫
[0,1]N−1

γ
∑
j 6=i

µj
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

λi(θ−i)dθ−i

−
∫

[0,1]N−1

∂τi(θ
′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

λi(θ−i)dθ−i = 0

⇐⇒ Eθ−i

[
θi
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
+ γEθ−i

[∑
j 6=i

µj
∂qi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

λi(θ−i)

]

−Eθ−i

[
∂τi(θ

′
i, ψ−i(θ−i))

∂θ′i

∣∣∣∣
θ′i=θi

]
= 0.

Comparing this equation with (2.18) leads to a contradiction to (2.17).

2.9.1.14 Proof of Lemma 2.5

Proof. Suppose condition (2.6) holds. Under our assumption γ > 0, it can be rewritten

sup
i∈I,θi,ψ−i

∣∣∣∣∣Eθ−i
[∑
j 6=i

(θj − µj)
∂qi(θi, ψ−i(θ−i))

∂θi

]∣∣∣∣∣ = 0 (2.19)

Pick j ∈ I \ {i} and z ∈ [0, 1] and define ψ−i as follows:

ψ−i(θ−i) :=

 θ′−i if θj ≤ z,

θ′′−i if o.w.

Then,

Eθ−i

[∑
j 6=i

(θj − µj)
∂qi(θi, ψ−i(θ−i))

∂θi

]

=

∫
θj∈[0,z]

∫
θk∈[0,1],∀k 6=i,j

∑
l 6=i

(θl − µl)
∂qi(θi, θ

′
−i)

∂θi

∏
l 6=i

λl(θl)dθ−i

+

∫
θj∈[z,1]

∫
θk∈[0,1],∀k 6=i,j

∑
l 6=i

(θl − µl)
∂qi(θi, θ

′′
−i)

∂θi

∏
l 6=i

λl(θl)dθ−i

=

∫
θj∈[0,z]

(θj − µj)
∂qi(θi, θ

′
−i)

∂θi
λi(θj)dθj +

∫
θj∈[z,1]

(θj − µj)
∂qi(θi, θ

′′
−i)

∂θi
λi(θj)dθj

=
∂qi(θi, θ

′
−i)

∂θi

∫ 1

0

(θj − µj)λ(θj)dθj +

(
∂qi(θi, θ

′′
−i)

∂θi
−
∂qi(θi, θ

′
−i)

∂θi

)∫ 1

z

(θj − µj)λi(θj)dθj

=

(
∂qi(θi, θ

′′
−i)

∂θi
−
∂qi(θi, θ

′
−i)

∂θi

)∫ 1

z

(θj − µj)λi(θj)dθj
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where the second equality comes from the fact for any k 6= i, j,
∫ 1

0
θkλk(θk)dθk = µk. The

value of the last expression should be 0 for any z ∈ [0, 1] in order to satisfy (2.19), which is

impossible.

2.9.1.15 Proof of Proposition 2.10

We first make two observations to prove the proposition.

Definition 2.12 (no waste). An allocation rule q = (qi)i satisfies no waste if

∑
i∈I

qi(θ) = 1,∀θ ∈ Θ.

Lemma 2.9. Assume N = 2. An allocation rule q = (qi)i∈I satisfies no waste, slope

independence, and monotonicity if and only if there exists (yi(θi))i∈I where yi : Θi → R such

that

(1) Additive separability: for each i ∈ I,

qi(θi, θj) = ci + yi(θi)− yj(θj), j 6= i

where c1 + c2 = 1

(2) Monotonicity: for each agent i, yi(·) is increasing in θi

(3) Feasibility: for each i ∈ I and j 6= i,

qi(1, 0) = ci + yi(1)− yj(0) ≤ 1 (2.20)

qi(0, 1) = ci + yi(0)− yj(1) ≥ 0. (2.21)

Proof. By slope independence,

q1(θ1, θ2) = k1(θ2) + y1(θ1)
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for some k1 : Θ2 → R and y1 : Θ1 → R s.t. k1(θ2) + y1(θ1) ∈ [0, 1] for all (θ1, θ2) ∈ [0, 1]2.

By the monotonicity, y1 is clearly increasing. Without loss, let k1(θ2) := c1 − y2(θ2). Then,

by the no waste condition,

q2(θ1, θ2) = 1− (c1 + y1(θ1)− y2(θ2))

= 1− c1 − y1(θ1)− y2(θ2).

Let c2 ≡ 1− c1. By the monotonicity, clearly y2 is increasing. Then, from the monotonicity,

ci + yi(θi)− yj(θj) ≤ ci + yi(1)− yj(0) ≤ 1

and also

ci + yi(θi)− yj(θj) ≥ ci + yi(0)− yj(1) ≥ 0.

Lemma 2.10. Assume N = 2. Suppose an allocation rule q = (qi)i satisfies the additive

separability, monotonicity and feasibility if and only if the following class of allocation rules

that are characterized by (ki, αi, zi)i where αi ∈ [0, 1], ki ∈ [0, 1] and zi : Θi → [0, 1], which

is increasing such that

ki +
∑
i∈I

αi = ci + yi(1)− yi(0)

and

qi(θi, θj) = ki + αizi(θi) + αj(1− zj(θj)),∀i, j 6= i.

They could be interpreted as follows: ki is the probability that the item is always given to

agent i. With probability αi, the designer approaches to agent i and gives the item with

probability zi(θ) ∈ [0, 1] to i; and gives it to j with the rest probability.

Proof. Consider an arbitrary allocation rule that satisfies the additive separability, mono-

tonicity and feasibility (see Lemma 2.9), q1(θ1, θ2) = c1 + y1(θ1) − y2(θ2) and q2(θ1, θ2) =

c2 + y2(θ2)− y1(θ1) where c1 + c2 = 1.

102



Conisider the case in which yi(1) > yi(0) for all i = 1, 2. Then, qi(θ) can be rewritten as

qi(θ1, θ2) = ci + yi(0) + (yi(1)− yi(0))
yi(θi)− yi(0)

yi(1)− yi(0)
− yj(1) + (yj(1)− yj(0))

yj(1)− yj(θj)
yj(1)− yj(0)

= ci + yi(0)− yj(1) + (yi(1)− yi(0))
yi(θi)− yi(0)

yi(1)− yi(0)
+ (yj(1)− yj(0))

(
1− yj(θj)− yj(0)

yj(1)− yj(0)

)
.

Define

ki ≡ ci + yi(0)− yj(1)

αi ≡ yi(1)− yi(0)

αj ≡ yj(1)− yj(0)

zi(θi) ≡
yi(θi)− yi(0)

yi(1)− yi(0)

zj(θj) ≡
yj(θj)− yj(0)

yj(1)− yj(0)
.

For the case in which yi(0) = yi(1) = yi, we choose αi = 0 and ki = ci + yi. From (2.20)

and (2.21):

ci + yi(1)− yj(0) ≤ 1

−ci − yi(0) + yj(1) ≤ 0

by adding these two, we have yi(1) − yi(0) − yj(0) + yj(1) ≤ 1; and the monotonicity of yj

implies yi(1)− yi(0) ≤ 1.

Also, by monotonicity, zi and zj are in the range [0, 1] and also increasing. With these

definitions,

qi(θi, θj) = ki + αizi(θi) + αjzj(θj).

Note that

ki + αi + αj = ci + yi(0)− yj(1) + yi(1)− yi(0) + yj(1)− yj(0)

= ci + yi(1)− yj(0).

That is, the maximum possible allocation for agent i given the monotonicity.
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To maximize social surplus, trivially q satisfies no waste condition. By Lemma 2.9 and

Lemma 2.10, it is without loss to consider the following class of allocation rules:

qi(θi, θj) = ki + αizi(θi) + αj(1− zj(θj))

where ki ∈ [0, 1], αi ∈ [0, 1], ki + kj + αi + αj = 1, zi : Θi → [0, 1] and increasing. As

mentioned, we interpret zi(θi) is the probability of giving the item to agent i conditional on

the designer having approached to agent i; and conditional on it, we know what is the most

efficient allocation rule, which is characterized in Proposition 2.10; we can apply this result

to each agent i and we know the resulting expected social surplus is Vi in (2.8). This means

given we already choose ki and αi for each i, the maximum social surplus attainable is

ki(µi + γµj) + kj(µj + γµi) + αiV
i + αjV

j (2.22)

By definition of V i and V j, min{V i, V j} ≥ max{µi+γµj, µj+γµi}. In addition, the linearity

of (2.22), we know the optimal social surplus is

V ∗ = max
i∈I

Vi.
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CHAPTER 3

Reputation and Information Disclosure with Bounded

Memory

3.1 Introduction

The decision of information disclosure plays an important role in managing reputation.

