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ABSTRACT OF THE DISSERTATION 

 

Nonlinear Multilevel Model Selection Using Information Criteria 

 

by 

 

Wendy Christensen 

Doctor of Philosophy in Psychology 

University of California, Los Angeles, 2019 

Professor Jennifer Lynn Krull, Chair 

 

Multilevel modeling is a common approach to modeling longitudinal change in behavioral 

sciences. While many researchers use linear functional forms to model change across time, 

researchers sometimes anticipate nonlinear change. In such cases, researchers often fit 

polynomial functional forms, such as quadratic or cubic forms. Polynomial functional forms are 

suitable in many situations, but there are other functional forms that could potentially better 

match the researcher’s theory about the nature of the longitudinal change. “Truly” nonlinear 

models, such as exponential and logistic models, have been used to model biological phenomena 

and may also be useful for psychological research. Such models, however, are non-nested, 

meaning that likelihood ratio tests cannot be used to select among models if one or more truly 

nonlinear models are in the candidate model set. Information criteria offer a flexible framework 

for model selection that can accommodate truly nonlinear models, but there currently is no 

research directly exploring the ability of information criteria to select truly nonlinear multilevel 
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models. In this dissertation, two Monte Carlo simulation studies were conducted to examine the 

performance of two frequently used information criteria: AIC and BIC. The goal of the first 

study was to examine their ability to select unconditional models with correctly specified 

nonlinear functional forms. Higher L1 and L2 sample sizes, a higher ICC, and greater distinction 

between nonlinear functional forms generally improved correct model selection rates, but BIC 

appeared to be better than AIC when identifying more distinct nonlinear functional forms and 

AIC appeared to be better when the forms were less distinct.  The goal of the second study was 

to examine the ability of AIC and BIC to select a model with a “more correct” predictor set when 

the underlying functional form was truly nonlinear. In many cases, information criteria were able 

to identify models determined to be more correct, but no clear pattern emerged between AIC and 

BIC. Finally, the utility of truly nonlinear functional forms was demonstrated in two behavioral 

health applications, both of which contained substantively interesting nonlinear trends that would 

have been missed if analysis had been limited to the linear functional form. 
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1. Introduction 

Nonlinear Multilevel Model Selection Using Information Criteria 

It is a truth, universally acknowledged, that a researcher in possession of good data must be 

in want of a statistical model. Per the logic of the scientific method, the selection of a good 

statistical model should be made based on theory.  If a researcher wants to test the plausibility of 

a single theory, the choice of statistical model is clear: the fitted model should be the model that 

best matches the theory. However, it is not uncommon for researchers to have multiple plausible 

theories that they want to test simultaneously. For example, a researcher may have competing 

theories, which could involve different predictor sets or even different conceptualizations of the 

nature of a change trend. In addition, complex statistical techniques require researchers to make 

complex model specification choices, some of which may be outside the conceptual space of the 

theory being tested. For example, multilevel models permit a researcher to specify a variety of 

covariance structures to model error structure at different levels, but it is often difficult to choose 

a structure solely on the basis of theory (Bauer, Gottfredson, Dean, & Zucker, 2013). For these 

reasons, statistical model selection methods are popular in quantitative behavioral research. 

Model Selection for Nested Models 

Null hypothesis statistical testing (NHST) is widespread in quantitative behavioral research, 

including in the context of model selection. This could be done through testing a series of nested 

models. Models are considered nested if a more specific model can be derived by removing 

parameters from a more general model (Hox, 2010). For example, a researcher could begin with 

a multiple regression model containing two predictors, which is shown below as Model 1. Model 

2 contains both of the predictors in Model 1, along with two additional new predictors. In this 

case, the two-predictor Model 1 is said to be nested within the four-predictor Model 2 because 
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Model 1 could be fully specified solely by removing the third and fourth predictor in Model 2.  

One could create as many additional models as there are predictors available to be added, which 

could be added one at a time or as sets.  

Model 1: 𝑌" = 	𝑏& +	𝑏(𝑋(" + 𝑏*𝑋*" +	𝑒" 
 

Model 2: 𝑌" = 	𝑏& +	𝑏(𝑋(" + 𝑏*𝑋*" + 𝑏,𝑋," + 𝑏-𝑋-" + 	𝑒" 
 

Models with interactions between predictors may also be thought of as being more general 

models compared to models that contain the lower-order terms only. Continuing the example, 

Model 3 contains the two predictors in Model 1, as well as an interaction between those two 

predictors. Because the interaction includes both lower-order predictors—that is, the interaction 

in Model 3 can be removed to fully express Model 1—Model 1 is nested within Model 3. Like 

before, one could specify an even more general model with additional predictors and higher-

order interactions, but that model would need to include the two predictors and their interaction 

for Model 3 to be nested within that more general model. 

Model 3: 𝑌" = 	𝑏& +	𝑏(𝑋(" + 𝑏*𝑋*" + 𝑏,𝑋(" ∗ 𝑋*" + 	𝑒" 
 

It is possible to use NHST to test the difference between any two nested models. In the 

context of model selection, the model with fewer predictors is referred to as the reduced model, 

and the model with more predictors is referred to as the full model. Nested model testing in 

multiple regression is conducted using R-square change tests, which involves an F test that uses 

the difference in the number of predictors between the full and reduced models as the numerator 

degrees of freedom (Cohen, Cohen, West, & Aiken, 2003). If this test is significant, the 

researcher would conclude that the full model accounted for a significantly greater proportion of 

the variance in the outcome than the reduced model. While not usually done for the purpose of 

model selection, a test of the significance of a single model’s R-square is implicitly a model 
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selection procedure, as it is testing the fitted model against a mean-only model.  

For multilevel models, a common method of model selection is the likelihood ratio test, 

sometimes also called the deviance change test or deviance difference test (Cohen et al, 2003; 

Hox, 2010). Although some details of the test are different, the likelihood ratio test is akin to the 

R-square change test. To conduct a likelihood ratio test, a researcher would begin by fitting a 

multilevel model with some number of parameters. These parameters could be things like fixed 

effects and random effects. The researcher would then fit a new model with one or more new 

parameters in addition to the parameters in the preceding model. The maximum likelihood 

estimation process for both the reduced and full models produces both a likelihood and a 

deviance. A model’s deviance is a transformation of the model’s likelihood; specifically, the 

deviance is computed by taking the natural log of the likelihood and multiplying that value by 

negative two. As long as the reduced model can be specified entirely by removing parameters 

from the full model, a chi-square test may be used to determine if the decrease in model deviance 

in the full model compared to the reduced model is statistically significant, with the difference in 

the number of parameters being the degrees of freedom for the test. 

The likelihood ratio test is a common procedure in psychological research, having the 

benefits of being relatively intuitive and simple to conduct once the deviances have been 

computed using statistical software. There are, however, some disadvantages to this approach. 

Hamaker, van Huttum, Kuiper, and Hoijtink (2010) discussed three specific limitations of 

likelihood ratio tests. The first of these, and perhaps the most immediately noticeable of the 

three, is that likelihood ratio tests require models to be nested. Continuing the previous example, 

one could write a different four-predictor regression model, denoted Model 4, for which Model 1 

would be considered a nested model.  
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Model 4: 𝑌" = 	𝑏& +	𝑏(𝑋(" + 𝑏*𝑋*" + 𝑏,𝑋," + 𝑏-𝑋/" + 	𝑒" 
 

While the differences between Models 1 and 3 and Models 1 and 4 could be tested with 

likelihood ratio tests, the difference between Models 3 and 4 could not be tested in this manner 

because they are not nested models relative to each other.  

The second disadvantage discussed by Hamaker et al (2010) is that likelihood ratio tests only 

permit the testing two models at a time, meaning that a set of three or more models cannot be 

compared simultaneously. They note that this could cause results that seem to be in conflict 

depending on the choice of which two models to compare. Continuing the ongoing example to 

illustrate this limitation, if a researcher decided to conduct a likelihood ratio test between Models 

1 and 4, which are nested, the researcher could potentially conclude that the difference between 

the two models is significant. However, this finding may not apply to the likelihood ratio tests of 

intermediate models; even if the difference between Models 1 and 4 is significant, there is no 

guarantee that difference between Models 1 and 2 and between Models 2 and 4 are significant as 

well. This is particularly problematic when a series of nested models is being tested 

incrementally and the researcher stops when the likelihood ratio tests cease being statistically 

significant – in this situation, the significant difference between Models 1 and 4 would be missed 

entirely if any of the intermediate comparisons have non-significant results. The third and final 

disadvantage discussed by Hamaker and colleagues (2010) is that the nature of NHST means that 

reduced models can only fail to be rejected; that is, the logic of hypothesis testing does not 

permit one to conclude that the reduced model is a better model even when one may have 

substantive interest in doing so. For these reasons, they suggest the use of information criteria to 

select among multilevel models when these limitations are undesirable. 

Information Criteria 
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Information criteria developed for statistical model selection purposes have an intellectual 

root in information theory, which emerged from Shannon’s (1948) groundbreaking work in 

signal processing and data compression. Akaike (1973/1992) developed the first information 

criterion, which is now called the Akaike Information Criterion (AIC). In particular, AIC is 

based on Kullback-Leibler (K-L) distance (Kullback, 1959), which connects information theory 

to random variable distributions.  

The brief overview of K-L distance provided here closely follows the conceptual summary 

provided in Burnham and Anderson’s (2002) widely-cited applied book on model selection. K-L 

distance is named as such because it refers to the distance between different models. However, 

this is not a simple distance; rather, it is a directed distance, or discrepancy, based on which 

model is acting as the reference point. For example, if one wished to compare model f(x) and 

model g(x), one could compute the K-L distance between f(x) when g(x) is the reference model, 

as well as the K-L distance between g(x) when f(x) is the reference model. Because K-L 

distances are directed distances, or discrepancies, these two seemingly similar distances do not 

have to be equal. If f(x) and g(x) are identical models, both of these distances would be equal to 

zero. Otherwise, the K-L distance will always be greater than zero due to how it is computed, 

which is shown below. 

Kullback-Leibler Information: 𝐼(𝑓, 𝑔) = 	∫ 𝑓(𝑥) ∗ log	 ; <(=)
>(=|@)

A 𝑑𝑥 
 

The formula as shown represents the distance from g(x) to f(x). Because of the information 

theory framework, this is understood as the information lost when g(x) is used as an 

approximation of f(x). As this distance increases, so does the information lost, which would 

provide greater basis to conclude that g(x) is a poor approximation of f(x). In the context of 

model selection, f(x) is the “true” model or “full reality” from which the data are drawn, and g(x) 
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is an approximating model specified to represent it. In practice, the underlying model f(x) is 

rarely known; in fact, Burnham and Anderson (2002) argued that the very notion of a “true 

model” is nonsensical outside of Monte Carlo simulation studies. Regardless of why f(x) is 

unknown, not knowing f(x) means that this distance cannot be computed directly. If, however, 

one were to compare any number of approximations of f(x), these approximations would all have 

f(x) in common. In other words, f(x) is a constant across all possible approximating models. As 

such, while absolute distances between approximating models cannot be computed when f(x) is 

unknown, relative distances can be. This means that the relative distances can be used as a basis 

to compare different approximating models on the basis of ranking their relative distances.  

One of Akaike’s (1973) key insights was the relationship between K-L distance and 

maximum likelihood estimation, the result of which he called “an information criterion”. The 

first half of the AIC computation includes the deviance produced by maximum likelihood 

estimation for a given model, a property shared with likelihood ratio tests. The second half 

incorporates the number of parameters, denoted K, in the model. The latter part is often thought 

of as a penalty for model complexity. It has this useful property, but the ability to interpret it as 

such is incidental; rather, the purpose of its inclusion is to account for the asymptotic bias in the 

likelihood (Bozdogan, 1987; Burnham & Anderson, 2002).  

AIC: −2𝐿𝐿 + 2𝐾 
 

To compare a set of candidate models, one would fit each candidate model to the data, 

compute AIC values for each model, and then compare all of the AIC values. The model with the 

smallest AIC value, or a subset of candidate models with the smallest AIC values if selecting 

more than one model is acceptable, would be selected. If two candidate models have the same 

number of parameters, then the model with the higher likelihood (and thus smaller deviance) will 
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have the smaller AIC value. In this case, the models are equally parsimonious because they have 

the same number of parameters being estimated, but the selected model has stronger explanatory 

power. On the other hand, if two candidate models have the same likelihood, then the model with 

fewer parameters will have the smallest AIC value. This is because the models have the same 

explanatory power, but the selected model is more parsimonious because it used fewer 

parameters to obtain the same likelihood. In practice, both the likelihood and the number of 

parameters tend to change across candidate models as they are fit to data, so the model with the 

smallest AIC value may be thought of as the model that best balances complexity and parsimony 

among the candidate models.  

Since Akaike’s (1973) initial contribution, numerous alternative information criteria have 

been developed based upon it or in reaction to it. Many statistical software packages used to fit 

multilevel models will produce one or more information criteria for a model, whether by default 

or upon request. Even if a statistical package does not compute any particular information 

criterion, most are easily computed by hand after obtaining the model’s deviance from the 

output. Along with AIC, four additional information criteria will be discussed in this paper: 

AICC, BIC, CAIC, and HQIC. These specific information criteria are more likely to be used by 

applied researchers than other choices, such as the Deviance Information Criterion 

(Spiegelhalter, Best, Carlin, & van der Linde, 2002) or conditional-AIC (Vaida & Blanchard, 

2005). Part of the reason for this may be because of which criteria are included in statistical 

software packages. Whittaker and Furlow (2009) chose to examine AIC, BIC, CAIC, and HQIC 

because those information criteria were available as part of the MIXED procedure in SAS 9.2, 

the most current version of SAS at the time. In SAS/STAT 14.3, which was the most current 

version of SAS at the time of this writing, at least 33 procedures provided at least one maximum 
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likelihood-based information criterion as part of their output, the most common of which were 

AIC and BIC (for more information about how this was determined, see Christensen, 2018). 

Regardless of the reason, the relative popularity of these particular information criteria makes 

them of interest.  

AIC does not take sample size into account, and later research found that it can perform 

poorly when sample size is small relative to the number of parameters in the model; when this is 

the case, AIC is a biased estimator of the K-L distance, making it more likely to select over-

parameterized models (Hurvich & Tsai, 1989). A corrected form of AIC, called AICC, was 

developed to adjust for this bias. AICC was first developed by Sugiura (1978) for regression 

models, and later generalized by Hurvich and Tsai (1989). The generalized form is the version 

that tends to be referenced in the multilevel model selection literature. Burnham and Anderson 

(2002) recommended that AICC be used instead of AIC when the ratio of the size of the sample 

and the number of parameters in the most highly parameterized model (n/K) is small, giving less 

than 40 as an example of a small ratio. If the sample size is adequately large relative to the 

number of parameters, AICC and AIC become very similar.  

AICC: −2𝐿𝐿 + 2𝐾 ; G
GHIH(

A 
 

AIC and AICC are examples of information criteria that are efficient, which means that they 

will select the best model when the true model is of infinite dimension. The dimensionality of a 

model refers to the number of estimated parameters in the model. As such, a model of infinite 

dimension is a model with an infinite number of parameters, making it impossible for a 

researcher to specify a “true model”. Burnham and Anderson (2002) viewed this property of 

efficient criteria as matching the reality of the scientific process for complex phenomena. 

Researchers formulate hypotheses and theories that are inherently simplifications of reality, and 
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the best of these are distillations containing only the most important facets of reality. To 

paraphrase Box’s (1976) famous aphorism, all models a researcher could conceivably fit are 

wrong, but the best ones are useful. 

Information criteria can also be consistent, which represents a different point of view about 

what should be optimized when selecting among models. When the true model actually is in the 

set of candidate models, a good selection criterion should select that true model, as opposed to 

selecting a good approximating model. The terminology comes from the idea of an information 

criterion being dimension consistent. It is possible for AIC to overestimate the dimension of a 

true model even in the asymptotic case; that is, as sample size approaches infinity, the 

probability of selecting a model that is overly complex is non-zero (Bozdogan, 1987). Because of 

this, AIC is considered dimension inconsistent. Consistent information criteria, however, will 

select the true model approaching 100% of the time when the model is of finite dimension and in 

the set of candidate models. Burnham and Anderson (2002) expressed skepticism about the 

widespread use of consistent criteria because they believed that these conditions are very strong 

assumptions that can only be met in Monte Carlo simulation studies or in the simplest of 

scientific contexts. Whether consistent criteria represent a reasonable approach to truth and the 

finding thereof or not, efficient and consistent information criteria are usually presented 

alongside each other in software and are often used jointly for interpretation in applied research.  

The first of these consistent criteria to be developed was the Bayesian Information Criterion 

(BIC), sometimes called the Schwarz-Bayesian Criterion (Schwarz, 1978). As suggested by the 

name, BIC was derived using a Bayesian framework, which seeks the most probable model 

given the data. Specifically, each candidate model has the same prior probability, and posterior 

probabilities are computed based on the actual data collected.   
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BIC: −2𝐿𝐿 + ln	(𝑁)𝐾 
 

The next consistent criteria to be developed, HQIC (Hannan & Quinn, 1979) and CAIC 

(Bozdogan, 1987), were developed to reformulate AIC to have properties of a consistent 

criterion like BIC. The formulae for these are shown below. Similar to AICC, the difference in 

the computation between each of these and AIC is the penalty term, which is adjusted for sample 

size.  

CAIC: −2𝐿𝐿 + [ln(𝑛) + 1]𝐾 
 

HQIC: −2𝐿𝐿 + 2𝐾𝑙𝑛(ln(𝑛)) 
 

 Multilevel Model Selection Using Information Criteria 

The performance of different information criteria has been evaluated for different types of 

models that are of interest to psychological researchers, such as latent variable modeling (e.g., 

Vrieze, 2012) and item response theory (e.g. Whittaker, Chang, & Dodd, 2012). Because of the 

popularity of multilevel modeling in psychological research, quantitative researchers have 

examined the properties of information criteria in these models. As noted by Burnham and 

Anderson (2002), the methodology of Monte Carlo simulation studies implicitly requires the 

perspective that reality is knowable and truth can be fully specified. This is because the goal of 

such research is making inferences about the performance of models based on how well these 

models recover parameters from data that have been generated by the researcher to have 

particular properties of interest. The literature on model selection in multilevel models using 

information criteria appears to universally follow this practice; no simulation study in this 

literature engaged in model selection without the generating (true) model included in the set of 

candidate models being tested. In the presence of correctly-specified models, there is evidence 

that certain factors influence the performance of information criteria, three of which will be 
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discussed here: the effect of different kinds of “wrong-ness” (misspecification) in candidate 

models, the effect of choosing different likelihood estimation methods, and the effect of the 

unique complexity of sample size in multilevel modeling.  

Nature of misspecification 

Generally speaking, AIC tends to select overly-complex multilevel models compared to other 

criteria, which is in line with its dimension inconsistency (Bozdogan, 1987). This can be 

advantageous, however, as AIC tends to select the correct model more often than consistent 

information criteria when the true model is complex, such as when there are cross-level 

interactions (Whittaker & Furlow, 2009), correlated random effects (Vallejo, Tuero-Herrero, 

Nunez, & Rosario, 2014), or complex covariance structures (Vallejo, Fernandez, Livacic-Rojas, 

& Tuero-Herrero, 2011). When the true model does not have these kinds of complexities, 

consistent criteria tend to perform better than efficient criteria (Gurka, 2006; Whittaker & 

Furlow, 2009; Vallejo et al., 2011; Vallejo et al., 2014). Typically, simulation studies on this 

topic create these different kinds of misspecification through different sets of fixed and random 

effects. The performance of specific information criteria for selecting the correct set of fixed and 

random effect structures is highly related to the specific conditions of the simulation study, 

particularly fixed effect and random effect parameter magnitude, intraclass correlation, and 

covariance structure type and magnitude (Gurka, 2006; Wang & Schaalje, 2009; Whittaker & 

Furlow, 2009; Vallejo, Ato, & Valdés, 2008; Vallejo et al., 2014). In general, higher ICCs and 

greater fixed and random effect magnitudes (i.e., effect sizes) makes the selection of the correct 

set of parameters more likely across all of the information criteria, but this was not uniformly 

true across all conditions in all studies.  

Estimation methods 
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All of the information criteria discussed in the previous section require an estimate of the 

model likelihood. The choice of likelihood estimation method does not change how the 

information criteria are computed, but it does determine what value is used as part of the 

computation and should be held constant across models when computing the information criteria 

for a set of candidate models. Full maximum likelihood (ML) and restricted maximum likelihood 

(REML) are two common choices, both of which are included in most statistical software 

packages. In practice, researchers tend to use whichever estimation method is the default in their 

statistical software package of choice, but both methods have specific properties that may make 

one more appropriate than the other in certain circumstances (Hox, 2010). ML includes both 

fixed and random effects in the likelihood function to be maximized, making it computationally 

less intensive and creating a logical basis for comparing models with different sets of fixed 

effects. REML estimation includes only the random effects in the likelihood function, with the 

fixed effects estimated in a second estimation step (Hox, 2010). REML produces less biased 

estimates of the likelihood than ML when sample size is small, and also provides less biased 

estimates of the random effects of the model (Hox, 2010). However, because of the removal of 

fixed effects during estimation, using likelihoods produced by REML estimation for model 

comparison may be more tenuous than using ML when the fixed effects are not the same across 

all of the candidate models (Hox, 2010; Verbeke & Molenberghs, 2000).  

Gurka (2006) argued that the differences between ML and REML are not substantial enough 

to justify a blanket recommendation against using REML for model selection purposes and used 

simulation to demonstrate this assertion empirically. He compared the performance of four 

information criteria (AIC, AICC, BIC, and CAIC) with a set of candidate models, estimated 

using both REML and ML estimation, that had different fixed effects. Specifically, three 
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situations were tested: when the random effects of a model were known (i.e. correctly specified) 

and the fixed effects were unknown (i.e. potentially misspecified), when the fixed effects were 

known and the random effects were unknown, and when both the fixed and random effects were 

unknown. In most circumstances, the performance of the information criteria was comparable 

under both REML and ML estimation; in fact, REML-based information criteria performed 

better than their ML counterparts in some conditions. This finding has been replicated in later 

multilevel modeling-specific information criteria literature (Vallejo et al., 2011; Vallejo et al., 

2014). In light of these findings, the use of REML to estimate the likelihood of a model for 

selection purposes appears to be a viable choice. 

Sample size 

All information criteria except AIC incorporate some direct adjustment to the penalty term 

based on the sample size. In single-level regression, this is always the total number of 

observations. Sample size is made more complex in the multilevel modeling framework because 

there are effectively two potential sources of sample size within the same data set (Hox, 2010). 

One potential source is the total number of observations, often denoted as N in the multilevel 

information criteria literature. If the data are balanced (i.e., the number of L1 units is the same 

across all L2 units), the total number of observations can be found by multiplying the number of 

L2 units by the number of L1 units. Another potential source is the number of L2 units only, 

usually denoted as m. The differences between these two different ways of conceptualizing 

sample size can potentially lead to dramatically different penalty terms, even if all else is 

equitable across computations. For example, if a balanced data set has 50 groups of 20 

individuals, using m would give a sample size of 50, while using N would give a sample size of 

1000. The potential magnitude of this difference could influence the relative performance of 
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information criteria that incorporate sample size because each one incorporates it differently (e.g. 

Keselman, Algina, Kowalchuk, & Wolfinger, 1998).  

As with estimation methods, the decision about which sample size source to use is often 

made implicitly through the default settings in statistical software. In PROC MIXED, the default 

sample size source is m (number of L2 units). Previous research has shown that the exact effect 

of sample size source is influenced by other factors in the model (e.g., ICC, degrees of difference 

in covariance structures), but some trends are apparent. First, whether N or m is used for the 

computation of the information criteria, the performance of sample size-dependent information 

criteria improves when the sample size source used is larger than when it is smaller (Whittaker & 

Furlow, 2009; Vallejo et al., 2011). Second, sample size-dependent information criteria are 

differently affected by the choice of N or m, particularly depending on whether a given criterion 

is consistent or efficient. Some research suggests that consistent criteria may perform slightly 

better when m is used (Gurka, 2006; Vallejo et al., 2014; Wang & Schaalje, 2009), while other 

research suggests that consistent criteria perform better when N is used (Vallejo et al., 2011). 

Other research suggests that the difference in performance is akin to that of model 

misspecification, in that the effect is not necessarily uniform across circumstances and may be 

reliant on the specific properties of candidate models (Whittaker & Furlow, 2009; Vallejo et al., 

2014).  

Nonlinear Multilevel Models 

Whether longitudinal or cross-sectional, the vast majority of multilevel models used in 

psychological literature are specified with linear trajectories in mind. For example, if a 

researcher uses multilevel modeling to model repeated measures data, equations can be written to 

represent the participants (Level 2) and the repeated measures taken from the participants at 



 15 

different time points (Level 1). If the researcher believes that the outcome of interest will change 

steadily as time passes, then specifying a linear trend in the model is reasonable. The Level 1 

equation for this type of change is shown below. 

Linear Multilevel Model: 𝑌"Q = 	𝜋S" +	𝜋("𝑇𝐼𝑀𝐸 + 𝜀"Q  

There are occasions, however, when the linear trend is not a sensible model for the 

phenomenon of interest or does not align with the theory the researcher wants to test. The 

flexibility of the multilevel framework allows for alternative specification methods to model 

trajectories that are not straight lines. Singer and Willett (2003) showcased three methods of 

modeling nonlinear change. The first method was transforming variables based on the “rule of 

the bulge” (Mosteller & Tukey, 1977). If successful, this method will produce transformations 

that linearize a nonlinear trend, allowing the researcher to use the standard linear multilevel 

model shown above. This method effectively treats nonlinearity as a nuisance to be corrected; 

however, sometimes the nonlinearity is itself of theoretical interest. Also, the rule of the bulge 

depends on the nonlinear trend resembling a monotonic sloping curve, which is not always the 

case. 

 The second method described by Singer and Willett (2003) was incorporating polynomial 

time terms into the model. Polynomial terms produce nonlinear trajectories by introducing 

powered vectors that create “bends” in the line. Each additional polynomial term added to the 

model changes the trajectory of the trend. Strictly speaking, all multilevel models are polynomial 

models, with a mean-only model being a zero order polynomial model and a linear model being 

a first order polynomial model. In practice, this phrasing is typically reserved for models that 

include second order or higher polynomial terms. The Level 1 equations associated with the 

quadratic (second order polynomial) and cubic (third order polynomial) models are shown 
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below. The quadratic model produces a trend with no inflection point (i.e., no change in 

concavity), with the sign of the quadratic term determining if the trend is convex or concave. The 

cubic model produces a trend with one inflection point, such that one part of the function is 

convex and the other part of the function is concave. The Level 1 equations for these models is 

as follows: 

Quadratic model: 𝑌"Q = 	𝜋S" +	𝜋("𝑇𝐼𝑀𝐸 +	𝜋("𝑇𝐼𝑀𝐸* +	𝜀"Q 
 

Cubic model: 𝑌"Q = 	𝜋S" +	𝜋("𝑇𝐼𝑀𝐸 +	𝜋("𝑇𝐼𝑀𝐸* + 𝜋,"𝑇𝐼𝑀𝐸, +	𝜀"Q. 
 

