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Abstract Siphons in a chemical reaction system are subsets of the species that have the
potential of being absent in a steady state. We present a characterization of minimal
siphons in terms of primary decomposition of binomial ideals, we explore the underly-
ing geometry, and we demonstrate the effective computation of siphons using computer
algebra software. This leads to a new method for determining whether given initial con-
centrations allow for various boundary steady states.

Keywords Chemical reaction systems · Siphon · Steady state · Monomial ideal ·
Binomial ideal · Primary decomposition

1. Introduction

In systems biology, a population model or chemical reaction system is said to be “per-
sistent” if none of its species can become extinct if all species are present at the initial
time. Those subsets of the species that can be absent in steady state are called “siphons.”
Angeli et al. (2007) suggested the concept of siphons to study the long-term behavior of
dynamical systems that model chemical reactions. In terms of the dynamics, a siphon is
the index set of a forward-invariant face of the positive orthant. Any boundary steady state
must lie in the interior of such a face. Hence, to investigate the trajectories, it is useful to
list all minimal siphons. The present paper offers an algebraic characterization of siphons,
and it shows how this translates into a practical tool for computing siphons.

Following Adleman et al. (2008) and Craciun et al. (2009), we represent a chemi-
cal reaction network as a directed graph G whose nodes are labeled by monomials and
whose edges correspond to reactions. A siphon of G is a nonempty subset Z of the
variables such that, for every directed edge m → m′ in G, whenever one of the vari-
ables in the monomial m′ lies in Z then so does at least one of the variables in m. In
Section 2 we relate this definition to the description of siphons given in Angeli et al.
(2007) and Cordone et al. (2005), we review the underlying dynamics, and we discuss
its meaning in terms of polyhedral geometry. Our algebraic approach is presented in
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Section 3. Theorem 3.1 expresses the minimal siphons of G in terms of the primary
decomposition of a binomial ideal associated to G. If the directed graph G is strongly
connected then the ideal encoding the minimal siphons is generated by squarefree mono-
mials. In Theorem 3.2 and Algorithm 3.6, we explain how to compute the relevant
(stoichiometrically compatible) siphons for any set of initial conditions. In particular, a
chemical reaction system without relevant siphons has no boundary steady states, and
this property is sufficient for proving persistence in many systems (Angeli et al., 2007;
Siegel and MacLean, 2004). In Section 4, we demonstrate that the relevant computations
can be performed effectively using computer algebra software, such as Macaulay 2
(Grayson and Stillman).

In the remainder of the Introduction, we present three examples from the systems bi-
ology literature, with the aim of illustrating our algebraic representation of chemical re-
action networks and the computation of siphons.

Example 1.1. We consider a receptor-ligand dimer model, which is analyzed by Chavez
in her thesis (Chavez, 2003, §7.2) and by Anderson (2008, Example 4.1):

A2C AD

EBC

κ12

κ21

κ23κ32

κ34

κ43

κ41 κ14

Note that the reaction A2C � AD is usually denoted by 2A+C � A+D. The biochem-
ical species are as follows: the species A denotes a receptor, B denotes a “dimer” state
of A (two receptors joined together), and C denotes a ligand that can bind either to A

(to form D) or to B (to form E). There are three minimal siphons, {A,B,E}, {A,C,E},
and {C,D,E}, which correspond to the minimal primes of the monomial ideal of the
complexes 〈A2C, AD, E, BC〉. We will return to this example in Section 4.

Example 1.2. The following enzymatic mechanism was analyzed by Siegel and MacLean
(2004), and also by Chavez (2003, Example 4.6.1):

SE � Q � PE,

QI � R.

The species are S (a substrate), E (an enzyme), P (a product), I (an uncompetitive in-
hibitor), and intermediate complexes Q and R. Here, the graph consists of two strong
components, and we encode it in the binomial ideal 〈SE − Q, Q − PE, QI − R〉 +
〈EPQRS〉. The radical of this ideal equals

〈E,Q,R〉 ∩ 〈I,R,ES − Q,P − S〉 ∩ 〈P,Q,R,S〉.
By Theorem 3.1, the minimal siphons are the variables in these prime ideals. Thus, the
minimal siphons are {E, Q, R}, {I, R}, and {P, Q, R, S}.
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Example 1.3. Here is the network for a basic one-step conversion reaction:

S0E � X → PE,

PF � Y → S0F.

The enzyme E helps convert a substrate S0 into a product P , and a second enzyme F

reverts the product P back into the original enzyme S0; these are also called “futile cy-
cles” (Angeli and Sontag, 2006; Manrai and Gunawardena, 2008). Such reactions include
phosphorylation and de-phosphorylation events, and they take place in MAPK cascades.
This network has three minimal siphons: {E, X}, {F, Y }, and {P, S0, X, Y }. To see this
algebraically, we form the binomial ideal

〈
ES0 − X, X(EP − X), FP − Y, Y (FS0 − Y ), EFPS0XY

〉
.

