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Abstract

Adaptive Local Loop Shaping and Inverse-based Youla-Kucera Parameterization with
Application to Precision Control

by

Xu Chen

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

In this dissertation we discuss loop-shaping algorithms that bring enhanced servo perfor-
mance at multiple local frequency regions. These local loop shaping (LLS) algorithms are
motivated by several new demands in practical control systems such as hard disk drives in
information storage industry, wafer scanners in semiconductor manufacturing, active steer-
ing in automotive vehicles, and active suspension in structural vibration rejection. We will
examine how knowledge about the disturbance/reference characteristics can be utilized, both
offline and online, to customize the servo system for meeting the control challenges.

Along the way, we investigate several design concepts and methodologies. First, in Youla-
Kucera (YK) parameterization–the parameterization of all stabilizing linear controllers–we
develop plant factorizations based on selective model inversion, which safely inverts a (possi-
bly nonminimum-phase) plant dynamics, using H∞ minimization and pole/zero modulation.
This allows us to obtain a simplified YK algorithm with strong design and tuning intuitions
in practical servo. Also, with selective model inversion, it becomes quite approachable to
control the waterbed effect, the result of Bode’s Integral Formula in fundamental limita-
tions of linear control design. This is achieved by utilizing add-on pole/zero placement and
convex-optimization approaches to minimize the disturbance amplification in the sensitivity
function, which enables the obtaining of several algorithms for enhanced repetitive control
and vibration rejection.

In the third part of the dissertation, we investigate adaptive formulations to achieve online
identification of the disturbance characteristics. We study the application of infinite-impulse-
response (IIR) filters in YK parameterization, which brings benefits such as minimum-
parameter adaptation and better convergence under noisy adaptation environments. We
also provide an optimization-based approach to address the problem of robust strict positive
real transfer functions, an essential requirement in adaptive control and system identification.

The discussed algorithms are then extended from the control of SISO to MISO (multi-
input-single-output) plants, where we formulate a decoupled disturbance observer for esti-
mating the equivalent input disturbance for different actuators in a MISO system.
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Simulation and experimental results are obtained on the four classes of systems discussed
at the beginning of this abstract. Parts of the results are performed on benchmark problems,
studied and compared with the algorithms of peer researchers under extensive test conditions.
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Chapter 1

Introduction

1.1 Practical Servo Control Problems
Technology innovations are urging the penetration of advanced control design in modern
engineering systems. In a commercial hard disk drive (HDD), the servo controller must
position the read/write head at nano-scale accuracy1 for data access on the magnetic disks.
In 2007, this servo challenge can be mimicked by imagining an airplane flying at 5,000,000
mph above a 100,000-lane highway, to follow the center of a lane whose width is only fraction
of an inch [1]! Five years after that, the maximum area density increased by 300%, meaning
that there are 300,000 more lanes on the highway, and the lane width is about one forth of its
value in 2007 [2]. Along with the density expansion, new compact HDDs are also introduced
in the post PC era, for new products such as ultrabooks and slim portable drives, where
challenges in servo control are significantly amplified by various new disturbance sources
(more details in Section 3.2). In the semiconductor industry, the error upper bound in the
motion control of the wafer scanner is even smaller—about one magnitude lower than that
of the HDDs in 2007.

Such ultra-high precision and robust performance in modern control systems are achieved
by careful consideration of various engineering disciplines. From the viewpoint of system
integration, we can classify the design elements to the following four categories:

C1. hardware and sensing components : we may want to choose fluid or air bearings
for reduced friction, laser interferometers or high-precision encoders for accurate
measurements, and/or piezo-electronic/MEMS actuators for fine positioning;

C2. operation environment : such as the considerations for friction-isolation tables,
clean room, and thermostatic chambers;

1In a commercial 2013 HDD, the width of a data track is at the scale of 70 nano meters. In positioning
of the read/write heads, servo control has to maintain the position error to be less than 10% track width for
acceptable data writing.
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C3. task plans and arrangements : such as well-designed trajectories, and the arrange-
ment of task repetitions in a manufacturing process;

C4. servo control algorithms, i.e., the software development to operate the actua-
tors, and to correct the accumulated errors in the aforementioned three design
processes.

A well-designed engineering system reflects optimized considerations in all the above cate-
gories. Servo control, as the finalizing step, is responsible for synthesizing and compensating
as much as possible the accumulated residual imperfections. Such imperfections are often
inevitable. To list a few in each design categories, we have:

C1. hardware imperfection which comes from system resonances, imperfections in
bearings and gears, torque ripples in motors, periodic disturbance from cooling
fans, delays in motor drivers and signal acquisition, and so on;

C2. environmental disturbance such as windage (e.g. turbulent airflow in HDDs), and
complex structural vibrations that heavily depend on the operation environment
(e.g., vibrations induced from high-power audio speakers in laptop computers);

C3. special errors due to the task nature, such as repeated trajectories in industrial
robots and manufacturing processes.