Polynomial functions allow the nonlinear trend to be explicitly modeled, producing estimates 

for the coefficients associated with each polynomial term. For all polynomial models, the 

intercept is the expected value of 𝑌"Q when TIME = 0. Singer and Willett (2003) note that the 

addition of polynomial terms means that the interpretations of the coefficients used in the 

standard linear multilevel do not apply when higher order polynomials are present in the model. 

In the case of the quadratic model, the linear term in it can no longer be interpreted in terms of 

continuous change. Instead, the linear term in this model becomes the instantaneous rate of 

change when TIME = 0. The quadratic term is the acceleration or curvature of the entire trend. 

Models that include cubic or higher trends have growth parameters that are difficult to interpret 

individually (Singer & Willett, 2003). 

Pairs of polynomial models are always nested models, meaning that a researcher could use 

likelihood ratio tests for model selection, and can easily be specified in any statistical software 

that can fit linear multilevel models. This is because the nonlinearity in the polynomial models 

emerges from exponentiation of the predictors, not the coefficients of those predictors; that is, 

the model is linear in the parameters. Singer and Willett (2003) identified these models as being 

dynamically consistent and discussed two important properties of dynamically consistent models. 
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The first property is that models that are linear in the parameters will obtain equivalent results if 

either of two methods of computing an “average” trajectory are used. In the curve of averages 

method, one would estimate the average outcome for all individuals at each time point, then plot 

the result. In the average of curves method, one would estimate the growth parameters for each 

individual, then find the average of these growth parameters, plotting these. The second property 

is that the shape, or functional form, of the average trajectory will be the same as that of the 

individual trajectories used to create it.  

Because polynomial models are linear in their parameters, Singer and Willett (2003) 

considered them to be not “truly” nonlinear, reserving that terminology for models that are 

nonlinear in their coefficients, the third and final method they described. The truly nonlinear 

models discussed included hyperbolic models, exponential models, and inverse polynomial 

models, but many choices are available. Because the nonlinearity in these models is expressed in 

the parameters, truly nonlinear models are more difficult to specify and not all statistical 

software packages support such specification. SAS supports this type of specification in the 

NLMIXED procedure, which can be used to fit many kinds of functional form for a multilevel 

model. A search of the currently-existing applied literature showed that truly multilevel models 

have greater representation in the research literature in biological sciences (Davidian & Giltinan, 

2003), such as forestry (e.g., Hall & Bailey, 2001) and pharmacology (e.g., Karlsson & Sheiner, 

1993) than in psychology. Because of the large number of choices available to researchers, only 

a few possible nonlinear models will be described here, with a focus on functional forms that are 

readily applicable to psychological concepts.  

Exponential models are models that allow the modeling of “explosive” growth from a 

starting point. The Level 1 specification for the exponential model, which follows Singer and 
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Willett’s (2003) notation, is as follows:  

Exponential model: 𝑌"Q = 	𝜋S"𝑒XYZ[\]^Z_ + 𝜀"Q . 
 

The first estimated parameter is the intercept of the model and is the expected value of the 

outcome at the initial time point. It retains this simple interpretation because 𝑒S is equal to 1. The 

second estimated parameter is contained in the exponential portion of the model. While not a 

slope in the sense of a linear model, it is similar to a slope in the sense that increases its value 

indicate more rapid increases in exponential growth. Regardless of relative size, exponential 

models will always start at some starting point and grow without leveling off; the variability 

between people occurs based on where their values are at the start of the study and the 

“explosiveness” of their exponential growth.   

Logistic models are part of the exponential family of models (Singer & Willett, 2003) 

because their functional form includes e. The Level 1 equation for a four parameter logistic 

model, as shown in Singer and Willett (2003), is as follows:  

Logistic model: 𝑌"Q = 	𝛼(" +	
(abZH	aYZ)

;(c	XdZe
fgYZhijkZ_A

+ 𝜀"Q. 

 
These models have additional parameters to model an S-shaped functional form. What 

distinguishes the logistic model from the exponential model is two additional parameters that 

represent two asymptotes. The first parameter in the model, 𝛼(",is the lower asymptote, which 

acts as a “floor” for the trajectory. The quantity in the numerator of the fraction is the difference 

between the lower asymptote and the upper asymptote, 𝛼*", which acts as a “ceiling” for the 

trajectory. The quantity in the denominator generates the smooth S-shaped curve that connects 

the two asymptotes.  

Unlike polynomial models, nested model tests like the likelihood ratio test cannot be used to 

compare truly nonlinear models and linear models. Because of this, information criteria are the 
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only readily available options for model selection for researchers who want to include truly 

nonlinear models in the set of candidate models. As discussed in the preceding section, attention 

has been paid to the performance of different information criteria when selecting among linear 

multilevel models. However, there is not yet literature that addresses how information criteria 

perform when comparing polynomial or truly nonlinear multilevel models.  

The focus of this dissertation is two-fold. First, I use Monte Carlo simulation to empirically 

examine the performance of information criteria for selecting the proper functional form and 

selecting among non-nested predictor sets of models fit in PROC NLMIXED, along with a short 

discussion about fitting covariance structures using NLMIXED. Second, I apply these methods 

to two existing data sets to demonstrate their utility for using information criteria to compare 

competing theories about psychological phenomena, expressed in the form of nonlinear 

functional forms, non-nested predictor sets, and covariance structures.  

  



 20 

2. Study 1: Model Selection using Information Criteria to Identify Nonlinear Functional 

Forms 

When fitting multilevel models with linear functional forms, it is reasonable to begin by 

fitting an unconditional model – that is, a model that incorporates no predictors – because it 

serves as a natural baseline for further model adjustments (Hox, 2010). In the context of 

longitudinal modeling, Singer and Willett (2003) referred to models that only included a 

temporal variable at Level 1 as unconditional growth models. If a researcher has decided in 

advance which functional form to fit, then no model selection is needed to determine which 

unconditional growth model to fit. For example, if previous literature has established that the 

change trajectory of a particular phenomenon is quadratic in nature, then the researcher would 

start the model building process by fitting an unconditional quadratic growth model. If, however, 

the researcher has competing theories about the shape of the trajectory, then a decision about the 

functional form will need to be made before moving on to adding predictors or fitting covariance 

structures. Information criteria are a useful method of model selection among different functional 

forms when nonlinear functional forms are among the candidate models because information 

criteria do not require the models to be nested relative to each other.  

The number and form of the temporal predictors used in a nonlinear unconditional growth 

model depends on the functional form. For example, unconditional linear growth models have 

two fixed effects: the intercept and the slope associated with the time variable. The unconditional 

growth model can have as many random effects as parameters that can be allowed to vary. The 

choice of which random effects to specify depend on the structure of the data (i.e., the nesting 

structure), the research question, and practical considerations such as sample size and whether a 

model can be estimated without convergence issues or errors. Because truly nonlinear models 
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can be difficult to estimate, the models that were fitted in this and the succeeding chapters had 

one functional form parameter specified as a random effect. The approach used in the simulation 

studies was to choose the parameter in the functional form that was most related to the intercept.  

Method 

Functional forms for data generation 

 Data were generated according to one of three functional forms: quadratic, exponential, 

and logistic. Each of the data generating models included the time-related predictors necessary to 

create the functional form as fixed effects, as well as a random intercept (𝑏S" for quadratic and 

exponential) or random intercept-related (𝑏*" for logistic) parameter. Originally, the logistic 

model was to be specified to match the four-parameter model discussed in Singer and Willett 

(2003), but this model either did not converge or produced estimates with errors in the larger of 

the two application studies (over 2000 individuals across 10 time points). To ensure that logistic 

models would be able to be estimated without error most of the time, the logistic functional form 

was re-parameterized into a three-parameter model by setting the lower asymptote to zero.  

Wolfinger (1999) and Zheng (2010), the former of whom adapted the same specification and 

example used by Pinheiro and Bates (1995), described fitting three-parameter logistic functional 

forms to applied agronomy examples using the NLMIXED procedure in SAS. The equations 

used for data generation were as follows: 

Quadratic model: 𝑌"Q = 	𝑏S" +	𝑏(𝑇𝐼𝑀𝐸 +	𝑏*𝑇𝐼𝑀𝐸* + 𝑢SQ +	𝜀"Q 
 

Exponential model: 𝑌"Q = 	 (𝑏S" + 𝑢SQ)𝑒mY[\]^Z_ + 𝜀"Q 
 

Logistic model: 𝑌"Q = 	
(	mY)

n(c	e
f(hijkZ_f(obZpqb_))

or s

+ 𝜀"Q 

Intraclass coefficients for data generation  

The intraclass correlation coefficient (ICC) is a common index of within-group similarity, 
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which in the longitudinal case refers to the similarity of the repeated measures within 

individuals. Because of this, ICCs tend to be higher in repeated measures data than in cross-

sectional data (Singer & Willett, 2003). In this study, the ICCs were 0.4 and 0.6. To obtain the 

desired ICCs, the ICC formula can be rearranged to solve for the necessary L2 intercept variance 

and L1 error variance.  For this study, the L1 error variance was set to 1 and the L2 intercept 

variance was set to 0.67 (ICC = 0.4) and 1.5 (ICC = 0.6). Error terms were generated from a 

normal distribution with a mean of zero and a variance in accordance with the intended ICCs. All 

generating models had a homogeneous L1 error covariance structure. 

Effect sizes of coefficients for data generation 

There is no pre-existing method of determining the effect size for the difference between 

nonlinear functional forms. It is likely, however, that the differences in the shapes of the 

nonlinear functional forms contribute to the ability of information criteria to distinguish among 

such forms. In practice, when fitting nonlinear functional forms, truly nonlinear or otherwise, the 

range over which the shape of each trajectory can be influenced by the data is limited by the 

number of waves of data collection. The extent to which a given functional form can express the 

characteristics that are quintessential to its form within the observed range is related to the 

differences in the trajectories of the curves and could be thought of a type of effect size. Thus, 

effect size in this study was operationalized as the distinctiveness of each functional form within 

the range of the largest L1 sample size used (13 time points, numbered zero to twelve). 

 I began this process by iteratively graphing quadratic, exponential, and logistic functions. 

The values for one set of these functions were chosen such that the predicted values from those 

functions produced curves that were very similar to each other within the 13-time point range. 

The values for the other set of functions, which represented a higher effect size, were chosen 
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such that the distinctive features of each function were expressed within the 13 time points, 

enhancing the differences between the curves. The quadratic function is visually distinguished by 

its single optimum and parabolic shape, the exponential function by its explosive growth, and the 

logistic function by explosive growth from a lower asymptote that tapers as it approaches an 

upper limit. In both cases, the coefficients produced curves that increased monotonically within 

the observed range. The two sets of curves are shown in Figures 2.1 and 2.2, respectively, and 

the coefficient values used to make these curves is shown in Table 2.1. The curves representing a 

lower effect size have trajectories that are difficult to distinguish visually within the observed 

range. The curves representing a higher effect size have each functional form’s distinct 

characteristics while maintain the overall trend of positive monotonic growth.   

 The next step of this process was to confirm that the distinctiveness of these two sets of 

coefficient values would be retained across ICCs and across misspecified functional forms. To 

do this, 12 single-replication simulations with a large number of L2 units were conducted. The 

data generated in each simulation had one of three underlying functional forms (quadratic, 

exponential, and logistic), used one of two sets of coefficients for that true functional form 

(lower- or higher-distinctiveness), and was generated to have one of two ICCs (0.4 or 0.6). Three 

models – quadratic, exponential, and logistic – were fitted to each of the generated data sets. In 

all cases, two of these models were misspecified and one was correctly specified. To increase the 

number of L2 units that could be used, the upper asymptote and the variance components of the 

logistic functional form were rescaled by taking the square root of each parameter (Kiernan, Tao, 

and Gibbs, 2009). This adjustment allowed the misspecified logistic models to successfully 

estimate when there were as many as 100 L2 units. The number of L1 units was held constant at 

13.  
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 Although the primary operationalization of effect size was the visual distinction among 

functional forms across the observed range, several numeric metrics were also computed to 

quantify the differences and similarities of the estimated functional form models. One of these 

was the mean of simple differences in the predicted values between functional form models. The 

differences were obtained by solving for the predicted value at each time point in the observed 

range for all three models (one correctly specified, the other two misspecified). These values 

were then compared across fitted functional forms in a pairwise fashion at each time point. For 

example, the predicted value when TIME = 1 of the estimated exponential models was 

subtracted from the predicted value of the estimated logistic models at the same time point. 

Finally, the mean of these across all time points was taken. Higher means implied greater 

distinction between forms, which can be seen in many of the higher-effect size curves in Figure 

2.2.   

 Another of these metrics was an area under the curve metric. It was not possible to find 

definite integrals of all of the model equations, so the area under each of these fitted curves was 

approximated using the midpoint rule (Rogawski, 2008). These values are shown on Table 2.2, 

along with the differences in areas under the curves between estimated functional form models. 

When the underlying functional form was more distinct, the areas under the curves were higher 

than when the functional forms were less distinct, even across misspecified models. In addition, 

the differences between areas under the curves were greater when the functional forms were 

more distinct.   

Sample sizes 

Longitudinal multilevel models have repeated measurement nested within individuals, 

meaning that the number of participants determines the number of L2 units available. There is a 
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wide range in number of participants in longitudinal behavioral health research, with some large-

scale panel studies having thousands of participants. In the interest of examining the feasibility 

for researchers who do not have panel data, possibly because they are testing interventions, the 

number of L2 units were 30, 50, and 100.  

In longitudinal studies, the number of measurement occasions determines the amount of 

complexity in change over time that may be modeled, with a quadratic model requiring no fewer 

than 4 time points (Singer & Willet, 2003). For this study, the L1 sample sizes were 5, 7, 9, and 

13. These L1 sample sizes reflect a baseline measure plus 4, 6, 8, or 12 additional measurements 

from the same individuals. This range of measurement occasions is representative of many 

longitudinal studies in behavioral health, where data could be collected with relatively little time 

between measurement occasions (e.g., from diaries or smartphone applications) or with as much 

as a year passing between measurement occasions (e.g., large-scale panel studies). Timmons and 

Preacher (2015) demonstrated that it is possible to fit nonlinear models within this range of L1 

units, though increasing the number of time points improves the estimation of nonlinear model 

parameters.  

In this study, the L2 sample size was directly manipulated – that is, data were specifically 

generated to have 30, 50, or 100 individuals. Each data set was generated to contain 13 time 

points by increments of 0.5 (0, 0.5, 1, 1.5, etc.). To create the four L1 sample sizes in such a way 

to maintain an equivalent range of X, the generated data set was “reduced” to the appropriate 

number of time points. The 13-time point condition was created by dropping all of the non-

integer time values (0, 1, 2, etc.). The 9-time point condition was created by retaining each 1.5 

increment (0, 1.5, 3, etc.). The 7-time point condition was created by retaining all even-integer 

time points (0, 2, 4, etc.). Finally, the 5-time point condition was created by retaining every third 
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integer (0, 3, 6, etc.). Although the spacing is not equal across L1 sample sizes, the spacing 

between measures within each L1 sample is was always equidistant.  

 Set of candidate models 

In this study, five candidate models - linear, quadratic, cubic, exponential, and logistic - were 

fit to each generated data set and compared using information criteria. All of these were specified 

to have a random intercept or intercept-related parameter. For any given data set, one candidate 

model was correctly specified and the other four were misspecified. For all candidate models, a 

homogeneous L1 error covariance structure was fitted, so the covariance structure was always 

correctly specified. 

Information criteria 

AIC, AICC, BIC, CAIC, and HQIC were computed for all of the candidate models. AIC is 

not sample size-dependent, so there was only one calculation of AIC. In total, there were nine 

information criteria computed for each candidate model: AIC, AICC(N), AICC(m), BIC(N), 

BIC(m), CAIC(N), CAIC(m), HQIC(N), and HQIC(m). 

Overview 

For each generated data set, there were four candidate models, each of which had nine 

associated information criteria. The performance of the different information criteria was likely 

to be affected by the underlying functional form (3 levels), the effect size of those forms relative 

to each other (2 levels), ICC (2 levels), number of individuals sampled (3 levels), and number of 

measures from each individual (4 levels), making for a total of 144 conditions in this study. 

Replications were run until 1000 valid replications were collected for each condition. Data were 

generated and candidate models were fitted in SAS 9.4, with candidate models fitted using 

PROC NLMIXED with maximum likelihood estimation by adaptive Gauss-Hermite quadrature 
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(SAS Institute Inc, 2015). 

Analyses and hypotheses 

The primary outcome of interest in this study was the frequency with which each of the nine 

information criteria selected the candidate model with the functional form that matched the 

underlying functional form in the data when the candidate models were simultaneously 

compared. The difference in performance between efficient and consistent information criteria 

was also of interest, as well as the effect of sample size used in the computation of the sample 

size-dependent information criteria. Of particular interest were the most commonly used 

information criteria: AIC and BIC (Whittaker & Furlow, 2009).  

Data were analyzed in the GLIMMIX procedure in SAS 9.4 (SAS Institute Inc, 2015) using 

maximum likelihood with Laplace approximation and between-within denominator degrees of 

freedom used for the F tests of the fixed effects. The outcome was whether or not the correctly 

specified model was selected. For each generating functional form, analyses began with fitting a 

logistic multilevel model with a five-way interaction between L1 sample size (reference group 

was 5), L2 sample size (reference group was 30), ICC (reference group was low), the 

distinctiveness of the underlying functional form (reference group was low-distinction), and 

information criteria (initial reference group was AIC). Replication ID was modeled as a random 

effect, reflecting the fact that all L1 time points within a replication shared the same generating 

form. If the five-way interaction was not significant, then a model with four-way interactions 

was tested. The same process was repeated until there was a significant interaction among the 

highest-order terms or there were no more interaction vectors to test. Because the focus of this 

study was information criteria, simple effects tests were conducted for a significant interaction 

only if the interaction involved information criteria. Finally, AIC, BIC(N), and BIC(m) were 
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tested against each other and the other information criteria by changing the reference category of 

the main/simple effect information criteria vectors. 

Multilevel logistic models are computationally intensive and sometimes difficult to estimate. 

The most common error that occurred while fitting these models was the coefficients of one or 

more dummy vectors having an estimated standard error of zero, creating a test statistic equal to 

infinity. In other cases, the model did not produce any estimates because it did not converge. If 

any errors occurred in the five-way interaction model, a four-way interaction model was fitted, 

and so on until a model that estimated without errors was found. At that point, the analysis 

procedure described in the previous paragraph was conducted.  

 Based on the linear multilevel model selection literature, I expected the performance of 

all information criteria to improve as the number of individuals and the number of time points 

increased (Whittaker & Furlow, 2009; Vallejo et al., 2014). I also expected performance to 

improve across all information criteria when the ICC was higher (Gurka, 2006; Whittaker & 

Furlow, 2009; Vallejo et al., 2014) and when the underlying functional forms were more distinct. 

There is no literature specifically examining the performance of information criteria for 

nonlinear multilevel models, but I suspected that consistent information criteria would perform 

better than efficient criteria for selecting the best model. This is because consistent information 

criteria tend to perform better than efficient criteria for simple models (Gurka, 2006; Whittaker 

& Furlow, 2009; Vallejo et al., 2011; Vallejo et al., 2014), and the models being tested in this 

study all had relatively few parameters. Finally, because of the longitudinal nature of the change 

being examined, I suspected that the sample size-dependent information criteria would better 

select the underlying functional form when computed using the number of observed units (N) 

than when using the number of L2 units (m).  
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Results 

Obtaining 1000 valid replications 

 Before any analyses could be conducted, 1000 valid replications needed to be obtained 

for each condition. In this case, “valid” meant that all five candidate models were able to be 

estimated (i.e., all models converged) and that the estimates produced were trustworthy (i.e., no 

error messages of any kind). Table 2.3 shows the number of replications ultimately needed to 

obtain 1000 valid replications for each of these 36 simulations. The lowest rate of successful 

replications was less than 1% and the highest rate was 94%.   

Correct selection rate and most common alternatives 

 Exponential functional forms. The selection rates for the correctly specified exponential 

models overall and across levels of distinctiveness are shown in Table 2.4. Across conditions, the 

set of information criteria as a whole identified the correctly specified exponential model 

between 88% and 97% of the time. When the underlying exponential functional form was of 

lower distinction, information criteria identified the correctly specified model between 76% and 

93% of the time. When the exponential functional form was of higher distinction, information 

criteria identified the correctly specified exponential model greater than 99% of the time. Among 

efficient information criteria, the most commonly selected misspecified models were the linear 

and logistic models. The misspecified models most commonly selected by consistent criteria 

were linear models.   

 Logistic functional forms. The selection rates for the correctly specified logistic models 

overall and across levels of distinctiveness are shown in Table 2.5. Across conditions, the set of 

information criteria as a whole identified the correctly specified logistic model about 50% of the 

time. When the underlying logistic functional form was of lower distinction, information criteria 
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identified the correctly specified model no more than 3% of the time. When the logistic 

functional form was of higher distinction, information criteria identified the correctly specified 

logistic model greater than 99% of the time. Overall and when the distinctiveness of the 

underlying logistic form was low, the most common model selected by both efficient and 

consistent information criteria was the linear model. When the distinctiveness of the functional 

form was high, quadratic models were the most common alternative. 

 Quadratic functional forms. The selection rates for the correctly specified quadratic 

models overall and across levels of distinctiveness are shown in Table 2.6. Across conditions, the 

set of information criteria as a whole identified the correctly specified quadratic model between 

51% and 58% of the time. When the underlying quadratic functional form was of lower 

distinction, information criteria identified the correctly specified model between 5% and 30% of 

the time. When the quadratic functional form was of higher distinction, information criteria 

identified the correctly specified quadratic model between 84% and 99% of the time. Overall and 

when the distinctiveness of the underlying quadratic form was low, the most common model 

selected by both efficient and consistent information criteria was the linear model. When the 

distinctiveness of the functional form was high, cubic models were the most common alternative. 

Inferential tests of correct model selection among information criteria 

Correctly specified exponential models. The five-way, four-way, and three-way 

multilevel logistic models had coefficient estimates with standard errors equal to zero, but all of 

the coefficients estimated without issue for the two-way interaction model. Seven two-way 

interaction terms were significant (all p < 0.001), three of which included information criteria: 

L1 sample size, L2 sample size, and ICC. To examine the simple effects of information criteria, 

data were subset based on L1 sample size, L2 sample size, and ICC.  
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 There was a significant simple effect of information criteria (all p < 0.001) across all L1 

sample sizes. All other information criteria except AICC(N) were significantly better than AIC 

across all L1 sample sizes. The relative performance of both BIC(N) and BIC(m) changed across 

L1 sample sizes. BIC(N) was significantly better than AIC, AICC (N and m), and HQIC (N and 

m) for all L1 sample sizes. BIC(N) became significantly better than BIC(m) once the number of 

L1 units was 7, and also became significantly better than CAIC(m) once the number of L1 units 

was 13. Across all L1 sample sizes, BIC(m) was significantly better than AIC, AICC (N and m), 

and CAIC(N), but significantly worse than HQIC (m). BIC (m) became significantly worse than 

CAIC(m) once the L1 sample size was at least nine.  

 There was a significant simple effect of information criteria (all p < 0.001) across all 

ICCs. All of the information criteria except for AICC(N) were significantly better than AIC 

across both ICCs. BIC(N) was significantly better than AIC, AICC (N and m), BIC (m), and 

HQIC (N and m) across ICCs and became better than CAIC(m) when the ICC was high. BIC(m) 

was better than AIC, AICC (N and m), and HQIC(m) but worse than BIC(N) and CAIC (N and 

m) across all ICCs. When the ICC was high, BIC(m) became significantly better than HQIC(N).  

 There was a significant simple effect of information criteria (p < 0.001) across all L2 

sample sizes. All other information criteria except AICC(N) were significantly better than AIC 

across all L2 sample sizes. BIC(N) was significantly better than AIC, AICC (N and m), BIC (m), 

and HQIC (N and m) across ICCs and became better than CAIC(m) when the L2 sample size 

was 100. BIC(m) was better than AIC, AICC (N and m), and HQIC(m) but worse than BIC(N) 

and CAIC (N and m) across all L2 sample sizes. When the L2 sample size was 100, BIC(m) 

became significantly better than HQIC(N).  
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 Correctly specified logistic models. The five-way, four-way, and three-way multilevel 

logistic models had coefficient estimates with standard errors equal to zero, but all of the 

coefficients estimated without issue for the two-way interaction model. Three two-way 

interaction terms were significant (all p < 0.001), one of which, L2 sample size, included 

information criteria. To examine the simple effects of information criteria across L2 sample 

sizes, data were subset based on L2 sample size. Regardless if which information criterion was 

used as the reference category, the only subsetted models that were able to produce estimates 

were those for which L2 sample size was equal to 30, so continued testing of the simple effects 

across L2 sample sizes was not possible. 

Examination of Table 2.5 showed that the correct selection rates across distinctiveness of 

the logistic functional form were quite different. In light of this, exploration of the simple effect 

of information criteria though subsetting by distinctiveness was tried. When distinctiveness was 

higher, there was no significant simple effect of information criteria. When the distinctiveness 

was low, however, there was a significant simple effect of information criteria. AIC performed 

significantly better than all of the other information criteria. BIC(N) was significantly worse than 

all other information criteria except for CAIC(N). BIC(m) performed significantly worse than 

AICC (N and m) and HQIC (N and m) but significantly better than BIC(N) and CAIC (N and 

m).  

Correctly specified quadratic models. The highest order interaction term in the five-way 

interaction model was not significant, so the four-way interaction model was examined. There 

was one significant four-way interaction vector, but it did not include information criteria. The 

three-way interaction model had four significant three-way interaction terms, two of which 

included information criteria. Specifically, those two three-way interaction vectors included L1 
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sample size, L2 sample size, and distinctiveness of the underlying functional form. Data were 

subsetted based on their underlying distinctiveness, after which two-way interaction models 

between information criteria and the different sample sizes were fit.  

