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Abstract

Very large multidimensional arrays are commonly used in data intensive scientific com-
putations as well as on-line analytical processing applications referred to as MOLAP. The
storage organization of such arrays on disks is done by partitioning the large global array
into fixed size sub-arrays called chunks or tiles that form the units of data transfer between
disk and memory. Typical queries involve the retrieval of sub-arrays in a manner that access
all chunks that overlap the query results. An important metric of the storage efficiency is
the expected number of chunks retrieved over all such queries. The question that immedi-
ately arises is “what shapes of array chunks give the minimum expected number of chunks
over a query workload?” The problem of optimal chunking was first introduced by Sarawagi
and Stonebraker [15] who gave an approximate solution. In this paper we develop exact
mathematical models of the problem and provide exact solutions using steepest descent and
geometric programming methods. Experimental results, using synthetic and real life work-
loads, show that our solutions are consistently within than 2.0% of the true number of chunks
retrieved for any number of dimensions. In contrast, the approximate solution of [15] can
deviate considerably from the true result with increasing number of dimensions and also may
lead to suboptimal chunk shapes.

Keywords: Array Chunking, Algorithms, Performance, Multidimensional data model

1 Introduction

Multidimensional array representations are commonly used in data warehousing and on-Line
analytical processing (OLAP) for easy access and extraction of statistical information for deci-
sion support. One gets a better intuitive meaning of the statistical summaries of the data if the
data is abstracted as a multi-dimensional dataset. Usage of optimized multi-dimensional array
storage is prevalent in MOLAP (Multidimensional On-Line Analytical Processing) and HOLAP
(Hybrid On-Line Analytical Process) type products such as Essbase (now officially called Hype-
rion System 9 BI+ Analytic Services). A canonical example of a multidimensional array is that
of sales data on products, stores, time [6, 19], this can be represented as a relation R(Product,
Store, Time, Sales) on 4 attributes: products, stores, time and Sales. This information can also
be perceived as a 3-dimensional array with 3 independent axes: Product, Store, Time, with the
values of Sales, also termed the measure, as the entries in the array. In general a MOLAP model
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of k + 1-dimensional attribute relation, R ⊆ D1 ×D2 × . . .×Dk,Z, consists of a k-dimensional
array, with axes D1, D2, . . . , Dk whose entries are drawn from values of a measure Z, and a
representative null value φ.

Similarly, analysis and visualization of large scale scientific data, involve manipulation of
data abstracted as multi-dimensional arrays. The multi-dimensional rectangular arrays, both
dense and sparse depending on the context, form the fundamental abstract data structure used in
scientific computing. Consequently scientific applications generally center around manipulation
of large arrays and array files. Numerous applications in scientific domains such as Physics,
Astronomy, Geology, Earth Sciences, Statistics, etc., map their problems space onto matrices
and multi-dimensional arrays on which mathematical tools such as linear, non-linear equations
solvers and differential equation solvers can be applied. Starting with numeric data arrays from
observations, instruments and simulation experiments, these arrays are required to be persistent
on disks and subsequently accessed efficiently for scientific analysis.
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Figure 1: A 3-dimensional MOLAP representation R(Product, Store, Time, Sales).

Figure 1 is a simple illustrative 3-dimensional MOLAP view of a ROLAP model R. The
bold lines indicate chunk boundaries. A MOLAP model also gives a good perspective view for
deriving various statistical information summaries of a database. Shoshani [17], first showed the
similarities and differences between OLAP and statistical databases. The differences however
are minor and were primarily attributed to the issues of concern by implementers of statistical
and OLAP databases at that time. In the broader sense of comparing the requirements of
scientific database management and MOLAP systems today, they are the same in nearly every
aspect of storage and access requirements. In general, both scientific and MOLAP datasets can
be considered as a collection of multi-dimensional arrays that reside on secondary storage and
queries on an array involve an orderly access of either the entire array or a hyper-rectangular
sub-array.

To store array elements on disk, one can naively utilize the mapping of multi-dimensional
array indices onto linear storage. Two such conventional mappings are the row-major (or C-
Language) order, and the column-major (or Fortran Language) order. A layout of the elements
in row-major order only guarantees good performance if the elements are subsequently accessed
in the same order. Accessing the elements in a different order, e.g. column-major order, gives
very poor performance [16]. Such a layout is only worth considering if the array is generally
dense, i.e., almost every array entry exists. Thirdly, such an array layout on secondary storage
is not extendible without storage reorganization. Some major characteristics for consideration
in the storage and access of these arrays onto disk then are that:

• the array can be extremely large, requiring gigabytes of disk storage and sometimes tertiary

2



storage.

• the arrays, particularly in high dimensions can be sparse in that there are relatively fewer
valid entries than indexed locations.

• in both scientific data storage and MOLAP storage, the data incrementally grows over
time and as such the array storage mapping must be extendible. We say an array is
extendible if the array bounds are allowed to grow by admitting new array elements that
are appended to the storage space but without reorganizing previously allocated elements.