Figure 1.1 shows several examples of mechanical systems and their typical error spectra
collected from experimental tests and benchmark simulations [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17] (detailed hardware description and the root cause of the errors will be
provided in Chapter 3). One immediate common feature we can observe, is that all errors
in Figure 1.1 show structured peaks in the spectra.
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Figure 1.1: Example error spectra in different mechanical systems
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Standard feedback controllers, such as lead-lag compensators, PID controllers, and notch
filters have already been applied to systems in Figure 1.1, to achieve error-rejection functions
similar to that in Figure 1.2. The exact bandwidth varies in each construction. Yet Figure
1.2 reflects a typical shape in practical servo control, where we have good servo performance
at low frequencies, and reduced error rejection as the frequency increases.
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Figure 1.2: A standard magnitude response of the sensitivity function (x axis is in log scale)

From the example spectra in Figure 1.1, we see standard loop shaping is commonly
not sufficient in high-precision servo, due to the inevitability of various imperfections in
practice. The following error characteristics and servo requirements further amplify the
design challenge:

• errors (particularly vibrations) may occur at frequencies above the servo bandwidth, and
are hence unattenuated or amplified by feedback;2

• disturbances can be uncertain and/or time-varying. For instance, disturbances from
imperfect motor rotation and turbulent air flow are hardware- or trajectory-dependent,
and can vary among different products; HDD vibrations from audio speakers in a laptop
will depend on the vibration source and the mechanical path between the source and
the HDD;

• and lastly, a baseline system performance, such as that in Figure 1.2, has to be main-
tained to meet general servo performance and robustness; in the meantime, strong
flexibility has to be built into the servo design, for handling disturbance variations and
providing easy tuning options.

2Even below the bandwidth, the feedback attenuation may be insufficient in the presence of very strong
vibrations.
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1.2 Local Loop Shaping
In this dissertation we discuss customized feedback design at local frequency regions. This
local loop shaping (LLS) concept, explained in the magnitude response of the output error-
rejection/sensitivity function, consists of the following aspects:

Strong local servo enhancement while maintaining a baseline servo
performance

For instance in the dashed lines in Figure 1.3, we investigate ways to bring different notch
shapes in a local frequency region. Meanwhile, we preserve the achieved performance of the
baseline system (solid line), and study ways to minimize the error amplifications (reflected
as the magnitude increase of the sensitivity function).
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Figure 1.3: The concept of local loop shaping

High flexibility in the achievable range of attenuation

This is particularly required for attenuation of disturbances above the servo bandwidth. Take
Figure 1.4—the response of several sensitivity functions in HDD control—as an example. The
zero-dB crossover frequency for the baseline sensitivity function (solid line) is around 2000
Hz (a typical value for industrial dual-stage HDDs), while modern products are subject to
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vibrations at frequencies as high as 3000 Hz [8, 10]. In Figure 1.4, we show six examples
of local loop shaping at different frequencies, ranging from 500 Hz to 4000 Hz. Without
modifying the entire servo structure, we can use the designs of Figure 1.4 for LLS beyond
the servo bandwidth.
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Figure 1.4: LLS configurations at different frequency regions

Multi-band local loop shaping

With the results in Figures 1.3 and 1.4, we study the extension to LLS at multiple frequency
regions, as demonstrated in Figures 1.5 and 1.6. In Figure 1.5, very strong attenuation
is placed at several frequencies that are very close to each other. In Figure 1.6, we pro-
vide repetitive control to attenuate harmonic disturbances that are composed of frequency
components at integer multiplications of a fundamental frequency.

Adaptive control

As discussed at the end of Section 1.1, exact characteristics of many practical disturbances
may be unknown or time-varying. For LLS in the framework of Figures 1.3 and 1.5, we
construct online parameter adaptation algorithms to automatically allocate the desired at-
tenuation regions.
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Figure 1.5: Multi-band LLS for rejecting three narrow-band disturbances
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Remark 1.1. Notice that general bandwidth extension, such as the one shown in Figure 1.7,
can be regarded as a special case of local loop shaping. Such a result is relatively easier to
achieve. We will discuss the design of it along the analysis of general LLS.
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Figure 1.7: LLS for bandwidth extension

Many of the demonstrated LLS concepts are challenging to achieve in both theory and
practice. Even for the simpler case of narrow-band disturbance rejection, designers must be
careful when using standard loop shaping techniques such as the popular peak-filter method
[18]. The main theoretical challenge comes from one fundamental limitation of feedback
design, which proves that enhanced local servo performance, under mild assumptions, will
always be accompanied by error amplifications at other frequency regions (more details in
the next section). From the practical aspect of servo design, the difficulty of loop shaping
greatly increases at frequencies above the servo bandwidth, where the loop stability and
the robustness against plant uncertainties are much more sensitive compared to that in
low-frequency loop shaping.

1.3 Organization and Contributions of this Dissertation

Practical Youla Parameterization

It is easy to see the influence of a feedback controller C on the open-loop system response
L = PC (P is the transfer function of an LTI plant); less straightforward, however, to see
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the impact of C on closed-loop quantities such as the sensitivity function S = 1/(1 + PC)
and the complementary sensitivity function T = PC/(1 + PC). One main part of this
dissertation is devoted to making loop shaping such as those in Figures 1.3 to 1.7 intuitively
achievable, and in the meantime with minimum design effort.

A fundamental concept in achieving the goal is Youla-Kucera (YK) parameterization—
the parameterization of all stabilizing controllers. It provides that any stabilizing controllers
can be parameterized using a fixed structure, if a perfect model of the plant is available.
The design of the Q filter in this scheme however does not have a commonly agreed rule.
General discrete-time YK parametrization usually applies an unstructured finite-impulse-
response (FIR) filter [19, 20, 21, 22]. In the continuous-time case, discussions on using a
linear combination of some basis transfer functions [23, 24] have been explored.

One main reason for the variance in designing the Q filter is the heavy dependence on the
coprime factorization of the plant model, particularly in multi-input-multi-output (MIMO)
systems. For this unsolved problem, we discuss structural choices of the plant factorization
based on selective model inversion, and form a pseudo and robust YK parameterization, with
more intuitive and uniform Q design [Chapter 4]. This pseudo YK parameterization has been
the core structure for successful applications to various mechanical systems including hard
disk drives [3, 5, 4], wafer scanners [4, 13], active suspensions [7, 16, 25], and electrical power
steering [8].