 The interaction between L1 sample size and information criteria was significant, so the 

data were further subsetted by L1 sample size. Across L1 sample sizes, AIC was significantly 

better than all of the other information criteria when the distinctiveness was low but was 

significantly worse than all of the other information criteria when distinctiveness was high. 

BIC(N) was significantly worse than all of the other information criteria when distinctiveness 

was low but was better than all other information criteria except CAIC(N) when distinctiveness 

was high. BIC(m) was significantly better than BIC(N) and CAIC (N and m) when the 

distinctiveness was low, but worse than AIC, AICC (N and m), and HQIC (N and m). When 

distinctiveness was high, BIC(m) was significantly better than AIC, AICC (N and m) and HQIC 

(N and m).  

The interaction between L2 sample size and information criteria was significant, so the 

data were further subsetted by L2 sample size. AIC was significantly better than all of the other 

information criteria across all L2 sample sizes when distinctiveness was low but was worse than 

all of the other information criteria when distinctiveness was high. When distinctiveness was 

low, BIC(N) was significantly worse than all other information criteria except CAIC_N. When 

distinctiveness was high, BIC(N) was significantly better than all other information criteria 

except CAIC(N). When distinctiveness was low, BIC(m) was significantly better than BIC(N) 

and CAIC (N and m) and worse than AIC, AICC (N and m), and HQIC (N and m). When 

distinctiveness was high, this was reversed.  

Discussion 
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 It is appropriate to begin the model fitting process of longitudinal data by fitting an 

unconditional growth model, but the use of model selection at this step depends on whether or 

not the researcher has settled on which trajectory to fit. If the researcher has competing theories 

about the nature of the longitudinal change, then it is possible that model selection could occur as 

early in the process as the fitting of the unconditional growth model. Information criteria offer a 

flexible model selection framework for comparing unconditional growth models of all kinds, 

including truly nonlinear functional forms. 

For exponential functional forms, the ability of information criteria to select the correctly 

specified model depended on the ICC and the number of L1 and L2 units, but the trends within 

these were similar to each other. Across all levels of L1 sample size, L2 sample size, and ICC, 

consistent criteria selected correctly specified exponential models more often than the efficient 

criteria. BIC(N) performed better than all of the other information criteria, including BIC(m). 

This aligned with my expectation that consistent criteria would perform better due to each of the 

candidate models have relatively few parameters. When the distinctiveness of the exponential 

trend was low, the second most commonly selected model when BIC (N and m) was used was a 

linear model. In contrast, the second most commonly selected models when AIC was used for 

model selection were linear models (when L1 sample size was lower) or logistic models (when 

L1 sample size was higher). Unlike BIC (N and m), AIC may select overparameterized models 

even in the asymptotic case (Bozdogan, 1987). Given this, that AIC sometimes selected runner-

up models that were more highly parameterized than the underlying functional was not 

surprising.  

For logistic functional forms, the ability of information criteria to select the correctly 

specified model appeared to depend on the L2 sample size, but tests of simple effects across the 
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range of L2 sample size were not possible. This was almost certainly due to the stark difference 

in the correct selection rates across the levels of distinctiveness in the logistic functional form as 

shown in Table 2.5. AIC and BIC (N and m) performed equally well when the distinctiveness 

was high, but AIC performed better than BIC (N and m) when the distinctiveness was low. Of 

the two, BIC(m) performed better than BIC(N). As also shown in Table 2.5, the selection rate of 

the correctly specified logistic model when the underlying logistic function was less distinct was 

dismally low, which was likely driven by the fact that the logistic model was among the most 

highly parameterized model in the set of candidate models. Because of this, the most common 

runner-up model was also the model that was selected the most frequently by each information 

criterion. Both AIC and BIC (N and m) favored the linear model in this case. 

For quadratic functional forms, the ability of information criteria to select the correctly 

specified quadratic model depended on the L1 and L2 sample sizes and the distinctiveness of the 

underlying quadratic form. When the level of distinctiveness was held constant, the performance 

of information criteria across L1 and L2 sample sizes was similar. When distinctiveness was low, 

efficient criteria performed better than consistent criteria, with AIC being the best performing. 

When distinctiveness was high, however, this trend was reversed, and AIC became the worst 

performing criterion. Both forms of BIC were better across L1 and L2 sample sizes, but BIC(N) 

was the better of the two. Per Table 2.6, the selection rate of the correctly specified quadratic 

model was no more than 30% of the time, meaning that the most selected runner-up model was 

the most commonly selected model among the information criteria. For both AIC and BIC (N 

and m), the most commonly selected model was the linear model. When the distinctiveness of 

the underlying quadratic functional form was high, the runner-up model across all information 

criteria was the cubic model. This was contrary to what I would have expected because the cubic 
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model was the most highly parameterized of the models in the candidate model set, but this 

could be due to how the higher-distinction quadratic form was decided upon for this study. The 

higher-distinction quadratic trend used for data generation was picked such that the parabolic 

shape of the quadratic form was distinguishable within the observed range of L1 units. Cubic and 

quadratic models are nested models, meaning that a cubic function with the cubic term equal to 

zero would be equivalent to a quadratic function. Even though the cubic model was always 

misspecified and less parsimonious than other models, it is possible that its ability to capture the 

quadratic functional form’s more distinctive parabolic shape lowered the deviances of the 

misspecified cubic models sufficiently enough to make it the runner-up model across information 

criteria.   

 When the underlying functional form was exponential, BIC(N) was better for selecting 

the correctly specified exponential model than either BIC(m) or AIC. When the underlying 

functional forms were logistic or quadratic, however, the best information criteria for selecting 

correctly specified models depended on the distinctiveness of the functional forms. AIC was 

better than BIC (N and m) for selecting correctly specified logistic functional form models when 

the logistic functional form was of lower-distinction, with BIC(m) being better than BIC(N) in 

this case. For quadratic functional forms, AIC performed better than BIC (N and m) when the 

distinction of the functional form was low, but BIC (N and m) was better when the 

distinctiveness was high. In this case, BIC(N) was better than BIC(m). These findings suggest 

that BIC(N) might be better for identifying correctly specified exponential, logistic, and 

quadratic models when their respective underlying functional forms are more distinct. When the 

underlying functional forms are less distinct, then AIC might be better than BIC (N or m) and 

BIC(m) might be better than BIC(N).  
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As with all simulation research, the findings of this study may not generalize to 

conditions not explicitly examined in this study. Although the number of L1 and L2 sample sizes 

were chosen with common behavioral research contexts in mind, the range of the L1 and L2 

sample sizes was limited and the applicability to other sample sizes is unknown. This limitation 

also applies to the ICCs examined in this study. The most substantial limitation of this study was 

with regard to the distinctiveness of the underlying functional forms. There is no established way 

to define the difference between any two nonlinear functional forms. In this study, 

distinctiveness among the three functional forms of interest was primarily established through 

iterative visual examination, followed by an attempt to quantify these visual distinctions through 

comparisons of simple differences of predicted values across time points and of areas under the 

curves when correctly specified and misspecified models were fit to each form. While this was 

suitable for the purpose of this study, the curves chosen for each functional form are almost 

certainly too specific to generalize across contexts. Future work should include a greater variety 

of distinctiveness of functional forms, perhaps as part of gathering evidence for a more 

systematic way of defining distinctness between functional forms.  
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3. Study 2: Model Selection to Identify Non-Nested Predictor Sets in Nonlinear Models 

The purpose of the second study in this series was to explore the performance of different 

information criteria when attempting to identify “more correct” (i.e., less misspecified) models 

among non-nested predictor sets in the presence of nonlinear functional forms. There were many 

examples in the linear multilevel model selection literature that use information criteria to 

simultaneously test a large number of nested models that differ in their fixed effects (e.g. 

Whittaker & Furrow, 2009; Vallejo et al., 2014). In practice, however, it was likely that applied 

researchers would use likelihood ratio tests to determine which predictors should be included in 

the model in such cases. In light of this, the focus of this study was on selecting less misspecified 

models among truly nonlinear models with non-nested predictor sets that cannot be tested in this 

manner.  

A researcher may engage in model selection to obtain a predictor set in addition to the 

nonlinear temporal trajectory for several reasons. First, many research hypotheses are best tested 

by including them as fixed predictors in a model, such as the effect of interventions, 

demographic variables, or other predictors that contribute to a mechanism in addition to the 

effect of time. Second, even if the longitudinal change is of greater interest, multilevel models 

retain many of the assumptions of OLS regression (Hox, 2013), which includes the assumption 

that predictors are uncorrelated with the error term (Berry, 1993). Misspecification of the 

predictors in a model can cause this assumption to be violated, the effects of which include 

introducing bias into the fixed effects estimates and artificially increasing or decreasing their 

variances (Rao, 1971). Finally, including predictors allows the researcher to interpret the effect 

of the nonlinear trajectory after controlling for predictors that are correlated with the outcome 

and remove their variability from the error term of the model, allowing for more sensitive tests.   
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Method 

Functional forms for data generation 

Two functional forms, exponential and logistic, were used for data generation. Because the 

focus of this study was to select among non-nested predictor sets, all of the fitted models were 

correctly specified with regard to the predictors used to create the functional form. The 

coefficients used to create the functional form matched those of the more distinct exponential 

and logistic functions in the first simulation study (shown on Table 2.1). 

 that produced more distinct exponential and logistic trajectories across the observed range. 

Predictor set for data generation 

Data were generated to have two predictors at L1 (X1 and X2) and two predictors at L2 (W1 

and W2). The first predictor at both levels (X1 and W1) had a correlation of 0.1 with the 

outcome, and the second predictor at both levels (X2 and W2) had a correlation of 0.5 with the 

outcome. Hereafter, X1 and W1 will be referred to as the minor predictors at their respective 

levels and X2 and W2 will be referred to as the major predictors at their respective levels. There 

were no interactions included in the data generation model. The generated predictors were 

normally distributed, with predictors at the same level correlated with each other at 0.2. 

Set of candidate models 

A total of nine candidate models, shown in Table 3.1, were fit to each generated data set.  

One model, shown in the table as Model 0, included both L1 predictors and both L2 predictors, 

making it the only correctly specified model. The next set of models were misspecified only at 

L1, with one model omitting the major L1 predictor (Model 1) and one model omitting the minor 

L1 predictor (Model 2). These two models were both correctly specified with regard to their 

Level 2 predictors. The next set of models were similarly misspecified, but at L2. One model 
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omitted the major L2 predictor (Model 3) and one model omitted the minor L2 predictor (Model 

4). These models were both correctly specified with regard to their L1 predictors. Finally, the last 

set of models had misspecification at both levels. To create this set, the misspecification pattern 

for Models 2 and 3 was fully crossed with the misspecification pattern for Models 3 and 4. In 

total, there were four models (Models 5 through 8) with misspecification at both levels. 

Relative degrees of misspecification 

 Although all of the candidate models (M1-M8) were misspecified, there were some 

models that were almost certainly more correct than others. For example, Models 1 and 2 both 

omitted a single L1 predictor. It seems reasonable to think that, all else equal, the omission of the 

single major predictor in Model 2 constituted a greater degree of misspecification than the single 

omission of the minor predictor in Model 1. Continuing with this logic, Model 1 was even more 

correct than Model 8 because Model 8 omitted both major predictors. Other models in the 

candidate model set, however, were not so readily comparable. For example, both Model 1 and 

Model 3 omitted a major predictor, but the omission occurred at L1 in Model 1 and at L2 in 

Model 3. It is possible that, even though different predictors were omitted, the omission of any 

one major predictor constituted the same degree of misspecification. It is also possible that the 

extent of misspecification depended on the level at which a major predictor was omitted, 

meaning that actually differed in the degree of their misspecification. A summary table of this a 

priori ranking can be seen in Table 3.2.   

If all of the eight misspecified candidate models were compared in a pairwise fashion, there 

would be 28 possible pairwise comparisons. Eight of these (e.g., Model 1 vs. Model 5) could 

have been compared using likelihood ratio tests because the model pairs are nested, leaving 20 

non-nested pairwise. These 20 non-nested pairwise comparisons are listed in Table 3.3. Based on 
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the logic described in the previous paragraph, 15 of the 20 non-nested pairwise comparisons 

have a model that appears a priori to be less misspecified than the other. Five of these, however, 

are ambiguous. The comparisons between Models 1 and 3 and Models 2 and 4 are ambiguous 

because the compared models have the same degree of misspecification, but at different levels. 

The comparisons between Models 2 and 5 and Models 4 and 5 are ambiguous because it is not 

clear if omitting two minor predictors or omitting a single major predictor is a greater degree of 

misspecification. The comparison between Models 6 and 7 is ambiguous because both models 

omit a major and minor predictor, but at different levels.   

In addition to the a priori expectations about the relative degree of misspecification, four 

large single-replication simulations were conducted for each combination of functional form 

(exponential and logistic) and ICC (low and high) to examine relative misspecification 

empirically across model comparisons. The degree of misspecification was examined by 

comparing the deviances of the models in each pairwise comparison and by comparing the 

percent reduction in both L2 intercept variance and L1 residual variance when each model was 

compared to a misspecified unconditional model. Because the functional form specification was 

always correct in this study, the unconditional models for exponential and logistic models with 

predictors were the functional form-only models used in Study 1. To compute the percent 

reduction in variance components for all candidate models, all of the candidate models and the 

unconditional models had to be estimated without error within each single replication, which was 

difficult with a large number of L2 units because all of the candidate models were misspecified. 

All four large single-replication simulations were conducted using 2000 L2 units.  

The percent reduction in the L2 intercept variance and the L1 residual variance for all models 

is shown in Table 3.4. As expected, the correctly specified model is either at the top or near the 
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top of each model list for both functional forms and both ICCs. The ordering of the models was 

the same for both ICCs. Across functional forms and ICCs, there appeared to be “tiers” of 

percent reduction (shown in the shading of different cells in Table 3.4) in the variance 

components. Both low-ICC and high-ICC exponential functional forms appeared to have two 

tiers of percentage reduction of the L1 residual variance and four tiers of percentage reduction of 

the L2 intercept variance. Both low-ICC and high-ICC logistic functional forms appeared to have 

two tiers of percentage reduction of the L1 residual variance and three tiers of percentage 

reduction of the L2 intercept variance. Collectively, the percent reduction in the variance 

components across models suggests that the degree of misspecification may be somewhat 

different across functional forms and ICCs. The pairwise comparison of model deviances is 

shown in Table 3.5. The pairwise comparison of model deviances was done for all four 

combinations of functional form and ICC. Although all models that were compared were all 

misspecified, the model with the lower deviance within each pair presumably was less 

misspecified than the model with higher deviance. For each combination of functional form and 

ICC, the model with lower deviance within each pairwise comparison was the same.  

A summary of these findings is shown in Table 3.3, which shows a side-by-side comparison 

of the model within each pairwise comparison would have been expected to be less misspecified 

based on a priori judgement, the pairwise deviance comparisons, and the tiers identified when 

examining the percent reduction in the variance components. There were five comparisons, for 

which the empirical evaluations were in disagreement. Given that the context of this simulation 

study was that of longitudinal data, it was tentatively decided that the model favored by the 

percent reduction in the L1 residual variance would be considered correct in these five models 

for the purposes of evaluating correct model selection by information criteria.  



 43 

ICCs and variance components 

As in Study 1, the ICCs were 0.4 and 0.6 with the parameters in each functional form most 

related to the intercept having variance equal to either 0.67 or 1.5, respectively. The L1 error 

variance was set equal to 1. Error terms were generated from a normal distribution with a mean 

of zero and a variance in accordance with the intended ICCs. 

Sample sizes 

As in Study 1, the L2 sample sizes were 30, 50, and 100, and the L1 sample sizes were 5, 7, 

9, and 13. Like before, the L2 sample sizes were directly manipulated as part of the data 

generation step, but the different L1 sample sizes were created by dropping time points from a 

single generated data set within any given replication. For each of the L1 sample sizes, the time 

points that were retained were different across sample sizes, but the distances between each time 

point within an L1 sample size were always equal and maintained the range of the time variable.   

Relative effect sizes of model comparisons 

It was expected that the ability of information criteria to distinguish between the models 

being compared would differ across comparisons. If multiple information criteria are computed 

for a model, those information criteria will incorporate the same deviance. If the differences in 

the deviances between two models is high, then information criteria are likely to select the model 

with the lower deviance regardless of which one is used. If, however, the differences in the 

model deviances is low, then the ability of an information criterion to select a correct (or, in this 

case, a more correct) model may depend on whether it is efficient or consistent. The absolute 

values of the model deviance differences within each comparison is shown in Table 3.6. The 

deviance difference between Models 1 and 3 was the lowest among the functional forms and 

ICCs, meaning that the characteristics specific to each information criterion (the “penalty” term, 
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sample size for a sample size-dependent criterion) would be more likely to matter. In contrast, 

Models 3 and 8 had the greatest difference in model deviances, meaning that the specific 

characteristics of each information criteria were less likely to matter. Similar to the “tiers” 

identified in the percent variance reduction in the variance components, three “tiers” of expected 

difficulty were identified through visual examination of the absolute value of the model deviance 

differences. These tiers are shown in the middle column of Table 3.6. Model comparisons within 

the first tier (lower deviance differences) were expected to have more variability in information 

criteria performance than those in other tiers (moderate and higher deviance differences). 

Information criteria 

As in Study 1, a total of nine information criteria were computed for each candidate model: 

AIC, AICC (N and m), BIC (N and m), CAIC (N and m), and HQIC (N and m). When computing 

the sample size-dependent criteria, m was equal to the number of L2 units (30, 50, or 100) and N 

was equal to the total number of observations (e.g. when L1 sample size was 5 and L2 sample 

size was 30, N was equal to 120).  

Overview 

The performance of the different information criteria was likely to be affected by the ICC (2 

levels), number of individuals sampled (3 levels), and number of measures from each individual 

(4 levels). One thousand valid replications were simulated in each of these 24 conditions in SAS 

9.4. For each generated data set, nine models with correctly-specified functional form were 

fitted. One of these models (Model 0) was correctly specified, having both Major and Minor 

predictors at both levels. The other eight (Model – Model 8) had different degrees of 

misspecification. All of these models were estimated using the NLMIXED procedure with 

maximum likelihood estimation by adaptive Gauss-Hermite quadrature. A replication was 
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considered valid if all estimated models converged and produced no error messages. Unlike 

Study 1, the percentage of valid replications was very high: between 92% (logistic functional 

form, high ICC, and 100 L2 units) and 100% (logistic functional form, low ICC, 30 individuals).  

Analyses and hypotheses 

There were two outcomes of interest in this study, both of which involved the ability of the 

different information criteria to select the more correct model within a set of candidate models. 

The first outcome, the selection rate of the correctly specified model (Model 0) when the eight 

other misspecified models are also in the candidate model set, was a conventional outcome that 

directly built on previous work through the examination of the performance of information 

criteria when models have truly nonlinear functional forms. The second outcome of interest was 

the ability of information criteria to select a more correct model when both models in a set of two 

candidate models are misspecified. As in Study 1, I expected the performance of information 

criteria to improve (i.e., select the more correct model more often than the less correct model) as 

the number of individuals and the number of time points increased. The potential impact of the 

magnitude of the ICC was expected to depend on whether the misspecification occurred at L1, 

L2, or at both levels.  

Data were analyzed in the GLIMMIX procedure in SAS 9.4 (SAS Institute Inc, 2015) using 

maximum likelihood with Laplace approximation and between-within denominator degrees of 

freedom used for the F tests of the fixed effects. The outcome was whether or not the more 

correct model was selected. For each generating functional form, analyses began with fitting a 

logistic multilevel model with a four-way interaction between L1 sample size (reference group 

was 5), L2 sample size (reference group was 30), ICC (reference group was low), and 

information criteria (initial reference group was AIC). Replication ID was modeled as a random 
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effect, reflecting the fact that all L1 time points within a replication shared the same generating 

form. If the four-way interaction was not significant, then a model with three-way interactions 

was tested. The same process was repeated until there was a significant interaction among the 

highest-order terms or there were no more interaction vectors to test. Because the focus of this 

study was information criteria, simple effects tests were conducted for a significant interaction 

only if the interaction involved information criteria. This was done by subsetting data according 

to what made most sense given the nature of the interaction. Finally, AIC, BIC(N), and BIC(m) 

were tested against each other and the other information criteria by changing the reference 

category of the main/simple effect information criteria vectors. 

 Multilevel logistic models are computationally intensive and sometimes difficult to estimate. 

The most common error that occurred while fitting these models was the coefficients of one or 

more dummy vectors having an estimated standard error of zero, creating a test statistic equal to 

infinity. In other cases, the model did not produce any estimates because it did not converge. If 

any errors occurred in the four-way interaction model, a three-way interaction model was fitted, 

and so on until a model that estimated without errors was found. At that point, the analysis 

procedure described in the previous paragraph was conducted. For all of the non-nested pairwise 

comparisons, the four-way interaction model either had coefficients with standard errors 

estimated to be zero or estimated without issue but the four-way interaction was non-significant. 

Because of this, the estimation of the four-way model is not described in the results section. 

Results 

Selection rates for correctly-specified models 

The selection rate for models that were correctly specified – that is, the fitted models 

included both major predictors and both minor predictors – is shown in Table 3.7. The 
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information criterion that was most likely to identify the correct model was AIC (9.8%-14.2% 

for logistic, 11.5%-18.1% for exponential), followed by AICC-N (8.9%-13.6% for logistic, 

10.7%-17.5% for exponential), AICC-m (5.5%-8.1% for logistic, 7.0%-11.2% for exponential), 

then HQIC-m (5.3%-8.0% for logistic, 6.0%-10.5% for exponential). All other information 

criteria had correct selection rate of less than 10%.  

Non-nested pairwise comparisons – lower deviance differences 

The process of determining the ability of AIC, BIC(N), and BIC(m) to select the more 

correct model when the absolute value of the deviance differences between each of the two 

models was lower is described in detail in this section. A summary of the results can be found at 

the top of Table 3.8. 

Model 1 vs Model 3. Model 3 (omitted minor L2), which was unclear a priori but was 

identified by the empirical evaluation methods as being more correct than Model 1 (omitted 

minor L1 predictor), was selected between 27% and 73% of the time across all sample sizes, 

ICCs, information criteria, and functional forms. When the underlying functional form was 

exponential or logistic, the three-way interaction model estimated without issue and contained 

two significant three-way interaction between that included information criteria (p < 0.001). 

Because both of these interactions included L1 sample size, the data were first subsetted by L1 

sample size and the two-way interactions between information criteria, L2 sample size, and ICC 

were modeled.  

When the underlying functional form was exponential, the two-way interactions with L2 

sample size and ICC that included information criteria were not significant. There was a 

significant effect of information criteria across L1 sample sizes (all p < 0.001), such that AIC 
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performed significantly better than BIC(N) and BIC(m). There was no significant difference in 

performance between BIC(N) and BIC(m). 

 When the underlying functional form was logistic, the two-way interactions with L2 

sample size and ICC that included information criteria were not significant when L1 sample size 

was 5, 7, or 13. For these models, there was no significant effect of information criteria. When 

the L1 sample size was 9, L2 sample size and ICC shared interaction terms with information 

criteria. The data were further subsetted by L2 sample size and ICC separately. The effect of 

information criteria was significant across these models (all p < 0.001), such that AIC performed 

significantly worse than BIC(N) or BIC(m). There was no significant difference in performance 

between BIC(N) and BIC(m). 

Model 1 vs Model 4. Model 1 (omitted minor L1 predictor), which was identified a priori 

and by the empirical evaluation methods as the more correct than Model 4 (omitted major L2 

predictor), was selected at least 85% of the time across all sample sizes, ICCs, information 

criteria, and functional forms. When the underlying functional form was exponential or logistic, 

the three-way and two-way interactions models had coefficient estimates with standard errors 

equal to zero. The main effect model estimated without issue. For both main effects models, 

there was no significant effect of information criteria. 

Model 3 vs Model 4. Model 3 (omitted minor L2 predictor), which was identified a priori 

and by the empirical evaluation methods as being more correct than Model 4 (omitted major L2 

predictor), was selected at least 92% of the time, across all sample sizes, ICCs, information 

criteria, and functional forms. When the underlying functional form was exponential or logistic, 

the three-way and two-way interactions models estimated without issue and had no significant 
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interaction terms that included information criteria. Information criteria was not a significant 

effect in the main effects model for either exponential or logistic functional forms.  

Model 3 vs Model 6. Model 3 (omitted minor L2 predictor), which was identified a priori and 

by the empirical evaluation methods as being more correct than Model 6 (omitted minor L1 and 

Major L2 predictors), was selected at least 69% of the time and up to 94% of the time, across all 

sample sizes, ICCs, information criteria, and functional forms.  

When the underlying functional form was exponential, the three-way interaction model 

estimated without issue and contained a significant three-way interaction between L1 sample 

size, L2 sample size, and information criteria (p < 0.001). The data were first subsetted by L1 

sample size and the two-way interactions between information criteria, L2 sample size, and ICC 

were modeled. When the L1 sample size was 5 or 7, there was no significant interaction that 

included information criteria, and information criteria was significant (p < 0.001) in the subsetted 

main effects model. When L1 sample size was 7 or 13, there was a significant interaction 

between information criteria and L2 sample size, so the data were further subsetted by L2 sample 

size. Information criteria was significant (p < 0.001) across all of these models. AIC performed 

significantly better than BIC(N) or BIC(m) across all subsetted conditions, and BIC(m) 

performed significantly better than BIC(N).  

 When the underlying functional form was logistic, the three-way interaction model 

estimated without issue, and none of the interaction terms that included information criteria were 

significant. The two-way interaction model, however had three significant interactions that 

included information criteria: L1 sample size, L2 sample size, and ICC. To examine the simple 

effects of information criteria, the data set subsetted separately on L1 sample size, L2 sample 

size, and ICC. There were significant simple effects of information criteria across all of these 
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subsetted models (all p < 0.001). Across all sample sizes and ICCs, AIC performed better than 

BIC(N) and BIC(m), and BIC(m) performed better than BIC(N). 

Model 4 vs Model 5. Model 5 (omitted minor L1 and minor L2 predictors), which was 

unclear a priori but was identified by the empirical evaluation methods as being more correct 

than Model 4 (omitted major L2 predictor), was selected at least 86% of the time, across all 

sample sizes, ICCs, information criteria, and functional forms. When the underlying functional 

form was exponential, the three-way interaction model estimated without issue, and none of the 

interaction terms that included information criteria were significant. The two-way interaction 

model, however had two significant interactions that included information criteria: L1 sample 

size and L2 sample size. To examine the simple effects of information criteria, the data set 

subsetted separately on L1 and L2 sample sizes. There were significant simple effects of 

information criteria (all p < 0.001) across all L1 and L2 sample sizes. AIC always performed 

significantly worse than BIC(N) and BIC(m), and BIC(N) performed better than BIC(m).  