Persistent storage organization of multi-dimensional arrays is typically done by partitioning
them into coarse-grained hyper-rectangular blocks called chunks or tiles which form the units
of array transfers between disk and memory [15, 16, 5, 9]. A chunk is defined by the index
range of values along each dimension. A query over the dataset for analysis retrieves either the
entire array or a sub-array in which case all the array chunks that overlap the query result are
retrieved. Even though the elements contained in each chunk, are stored either in row-major
order, or column major order, the layout of the chunks on disk can be done using some other
linear mapping function such as the Morton sequence, Hilbert scan, or Peano scan order [8].
Chunking alleviates some of the concerns in multidimensional array storage since:

• array chunks with all zero entries are not stored and chunks with fewer entries below a
specified threshold can be compressed. This results in an improved storage utilization.

• Allocating chunks through an index scheme, e.g., B+-tree, allows for arbitrary array ex-
pansions without storage reorganization.

A question that arises in the use of chunking is that of specifying an optimal chunk shape
and chunk size. A chunk is characterized by two parameters: the chunk size and the chunk
shape. The size is defined as the number of elements that can be contained in a chunk. Suppose
a k-dimensional arrayM[N1, N2, . . . , Nk] is partitioned such that dimension Nj is split into mj

intervals, for 1 ≤ j ≤ k. The chunk shape is given by 〈c1, c2, . . . , ck〉, where cj = ⌈Nj/mj⌉, is
the number of indices of dimension j addressable in a chunk. A chunk shape implicitly defines
a chunk size C =

∏k
j=1 cj . Note that large chunk sizes may cause unnecessary data to be read

for queries with small result set. On the other hand, small chunk sizes, may require more disk
accesses to retrieve all chunks required to answer a query. More importantly, the chunk shape
influences the number of chunks retrieved in answering a query.

An important metric of the storage efficiency is the expected number of chunks retrieved by
queries under the access workload. The problem of optimal chunking was first introduced by
Sarawagi and Stonebraker [15], who gave an approximate solution to this problem. We show
that the optimal shape derivation given by Sarawagi and Stonebraker is only approximate and
under certain circumstances can deviate significantly from the true answer. We propose two
different models of the problem and show how the chunking parameters should be determined
based on the probabilistic access patterns of sub-array queries. Queries in data warehousing
primarily derive statistical summary information over either sub-array or entire array regions
for decision support applications. From the point of view of optimal retrieval, the chunks are the
target of retrievals and it is immaterial whether the retrieved chunks are for data warehousing
or scientific applications. The main contributions of this paper are:

• The development of two accurate mathematical models of the chunking problem;
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• Derivation of exact solutions, one using steepest descent and another using geometrical
programming method which lead to accurate retrieval costs and optimal chunk shape
calculation.

• Experimental comparison of the estimation errors induced by the models using synthetic
workloads on real life datasets.

In the rest of the paper, Section 2 presents some related work on array chunking. Section 3
describes a new scheme for addressing chunks based on a modified block compressed row-storage
method that is used in addressing block partitioned matrices. In Section 4 we give a motivating
example and a sample calculation that contrasts our method with that in [15]. We also present
the two mathematical models for defining an optimal chunking shape. The derivations of the
optimal chunk shapes and sizes, under both models given some probabilistic access patterns
of sub-array queries are presented in Section 5. In section 6, we present the results of our
experimental comparisons for a synthetic workload. We conclude with Section 7, giving some
direction for future work. Detailed proofs of the Lemma’s and Theorem’s mentioned are given
in the Appendices.

2 Related Work

In nearly all applications that use disk resident large scale multi-dimensional arrays, the physical
organization of the array is by chunking. The global array is tessellated into sub-arrays or tiles
of size C and shape 〈c1, c2, . . . , ck〉. Rather than mapping the elements of the array directly
onto consecutive linear storage, the chunks are mapped onto storage and, within each chunk,
the array elements are laid out using a conventional row-major or column-major ordering.

The rationale for chunking large arrays, whether dense or sparse, is justified in general when
efficient I/O performance is desired in applications that access data with a high degree of locality.
In [18], Vitter elaborated on the fact that an algorithm that does not exploit locality can be
reasonably efficient when the data sets fit entirely in internal memory, but performs miserably
when deployed naively on an External Memory (EM), setting and virtual memory is used to
handle page management. The linear mapping function for allocating chunks onto disk storage
can be done by the row-major or column-major ordering, any one of the mapping functions for
space filling curves [8] or done with the use of B+−tree indexing as in HDF5 [7]. The problem of
chunk addressing is orthogonal to optimizing the chunk shape that requires taking into account
the information on sub-array access patterns. This is the problem first raised by Sarawagi and
Stonebraker [15].

The other domain where array chunking has been predominantly used is in multidimensional
on-line analytical processing algorithm (MOLAP) [19, 5, 9, 14, 12]. In [19], the method of
computing the CUBE over a multi-dimensional data model was introduced. The authors gave a
detailed analysis for the associated on-line analytical processing algorithms. The MOLAP model
proposed storing the data as a sparse arrays where the elements of the array are the measures.
The encoding of the attribute values, along each dimension, defined the position of the value in
the multi-dimensional space. The array is split into chunks of size equal to the block size of the
disk storage system. Chunk compression is further used to improve storage utilization.