In this paper, we consider a repeated game in which there is a long-run economic agent

(e.g., a firm) who chooses the quality of its product each period and also decides whether

to disclose the quality. There is a stream of short-run players (e.g., consumers), who choose

between buying high or low volume of the product. The short-run player prefers buying high

volume only when the quality of the product is expected to be high. Since the long-run player

is assumed to be better to make low quality product regardless of the volume purchased, the

static Nash equilibrium predicts low quality product purchased in a small volume, which is

assumed to be payoff-dominated by the outcome of high quality and high volume.

In reality, a reputation mechanism often plays a role in this situation. We capture

reputation concern of this agent by introducing incomplete information of its type Kreps

et al. (1982); Fudenberg and Levine (1989): with some probability, there is a chance that

the firm is the type which is “committed” to make a high quality product. Moreover,

the commitment type discloses the quality with a certain probability. Given this, to build

reputation, the long-run player should behave similar to the commitment type; especially,

given that the short-run players only can observe the message sent by the long-run player, the

long-run player should send messages similarly to the commitment type. What is important

is to look “similar” to the commitment type: always making high quality product and
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disclosing it may degrade its reputation if the commitment type often does not disclose the

quality.

In addition, for most parts of this paper, we assume that the short-run players only can

observe a finite number of past histories. This assumption implies any past history can be

“forgotten” by short-run players as time passes; and we expect that the long-run player’s

play would be substantially different based on the length of the observable history.

We first show that there is an equilibrium in which the long-run player’s information

disclosure is “fully informative”: a firm having produced a high quality product discloses it,

while the low quality product does not. This result may remind the reader of the well-known

“unraveling” result by, for example, Milgrom (1981). However, in our case, the driving force

is the long-run players’ reputation concern, i.e., to make the short-run players believe it more

likely as the commitment type, which could be exploited at some point in the future.

Focusing on such fully informative equilibria, we then characterize equilibrium dynamics.

The equilibria are cyclical: the long-run player builds reputation and milk it. The detailed

dynamics, including how often they can exploit and build reputation, is determined by the

prior, the length of observable histories, and the information disclosure behavior of the

commitment type.

The present paper is related to the information transmission literature. In particular, as

mentioned, the fully informative equilibrium is similar to the result in the models with verifi-

able information (e.g., Grossman (1981), Milgrom (1981) and Okuno-Fujiwara, Postlewaite,

and Suzumura (1990) among others). They commonly study the information disclosure

scheme where the informed party cannot lie in the sense that the inverse of a message should

contain the true state of nature. In some following results, we have a similar argument to

their unraveling result, although ours is dynamic and reputational. Recently, Van Der Schaar

and Zhang (2015) and Marinovic et al. (2018) study a relevant question to ours.1

The present paper is closely related to the reputation literature with bounded memory.

1In both papers, the quality is private information; the reputation means the posterior belief for the
quality. In the former, the quality is given and fixed, while in the latter whose model is based on Board and
Meyer-ter-Vehn (2013), the quality of the firm is persistent.
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This assumption is employed by Liu (2011) and Ekmekci (2011). Both papers share the fea-

ture that short-run players obtain restricted information about the past play. In Liu (2011),

each short-run player decides how many past periods he/she will observe, which is costly.

Thus, the informational decision is made by the uninformed side. On the other hand, we are

interested in information disclosure problem by the informed player. Ekmekci (2011) shows

that reputation is sustainable by introducing an elaborately designed rating system which

effectively incentivize long-run agent to play a targeted action (e.g., the Stackelberg action).

These study, including ours, are related to the literature of explaining permanent reputa-

tion.2 There has been studies under which environments a cyclic or permanent reputation

is maintained. More recently, Bhaskar and Thomas (2018) studies a version of repeated

games with bounded memory in the context of community enforcement. In recent papers,

Jullien and Park (2014) and Mathevet et al. (2019) study dynamic information transmission

for building reputation; unlike ours, they study “cheap talk” and do not assume bounded

memory.

The rest of this paper is organized as follows: In Section 3.2 we set up the model which

includes descriptions of the information disclosure regime which we call binary disclosure.

Throughout Section 3.3, we make an analysis, presenting formal expositions of the results.

Finally, in Section 3.5 we discuss a few possible extensions and generalization of this study.

We delegate all the proofs to Appendix unless specified.

2The result of impermanent reputation is established by Cripps, Mailath, and Samuelson (2004), which
shows that with imperfect monitoring, a short-run player almost surely learn the type of the long-run player,
and the continuation play of any equilibrium is asymptotically Nash equilibrium of game with complete
information. Fudenberg and Levine (1992) shows that the reputation effect gives the equilibrium payoff of
long-run player is arbitrarily close to the Stackelberg payoff. This is not contradictory to Cripps, Mailath,
and Samuelson (2004), since the payoff is evaluated ex-ante in the former.
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3.2 The Model

3.2.1 The Stage Game

There are a long-run player and a stream of short-run players. We call them player 1 (“he”)

and 2 (“she”), respectively. In each period t ∈ {0, 1, 2, . . . }, player 1 and 2 simultaneously

choose their (possibly mixed) action: player 1 decides whether to make high (H) quality

or low (L) quality, i.e., A1 := {H,L}, and player 2 chooses from A2 := {h, l} which could

be interpreted as how much they purchase the product. This interpretation requires the

product to be an experience good. After the realization of action, player 1 decides whether

to disclose it (details follow).

We make the following assumptions on the stage game:

Assumption 3.1 (product-choice game). The stage game has following payoff structure:

(a) For all a2 ∈ A2, u1(L, a2) > u1(H, a2).

(b) u1(L, h)− u1(H, h) > u1(L, l)− u1(H, l)

(c) u2(L, l) > u2(L, h)

(d) u2(H, h) > u2(H, l)

(e) u1(H, h) > u1(L, l)

Condition (a) says that for player 1, playing L is a dominant strategy in the stage game;

(b) says that the opportunistic behavior, L, is more profitable when player 2 plays h with

higher probability; Due to (c) and (a), the stage game Nash equilibrium is (L, l); With (c),

(d) implies that there exists a critical value, ᾱ ∈ (0, 1), of the probability of playing H by

player 1 with this playing h and l is indifferent to player 2.3 (e) captures that building

reputation is beneficial. We call a stage game satisfying these assumptions a product-choice

game. Figure 3.1 is an example of such games.

3There is a difference from this game with the Prisoners’ Dilemma, since playing l is not a dominant
strategy for player 2: if player 1 plays H with high enough probability, then it is better for player 2 to play
h.
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h l

H 2, 3 0, 2

L 4, 0 1, 1

Figure 3.1: An example of the product-choice game

Lemma 3.1. If α2, α
′
2 ∈ ∆(A2) satisfies α2[h] > α′2[h],

u1(a1, α2) > u1(a1, α
′
2),∀a1 ∈ A1.

Proof. From (a) and (d), we obtain

u1(L, h) > u1(H, h) > u1(L, l) > u1(H, l).

Then the conclusion immediately follows.

3.2.2 Incomplete Information

There are 2 types of long-run player, the normal type and the commitment type Θ =

{θn, θc}. The normal type chooses his action and whether to disclose to maximize the life-

time expected payoff, where the stage game satisfies Assumption 3.1. On the other hand,

the commitment type plays H in each period, while we assume that it randomly discloses

its action with probability β ∈ [0, 1]. The players share the common prior, µ0 ∈ ∆(Θ); with

an abuse of notation, let µ0 ≡ µ0(θc).