 When the underlying functional form was logistic, the three-way interaction model 

estimated without issue, and none of the interaction terms that included information criteria were 

significant. The two-way interaction model, however had two significant interactions that 

included information criteria: L2 sample size and ICC. To examine the simple effects of 

information criteria, the data set subsetted separately on L2 sample size and ICC. There were 

significant simple effects of information criteria (all p < 0.001) across all L2 sizes and ICCs. AIC 

performed significantly worse than BIC(N) or BIC(m), and BIC(N) always performed 

significantly better than BIC(m).  

Model 5 vs Model 6. Model 5 (omitted minor L1 and minor L2 predictors), which was 

identified a priori and by the empirical evaluation methods as being more correct than Model 7 
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(omitted major L1 and minor L2 predictors), was selected at least 98% of the time, across all 

sample sizes, ICCs, information criteria, and functional forms.  

When the underlying functional form was exponential, the three-way interaction model 

failed to converge. The two-way interaction model estimated without issue, and no interaction 

terms that included information criteria were significant. The main effects model failed to 

converge. Finally, a model with just information criteria as a predictor was fitted, and the effect 

of information criteria was not significant. When the underlying functional form was logistic, the 

four-way, three-way, and two-way interaction models estimated without issue but had no 

significant interaction terms that included information criteria. There was no significant effect of 

information criteria in the main effects model. 

Model 7 vs Model 8. Model 7 (omitted major L1 and minor L2 predictors), which was 

identified a priori and by the empirical evaluation methods as being more correct than Model 8 

(omitted major L1 and major L2 predictors), was selected at least 90% of the time, across all 

sample sizes, ICCs, information criteria, and functional forms.  

When the underlying functional form was exponential, the three-way interaction model 

had coefficient estimates with standard errors equal to zero. The two-way interaction model 

estimated without issue and none of the two-way interactions including information criteria were 

significant, so a main effects model was fitted. Neither the main effects model nor a model with 

just information criteria as a predictor successfully converged. Finally, a single-level logistic 

model was fit using just information criteria as a predictor. This model estimated without error, 

and there was no significant effect of information criteria. When the underlying functional form 

was logistic, the four-way, three-way, and two-way interaction models had coefficient estimates 
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with standard errors equal to zero. The main effects model estimated without issue, and there 

was no significant effect of information criteria.  

Non-nested pairwise comparisons – moderate deviance differences 

The process of determining the ability of AIC, BIC(N), and BIC(m) to select the more 

correct model when the absolute value of the deviance differences between each of the two 

models was moderate is described in detail in this section. A summary of the results can be found 

in the middle of Table 3.8. 

Model 1 vs Model 2. Model 1 (omitted minor L1 predictor), which was identified a priori and 

by the empirical evaluation methods as being more correct than Model 2 (omitted major L1 

predictor), was selected at least 97% of the time across all sample sizes, ICCs, information 

criteria, and functional forms. When the underlying functional form was exponential or logistic, 

the three-way and two-way interactions models had coefficient estimates with standard errors 

equal to zero. The main effect model estimated without issue. For both main effects models, 

there was no significant effect of information criteria. 

Model 1 vs Model 7. Model 1 (omitted minor L1 predictor), which was identified a priori and 

by the empirical evaluation methods as being more correct than Model 7 (omitted major L1 and 

Minor L2 predictors), was selected at least 86% of the time, across all sample sizes, ICCs, 

information criteria, and functional forms.  

When the underlying functional form was exponential, the three-way interaction model 

estimated without issue, and none of the interaction terms that included information criteria were 

significant. The two-way interaction model, however had one significant interaction with L1 

sample size that included information criteria. To examine the simple effects of information 
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criteria, the data set subsetted on L1 sample size. AIC performed significantly better than BIC(N) 

and BIC(m), and BIC(m) performed significantly better than BIC(N). 

 When the underlying functional form was logistic, the three-way interaction model 

estimated without issue, and none of the interaction terms that included information criteria were 

significant. The two-way interaction model, however had two significant interactions that 

included information criteria: L1 sample size and L2 sample size. To examine the simple effects 

of information criteria, the data was subsetted on these separately. AIC performed significantly 

better than BIC(N) and BIC(m), and BIC(m) performed significantly better than BIC(N). 

Model 2 vs Model 4. This comparison was one for which a priori assessment of relative 

misspecification was unclear and for which the empirical evaluation methods disagreed. Model 4 

(omitted major L2 predictor), which was determined by the model deviance comparison and the 

percent reduced L1 residual variance to be more correct than Model 2 (omitted major L1 

predictor),  was selected at least 83% of the time across all sample sizes, ICCs, information 

criteria, and functional forms.  When the underlying functional form was exponential, the three-

way and two-way interactions models had coefficient estimates with standard errors equal to 

zero. The main effect model estimated without issue. When the underlying functional for was 

logistic, the three-way and two-way interaction models estimated without issue and had no 

significant interaction terms that included information criteria. For both main effects models, 

there was no significant effect of information criteria.  

Model 2 vs Model 5. Model 5 (omitted minor L1 and minor L2 predictors), which was 

unclear a priori but was identified by the empirical evaluation methods as being more correct 

than Model 2 (omitted major L1 predictor) was selected at least 98% of the time across all 

sample sizes, ICCs, information criteria, and functional forms. When the underlying functional 
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form was exponential or logistic, the three-way and two-way interactions models had coefficient 

estimates with standard errors equal to zero. The main effect model estimated without issue, and 

there was a significant effect of information criteria (p < 0.001) in both models. AIC performed 

significantly worse than BIC(N) and BIC(m), and BIC(N) performed better than BIC(m). 

Model 2 vs Model 6. This comparison was one for which the empirical evaluation 

methods disagreed. Model 6 (omitted minor L1 and major L2 predictors), which was determined 

by the model deviance comparison and the percent reduced L1 residual variance to be more 

correct than Model 2 (omitted major L1 predictor), was selected between 0% and 18% of the 

time across all sample sizes, ICCs, information criteria, and functional forms. This selection rate 

was quite low, which suggests either that the information criteria had difficulty selecting the 

more correct model for this comparison or that Model 6 may not have actually be less 

misspecified than Model 2. Because this was one of the five comparisons where the empirical 

indicators disagreed, the latter seemed more likely. Regardless, whether information criteria was 

a significant factor in this comparison can be assessed in the same way. 

When the underlying functional form was exponential or logistic, the three-way 

interaction model estimated without issue, and none of the interaction terms that included 

information criteria were significant. The two-way interaction model, however had two 

significant interactions that included information criteria: L1 sample size and L2 sample size. To 

examine the simple effects of information criteria, the data set subsetted separately on these 

separately. Across all sample sizes, AIC performed significantly worse than BIC(N) or BIC(m), 

and BIC(N) performed significantly better than BIC(m).  

Model 4 vs Model 7. This comparison was one for which the empirical evaluation 

methods disagreed. Model 4 (omitted major L2 predictor), which was determined by the model 
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deviance comparison and the percent reduced L1 residual variance to be more correct than 

Model 7 (omitted major L1 and minor L2 predictors), was selected at least 66% of the time and 

up to 98% of the time, across all sample sizes, ICCs, information criteria, and functional forms.  

When the underlying functional form was exponential, the three-way interaction model 

estimated without issue, and none of the interaction terms that included information criteria were 

significant. The two-way interaction model, however had two significant interactions that 

included information criteria: L1 sample size and L2 sample size. To examine the simple effects 

of information criteria, the data set subsetted separately on L1 and L2 sample sizes. There were 

significant simple effects of information criteria (all p < 0.001) across all L1 and L2 sample 

sizes. AIC always performed significantly better than BIC(N) across L1 and L2 sample sizes. 

AIC also performed significantly better than BIC(m) except when the L1 sample size was 13, at 

which point they were not significantly different. BIC(m) always performed significantly better 

than BIC(N).  

 When the underlying functional form was logistic, the three-way interaction model 

estimated without issue and contained a significant three-way interaction between L1 sample 

size, L2 sample size, and information criteria (p < 0.001). The data were first subsetted by L1 

sample size and the two-way interactions between information criteria, L2 sample size, and ICC 

were modeled. When the L1 sample size was 7, 9, or 13, there were no significant interactions 

that included information criteria and the main effect of information criteria was significant (all p 

< 0.001). When the L1 sample size was 5, there was a significant interaction between 

information criteria and L2 sample size, so the data were further subsetted by L2 sample size. 

Information criteria was significant (p < 0.001) across all of these models. In all of these 
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subsetted analyses, AIC performed significantly better than BIC(N) and BIC(m). BIC(m) always 

performed significantly better than BIC(N).  

Model 5 vs Model 7. Model 5 (omitted minor L1 and minor L2 predictors), which was 

identified a priori as being more correct than Model 7 (omitted major L1 and minor L2 

predictors), was selected at least 94% of the time, across all sample sizes, ICCs, information 

criteria, and functional forms. When the underlying functional form was exponential or logistic, 

the three-way and two-way interactions models had coefficient estimates with standard errors 

equal to zero. The main effect model estimated without issue, and there was no significant effect 

of information criteria. 

Model 6 vs Model 7. This comparison was one for which the empirical evaluation methods 

disagreed. Model 6 (omitted minor L1 and major L2 predictors), which was determined by the 

model deviance comparison and the percent reduced L1 residual variance to be more correct than 

Model 7 (omitted major L1 and minor L2 predictors), was selected at least 81% of the time, 

across all sample sizes, ICCs, information criteria, and functional forms 

When the underlying functional form was exponential, the three-way and two-way 

interactions models had coefficient estimates with standard errors equal to zero. The main effect 

model estimated without issue, and there was no significant effect of information criteria. When 

the underlying functional form was logistic, the four-way, three-way, and two-way interaction 

models estimated without issue but had no significant interaction terms that included information 

criteria. There was no significant effect of information criteria in the main effects model. 

Model 6 vs Model 8. This comparison was one for which the empirical evaluation 

methods disagreed. Model 6 (omitted minor L1 and major L2 predictors), which was determined 

by the model deviance comparison and the percent reduced L1 residual variance to be more 
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correct than Model 8 (omitted major L1 and major L2 predictors), was selected at least 90% of 

the time, across all sample sizes, ICCs, information criteria, and functional forms. When the 

underlying functional form was exponential, the three-way and two-way interactions models had 

coefficient estimates with standard errors equal to zero. The main effect model estimated without 

issue, and there was no significant effect of information criteria. When the underlying functional 

form was logistic, the four-way, three-way, and two-way interaction models estimated without 

issue but had no significant interaction terms that included information criteria. There was no 

significant effect of information criteria in the main effects model. 

Non-nested pairwise comparisons – larger deviance differences 

The process of determining the ability of AIC, BIC(N), and BIC(m) to select the more 

correct model when the absolute value of the deviance differences between each of the two 

models was higher is described in detail in this section. A summary of the results can be found at 

the bottom of Table 3.8. 

Model 1 vs Model 8. Model 1 (omitted minor L1 predictor), which was identified a priori and 

by the empirical evaluation methods as being more correct than Model 8 (omitted major L1 and 

major L2 predictors), was selected at least 89% of the time, across all sample sizes, ICCs, 

information criteria, and functional forms. When the underlying functional form was 

exponential, the three-way and two-way interactions models had coefficient estimates with 

standard errors equal to zero. The main effect model estimated without issue, and there was a 

significant main effect of information criteria (p < 0.001). AIC performed better than BIC(N) and 

BIC(m), and BIC(m) performed better than BIC(N).  

 When the underlying functional form was logistic, the three-way interaction model 

estimated without issue, and none of the interaction terms that included information criteria were 



 58 

significant. The two-way interaction model, however had two significant interactions that 

included information criteria: L1 sample size and L2 sample size. To examine the simple effects 

of information criteria, the data set subsetted separately on these separately. AIC performed 

significantly better than BIC(N) and BIC(m), and BIC(m) performed significantly better than 

BIC(N) except when the L2 sample size was 100. In that case, BIC(N) and BIC(m) were not 

significantly different.  

Model 2 vs Model 3. Model 3 (omitted minor L2), which was identified a priori and by 

the empirical evaluation methods as being more correct than Model 2 (omitted major L1 

predictor), was selected at least 98% of the time, across all sample sizes, ICCs, information 

criteria, and functional forms. When the underlying functional form was exponential or logistic, 

the three-way and two-way interactions models had coefficient estimates with standard errors 

equal to zero. The main effect model estimated without issue. For both main effects models, 

there was no significant effect of information criteria. 

Model 3 vs Model 8. Model 3 (omitted minor L2 predictor), which was identified a priori 

and by the empirical evaluation methods as being more correct than Model 8 (omitted major L1 

and Major L2 predictors), was selected at least 90% of the time, across all sample sizes, ICCs, 

information criteria, and functional forms. When the underlying functional form was 

exponential, the three-way and two-way interaction models estimated without issue and had no 

significant interaction terms that included information criteria. There was a significant main 

effect of information criteria, such that AIC always performed significantly better than BIC(N) 

or BIC(m). BIC(m) always performed better than BIC(N).  

 When the underlying functional form was logistic, the three-way interaction model 

estimated without issue, and none of the interaction terms that included information criteria were 
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significant. The two-way interaction model, however had three significant interactions that 

included information criteria: L1 sample size, L2 sample size, and ICC. To examine the simple 

effects of information criteria, the data set subsetted separately on these separately. Across all 

sample sizes and ICCs, AIC performed significantly worse than BIC(N) or BIC(m), and BIC(m) 

performed significantly better than BIC(N).  

Model 5 vs Model 8. Model 5 (omitted minor L1 and minor L2 predictors), which was 

identified a priori and by the empirical evaluation methods as being more correct than Model 8 

(omitted major L1 and major L2 predictors), was selected at least 97% of the time, across all 

sample sizes, ICCs, information criteria, and functional forms. When the underlying functional 

form was exponential or logistic, the three-way and two-way interactions models had coefficient 

estimates with standard errors equal to zero. The main effect model estimated without issue, and 

there was no significant effect of information criteria. 

Discussion 

 There were two outcomes of interest in this study. The first was to examine the correct 

model selection rate of each information criterion when the correctly specified model was among 

the set of candidate models. The second outcome of interest was the performance of information 

criteria when the correctly specified model was not among the set of candidate models; good 

performance in this case was when the less misspecified, or more correct, model was selected. 

The former outcome is a common outcome of interest in simulation literature examining the 

performance of information criteria, and this study extends previous work to truly nonlinear 

functional forms. The latter outcome is not commonly examined but may better reflect the reality 

of research (Burnham & Anderson, 2003).  

 Overall, the correctly specified model was not selected most of the time, which was not 
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expected. In this study, the correctly specified model was the most parameterized model because 

it included both major and minor predictors at both levels. All of the examined information 

criteria incorporate the same deviance as part of their computation, an ordered list of which is 

shown in Table 3.9. However, how additional model complexity is incorporated differs across 

criteria, and it is likely that some of the misspecified models – particularly that of Model 3, 

which was missing just a minor L2 predictor – had deviances close enough to that of the 

correctly specified model that they were selected because the misspecified models had just two 

or three predictors. In addition, per Table 3.4, the correctly specified model was always in the 

highest tier of percent reduction in variance components but was never alone in that tier. For 

example, the correctly specified model for the low-ICC exponential condition reduced the L1 

residual variance by the same percentage as Models 1, 3, 4, 5, and 6. Because of this, the 

consistent information criteria, which I expected do perform better than the efficient information 

criteria, homed in on these seemingly more parsimonious models. Efficient information criteria, 

which are dimension inconsistent, are more likely to select overparameterized models 

(Bozdogan, 1987), which may be why their selection rate was comparatively better than 

consistent information criteria in this study. In light of this, even though the low selection rate of 

the correctly specified model was not anticipated, it is not entirely surprising given the similarity 

of the candidate models to the correctly specified model. 

 Selection rates of models identified as more correct within their pairwise comparisons 

were generally good (with an exception, discussed below). Contrary to what I expected, there 

was variability in which information criteria performed better across all tiers of model 

comparisons – that is, no tier had either AIC or BIC (N and m) always or almost always being 

the best-performing information criterion. There were, however, a couple of systematic 
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differences of note. First, whenever AIC was the best-performing information criterion of the 

three, BIC(N) was almost always worse than BIC(m). In contrast, whenever AIC was the worst-

performing information criterion of the three, BIC(N) was almost always better than BIC(m). 

This may be because N was much larger than m, which enhanced the performance of BIC when 

BIC was better than AIC and detracted from its performance when AIC was better. There was 

only one case where there was a significant effect of information criteria that BIC(N) and 

BIC(m) performed similarly, which was the comparison between Models 1 and 3. Both of these 

models were missing a minor predictor and had the smallest deviance difference between 

models. Because of this, there may not have been much room for differences between BIC 

computations to emerge as there were in other comparisons where there was a significant effect 

of information criteria. The other systematic difference of note was that the effect of information 

criteria and the ranking of the performance of AIC and BIC (N and m) was largely consistent 

across functional forms. The only exceptions to this trend were the comparisons between Models 

1 and 3 and Models 3 and 8, which respectively had the lowest and highest model deviance 

differences among the model comparisons. This may have been due to the differences in 

deviances of these models between functional forms. Per Table 3.9, the deviances of the logistic 

models across ICCs was lower than that of the exponential models, meaning that the magnitude 

of the differences was smaller within logistic models even within the same tier.  

  One of the greatest limitations of this study had to do with determining the relative 

degree of misspecification and which of the models in a given pair was more correct. Relative 

misspecification between models in the candidate model set was explored in multiple ways, 

including model deviance and percent reduction in variance components. These methods, 

however, were not always in agreement and none of them provided a definitive metric for 
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determining relative misspecification. This was most evident in the comparison between Models 

2 and 6. Model 6 omitted a major predictor at L2 and a minor predictor at L2, while Model 2 

omitted only a major predictor at L1. The model deviance comparison (which was among the 

largest of the deviance differences) and the percent reduction in L1 residual variance suggested 

that Model 6 was less misspecified, while the a priori judgment and the percent reduction in L2 

intercept variance suggested that Model 2 was less misspecified. Given the disagreement and the 

fact that the information criteria otherwise performed well, the relative misspecification in this 

comparison is likely more ambiguous than in the other comparisons. While many of the model 

comparisons had high rates of selection of the more correct model, which suggests that 

information criteria could be useful for selecting a more correct model when the correctly 

specified model is absent from the set of candidate models, it cannot be definitively said the 

models determined to be more correct actually were.  

 Like most simulation work, the findings of this study may not generalize to conditions 

not examined in this study. Although the number of L1 and L2 sample sizes were chosen with 

common behavioral research contexts in mind, the range of the L1 and L2 sample sizes was 

limited and the applicability to other sample sizes is unknown. This limitation also applies to the 

ICCs examined in this study. Although no specific recommendations about which information 

criteria to use when selecting among candidate models that are all misspecified with regard to 

their predictor sets emerged from this study, the utility of developing such recommendations is 

considerable because models are used in behavioral research to explain complex phenomena. 

Future directions include work on refining the assessment of relative model misspecification, 

either through simulation or analytical approaches. In addition, future work should include more 

complex generating models (e.g. cross-level interactions and more predictors) and a greater 
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variety of types of misspecification. For example, while all candidate models in this study were 

correctly specified with regard to their functional forms, it would be interesting to see if both 

functional form and predictor sets could be identified within the same model selection step. 

Finally, while the focus on this study was on AIC and BIC because of their prevalence in 

psychological literature (Whittaker & Furlow, 2009) and in statistical software packages, further 

comparisons with additional information criteria could potentially reveal the usefulness of a less-

common criterion in certain circumstances.  
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4. Interlude: Fitting Covariance Structures to Truly Nonlinear Multilevel Models 

 Once a functional form and a predictor set has been identified, a likely next step for a 

researcher fitting truly nonlinear functional forms to longitudinal data would be to fit some kind 

of covariance structure. It is possible to fit covariance structures at multiple levels when there is 

sufficient data to do so, but the within-person covariance structure would likely be of particular 

interest in the context of longitudinal data. The within-person error covariance matrix is a square 

matrix that has the same number of rows and columns as the number of time points. The main 

diagonal in this matrix contains the L1 error variance at each time point. The other elements in 

the matrix contain the covariances between errors at different time points. The default L1 

covariance structure in many statistical software packages that fit multilevel models is the 

conditional independence structure. The conditional independence structure for a five-time point 

study is shown below: 

𝜎*

⎣
⎢
⎢
⎢
⎡
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1⎦

⎥
⎥
⎥
⎤
 . 

This structure implies that the L1 residual variance is the same across all five time points and 

that there is no correlation between error at different time points. The conditional independence 

structure may be a reasonable choice in a longitudinal context if the measures are spaced such 

that a long amount of time, such as a year, passes between measurements (Harring & Blozis, 

2014). If, however, the within-person L1 errors are correlated between time points, a model fit 

using the conditional independence structure would be misspecified. Singer and Willett (2003) 

noted that substantive hypotheses are usually expressed via the fixed effects of the model and 

that the estimates of the fixed effects usually do not change regardless of the L1 covariance 

structure used in a model. The precision of the fixed effects estimates, however, can be increased 
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by fitting an L1 covariance structure that captures within-person error correlation across time 

points. Specifically, correct specification will increase the power of the hypothesis tests of the 

fixed effects by decreasing the standard errors associated with the fixed effects (Kwok, West, & 

Green, 2007; Singer & Willett, 2003).  

It is possible to separately estimate all of the correlations across time points, which is usually 

referred to as an unstructured covariance matrix and has the following structure 

𝜎*

⎣
⎢
⎢
⎢
⎡
𝑎 𝑓 𝑔 ℎ 𝑖
𝑓 𝑏 𝑗 𝑘 𝑙
𝑔 𝑗 𝑐 𝑚 𝑛
ℎ 𝑘 𝑚 𝑑 𝑜
𝑖 𝑙 𝑛 𝑜 𝑒⎦

⎥
⎥
⎥
⎤
 . 

Of all of the covariance structures that could be fit as part of a given model, this one will always 

have the lowest deviance because deviance is not adjusted based on the number of parameters 

used to obtain the likelihood estimate (Singer & Willett, 2003). While the unstructured matrix 

can be appealing because it imposes no assumptions about the nature of the within-person 

variability across time, this structure is the most difficult to estimate because of the large number 

of unique elements that must be estimated and precludes the estimation of L2 random effects 

(Bauer, Gottfredson, Dean, & Zucker, 2013). For example, the smallest L1 sample size used in 

the prior two studies was five, meaning that a fitting an unstructured covariance matrix would 

require the estimation of 15 additional parameters. The amount of data needed to estimate such a 

model would be substantial and would likely be impossible to attain in many research contexts.  

Singer and Willett (2003) suggested beginning exploratory analyses by fitting an unstructured 

covariance structure if possible, but they also noted that more parsimonious structures are likely 

to be selected when using model selection methods that adjust based on the number of 

parameters used to estimate a model.  



 66 

A common choice for longitudinal research is an autoregressive structure, which models 

between-time point error correlations that trend exponentially toward zero (Bauer et al., 2013; 

Singer & Willett, 2003). An autoregressive within-person covariance structure for a five-time 

point study has the following matrix form: 

𝜎*

⎣
⎢
⎢
⎢
⎢
⎡ 1 𝜌( 𝜌* 𝜌, 𝜌-

𝜌( 1 𝜌( 𝜌* 𝜌,

𝜌* 𝜌( 1 𝜌( 𝜌*

𝜌, 𝜌* 𝜌( 1 𝜌(

𝜌- 𝜌, 𝜌* 𝜌( 1 ⎦
⎥
⎥
⎥
⎥
⎤

 . 

This is an appealing structure for longitudinal data because it allows for errors at adjacent 

time points to correlate and also allows the correlations between prior time points to decay in a 

systematic fashion as time passes. The autoregressive structure is created by one estimated 

parameter, commonly denoted rho (𝜌), and the L1 residual variance, making for two parameters 

total. The change in the correlation over time is introduced by raising rho to successive integer 

powers up to the total number of time points. Elements in each off-diagonal band are raised to 

the same power; the first band is always rho raised to the first power, the second off-diagonal 

band is always rho raised to the second power, etc. As rho is exponentiated, there is a rapid 

decrease in correlation between errors as more time points separate them. The first band contains 

the correlation between adjacent time points, which models a situation where adjacent 

measurements are more highly correlated than measurements with more distance between them. 

Another common choice in longitudinal research is a Toepliz-banded structure. This structure 

can be an appealing choice because, unlike the autoregressive structure, it does not impose the 

assumption of rapid decay or the presence of a lower asymptote at zero (Bauer et al., 2013). The 

within-band elements must be identical, but there are no other restrictions; each band can have 

any correlation with the adjacent band, including zero. Because of this, unlike the estimation of 
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only a single parameter for the autoregressive structure, each individual band must be estimated 

separately. Because the elements within each band are constrained to be equal, this structure is 

more parsimonious than the unstructured matrix. The matrix form Toepliz-banded structure for a 

five-point time study is as follows:  

𝜎*

⎣
⎢
⎢
⎢
⎡
1 𝑎 𝑏 𝑐 𝑑
𝑎 1 𝑎 𝑏 𝑐
𝑏 𝑎 1 𝑎 𝑏
𝑐 𝑏 𝑎 1 𝑎
𝑑 𝑐 𝑏 𝑎 1⎦

⎥
⎥
⎥
⎤
 . 

 

Note that this structure has five parameters (one for each off-diagonal band and one for the L1 

residual variance), unlike the single rho parameter in the autoregressive structure and the 15 

parameters in the unstructured matrix. A full Toepliz-banded structure estimates all of the bands, 

but as the number of time points increases, this structure becomes increasingly difficult to 

estimate because of the steady increase in the number of parameters. If a researcher wants to fit a 

Toepliz-banded structure but cannot or would prefer not to estimate all possible bands, the 

structure can be further constrained by setting one or more bands equal to zero. For example, 

Harring and Blozis (2014) described a Toepliz-banded specification where only the first off-

diagonal band (denoted above as 𝑎) was estimated. Such a structure, referred to as a symmetric 

tridiagonal Toepliz-banded structure, implies that adjacent measurements are correlated, but non-

adjacent measurements are uncorrelated.  