Goil and Choudhary [5] presented a storage scheme for MOLAP similar to that in [19]
but applied a bit-encoded scheme for the position index of the occurring array elements. The
method introduced was referred to as the bit-encoded sparse structure(BESS). Not only is BESS
applicable to MOLAP data sets, but can be applied to scientific multi-dimensional sparse array
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Figure 2: Block Compressed Row Storage

data. Variations of the chunking concepts for the storage schemes MOLAP data sets are also
proposed in the SISYPHUS storage manager [9].

In all of the above related works, the chunking schemes are not driven by the query access
pattern. Further, given the fact that multi-dimensional databases for data warehousing have the
propensity to grow, very little is discussed on how extendibility is managed in these schemes. The
problem on handling extendibility in chunked arrays is the research focus of the work in [14, 12].

3 Addressing Array Chunks

The idea of chunking multi-dimensional arrays has its origins from techniques used in scientific
computing for managing memory resident sparse matrices [2] and large sparse and dense matrices
in paged and parallel environments [10, 11]. We illustrate an addressing method for array chunks
with a technique used in addressing sparse multi-dimensional arrays. Consider first an example
of a 6 × 6 array M = (mij), of doubles shown below. The Block Compressed Row storage
BCRS [4], for sparse matrices forms the basis of a typical chunk addressing method.

M =
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0.0 4.0 1.0 0.0 2.0 −9.0

















A method known as the block compressed row-storage partitions the matrix, along each dimen-
sion into intervals, to form small blocks. Each of the blocks is then treated as a dense matrix.
Figure 2 illustrates the storage scheme.

The block addressing is done in two levels. The first level concerns locating the block that an
element lies in and the second level concerns the location of the element within the block. The
first level block organization is treated as a sparse array in which blocks containing only zero
elements are discarded. Each block has a coordinate index 〈i, j〉. The offset-values computed
from a linear mapping function are organized into a vector of offset-indices. Only the offset-
indices of blocks with non-zero entries are retained. By defining a linear mapping function
Iij = g(〈i, j〉), that maps the coordinate index 〈i, j〉 onto an integer Iij , that defines offset index
relative to the position of I0,0, each block can be accessed. An inverse function 〈i, j〉 = g−1(Iij)
that takes an offset value and returns the coordinate index, is also required for computing array
elements under some circumstances such as locating neighbors. Figure 2b illustrates the offset-
indices of the blocks when the mapping function is the row-major linearizing function. Given the

5



coordinates 〈i, j〉, one determines if the element mij exists by first computing the offset index Iij ,
of the block using the mapping function g() and then determining whether Iij occurs in the offset
index vector or not. Searching the offset index vector can be done with an interpolation search.
Alternatively, the pairs of offset index and block pointers can be maintained as a balanced binary
search tree.

The BCRS method generalizes naturally to addressing of chunked multi-dimensional arrays.
The chunking process is equivalent to the block partitioning method used for matrices. For
extremely large multi-dimensional arrays the first level chunk organization can be done with a
B+−tree. This is the approach used in HDF5 [7], a popular multi-dimensional array file format
used extensively in scientific computing.

4 Access Models of Arrays

A k dimensional array, M [N1, N2, . . . , Nk], consists of
∏k

i=1 Ni elements. Each of its elements,
m〈i1, i2, . . . , ik〉, is indexed by k indices where 0 ≤ ij < Nj is its index with respect to the jth

dimension. We wish to store M on disk subject to the constraint that each disk block can hold
at most C elements of M . This is done by partitioning M into equal shape rectangular chunks
such that each chunk fits on a disk block, i.e., if each chunk has dimensions 〈c1, c2, ..., ck〉 then
∏k

i=1 ci ≤ C.

A1

A2

c1

c2

Figure 3: Example of a query and chunks retrieved by it.

The system supports queries that retrieve rectangular sub-arrays of M .
A query q = 〈[l1 : u1), [l2 : u2), . . . , [lk : uk)〉 specifies a lower bound li and an upper bound ui

on each of the k dimensions. The query retrieves all elements m〈i1, i2, ..., ik〉 of M such that
lj ≤ ij < uj for 1 ≤ j ≤ k. The cost of answering this query is directly related to the number
of chunks (disk blocks) that overlap the sub-array defined by the query. As an illustartion, in
Figure 3 we show a 2-dimensional query of shape 〈A1, A2〉 operating on a chunked array where
each chunk has the shape 〈c1, c2〉. The shaded chunks are the ones that will be retrieved by
this query. In [15], it was shown that knowledge of the predicted query access patterns can be
efficiently used to select chunk dimensions that result in a significant reduction in the cost of
answering queries. Prediction of query access patterns is usually based on query statistics that
are collected using query history logs, sampling, or other statistical methods. Next we present a
motivating example to show the importance of exact cost estimation and finding optimal chunk
shapes.
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4.1 A Motivating Example

This research is motivated by the need to compute exact cost models for estimating the number of
chunks retrieved by queries and the need to optimize chunk shapes based on workload statistics.
The following small example shows that the inaccuracy of the cost expression in [15] can lead
to inaccurate estimation of the access costs, but even more importantly to suboptimal choices
of chunk shapes.