3.2.3 Information Disclosure

In each period after the action is realized, player 1 chooses whether to publicly disclose

truthfully or withhold it. By this, we implicitly assume that the realized action, which we

interpret as the quality of the product, is verifiable (i.e., hard information). The message

space is

M ≡ {H,L,B}

109



where B represents “blank.” This assumption rules out the possibility of sending message

H after the realized action is L, while allowing withhold this information. We shall formally

introduce this assumption momentarily (Assumption 3.2). For example, player 1 cannot

send message H when the realized action is L, while being allowed not to disclose it. This

assumption is natural in many cases.4 Importantly, we further assume the length of public

history is exogenously given as K ∈ N. This may reflect the cost of holding information or

the government regulation.

3.2.4 Solution Concept

Let H0 = {∅},

Ht ≡ (A1 × A2 ×M)t, t ≥ 1 and H ≡
∞⋃
t=0

Ht.

We are interested in stationary public equilibria: Player 2’s (stationary) strategy is σ2 :

MK → ∆(A2). That is, we only consider strategies that do not depend on the calendar time

of the game. Player 1’s (behavioral) strategy is a function σ1 : H → ∆(A1). Along with

this, there is additional information disclosure decision by player 1, σ1m : H× A1 → ∆(M)

where M = {H,L,B}. Because player 2’s strategy only depends on MK , we can restrict to

a smaller set of strategies σ1 : MK → ∆(A1), and σ1m : MK × A1 → ∆(M).

Assumption 3.2. M = {H,L,B} and σ1m(·, a1) ∈ ∆{a1, B} for all a1 ∈ A1.

Player 1’s maximization problem is

max
σ1

EP

[
(1− δ)

∞∑
t=0

δtu1(σ1(at1), σ2(at2))

]

where P is the probability measure induced by σ1, σ1m and σ2 on H, and δ ∈ [0, 1) is the

discount factor of player 1.

Let S ≡ MK be the set of states, and p0 ∈ ∆(S) (res. p1 ∈ ∆(S)) be an invariant

distribution of the normal type over S (res. the commitment type). Also let µ : S → [0, 1]

4Similar assumption has been employed in many papers; for example, Grossman (1981) and Milgrom
(1981) among others.
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be the posterior belief for the commitment type at s, σ1 : S → ∆(A1), σ1m : S×A1 → ∆(M)

and σ2 : S → ∆(A2) be strategies which depend on the state. A (σ1, σ1m, σ2, µ, p0) is a

stationary perfect Bayesian equilibrium if

1. Given µ, p0 and σ2, (σ1,σ1m) is a best response of player 1 at any state.

2. Given µ, p0 and σ1, σ2 is a best response of player 2 at any state.

3. p0 is the invariant distribution induced by the Markov chain generated by σ1 and σ1m,

and µ is consistent to the Bayes’ rule whenever it is available, i.e.,

µ(s) =
µ0p1(s)

µ0p1(s) + (1− µ0)p0(s)
.5 (3.1)

That is, we focus on stationary equilibria in which equilibrium strategies do not depend on

the calendar time, while we allow non-stationary deviations.

We first establish the existence of equilibria.

Proposition 3.1. There exists a stationary PBE.

3.3 Characterization of Equilibrium Information Disclosure

From now on we assume µ0 > 0. We first characterize information disclosure behavior of

player 1 on the equilibrium path in any equilibrium. Note that the continuation value is

completely determined by disclosed information. This implies that if information is withheld,

the continuation value is the same regardless of the actual quality. This immediately implies

that high quality product, which involves the sacrifice of static payoff, is made only when

the quality will be disclosed.

Proposition 3.2. For any β ∈ [0, 1],

σ1m(H|s,H) = 1

for any s ∈ S in any equilibrium.

5Note that for the commitment type, messages are randomly sent with probability β ∈ [0, 1]. Thus,
p1 ∈ ∆(S) is exogenously determined.
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Proof. Suppose that there is a state s ∈ S in which σ1m(B|s,H) > 0. Consider a deviation

to play L then choose B. Since the action is not disclosed, the continuation payoffs should

be the same. Then by Assumption 3.1, this is a profitable deviation. Contradiction.

Note that this result applies even to off-the-equilibrium paths.6

3.4 Equilibrium Characterization

3.4.1 Equilibrium Dynamics

Suppose β ∈ [0, 1). One implication of this is that even after observing a bad signal, there

is still possibility that he might be the commitment type.7 Under this assumption, it turns

out that the equilibrium dynamics crucially depends on the prior belief. Consider the case

with very high prior belief for the commitment type. After observing a succession of bad

signals, if the posterior is still high enough to induce the trusting action of player 2, then

there would be no point of building reputation. Let

µ̄(β,K) ≡ ᾱ

(1− ᾱ)(1− β)K + ᾱ
. (3.2)

Proposition 3.3. For any µ0 > µ(β,K), there is a unique equilibrium in which σ1(L|s) = 1,

σ1m(B|s, a1) = 1 and σ2(h|s) = 1 for all s ∈ S and a1 ∈ A1.

The cutoff given by (3.2) is obtained to satisfy the updated belief after observing a public

history only consisting of B is still above ᾱ. Such cutoff is high when the disclosure of high

quality is more indicative of the commitment type.

Moreover, if the length of observable public history is longer, i.e., observing bad sig-

nals more, the resulting posterior is lower. Hence, we need a higher prior to support this

equilibrium. In particular, as β goes to 1 or K goes to infinity, the cutoff converges to 1.

6This result still holds when K =∞.

7In this sense, this assumption has a similarity to imperfect monitoring or the commitment type with
mixed action. However, our model is different with that with imperfect monitoring, since player 1 can choose
the signal. In this sense, this model resembles more to the case where the commitment plays mixed action.
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Corollary 3.1. µ̄(β,K) is strictly increasing in both K and β. Especially,

1. µ̄(1, K) = 1 and µ̄(0, K) = ᾱ for all K ≥ 1.

2. µ̄(B,K)→ 1 as K →∞.

Note that in this equilibrium, player 1 attains the highest possible payoff in each period.

Observe also that when µ0 < µ(β,K), such strategy of player 1 cannot support an

equilibrium, simply because player 2 plays l.

The previous proposition suggests that there may be an equilibrium with repeated ex-

ploitation of reputation is supported as an equilibrium when the prior belief for the commit-

ment type is sufficiently high. The next result shows that there exists such one. Especially,

when the prior belief is just below the cutoff, µ̄(β,K), there exists an equilibrium which is

after successive reputation, only one building period of reputation is followed on the equilib-

rium path. See Figure 3.2 to glance the equilibrium dynamics when K = 2.

Hereafter, by “exploiting reputation” we mean that player 1 plays L with probability 1

and player 2 chooses h with probability 1 in a period. In addition, by “building reputation”

we mean both player 1 and 2 play strictly mixed strategy in a period, ant player 1 discloses

the realized action when it is H.

Remark 3.1. Because information disclosure is costless and fully informative on the equi-

librium path, when β = 1, the equilibrium dynamics of this model is essentially the same

to Liu (2011) when the cost of information is 0 until K periods and infinite from K + 1 (so

we omit the analysis of this case). As we allow β < 1 as well, it gives various equilibrium

dynamics, as in Proposition 3.3 and in the following theorem. In particular, the equilibrium

dynamics depicted in the theorem is opposite to that of Liu (2011) which is characterized

by successive building of reputation for one-time cashing in it.

Given a strategy profile σ ≡ ((σ1, σ1m), σ2), denote the on-path states by Sσ ⊆ S. Also,

given s ∈ S, let (s ∧ a1) ∈ S be the continuation state.
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Figure 3.2: The equilibrium (on-path) dynamics described in Proposition 3.4 when K = 2

Proposition 3.4. Let K ∈ N and β ∈ (0, 1). There exists µ̄(β,K) ∈ (0, 1), µ(β,K) ∈ (0, 1)

and δ̄ ∈ (0, 1) such that for all µ0 ∈ [µ(β,K), µ̄(β,K)] and for all δ ≥ δ̄, there exists an

equilibrium ((σ1, σ1m), σ2, µ) with K of consecutive exploiting periods followed by a building

period on the equilibrium paths, i.e.,

Sσ = {w1, w2, . . . , wK+1} ⊆ S

such that

• K-consecutive exploitation: σ1(L|wk) = 1 and σ2(h|wk) = 1 for any k = 1, . . . , K

• 1-building: σ1(H|wk+1) > 0

• Cyclicity: (wk ∧B) = wk+1 for any k = 1, . . . , K; (wk+1 ∧H) = w1.