If a researcher had information from prior research suggesting an appropriate covariance 

structure or wanted to test a specific hypothesis about the nature of the within-person covariance 

structure, then model selection for a covariance structure would be unnecessary. Because it is 

often difficult to choose a structure solely on the basis of theory, it is likely model selection 

would be needed to benefit from the resulting increase in the precision of the estimates of the 
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fixed effects when a proper covariance structure is specified. In such cases, fitting several 

covariance structures and comparing them via a model selection method, such as information 

criteria, is recommended (Bauer et al., 2013; Singer & Willett, 2003). Many statistical software 

packages used to estimate linear and polynomial multilevel models have built-in options for 

specifying different covariance structures. For example, the MIXED procedure in SAS 9.4 can fit 

over 23 covariance structures directly through the TYPE option (SAS Institute Inc., 2015). In 

addition, one of these options allows the user to create any covariance structure that may not be 

offered in MIXED; for example, Bauer and colleagues (2013) created a macro program to be 

used with MIXED that allows users to fit stabilizing banded structures (i.e., Toepliz-banded 

structures where the bands eventually stabilize to some correlation not equal to zero).  

There are not as many user-friendly options available for fitting a variety of L1 

covariance structures when the model is a truly nonlinear model. The NLMIXED procedure, 

which was used to fit the truly nonlinear functional forms in the previous two simulation studies, 

fits a conditional independence structure by default and has no built-in options for fitting 

alternative within-person covariance structures. NLMIXED allows the user to construct and 

specify a customized log likelihood function (SAS Institute Inc., 2015), which means that a user 

could write such a function that would fit different L1 covariance structures. However, doing so 

requires the user to be comfortable building a log likelihood function. 

Harring and Blozis (2014) demonstrated how the log likelihood function could be built in 

NLMIXED to incorporate several L1 covariance structures when fitting truly nonlinear 

multilevel models. They also included NLMIXED code for the autoregressive structure in the 

paper’s appendix and for five structures in a supplemental document, the latter of which included 

code for setting up the data for use in NLMIXED and for fitting the customized log likelihood 
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functions. The first step was to read in the data in wide format, such that each person’s repeated 

measurements were contained in multiple variables in one row. NLMIXED usually requires the 

data to be in long format, where each person’s repeated measures are contained in a single 

variable and are contained in multiple rows, but this not a requirement if using a customized log 

likelihood function. The second step was to create two new variables, which were used to keep 

track of valid (i.e., non-missing) observations. One variable denoted the time at which the valid 

observation occurred, and the second variable was a count of the number of valid within-person 

observations. It was necessary to record the time point at which the valid observation occurred 

because all of the “gaps” in the data created by missing observations were also removed in this 

step. Finally, the third step was to define the customized log function to estimate one of five 

covariance structures. This required taking the inverse and determinant of the desired within-

person covariance structure. The dimensions of the within-person covariance structure were 

established by using a looping structure based on the value of the temporal variable. Once this 

was done, the within-person covariance structure was incorporated into the loglikelihood 

function. At minimum, the user needed to be able to adapt the single-equation form of the model, 

the starting values, the L2 random effects, and the number of time points within the time-based 

looping structure to apply a structure to their own data. 

 I adapted the three-step supplemental code for three of the five covariances structures: 

conditional independence, autoregressive, and tridiagonal Toepliz-banded. I adapted these three 

structures to two kinds of data. The first kind was data collected from over 2000 participants 

over the course of 5 time points and there were missing measurements from some participants. 

The second kind was simulated data generated to have conditionally independent, autoregressive, 

or tridiagonal Toepliz-banded covariance at L1 over five time points. None of the data were 
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missing in the simulated data set. In the case of the data collected from human participants, the 

estimated model had a logistic functional form and predictors at both L1 and L2. In the case of 

the simulated data, the estimated models were functional form only- exponential and logistic 

models. Unfortunately, my adaptation of the Harring and Blozis (2014) code was unsuccessful, 

meaning that neither an applied study nor a simulation study using information criteria to 

selection among different L1 covariances structures could be completed. 

 When fitting the structures to the simulated data, none of the models with either 

autoregressive of Toepliz-banded structures produced estimates; these models always terminated 

due to an execution error. Execution errors can be caused by typographical mistakes, calculations 

that are impossible or very difficult (e.g., dividing by a number very close to zero), or by fitting 

misspecified models (Kiernan et al., 2009). Because the models fitted in NLMIXED always 

matched the generating model exactly, the execution errors could not have been caused by model 

misspecification. The code was carefully reviewed for typographical mistakes and DATA steps 

were used to investigate information about the model estimation that was not displayed when an 

execution error occurs (but is stored in memory). Unfortunately, the cause of the execution errors 

remained unclear.   

 When fitting the different structures to the applied data, I started by fitting the functional 

form-only models first then moved on to the model containing the selected predictor set. The 

conditional independence structures, which matched the default covariance structure that can be 

specified in NLMIXED, produced estimates without any accompanying error messages for the 

functional form-only model and the model with predictors. The autoregressive and Toepliz-

banded structures, however, either produced no estimates or produced untrustworthy estimates 

(specifically, the second order optimality condition was violated). A series of actions was 
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undertaken to try to coax the autoregressive and Toepliz-banded models into estimating in an 

interpretable way. First, all of the missing data from the applied example was removed by 

adapting the second step of the code to exclude missing values in all of the predictors in the 

model, not just the outcome. The next action was based on how the temporal variable was used 

in Harring and Blozis’ (2014) code. In some parts of the code, the time predictor was used was 

the input of a prediction equation. The same time predictor was also incorporated into the 

looping structure of the code, such that certain values of time would either continue or end the 

loop used to create the L1 covariance structure. In light of this, the values taken by the temporal 

predictor were was changed from being continuous (e.g., 1.6, 2.4, etc.) to being discrete (i.e., 0, 

1, 2, etc.). The autoregressive and Toepliz-banded structure models produced estimates when the 

data were complete and when time was discrete, but an error about violating the second order 

optimality condition appeared for both of them. This problem can sometimes be solved by 

rescaling parameters in the model (Kiernan et al., 2009) and was successfully used for fitting the 

logistic functional form models in the two simulation studies. In this case, however, rescaling 

different parameters in the models did not resolve the errors. Finally, to see if the Toepliz-banded 

structure was having difficulty estimating because these data included fewer time points than the 

example data used in Harring and Blozis’ (2014) example, I removed the determinant 

computation looping structure and replaced it with a hard-coded determinant calculation for a 

5x5 matrix. This also failed to resolve the error messages. Although the conditional 

independence code was successfully adapted, there were no models with alternative covariance 

structures to which it could be compared and thus no model selection using information criteria 

could occur.  
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 The inability to fit different within-person covariance structures to truly nonlinear models 

as part of a simulation study and as part of the applied chapters was disappointing because it 

would almost certainly be of interest when fitting models to longitudinal data. While the fixed 

effect estimates of a model are unlikely to be profoundly changed (Singer & Willett, 2003), the 

conditional independence structure is likely to be underspecified (i.e., overly simple) when data 

are longitudinal in nature, causing inflation of the standard errors of the fixed effects (Kwok et 

al., 2007). Researchers often rely on the null hypothesis tests of fixed model coefficients because 

the theories being tested are often expressed in the fixed effects of the multilevel model. An 

underspecified L1 covariance matrix, however, can reduce the power of these tests, making 

effects that might actually exist more difficult to find.  
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5. Application: Discrepancy in Body Image Across Childhood and Adolescence 

Nonlinear multilevel models allow researchers to specify models that may better match their 

theories about longitudinal change trajectories than that implied by the steady, monotone linear 

functional form. The exponential and logistic models of growth are widely used across the life 

sciences, suggesting their potential utility for modeling behavioral phenomena over time. One 

area of behavioral medicine that has gotten a great deal of attention over the past several years is 

the relationship between obesity and psychosocial factors over the lifespan, particularly for 

adolescents. A handful of studies have used nonlinear modeling methods to explore this 

relationship, allowing for intriguing conclusions that could not otherwise be tested.  

Obesity has been identified an important public health concern in the United States (Brown, 

Fujioka, Wilson, & Woodworth, 2009), as well as globally (Swinburn et al, 2011). Based on data 

from the 2011-2012 National Health and Nutrition Examination Survey (NHANES), Ogden, 

Carroll, Kit, and Flegal (2014) found that approximately 35% of adults and 17% of youth in the 

United States are obese, and an additional 34% of adults and 14% of youth are overweight. One 

of the main problems of obesity is that of adiposity, meaning that individuals who are obese have 

a high amount of body fat. High amounts of adipose tissue are associated with negative health 

outcomes, including cardiovascular disease, metabolic disorders, cancer, pulmonary disease, 

musculoskeletal disorders, gastrointestinal disorders, reproductive disorders, and dermatologic 

disorders (Brown et al, 2009). However, there is growing evidence that many of the risks 

associated with high adiposity are reversible. A recent systematic review determined that there 

was high-quality evidence that weight loss in overweight or obese adults is associated with 

improvements in a variety of cardiometabolic indicators, such as insulin sensitivity, blood lipid 

profile, and blood pressure (National Heart, Lung, & Blood Institute, 2013). Because of this, 



 74 

there has been considerable research interest in reducing obesity, often through targeting change 

in health-related behaviors. 

Alongside potential negative physical health outcomes, obesity is also highly stigmatized in 

Western societies, with concomitant low self-esteem, depression, and body dissatisfaction (Puhl 

& Heuer, 2010). The stigmatization of obese people is also common among healthcare 

professionals (Schwartz, Chambliss, Browned, Blair, & Billington, 2003; Tomiyama, 2014) and 

in public health discourse, where competing narratives regarding responsibility for obesity and 

the resulting stigma remain (Saguy & Riley, 2005). This stigma may also generate health 

disparities and interfere with obesity intervention efforts (Puhl & Heuer, 2010). For example, 

there is evidence that obese adults who feel stigmatized based on their weight are more likely to 

avoid exercise (Vartanian & Novak, 2011; Vartanian & Shaprow, 2008), avoid healthcare 

settings (Drury & Louis, 2002), and increase eating behaviors (Tomiyama, 2014). Obesity 

stigmatization also occurs in children, with children as young as three years old endorsing 

negative attitudes and beliefs toward obese children (Puhl & Latner, 2007). Children who are 

obese encounter stigmatization from a variety of sources, including parents, siblings, and other 

family members (Puhl & Brownell, 2006). Additional sources can also include peers (Latner, 

Stunkard, & Wilson, 2005), non-family adults (e.g. teachers; Neumark-Sztainer, Story, & Harris, 

1999), and mass media (Latner, Rosewall, & Simmonds, 2007). 

Stigmatization based on weight is especially pernicious in children and teens, as it appears to 

have negative psychological and physical impact on youth whether they are obese or not. 

Mustillo, Hendrix, and Schafer (2012) examined the effects of BMI category change on self-

concept and found that girls who were obese as children but normal weight as teens experienced 

greater body image discrepancy and lower self-esteem than girls who had been of normal weight 
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as children and as teens. Further work suggested that external labeling - that is, being told that 

one is too fat - from parents and friends contributes psychological distress in female adolescents 

across time, even when controlling for actual BMI (Mustillo, Budd, & Hendrix, 2013). In 

addition, girls who are told that they are too fat are at higher risk of being obese as teens, 

regardless of their BMI as children (Hunger & Tomiyama, 2014).  

While most statistical analyses used in research on weight stigma in youth employ linear 

models, some researchers have employed modeling techniques that permit nonlinear 

relationships and correlated effects over time. In one case, a data-driven regression tree method 

was used to find important predictors of BMI change among a set of 41 predictors, with the 

ability to evaluate nonlinear relationships explicitly noted as an advantage of that method 

(Rehkopf, Laraia, Segal, Braithwaite, & Epel, 2011). Mustillo, Hendrix, and Schafer (2012) used 

growth mixture modeling, which incorporated linear and quadratic terms for BMI, race, and 

residual variance across a series of models. Mustillo, Budd, and Hendrix (2013) used 

autoregressive cross-lagged mediation modeling (MacKinnon, 2008), which used an 

autoregressive structure to model outcome observations. In light of these findings, nonlinear 

multilevel modeling offers a promising way to examine how body image changes across 

adolescence, particularly as stigmatizing incidents accumulate during this critical period of 

change.  

There were two outcomes of interest in the current study: body image discrepancy and body 

dissatisfaction. For each of these, the final models were built according to a three-part process. 

The first part was an exploration of the nature of the change trajectory in the outcome variables 

across late childhood and adolescence. Conventionally, this trajectory would be tested with a 

linear model, which implicitly suggests that body image discrepancy and dissatisfaction change 
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steadily across adolescence. This may be too simplistic, however, given related findings on the 

longitudinal relationships between adolescent obesity, weight labeling, and psychological 

distress (Mustillo, Budd, & Hendrix, 2013). Nonlinear multilevel models offer the opportunity to 

examine alternative trajectories that may better reflect how body image discrepancy and 

dissatisfaction change over time. A quadratic change trajectory would indicate that body image 

discrepancy and dissatisfaction accelerate over time, with teens having greater discrepancy and 

greater dissatisfaction than when they were children. An exponential trajectory would also 

indicate that body image discrepancy and dissatisfaction accelerate over time, with an 

“explosive” increase at a particular time; in this context, this time would likely be puberty. 

Because of the syncretic relationships among childhood weight, starting of puberty, and later 

obesity (Jasik & Lustig, 2008), a rapid increase around the start of puberty seems possible. This 

trajectory suggests, however, that growth in body image discrepancy and dissatisfaction do not 

slow after the explosion of growth. To account for a ceiling effect, an S-shaped trajectory, such 

as that of a logistic curve, may be the best overall trajectory.  

The second part of the model-building process was evaluating different sets of predictors that 

affect body image discrepancy and dissatisfaction. These predictor sets included weight labeling, 

valence toward fatness and thinness, the racial composition of social environments, self-

criticism, and unhappiness about one’s body. Key covariates were also included as part of each 

predictor set.  The third part of the model-building process was selecting an appropriate 

covariance structure. Because the models under examination were non-nested, information 

criteria were used for model selection at each step. 

Method 

 The National Heart, Lung, and Blood Institute National Growth and Health Study 
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(NGHS) was a longitudinal study conducted from 1987 to 1997 to examine the development of 

obesity in Black and White pre-adolescent and adolescent girls. Girls between the ages of 9 and 

10 were recruited in California, Ohio, and Washington D.C. Data were collected from 2379 

participants, who were identified by their guardians as being Black (n = 1213) or White (n = 

1166), every year for 10 years. Some measures were recorded every year, including medical 

history, nutrition, and health beliefs, as well as a physical exam. Other measures were taken only 

during certain years, including demographics, biomarkers, food intake, physical activity, and 

psychosocial measures. All analyses were conducted using the MIXED and NLMIXED 

procedures in SAS 9.4.  

Measures - outcomes 

Body image discrepancy. At each of the ten time points, participants were asked to answer 

questions based on a set of nine female figures, which were drawn to be racially ambiguous. The 

figures acted as a visual reference point for each level of a nine-point Likert scale, with figures at 

the lower end of the scale appearing very underweight and figures at the higher end of the scale 

appearing very obese. The participants were first asked which figure they believed they currently 

looked most like, then asked to identify the figure they would like best to look like. To compute 

body image discrepancy, the difference between the answers to these two questions was 

computed, similar to the method of Mustillo and colleagues (2012). Negative values indicated a 

girl who preferred a body that was thinner than the body she endorsed as being most similar to 

her current shape, while positive values indicated a preference for a fatter body. Next, the 

difference was turned into an absolute value, creating an index of absolute discrepancy.  

Body dissatisfaction. Participants completed a 66-question survey, “My Feelings”, at the 

third, fifth, seventh, ninth, and tenth time point. Each question was answered on a six-point 



 78 

Likert scale, with each point indicating how frequently (“always”, “usually”, etc.) the participant 

experienced a feeling or thought or behaved in a certain way. Nine of these questions pertained 

to body dissatisfaction, which were summed to create a composite body dissatisfaction variable. 

Higher values of this composite variable indicated greater dissatisfaction. 

Measures – Temporal predictor and covariates 

Time/Age. In this data set, the passage of time is equivalent to the age reported for each 

participant over ten years. Because of this, age was used to model time slopes as part of the 

functional form of the different change trajectories. Age was centered for each participant by 

subtracting 9 from the age reported at each time point. For example, a participant who entered 

the study at exactly 9 years of age would have a centered age of 0 at the first time point.  

Age at menarche. Participants were asked each year at what age they experienced menarche, 

which is an important marker of pubertal status. The within-participant responses sometimes 

differed across timepoints, so the within-participant median of these reports was used for 

analysis. 

BMI. BMI was computed each year of the study. Each participant was weighed while 

wearing either a paper hospital gown or a T-shirt and socks. Height was measured using a 

stadiometer. BMI was included in each model as a continuous time-variant covariate rather than 

as BMI cutoffs to preserve a larger range of possible values.  

Race. In this study, race was a dichotomous variable, with the participant’s guardian 

identifying each girl as either Black or White. The racial identity endorsed at the beginning of 

the study was used for analysis. This variable was dummy coded, with White acting as the 

reference category. 

Total household income. At the beginning of the study, the participant’s guardian was asked 
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about the total yearly income for the household. These responses were grouped into one of four 

income categories: less than $9,999, $10,000-29,999, $30,000-$39,999, and $40,000 or more. 

These categories were dummy coded, with less than $9,999 acting as the reference category. 

Parental/guardian education. At the beginning of the study, the participant’s guardian 

reported his or her own level of education and that of their partner. These responses were 

grouped into one of three education categories: high school or less, some college, and college or 

more. These categories were dummy coded, with high school or less acting as the reference 

category. 

Measures – Predictors of interest 

Weight criticism. At the first time point, participants were asked if they had ever been told 

that they were too fat or too thin by one of nine people: mother, father, brother, sister, best 

girlfriend, best-liked boy, any other girl, any other boy, and any teacher. From this set of 

questions, three predictors were created. The first was a count of the number of sources who had 

told the girl that she was too fat. The second was a similar count of sources who had told the girl 

that she was too thin. The third was the summation of the first two.   

Valence toward thinness/fatness. At the first time point, participants were asked questions 

about their agreement with different statements about a hypothetical fat or thin girl of their age. 

There were five statements that were positively phrased and two statements that were negatively 

phrased. The positive statements included the fat/thin girl having more friends, feeling better 

about herself, being prettier, feeling more like a girl, being less likely to get pushed around, or 

being healthier. The negative statements included the fat/thin girl looking less grown up and 

feeling less in charge of things. Participants could agree with the statements, disagree with the 

statements, or indicate that fatness/thinness would not matter with regard to the statement. From 
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these, four valence variables were created. Two positive valence variables were created by 

summing the ‘yes’ responses to the positive statements when the prompt asked about a thin girl 

and a fat girl. Two negative valence variables were created by summing the ‘yes’ responses to 

the negative statements.  

Perceived school minority status. At the first time point, participants were asked if the 

school they attended had a student body that was all or mostly Black, all or mostly White, or 

about half Black and half White. This was recoded into a dichotomous perceived school minority 

variable, which was created by comparing the girl’s race with her report of the student body of 

her school. For example, a Black girl who reported her school’s racial composition as being 

either all or mostly White would be coded as being a perceived school minority. If she instead 

reported her school’s racial composition as being half Black or all/mostly Black, she would be 

coded as not perceiving herself as a minority within her school. This variable was dummy coded, 

with not perceiving oneself as a minority acting as the reference category. 

Same-race friendships. At the first time point, participants were asked if they had any close 

friends who were White, Black, Hispanic, Asian, or American Indian/Alaskan Native. Two 

variables were created from these responses. The first was a variable indicating if the participant 

reported a same-race close friendship. This variable was dummy coded, such that the lack of a 

same-race close friendship was the reference category. The second was a count of the number of 

other-race close friendships reported. For example, a White girl who reported having a close 

friendship with at least one Black person and at least one Hispanic person would have a value of 

two. 

Self-criticism. Participants completed a 24-item survey, “How I Deal With Things”, at the 

second time point. Participants were asked to imagine something happening, such as having 
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something bad happen or somebody their age being mean or threatening. Reponses to each item 

were on a five-point Likert scale, with each point indicating how frequently (“very often”, 

“often”, etc.) the participant handled a problem in a certain way. Three of these items pertained 

to self-blame or having brought the problem upon oneself, which were summed to create a 

composite self-criticism score. Higher values of this composite variable indicated more frequent 

engagement in self-criticism when facing a problem.    

Unhappiness with body.  At the first time point, each participant was asked about her 

unhappiness with her body, height, weight, and skin color. These were evaluated on a four-point 

Likert scale, such that higher values meant greater unhappiness.  

Model specification – functional form 

Model selection started with the selection of the functional form of the trajectory of the 

outcome under examination. The Level 1 equations for each of the functional forms tested are 

shown in Table 4.1. The linear, quadratic, and cubic models were each specified to have a 

random effect associated with the intercept, corresponding to 𝑏& in Table 4.1. The exponential 

model was specified to have a random effect associated with the initial value of the outcome, 

which corresponds to 𝑏S in its formulation.  The logistic model had three potential specifications 

at Level 2. The first logistic model was specified to have a random effect associated with the 

upper asymptote, corresponding to 𝑏(. The second was specified to have a random effect 

associated with the placement of the logistic form’s inflection point, corresponding to 𝑏*. The 

third was specified to have a random effect associated with the “rapidity” of increase toward the 

upper asymptote, corresponding to 𝑏,,. In total, seven functional form models were fit to the data 

and all models that successfully converged and produced estimates with no errors were 

compared. 
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Model specification – predictor sets 

Once the best functional form was selected, a second round of model selection was 

conducted to determine the appropriate predictor set. Seven models were compared at this stage. 

The first model, referred to hereafter as the base model, included the functional form variables 

and the set of covariates. BMI was a time-variant covariate entered at Level 1. Parent’s education 

category, the parent’s income category, the participant’s race, and the participant’s age at 

menarche were time-invariant covariates entered at Level 2. All of the succeeding models 

included these covariates along with the predictors sets of interest.   

The second model and third models, the specific criticism and the general criticism models, 

included sources of weight criticism from others. The specific criticism model added two 

predictors, one for how many sources told the participant that she was too fat and another for 

how many sources told her she was too thin. The general criticism model added a single 

predictor, which was the sum of the total sources of criticism. The fourth model was the valence 

model, which had four additional predictors (positivity toward fatness/thinness, negativity 

toward fatness/thinness). The fifth model was the diversity model, which included the presence 

of a same-race close friend, the number of other-race close friendships, and whether or not the 

participant perceived herself as a minority in her school. The sixth model was the self-criticism 

model, which included the self-criticism composite score. Finally, the seventh model was the 

unhappiness with appearance model, which included the unhappiness with body, height, weight, 

and skin color as separate predictors.  

Model specification – covariance structure 

A third round of model selection was conducted to determine the best Level 1 covariance 

structure for the selected functional form and predictor set for each outcome. Up to 10 
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covariances structures, consisting of one of three types, were specified and compared. Examples 

of these three types are shown in Table 4.2. Table 4.2 displays structures that match those fit to 

the body dissatisfaction outcome, which was measured at five time points; the same structures 

were also used for the body image outcome, which was measured at ten time points. The first 

structure type was a conditional independence structure, which estimates a single parameter for 

within-person variance. The second structure type was a first-order autoregressive structure, 

which also estimates a single parameter (𝜌), but models autocorrelation by exponentiating this 

parameter across time points. For example, in the case of five time points, the rho parameter 

estimate for the correlation between the first and fifth time points would be raised to the fourth 

power. The third structure type was a Toepliz-banded structure. With this structure, one can 

potentially estimate any number of bands (i.e. off-diagonal elements of the same degree) up to 

one less than the total number of time points independently while imposing the restriction that 

the within-band values must be equal. Any bands that the researcher chooses not to estimated are 

set to zero. If the selected model had a linear or polynomial functional form, these structures 

were fit using the MIXED procedure. For this type of model, all possible number of bands were 

estimated. If the selected model was instead a “truly” nonlinear model, these structures were fit 

using code written by Harring and Blozis (2014) to adapt NLMIXED to model autoregressive 

and a single-banded (“tridiagonal”) Toepliz structure. 

Model selection 

To evaluate which functional form to proceed with, AIC, AICC, BIC, CAIC, and HQIC 

values were computed for each model. For the sample size-dependent criteria, both sample size 

sources were used. At each model selection step, all nine information criteria values were 

computed for each model. In the case of all nine information criteria unanimously selecting one 
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model, that model was chosen. If different models were selected by different information criteria, 

those models were also fitted.  

Results – body image discrepancy 

 Model selection for functional form.  Six functional form models – linear, quadratic, 

cubic, exponential, logistic with a random upper asymptote parameter (b1), and logistic with a 

random “rapidity” parameter (b2) – were successfully estimated. The information criteria values 

for this step of model selection are shown at the top of Table 4.3. All nine information criteria 

selected the cubic model as the “best” model, as shown in Figure 1. The predicted body image 

discrepancy was about two at the first time point, dropping to its lowest point within the 

observed range between four or five years into the study (between 14 and 15 years of age). By 

the final time point, the discrepancy was near what it was at the beginning. 

Model selection for predictor set. All seven models comparing predictor sets were 

successfully estimated when included with the cubic functional form. All nine information 

criteria selected the diversity model as the “best” model. The information criteria values for this 

step of model selection are shown in the middle of Table 4.3. 

Model selection for covariance structure. All ten models comparing covariance structure 

specifications were successfully estimated in MIXED when the diversity predictor set was used. 

All nine information criteria selected a Toepliz-banded covariance structure, but the number of 

bands estimated differed slightly. The three efficient information criteria (AIC, AICC-N, and 

AICC-m) selected the model with eight estimated bands. The six consistent criteria (BIC-N, 

BIC-m, CAIC-N, CAIC-m, HQIC-N, and HQIC-m) selected the model with nine estimated 

bands. The information criteria values for this step of model selection are shown at the bottom of 

Table 4.3.  
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Final model. The three-step model selection process for the functional form, predictor set, 

and covariance structure for the body image discrepancy outcome resulted in two models. Both 

models had a cubic functional form and incorporated the diversity predictor set, which is shown 

in single-equation form below. The parameter estimates and standard errors, which are shown at 

the top of Table 4.4, were very close for both of these models. 