This ideal corresponds to TG in Theorem 3.1, and it has six minimal primes:

〈E,X,FS0 − Y,P − S0〉, 〈F,Y,P − S0, S0E − X〉, 〈P,S0,X,Y 〉,
〈E,X,Y,F 〉, 〈E,X,P,Y 〉, and 〈F,S0,X,Y 〉.

The three minimal siphons arise from the first three of these six primes.

2. Reaction networks, siphons, and steady states

A chemical reaction network is defined by a finite labeled directed graph G with n ver-
tices. The ith vertex of G is labeled with a monomial cyi = c

yi1
1 c

yi2
2 · · · cyis

s in s unknowns
c1, . . . , cs , and an edge (i, j) is labeled by a positive parameter κij . This graph defines the
ordinary differential equations

dc

dt
= Ψ (c) · Aκ · Y, (1)

where Ψ (c) = (cy1 , cy2 , . . . , cyn) is the row vector of the monomials, Y = (yij ) is the
n × s-matrix of exponent vectors of the n monomials, and Aκ is the n × n-matrix whose
off-diagonal entries are the κij and whose row sums are zero (i.e., minus the Laplacian
of G). The equations (1) are those of mass-action kinetics, although the concept of a
siphon is independent of the choice of kinetics. In order for each chemical complex cyi to
be a reactant or product of at least one reaction, we assume that G has no isolated points.
For a complex cyi and for a ∈ [s], we write ca |cyi (“ca divides cyi ”) if yia > 0; in other
words the ith complex contains species a. If the ith complex does not contain species a,
then we write ca � cyi .

A nonempty subset Z of the index set [s] := {1,2, . . . , s} is a siphon if for all z ∈ Z

and all reactions cyi −→ cyj with cz|cyj , there exists a ∈ Z such that ca|cyi . Siphons were
called “semilocking sets” in Anderson (2008) and Anderson and Shiu (2010). Note that
the set of siphons of G does not depend on the choice of parameters κij .

With any nonempty subset Z ⊂ [s] we associate the prime ideal

PZ := 〈ca : a ∈ Z〉
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in the polynomial ring Q[c1, c2, . . . , cs]. Recall (e.g., from Cox et al., 2007) that the va-
riety of PZ , denoted by V (PZ), is the set of points x ∈ Rs such that f (x) = 0 for all
polynomials f ∈ PZ . Thus, the nonnegative variety V≥0(PZ) is the face of the positive
orthant Rs

≥0 defined by all Z-coordinates being zero.

Proposition 2.1. A nonempty subset Z of [s] is a siphon if and only if V≥0(PZ) is
forward-invariant with respect to the dynamical system (1).

Proof: This is the content of Proposition 2 in Angeli et al. (2007). �

In Example 1.1, the dynamical system (1) takes the explicit form

dA/dt = −(κ12 + 2κ14)A
2C + (κ21 − κ23)AD + κ32E + 2κ41BC,

dB/dt = κ14A
2C − (κ41 + κ43)BC + κ34E,

dC/dt = −κ12A
2C + κ21AD − κ43BC + κ34E,

dD/dt = κ12A
2C − (κ21 + κ23)AD + κ32E,

dE/dt = κ23AD + κ43BC − (κ32 + κ34)E.

This is a dynamical system on R5
≥0. Each of the three minimal siphons {A,B,E},

{A,C,E}, and {C,D,E} defines a two-dimensional face of R5
≥0. For example,

V≥0(P{A,B,E}) is the face in which the coordinates A, B , and E are zero and C and
D are nonnegative. The minimality of the three siphons implies that no face of dimension
three or four is forward-invariant.

We next collect some results relating siphons to boundary steady states, that is, non-
negative steady states of (1) having at least one zero-coordinate. These connections are be-
hind our interest in computing siphons. See Anderson (2008), Anderson and Shiu (2010),
Angeli et al. (2007) for details on how siphons relate to questions of persistence (the prop-
erty that positive trajectories of (1) have no accumulation points on the boundary of the
orthant Rs

≥0). We first show that a boundary steady state necessarily lies in the relative
interior of a face V≥0(PZ) indexed by a siphon Z.

Lemma 2.2. Fix a reaction network G, and let γ be a point on the boundary of the
positive orthant Rs

≥0 with zero coordinate set Z := { i ∈ [s] : γi = 0 }. If γ is a boundary
steady state of (1), then the index set Z is a siphon.

Proof: Assume that cz|cyj for some species z ∈ Z and some complex cyj of G. Let I
index complexes that react to cyj but do not contain the species z:

I := {
i ∈ [n] : cyi −→ cyj is a reaction of G and cz � | cyi

}
.