Inverse-based Feedback

Inverse-based control has long been used in servo design (e.g., in feedforward control), but
not extensively explored in direct YK parameterization. This is particularly true for MIMO
control systems, where plant inversion itself is a nontrivial concept [Chapter 9]. We discuss
two ideas of safe inversion of a (possibly nonminimum-phase) plant for general servo design
[Chapter 7]: one using unstable-zero modulation, and another based on H∞ optimization.

Generalized Disturbance Observer

A third contribution of the dissertation is to provide a generalized concept of the distur-
bance observer (DOB) [26]—a well-known robust control design tool [27, 28, 29, 30, 31]. In
the discrete-time control framework, we show that DOB is a special case of Youla-Kucera
parameterization in regulation control, and discuss the class of stabilizing controllers that
is missing in the DOB scheme [Chapter 4]. We also provide generalized disturbance ob-
servers for periodic [Chapter 5] and harmonic signals [Chapter 8]. Finally, DOB theory has
been mainly developed in the SISO control framework [10]. We provide one extension of
DOB to MISO plants, and develop ideas to decouple the disturbance-estimation problem to
individual actuators in a MISO system [Chapter 9].
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Adaptive Vibration Rejection

One main application of LLS is for high-performance vibration rejection. Practical systems
that involve rotational motions are inevitably subjected to periodic references or distur-
bances. The problem of adaptive narrow-band disturbance3 rejection has thus attracted
great research attention in control engineering, and recently been extensively studied in
the multi-band situation [25]. Adaptive noise cancellation [32] uses additional sensors and
stochastic-gradient-based adaptation to cancel the disturbance effect. Adaptive feedforward
cancellation [33] handles sinusoidal disturbances by composing an estimate of the disturbance
with trigonometric functions. From the perspective of feedback loop shaping, controllers can
be customized to incorporate the disturbance structure to asymptotically reject the vibra-
tions. This internal-model-principle [34] based perspective has been investigated in feedback
control algorithms in [35, 20, 36, 37, 38, 39, 40], among which [37, 36] used state-space
designs; and [35, 20, 38, 39, 40] applied YK Parameterization with adaptive FIR Q filters.
Alternatively, the disturbance frequency can be firstly estimated and then applied for con-
troller design. This indirect-adaptive-control perspective has been considered in [41, 42, 43].

Indeed, frequency identification of narrow-band signals is a problem that receives great
research attention itself. Among the related literatures we can find: (i) methods using
nonparametric spectrum estimation or eigen analysis (subspace methods) [44, 45, 46]; (ii)
online adaptive identification approaches [47, 48, 49, 50, 51, 52, 53, 54]. Among references
in group (ii), for the identification of n frequency components, adaptive notch filters in the
orders of 5n− 1 [53], 2n+ 6 [54], 3n [48, 49, 50, 51], and 2n [47], have been discussed.

Different from the FIR formulations, we base the construction of discrete-time YK pa-
rameterization on infinite-impulse-response (IIR) filters. By using additionally the internal
model principle, we are able to obtain a YK parameterization that requires the minimum
number of adaptation parameters [Chapters 5 and 10]. An additional consideration is that
adaptation on IIR structures enables direct adaptive control with parallel predictors that use
the a posteriori adaptation information, which is essential for accurate parameter conver-
gence under noisy environments [55]. The importance of this aspect can also be seen from
the aforementioned literature on frequency identification.

Along the way, we provide a new study of the problem about strictly positive real transfer
functions [Chapter 12]—an essential problem in stability analysis, adaptive control, and
system identification [55, 56].

Control of the Waterbed Effect

Generalizing from narrow- to wider-band error rejection, we provide several Q-filter designs
for enhanced band-limited disturbance rejection [3, 6, 7, 8, 9, 10, 16] and enhanced repetitive
control [4, 5]. Some of the results are compared with algorithms of peer researchers in
benchmark problems [4, 25]. Of particular difference is the handling of the “waterbed” effect
in feedback loop shaping [8, 25]. From Bode’s Integral Formula, enhanced servo performance

3Disturbances whose energies are concentrated within narrow frequency bands.
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at certain frequencies commonly results in deteriorated loop shapes at other frequencies
(details in Section 2.2). In the pseudo YK parameterization, the proof of the waterbed
effect takes a much easier form, and we provide systematic ways to control the waterbed
via add-on pole/zero placement or automatic convex-optimization formulations [Chapter 6].
These considerations are useful for, e.g., the new and more challenging wide-band disturbance
rejection problem [Section 3.2], and the repetitive control problem under strong non-periodic
noises [4].

MISO Control Design

Multi-input-single-output (MISO) plants are important (and easy) extensions of SISO sys-
tems, with yet great potential of enhanced plant dynamics for servo design (see one example
in Section 3.2). However, specific MISO loop shaping design is much less discussed in liter-
ature. As long as the dimension of the plant output is unity, the feedback loop will have a
scalar sensitivity function, and we show that the rich SISO loop shaping algorithms based
on YK parameterization can be readily extended to MISO systems [Chapter 9].

From the viewpoint of problem solving and algorithm implementation, the rest of the
dissertation is organized as follows:

In Chapter 2 of Part I, we review several foundational results of linear control, digital
signal processing, and convex optimization. Chapter 3 explains details of the mentioned
examples in Figure 1.1, and analyzes the root cause of various errors in practical control
systems.

In Part II, we discuss SISO and MISO local loop shaping algorithms when the disturbance
or reference structure is a priori known. Chapter 5 presents the basic design of the Q filter,
which is the heart of LLS. In Chapter 6, advanced Q-filter design concepts are introduced for
enhanced control of the waterbed effect. In Chapter 7 we discuss practical aspects of inverse
design. Chapter 8 generalizes the loop shaping idea and presents an extension of Q-filter
design for enhanced repetitive control.