Proof. The proof is constructive. Let us partition S = MK based on how remote the most

recent H is: letWk be the equivalence class when the distance is k = 1, 2, . . . , K, andWK+1

be the class of states which do not have H.8 Consider the following ((σ1, σ1m), σ2, µ):

• Player 1’s strategy: for each s = (s1, . . . , sK) ∈ S

σ1(H|s) =


1 if |k : sk = H| ≥ 1

γ1 o.w.

,

where γ1 ∈ (0, 1) will be determined shortly (see (3.9)). Also, for any state s ∈ S,

σ1m(H|s,H) = 1 and σ1m(B|s, L) = 1. Note that this strategy profile induces on-path

8For example, when K = 4, s = BBHB this history is classified as W2.
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states of the normal type:

Sσ = {w1, . . . , wK , wK+1}

where w1 = (B, . . . , H), w2 = (B, . . . , H,B), . . . , wK = (H,B, . . . , B), wK+1 = (H, . . . , H).

Note that for each k, wk ∈ Wk.

• Player 2’s strategy:

σ2(h|s) =


1 if s ∈ Wk, k = 1, . . . , K

γ2 if s ∈ WK+1

where γ2 ∈ (0, 1) is to be determined shortly (see (3.15)).9

• Belief function and p0: For any s = (s1, . . . , sK) ∈ Wk with |l : sl = H| ≤ 1 for some

k = 1, . . . , K,

µ(s) = µ(wk) :=
µ0β(1− β)K−1

µ0β(1− β)K−1 + (1− µ0)p0(wk)
≥ ᾱ (3.3)

and for s ∈ W0,

µ(s) = µ(wk+1) :=
µ0(1− β)K

µ0(1− β)K + (1− µ0)p0(wK+1)
≤ ᾱ. (3.4)

and for any s = (s1, . . . , sK) with |l : sl = H| > 1,

µ(s) = 1

where p0 ∈ ∆(Sσ) is the invariant distribution induced by (σ1, σ1m), i.e.,

p0(wk) =
γ1

1 +Kγ1

,∀k = 1, . . . , K (3.5)

and

p0(w0) =
1

1 +Kγ1

. (3.6)

Step 1. Consistency of the belief function.

9Note that for any state without L and with more than 1 H is off-path of the normal type. For these
states, σ2(s)=1. In a state with at least 1 L which is off-the-path, σ2 specifies the same action corresponding
to the state which has B in the place of L.
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Note that player 2’s belief is consistent to the Bayesian update whenever it is available

as required in our definition of equilibrium. In particular, for state s = (s1, . . . , sK) with

|k : sk = H| ≥ 1, if there is no L in s, the long-run player is believed as the commitment

type, i.e., µ(s) = 1.

Step 2. Checking incentive of player 2.

First consider off-the-equilibrium states of the normal type, i.e., s ∈ S \Sσ. Observe that

in any state with more than 1 of H, µ(s) = 1; thus, player 2’s play of h is clearly incentive

compatible.

Consider s ∈ WK+1. For player 2 to be indifferent,

µ(wK+1) + (1− µ(wK+1))γ1 = ᾱ (3.7)

Thus,

µ(wK+1) =
ᾱ− γ1

1− γ1

(3.8)

After substituting (3.6) into (3.4), then equating it to (3.8), we obtain,10

γ1 =
(1− µ0)ᾱ− µ0(1− ᾱ)(1− β)K

(1− µ0) + µ0K(1− ᾱ)(1− β)K
. (3.9)

Note that γ1 ≥ 0 if and only if

(1− µ0)ᾱ− µ0(1− ᾱ)(1− β)K ≥ 0

Or equivalently,

µ0 ≤ µ̄(β,K) ≡ ᾱ

ᾱ + (1− ᾱ)(1− β)K
. (3.10)

Note that γ1 ∈ [0, ᾱ] implies µ(s0) ∈ [0, 1] and, therefore, µ(wK+1) ≤ ᾱ by (3.7). Substitute

(3.9) into (3.8), then

µ(wK+1) =
µ0(1− β)K(Kᾱ + 1)

µ0((K + 1)(1− β)K − 1) + 1
(3.11)

Also by substituting (3.9) into (3.5) and (3.6) we obtain

p0(s) =
(1− µ0)ᾱ− µ0(1− ᾱ)(1− β)K

(1− µ0)(Kᾱ + 1)
,∀s ∈ {w1, . . . , wK} (3.12)

10For the detail of the derivation, see Appendix.
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and

p0(wK+1) =
1− µ0

(
K (µ̄− 1) (1− β)K + 1

)
(1− µ0) (Kᾱ + 1)

,

respectively. Also by substituting (3.12) into (3.3), and requiring it is greater than ᾱ to

rationalize σ2(s)[h] = 1 in these states, we obtain11

µ0 ≥ µ(β,K) ≡ ᾱ

ᾱ + (1− ᾱ)(1− β)K
(

1 + (K + 1
ᾱ

) β
1−β

) (3.13)

Clearly µ̄(β,K) ≥ µ(β,K). Combining (3.10) with (3.13), we obtain the inequality

µ(β,K) ≤ µ0 ≤ µ̄(β,K).

Step 3. Checking incentive of player 1.

Let V1 : S → R be the continuation value at state s, induced from ((σ1, σ1m), σ2, µ). We

first check player 1’s incentive on the equilibrium paths, i.e., s ∈ {w1, . . . , wK+1}. From

V1(wK+1) = (1− δ)(u1(L, h)γ2 + u1(L, l)(1− γ2)) + δV1(wK+1)

we have

V1(wK+1) = γ2u1(L, h) + (1− γ2)u1(L, l). (3.14)

It can be easily seen after a few substitutions,

V1(wK−k) = (1− δ)(1 + δ + · · ·+ δk)u1(L, h) + δk+1V1(wK+1)

= (1− δk+1)u1(L, h) + δk+1V1(wK+1)

In particular,

V1(w1) = (1− δK)u1(L, h) + δKV1(wK+1)

From

V1(wK+1) = (1− δ)(u1(H, h)γ2 + (1− γ2)u1(L, l)) + δV1(w1)

and (3.14), we have12

γ2 =
(δ + · · ·+ δK)(u1(L, h)− u1(L, l)) + (u1(H, l)− u1(L, l))

(u1(L, h)− u1(L, l))(1 + δ + · · ·+ δK)− (u1(H, h)− u1(H, l))
(3.15)

11For the detail of the derivation, see Appendix.

12For the detail of the derivation, see Appendix.
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Note that the denominator is strictly positive for all δ ∈ (0, 1) by Lemma 3.1. In addition,

when δ is sufficiently close to 1, the numerator is strictly positive.13 Moreover, the denom-

inator is always bigger than the numerator.14 Therefore, γ2 is well-defined as a probability

when δ is sufficiently close to 1.

Since at wK+1 player 1 uses a mixed strategy, so we only need to check the other states.

The following lemma is a crucial observation. We claim that at wk, playing L is strictly

preferred by player 1. First observe that

V1(w1) > V1(w2) > · · · > V1(wK+1)

because u1(L, h) > u1(L, l). Note that for any k, if player 1 plays H then withholding it,

then the next period the continuation payoff is V1(w1). At wK+1 in which player 2 plays h

strictly less than 1, playing H and L are indifferent. Since for k = 1, . . . , K, player 2 plays

h with probability 1, playing H is strictly preferred to player 1.

Let us consider off-path states. Note that for s ∈ Wk, V1(s) = V1(wk). To see this, first

note that for s ∈ WK+1,

V1(s) = V K+1
1 ≡ (1− δ)u1(L, σ2(wK+1)) + δV K+1

1

where we use that at s, σ2(s) = σ2(wK+1). Thus,

V K+1
1 = u1(L, σ2(wK+1)) = V1(wK+1).