Then we have

dcz

dt

∣∣∣∣
c=γ

=
∑

i∈I

κij yjzγ
yi = 0, (2)
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where the second equality holds because γ is a steady state. The summands of (2) are
nonnegative, so we have γ yi = 0 for all i ∈ I . Thus, if i ∈ I there exists ai ∈ [s] with
γai

= 0 (so, ai ∈ Z), and hence cai
|cyi . �

A similar result holds for boundary ω-limit points (accumulation points) of a tra-
jectory; see Anderson (2008), Angeli et al. (2007) or Anderson and Shiu (2010, The-
orem 2.14). We are interested in the dynamics arising from some initial condition
c(0) ∈ Rs

>0, so we restrict our attention to polyhedra, called invariant polyhedra, of the
following form:

Pc(0) := (
c(0) + Lstoi

) ∩ Rs
≥0. (3)

Here, Lstoi := span{yj − yi : cyi → cyj is a reaction} is the stoichiometric subspace in Rs .
For any c and any κ , the right-hand side vector Ψ (c) · Aκ · Y of the dynamical system (1)
lies in Lstoi and, therefore, the polyhedron Pc(0) is forward-invariant with respect to (1).
For any index set W ⊂ [s], let

FW := {x ∈ Pc(0) : xi = 0 if i ∈ W } = V≥0(PW) ∩ Pc(0)

denote the corresponding (possibly empty) face of Pc(0) . All faces of Pc(0) have this form;
see Anderson and Shiu (2010, §2.3) for further details. Lemma 2.2 implies the following:
Given an invariant polyhedron Pc(0) , if all siphons Z yield empty faces, FZ = ∅, then Pc(0)

contains no boundary steady states. In Theorem 3.5, we shall present an algebraic method
for deciding when this happens.

We now examine the case when the chemical reaction network is strongly connected,
i.e., between any two complexes there is a sequence of reactions.

Lemma 2.3. Assume that G is strongly connected. Then a point γ ∈ Rs
≥0 is a boundary

steady state if and only if Z = {i ∈ [s] : γi = 0} is a siphon.

Proof: The forward implication is Lemma 2.2. Now let γ be a boundary point whose
zero-coordinate set Z is a siphon. Because G is strongly connected, all complexes cyi

evaluated at γ are zero (γ yi = 0), and hence each monomial that appears on the right-
hand side of (1) vanishes at c = γ . �

From a polyhedral geometry point of view, Lemma 2.3 states the following: For
strongly connected reaction networks G, any face of an invariant polyhedron Pc(0) either
has no steady states in its interior or the entire face consists of steady states. We shall see
now that a similar result holds for toric dynamical systems. Recall (from Craciun et al.,
2009) that (1) is a toric dynamical system if the parameters κij are such that Ψ (c) ·Aκ = 0
has a positive solution c ∈ Rs

>0 (which is called a complex-balancing steady state). The
following result concerns the faces of invariant polyhedra of toric dynamical systems.

Lemma 2.4. Let c(0) ∈ Rs
>0 be a positive initial condition of a toric dynamical system.

Then a face FZ of the invariant polyhedron Pc(0) contains a steady state in its interior if
and only if Z is a siphon.

Proof: This is derived in Anderson (2008, Lemma 2.8) albeit in different language. �
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3. Binomial ideals and monomial ideals

In what follows, we characterize the minimal siphons of a chemical reaction network G

in the language of combinatorial commutative algebra (Miller and Sturmfels, 2005). It
will be shown that they arise as components in primary decompositions. For any initial
conditions c(0), we characterize those siphons that define nonempty faces of the invari-
ant polyhedron Pc(0) . In the next section, we shall see that these results translate into a
practical new method for enumerating siphons.

Throughout this section, we fix the ring R = Q[c1, . . . , cs]/〈c1c2 . . . cs〉. This is the
ring of polynomial functions with Q-coefficients on the union of the coordinate hyper-
planes in Rs . All our ideals will live in this ring.

With a given network G, we associate the following three ideals in R:

TG = 〈
cyi · (cyj − cyi

) : cyi → cyj is a reaction of G
〉
,

JG = 〈
cyj − cyi : cyi → cyj is a reaction of G

〉
,

MG = 〈
Ψ (c)

〉 = 〈
cy1 , cy2 , . . . , cyn

〉
.

Thus, TG encodes the directed edges, and JG encodes the underlying undirected graph.
These are pure difference binomial ideals (Dickenstein et al., 2010; Eisenbud and Sturm-
fels, 1996), while MG is the monomial ideal of the complexes. The following is our main
result.

Theorem 3.1. The minimal siphons of a chemical reaction network G are the inclusion-
minimal sets {i ∈ [s] : ci ∈ P} where P runs over the minimal primes of TG. If each
connected component of G is strongly connected then TG can be replaced in this formula
by the ideal JG. Moreover, if G is strongly connected then TG can be replaced by the
monomial ideal MG.