Part III of the dissertation provides adaptive LLS and practical implementation of the
algorithms. We design online identification and adaptive control algorithms in Chapter
10, to obtain the disturbance/reference characteristics. Chapter 11 provides suggestions on
algorithm implementation and several more example applications. Chapter 12 is about the
achieving of the strictly positive real (SPR) condition. In Chapter 13, we summarize the
dissertation and discuss some future works.

1.4 Format and Notations
G (s) and G(z) denote, respectively, continuous- and discrete-time transfer functions. If the
index is omitted, then the result is valid if G is either G (z) or G (s). Consider, for instance,
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the statement “the sensitivity function is defined by S , 1/(1 + PC)”.
We use G(ejω)

(
, G(z)|z=ejω

)
and G (jω) =

(
G (s)|s=jω

)
for the frequency responses of

G(z) and G (s). G (ω) denotes the general frequency response that holds for both G (z) and
G (s).

Following conventions in adaptive control and sampled-data control systems, we denote
q−1 as the one-step delay operator (also known as the backward shift operator) that satisfies

u (k) = q−1u(k + 1)

For instance, if
y (k) = −0.9y (k − 1) + u (k − 1)

then we can write

y (k) = −0.9q−1y (k) + q−1u (k)

⇒ y (k) =
q−1

1 + 0.9q−1
u (k)

where q−1/(1 + 0.9q−1) is the pulse transfer function from u (k) to y (k).
More generally, we can use y (k) = G (q−1)u (k) to describe the input-output relation in

Figure 1.8, under the assumption of zero initial conditions. In the Z domain, a corresponding
statement is Y (z) = G (z)U (z), where Y (z) and U (z) are the Z transforms of y (k) and
u (k).

G(z)
u(k) y(k)

Figure 1.8: Input-output modeling of an LTI system

We sometimes use the full expression Y (z) = Gyu(z)U (z), where the sub indices in
Gyu (z) explicitly explains that Gyu is the transfer function from u to y.

Unless explicitly stated, we assume all signals are causal, namely, the value of the signal
is zero before time zero.

SISO is the abbreviation for single-input single-output. MISO and DISO denote, respec-
tively, “multi-input single-output” and “dual-input single-output”.

An FIR filter, such as 1 + z−1 + 2z−2, has a finite impulse response; IIR filters have
nonzero poles and hence infinite-length impulse responses.
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Chapter 2

Elemental Tools and Concepts

In this chapter, we review several fundamental results in linear control theory.

2.1 Performance Goals in Feedback Design
Consider the block diagram of a standard feedback system in Figure 2.1. The closed-loop
transfer function from the disturbance do to the plant output y, is the sensitivity function

S , (I + PC)−1

which is the same as the closed-loop transfer function from the reference r to the feedback
error e.

The complementary sensitivity function is defined as

T , I − S = PC(I + PC)−1

i.e., T is the transfer function from the reference r to y. Additionally, −T is the transfer
function from the measurement noise n to y.

+
-

C P +

do

+e
y

r
S

++
n

Figure 2.1: A standard closed-loop system under feedback control
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The sensitivity function measures the closed-loop disturbance-attenuation property, while
the complementary sensitivity function defines how the system responds to the reference
input as well as the sensor noise. For SISO systems, a typical magnitude response of S is
shown in Figure 2.2. Below the cross-over frequency ωc, the magnitude response of S is less
than 1, hence the attenuation of do in Figure 2.1.

Ultimately, to make S = (I +PC)−1 small at certain frequencies, we need the open-loop
transfer function L , PC to be large in the same region. This is the concept of high-gain
feedback control. The term “loop shaping” conventionally refers to designing the magnitude
response of L to stabilize the loop and satisfy the desired performance metrics.

Wherever the magnitude of S(ω) is small, T (ω) will be close to unity due to the fundamen-
tal relationship S+T = I. This means that at frequencies where we achieve good disturbance
rejection, we also obtain improved reference tracking and amplified sensor noise. Advances
in hardware design are providing sensors that are more and more accurate. Modern laser
interferometers can reach a measurement resolution at the picometer level. Micrometer-
resolution linear encoders are also commercially available in the market. Hence, to some
extent, the problem of disturbance rejection is a more important issue than sensor noises
attenuation in modern precision systems.
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Figure 2.2: A typical magnitude response of the sensitivity function (x axis is in log scale)

2.2 Fundamental Limitations for LTI Systems
Mathematically, G (s) and G (z) are rational complex functions. Complex analysis provides
several guidance and fundamental limitations about the achievable performance in LTI sys-
tems. We review a few that are most relevant to this dissertation.
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Bandwidth Limitation: The bandwidth ωc in Figure 2.2 can not be pushed to be arbi-
trarily large. Intuitively, a mechanical system would not be able to respond to arbitrarily fast
control inputs, due to hardware (such as motors, gears, etc) limitations. The plant behavior
will become uncertain when the frequency of the input is pushed high enough. For these
reasons, it is common practice to keep the gain of the controller small at high frequencies.