In the model of [15] as well as in our corresponding model, the workload is represented as a
collection of q query shapes, each occuring with probability pi. According to [15], the average
cost for a query is given by

q
∑

j=1

(

k
∏

i=1

⌈

Aij

ci

⌉

)

pj (4.1)

whereas in the model presented in this paper we prove that the actual cost is given by

q
∑

j=1

pj

k
∏

i=1

(

Aij − 1

ci
+ 1

)

; (4.2)

To contrast the two expressions, assume a three dimensional dataset with a single query shape
<40,60,120> (i.e., q = 1), and a block size constraint of 212=4096. In Table 1, we compare two
options for chunks sizes, we can see that the cost model in [15] (which we call SS-Model) will
lead to a choice of Option 1 with chunk shape <8,64,8> with a computed cost of 75 which is
better than the cost of 80 for Option 2.

However, the accurate computed cost developed in this paper shows a cost of 179.2449 for
Option 1 and 129.95 for Option 2 leading to a choice of Option 2. To summarize, the correct
choice for a chunk shape should be Option 2 which represents over 38% cost saving over the
choice of the SS-model. Also note that the SS-model has a 139% error for computing the access
cost for option 1, and 62% error for option 2.

Table 1: Cost summary
Option Chunk Shape SS Cost Exact Cost Relative

Eqn 4.1 Eqn 4.2 Error

1 < 8, 64, 8 > 75 179.2449 139%

2 < 8, 16, 32 > 80 129.95 62%

Next we present two models commonly used for query access pattern prediction: The Inde-
pendent Attribute Range model and The Query Shape model and then proceed with computing
the retrieval costs and optimal chunk shapes for both of them.

4.2 Independent Attribute Range (IAR)

In the IAR model, a probabilistic distribution of the possible range values is calculated separately
for each of the k dimensions. It is assumed that the specifications of ranges of attributes in queries
are independent of each other [1]. This assumption means that the estimated probability of a
query shape is calculated as a product of the estimated probabilities of its components, i.e.,
the probability of a shape 〈a1, a2, ..., ak〉 is estimated as

∏k
i=1 p(ai) where p(ai) is the estimated

probability that the value of the range for the ith dimension is ai. More detailed treatment of
this case is provided in Section 5.2.
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4.3 Query Shape (QS)

This model is attributed to Sarawagi and Stonebraker [15], As in the IAR model, each query
is associated with a shape 〈A1, A2, . . . , Ak〉. The difference is that in the QS model the query
access pattern is estimated in terms of probability distribution of complete query shapes rather
than distributions of ranges of individual dimensions.

The QS model, groups the queries into a collection of classes L1, L2, L3, . . . , Lq such that
the class Li contains all queries of shape 〈Ai1, Ai2, . . . Aik〉. Each class Li is associated with a
probability Pi, such that

∑

i Pi = 1.0. The access pattern is defined then by the set of pairs
{〈Ai1, Ai2, . . . Aik〉 : Pi}, 1 ≤ i ≤ q. Our exact analysis of this model is presented in Section 5.3.

4.4 Illustrative Example

Under both models (IAR) and (QS), the actual location of a query shape relative to the array
is assumed to be uniformly distributed. The following small example illustrates the difference
between the two models.

Table 2: Queries
Query number Query shape

1 < 1 : 3, 2 : 5 > < 2, 3 >

2 < 4 : 7, 6 : 10 > < 3, 4 >

3 < 5 : 9; 3 : 6 > < 4, 3 >

4 < 6 : 8, 4 : 7 > < 2, 3 >

Example: For a 2-dimensional array, we assume access pattern estimation is based on a
sample of 4 queries given in Table 2. Range distribution for each dimension is given in Table 3
and shape distributions according to the two models are shown in Table 4. Note that under

Table 3: Individual range probabilities under model (IAR)
Dimension Range Appears Range
# value in query# probability

1 2 1,4 1/2

1 3 2 1/4

1 4 3 1/4

2 3 1,3,4 3/4

2 4 2 1/4

Table 4: Shape probabilities under the two models
Query Prob. In Prob.
Shape Model (IAR) Query # (QS)

< 2, 3 > 1/2× 3/4 = 3/8 1,4 1/2

< 2, 4 > 1/2× 1/4 = 1/8 - 0

< 3, 3 > 1/4× 3/4 = 3/16 - 0

< 3, 4 > 1/4× 1/4 = 1/16 2 1/4

< 4, 3 > 1/4× 3/4 = 3/16 3 1/4

< 4, 4 > 1/4× 1/4 = 1/16 - 0
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model (IAR), some shapes that were not observed in the sample are assumed to have non-zero
probability whereas under model (QS) only observed shapes have non- zero probability.

5 Optimizing Array Chunk Shapes

5.1 Analysis of Expected Chunk Overlaps

We will first estimate the number of chunks overlapping a fixed shape and then compute the
expected number of chunks under the probabilistic assumptions for each of the two models.
Given a shape A = 〈A1, A2, . . . , Ak〉, assuming the array M is split into chunks of dimensions
c = 〈c1, c2, ..., ck〉, we will denote by E(A, c) the expected number of chunks overlapping the
shape A assuming it can be located randomly anywhere in the array M .

Lemma 5.1. E(A, c) =
∏k

i=1(
Ai−1

ci
+ 1)

For proof of Lemma 5.1 see Appendix A.
As we can see, the expression in Lemma 5.1 involves subtracting 1 from each range size. For

convenience we will refer to these reduced ranges as “adjusted range sizes.”