𝑌"Q = 	𝑏&Q + 𝑏(Q(𝐶𝑒𝑛𝐴𝑔𝑒) + 𝑏*Q(𝐶𝑒𝑛𝐴𝑔𝑒*) 	+ 𝑏,Q(𝐶𝑒𝑛𝐴𝑔𝑒,) + 𝑏-(𝐵𝑀𝐼) + 𝑏/(𝑅𝐴𝐶𝐸)

+ 𝑏/(𝐼𝑁𝐶2) + 𝑏�(𝐼𝑁𝐶3) + 𝑏�(𝐼𝑁𝐶4) + 𝑏�(𝐸𝐷𝑈1) 	+ 𝑏�(𝐸𝐷𝑈2)

+	𝑏(S(𝑀𝑒𝑑𝑀𝑒𝑛𝑎𝑟𝑐ℎ𝑒) + 𝑏(((𝑆𝑎𝑚𝑒𝑅𝑎𝑐𝑒) 	+	𝑏(*(𝑂𝑡ℎ𝑒𝑟𝑅𝑎𝑐𝑒)

+	𝑏(,(𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦) +	𝑢SQ +	𝑒"Q 

For both models, the three functional form predictors – the linear (p < 0.001), quadratic (p < 

0.001), and cubic (p < 0.001) terms – were significant. In addition, three covariates were 

significant. The first was BMI (𝑏- = 0.069, SE = 0.002, p < 0.001), where higher BMI was 

predictive of greater body image discrepancy after controlling for the functional form and all 

other predictors. The second was race (𝑏/ = -0.192, SE = 0.022, p < 0.001), where Black girls 

were predicted to have lower body image discrepancy than White girls after controlling for the 

functional form and all other predictors. The third was parental educational attainment (𝑏� = --

0.053, SE = 0.026, p = 0.039; 𝑏� = -0.117, SE = 0.029, p < 0.001), where girls whose guardians 

had not completed high school were predicted to have lower body image discrepancy than those 

whose guardians had higher educational attainment after controlling for the functional form and 

all other predictors. None of the predictors of interest in these models – the presence of a same-

race close friend, the number of other-race close friendships, and whether or not the participant 

perceived herself as a minority in her school – were significant. To determine the 

interrelatedness of the diversity variables, correlations were computed. The correlations between 
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having a friend of the same race and being a school minority (r = -0.1, p < 0.001) and being a 

school minority and having other race friends (r = -.06, p < 0.001) were significant. 

Results – body dissatisfaction 

Model selection for functional form.  Six functional form models – linear, quadratic, cubic, 

exponential, logistic with a random upper asymptote parameter (b1), and logistic with a random 

intercept-like parameter (b2) – were successfully estimated. All nine information criteria selected 

the logistic model with the random upper asymptote parameter (b1) as the “best” model. The 

information criteria values for this step of model selection are shown at the top of Table 4.5. At 

the beginning of the study, the expected body dissatisfaction score was approximately 4. As time 

passed during the study, the expected body dissatisfaction increased, with the most acceleration 

appearing to occur during the first half of the study (approximately between 9 and 15 years of 

age).  

Model selection for predictor set. All seven models comparing predictor sets were 

successfully estimated when included with the logistic functional form with a random b2. All 

nine information criteria selected the diversity model as the “best” model. The information 

criteria values for this step of model selection are shown in the middle of Table 4.5. 

Model selection for covariance structure. Because the selected functional form was “truly” 

nonlinear, I adapted code written by Harring and Blozis (2014) to fit an autoregressive and a 

tridiagonal Toepliz structure to both the functional form only and the functional form with the 

diversity predictor set. While some of these models converged and produced estimates, the ones 

that did so produced a warning that a second order optimality condition had been violated, 

making the estimates produced by those models untrustworthy. This particular problem can 

sometimes be resolved by rescaling parameters (Kiernan et al., 2009), which was used 



 87 

successfully in the simulation studies to fit correctly specified and misspecified logistic models. 

Unfortunately, rescaling did not resolve this issue in this application. Because of this, the 

covariance structure remained a conditional independence structure, which is the only covariance 

structure that can be specified in NLMIXED by default.  

Final model. The model selection process for the functional form and the predictor set for 

the body dissatisfaction outcome resulted in one model, which had a logistic functional form and 

incorporated the diversity predictor set. Due to its length, this equation is not shown here. The 

parameter estimates and standard errors for the final model are shown in Table 4.6. Of the three 

functional form predictors, only b2 (𝑏* = -4.758, SE = 1.351, p < 0.001), the intercept-like 

parameter, was significant. In addition, four covariates were significant. The first was BMI (𝑏- = 

0.672, SE = 0.017, p < 0.001), where higher BMI was predictive of greater body dissatisfaction 

after controlling for the functional form and all other predictors. The second was race (𝑏/ = -

4.280, SE = 0.986, p < 0.001), where Black girls were predicted to have lower body 

dissatisfaction than White girls after controlling for the functional form and all other predictors. 

The third was parental educational attainment (𝑏/ = -1.053, SE = 0.470, p = 0.025), where girls 

whose guardians had not completed high school were predicted to have lower body 

dissatisfaction than those whose guardians had completed college after controlling for the 

functional form and all other predictors. The fourth was the age of menarche (𝑏- = -0.437, SE = 

0.151, p < 0.004), where experience menarche at higher ages was predictive of lower body 

dissatisfaction after controlling for the functional form and all other predictors. None of the 

predictors of interest in these models – the presence of a same-race close friend, the number of 

other-race close friendships, and whether or not the participant perceived herself as a minority in 

her school – were significant. To determine the interrelatedness of the diversity variables, 
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correlations were computed. The correlations between having a friend of the same race and being 

a school minority (r = -0.1, p < 0.001) and being a school minority and having other race friends 

(r = -.06, p < 0.001) were significant. 

Discussion 

The final models selected for body image discrepancy and body dissatisfaction have several 

interesting similarities, one of which is that they share several significant predictors. Specifically, 

the final models all included BMI, race, and the dummy variable indicating whether the 

participant’s guardian had completed college. The direction of the relationship for all of these 

predictors was also the same across the final models, such that, controlling for all other 

predictors, a White girl with a higher BMI whose guardian completed college would be expected 

to have both greater body image discrepancy and express greater body dissatisfaction than a 

Black girl with a lower BMI whose guardian had not completed college. There were, however, 

some differences; body dissatisfaction alone had age of menarche as a significant predictor, and 

both parental education dummy variables were significant only when the outcome was body 

image discrepancy.  

Another interesting similarity is that the diversity predictor set was selected as the “best” 

model after the functional form was determined. In addition, for both of these outcomes, none of 

the predictors that made up the diversity predictor set were significant. A result like this can be 

jarring but is does not inherently mean that something is amiss with the model selection process. 

It is likely that the set of these three predictors - the presence of a same-race close friend, the 

number of other-race close friendships, and whether or not the participant perceived herself as a 

minority in her school -  are jointly able to account for more variability in both outcomes than the 

other sets of predictors but none of the individual predictors account for enough unique (i.e., 
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non-overlapping) variability in the outcomes for any of them to be significant when the others 

are in the model.  

Finally, for both outcomes, the best-fitting functional form was some kind of nonlinear 

model. Body image discrepancy was modeled using a cubic trajectory, which is not “truly” 

nonlinear but does allow for the temporal change in body image discrepancy to fluctuate in a 

nonlinear fashion across late childhood through adolescence. Body dissatisfaction was modeled 

using a logistic trajectory, which is a “truly” nonlinear trajectory. Among the functional-form 

only models using both outcomes, the linear functional form models were among the worst 

fitting of all the forms tested. That is, even though cubic and logistic functional forms were less 

parsimonious than the linear functional form, the increase in predictive power was such that 

these more complex models were unanimously selected across both efficient and consistent 

criteria.  

The longitudinal nature of this application meant that fitting and testing different covariance 

structures could potentially be of interest to a substantive researcher. In addition, previous 

simulation work has demonstrated that misspecification of the time-specific residual covariance 

structure can result in both the estimates of the variance components and the standard errors of 

the functional form estimates to be too high (Kwok et al., 2007). Although not all possible 

covariance structures were fit to model with the body image discrepancy as the outcome, the 

ones most likely to be fit in practice were well-represented. Modeling an eight- or nine-banded 

Toepliz structure is impractical in many behavioral research applications, but it was possible 

because thousands of participants had data over many time points; it might not be replicable 

unless another study was similarly large. The conditional independence structure used for the 

body dissatisfaction outcome, which was chosen due to software difficulties and not as a result of 
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theory or a model selection method, is almost certainly underspecified (i.e. too simple). Per 

Kwok, West, and Green (2007), it is likely that statistical tests of the logistic functional form 

parameters were underpowered compared to a model with the correct (or more correct) 

covariance structure specification.  

As the results of this application demonstrate, nonlinear longitudinal trends exist in 

behavioral data and can be explicitly modeled using a variety of nonlinear functions. If a 

researcher had only modeled these outcomes using linear models, the interesting nonlinearity 

that exist in these data would have been entirely missed. Information criteria are easy to use and 

allow researchers to engage in model selection when the candidate models are non-nested, which 

is always true when comparing linear or polynomial functional forms to “truly” nonlinear 

functional forms, such as those used in this application.  
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6. Application: The Effects of Sleep, Interpersonal Interactions, and Demands on Daily 

Distress in Adolescents   

 The sleep needs of adolescents have gotten an increasing amount of attention from 

researchers and public policy makers. The American Academy of Sleep Medicine (Paruthi et al., 

2016) recommended that children between the ages 13 and 18 get eight to ten hours of sleep each 

day on a regular basis for optimal health. Later research has shown that there may not be a single 

“best” amount of sleep for adolescents. Fuligni, Arruda, Krull, and Gonzales (2018) found that 

the amount of sleep that for which symptomatology (internalizing and externalizing behaviors) 

was lowest and academic achievement was highest differed by more than an hour. In addition, 

they found that greater variability in adolescent an adolescent’s sleep duration was predictive of 

greater symptomatology. Despite recommendations about the importance of sufficient sleep, 

sleep deprivation in adolescents is widespread. A nationally-representative sample of over 

12,000 high school students found that 68.9% slept less than 8 hours on the average school night, 

with 38% sleeping 6 hours or less (Eaton, McKnight-Eily, Lowry, Perry, Presley-Cantrell, & 

Croft, 2010). Previous research has found that insufficient sleep has several negative 

consequences for adolescents, including obesity, depression, and higher rates of drowsy driving 

accidents (Owens, Adolescent Sleep Working Group, & Committee on Adolescence, 2014). 

  A systematic review of literature concluded that there is evidence for a bidirectional 

relationship between sleep and depression and anxiety, with insomnia potentially being a better 

predictor of depression than vice versa (Alvaro, Roberts, & Harris, 2013). This idea was further 

supported by an experimental study (Baum, Desai, Field, Miller, Rausch, & Beebe, 2014), in 

which adolescents were in bed for 10 hours for one week and for 6.5 hours in another week. The 

adolescents reported feeling more irritable, anxious, angry, confused, and fatigued during the 
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week they slept less than the week they slept more. Fuligni, Bai, Krull, and Gonzales (2019) 

found that adolescents with higher internalizing and externalizing symptoms (as measured at the 

beginning of each wave) needed more sleep than those with lower symptoms to minimize next-

day distress. They were able to come to this intriguing conclusion by fitting a three-level model 

(repeated measures nested within waves nested within individuals) that allowed sleep to relate to 

next-day distress quadratically. The normative curve, which was quadratic, was representative of 

the majority of participants’ individual trends, with the minimum of the function being the 

person-specific number of hours of sleep at which next-day distress was minimized. 

 In addition to sleep, there is evidence that there are other factors that influence 

psychological functioning in adolescents. One factor is that of day-to-day stressful events. 

Higher amounts of daily hassles, or frustrations encountered in daily living, have been linked to 

greater daily emotional distress in young adults (D’Angelo & Wierzbicki, 2003). Experiencing 

more daily hassles during adolescence was also predictive of future diagnosed psychopathology 

up to ten years later (Asselman, Wittchen, Lieb, & Beesdo-Baum, 2017). Another factor that 

affects adolescent psychological functioning is the quality of interpersonal relationships. 

Previous research has shown that positive (e.g., companionship) and negative (e.g., conflict) 

qualities of relationships with friends, romantic partners, and parents affect depression, social 

anxiety, and emotional distress in adolescents (Kenny, Dooley, & Fitzgerald, 2013; La Greca & 

Harrison, 2005). Due to the presence of these other factors, it is probable that a model using just 

sleep to predict psychological functioning in adolescents would be underspecified. Because 

information criteria permit model selection among non-nested sets of predictors, it is possible to 

directly compare the predictive utility of daily stressors and daily interpersonal interactions by 

including models with different predictors in the set of candidate models.  
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 In the two simulation studies and in the previous application, the analytic context was 

that of a longitudinal study where the change trajectory of interest occurred across time. As 

shown by Fuligni and colleagues (2019), a nonlinear functional form may be more suited for 

modeling the relationship between the time spent sleeping and distress. Because of the presence 

of nonlinearity and because these variables had sufficient range to potentially fit a variety of 

functional forms, this application used a data set similar to that of Fuligni and colleagues to 

demonstrate the utility of using information criteria to select among nonlinear functional forms 

and predictor sets. To ensure that several functional form models would converge and produce 

interpretable estimates, the models used in this application were simpler than those fit by Fuligni 

and colleagues. For the same reason, this application used one wave of data and had a two-level 

multilevel structure, while the study by Fuligni and colleagues used two waves and had a three-

level structure.  

Method 

 The UCLA Study of Adolescents Daily Lives’ was a large-scale diary study of the 

psychosocial experiences of ethnically and socio-economically diverse youth in California. The 

data collected as part of this study were especially rich, including demographic, psychosocial, 

and interpersonal information collected from adolescents for between one and four years of high 

school. Students in three high schools were invited to participate, and all students who returned 

completed parental and personal consent forms were allowed to participate in the study. In 9th, 

10th, 11th , and 12th grade, each participant completed a 45-minute questionnaire while at school. 

In 9th, 10th, and 12th grade, each participant was also given instructions and materials for a two-

week diary study. Students who were not included in previous data collection waves were 

allowed to enter the study in later grades. The data used for this study came from participants in 
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the 12th grade. Consent from students and their parents was obtained either in an earlier grade 

(for a returning participant) or upon entry to the study in the current year. At the end of the two-

week data collection period, the diaries were collected at school and students who completed at 

least one diary received $30 in cash and students who completed no diaries received $10 in cash. 

Grades and course enrollment information was also collected at that point. Students who 

completed most of their diaries were sent two movie tickets, and one student from each school 

who completed all of their diaries was randomly selected to win a $100 Borders gift card.  

Participants 

 A total of 681 participants participated in the 12th grade study. Participants were 

instructed to complete the daily diary before going to bed each night, fold it in half, and seal it 

with a provided sticker. Participants who had been given time stampers were then to use the 

stamp on the seal. Those who were not given time stampers instead wrote the date and time of 

completion on the seal. Diary completion rates across the 14 days were high, with the highest 

diary completion rate (>99%) occurring on the first day and the lowest diary completion rate 

(91.6%) occurring on the fourteenth day. 

Measures – outcome and functional form 

 Daily distress. As part of the daily checklist, adolescents and parents completed the 

anxiety and depression sub-scales of the Profile of Mood States (POMS; Lorr & McNair, 1971). 

Anxious feelings included feeling on edge, nervous, uneasy, and unable to concentrate. 

Depressive feelings included feeling discouraged, hopeless, and sad. Participants answered each 

question on a 5-point scale, where a 1 indicated not having experienced a particular depressive 

feeling and a 5 indicated having experienced a particular depressive feeling in an extreme way. 

For data analysis purposes, a value of one was subtracted from each participants’ response to 



 95 

these questions so that a participant who reported having none of a feeling that day would have a 

score of zero. The subscales were then summed to create an index of daily psychological 

distress.  

Previous night’s sleep. For each night of the study, participants were asked to report the 

number of hours and minutes they slept the night before. Responses were open-ended, such that 

participants wrote in the amount directly.    

Measures – covariates 

Age. Participants reported their birthdays, which were converted to age in years at the 

beginning of this wave of the study. For data analysis purposes, this variable was centered 

around the grand mean of ages reported by the participants (M = 17.79). 

Gender. Participants reported their gender (boy or girl) at the beginning of the study. This 

variable was dummy coded with boy as the reference category. There were 337 boys and 404 

girls included in the sample.  

Ethnicity. At the beginning of the study, each participant was presented with a list of 44 

ethnic labels and asked to endorse any of them for which the participant identified. In addition, 

participants could list additional ethnic labels that were not on the provided list. For the purposes 

of this study, a participant who endorsed any of the following labels was considered Latino: 

Brazilian, Central American, Chicano/a, El Salvadoran, Guatemalan, Hispanic, Hispanic-

American, Honduran, Latino/a, Latino/a-American, Mexican, Mexican-American, Nicaraguan, 

Nicaraguan-American, Spanish, Spanish-American, and any label written in by a participant that 

was akin to a label on the list (e.g., Puerto Rican). All others were considered to be non-Latino. 

This variable was dummy coded such that non-Latino was the reference category. There were 

451 students who did not endorse a Latino ethnic category and 293 who did.  
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Depressive symptoms. At the beginning of the study, each participant completed the 

Center for Epidemiologic Studies Depression (CES-D) scale, a 20-question survey which asks 

participants about the frequency of various feelings and experiences over the past month. 

Responses could range from 1 (rarely) to 4 (most or all of the time). Four of the items were 

phrased such that a higher response indicated less depressive symptomatology, so those items 

were reverse coded. Each participant’s responses to the CES-D were summed to create an index 

of depressive symptoms such that higher scores meant more depressive symptoms. The mean 

summed CES-D score was 1.93 (SD = .53). 

School/Weekend night. For each daily diary, the participants were asked to circle the day 

of the week it was when they filled out the checklist. If the participant circled either Saturday or 

Sunday, the diary was considered to have been filled out on a weekend night. The diary was 

considered to have been filled out on a school night if the participant circled any other day of the 

week. This variable was dummy coded such that weekend nights were the reference category. 

Measures – predictors of interest 

Daily family assistance behaviors. Participants were asked whether or not they engaged in 

any of eight family assistance behaviors that day. These included helping clean the house or 

apartment, taking care of siblings, running an errand for the family, helping siblings with 

schoolwork, helping parents with official business, helping cook a meal for the family, helping 

parents at their workplace, and anything else done to help the family. These items were summed 

to create an index of daily family assistance, ranging from 0 (reported providing no assistance to 

their families that day) to 8 (reported doing all seven of the acts for which a specific question 

was asked and an additional act of family assistance). Participants were also asked how much 

time in total they spent on all of the family assistance activities they reported.  



 97 

Daily family leisure activities. Participants were asked whether or not they engaged in any of 

three family leisure activities that day. These included eating a meal with family, spending 

leisure time with family, and spending time with aunts, uncles, cousins, or grandparents. 

Participants were also asked how much time in total they spent on all of the family leisure 

activities they reported. 

Daily school activities. Participants were asked whether or not they engaged in any of three 

school-related activities that day. These included doing homework while at school, doing 

homework while not at school, participating in extracurricular activities after school. Participants 

were also asked how much time in total they spent on these activities. 

Daily friend activities. Participants were asked whether or not they engaged in any of three 

activities with friends that day. These included spending time with friends outside of school, 

talking on the phone with friends, and emailing or instant messaging friends. Participants were 

also asked how much time in total they spent on these activities. 

Daily job activity. Participants were asked if they had worked at a job that day. They were 

also asked how much time in total they worked. 

Daily perceived demand. Each day, participants were asked if they had a lot of work to do at 

home, at school, or a job. They were also asked if they had a lot of demands made by family or 

friends on that day. These five items were summed to create an index of the perceived 

demandingness experienced by the participant. 

Daily negative interpersonal events. Each day, participants indicated whether they had 

experienced negative interactions with family members, friends, adults at school, other students 

at school, or adults outside of school. Examples included arguing with mother/father/other family 

member about something, arguing with a close friend/boyfriend/girlfriend, having an argument 
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or being punished by an adult at school, and being harassed/picked on/teased by a student at 

school or someone outside of school. In addition, participants were asked if a student at school, 

an adult at school, or someone outside of school treated the participant poorly because of the 

participant’s race. The number of affirmative responses to these items were summed to create an 

index of negative interpersonal interactions, ranging from 0 to 12, such that higher scores 

indicated the occurrence of more negative interpersonal events.   

Daily positive interpersonal events. Each day, participants indicated whether they had 

experienced positive interactions with family members, friends, and adults at school. Examples 

included getting along with parents, getting along with friends, and getting along with adults at 

school. In addition, participants were asked if a student at school, an adult at school, or someone 

outside of school treated the participant well because of the participant’s race. The number of 

affirmative responses to these items were summed to create an index of positive interpersonal 

interactions, ranging from 0 to 8, such that higher scores indicated the occurrence of more 

positive interpersonal events.   

Model specification – functional form  

Model selection started with the selection of the functional form of the trajectory of the 

outcome under examination. The Level 1 equations for each of the functional forms match those 

shown in Table 4.1, except that the functional form predictor was hours of sleep instead of time. 

The linear, quadratic, and cubic models were each specified to have a random effect associated 

with the intercept, corresponding to 𝑏& in Table 4.1. The exponential model was specified to 

have a random effect associated with the initial value of the outcome, which corresponds to 𝑏S in 

its formulation. Three logistic models were also fit, each with a single random effect. The first 

logistic model was specified to have a random upper asymptote, corresponding to 𝑏(. The second 
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was specified to have a random parameter loosely related to the intercept, corresponding to 𝑏*. 

The third, corresponding to 𝑏,, was specified to have a random “rapidity” parameter.	In total, 

seven functional form models were fit to the data. All models that converged and produced 

interpretable parameter estimates were compared using information criteria. 

Model specification – predictor sets 

Once the best functional form was selected, a second round of model selection was 

conducted to determine the appropriate predictor set. Seven models were compared at this stage. 

The first model, referred to hereafter as the base model, included the functional form variables 

and the set of covariates. CES-D score, gender, centered age, and ethnicity were time-invariant 

covariates entered at Level 2. Whether the diary was completed on a school day or a school night 

was entered as a time-varying covariate at Level 1. All of the succeeding models included these 

covariates along with the predictors sets of interest.   

A summary of the six models with the predictor sets of interest is shown in Table 5.1. The 

first three models in the series were the demand models. The first of these was the perceived 

demand model, which included predictors indicating if the participants felt that they had a lot of 

work at school, work, or home that day, as well as if they felt a lot of demands from family or 

friends. The second was the event demand model, which included predictors indicating if the 

participant had engaged in tasks within the home, leisure activities with their families, activities 

at school, activities with friends, and whether they worked a job that day. The third was the time 

demand model, which included predictors of the time spent doing the things in the event demand 

model. The difference between the event demand model and the time demand model was that 

focus of the event demand model was on the number of tasks in which the participant engaged, 

and the focus of the time demand model was on the amount of time spent doing different tasks. 
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The second series of predictors sets were the interpersonal interactions models. The first was 

the negative interpersonal interactions model. This model included predictors indicating if 

participants had negative interactions with family members, friends, adults at school, other 

students, or others outside of school. In addition, they were asked if an adult at school, a student 

at school, or someone outside of school had treated them badly because of their race. The second 

of these was the positive interpersonal interactions model. This model included predictors 

indicating if participants had negative interactions with family members, friends, and adults at 

school. Participants were also asked if an adult at school, a student at school, or someone outside 

of school had treated them well that day because of their race. The combination model included 

all of the predictors of the negative and positive interaction models.  

Model specification – covariance structure 

 Fitting models with nonlinear functional forms is largely the same when using either time 

or another variable of interest to create the nonlinear change trajectory. One important 

difference, however, is that the values of the input variable change from being discrete to being 

continuous. When time is used as the functional form variable, the within-person covariance 

structure represents the correlation of within-person observations across time points. When a 

non-temporal variable is used, the within-person covariance structure represents the correlation 

of the values of the observations across the range of values of that variable. For example, if time 

were the variable used to construct the functional form, the off-diagonal elements of the L1 

covariance matrix would represent the correlation between measures at different time points. If a 

variable like hours of sleep were used, then the elements of the L1 covariance matrix would 

represent the correlation between each discrete value of reported sleep. In the latter case, the 

conditional independence structure was the L1 covariance structure that was most sensible in 
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context, so the conditional independence structure was used for the final model. 

Model selection 

To evaluate which functional form and predictor set to proceed with, AIC, AICC, BIC, 

CAIC, and HQIC values were computed for each model. For the sample size-dependent criteria, 

both sample size sources were used. At each model selection step, all nine information criteria 

values were computed for each model.  

Results 

Model selection for functional form. 

Of the seven functional form models that were fit, five converged and produced 

interpretable estimates. Those five were the linear, quadratic, cubic, exponential, and the random 

upper asymptote logistic models. The predicted daily distress for each of these models across the 

range of hours of sleep can be found in Figure 5.1. All of the models predicted a downward trend 

in distress between zero and ten hours of sleep. Once the number of hours of sleep was higher 

than ten, the curves began to noticeably diverge. The linear model had a negative slope, so the 

predicted distress values continued to steadily decrease. The cubic and quadratic models 

predicted an upswing in distress when sleep was greater than 10 hours. The predicted distress 

values from the logistic and exponential models were almost entirely identical within the 

observed range of sleep, showing a downward trend that began leveling off when sleep was 

greater than 10 hours. The nine information criteria values for the functional form-only models 

are shown at the top of Table 5.2. All information criteria selected the exponential model.  

Model selection for predictor set. 

Because the exponential functional form was selected as the best model in the previous 

step, all seven models described previously and shown in Table 4.1 were fitted with an 
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exponential functional form. The nine information criteria values are shown at the bottom of 

Table 5.2. All of the information criteria selected the time demand model.  

Final model. 

 The final model was the time demand model with an exponential functional form. The L1 

equation for this model is as follows: 

𝑌"Q = 	𝑏S"𝑒mYZ��ee�Z_ +	𝑏,(𝑎𝑔𝑒) + 𝑏-(𝑔𝑒𝑛𝑑𝑒𝑟) +	𝑏/(𝐶𝐸𝑆𝐷) + 𝑏�(𝐿𝑎𝑡𝑖𝑛𝑜) +

𝑏�(𝑠𝑐ℎ𝑜𝑜𝑙𝑑𝑎𝑦) + 𝑏�(𝑓𝑎𝑚𝑖𝑙𝑦	𝑡𝑎𝑠𝑘	𝑡𝑖𝑚𝑒) + 𝑏�(𝑓𝑎𝑚𝑖𝑙𝑦	𝑙𝑒𝑖𝑠𝑢𝑟𝑒	𝑡𝑖𝑚𝑒) +

𝑏(S(𝑠𝑐ℎ𝑜𝑜𝑙	𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝑡𝑖𝑚𝑒) + 𝑏(((𝑓𝑟𝑖𝑒𝑛𝑑	𝑡𝑖𝑚𝑒) + 𝑏(*(𝑗𝑜𝑏	𝑡𝑖𝑚𝑒) + 𝜀"Q  . 