Proof: The complex variety VC(TG) consists of all points γ ∈ Cs having at least one zero
coordinate and satisfying γ yi · (γ yj − γ yi ) = 0 for all reactions. We first claim that our
assertion is equivalent to the statement that the minimal siphons are the inclusion-minimal
sets of the form {i ∈ [s] : γi = 0} where γ runs over VC(TG). Indeed if P is a minimal
associated prime of TG, let γ ∈ {0,1}s be defined by γi = 1 if and only if ci /∈ P. It
follows that {i ∈ [s] : ci ∈ P} = {i ∈ [s] : γi = 0} and γ ∈ VC(P) ⊂ VC(TG). Conversely,
if γ ∈ VC(TG), then γ ∈ VC(P) for some minimal associated prime P, and so we have the
containment {i ∈ [s] : ci ∈ P} ⊂ {i ∈ [s] : γi = 0}. If, furthermore, the set {i ∈ [s] : γi = 0}
is minimal among those defined by γ ′ ∈ VC(TG), then by above it must follow that the
containment is in fact equality.

Next, if γ is in VC(TG), then we can replace γ by the 0-1 vector δ defined by δi = 0
if γi = 0 and δi = 1 if γi �= 0. This nonnegative real vector has the same support as γ and
lies in the variety of TG. Hence, our claim is that the minimal siphons are the inclusion-
minimal sets of the form {i ∈ [s] : δi = 0} where δ runs over V{0,1}(TG). But this is obvious
because δyi · (δyj − δyi ) = 0 if and only if δyj = 0 implies δyi = 0.

Now, the minimal associated primes of TG depend only on the radical of TG, so we
can replace TG by any other ideal that has the same radical. If the components of G are
strongly connected, then the complex cyi can produce cyj if and only if cyj can produce
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cyi , and in this case both cyi · (cyj −cyi ) and cyj · (cyi −cyj ) are in TG. Hence, the radical
of TG contains the binomial cyi − cyj , and we conclude that TG and JG have the same
radical.

Finally, MG is a monomial ideal, and associated primes of a monomial ideal are of the
form PZ for some Z ⊂ [s]. It is straightforward to see that if G is strongly connected, PZ

contains MG if and only if Z is a siphon. �

When analyzing a concrete chemical reaction network G, one often is given an ini-
tial vector c(0) ∈ Rs

>0 for the dynamical system (1), or at least a subset Ω of Rs
>0 that

contains c(0). A siphon Z ⊂ [s] of G is called c(0)-relevant if the face FZ of the invari-
ant polyhedron Pc(0) is nonempty. In other words, if Z is c(0)-relevant, then there exists a
boundary point that is stoichiometrically compatible with c(0) and has zero-coordinate set
containing Z. For any subset Ω of Rs

>0, we say that Z is Ω-relevant if it is c(0)-relevant
for at least one point c(0) in Ω . Finally, we call a siphon relevant if it is Rs

>0-relevant.
Relevant siphons are also called “critical” siphons (Angeli et al., 2007), and nonrelevant
siphons are also called “stoichiometrically infeasible” siphons (Anderson and Shiu, 2010)
and “structurally nonemptiable” siphons (Angeli et al., 2007). We next explain how to en-
large the ideals TG, JG, and MG so that their minimal primes encode only the siphons
that are relevant.

We recall that the stoichiometric subspace Lstoi of Rs is spanned by all vectors yj − yi

where cyi → cyj is a reaction in G. Its orthogonal complement Lcons := (Lstoi)
⊥ is the

space of conservation relations. Let Q denote the image of the nonnegative orthant Rs
≥0 in

the quotient space Rs/Lstoi � Lcons. Thus Q is a convex polyhedral cone and its interior
points are in bijection with the invariant polyhedra Pc(0) . Further, Q is isomorphic to the
cone spanned by the columns of any matrix A whose rows form a basis for Lcons. This
isomorphism is given by the map

φA : Q →
{

s∑

i=1

αiai : α1, α2, . . . , αs ≥ 0

}

, q̄ �→
s∑

i=1

qiai,

where q = (q1, q2, . . . , qs) ∈ Rs
≥0 and a1, a2, . . . , as are the columns of the matrix A. For

simplicity, we identify the cone Q with the image of φA. A subset F of [s] = {1,2, . . . , s}
is called a facet of Q if the corresponding columns of A are precisely the rays lying on a
maximal proper face of Q. Any maximal proper face of Q also is called a facet. The list of
all facets of Q can be computed using polyhedral software such as polymake (Gawrilow
and Joswig, 2000).

We represent the facets of Q by the following squarefree monomial ideal:

B =
⋂

F facet of Q

〈ci : i /∈ F 〉 =
⋂

F facet of Q

PF c .

Each vertex of an invariant polyhedron Pc(0) is encoded uniquely by its support V , which
is a subset of [s]. Consider the squarefree monomial ideal

Bc(0) =
〈∏

i∈V

ci : V encodes a vertex of Pc(0)

〉
.
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The distinct combinatorial types of the polyhedra Pc(0) determine a natural chamber de-
composition of the cone Q into finitely many smaller cones: if two polyhedra Pc(0) and
Pd(0) correspond to points in such a chamber of the decomposition, then the polyhedra
have the same set of supports V of their vertices. For an example, see Fig. 1. In the con-
text of chemical reaction networks, such as chamber decomposition appeared in recent
work of Craciun et al. (2009). Specifically, its chambers were denoted Si in Craciun et al.
(2009, Section 2.1).