5.2 Analysis of the Independent Attribute Range Model

We recall that this model assumes that the probability of a random query shape is calculated from
the individual probability distributions for range values in each dimension. More specifically,
we assume there are mi possible range values Aij for the ith dimension where each such value
appears in a random query shape with probability pij and

∑mi

j=1 pij = 1 for 1 ≤ i ≤ k.

Lemma 5.2. The expected number of chunks that overlap a random query shape is

k
∏

i=1

(

Āi

ci
+ 1

)

where Āi is the expected value of the adjusted range size for the ith dimension, i.e., Āi =
∑mi

j=1 pij(Aij − 1)

Proof. (Outline): Using Lemma 5.1 and the fact that the probability of a query shape is equal
to the product of the probabilities of its components, we can show that the expected overlap is

k
∏

i=1





mi
∑

j=1

pij

(

Aij − 1

ci
+ 1

)



.

This by definition is equal to
k
∏

i=1

(

Āi

ci
+ 1

)

.

The chunk overlap minimization problem we wish to solve can be stated as follows:

min

k
∏

i=1

(

Āi

ci
+ 1

)

(5.1)
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Subject to
k
∏

i=1

ci ≤ C (5.2)

where the ci’s are integers.
We will first show how to solve this problem by relaxing this latter integrality constraint and

then discuss the integral solution. Optimization problems where the objective function and/or
constraints contain products rather than sums are known as geometrical programming(see [3]).
Our case is more involved than typical geometrical programming problems as the solution rep-
resents chunk sizes which must be integers.

Theorem 5.1. The solution of the system represented by Equations (5.1),(5.2) for real ci’s is

ci = Āi

(

C/
k
∏

i=1

Āi

)1/k

For proof of Theorem 5.1 see Appendix B.

5.2.1 Integral Solution

In most practical cases, the disk block size C is an integral power of 2. Let C ′ = log2 C and let
yi = log2 Ci’s. The yis must all be integers. In this section we will show how to solve the above
problem optimally for this case by rounding up or down the non-integral solutions obtained in
Theorem 5.1. Our approach uses some techniques developed in Aho and Ullman [1] for solving
a different problem related to bucketing multidimensional data for partial match retrieval.

Let 〈y1, y2, ..., yk〉 be the non-integral solution obtained above and Ŷ = 〈ŷ1, ŷ2, ..., ŷk〉 be
an integral solution which is as good as any other integral solution. In [13] we prove that
Āi

ci
= Āi2

−yi is a constant. We will denote it by e. Let ei = Āi2
−ŷi , then by the optimality

of the solution Ŷ , subtracting 1 from ŷi and adding 1 to ŷj cannot improve the value of the
objective function in Equation 5.1. Let Ô be the value of the objective function (see Equation
5.1) resulting from using the solution Ŷ and let Ôij be the value of the objective function
obtained by a solution where we transfer 1 from ŷi to ŷj leaving all other terms unchanged.
The two terms that are different between these two objective functions (see Equation 5.1) are
(Āi2

−ŷi +1) and (Āj2
−ŷj +1) in Ô which are changed to (Āi2

−(ŷi−1) +1) and (Āj2
−(ŷj+1) +1) in

Ôij respectively. Using the notation above and noting that due to the optimality of the solution

Ŷ the ratio between the two objective functions,
Ôij

Ô
≥ 1 , we get

1 + 2êi

1 + êi

1 + êj/2
1 + êj

≥ 1

From it follows that 2êi ≥ êj . Dividing both sides of this inequality by the constant e we finally
get

(yi − ŷi) ≤ 1− (ŷj − yj) (5.3)

Using similar arguments to the ones in [1] it follows that the optimal integral solution is obtained
by rounding each yi either up or down. We also note that in the case that yi is rounded up
its fractional part is 1 − (ŷi − yi) and if it is rounded down its fractional part is yi − ŷi. As
Equation (5.3) must hold for every pair of indices i and j, it follows that in an optimal solution,
the fractional parts of each of the yi’s that are rounded up must be equal or larger than the
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fractional parts of the ones that are rounded down. We can therefore obtain an integral solution
to our problem following the arguments in [1] as follows: Let the sum of the fracional parts of the
non-integral solution be M (clearly M must be an integer). We can obtain an integral solution
from it by rounding up the M components, yi , with the largest fractional parts and rounding
down the rest. The complete process of obtaining a solution is illustrated in the example below.

Row
#

Dim 1 Dim 2 Dim 3 Dim 4 Dim 5

1 Input: Expected adjusted range
size in queries

5.7 9.4 12.5 24.9 30.2

2 ci= Non integral solution for
chunk size (product is 8192)

2.501088 4.124602 5.484843 10.92581 13.25138

3 Solution in logarithms
yi=log2ci (sum is 13)

1.322556 2.044255 2.45545 3.449668 3.728071

4 Fractional part of yi

(sum of fractional parts is 2)
0.322556 0.044255 0.45545 0.449668 0.728071

5 Integral solution (in logarithms)
after rounding up y3 and y5 and
rounding down the rest (sum is
13)

1 2 3 3 4

6 Final integral chunk size 2 4 8 8 16

Table 5: Example of analysis of the IAR model

Example: Table 5 shows an example of a 5-dimensional optimization problem with block size
C=213=8192. In row #1, we show the input to the problem in terms of expected range
sizes on each dimension. Row #2 shows the non-integral optimal solution obtained from
Theorem 4.1, the product is 8192 as required by block size constraint. Row #3 shows the
solution in terms of base 2 logarithms, note that their sum is 13 as required by block size
constraint. The last two rows illustrate the conversion of the non-integral solution to an
integral one. In row #4, we show the corresponding fractional parts of the solution. The
fractional parts add up to 2. This means that to obtain an optimal integral solution we
need to pick the largest M=2 fractional parts round up their corresponding yi’s (y3 and
y5 in this case) and round down the rest. In row #5 we show the result of performing this
rounding. The chunk size obtained as a final solution is shown in row #6.