Given this, we can easily see that for s ∈ WK , V1(s) = V K
1 ≡ (1 − δ)u1(L, σ2(wK)) +

δV K+1
1 ; but V K+1

1 = V1(wK+1), thus V K
1 = V1(wK). Similarly we can show that for any

k ∈ {1, 2, . . . , K + 1}, V k+1
1 = V1(wk). Then, the incentive compatibility follows since

σ1(s) = σ1(wk) for any s ∈ Wk for any k = 1, . . . , K + 1.

13By Condition (b) in Assumption 3.1, u1(L, h)− u1(L, l) > u1(H,h)− u1(H, l). Thus,

u1(L, h)− u1(L, l) + u1(H, l)− u1(L, l) > u1(H,h)− u1(H, l) + u1(H, l)− u1(L, l) = u1(H,h)− u1(L, l).

Then, by (e), u1(H,h)− u1(L, l) > 0.

14This is because u1(L, h)− u1(L, l)− (u1(H,h)− u1(H, l)) > 0, while u1(H, l)− u1(L, l) < 0.
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The reason why β strictly less than 1 is necessary for the dynamics in this theorem is

obvious: it is to sustain posterior belief higher enough, even after exploiting reputation in

a period. Note also that we cannot have this equilibrium when µ0 < µ(β,K) in that the

reputation will be depleted before exploiting K periods. We also obtain a corollary of this

theorem, the underlying intuition of which is similar to Corollary 3.1.

Corollary 3.2. The minimum of µ̄(β,K) and µ(β,K) are well-defined and increasing in

K.

Proof. See Appendix.

This corollary says the prior cannot be too high or too low to have this equilibrium. Also

note that µ̄(β,K) of this theorem is exactly the same to the critical value of Proposition 3.3.

Notice that this equilibrium is intuitive and relatively tractable that we can completely

characterize for any K ∈ N. Such tractability comes from the very fact that, except only 1

state, the strategies use pure strategy.

Remark 3.2. Liu (2011) employs a distinct index defined as how many H does a state has

until the recent B (in his paper it is L). According to this index, HB and BB should be

classified as the same index 0 and therefore player 2 should play the same action. This is

not the case generally when β < 1. Note that σ2(h|HB) = 1 and σ2(h|BB) ∈ (0, 1). First,

note that player 1 should have the same continuation payoff regardless of the current play,

and therefore only the current incentive affects player 1’s action in those states. Suppose

1 ≥ σ2(h|HB) > σ2(h|BB) ≥ 0. Unlike β = 1, it does not imply σ1(H|HB) > 0 and

σ1(H|BB) < 1: even with B in a state, there is still possibility of the commitment type.

Remark 3.3. In the construction in the proof, we use a particular set of off-the-equilibrium

beliefs after observing L; namely, we assign the belief at the corresponding on-path state,

changing L to B, to an off-path belief at a state s with L. Although our equilibrium notion

allows any off-the-equilibrium belief, one might want that the posterior belief after observing

L should result in 0 for the commitment type (simply because the commitment type is

assumed to never make the low quality; so never disclose L). However, our more permissible
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Figure 3.3: Example when K = 3

off-path beliefs are also plausible given we consider the possibility of the commitment type

making “mistakes.”

3.5 Discussion and Conclusion

We conclude this paper by discussing potential future directions which we are considering

to pursue.
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3.5.1 Costly Verification

In reality, information disclosure is often costly (e.g., having a certification). Suppose that

the cost of information disclosure is c > 0. We can expect that when c is extremely large,

the long-run player would never disclose the quality. It would be interesting to study when

c has an intermediate value.

3.5.2 Cheap Talk

In this paper, we study when the message of the long-run player is verifiable. We might also

think about situations where the long-run player can send any message, for example, it may

send H even the quality of the product is low. Then, a natural question is whether there is

an equilibrium in which the cheap talk is informative.

3.5.3 General Prior

At this moment, we have only results when µ is sufficiently large (at least ᾱ). This is

imaginable situation; however, probably one may be more interested in when the prior belief

for the commitment type is lower (or extremely low “grain of truth”).

The problem is that an equilibrium behavior, in principle, may be different for each

state; and the number of states is large when K large (see Figure 3.3 for K = 3). A natural

approach is try to find a smaller set of new “states” which we can use without loss and

players’ play only depend on these states.

Conjecture 3.1. When µ0 is sufficiently low, there is an equilibrium in which the long-run

player builds reputation until there is no B or L; then it exploits one time. When building

reputation, both player 1 and player 2 are indifferent in their actions.

At this moment, we do not know exactly how low the prior should be.
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3.5.3.1 Player 1’s strategy

To specify, player 1’s strategy, let us introduce Yk, k = 0, . . . , K.

Yk := {s = (s1, . . . , sK) ∈ S : |{l : sl = H}| = k}.

That is, the set of states which has k of Hs.

Conjecture 3.2. Suppose for s, s′ ∈ Yk

σ1(s) = σ1(s′) = γk

and σ1m(H|s, a1) = 1 if a1 = H; otherwise, σ1m(B|s, a1) = 1 for any state s. In addition,

suppose that there is a unique invariant distribution p0 ∈ ∆(S). Then,

p0(s) = p0(s′)

and

µ(s) = µ(s′).

Lemma 3.2. When K = 3, the conjecture is true.

Proof. It is enough to show that there is an invariant distribution in which p0(s) = p0(s′) = pk0

for all s, s′ ∈ Yk.

Given this restriction,

p0(BBH) = p1
0 = γ0p0(BBBB) + γ1p(HBB) = γ0p0

0 + γ1p1
0 ⇐⇒ p1

0 =
γ0

1− γ1

p0
0

p1(BHH) = p2
0 = γ1p0(BBH) + γ1p0(HBH) = γ1p1

0 + γ2p2
0 ⇐⇒ p2

0 =

(
γ1

1− γ2

)(
γ0

1− γ1

)
p0

0

p0(HHH) = p3
0 = γ2p0(BHH) = γ2p

2
0 ⇐⇒ p3

0 = γ2

(
γ1

1− γ2

)(
γ0

1− γ1

)
p0

0

and

p0
0 + 3p1

0 + 3p2
0 + p3

0 = 1.

From this,

p0
0 =

1

1 + 3 γ0

1−γ1
+ 3

(
γ1

1−γ2

)(
γ0

1−γ1

)
+ γ2

(
γ1

1−γ2

)(
γ0

1−γ1

) (3.16)

122



We need to show that these values satisfy the “preservation equation” for the other states.

For example,

p0(BHB) = (1− γ1)p0(BBH) + (1− γ2)p0(HBH).

From the above

γ0

1− γ1

p0 = (1− γ1)

(
γ0

1− γ1

)
p0

0 + (1− γ2)

(
γ1

1− γ2

)
p0

0

The LHS is (
γ0 +

γ1γ0

1− γ1

)
p0 =

γ0

1− γ1

p0.

For HBB, note that the preservation equation is the same. For other states k ≥ 2, we can

use the symmetry.

Conjecture 3.3. Consider a strategy profile in which player 1 is indifferent between two

actions at any state s ∈ Yk for any k ≥ 1. Suppose that player 2 is indifferent in these

states. Then, there exists an equilibrium in which for states s, s′ ∈ Yk,

σ1(s) = σ1(s′).

Lemma 3.3. For K = 3, the previous conjecture is true.

Proof. Since player 1 is indifferent at s, any play σ1(H|s) ∈ [0, 1] is optimal. Given this we

only need to satisfy

µ(s) + (1− µ(s))σ1(H|s) = ᾱ

µ(s′) + (1− µ(s′))σ1(H|s′) = ᾱ

But, we know that µ(s) = µ(s′), because obviously 1) p1(s) = p1(s′); and 2) p0(s) = p0(s′)

by Lemma 3.2. In addition, σ1(H|s) = σ1(H|s′) implies p0(s) = p0(s′) (thus also µ0(s) =

µ0(s′)).

We do not know whether every equilibrium should satisfy this property. We shall see

that this lemma substantially simplifies the problem when K = 3 shortly.

Suggested by this conjecture, let us focus on player 1’s strategy such that

σ1(H|s) = γk,∀s ∈ Yk.
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3.5.3.2 Player 2’s Strategy

We focus on equilibria in which player 2’s strategy only depends on the location of the most

recent B.