 A table of estimated coefficients and their associated p-values is shown in Table 5.3. 

Both the intercept (𝑏S") and the exponential growth (𝑏(") parameters of the exponential 

functional form variables were significant (p < 0.001). Of the covariates, ethnicity (𝑏� = 	0.51, p 

= 0.02) and whether the day was a school day or not (𝑏� = 	−.88, p < 0.001) were significant. All 

else held constant, students were predicted to experience less distress on weekend days and 

Latino students were predicted to have less distress than non-Latino students. Two predictors in 

the time demand model were significant. The first was the amount of leisure time spent with 

family (𝑏� = 	−0.08, p = 0.004) and time spent on school activities (𝑏(S = 	−0.08, p < 0.001). All 

else being equal, more leisure time spent with family and more time spent on school activities 

were predictive of less distress.  

Discussion 

The results of this application demonstrate that nonlinear functional forms in multilevel 

models have utility that extends beyond modeling change trajectories based on the passage of 

time and that information criteria can be used to identify such forms. Although likelihood ratio 

tests could have been used to compare some of the predictor sets (e.g., the positive and negative 
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interactions models could have been compared to the all interactions model), only by using 

information criteria could the six predictor sets of have been tested simultaneously.  

These findings suggested that getting more sleep reduced daily distress in adolescents, but 

also that this reduction in distress slowed once the amount of sleep was greater than 10 hours, a 

value greater than the higher end of the amount of sleep recommended for adolescents by the 

American Academy of Sleep Medicine (Paruthi et al., 2016). The logistic and exponential 

models produced almost identical deviances, but the exponential model was selected because it 

was more parsimonious. In contrast, the selection of the predictor set was mostly driven by larger 

differences in the deviances. All three demand models were the most parsimonious of the 

predictors sets of interest, so the differences in their deviances was what distinguished them 

during model selection. The predictor set findings suggested that the amount of time spent on 

various activities was more predictive of daily distress than the number of activities, the 

perceived demandingness of those activities, and positive or negative interactions with others in 

daily life. Specifically, adolescents experienced less distress on days when they spend more 

leisure time with family members or spend more time on extracurricular activities.  

 Although the simplicity of these models was intentional to maximize the number of 

estimable and interpretable truly nonlinear functional forms, the fact that these models were 

almost certainly underspecified (i.e., too simple) is a major limitation of the findings from this 

application. First, there were neither interactions among the predictors in the predictor sets nor 

interactions between the predictors and the functional form variables. Second, across the 

different functional form models, only one of the functional form parameters in each model had 

an associated random effect. For example, the quadratic analysis only had a random intercept 

parameter; such a specification allows for individual-specific intercept values but assumes that 
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the linear and quadratic trends are the same across individuals. Given these limitations, the fact 

that the conclusions regarding the functional form in this application and that of Fuligni and 

colleagues (2019) differ slightly – this application concluded that an exponential functional form 

was the best, while Fuligni and colleagues employed a quadratic functional form in order to be 

able to detect minima – should not be taken as a conflict. Rather, the findings from this 

application further confirm the existence of a nonlinear relationship between sleep and daily 

distress in these data by ruling out the linear model through an alternative model selection 

method. Whether examining the relationship by comparing the linear model to a nonlinear model 

using a likelihood ratio test or by using information criteria, the linear model was the worst-

fitting model among those tested here.    
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7. Discussion 

The scientific method is often conceptualized as a cycle in which researchers develop 

hypotheses based on theory derived from prior observations and evaluate those hypotheses based 

their utility in predicting new observations. Researchers in the behavioral sciences frequently 

express hypotheses by building representative statistical models and test those hypotheses by 

fitting models to data collected for that purpose. When a researcher wants to compare the 

plausibility of two or more competing hypotheses, the models representing those hypotheses can 

be compared using a model selection method. Information criteria offer a flexible framework for 

selecting among multilevel models because the models being compared do not have to be nested. 

This is especially useful when the models being compared are truly nonlinear models, such as 

exponential and logistic models, because such models cannot be nested relative to each other or 

to polynomial models. To date, there has been little research on the performance of information 

criteria when selecting models that contain truly nonlinear functional forms, so no empirically-

based guidelines for the use in this context currently exist for applied researchers. The work 

presented here represents some first steps in the creation of such guidelines.  

 The goal of the first study in this series was to empirically examine the ability of different 

information criteria to select the model with the correct functional form specification when the 

candidate model set included linear, polynomial, and truly nonlinear models. The ability of 

information criteria to detect correctly specified nonlinear models was affected by the L1 sample 

size, the L2 sample size, ICC, and the distinctiveness of the underlying functional form. The 

correct selection rate was generally higher as the number of L2 units and the number of L1 units 

increased. Correctly specified models were also more likely to be selected when the ICC was 

higher than when it was lower. BIC(N) may be better for identifying correctly specified 
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exponential, logistic, and quadratic models when their respective functional forms are more 

distinct, while AIC may be better when these forms are less distinct. Future work in this area 

may include the exploration of other truly nonlinear functional forms. For example, Singer and 

Willett’s (2003) discussion about truly nonlinear functional forms also included hyperbolic and 

inverse polynomial functions. In addition, an examination of a broader range of distinctiveness 

among functional forms would help generalize the current findings.  

 The goal of the second study in this series was to empirically examine the performance of 

different information criteria when selecting among different predictor sets when the underlying 

functional forms were either exponential or logistic. Two outcomes were of interest. The first 

outcome of interest, the ability of different information criteria to select a correctly specified 

model in a candidate model set, was a standard outcome of interest in research about the 

performance of information criteria (e.g., Gurka, 2006; Whittaker & Furlow, 2009; Vallejo et al., 

2011). The findings for this conventional outcome suggested that information criteria may have 

difficulty identifying a model that is correctly specified with regard to both its truly nonlinear 

functional form and its predictor set if alternative misspecified models are “close enough”. In 

this case, efficient criteria (AIC and AICC) performed better than their consistent counterparts, 

likely due to their property of dimension inconsistency (Bozdogan, 1987). The second outcome 

of interest, the ability of different information criteria to select a “more correct” (less 

misspecified) model when the correctly specified model was not in the candidate model set, was 

a less conventional outcome but may better match the circumstances of behavioral research 

because the fitting of models that are fully correctly specified may be unrealistic. In most cases, 

both efficient and consistent information criteria were able to identify the model determined to 

be more correct between two models with misspecification in their predictor sets. Future work in 
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this area could include greater degrees of misspecification or include misspecification with 

regard to both the predictor sets and the functional forms simultaneously.  

 Finally, the utility of these models was demonstrated though their application to data 

collected from participants in two longitudinal behavioral health studies. Nonlinear trajectories 

are often applied when the trajectory of interest is change over time, such as the case of the 

changes in within-person body image discrepancy and body dissatisfaction over the course of 

late childhood and adolescence in girls. Such models can also be applied when the trajectory of 

interest is not temporal in nature, such as the case of changes in daily distress across within-

person ranges of sleep. In both of these cases, model selection using information criteria revealed 

nonlinear trends. These substantively interesting trends would have been missed if the fitted 

models were limited to the standard linear multilevel model. Across behavioral research studies, 

it seems likely that some substantively interesting nonlinear trends are missed because 

researchers do not realize that these nonlinear trends exist in their phenomena of interest 

(perhaps because prior research had been limited to the exploration of linear trends) or because 

researchers may have difficulty modeling a particular nonlinear hypothesis statistically. In light 

of the technical difficulties that occurred throughout the studies in this dissertation, the latter 

situation seems particularly likely in the case of a hypothesis involving a truly nonlinear 

functional form. To encourage the inclusion of truly nonlinear models in behavioral research, 

quantitative researchers may want to consider providing code, such as Harring and Blozis’ 

(2014) demonstration of how to fit different L1 covariance structures in the NLMIXED 

procedure in SAS, or detailed didactic examples to help bridge this gap. 
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8. Tables 
 

Lower 
effect size 

Exponential Logistic  Quadratic 
b0: 5.35 b1: 20.06 b0: 5.35 
b1: 0.035 b2: 20 b1: 0.19 
  b3: 20 b2: 0.0035 

Higher 
effect size 

Exponential Logistic  Quadratic 
b0: 0.5 b1: 22 b0: 1 
b1: 0.28 b2: 10 b1: 0.05 
  b3: 2.5 b2: 0.1 

 
Table 2.1. Set of data generation coefficients used for lower and higher distinctiveness in 
functional forms 
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Simple differences 
(between-models) Area under the curve 

AUC differences (between-
models) 

  

Log 
vs 

Expo 

Log 
vs 

Quad 

Expo 
vs 

Quad 
Log Expo Quad 

Log vs 
Expo 

Log vs 
Quad 

Expo vs 
Quad   Mean  Mean  Mean  

Exponential form, lower 
effect size, ICC = 0.4 -0.07 -0.07 0.00 79.31 80.14 80.12 -0.83 -0.82 0.02 
Exponential form, higher 
effect size, ICC = 0.4 -2.83 -2.92 -0.09 24.50 63.44 63.61 -38.94 -39.11 -0.17 
Exponential form, lower 
effect size, ICC = 0.6 -0.15 -0.15 0.00 78.45 80.28 80.26 -1.83 -1.81 0.02 
Exponential form, higher 
effect size, ICC = 0.6 -2.81 -2.87 -0.06 12.79 51.40 51.46 -38.61 -38.67 -0.06 
Logistic form, lower 
effect size, ICC = 0.4 0.01 0.01 0.00 80.10 79.96 80.03 0.14 0.07 -0.07 
Logistic form, higher 
effect size, ICC = 0.4 -0.17 -0.03 0.13 63.89 65.81 64.23 -1.92 -0.35 1.58 
Logistic form, lower 
effect size, ICC = 0.6 0.01 0.01 0.00 80.13 79.94 80.01 0.18 0.12 -0.07 
Logistic form, higher 
effect size, ICC = 0.6 -0.27 -0.10 0.17 64.06 67.06 65.15 -3.01 -1.09 1.91 
Quadratic form, lower 
effect size, ICC = 0.4 -0.03 -0.02 0.00 79.36 79.65 79.65 -0.29 -0.29 0.00 
Quadratic form, higher 
effect size, ICC = 0.4 -0.03 0.05 0.08 106.05 106.41 105.70 -0.36 0.36 0.71 
Quadratic form, lower 
effect size, ICC = 0.6 -0.05 -0.05 0.00 79.12 79.69 79.66 -0.57 -0.54 0.03 
Quadratic form, higher 
effect size, ICC = 0.6 -0.03 0.06 0.10 105.66 106.08 105.22 -0.42 0.44 0.86 

 
Table 2.2 Curve similarity metrics from large-L2 single-replication simulations. 
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Data generation Effect size ICC L2 units 
Total 
replications 

Exponential 1 1 30 2606 
Exponential 1 1 50 2402 
Exponential 1 1 100 2232 
Exponential 1 2 30 2075 
Exponential 1 2 50 1861 
Exponential 1 2 100 1694 
Exponential 2 1 30 1110 
Exponential 2 1 50 1165 
Exponential 2 1 100 1421 
Exponential 2 2 30 2392 
Exponential 2 2 50 7043 
Exponential 2 2 100 18575 
Logistic 1 1 30 9804 
Logistic 1 1 50 7255 
Logistic 1 1 100 5001 
Logistic 1 2 30 4066 
Logistic 1 2 50 3182 
Logistic 1 2 100 2719 
Logistic 2 1 30 1583 
Logistic 2 1 50 1489 
Logistic 2 1 100 1767 
Logistic 2 2 30 1056 
Logistic 2 2 50 1142 
Logistic 2 2 100 1214 
Quadratic 1 1 30 1345 
Quadratic 1 1 50 1214 
Quadratic 1 1 100 1246 
Quadratic 1 2 30 1095 
Quadratic 1 2 50 1076 
Quadratic 1 2 100 1130 
Quadratic 2 1 30 1960 
Quadratic 2 1 50 1909 
Quadratic 2 1 100 2305 
Quadratic 2 2 30 1060 
Quadratic 2 2 50 1078 
Quadratic 2 2 100 1248 

 
Table 2.3. Number of simulation replications needed to obtain 1000 valid replications by 
condition 
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  EXPO FORM EXPO - LOW DISTINCTION EXPO - HIGHER DISTINCTION 

  Percent correct Runner-up Percent correct Runner-up Percent correct Runner-up 

AIC, 13 0.917 Log 0.8343 Log 0.9997 Log 

AIC, 9 0.9065 Log 0.813 Log 1   

AIC, 7 0.8966 Lin 0.7933 Lin 1   

AIC, 5 0.8782 Lin 0.7563 Lin 1   

AICC-N, 13 0.9178 Log 0.836 Log 0.9997 Log 

AICC-N, 9 0.9081 Log 0.8162 Log 1   

AICC-N, 7 0.8983 Lin 0.7967 Lin 0.9998 Log 

AICC-N, 5 0.8802 Lin 0.7603 Lin 1   

AICC-m, 13 0.9307 log 0.8617 Log 0.9997 Log 

AICC-m, 9 0.9207 Lin 0.8413 Lin 1   

AICC-m, 7 0.9092 Lin 0.8185 Lin 0.9998 Log 

AICC-m, 5 0.8902 Lin 0.7803 Lin 1   

BIC-N, 13 0.964 Lin 0.9283 Lin 0.9997 Log 

BIC-N, 9 0.9499 Lin 0.8998 Lin 1   

BIC-N, 7 0.9354 Lin 0.871 Lin 0.9998 Log 

BIC-N, 5 0.9123 Lin 0.8245 Lin 1   

BIC-m, 13 0.9503 Lin 0.901 Lin 0.9997 Log 

BIC-m, 9 0.9402 Lin 0.8803 Lin 1   

BIC-m, 7 0.9274 Lin 0.855 Lin 1   

BIC-m, 5 0.9058 Lin 0.8115 Lin 1   

CAIC-N, 13 0.9653 Lin 0.9308 Lin 0.9997 Log 

CAIC-N, 9 0.9513 Lin 0.9027 Lin 1   

CAIC-N, 7 0.9368 Lin 0.8737 Lin 0.9998 Log 

CAIC-N, 5 0.914 Lin 0.828 Lin 1   

CAIC-m, 13 0.9588 Lin 0.918 Lin 0.9997 Log 

CAIC-m, 9 0.9468 Lin 0.8937 Lin 1   

CAIC-m, 7 0.9333 Lin 0.8667 Lin 0.9998 Log 

CAIC-m, 5 0.9107 Lin 0.8213 Lin 1   

HQIC-N, 13 0.949 Lin 0.8983 Lin 0.997 Log 

HQIC-N, 9 0.9381 Lin 0.8762 Lin 1   

HQIC-N, 7 0.9237 Lin 0.8475 Lin 0.9998 Log 

HQIC-N, 5  0.9016 Lin 0.8032 Lin 1   

HQIC-m, 13 0.9331 Log 0.8665 Log 0.9997 Log 

HQIC-m, 9 0.9254 Lin 0.8508 Lin 1   

HQIC-m, 7 0.9125 Lin 0.8252 Lin 0.9998 Log 

HQIC-m, 5 0.8931 Lin 0.7862 Lin 1   
Table 2.4. Proportion of correctly specified exponential models selected and most common 
alternative 
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  LOG FORM LOG - LOW DISTINCTION LOG - HIGHER DISTINCTION 

  Percent correct Runner-up Percent correct Runner-up Percent correct Runner-up 

AIC, 13 0.5099 Lin 0.0198 Lin 1   

AIC, 9 0.5123 Lin 0.0245 Lin 1   

AIC, 7 0.5125 Lin 0.025 Lin 1   

AIC, 5 0.5148 Lin 0.0302 Lin 0.9993 Quad 

AICC-N, 13 0.5096 Lin 0.0192 Lin 1   

AICC-N, 9 0.5114 Lin 0.0228 Lin 1   

AICC-N, 7 0.5119 Lin 0.0238 Lin 1   

AICC-N, 5 0.5138 Lin 0.0282 Lin 0.9993 Quad 

AICC-m, 13 0.5062 Lin 0.0123 Lin 1   

AICC-m, 9 0.508 Lin 0.016 Lin 1   

AICC-m, 7 0.5084 Lin 0.0168 Lin 1   

AICC-m, 5 0.509 Lin 0.0187 Lin 0.9993 Quad 

BIC-N, 13 0.5006 Lin 0.0012 Lin 1   

BIC-N, 9 0.5008 Lin 0.0015 Lin 1   

BIC-N, 7 0.5008 Lin 0.0015 Lin 1   

BIC-N, 5 0.5013 Lin 0.0032 Lin 0.9993 Quad 

BIC-m, 13 0.503 Lin 0.006 Lin 1   

BIC-m, 9 0.5043 Lin 0.0085 Lin 1   

BIC-m, 7 0.5034 Lin 0.0068 Lin 1   

BIC-m, 5 0.5038 Lin 0.0083 Lin 0.9993 Quad 

CAIC-N, 13 0.5003 Lin 0.007 Lin 1   

CAIC-N, 9 0.5004 Lin 0.008 Lin 1   

CAIC-N, 7 0.5005 Lin 0.001 Lin 1   

CAIC-N, 5 0.5004 Lin 0.0015 Lin 0.9993 Quad 

CAIC-m, 13 0.5015 Lin 0.003 Lin 1   

CAIC-m, 9 0.5022 Lin 0.0043 Lin 1   

CAIC-m, 7 0.5023 Lin 0.0045 Lin 1   

CAIC-m, 5 0.5021 Lin 0.0048 Lin 0.9993 Quad 

HQIC-N, 13 0.5032 Lin 0.0063 Lin 1   

HQIC-N, 9 0.5046 Lin 0.0092 Lin 1   

HQIC-N, 7 0.5041 Lin 0.0082 Lin 1   

HQIC-N, 5 0.5052 Lin 0.011 Lin 0.9993 Quad 

HQIC-m, 13 0.5064 Lin 0.0128 Lin 1   

HQIC-m, 9 0.5083 Lin 0.0167 Lin 1   

HQIC-m, 7 0.5073 Lin 0.0147 Lin 1   

HQIC-m, 5 0.5091 Lin 0.0188 Lin 0.9993 Quad 
Table 2.5. Proportion of correctly specified logistic models selected and most common 
alternative 
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  QUAD FORM QUAD - LOW DISTINCTION QUAD - HIGHER DISTINCTION 

  Percent correct Runner-up Percent correct Runner-up Percent correct Runner-up 

AIC, 13 0.5687 Lin 0.2978 Lin 0.8395 Cubic 

AIC, 9 0.5543 Lin 0.2652 Lin 0.8435 Cubic 

AIC, 7 0.5378 Lin 0.238 Lin 0.8368 Cubic 

AIC, 5 0.5269 Lin 0.2172 Lin 0.8367 Cubic 

AICC-N, 13 0.5708 Lin 0.2973 Lin 0.8443 Cubic 

AICC-N, 9 0.5551 Lin 0.261 Lin 0.8492 Cubic 

AICC-N, 7 0.5388 Lin 0.2333 Lin 0.8443 Cubic 

AICC-N, 5 0.5299 Lin 0.2113 Lin 0.8485 Cubic 

AICC-m, 13 0.5779 Lin 0.2655 Lin 0.8903 Cubic 

AICC-m, 9 0.5628 Lin 0.2302 Lin 0.8955 Cubic 

AICC-m, 7 0.5461 Lin 0.2042 Lin 0.888 Cubic 

AICC-m, 5 0.5385 Lin 0.187 Lin 0.89 Cubic 

BIC-N, 13 0.5283 Lin 0.0673 Lin 0.9893 Cubic 

BIC-N, 9 0.5193 Lin 0.0523 Lin 0.9863 Cubic 

BIC-N, 7 0.5175 Lin 0.0513 Lin 0.9837 Cubic 

BIC-N, 5 0.5145 Lin 0.05 Lin 0.979 Cubic 

BIC-m, 13 0.5595 Lin 0.1712 Lin 0.9478 Cubic 

BIC-m, 9 0.5429 Lin 0.1307 Lin 0.9552 Cubic 

BIC-m, 7 0.531 Lin 0.113 Lin 0.949 Cubic 

BIC-m, 5 0.5231 Lin 0.098 Lin 0.9482 Cubic 

CAIC-N, 13 0.521 Lin 0.0473 Lin 0.9947 Cubic 

CAIC-N, 9 0.5133 Lin 0.0345 Lin 0.9922 Cubic 

CAIC-N, 7 0.5118 Lin 0.0335 Lin 0.9902 Cubic 

CAIC-N, 5 0.5104 Lin 0.0323 Lin 0.9885 Cubic 

CAIC-m, 13 0.5471 Lin 0.1212 Lin 0.973 Cubic 

CAIC-m, 9 0.5315 Lin 0.0903 Lin 0.9727 Cubic 

CAIC-m, 7 0.5247 Lin 0.0777 Lin 0.9717 Cubic 

CAIC-m, 5 0.5176 Lin 0.0643 Lin 0.9708 Cubic 

HQIC-N, 13 0.5659 Lin 0.1878 Lin 0.944 Cubic 

HQIC-N, 9 0.5496 Lin 0.152 Lin 0.9472 Cubic 

HQIC-N, 7 0.5363 Lin 0.136 Lin 0.9365 Cubic 

HQIC-N, 5 0.53 Lin 0.128 Lin 0.932 Cubic 

HQIC-m, 13 0.5743 Lin 0.2517 Lin 0.897 Cubic 

HQIC-m, 9 0.5553 Lin 0.2093 Lin 0.9013 Cubic 

HQIC-m, 7 0.5379 Lin 0.1815 Lin 0.8943 Cubic 

HQIC-m, 5 0.5295 Lin 0.1652 Lin 0.8938 Cubic 
Table 2.6. Proportion of correctly specified quadratic models selected and most common 
alternative 
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Models Included (omitted) 

Model 0 (matched data generation) X1, X2, W1, W2 

Model 1 (missing X1 only) X1, X2, W1, W2 

Model 2 (missing X2 only) X1, X2, W1, W2 

Model 3 (missing W1 only) X1, X2, W1, W2, 

Model 4 (missing W2 only) X1, X2, W1, W2 

Model 5 (missing X1 and W1) X1, X2, W1, W2 

Model 6 (missing X1 and W2) X1, X2, W1, W2 

Model 7 (missing X2 and W1) X1, X2, W1, W2 

Model 8 (missing X2 and W2) X1, X2, W1, W2 

Table 3.1: Set of candidate models with non-nested predictor sets. 
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“Correctness” (descending order) Candidate model Included (omitted) 

Fully correct  Data generating model (not 

included in the candidate set) 

X1, X2, W1, W2 

Missing one minor predictor Model 1 (missing X1 only) X1, X2, W1, W2 

 Model 3 (missing W1 only) X1, X2, W1, W2 

Missing both minor predictors Model 5 (missing X1 and W1) X1, X2, W1, W2 

Missing one major predictor Model 2 (missing X2 only) X1, X2, W1, W2 

 Model 4 (missing W2 only) X1, X2, W1, W2 

Missing one major predictor and one 

minor predictor 

Model 6 (missing X1 and W2) X1, X2, W1, W2 

 Model 7 (missing X2 and W1) X1, X2, W1, W2 

Missing both major predictors Model 8 (missing X2 and W2) X1, X2, W1, W2 

Table 3.2. Presumed “correctness” of candidate models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 116 

Model pairs for comparison A priori Lower 

deviance 

Higher 

% reduction in L2 

variance 

Higher 

% reduction in 

L1 variance 

Model 1 (omitted 

X1) 

Model 2 (omitted X2) Model 1 Model 1  Expo: Model 1 

Log: Similar 

Model 1 

 Model 3 (omitted W1) Unclear Model 3  Similar Similar 

 Model 4 (omitted W2) Model 1 Model 1 Model 1 Similar 

 Model 7 (omitted X2, W1) Model 1 Model 1 Expo: Model 1 

Log: Similar 

Model 1 

 Model 8 (omitted X2, W2) Model 1 Model 1 Model 1 Model 1 

Model 2 (omitted 

X2) 

Model 3 (omitted W1) Model 3 Model 3  Expo: Model 3 

Log: Similar 

Model 3 

 Model 4 (omitted W2) Unclear Model 4  Model 2 Model 4 

 Model 5 (omitted X1, W1) Unclear Model 5  Expo: Model 5 

Log: Similar 

Model 5 

 Model 6 (omitted X1, W2) Model 2 Model 6 Model 2 Model 6 

Model 3 (omitted 

W1) 

Model 4 (omitted W2) Model 3 Model 3 Model 3 Similar 

 Model 6 (omitted X1, W2) Model 3 Model 3 Model 3 Similar 

 Model 8 (omitted X2, W2) Model 3 Model 3 Model 3 Model 3 

Model 4 (omitted 

W2) 

Model 5 (omitted X1, W1) Unclear Model 5 Model 5 Similar 

 Model 7 (omitted X2, W1) Model 4 Model 4 Model 7 Model 4 

Model 5 (omitted 

X1, W1) 

Model 6 (omitted X1, W2) Model 5 Model 5 Model 5 Similar 

 Model 7 (omitted X2, W1) Model 5 Model 5 Expo: Model 5 

Log: Similar 

Model 5 

 Model 8 (omitted X2, W2) Model 5 Model 5 Model 5 Model 5 

Model 6 (omitted 

X1, W2) 

Model 7 (omitted X2, W1) Unclear Model 6  Model 7 Model 6 

 Model 8 (omitted X2, W2) Model 6 Model 6 Expo: Model 6 

Log: Model 8 

Model 6 

Model 7 (omitted 

X2, W1) 

Model 8 (omitted X2, W2) Model 7 Model 7 Model 7 Similar 

Table 3.3. All non-nested pairwise comparisons and the model determined to be more correct of 
the two by evaluation method. 
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Models sorted by proportion reduction in variance of random effects 

  Expo, low ICC   Log, low ICC 

 
% L1 
var   

% L2 
var   

% L1 
var   

% L2 
var 

Model 0 10%   Model 0 37%   Model 0 8%   Model 2 9% 
Model 3 10%   Model 1 37%   Model 3 8%   Model 1 9% 
Model 4 10%   Model 3 37%   Model 4 8%   Model 0 9% 
Model 1 10%   Model 5 36%   Model 1 8%   Model 5 8% 
Model 5 10%   Model 2 29%   Model 5 8%   Model 3 7% 
Model 6 10%   Model 7 29%   Model 6 8%   Model 7 6% 
Model 2 1%   Model 4 19%   Model 2 1%   Model 8 1% 
Model 7 1%   Model 6 18%   Model 8 1%   Model 4 -25% 
Model 8 1%   Model 8 5%   Model 7 1%   Model 6 -27% 