From the theoretical perspective, under mild conditions, it is inevitable to have |S(ω
′
)| >

1 at certain frequencies if |S(ω)| < 1 holds over some frequency interval, namely, when certain
disturbance components are attenuated in the feedback system, some other disturbance
components will be amplified (see the areas above and below the 0dB line in Figure 2.2).
This is the waterbed effect which comes from Bode’s Integral Theorem:

Theorem 2.1. Let the open-loop transfer function L (s) be a stable, proper, scalar rational
transfer function in a single-input single-output system. Let S(s) = 1/(1+L(s)) and assume
that S(s) has no poles in the right half plane, and ks = lims→∞ sL (s). Then

1

π

ˆ ∞
0

ln |S (jω) |dω =
−1

2
ks (2.1)

If in addition the relative degree of L (s) is no less than 2, then ks = 0, yielding

1

π

ˆ ∞
0

ln |S (jω) |dω = 0 (2.2)

The above theorem indicates that the sum of the area (relative to the 0dB line) under
the log magnitude response of the sensitivity function, is zero under the stated conditions
for (2.2). The x axis in Figure 2.2 has a log scale. Observing Figure 2.3, the linear-scale
equivalent of Figure 2.2, we can clearly see the conservation of area from Theorem 2.1.
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Figure 2.3: A typical magnitude response of the sensitivity function (x axis is in linear scale)
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The condition of the relative degree being larger than or equal to two is usually not
difficult to satisfy in practice. Practical systems have small gains at high frequencies. The
rate of high-frequency rolloff is usually higher than (or at least as fast as) 1/s. It is also
natural, at least for motion-control systems, to have integrator-type plant dynamics, as
motors commonly take force/torque as the input, and generate (angular) position or velocity
as the output.1 An exceptional case is when the system behaves simply like a constant gain.
For instance, piezoelectric (PZT) actuators are constructed to have an overall flat magnitude
response with resonances at very high frequencies. The relative degree for such systems can
be less than two, hence greatly relaxing the waterbed effect.2 This is one of the reasons that
make PZT actuators popular for high-bandwidth designs in high-precision servo.

The waterbed effect gets even worse if the open-loop system has unstable poles.

Theorem 2.2. (Bode’s integral formula for continuous-time SISO systems) Let L (s) be
a proper, scalar rational transfer function, of relative degree larger than 1. Let S(s) =
1/(1 + L(s)) and assume that S(s) has no poles in the right half plane, and has q ≥ 0 zeros
in the closed right half plane, at locations p1, p2, ..., pq. Then

ˆ ∞
0

ln |S (jω)| dω = π

q∑
k=1

pk (2.3)

Proof. There are several ways to prove Bode’s integral formula. We provide one version in
Appendix A.1.

From the above theorem, when open-loop unstable poles (which becomes zeros of S (s)
in the closed right half plane) exist, disturbance amplification will always happen regardless
of the presence of any disturbance attenuation.

For continuous-time systems, the waterbed effect holds if the relative degree of the loop
transfer function L = PC is no less than two. In the discrete-time case, the waterbed effect
is more inevitable:

Theorem 2.3. (Bode’s integral formula for discrete-time systems) For all closed-loop stable
discrete-time feedback systems, the sensitivity function has to satisfy the following integral
constraint: ˆ π

0

ln
∣∣S (ejω)∣∣ dω = π

q∑
k=1

ln |pk| (2.4)

where pk are the open-loop unstable poles of the system, and q is the total number of such
poles.

1By Newton’s laws we then have f = ma = mÿ or τ = Jθ̈, yielding a nominal transfer function of
1/
(
ms2

)
or 1/(Js2).

2This great hardware advantage is, however, also accompanied by the drawback that PZT actuators
have very limited actuation range. For such reasons, PZT actuators are usually combined with long-range
actuators to form a dual-stage system for practical high-precision servo.
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Proof. See [57].

One intuition for the drop of the relative degree requirement here is that the zero order
hold has a low-pass type dynamics and introduces high-frequency rolloffs in the magnitude
response.

Limitations From Nonminimum-phase Zeros: Besides the waterbed effect from Bode’s
Integral Formula, nonminimum-phase zeros also place fundamental limitations in feedback
design. Take a simple example where P (z) has 1 − z−1 in the numerator, then any con-
stant input will have null effect in the output of P (z)! Other limitations from general
nonminimum-phase zeros include:

• the sensitivity function will always have magnitudes larger than one. In

S (σ) = 1/ (1 + P (σ)C (σ))

(σ denotes s or z), if σo is a nonminimum-phase zero of P (σ), then P (σo) = 0 and
S (σo) = 1/ (1 + 0× C (σo)) = 1, regardless of the design of C (σ). If S is stable—
hence analytic in the right-half plane (or outside the unit circle)—then the maximum
modulus theorem3 indicates that the maximum of |S (σ)| is achieved on the imaginary
axis (or the unit circle). Hence max |S (σ)| ≥ |S (σo)| = 1. There will thus always
be a frequency region where we can not achieve high servo performance, particularly
around the frequencies of the nonminimum-phase zeros.

• unbounded input can produce zero output at the steady state of a nonminimum-phase
system. Consider, for instance, u (t) = e2t and G (s) = (s− 2)/ (s+ 1)2.

• step responses can have initial undershoot. Moreover, zero crossovers occur for step
responses. Consider [58]

Y (s) =
G (s)

s
=

ˆ ∞
0

y (t) e−stdt

If G (σo) = 0 where σo > 0 is the unstable zero, then

Y (σo) =

ˆ ∞
0

y (t) e−σotdt = 0

As e−σ0t is positive and decreasing, y (t) must change signs for t ∈ [0,∞).

3Maximum modulus theorem: if a complex function S (σ) is defined and continuous on a closed bounded
set Ω , and it is analytic on the interior of Ω, then |S (σ)| can not attain the maximum in the interior of Ω
unless it is a constant.
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Resonant and Anti-resonant Modes: Resonances and anti-resonances, if very sharp in
the magnitude response, also create practical difficulty in control design, since very small
mismatch in the resonant frequency (due to e.g. temperature change) will make the identified
model behave differently from the actual system near the resonant frequencies.