The ideal Bc(0) depends only on the chamber that contains the image of c(0). For any
subset Ω ⊂ Rs

>0, we take the sum of the ideals corresponding to all chambers that intersect
the image of Ω in Q. That sum is the ideal

BΩ =
〈∏

i∈V

ci : V encodes a vertex of Pc(0) for some c(0) ∈ Ω

〉
.

The above ideals are considered either in the polynomial ring Q[c1, . . . , cs] or in its quo-
tient R = Q[c1, . . . , cs]/〈c1c2 · · · cs〉, depending on the context.

Let T1 and T2 be two arbitrary ideals in R. Recall (e.g., from Cox et al., 2007) that the
saturation of T1 with respect to T2 is a new ideal that contains T1, namely,

Sat(T1,T2) = (
T1 : T∞

2

) = {
f ∈ R : f · (T2)

m ⊆ T1 for some m ∈ Z>0
}
.

Here, we shall be interested in the following nine saturation ideals:

Sat(TG,B), Sat(TG,Bc(0) ), Sat(TG,BΩ),

Sat(JG,B), Sat(JG,Bc(0) ), Sat(JG,BΩ),

Sat(MG,B), Sat(MG,Bc(0) ), Sat(MG,BΩ).

(4)

The following theorem is a refinement of our result in Theorem 3.1.

Theorem 3.2. The relevant minimal siphons of G are the inclusion-minimal sets
{i ∈ [s] : ci ∈ P} where P runs over minimal primes from (4). The ideals in the first,
second, and third columns yield relevant siphons, c(0)-relevant siphons, and Ω-relevant
siphons, respectively. The ideals in the first row are for all networks G, those in the third
row for strongly connected G, and those in the middle row for G with strongly connected
components.

Proof: The variety of the ideal Sat(T1,T2) is the union of all irreducible components
of the variety V (T1) that do not lie in V (T2). The result now follows from Theorem 3.1
and the following observations. The nonnegative variety V≥0(B) consists of all points
in Rs

≥0 whose image modulo Lstoi lies in the boundary of the cone Q. Thus, for a minimal
siphon Z, the image of the variety V≥0(PZ) is in the boundary of Q if and only if Z is not
relevant. More precisely, the image of V≥0(PZ) is in the interior of the subcone spanned
by {ai : i /∈ Z}, so there exists a facet of Q that contains the subcone if and only if Z is not
relevant. Therefore, any irreducible component of V (JG) (or V (TG) or V (MG)) defines
a nonrelevant siphon Z if and only if it lies in V (PFc ) for some facet F of Q, which is
equivalent to lying in V (B).
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Next, the variety V≥0(Bc(0) ) is the union of all faces of the orthant Rs
≥0 that are disjoint

from the invariant polyhedron Pc(0) . So, for a minimal siphon Z, the ideal PZ does not
contain Bc(0) if and only if there exists a vertex of Pc(0) whose zero-coordinate set contains
Z, which is equivalent to the condition that the face FZ of the polyhedron is nonempty.
Hence, any component of V (JG) (or V (TG) or V (MG)) that defines a minimal siphon
Z lies in V (Bc(0) ) if and only if Z is not relevant. Finally, the variety V≥0(BΩ) is the
intersection of the varieties V≥0(Bc(0) ) as c(0) runs over Ω . �

Example 3.3. In Examples 1.2 and 1.3, Q is the cone over a triangle, and the three min-
imal siphons are precisely the facets of that triangular cone. Thus, there are no relevant
siphons at all. This is seen algebraically by verifying the identities Sat(JG,B) = 〈1〉 and
Sat(TG,B) = 〈1〉.

We now discuss the case when a network has no relevant siphons, by making the
connection to work of Angeli et al. (2007), which focuses on chemical reaction networks
whose siphons Z all satisfy the following condition:

(�) there exists a nonnegative conservation relation l ∈ Lcons ∩ Rs
≥0

whose support supp(l) = {i ∈ [s] : li > 0} is a subset of Z.

Recall that Angeli et al. call siphons satisfying this property “structurally nonemp-
tiable” (Angeli et al. 2007, Section 8). Note that the property (�) needs only to be checked
for minimal siphons in order for all siphons to satisfy the property. For some chemical re-
action systems, such as toric dynamical systems (including Examples 1.1 and 1.2), this
property is sufficient for proving persistence (Anderson, 2008; Anderson and Shiu, 2010;
Angeli et al., 2007; Siegel and MacLean, 2004), and what was offered in this section are
elegant and efficient algebraic tools for deriving such proofs.

Lemma 3.4. For a chemical reaction network G, a siphon Z satisfies property (�) if and
only if Z is not relevant (which is equivalent to B ⊆ PZ).