  Expo, high ICC   Log, high ICC 

 
% L1 
var   

% L2 
var   

% L1 
var   

% L2 
var 

Model 0 11%   Model 0 26%   Model 0 8%   Model 2 4% 
Model 3 11%   Model 1 25%   Model 3 8%   Model 0 4% 
Model 4 11%   Model 3 24%   Model 4 8%   Model 1 4% 
Model 1 11%   Model 5 24%   Model 1 8%   Model 5 4% 
Model 5 11%   Model 2 20%   Model 5 8%   Model 3 3% 
Model 6 11%   Model 7 19%   Model 6 8%   Model 7 3% 
Model 2 1%   Model 4 14%   Model 2 1%   Model 8 0% 
Model 7 1%   Model 6 13%   Model 8 1%   Model 4 -14% 
Model 8 1%   Model 8 5%   Model 7 1%   Model 6 -15% 

Table 3.4. Percent reduction in variance components compared to the unconditional model. 
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Deviance comparison - Expo, Low ICC   Deviance comparison - Expo, High ICC 
Model 1 Model 2   Model 3 Model 6   Model 1 Model 2  Model 3 Model 6 

88232 90413   88128 88756   89689 92146   89618 89989 
Model 1 Model 3   Model 3 Model 8   Model 1 Model 3   Model 3 Model 8 

88232 88128   88128 90999   89689 89618   89618 92482 
Model 1 Model 4   Model 4 Model 5   Model 1 Model 4   Model 4 Model 5 

88232 88638   88638 88251   89689 89887   89887 89723 
Model 1 Model 7   Model 4 Model 7   Model 1 Model 7   Model 4 Model 7 

88232 90427   88638 90427   89689 92176   89887 92176 
Model 1 Model 8   Model 5 Model 6   Model 1 Model 8   Model 5 Model 6 

88232 90999   88251 88756   89689 92482   89723 89989 
Model 2 Model 3   Model 5 Model 7   Model 2 Model 3   Model 5 Model 7 

90413 88128   88251 90427   92146 89618   89723 92176 
Model 2 Model 4   Model 5 Model 8   Model 2 Model 4   Model 5 Model 8 

90413 88638   88251 90999   92146 89887   89723 92482 
Model 2 Model 5   Model 6 Model 7   Model 2 Model 5   Model 6 Model 7 

90413 88251   88756 90427   92146 89723   89989 92176 
Model 2 Model 6   Model 6 Model 8   Model 2 Model 6   Model 6 Model 8 

90413 88756   88756 90999   92146 89989   89989 92482 
Model 3 Model 4   Model 7 Model 8   Model 3 Model 4   Model 7 Model 8 

88128 88638   90427 90999   89618 89887   92176 92482 

Deviance comparison - Log, Low ICC   Deviance comparison - Log, High ICC 
Model 1 Model 2  Model 3 Model 6  Model 1 Model 2  Model 3 Model 6 
79613 81289  79552 80292  81354 83148  81317 81716 
Model 1 Model 3  Model 3 Model 8  Model 1 Model 3  Model 3 Model 8 
79613 79552  79552 81450  81354 81317  81317 83221 
Model 1 Model 4  Model 4 Model 5  Model 1 Model 4  Model 4 Model 5 
79613 80169  80169 79620  81354 81660  81660 81356 
Model 1 Model 7  Model 4 Model 7  Model 1 Model 7  Model 4 Model 7 
79613 81363  80169 81363  81354 83172  81660 83172 
Model 1 Model 8  Model 5 Model 6  Model 1 Model 8  Model 5 Model 6 
79613 81450  79620 80292  81354 83221  81356 81716 
Model 2 Model 3  Model 5 Model 7  Model 2 Model 3  Model 5 Model 7 
81289 79552  79620 81363  83148 81317  81356 83172 
Model 2 Model 4  Model 5 Model 8  Model 2 Model 4  Model 5 Model 8 
81289 80169  79620 81450  83148 81660  81356 83221 
Model 2 Model 5  Model 6 Model 7  Model 2 Model 5  Model 6 Model 7 
81289 79620  80292 81363  83148 81356  81716 83172 
Model 2 Model 6  Model 6 Model 8  Model 2 Model 6  Model 6 Model 8 
81289 80292  80292 81450  83148 81716  81716 83221 
Model 3 Model 4  Model 7 Model 8  Model 3 Model 4  Model 7 Model 8 
79552 80169  81363 81450  81317 81660  83172 83221 

Table 3.5. Comparison of pairwise model deviances. Selected model is in bold typeface. 
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Expo, low ICC Difference "tier" Expo, high ICC 
Comparison |Deviance diff| Comparison |Deviance diff| 

Model 1 Model 3 104.39 Lower Model 1 Model 3 71.07 
Model 4 Model 5 387.34 Lower Model 4 Model 5 164.34 
Model 1 Model 4 405.98 Lower Model 1 Model 4 198.53 
Model 5 Model 6 505.51 Lower Model 5 Model 6 266.34 
Model 3 Model 4 510.37 Lower Model 3 Model 4 269.6 
Model 7 Model 8 571.95 Lower Model 7 Model 8 305.15 
Model 3 Model 6 628.54 Lower Model 3 Model 6 371.6 
Model 2 Model 6 1656.89 Moderate Model 2 Model 6 2156.96 
Model 6 Model 7 1670.98 Moderate Model 6 Model 7 2187.13 
Model 2 Model 4 1775.06 Moderate Model 2 Model 4 2258.96 
Model 4 Model 7 1789.15 Moderate Model 4 Model 7 2289.13 
Model 2 Model 5 2162.4 Moderate Model 2 Model 5 2423.3 
Model 5 Model 7 2176.49 Moderate Model 5 Model 7 2453.47 
Model 1 Model 2 2181.04 Moderate Model 1 Model 2 2457.49 
Model 1 Model 7 2195.13 Moderate Model 1 Model 7 2487.66 
Model 6 Model 8 2242.93 Moderate Model 6 Model 8 2492.28 
Model 2 Model 3 2285.43 Higher Model 2 Model 3 2528.56 
Model 5 Model 8 2748.44 Higher Model 5 Model 8 2758.62 
Model 1 Model 8 2767.08 Higher Model 1 Model 8 2792.81 
Model 3 Model 8 2871.47 Higher Model 3 Model 8 2863.88 

Log, low ICC Difference "tier" Log, high ICC 
Comparison |Deviance diff| Comparison |Deviance diff| 

Model 1 Model 3 61.08 Lower Model 1 Model 3 37.04 
Model 7 Model 8 87.16 Lower Model 7 Model 8 48.78 
Model 4 Model 5 548.62 Lower Model 4 Model 5 304.02 
Model 1 Model 4 555.2 Lower Model 1 Model 4 305.53 
Model 3 Model 4 616.28 Lower Model 3 Model 4 342.57 
Model 5 Model 6 671.78 Lower Model 5 Model 6 360.02 
Model 3 Model 6 739.44 Lower Model 3 Model 6 398.57 
Model 2 Model 6 997.48 Moderate Model 2 Model 6 1432.53 
Model 6 Model 7 1070.99 Moderate Model 6 Model 7 1456.05 
Model 2 Model 4 1120.64 Moderate Model 2 Model 4 1488.53 
Model 6 Model 8 1158.15 Moderate Model 6 Model 8 1504.83 
Model 4 Model 7 1194.15 Moderate Model 4 Model 7 1512.05 
Model 2 Model 5 1669.26 Moderate Model 2 Model 5 1792.55 
Model 1 Model 2 1675.84 Moderate Model 1 Model 2 1794.06 
Model 2 Model 3 1736.92 Moderate Model 5 Model 7 1816.07 
Model 5 Model 7 1742.77 Moderate Model 1 Model 7 1817.58 
Model 1 Model 7 1749.35 Higher Model 2 Model 3 1831.1 
Model 5 Model 8 1829.93 Higher Model 5 Model 8 1864.85 
Model 1 Model 8 1836.51 Higher Model 1 Model 8 1866.36 
Model 3 Model 8 1897.59 Higher Model 3 Model 8 1903.4 

Table 3.6. Absolute values of the differences in deviances across non-nested model pairs,  
divided into three “tiers” of size of the differences. 
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  AIC AICC-N AICC-m BIC-N BIC-m CAIC-N CAIC-m HQIC-N HQIC-m 

Expo – 13 18.1% 17.5% 11.2% 0.7% 4.5% 0.3% 2.2% 5.9% 10.5% 

Expo – 9 15.1% 14.5% 9.5% 0.8% 3.5% 0.4% 1.9% 4.7% 8.4% 

Expo – 7 13.6% 12.7% 8.1% 0.5% 2.7% 0.3% 1.2% 4.3% 7.5% 

Expo – 5 11.5% 10.7% 7.0% 0.7% 2.2% 0.3% 1.2% 3.6% 6.0% 

Log – 13 14.2% 13.6% 8.1% 0.7% 3.3% 0.3% 1.7% 4.0% 8.0% 

Log – 9 12.9% 12.2% 7.5% 0.5% 2.2% 0.2% 1.2% 3.7% 7.3% 

Log – 7 11.1% 9.0% 6.1% 0.4% 2.2% 0.2% 1.0% 3.3% 6.0% 

Log - 5 9.8% 8.9% 5.5% 0.5% 1.9% 0.2% 0.8% 2.9% 5.3% 
Table 3.7. Overall correct selection rate across time points and information criteria. 
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Deviance 
difference tier Comparison Correct 

selection range 
Criteria ranking 
for exponential 

Criteria ranking 
for logistic 

Lower 
difference 

Model 1 Model 3 27% - 73% AIC 
BIC(N and m) 

BIC(N and m) 
AIC 

Model 1 Model 4 At least 85% (No effect) (No effect)  
Model 3 Model 4 At least 92% (No effect) (No effect)  

Model 3 Model 6 69% - 94% 
AIC 
BIC(m) 
BIC(N) 

AIC 
BIC(m) 
BIC(N) 

Model 4 Model 5 At least 86% 
BIC(N) 
BIC(m) 
AIC 

BIC(N) 
BIC(m) 
AIC 

Model 5 Model 6 At least 98% (No effect) (No effect) 
Model 7 Model 8 At least 90% (No effect) (No effect) 

Moderate 
difference 

Model 1 Model 2 At least 97% (No effect) (No effect) 

Model 1 Model 7 At least 86% 
AIC 
BIC(m) 
BIC(N) 

AIC 
BIC(m) 
BIC(N) 

Model 2 Model 4 At least 83% (No effect) (No effect) 

Model 2 Model 5 At least 98% 
BIC(N) 
BIC(m) 
AIC 

BIC(N) 
BIC(m) 
AIC 

Model 2 Model 6 0% - 18% 
BIC(N) 
BIC(m) 
AIC 

BIC(N) 
BIC(m) 
AIC 

Model 4 Model 7 66% - 98% 
AIC 
BIC(m) 
BIC(N) 

AIC 
BIC(m) 
BIC(N) 

Model 5 Model 7 At least 94% (No effect) (No effect) 
Model 6 Model 7 At least 81% (No effect) (No effect) 
Model 6 Model 8 At least 90% (No effect) (No effect) 

Higher 
difference 

Model 1 Model 8 At least 89% 
AIC 
BIC(m) 
BIC(N) 

AIC 
BIC(m) 
BIC(N) 

Model 2 Model 3 At least 98% (No effect) (No effect) 

Model 3 Model 8 At least 90% 
AIC 
BIC(m) 
BIC(N) 

BIC(N) 
BIC(m) 
AIC 

Model 5 Model 8 At least 97% (No effect) (No effect) 
Table 3.8. Summary of selection rate ranges of the more correct model across non-nested 
pairwise comparisons, with performance ranking of AIC, BIC(N), and BIC(m). 
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Expo, low ICC Log, low ICC 
Model Deviance  Difference Model Deviance  Difference 
Model 0 88111.9  Model 0 79518.3   
Model 3 88128 16.01 Model 3 795`52.2 33.93 
Model 1 88232.3 104.39 Model 1 79613.3 61.08 
Model 5 88251 18.64 Model 5 79619.9 6.58 
Model 4 88638.3 387.34 Model 4 80168.5 548.62 
Model 6 88756.5 118.17 Model 6 80291.7 123.16 
Model 2 90413.4 1656.89 Model 2 81289.2 997.48 
Model 7 90427.5 14.09 Model 7 81362.7 73.51 
Model 8 90999.4 571.95 Model 8 81449.8 87.16 

Expo, high ICC Log, high ICC 
Model Deviance Difference Model  Deviance  Difference 
Model 0 89585.8  Model 0 81308.8   
Model 3 89617.7 31.93 Model 3 81317.2 8.42 
Model 1 89688.8 71.07 Model 1 81354.3 37.04 
Model 5 89723 34.19 Model 5 81355.8 1.51 
Model 4 89887.3 164.34 Model 4 81659.8 304.02 
Model 6 89989.3 102 Model 6 81715.8 56 
Model 2 92146.3 2156.96 Model 2 83148.3 1432.53 
Model 7 92176.4 30.17 Model 7 83171.9 23.52 
Model 8 92481.6 305.15 Model 8 83220.6 48.78 

Table 3.9. Ordered list of deviance differences among models, including correctly specified 
models. 
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Functional form  Level 1 specification 

Linear – 4 parameters 𝑌"Q = 𝑏& +	𝑏(𝐶𝑒𝑛𝐴𝑔𝑒 +	𝑒"Q	 

Quadratic – 5 parameters 𝑌"Q = 𝑏& +	𝑏(𝐶𝑒𝑛𝐴𝑔𝑒 + 𝑏*𝐶𝑒𝑛𝐴𝑔𝑒* +	𝑒"Q 

Cubic – 6 parameters 𝑌"Q = 𝑏& +	𝑏(𝐶𝑒𝑛𝐴𝑔𝑒 + 𝑏*𝐶𝑒𝑛𝐴𝑔𝑒* + 𝑏,𝐶𝑒𝑛𝐴𝑔𝑒, +	𝑒"Q 

Exponential - 4 parameters 𝑌"Q = 𝑏S(𝑒mb�eG�>e) +	𝑒"Q 

Logistic - 5 parameters 𝑌"Q = 	
𝑏(

1 +	𝑒
(H(�eG�>eH(mb))

mr 	
+ 	𝑒"Q 

Table 4.1. Functional form specifications at Level 1.  
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Conditional independence First-order autoregressive Toepliz-banded (2 bands) 

𝜎*

⎣
⎢
⎢
⎢
⎡10 1
0 0 1
0 0 0 1
0 0 0 0 1 ⎦

⎥
⎥
⎥
⎤
 𝜎*

⎣
⎢
⎢
⎢
⎢
⎡ 1𝜌 1
𝜌* 𝜌 1
𝜌, 𝜌* 𝜌 1
𝜌- 𝜌, 𝜌* 𝜌 1 ⎦

⎥
⎥
⎥
⎥
⎤

 𝜎*

⎣
⎢
⎢
⎢
⎡1𝑎 1
𝑏 𝑎 1
0 𝑏 𝑎 1
0 0 𝑏 𝑎 1 ⎦

⎥
⎥
⎥
⎤
 

Table 4.2. Examples of covariance structure types for a five-time point model. 
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Models Efficient criteria Consistent criteria 

Functional form  AIC 
AICC-

N 
AICC-

m BIC-N BIC-m 
CAIC-

N 
CAIC-

m 
HQIC-

N 
HQIC-

m 

Linear (b0) 45638 45638 45638 45670 45661 45674 45665 45649 45647 

Quadratic (b0) 44911 44911 44911 44951 44940 44956 44945 44924 44922 

Cubic (b0) 44874 44874 44874 44921 44908 44927 44914 44889 44886 

Expo (b0) 45483 45483 45483 45515 45506 45519 45510 45494 45492 

Logistic (b1) 45893 45893 45893 45933 45922 45938 45926.9 45906 45904 

Logistic (b2) 45123 45123 45123 45162 45151 45167 45156 45135 45133 

Logistic (b3) . . . . . . . . . 

Predictors                   

Cubic/Base 41182 41182 41182 41293 41262 41307 41276 41218 41211 
Cubic/specific 
criticism 40832 40832 40832 40958 40924 40974 40940 40873 40865 
Cubic/general 
criticism 40885 40885 40885 41003 40971 41018 40986 40924 40916 

Cubic/valence 40745 40745 40745 40883 40844 40901 40862 40791 40781 

Cubic/diversity 38451 38451 38451 38584 38548 38601 38565 38495 38486 

Cubic/self-criticism 40293 40293 40293 40411 40378 40426 40393 40332 40324 

Cubic/appearance 40424 40424 40424 40566 40527 40584 40545 40470 40462 
Covariance 
structure               

Cubic/diversity/VC 38451 38451 38451 38584 38548 38601 38565 38495 38486 

Cubic/diversity/AR(1) 37465 37465 37465 37606 37567 37624 37585 37511 37502 

Cubic/diversity/TO(9) 37115 37115 37116 37311 37257 37336 37282 37179 37167 

Cubic/diversity/TO(8) 37116 37116 37117 37304 37253 37328 37277 37178 37166 

Cubic/diversity/TO(7) 37128 37128 37128 37308 37258 37331 37281 37187 37175 

Cubic/diversity/TO(6) 37174 37174 37175 37347 37299 37369 37321 37231 37220 

Cubic/diversity/TO(5) 37208 37208 37208 37372 37327 37393 37348 37262 37252 

Cubic/diversity/TO(4) 37262 37262 37263 37419 37376 37439 37396 37314 37304 

Cubic/diversity/TO(3) 37396 37396 37396 37545 37504 37564 37523 37445 37435 

Cubic/diversity/TO(2) 37709 37709 37710 37850 37811 37868 37829 37755 37747 
Table 4.3. Information criteria values for the three-step model selection process.  
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  TO(9) Model TO(8) Model 
Parameters Estimate SE P Estimate SE P 
Fixed effects             
Intercept (b0) -0.187 0.138 0.1752 -0.193 0.138 0.16 
Linear (b1) -0.186 0.015 < 0.001 -0.186 0.015 < 0.001 
Quadratic (b2) 0.025 0.003 < 0.001 0.024 0.003 < 0.001 
Cubic (b3) -0.001 0.000 < 0.001 -0.001 0.000 < 0.001 
BMI (b4) 0.069 0.002 < 0.001 0.069 0.002 < 0.001 
Race (b5) -0.192 0.022 < 0.001 -0.192 0.022 < 0.001 
Income2 (b6) -0.037 0.034 0.27 -0.037 0.034 < 0.001 
Income3 (b7) -0.008 0.029 0.79 -0.008 0.029 0.27 
Income4 (b8) -0.008 0.030 0.8 -0.007 0.030 0.79 
Education (b9) -0.053 0.026 0.04 -0.053 0.026 0.81 
Education (b10) -0.117 0.029 < 0.001 -0.117 0.029 0.04 
Menarche (b11) 0.003 0.008 0.72 0.003 0.008 < 0.001 
Friend race (b12) -0.105 0.073 0.15 -0.104 0.073 0.16 
Other friend race 
(b13) 0.004 0.008 0.58 0.005 0.008 0.57 
School minority (b14) 0.049 0.036 0.17 0.049 0.036 0.17 
Random effects            
Intercept variance 0.030    0.041     
TO(2) 0.225    0.214     
TO(3) 0.186    0.175     
TO(4) 0.143    0.132     
TO(5) 0.111    0.100     
TO(6) 0.086    0.074     
TO(7) 0.067    0.055     
TO(8) 0.035    0.023     
TO(9) 0.014    . . . 
Residual variance 0.521     0.510     

Table 4.4. Parameter estimates and standard errors for body image discrepancy final models. 
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Models Efficient criteria Consistent criteria 

Functional form AIC 
AICC-

N 
AICC-

m 
BIC-

N 
BIC-

m 
CAIC-

N 
CAIC-

m 
HQIC-

N 
HQIC-

m 
Linear 65176 65176 65176 65205 65199 65209 65203 65186 65184 
Quadratic 65146 65146 65146 65182 65175 65187 65180 65158 65156 
Cubic 65146 65146 65146 65189 65181 65195 65187 65161 65159 
Expo 65003 65003 65003 65032 65026 65036 65030 65013 65011 
Logistic (b1) 64670 64670 64670 64706 64699 64711 64704 64682 64680 
Logistic (b2) 64912 64912 64912 64948 64941 64953 64946 64924 64922 
Logistic (b3) . . . . . . . . . 
Predictors                   
Logistic/Base 61452 61452 61452 61545 61526 61558 61539 61484 61479 
Logistic/specific 
criticism 60939 60939 60939 61047 61025 61062 61040 60976 60970 
Logistic/general 
criticism 61010 61010 61010 61111 61090 61125 61104 61044 61039 
Logistic/valence 60697 60697 60697 60819 60794 60836 60811 60738 60732 
Logistic/diversity 56503 56503 56503 56617 56594 56633 56610 56542 56536 
Logistic/self-
criticism 60151 60151 60151 60251 60231 60265 60245 60185 60180 
Logistic/appearance 60470 60470 60470 60592 60567 60609 60584 60511 60505 

Table 4.5. Model selection for body dissatisfaction outcome. 
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  Diversity Model 
Parameters Estimate SE P 
Fixed effects       
Log (b1) -0.189 1.963 0.92 
Log (b2) -4.758 1.351 <0.001 
Log (b3) 9.387 6.904 0.17 
BMI (b4) 0.672 0.017 <0.001 
Race (b5) -4.280 0.986 <0.001 
Income2 (b6) -0.680 0.502 0.18 
Income3 (b7) 0.323 0.415 0.78 
Income4 (b8) 0.272 0.435 0.62 
Education (b9) -0.522 0.379 0.17 
Education (b10) -1.053 0.470 0.03 
Menarche (b11) -0.437 0.151 <0.001 
Friend race (b12) -2.023 1.127 0.07 
Other friend race (b13) 0.104 0.116 0.37 
School minority (b14) 0.411 0.519 0.79 
Random effects      
Intercept variance 31.426    
Residual variance 21.313     

Table 4.6. Parameter estimates and standard errors for body dissatisfaction final model. 
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Model # Parameters Unique L1 Predictors 
Perceived 
demand 

14 A lot of work at home (0-1), at job (0-1), at school (0-
1), demands from family (0-1), demands by friends (0-
1) 

Event demand 14 Family tasks (0-8), leisure with family (0-3), school 
events (0-3), friend events (0-3), worked a job (0-1) 

Time demand 14 Time spent on family tasks, time spent on leisure with 
family, time spent on school events, time spent on 
events with friends, and time spent working a job 

Negative 
interactions 

17 Negative interactions with family (0-4), friends (0-1), 
adults at school (0-2), with other students (0-1), outside 
of school (0-1), race-specific with adults at school (0-
1), race-specific with students at school (0-1), race-
specific with someone outside of school (0-1) 

Positive 
interactions 

15 Positive interactions with family (0-1), friends (0-3), 
adults at school (0-1), race-specific with adults at 
school (0-1), race-specific with students at school (0-
1), race-specific with someone outside of school (0-1) 

All 
interactions 

23 Combination of all negative and positive interactions 

Table 5.1: Six sets of predictors and the number of parameters in each model, including the 
parameters needed for the exponential functional form and the covariates. 
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Models Efficient criteria Consistent criteria 
Functional 
form AIC AICC-N 

AICC-
m BIC-N BIC-m CAIC-N 

CAIC-
m HQIC-N HQIC-m 

Linear 46052.0 46052.0 46052.1 46080.2 46070.0 46084.2 46074.0 46061.6 46059.0 

Quadratic 46046.0 46046.0 46046.1 46081.2 46068.5 46086.2 46073.5 46058.0 46054.7 

Cubic 46041.0 46041.0 46041.1 46083.3 46068.0 46089.3 46074.0 46055.4 46051.5 

Expo 46018.0 46018.0 46018.1 46046.2 46036.0 46050.2 46040.0 46027.6 46025.0 

Logistic (b1) 46020.0 46020.0 46020.1 46055.2 46042.5 46060.2 46047.5 46032.0 46028.7 

Logistic (b2) . . . . . . . . . 

Logistic (b3) . . . . . . . . . 

Predictors                   

Expo/Base 39452.0 39452.0 39452.3 39514.1 39492.0 39523.1 39501.0 39473.3 39467.5 
Expo/Negative 
interaction 39079.0 39079.1 39080.0 39196.2 39154.5 39213.2 39171.5 39119.3 39108.3 
Expo/Positive 
interaction 39346.0 39346.1 39346.8 39449.4 39412.6 39464.4 39427.6 39381.6 39371.9 
Expo/All 
interactions 39019.0 39019.2 39020.8 39177.6 39121.2 39200.6 39144.2 39073.5 39058.7 
Expo/Perceived 
demand 39393.0 39393.1 39393.7 39489.6 39455.2 39503.6 39469.2 39426.2 39417.2 
Expo/Event 
demand 39429.0 39429.1 39429.7 39525.6 39491.2 39539.6 39505.2 39462.2 39453.2 
Expo/Time 
demand 32049.0 32049.1 32049.7 32142.7 32110.8 32156.7 32124.8 32081.6 32073.0 

Table 5.2. Information criteria values for the functional form-only models (top) and for the seven 
models with predictors (bottom). 
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Parameter Coefficient P value 
Fixed effects   
B0 5.0716 <0.001 
B1 -0.03995 <0.001 
B3 – Age -0.4001 .4425 
B4 – Gender .05406 .8873 
B5 – CESD -0.07601 .8322 
B6 - Latino -.8779 .0238 
B7 – School day 0.5069 <0.001 
B8 – Family task time -0.04118 .2441 
B9 – Family leisure time -0.08123 .0043 
B10 – School time -0.08092 <0.001 
B11 – Friend time -0.02694 .1033 
B12 – Job time -0.04375 .1455 
Random effects   
Residual variance 9.7797 <0.001 
Intercept variance  19.0785 <0.001 

Table 5.3. Coefficient estimates and significance tests of the final model (exponential functional 
form and the time demand predictor set).  
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9. Figures 
 

 

 

Figure 2.1. Functional form curves that are less distinct within the observed range, with the 
observed range (0-13) on the top and a wider range (-40 to 40) on the bottom. 
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Figure 2.2. Functional form curves that are more distinct within the observed range, with the 
observed range (0-13) on the top and a wider range (-40 to 40) on the bottom. 
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Figure 4.1. The estimated cubic functional form model, which was the best-fitting model, for the 
body image discrepancy outcome across 10 time points. 
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Figure 4.2. The estimated logistic functional form model, which was the best-fitting model, for 
the body dissatisfaction outcome across 10 time points. 
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Figure 5.1. Curves representing the predicted daily distress values for each of five functional 
forms over the observed range (0-20) of prior night’s sleep. 
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