2.3 Internal Models of Signals
Many disturbance and reference signals can be regarded as the output of a system excited
by an impulse signal. For instance, a constant d (k) = d is the impulse response of the scaled
integrator d/(1−z−1); sin(ω0k) and cos(ω0n) are respectively impulse responses of the filters
z−1 sin(ω0)/(1 − 2z−1 cos(ω0) + z−2) and (1 − z−1 cos(ω0))/(1 − 2z−1 cos(ω0) + z−2). If we
write

d (k) =
Bd (q−1)

Ad (q−1)
δ (k) (2.5)

where δ (k) is a Dirac impulse; Bd (q−1) and Ad (q−1) are coprime polynomials of the one-
step delay operator q−1, then the internal model principle (IMP) [34, 59] states that the
disturbance can be asymptotically rejected if the polynomial Ad(q−1) is absorbed in the
feedback controller. The proof of IMP is actually quite simple. One version is provided in
Appendix A.2.

We will mostly be using partial results of IMP, that

Ad(q
−1)d(k) = Bd(q

−1)δ(k)→ 0 (2.6)

where the transient response is specified by the polynomial Bd(q
−1). We call (2.6) the internal

model (IM) of the signal d (k). For common disturbance and reference signals, we summarize
Ad(q

−1) and the transient length in Table 2.1

Table 2.1: Internal models of common signals in control engineering

Signals Ad(q
−1) Convergence

ak, α ≤ 1 1− aq−1 k ≥1
cos(ω0k) and sin(ω0k) 1− 2q−1 cos(ω0) + q−2 k ≥ 2

ak cos(ω0k) and ak sin(ω0k) 1− 2aq−1 cos(ω0) + a2q−2 k ≥ 2
periodic d (k) with d (k) = d (k −N) 1− q−N k ≥ N
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There are two ways to understand Table 2.1. Taking the example of cos (ω0k), in the time
domain, we have (

1− 2q−1 cos(ω0) + q−2
)

cos (ω0k)

=
[
1− q−1

(
ejω0 + e−jω0

)
+ q−2

] ejω0k + e−jω0k

2

=
1

2

[
ejω0k − ejω0(k−1)

(
ejω0 + e−jω0

)
+ ejω0(k−2)

]
+

1

2

[
e−jω0k − e−jω0(k−1)

(
ejω0 + e−jω0

)
+ e−jω0(k−2)

]
=

1

2

[
ejω0k −

(
ejω0k + ejω0(k−2)

)
+ ejω0(k−2)

]
+

1

2

[
e−jω0k −

(
e−jω0(k−2) + e−jω0k

)
+ e−jω0(k−2)

]
=0 ∀k ≥ 2

In the Z domain, the filter

1− 2z−1 cos (ω0) + z−2 =
(
1− ejω0z−1

) (
1− e−jω0z−1

)
has two zeros at e±jω0 , hence zero magnitude response at ω0. Any input at this frequency
will thus yield null effect in the output.

2.4 Discrete-time Plant Delay
Delays are not uncommon in practical control systems. Even if the continuous-time plant
has no input delays, the discrete-time plant model (with zero order holder) will have at
least one-step delay. This is because, due to sampling and the zero order holder, the output
y (k + 1) depends only on u (i) up to i = k and not on u (k + 1) (see Figure 2.4), namely,
there is always a default one-step input delay.

When the plant has resonances, additional phase delays are introduced if we use notch
filters, as shown in Figure 2.6, to reduce the loop gain at the resonant frequencies. This is
from Bode’s Phase Formula—another fundamental theorem in loop shaping—which proves
that the phase of a stable and minimum-phase transfer function is determined uniquely by
its magnitude response. Roughly speaking, a large slope in magnitude response corresponds
to a large phase value. A positive/negative slope corresponds to a positive/negative phase
angle.

Theorem 2.4. (Bode’s phase formula) If L is a minimum-phase continuous-time transfer
function, then its phase is uniquely defined by its gain, according to

∠L (jω) =

ˆ ∞
−∞

d ln |L (eνω)|
dν

ψ (ν) dν
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Figure 2.4: Discrete-time sampled-data input and output

where

ψ (ν) =
1

π
ln
e|ν|/2 + e−|ν|/2

e|ν|/2 − e−|ν|/2
.

The function ψ (ν) has the characteristics as shown in Fig. 2.5. The main contribution
to the integral is made in the region ν ≈ 0. Hence the integral mainly depends on

d ln |L (eνω)|
dν

with ν ≈ 0, therefore the discussed results in the paragraph before Theorem 2.4.
Back to the notch-filter induced delays. Second-order notch filters have the structure of

s2 + 2βΩ0s+ Ω2
0

s2 + 2αΩ0s+ Ω2
0

with 1 > α > β > 0 and α, β being close to zero; or

k
1− 2α cos(Ω0Ts)z

−1 + α2z−2

1− 2β cos(Ω0Ts)z−1 + β2z−2

(k = 1−2β cos(Ω0Ts)+β2

1−2α cos(Ω0Ts)+α2 for unity DC gain) with 1 > α > β > 0 and α, β being close to one.
The stability and minimum-phase assumptions are both satisfied here and hence Bode’s
Phase Formula holds. The magnitude-phase relationship in Figure 2.6 clearly matches the
implications of Bode’s Phase Formula (see, in particular, the responses near the center
frequency of the notch).
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Influences of Delays: Digital delays increases the relative degree of the plant. For
instance, G (z) = 1/(1 − z−1) = z/(z − 1) has a zero relative degree and z−1G (z) =
1/(z − 1) has a relative degree of one. Delays are also “feedback invariant”. Consider
the case where the discrete-time plant has m steps of delays, and assume that the con-
troller does not introduce additional delays. Then the open-loop transfer function can be
factorized as L (z) = z−mLm (z), yielding the complementary sensitivity function T (z) =
z−mLm (z) / [1 + z−mLm (z)].