5.3 Analysis of the Shape Model

Using the results of Lemma 5.1 and the discussion of the QS model in 4.3 we can foormulate
the optimization problem for the query shape model as:

min

q
∑

j=1

pj

k
∏

i=1

(

Aij

2yi
+ 1

)

; s.t.

k
∑

i=1

yi ≤ C ′; y ∈ S (5.4)

where, S is the set of k-tuple strictly positive integers, and y denotes the k-tuple (y1, y2, . . . ,
yk), yi = log2 ci, the ”adjusted” shape of the j-th query is 〈A1j , A2j , · · · , Akj〉 (for simplicity of
notation we assume here that the Aij ’s are obtained by subtracting 1 from each original range as
explained previously), and C ′ = log2 C. The probability of the j-th shape is pj , j = 1, 2, · · · , q.
.
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This problem is more complex than the optimization of the IAR model as no closed form
solution is known. However, we will show that a greedy algorithm can be used to solve this
problem.

We shall denote,

φ(y) =

q
∑

j=1

−pj

k
∏

i=1

(

Aij

2yi
+ 1

)

Let ei denote the k-dimensional unit vector with unity in the i-th place. We shall use the
following lemma:

Lemma 5.3. If λ ≥ 0 and y
∗ ∈ S maximize the Lagrangian φ(y) − λg(y) over all y∈ S, then

y
∗ maximizes φ(y) over all y ∈ S and g(y) ≤ g(y∗).

Proof. The proof is by contradiction. Assume that there is a y ∈ S such that g(y) < g(y∗) and
for which the value of φ(y) > φ(y∗). Then y∗ cannot maximize the Lagrangian φ(y) − λg(y)
over all y ∈ S.

Consider the following algorithm which we call QS Algorithm:

Input: C’
Result: y, s.t.

∑

i yi ≤ C ′

// -- initialize all yi’s to 0.

Set y0 ← (0, 0, . . . , 0)T ;1

Set n← 1 ;2

while
∑

i yi ≤ C ′ do3

yn ← yn−1 + ei, where ei is the i-th unit vector and i is any index for which4

[φ(y + ei)− φ(y)] is maximum. ;
Set n← n + 1 ;5

Algorithm 1: The QS Algorithm

As the number of iterations in the algorithm is C ′ = log2 C and in each iteration we have to
compute k difference computations the total running time of the algorithm is O(k log2 C).

Proof of correctness of the algorithm is given in Appendix C under Theorem C.1.

5.3.1 An Example of Applying the QS Algorithm

shape 1 shape 2 shape 3 shape 4

probability .4 .2 .3 .1

Dim 1 100 75 80 165

Dim 2 17 14 10 26

Dim 3 23 12 14 9

Dim 4 35 60 45 70

Dim 5 40 30 21 34

Table 6: Example of input shapes to the QS Algorithm

Example: Table 6 shows an example 5-dimensional input problem with 4 shapes. The block
size constraint is 216. In Table 7 we show the first 4 iterations and the final two iterations
of the algorithm before it finds the optimal solution.

12



Itr. y1 y2 y3 y4 y5 Obj. funct.

0 0 0 0 0 0 46,560,641.59

1 1 0 0 0 0 23,503,316.20

2 2 0 0 0 0 11,974,653.50

3 2 0 0 1 0 6,122,765.65

4 2 0 0 1 1 3,147,627.72

.. . . . . . . . . . .. . . .

14 4 2 2 3 3 6233.26

15 5 2 2 3 3 3537.00

16 5 2 2 4 3 2041.87

Table 7: Iterations of the QS Algorithm

6 Experimental Results

The first observation in our mathematical models is the difference in the expressions, between
our model and that of [15] used in calculating averaged number of blocks fetched for a specified
access pattern. The two principal expressions are the following. From [15] we have

q
∑

j=1

(

k
∏

i=1

⌈

Aij

ci

⌉

)

pj (6.1)

and from our model we have
q
∑

j=1

pj

k
∏

i=1

(

Aij − 1

ci
+ 1

)

; (6.2)

Under an assumption of equal probability of shapes, the principal terms in the two expressions
for the number of chunks fetched for a given shape become

∏k
i=1⌈(Ai)/ci⌉ and

∏k
i=1((Ai −

1)/ci + 1) respectively. For the same c′is and random values of A′
is we tested the accuracy of

these expressions relative to the actual number of chunks that overlap the query region. We
conducted such a simulation in an environment comprised of a 1.8 GHz AMD Athlon 64, with
1 GB main memory, running Ubuntu 6.06.1 LTS Linux operating system. Queries used are
randomly generated range queries. The results show a considerable discrepancy in how close the
values are to the actual count of chunks retrieved. In our experiments, we formulated random
queries on 2, 3, 4 and 5 dimensions, each dimension having equal probability of access. Figure 4
shows the result of the errors relative to the actual true count of the overlapping chunks retrieved.
In the legend SS Error is that obtained with the expression 6.2.