Proof: The “only if” direction is clear. For the “if” direction, let Z be a non-relevant
siphon. As usual, for σ := dimLstoic, we fix a matrix A ∈ R(s−σ)×s whose rows span
Lcons, and we identify Q with the cone spanned by the columns ai of A. Let F be a facet
of Q that contains the image of V≥0(PZ), and let v ∈ Rs−σ be a vector such that the linear
functional 〈v,−〉 is zero on F and is positive on points of Q outside of F . The vector
l := vA is in Lcons, and we claim that this is a nonnegative vector as in (�). Indeed,
li = 〈v, ai〉 is zero if i ∈ F and is positive if i /∈ F , and thus supp(l) = Fc ⊆ Z. �

The following result extends Theorem 2 in Angeli et al. (2007).

Theorem 3.5. None of the siphons of the network G are relevant if and only if
Sat(TG,B) = 〈1〉 if and only if all siphons satisfy property (�). In this case, none of
the invariant polyhedra Pc(0) has a boundary steady state.

Proof: The first claim follows from Lemma 3.4 above. The second claim follows from
the definition of relevant siphons and Lemma 2.2. �
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We next present a characterization of the ideals B and Bc(0) in terms of combinato-
rial commutative algebra. This allows us to compute these ideals entirely within a com-
puter algebra system (such as Macaulay 2, Grayson and Stillman), without having to
make any calls to polyhedral software (such as polymake). We assume a subroutine that
computes the largest monomial ideal contained in a given binomial ideal in the polyno-
mial ring R[c1, . . . , cs]. Let Tstoi and Tcons denote the lattice ideals associated with the
subspaces Lstoi and Lcons. These ideals are generated by the binomials cu+ − cu− where
u = u+ −u− runs over all vectors in Zs that lie in the respective subspace. Here, u+ ∈ Zs

≥0
and u− ∈ Zs

≥0 denote the positive and negative parts of a vector u in Zs .

Algorithm 3.6. The ideals B and Bc(0) can be computed as follows:

1. The squarefree monomial ideal B is the radical of the largest monomial ideal con-
tained in Tstoi + 〈c1c2 · · · cs〉.

2. The squarefree monomial ideal Bc(0) is Alexander dual to the radical of the largest
monomial ideal contained in the initial ideal inc(0) (Tcons).

3. If c(0) is generic (i.e., the polyhedron Pc(0) is simple) then the radical of inc(0) (Tcons) is
a monomial ideal, and its Alexander dual equals Bc(0) .

The correctness of part 1 rests on the fact that the zero set of the lattice ideal Tstoi is
precisely the affine toric variety associated with the cone Q. Adding the principal ideal
〈c1c2 · · · cs〉 to Tstoi is equivalent to taking the image of Tstoi in R. The nonnegative variety
of the resulting ideal is the union of all faces of Rs

≥0 whose image modulo Lstoi is in the
boundary of Q.

For parts 2 and 3, we are using concepts and results from the textbook (Miller and
Sturmfels, 2005). The key idea is to use the initial concentration vector c(0) as a partial
term order. Initial ideals of lattice ideals are discussed in Miller and Sturmfels (2005,
Section 7.4). Alexander duality of squarefree monomial ideals is introduced in Miller
and Sturmfels (2005, Section 5.1). The correctness of part 3 is an immediate corollary
to Miller and Sturmfels (2005, Theorem 7.33) and part 2 is derived from part 3 by a
perturbation argument. In the next section, we demonstrate how to compute all these ideals
in Macaulay 2.

4. Computing siphons in practice

We start with a network that has both relevant and nonrelevant siphons. This example
serves to illustrate the various results in the previous section.

Example 4.1. We return to the chemical reaction network in Example 1.1. The sums C +
D + E and A + 2B + D + 2E are both constant along trajectories. Chemically, this says
that both the total amount of free and bound forms of the ligand and the total amount of
the free and bound forms of the receptor remain constant. Thus, the matrix A can be taken
to be

A = (aA, aB, aC, aD, aE) =
(

0 0 1 1 1
1 2 0 1 2

)
. (5)
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Fig. 1 The chamber decomposition of the cone Q for the network in Example 1.1. The cone is spanned by
the columns of the matrix A in (5). Each of the three maximal chambers Ω(1), Ω(2), and Ω(3) contains a
picture of the corresponding 3-dimensional polyhedron P

c(0) . The vertices of each polyhedron are labeled
by their supports. The star “�” indicates the unique vertex steady state, which arises from the siphon
{A,B,E} or {A,C,E}.

The two rows of A form a basis of Lcons. The cone Q is spanned by the columns of A.
The chamber decomposition of Q is depicted in Fig. 1. We see that the two facets of Q
define the following ideal of Q[A,B,C,D,E]:

B = 〈C,D,E〉 ∩ 〈A,B,D,E〉 = 〈AC,BC,D,E〉.
The relevant siphons are derived from MG = 〈A2C,AD,E,BC〉 as follows:

Sat(MG,B) = 〈A,BC,E〉 = 〈A,B,E〉 ∩ 〈A,C,E〉.
Thus two of three minimal siphons in Example 1.1 are relevant. The third siphon is not
relevant as its ideal 〈C,D,E〉 contains B. This corresponds to the fact, seen in Fig. 1,
that the vectors aA and aB span a facet of Q.