2.5 Convex Optimization
Optimization theory has rich mathematical foundations and is a vast research field itself.
We summarize the minimum required information for this dissertation, and refer readers to
[60] for a full introduction of the theory and algorithms.

The standard optimization problem has the form of

min
x

f0 (x) . . . . . . objective function/cost

s.t. fi (x) ≤ 0, i = 1, . . . ,m . . . . . . constraints

where x ∈ Rn is called the decision variable; “s.t.” denotes “subject to”; and

X = {x ∈ Rn : fi (x) ≤ 0, i = 1, . . . ,m}

is called the feasibility set. There may be global and local optimal points depending on the
nature of the problem. We are mostly interested in convex problems where the cost function
is convex (“bowl-shaped”) and the constraints form a convex feasibility set. This way the
solution is guaranteed to exist and can be efficiently found using well-developed algorithms
such as simplex and interior point methods.

Common functions such as linear and quadratic functions easily fall into the convex
category. Some standard convex optimization problems are summarized in Table 2.2.

The semidefinite programing is in particular relevant to control engineering. For instance,
consider the following matrix inequality (which is closely related to the strictly positive real
condition of a continuous-time transfer function)[

ATpM +MAp −CT
p +MBp

−Cp +BT
pM −DT

p −Dp

]
≺ 0 (2.7)

where the matrices Ap ∈ Rn×n, Bp ∈ Rn×1, and Dp ∈ R are given; andM ∈ Rn×n, M = MT ,
and Cp = [c0, c1, . . . , cn] are the decision variables. Inequality (2.7) can be transformed to
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Table 2.2: Standard convex optimization problems relevant to this dissertation

Name Objective Constraints
Linear

programming
(LP)

minx cTx aTx ≤ b

Quadratic
programming

(QP)

minx xTQx+ cTx,
where Q � 0

aTx ≤ b

Quadratically
constrained QP

(QCQP)

minx xTQx+ cTx,
where Q � 0

xTPix+ cTi x ≤ b

Pi � 0
Second order

cone
programming

(SOCP)

minx cTx
‖Aix+ bi‖2 ≤

cTi xi + di, i = 1, ...,m

Semidefinite
programming

(SDP)
minx cTx

F0 +
∑m

i=1 xiFi � 0 where
Fi’s are given symmetric

matrices

the linear matrix inequality (LMI):[
ATpM +MAp 01×n

0n×1 −DT
p −Dp

]
+

[
0n×n MBp

BT
pM 0

]
+ c0

[
0n×n [−1, 0, . . . , 0]T

[−1, 0, . . . , 0] 0

]
+ c1

[
0n×n [0,−1, . . . , 0]T

[0,−1, . . . , 0] 0

]
+

· · ·+ cn

[
0n×n [0, 0, . . . ,−1]T

[0, 0, . . . ,−1] 0

]
≺ 0

M = m11


1 0 . . . . . . 0
0 0 . . . . . . 0
...

... . . . ...
...

... . . . ...
0 . . . . . . . . . 0

+m12


0 1 0 . . . 0
1 0 . . . . . . 0

0
... . . . ...

...
... . . . ...

0 . . . . . . . . . 0



+ · · ·+mnn


0 0 . . . . . . 0
0 0 . . . . . . 0
...

... . . . ...
...

... 0 0
0 . . . . . . 0 1


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and readily solved in semidefinite programming problems.

Notes and References
Many of the ideas about loop shaping and performance limits are from [23, 61]. [62, 63] are
two richer references containing also MIMO control theory.

Details of the convex optimization problems and their solutions are provided in [60].
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Chapter 3

Application Examples

Recall the three error sources we mentioned in Chapter 1: hardware imperfection, operation
environment, and task arrangement. Part of the errors—such as those from imperfect motor
rotation, repeated trajectories, and fan noises—are repeatable once the hardware and the
trajectory are fixed. Other errors—such as those caused by (environmental) vibrations—
although may vary case by case, are at least structured. Structured errors are common in
practice. Otherwise, if errors are pure white noises, little can be done for servo improvement.
In this chapter, we analyze the error sources in several practical examples, and provide the
corresponding plant characteristics. Verification of the local loop shaping algorithms will be
performed on these systems in later chapters.

3.1 Advanced Manufacturing
We discuss first the wafer-scanning process in lithography. This is one key step for circuit
fabrication in the semiconductor industry. To print the circuit, wafers are exposed to pat-
terned ultraviolet lights that come through a mask carried by a reticle stage. The wafer and
the reticle stages move the wafer and the mask in a synchronized manner. Due to limited
size of the lens, only a small part of the wafer is exposed at each scan, and the wafer is moved
from one field to another in between the scans. The scanning process is repeated until all
required areas on the wafer have been exposed under the light.

Figure 3.1 illustrates an experimental setup of the key wafer-scanner components at
the Mechanical Systems Control Laboratory, UC Berkeley [64]. There are two stages in
the system, mounted on air bearings and actuated by epoxy-core linear permanent magnet
motors (LPMMs). The stage positions are measured by laser interferometers. A LabVIEW
real-time system with field-programmable gate array (FPGA) is used to execute the control
commands with a sampling time of 0.0004 sec. The frequency response of the reticle stage is
shown in Figure 3.2. The input and the output are respectively the voltage command into
the actuator and the position of the moving stage.