6.1 Real Data

Since our focus is on optimizing the number of chunks retrieved in a query, it is immaterial
whether the data is tailored towards scientific or towards a decision support system. The results
are equally applicable to both domains. For the subsequent experiment, we actually use a large
scale scientific dataset.

6.1.1 Query Workloads and Data Distribution

The next set of experiments is based therefore on a large real data set from the Sloan Digital Sky
Survey (SDSS), Data Release 1. SDSS is an astronomical survey project that maps one quarter
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Figure 4: Bar Charts of Percentage Errors for Number of Chunks Retrieved

of the entire sky in order to determine the positions and absolute brightnesses of more than 100
million celestial objects. The survey also measures the distances to more than a million galaxies
and quasars.

The data set of Data Release 1 consists of 168 million records and some 500 attributes.
We selected a representative subset of 4 attributes for which query workload was available for
studying the query performance of our optimized chunking algorithms. For this purpose we
did an extensive study of the real query workloads from astronomers of the SDSS collaboration
over a few weeks. We extracted 5,000 queries and identified four attributes that were by far the
most commonly used ones in all observed queries. Namely the variables ra, dec, petromag z, etc.
The variables ra and dec describe the position of celestial objects in the sky in terms of right
ascension and declination, and petromag z defines the Petrosian flux.

From the query workload we computed probability distribution of range sizes for attributes
dec, ra shown respectively in the graphs of figures 6 and 7 respectively. We also computed the
average range sizes of queries on four attributes dec, ra, u and z as decribed above. In Table 8,
we show the performance of our optimal chunking method for different block sizes. The results
are compared with symmetric chunking, i.e., chuck shapes in which all dimensions have equal
sizes. The results are also shown in the Figure 5. Analysis of the SDSS cost for different block
sizes is included in Table 8
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attrs. dec ra u z Opt.
chunk
cost

Sym.
chunk.
cost

adj.
avg.
range

22.7 54.79 146.04 71.5

blk.
2048

2 8 16 8 9755.44 15862.39

blk.
4096

4 8 16 8 5272.677 5763.278

blk.
8192

4 8 32 8 2896.653 3846.639

blk.
16384

4 8 32 16 1594.07 1961.929

Table 8: Chunk sizes for different block sizes for SDSS data
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7 Conclusion

In both on-line analytical processing used in data warehousing and high performance data inten-
sive scientific computing, multi-dimensional arrays form the principal fundamental data struc-
ture for managing the data. Array chunking constitutes the prevalent method for performing
I/O between primary and secondary storage and is embodied in the prevalent file formats for
array data such as HDF5. The specification of an array chunk shape that optimizes subsequent
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query processing is a problem that have not been adequately addressed. We have presented
exact mathematical models of the problem and solutions to both models with two different ap-
proaches; one using geometrical programming and the other using steepest descent optimization
method. The analysis in this paper provides accurate estimations of the number of chunks that
overlap hyper-rectangular query regions. There is currently lack of query workloads for driving
our optimization. However, a synthetic workload on real data validates our analysis. Future
work will include addressing the problem with factors such as array sparseness, compression and
possible variable chunk sizes.
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A PROOF OF LEMMA 5.1

Lemma 5.1 states that

E(A, c) =

k
∏

i=1

(
Ai − 1

ci
+ 1)

Proof. It is easy to see that

E(A, c) =
k
∏

i=1

E(Ai, ci)

where Ai = 〈Ai〉 is a one dimensional shape and ci = 〈ci〉 is a one dimensional chunk. It is
therefore sufficient to calculate the number of chunks overlapping a shape on a one dimensional
array M . For simplicity we will omit the angular brackets whenever it is clear from the context
whether we are discussing a shape vector or its dimensions.

We will now proceed to show that given a one dimensional shape of size Ai and assuming
a one dimensional array M is partitioned into chunks of size c, the expected number of chunks
overlapping this shape is

E(Ai, c) =
Ai − 1

c
+ 1.

Let us number the points within each chunk from 0 to c− 1 (see Figure 8). We can express Ai

as Ai = mc + r where m (quotient) and r (remainder) are integers with 0 ≤ m and 0 ≤ r < c.
Under the assumption that a shape can fall uniformly anywhere in the array, the left end-

point of a shape can fall on any of the c points within a chunk with equal probability 1/c. This
assumes Ai is relatively small compared to the total size of M and ignores small “edge” effects
due to the constraint that the right endpoint of a range must also fit in the array. Let us denote
by R1 and R2 the sub-intervals within each chunk consisting of the leftmost c − (r − 1) and
rightmost r − 1 points respectively. In the event that the left endpoint of the shape falls in
R1 it will overlap m + 1 chunks and if it falls in region R2 it will overlap m + 2 chunks. For
example, in Figure 8 this is illustrated for the case Ai = 8 and c = 5, i.e., m = 1 and r = 3. The
possible positions within a chunk where the query shape may fall are labeled as ri. We see that
the positions r0,r1 and r2 overlap m + 1 = 2 chunks whereas the positions r3 and r4 overlap
m + 2 = 3 chunks. In this case the expected number of chunks is 3/5× 2 + 2/5× 3 = 12/5. In
general, the expected number of chunks that are overlapped by the shape is therefore

E(A, c) =
c− (r − 1)

c
(m + 1) +

r − 1

c
(m + 2).