The chamber decomposition of Q consists of three open chambers Ω(1), Ω(2), and
Ω(3), and two rays Ω(12), and Ω(23) between the three chambers. These five chambers
are encoded in the following ideals, whose generators can be read off from the vertex
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labels of the polyhedra PΩ in Fig. 1:

BΩ(1) = 〈CD,CE,AC,BC〉,
BΩ(12) = 〈D,CE,AC,BC〉,
BΩ(2) = 〈AD,BD,DE,CE,AC, BC〉,

BΩ(23) = 〈AD,BD,E,AC,BC〉,
BΩ(3) = 〈AD,BD,AE,BE,AC, BC〉.

For each chamber Ω , the ideal Sat(MG,BΩ) reveals the Ω-relevant siphons. We find
that 〈A,B,E〉 is Ω(1)- and Ω(12)-relevant, and that 〈A,C,E〉 is Ω(12)-, Ω(2)-,
Ω(23)-, and Ω(3)-relevant. These two siphons define a unique vertex steady state on
each invariant polyhedron Pc(0) . Note that the vertices F{A,B,E} and F{A,C,E} coincide for
polyhedra along the ray Ω(12).

The need for efficient algorithms for computing minimal siphons has been emphasized
by Angeli et al. (2007), who argued that such an algorithm would allow quick verification
of the hypotheses of Theorem 3.5. Cordone et al. introduced one algorithm for computing
minimal siphons in Cordone et al. (2005). We advocate Theorem 3.1 as a new method for
computing all minimal siphons, and Algorithm 3.6 as a direct method for identifying rele-
vant siphons. Rather than implementing any such algorithm from scratch, it is convenient
to harness existing tools for monomial and binomial primary decomposition (Dickenstein
et al., 2010; Eisenbud and Sturmfels, 1996). We recommend the widely-used computer al-
gebra system Macaulay 2 (Grayson and Stillman), and the implementations developed
by Kahle (2009) and Roune (2009).

In what follows we show some snippets of Macaulay 2 code, and we discuss how
they are used to compute (relevant) minimal siphons of small networks. Thereafter, we
examine two larger examples, which illustrate the efficiency and speed of monomial and
binomial primary decomposition. These examples support our view that the algebraic
methods of Section 3 are competitive for networks whose size is relevant for research in
systems biology.

Example 4.2. The following Macaulay 2 input uses the command decompose to
output the minimal primes for the three examples in the Introduction.

-- Example 1.1
R1 = QQ[A,B,C,D,E];
M = ideal(A^2*C, A*D, E, B*C);
decompose(M)

-- Example 1.2
R2 = QQ[e,i,p,q,r,s];
I = ideal(s*e-q, q-p*e, q*i-r);
decompose (I + ideal product gens R2)
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-- Example 1.3
R3 = QQ[E,F,P,S_0,X,Y];
J = ideal(E*S_0-X, X*(E*P-X), F*P-Y, Y*(F*S_0-Y));
decompose (J + ideal product gens R3)

By Theorem 3.1, the minimal siphons can be read off from the primes.

Example 4.3. We return to the chemical reaction network of Examples 1.1 and 4.1. The
following Macaulay 2 code utilizes item 2 in Algorithm 3.6.

-- Example 1.1: c0-relevant siphons
c0 = {0,0,1,1,0};
R = QQ[A,B,C,D,E, Weights => c0];
IG = ideal(A^2*C-A*D, A*D-E, E-B*C, A*B*C*D*E);
ICons = ideal(C*D*E-1, A*B^2*D*E^2-1);
Bc0 = dual radical monomialIdeal leadTerm ICons;
decompose saturate(IG,Bc0)

In the first line, the vector c(0) was chosen to represent a point in the chamber Ω(1), so
the output is the unique Ω(1)-relevant minimal siphon.

The next example is of a large strongly-connected chemical reaction, and the compu-
tation shows the power of monomial primary decomposition.

Example 4.4. Consider the following strongly connected network which is comprised of
s species, s − 1 complexes, and s − 2 reversible reactions:

c1c2 � c2c3 � c3c4 � · · · � cs−1cs.

The number of minimal siphons satisfies the recursion N(s) = N(s−2)+N(s−3), where
N(2) = 2, N(3) = 2, and N(4) = 3. For s = 50 species, we obtain N(50) = 1,221,537.
The following Macaulay 2 code verifies this:

s = 50
R = QQ[c_1..c_s];
M = monomialIdeal apply(1..s-1,i->c_i*c_(i+1));
time betti gens dual M

We now explain the commands that are used above. First, M is the monomial ideal MG

generated by complexes, and dual outputs its Alexander dual (Miller and Sturmfels,
2005), which is the monomial ideal whose generators are the products of the species-
variables in any minimal siphon. Secondly, betti applied to gens dual M outputs the
degrees of all the generators of dual M; these degrees are exactly the sizes of all minimal
siphons. The command time allows us to see that the computation of the minimal siphons
takes only a few seconds. Displayed below is a portion the output of the last command
above; the list tells the number of minimal siphons of each possible size.