Let Wk ∈ (0, 1) be the set of states whose most recent B or L is k-distant from the

current period. Let WK+1 ≡ {(H, . . . , H)}. Let

σ2(h|s) = ηk,∀s ∈ Wk.

If there is no B or L, then player 2 plays h with probability 1. Let V k
1 is the continuation

value in any state whose most recent B is k-distant from the current period.

V 1
1 = (1− δ)u1(H, η1) + δV 2

1

= (1− δ)u1(L, η1) + δV 1
1

From the second inequality,

V 1
1 = u1(L, η1)

Generally, for any k = 1, . . . , K − 1,

V k
1 = (1− δ)u1(H, ηk) + δV k+1

1

= (1− δ)u1(L, ηk) + δV 1
1

and

V K+1
1 = (1− δ)u1(L, h) + δV 1

1 .

Conjecture 3.4. For sufficiently large δ, there exists ηk ∈ [0, 1], k = 1, . . . , K which satisfy

the equations. In addition,

V K+1
1 > V K

1 > · · · > V 1
1 .

3.5.3.3 Example: K = 3

Although we have not been able to establish results for generic K, we know the conjectures

are true for K = 3.
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(a) Reputation dynamics. At time 0, state is
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(b) Behavior of player 1 (probability of playing

H) depending on the number of H in s

Figure 3.4: When ᾱ = 1/2, β = 3/4, µ0 = 1/4 and K = 3
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Proposition 3.5. For K = 3, Conjecture 3.1 is true for some µ0.

See Figure 3.4 for the reputation dynamics and equilibrium of the long-run player in this

equilibrium.

Let us first explicitly obtain player 1’s strategy. As we discussed, we are focusing on equi-

libria in which for any states in the same Yk, player 1 plays the same. Then, by Lemma 3.2,

we know that p0(s) = p0(s′) for all s, s′ ∈ Yk for any k.

In addition, we are focusing on equilibria where player 2 is indifferent at any s ∈ Yk for

some k = 1, . . . , K − 1; and σ2(h|s) = 1 for s = HHH. Thus, given k ∈ {1, . . . , K − 1},

µk + (1− µk)γk = ᾱ, ∀s ∈ Yk

where

µk =
µ0p

k
1

µ0pk1 + (1− µ0)pk0

pk1 = βk(1− β)K−k

and pk0 are determined by (3.16). Thus, we have 3 equations for 3 unknowns (γ0, γ1 and γ2).

To be more explicit,

µ0p
k
1 + (1− µ0)pk0γk = ᾱ(µ0p

k
1 + (1− µ0)pk0)

⇐⇒ pk0(γk − ᾱ) =
µ0

1− µ0

(ᾱ− 1)pk1

That is,

1

Dγ

(γ0 − ᾱ) =
µ0

1− µ0

(ᾱ− 1)β0(1− β)3

γ0

1−γ1

Dγ

(γ1 − ᾱ) =
µ0

1− µ0

(ᾱ− 1)β(1− β)2(
γ1

1−γ2

)(
γ0

1−γ1

)
Dγ

(γ2 − ᾱ) =
µ0

1− µ0

(ᾱ− 1)β2(1− β)

where Dγ is the denominator of (3.16).
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Proposition 3.6. Suppose β > 1/2. Then we have

γ0 > γ1 > γ2.

In addition we have explicit expression for γ0:

γ0 = ᾱ +

µ0

1−µ0
(1− β)3

(
ᾱ− 1− ᾱ 3+ᾱ2

1−ᾱ

)
1 + µ0

1−µ0
(1− β)3 1

1−ᾱΦ

where

Φ ≡ 3 + ᾱ2 + 3(1− ᾱ)
β

1− β
+ (3 + ᾱ + β − 5ᾱβ)

β

(1− β)2
.

Proof. See Appendix.

To obtain player 2’s strategy at states inWk for k = 1, 2, 3 are determined so that player

1 is indifferent:

V 2
1 = (1− δ)u1(H, η2) + δV 3

1

= (1− δ)u1(L, η2) + δV 1
1

V 3
1 = (1− δ)u1(H, η3) + δV1(HHH)

= (1− δ)u1(L, η3) + δV 1
1

From

V1(HHH) = (1− δ)u1(L, h) + δV 1
1

Thus,

V1(HHH) = (1− δ)u1(L, h) + δu1(L, η1)

Proposition 3.7. When δ ∈ [0, 1) sufficiently high,

η1 < η2 < η3

and we have explicit expression for ηk for k = 1, 2, 3:

η3 =
ξ + ξ2 + ξ3 − d

d̄−d

1 + ξ + ξ2 + ξ3

η2 = η3 − (1− η3)ξ

η1 = η3 − (1− η3)ξ − (1− η3)ξ2.
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Figure 3.5: Player 2’s behavior (probability of playing h)

where

d̄ ≡ u1(L, h)− u1(H, h)

d ≡ u1(L, l)− u1(H, l)

z ≡ u1(L, h)− u1(L, l)

and

ξ ≡ δ
z

d̄− d

See Figure 3.5.

Proof. See Appendix.

3.6 Appendix

3.6.1 Omitted Proofs

3.6.1.1 Proof of Proposition 3.1

Proof. Fix p1 ∈ ∆(S). Define a point-to-set correspondence15

(BR1, BR1m, BR2,m, q0) : (∆(A1)×∆(M)×∆(A2)× [0, 1])|S| ×∆(S)

15See Rosenthal (1979) for a proof of existence of equilibrium in repeated games with random matching.
Our proof is hinted by this. Also, for Kakutani fixed theorem, we refer to an exposition in Myerson (1991).
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⇒ (∆(A1)×∆(A2)× [0, 1])|S| ×∆(S)

where, for σ1 ∈ (∆(A1))|S|, σ1m ∈ (∆(M))|S|, σ2 ∈ (∆(A2))|S|, p0 ∈ ∆(S), µ ∈ [0, 1]|S|,

BRs
1(σ1, σ1m, σ2, µ, p0), BRs

1m(σ1, σ1m, σ2, µ, p0) and BRs
2(σ1, µ, p0) are the best response cor-

respondence at state s ∈ S; i.e.,

BRs
1(σ1, σ1m, σ2, p0) := arg max

α1∈∆(A1)

(1− δ)u1(α1, σ2(s)) + δ
∑
a1∈A1

∑
m∈M

V (s ∧m)σ1m(m|s, a1)α1(a1)

BRs
1m(σ1, σ1m, σ2) := arg max

α1m∈∆(M)

∑
a1∈A1

∑
m∈M

V (s ∧m)α1m(m|s, a1)σ1(a1|s)

where V : S → R such that for each s

V (s) = (1− δ)u1(σ1(s), σ2(s)) + δ
∑
a1∈A1

∑
m∈M

V (s ∧m)σ1m(m|s, a1)σ1(a1|s).

Also

BRs
2(σ1, µ, p0) = arg max

α′2∈∆(A2)

µ(s)u1(H,α′2) + (1− µ(s))u2(σ1(s), α′2),

qs0(p0, σ1, σ1m) =
∑

s′∈S,m∈M :(s′∧m)=s

ps
′

0

∑
a1∈A1

σ1m(m|s′, a1)σ1(a1|s′)

and lastly,

ms(p0) =
µp1(s)

µp1(s) + (1− µ)p0(s)

if either p1(s) > 0 or p0(s) > 0; otherwise ms(p0) = [0, 1].

Clearly the domain is nonempty, convex and compact. The best response at each s ∈ S

is convex-valued, since it is a subset of ∆(Ai) and defined by a linear inequality. Also by

the continuity of expected utility, it is also upper-hemicontinuous. For the similar reason qs0

is convex-valued, and clearly it is upper-hemicontinuous, and for the similar reason, ms is

so. Since a product of upper-hemicontinuous correspondence is upper-hemicontinuous, by

Kakutani fixed-point theorem, there is an equilibrium.

3.6.1.2 Proof of Proposition 3.3

Proof. In the conjectured equilibrium,

µ0(1− β)K

µ0(1− β)K + (1− µ0)1
≥ ᾱ
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⇔ µ0 ≥
ᾱ

(1− ᾱ)(1− β)K + ᾱ
.