By using m = (Ai − r)/c and rearranging, we get the required result of

E(Ai, c) =
Ai − 1

c
+ 1

from which the the lemma follows.

B Proof of Theorem 5.1

Theorem 5.1 states that the solution of the system represented by Equations (5.1),(5.2) for real
ci’s is

ci = Āi ∗

(

C/
k
∏

i=1

Āi

)1/k
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Figure 8: Example of range position effects on number of chunks retrieved.

Proof. We first represent the above optimization problem using base 2 logarithms. We define
new variables yi where yi = log2 ci and C ′ = log2 C and solve the system for the new variables
yi. Equation (5.1) can be rewritten as

k
∏

i=1

(

Āi

2yi
+ 1

)

(B.1)

and (5.2) becomes
k
∑

i=1

yi = C ′ (B.2)

Let E =
∏k

i=1

(

Āi

2yi
+ 1
)

− λ(
∑k

i=1 yi − C ′). Using Lagrange multipliers, E is minimized when

∂E

∂yi
= 0 for all 1 ≤ i ≤ k

This is

− Āi(ln 2)2−yi

k
∏

j 6=i

(

Āj

2yj
+ 1

)

− λ = 0

for 1 ≤ i ≤ k. (B.3)

or

Āi2
−yi

k
∏

j 6=i

(

Āj

2yj
+ 1

)

=
λ

ln 2
for 1 ≤ i ≤ k (B.4)

From (B.4) we get for any pair of variables yr, ys

Ār2
−yr

k
∏

j 6=r

(

Āj

2yj
+ 1

)

= Ās2
−ys

k
∏

j 6=s

(

Āj

2yj
+ 1

)

for 1 ≤ r, s ≤ k (B.5)

Re-arranging
Ār

Ās

2−yr

2−ys

(

Ās

2ys
+ 1

)

=

(

Ār

2yr
+ 1

)

(B.6)

using ci = 2yi for 1 ≤ i ≤ k

Ārcs

(

Ās

cs
+ 1

)

= Āscr

(

Ār

cr
+ 1

)

(B.7)
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ĀrĀs + Ārcs = ĀsĀr + Āscr

and finally we get
cr

cs
=

Ār

Ās
. (B.8)

This means that the ratio between each pair of ci’s is equal to the ratio between their respec-
tive Āi’s or in other words Āi

ci
is a constant. The result of the theorem follows directly from

Equation (B.8).

C Proof of Correctness of the QS Algorithm

Definition C.1. Allocation y belongs to T(λ) if
[φ(y + ei)− φ(y)] ≤ λ i and
[φ(y − δei)− φ(y − (δ + 1)ei)] > λ, for yi > 1 and δ ≤ yi − 1.

It follows that if y belongs to T(λ) then it is a global maximum of φ(y)−λg(y) over S, where
g(y) = y1 + y2 + . . . + yk. To see this, say in any alternate y’ the value of φ(y′) − λg(y′)is
larger. If for any index i y’i is larger than yi then the gain in the objective function is less than
or equal to zero due to concavity (the gain in φ(y) is offset by the loss due to λg(y). If y’i is
smaller then again the gain is less than zero using a similar reasoning (the loss in φ(y) is greater
than the gain in λg(y)).

Theorem C.1. The allocations generated by the algorithm belong to T(λn) where λn equals the
largest difference found in step 3 at iteration n.

Proof. Notice that the theorem holds for n=1. We shall use induction on n. Also,

∂φ

∂yi
= ln 2

q
∑

j=1

pj
Aij

2yi

k
∏

l=1,l 6=i

(

Alj

2yl
+ 1

)

.

Thus, the differences found in step 3 are decreasing in n. Therefore, 0 < λn < λn−1.
By construction (that is choice of i in step 3), for any index l

[

φ(yn−1 + el)− φ(yn−1)
]

≤ λn.

Assume that z was the index of the y that was increased at step (n− 1). Then for any index l

φ(yn−1 − δel)− φ(yn−1 − (δ + 1)el) ≥ λn−1;

0 ≤ δ ≤ yn−1
l − 1. (C.1)

φ(yn−1 + ez)− φ(yn−1) = λn−1.

Because the differences are decreasing we need to prove that ((C.1)) holds for δ = 0 and n.
Due to global optimality (from induction and Lemma 5.3)

φ(yn−1)− φ(yn−1 − el + ez) ≥ 0.

Therefore, using the fact that φ(yn) = φ(yn−1 + ez) and ((C))

φ(yn)− φ(yn − el) ≥ φ(yn−1 + ez)− φ(yn−1)

= λn−1 > λn.

Thus, ((C.1)) holds for n.
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Theorem C.2. The algorithm terminates with the optimal solution to the query shape problem
.

Proof. The proof follows from Theorem C.1 and Lemma 5.3.
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