0 1
o5 = total: 1 1221537

0: 1 .
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1: . .
2: . .

...
23: . .
24: . 26
25: . 2300
26: . 42504
27: . 245157
28: . 497420
29: . 352716
30: . 77520
31: . 3876
32: . 18

The current version of dual in Macaulay 2 uses Roune’s implementation of his slice
algorithm (Roune, 2009). For background on the relation of Alexander duality and pri-
mary decomposition of monomial ideals, see the textbook (Miller and Sturmfels, 2005).

Our final example aims to illustrate the computation of minimal siphons for a larger
network with multiple strongly connected components.

Example 4.5. We here consider a chemical reaction network G with s = 25 species, 16
bidirectional reactions and 32 complexes. The binomials representing the 16 reactions
are the adjacent 2 × 2-minors of a 5 × 5-matrix (cij ), and JG is the ideal generated by
these 16 minors ci,j ci+1,j+1 − ci,j+1ci+1,j . For this network, Lstoi is the 16-dimensional
space consisting of all matrices whose row sums and column sums are zero, and Q is
a 9-dimensional convex polyhedral cone, namely the cone over the product of simplices
Δ4 × Δ4.

What follows is an extension of the results for adjacent minors of a 4 × 4-matrix in Di-
aconis et al. (1998, Section 4). The ideal JG is not radical. Using Kahle’s software (Kahle,
2009), we found that it has 103 minimal primes, of which precisely 26 contribute mini-
mal siphons that are relevant. Up to symmetry, these 26 siphons fall into four symmetry
classes, with representatives given by the following:

Z1 = {c14, c21, c22, c23, c24, c32, c34, c42, c43, c44, c45, c52},
Z2 = {c14, c21, c22, c23, c24, c33, c34, c35, c41, c42, c43, c53},
Z3 = {c14, c24, c31, c32, c33, c34, c42, c43, c44, c45, c52},
Z4 = {c14, c24, c31, c32, c33, c34, c43, c44, c45, c53}.

Under the group D8 of reflections and rotations of the matrix (cij ), the orbit of Z1 consists
of two siphons, and the orbits of Z2, Z3, and Z4 each are comprised of eight siphons. The
corresponding four types of minimal primes have codimensions 13, 12, 12, and 12, and
degrees 1, 2, 3, and 6.

By randomly generating chambers, we found that, for every integer r between 0 and
26, other than 23 and 25, there is a point c(0) in Q such that the number of c(0)-relevant
siphons is precisely r . We briefly discuss this for three initial conditions. First, let c(0) be
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the all-ones matrix. Then P (0)
c is the Birkhoff polytope which consists of all non-negative

5 × 5-matrices with row and column sums equal to five. In this case, all 26 minimal
siphons are c(0)-relevant: Z1 defines a vertex, Z2 and Z3 define edges, and Z4 defines a
three-dimensional face of Pc(0) . Next, consider the following initial conditions:

d(0) =

⎛

⎜⎜⎜⎜
⎝

1 1 1 1 1
1 1 1 1 1
1 1 1 − ε 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟⎟⎟⎟
⎠

and e(0) =

⎛

⎜⎜⎜⎜
⎝

1 1 1 1 1
1 1 1 1 1
1 1 1 + ε 1 1
1 1 1 1 1
1 1 1 1 1

⎞

⎟⎟⎟⎟
⎠

,

where ε > 0. Again, all 26 minimal siphons are d(0)-relevant, and FZ1 is a vertex, FZ2 and
FZ3 are edges of Pd(0) , but now FZ4 is a five-dimensional face. Finally, for initial condition
e(0), only two minimal siphons are e(0)-relevant, both in the class of Z1, and they define
vertices. Thus, using the results of Anderson and Shiu (2010), we can conclude that the
system (1) is persistent for e(0).

5. Conclusion

In the present paper, we gave a method that computes siphons and determines which of
them are relevant. To our knowledge, this is the first automatic procedure for checking
the relevance of a siphon. As noted by Angeli et al. (2007), such a procedure is desir-
able for verifying whether large biochemical reaction systems are persistent. Recall that
persistence is the property that no species concentration tends to zero. In practice, this
corresponds to the observed behavior that a substrate that is present at the beginning of an
experiment will also be present in some amount for all time. There is a class of systems
for which the nonrelevance of all siphons is a sufficient condition for such a system to be
persistent, so our procedure can be used to verify quickly that a large network is persistent.
Such a class consists of toric dynamical systems (Craciun et al., 2009). Mathematically,
the claim that toric dynamical systems are persistent is the content of the Global Attractor
Conjecture, and we speculate that an algebraic approach to understanding siphons may be
a step toward the conjecture.
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