This implies that given β ∈ [0, 1) if µ0 ≥ µ(β,K) ≡ ᾱ
(1−ᾱ)(1−β)K+ᾱ

then player 2 chooses h

even though he believes that the normal type always chooses L. Thus, the deviation to H

is not profitable.

Next, we argue that this is a unique equilibrium. Suppose that there is an equilibrium

in which player 1 plays H in a history. Consider the deviation to L then withhold this

information in any following history. Since µ0 > µ̄(β,K), player 2 plays h in these history

and it gives u1(L, h) which is the maximum payoff player 1 could obtain. So it is a profitable

deviation. Contradiction.

3.6.1.3 Proof of Corollary 3.2

Proof. From equation (3.13), in order to show µ(β,K) is increasing in K, it is sufficient to

(1− β)K
(

1 + (K + 1
ᾱ

) β
1−β

)
= (1− β)K + (K + 1

ᾱ
)β(1− β)K−1 is decreasing. The derivative

w.r.t. K is

log(1− β)(1− β)K + β(1− β)K−1 +

(
K +

1

ᾱ

)
β(1− β)K−1 log(1− β)

= (1− β)K−1

[
log(1− β)(1− β) + β +

(
K +

1

ᾱ

)
β log(1− β)

]
Note that log(1− β) < 0, thus

log(1− β)

[
(1− β) +

(
K +

1

ᾱ

)
β

]
+ β < log(1− β) + β < 0

since β < 1 and log(1− β) + β is strictly decreasing when β ∈ (0, 1) and log 1− 1 = 0. For

the part for µ̄(β,K) note that the value is the same to that of Proposition 3.3.

3.6.1.4 Proof of Proposition 3.6

Proof. The above conditions are equivalent to

γk = ᾱ−Dγ

(
µ0

1− µ0

)
(1− ᾱ)βk(1− β)K−k,∀k ∈ {0, 1, 2}.
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Note that

βk(1− β)K−k = (1− β)K
(

β

1− β

)k
.

Thus, as long as β > 1/2, γk is increasing in k.

In order to obtain the explicit expression in the statement, note that

γ0 − ᾱ
γ1 − ᾱ

1− γ1

γ0

=
1− β
β

⇐⇒ γ1 − ᾱ
1− γ1

=
β

1− β
γ0 − ᾱ
γ0

⇐⇒ γ1 − ᾱ = (1− ᾱ

γ0

)
β

1− β
(1− γ1)

⇐⇒ γ1

(
1 +

(
1− ᾱ

γ0

)
β

1− β

)
= ᾱ +

(
1− ᾱ

γ0

)
β

1− β

⇐⇒ γ1 =
ᾱ +

(
1− ᾱ

γ0

)
β

1−β

1 +
(

1− ᾱ
γ0

)
β

1−β

= 1 +
ᾱ− 1

1 +
(

1− ᾱ
γ0

)
β

1−β

For future reference,

1− γ1 =
1− ᾱ

1 +
(

1− ᾱ
γ0

)
β

1−β

Thus,

γ1

1− γ1

=
ᾱ +

(
1− ᾱ

γ0

)
β

1−β

1− ᾱ

Also,

1

1− γ1

=
1 +

(
1− ᾱ

γ0

)
β

1−β

1− ᾱ

Similarly,

γ2

1− γ2

=
ᾱ +

(
1− ᾱ

γ1

)
β

1−β

1− ᾱ

and

1

1− γ2

=
1 +

(
1− ᾱ

γ1

)
β

1−β

1− ᾱ

Note that

Gγ = 1 + 3γ0
1

1− γ1

+ 3γ0
1

1− γ2

γ1

1− γ1

+ γ0
γ2

1− γ2

γ1

1− γ1

131



Note that

γ1

1− γ2

=
γ1

(
1 +

(
1− ᾱ

γ1

)
β

1−β

)
1− ᾱ

=
γ1 +

(
γ1

β
1−β − ᾱ

β
1−β

)
1− ᾱ

=
γ1(1 + β

1−β )− ᾱ β
1−β

1− ᾱ

From this, the third term is

γ1

1− γ2

1

1− γ1

=

(
1 + β

1−β

1− ᾱ

)(
γ1

1− γ1

)
− ᾱ

1− ᾱ
β

1− β

(
1

1− γ1

)

=

(
1 + β

1−β

1− ᾱ

)(
ᾱ + (1− ᾱ

γ0
) β

1−β

1− ᾱ

)
− ᾱ

1− ᾱ
β

1− β

(
1 + (1− ᾱ

γ0
) β

1−β

1− ᾱ

)

=
ᾱ + (1− ᾱ

γ0
) β

1−β − ᾱβ − ᾱβ(1− ᾱ
γ0

) β
1−β

(1− ᾱ)2(1− β)

=
ᾱ(1− β) + (1− ᾱ

γ0
)(1− ᾱβ) β

1−β

(1− ᾱ)2(1− β)

To obtain the last term,

γ2

1− γ2

γ1 =

 ᾱ +
(

1− ᾱ
γ1

)
β

1−β

1− ᾱ

 γ1

=
ᾱγ1 + (γ1 − α) β

1−β

1− ᾱ

=
(ᾱ + β

1−β )γ1 − ᾱ β
1−β

1− ᾱ

Also,

γ2

1− γ2

γ1

1− γ1

=
ᾱ + β

1−β

1− ᾱ

(
γ1

1− γ1

)
− ᾱ

1− ᾱ
β

1− β

(
1

1− γ1

)
=
ᾱ + β

1−β

1− ᾱ

(
ᾱ + (1− ᾱ

γ0
) β

1−β

1− ᾱ

)
− ᾱ

1− ᾱ
β

1− β

(
1 + (1− ᾱ

γ0
) β

1−β

1− ᾱ

)

=
ᾱ(1− β) + β)(ᾱ + (1− ᾱ

γ0
) β

1−β )

(1− ᾱ)2(1− β)
−
ᾱβ(1 + (1− ᾱ

γ0
) β

1−β )

(1− ᾱ)2(1− β)

=
ᾱ(ᾱ(1− β) + β)− ᾱβ + (ᾱ(1− β) + β − ᾱβ)(1− ᾱ

γ0
) β

1−β

(1− ᾱ)2(1− β)
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From all of theses,

Dγ = 1 + 3
γ0

1− γ1

+ 3
γ1

1− γ2

γ0

1− γ1

+ γ2
γ1

1− γ2

γ0

1− γ1

= 1 + 3

(
γ0 + (γ0 − ᾱ) β

1−β

1− ᾱ

)
+ 3

(
ᾱ(1− β)γ0 + (γ0 − ᾱ)(1− ᾱβ) β

1−β

(1− ᾱ)2(1− β)

)

+
ᾱ2(1− β)γ0 + (ᾱ(1− β) + β − ᾱβ)(γ0 − ᾱ) β

1−β

(1− ᾱ)2(1− β)

= 1 +
3γ0(1− ᾱ)(1− β) + 3(γ0 − ᾱ)(1− ᾱ)β + 3ᾱ(1− β)γ0 + 3(γ0 − ᾱ)(1− ᾱβ) β

1−β

(1− ᾱ)2(1− β)

+
ᾱ2(1− β)γ0 + (ᾱ(1− β) + β − ᾱβ)(γ0 − ᾱ) β

1−β

(1− ᾱ)2(1− β)

= 1 +
γ0(3 + ᾱ2)

(1− ᾱ)2
+

(γ0 − ᾱ)(3(1− ᾱ)β + 3(1− ᾱβ) β
1−β + (ᾱ(1− β) + β − ᾱβ) β

1−β )

(1− ᾱ)2(1− β)

= 1 + (γ0 − ᾱ)

[
3 + ᾱ2

(1− ᾱ)2
+

(3(1− ᾱ)β + 3(1− ᾱβ) β
1−β + (ᾱ(1− β) + β − ᾱβ) β

1−β )

(1− ᾱ)2(1− β)

]

+ ᾱ
3 + ᾱ2

(1− ᾱ)2

= 1 + (γ0 − ᾱ)
1

(1− ᾱ)2

[
3 + ᾱ2 + 3(1− ᾱ)

β

1− β
+ (3 + ᾱ + β − 5ᾱβ)

β

(1− β)2

]
+ ᾱ

3 + ᾱ2

(1− ᾱ)2

Our original equation is

γ0 − ᾱ =
µ0

1− µ0

(ᾱ− 1)(1− β)3Dγ (3.17)

⇐⇒ γ0 − ᾱ =
µ0

1− µ0

(1− β)3

(
(ᾱ− 1)− (γ0 − ᾱ)

1

1− ᾱ
Φ− ᾱ3 + ᾱ2

1− ᾱ

)
⇐⇒ (γ0 − ᾱ)

(
1 +

µ0

1− µ0

(1− β)3 1

1− ᾱ
Φ

)
=

µ0

1− µ0

(1− β)3

(
ᾱ− 1− ᾱ3 + ᾱ2

1− ᾱ

)
where

Φ ≡ 3 + ᾱ2 + 3(1− ᾱ)
β

1− β
+ (3 + ᾱ + β − 5ᾱβ)

β

(1− β)2

Note that Φ > 0, by observing 3 + ᾱ + β − 5ᾱβ because 3 ≥ 3ᾱβ and ᾱ, β ≥ ᾱβ.

γ0 = ᾱ +

µ0

1−µ0
(1− β)3

(
ᾱ− 1− ᾱ 3+ᾱ2

1−ᾱ

)
1 + µ0

1−µ0
(1− β)3 1

1−ᾱΦ
(3.18)

Note that γ0 ≤ ᾱ as we expected.
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From (3.17) and (3.18), we can derive

Dγ =

µ0
1−µ0

(1−β)3
(
ᾱ−1−ᾱ 3+ᾱ2

1−ᾱ

)
1+

µ0
1−µ0

(1−β)3 1
1−ᾱΦ

µ0

1−µ0
(ᾱ− 1)(1− β)3

=

(
ᾱ−1−ᾱ 3+ᾱ2

1−ᾱ

)
1+

µ0
1−µ0

(1−β)3 1
1−ᾱΦ

(ᾱ− 1)
.

3.6.1.5 Proof of Proposition 3.7

Proof. Given η1, . . . , ηK , we can obtain V k
1 .

V 3
1 = (1− δ)u1(H, η3) + δ((1− δ)u1(L, h) + δu1(Lη1))

= (1− δ)u1(L, η3) + δu1(L, η1)

From this,

u1(L, η3)− u1(H, η3) = δ(u1(L, h)− u1(L, η1))

Similarly,

u1(L, η2)− u1(H, η2) = δ(u1(L, η3)− u1(L, η1))

u1(L, η1)− u1(H, η1) = δ(u1(L, η2)− u1(L, η1))

Also,

η1u1(L, h) + (1− η)u1(L, l)− (η1u1(H, h) + (1− η1)u1(H, l))

= η1(u1(L, h)− u1(H, h)) + (1− η1)(u1(L, l)− u1(H, l))

Also,

u1(L, η2)− u1(L, η1) = η2u1(L, h) + (1− η2)u1(L, l)− (η1u1(L, h) + (1− η1)u1(L, l))

= (η2 − η1)u1(L, h) + (1− η2 − 1 + η1)u1(L, l)

= (η2 − η1)u1(L, h)− (η2 − η1)u1(L, l)

= (η2 − η1)(u1(L, h)− u1(L, l))

Thus,

η1(u1(L, h)− u1(H, h)) + (1− η1)(u1(L, l)− u1(H, l)) = δ(η2 − η1)(u1(L, h)− u1(L, l))
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Let

d̄ ≡ u1(L, h)− u1(H, h)

d ≡ u1(L, l)− u1(H, l)

z ≡ u1(L, h)− u1(L, l)

Using these notations,

η1d̄+ (1− η1)d = δ(η2 − η1)z

η2x+ (1− η2)y = δ(η3 − η1)z

η3d̄+ (1− η3)d = δ(1− η1)z

⇐⇒ η3 =
δ(1− η1)z − d

d̄− d
(3.19)

Similarly,

η2 =
δ(η3 − η1)z − d

d̄− d

η1 =
δ(η2 − η1)z − d

d̄− d

From these,

η3 − η2 =
δ(1− η3)z

d̄− d

η2 − η1 =
δ(η3 − η2)z

d̄− d
Let

ξ ≡ δ
z

d̄− d
Then,

η3 − η2 = (1− η3)η

⇐⇒ η2 = η3 − (1− η3)ξ (3.20)
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Also,

η2 − η1 = (η3 − η2)ξ.

Substituting (3.20),

(η3 − (1− η3)ξ − η1)

= (η3 − (η3 − (1− η3)ξ))ξ = (1− η3)ξ2.

Thus,

η1 = η3 − (1− η3)ξ − (1− η3)ξ2. (3.21)

By substituting (3.20) and (3.21) into (3.19),

η3 =
δ(1− (η3 − (1− η3)ξ − (1− η3)ξ2))z − d

d̄− d

= (1− (η3 − (1− η3)ξ − (1− η3)ξ2)ξ − d

d̄− d

⇐⇒ η3 = ξ − η3ξ + (1− η3)ξ2 + (1− η3)ξ3 − d

d̄− d

= ξ − η3ξ − η3ξ
2 − η3ξ

3 + ξ2 + ξ3 − d

d̄− d

Or

η3(1 + ξ + ξ2 + ξ3) = ξ + ξ2 + ξ3 − d

d̄− d

⇐⇒ η3 =
ξ + ξ2 + ξ3 − d

d̄−d

1 + ξ + ξ2 + ξ3
.
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3.6.2 Detailed Derivation of Equations in Proof of Proposition 3.4

3.6.2.1 Derivation of (3.9)

In detail,

µ0(1− β)K(1 +Kγ1)

µ0(1− β)K(1 +Kγ1) + (1− µ0)
=
ᾱ− γ1

1− γ1

⇐⇒ µ0(1− β)K(1 +Kγ1)(1− γ1) = (µ0(1− β)K(1 +Kγ1) + (1− µ0))(ᾱ− γ1)

⇐⇒ µ0(1− β)K(1 +Kγ1)(1− ᾱ) = (1− µ0)(ᾱ− γ1)

⇐⇒ γ1((1− ᾱ)Kµ0(1− β)K + (1− µ0)) = ᾱ(1− µ0)− (1− ᾱ)µ0(1− β)K .

3.6.2.2 Derivation of (3.13)

µ(s) =
µ0p1(s)

µ0p1(s) + (1− µ0)p0(s)
=

1

1 + 1−µ0

µ0

p0(s)
p1(s)

≥ ᾱ

⇐⇒ 1− ᾱ
ᾱ

µ0

1− µ0

≥ p0(s)

p1(s)

⇐⇒ 1− ᾱ
ᾱ

µ0

1− µ0

≥ 1

(1− µ0)(Kᾱ + 1)

(1− µ0)ᾱ− µ0(1− α)(1− β)K

β(1− β)K−1

⇐⇒ 1− ᾱ
ᾱ

µ0

1− µ0

(1 +Kᾱ)

ᾱ
β(1− β)K−1 ≥ 1− µ0

1− µ0

1− ᾱ
ᾱ

(1− β)K

⇐⇒ µ0

1− µ0

1− ᾱ
ᾱ

(1− β)K
(

1 +

(
K +

1

ᾱ

)
β

1− β

)
≥ 1 (3.22)

3.6.2.3 Derivation of (3.15)

γ2((u1(L, h)− u1(L, l))(1− δK+1)− (1− δ)(u1(H, h)− u1(H, l)))

= (1− δ)u1(H, l) + δ((1− δK)u1(L, h)) + (δK+1 − 1)u1(L, l)

⇒ γ2 =
(1− δ)u1(H, l) + δ((1− δK)u1(L, h)) + (δK+1 − 1)u1(L, l)

(u1(L, h)− u1(L, l))(1− δK+1)− (1− δ)(u1(H, h)− u1(H, l))

=
u1(H, l) + δ(1 + δ + · · ·+ δK−1)u1(L, h)− (1 + δ + · · ·+ δK)u1(L, l)

(u1(L, h)− u1(L, l))(1 + δ + · · ·+ δK)− (u1(H, h)− u1(L, l))
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