Figure 3.3 shows the movement of the reticle stage during a scaled scanning process.
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Figure 3.1: An experimental testbed for wafer scanners
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Figure 3.2: Frequency responses of the reticle stage

This is the baseline result with a simple PID controller, without any feedforward algorithms
or customized controller parameterizations. From the repetitive nature of the process, if
we append all errors at continuous iterations, the position error in Figure 3.3 will be repli-
cated to yield a time sequence in Figure 3.4. The fast Fourier transform (FFT) of this error
signal is shown in Figure 3.5, where we observe strong energy components at multiples of
a fundamental frequency. Figures {3.3, 3.4, 3.5} analyze just one simple example encoun-
tered in applications. However, regardless of the shape of the trajectory, the periodic error
structure would not change. The fundamental frequency can be analytically obtained by
fo = 1/Ttrajectory, where Ttrajectory is the period of one iteration. This is a direct result of the
Fourier-series theory. In the example in Figures {3.3, 3.4, 3.5}, fo = 1/(300×0.0004) ≈ 8.33
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Hz, which can be seen to match the FFT result in Figure 3.5.
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Figure 3.3: An example scanning trajectory
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Figure 3.4: Errors in a repeated scanning process
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Figure 3.5: Error spectrum of the data in Figure 3.4

Figure 3.6 shows a section of an experimental scanning result when we applied a longer
reference trajectory. The control of the position errors is particularly important when the
stage is moving at a constant speed. Actual wafer scanning occurs here. A zoomed-in view at
the constant-speed region indicates that small ripples exist in the position error. The ripple
structure is more clearly explained in Figure 3.7, where we have plotted the spectrum of the
position error collected at the constant-speed regions. The peak at around 18 Hz is the main
contributor to the ripples in Figure 3.6 (we can confirm the frequency by computing the
period of the ripple in the time domain). The error source is the environmental vibrations
from the motor and motor drivers. Despite that there is a passive vibration isolation table,
vibrations still have a strong residual effect on the servo system.
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Figure 3.6: Time-domain tracking result for a long scanning process
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Figure 3.7: Spectrum of the errors in the constant-speed scanning region

3.2 Hard Disk Drives
Hard disk drives (HDDs) are essential data storage devices with deep integrations of nano-
scale tribology, dynamics, and control engineering.

In a modern HDD, data/information is stored in circular patterns of magnetization known
as data tracks or simply, tracks. During reading and writing of the data, the disk spins and
the read/write head is controlled to follow the circular tracks, as shown in Figure 3.8. This
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creates the track-following problem, where the servo system performs regulation control to
position the read/write head at the desired track, with as low variance as possible.

Data track
(millions of them on one disk )

VCM

Read/write heads

Disk

Figure 3.8: Control-related components in a hard disk drive

The actuator in a single-stage HDD is powered by a voice coil motor (VCM). Figure 3.9
shows a typical frequency response of an HDD plant that includes the power amplifier, the
voice-coil motor, and the actuator mechanics. The input and the output are the voltage
to the VCM and the position of the read/write head mounted at the end of the actuator.
Similar to Figure 3.2, by Newton’s law, the dynamics again has a nominal response of a
double integrator. The low-frequency mode at around 80 Hz is due to friction. The multiple
high-frequency modes above 3000 Hz are due to structural resonances. In this example, the
disk has a rotational speed of 7200 revolutions per minute (rpm). At every revolution of the
disks, 220 measurements are obtained, at a sampling frequency of 220× 7200/60 (= 26, 400)
Hz.

With the ever increasing demand of larger capacity in HDDs, piezoelectric-based dual-
stage actuation has become an essential technique to break the bottleneck of the servo
performance in single-actuator HDDs [65, 66]. A dual-stage HDD applies an additional
piezoelectric microactuator (MA) at the end of the VCM actuator, as shown in Figure 3.10.
The MA stage has much smaller moving range but greatly improved positioning speed and
accuracy. Its dynamical response is also much easier to control, as shown in the frequency
response in Figure 3.11. Compared to the VCM actuator, the MA has enhanced mechanical
performance in the high-frequency region, providing the capacity to greatly increase the servo
bandwidth and disturbance-attenuation capacity. Only the position error of the read/write
head is measurable in practice. The plant is hence a dual-input-single-output system.

Both Figure 3.9 and Figure 3.11 are from benchmark problems of HDD control, and have
been frequently used in the disk drive community for algorithm verification and performance
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Figure 3.9: Typical frequency response of the plant in a single-stage HDD

+

-
���

��

Figure 3.10: Schematic structure of dual-stage HDDs

comparison. Specifically, the system in Figure 3.11 is from page 195 of the book [1]. It is
the model of a commercial Maxtor 51536U3 dual-stage HDD. Figure 3.9 is from [67], which
is prepared by IEE Japan Technical Committee for Novel Nanoscale Servo Control.

There are many control problems in HDD systems. We discuss two of them below.

Audio-vibration Rejection

With the ever increasing demand of HDD applications in multimedia environments, external
vibrations generated from sounds and environments are becoming a dominating disturbance
source in various HDD products. These audio vibrations from, e.g., the computer/TV speak-
ers, deteriorate the HDD servo performance by introducing strong and wide peaks to the
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Figure 3.11: Magnitude responses of an dual-stage HDD plant

PES spectrum. Due to the nature of the disturbances [68], these vibrations occur in several
concentrated bands of frequencies, near or even above the bandwidth of the servo system.
Figure 3.12 demonstrates the effect of a set of measured audio vibrations projected on the
benchmark problem [67]. We can observe that strong vibrations occur at as high as 2500 Hz,
which is much higher than the current bandwidth (below 1500 Hz) of typical single-stage
HDD systems.
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Figure 3.12: A typical HDD error spectrum under audio vibrations
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Multiple Narrow-band Disturbance Rejection

Narrow-band disturbances, as depicted in Figure 3.13, show up in the PES spectrum as very
sharp spikes compared to the audio vibrations in Figure 3.12. The sources of the narrow-
band disturbances in HDD include track eccentricity/repeatable runout, turbulent air flow
in the compact disk enclosure, and environmental vibrations such as fan noise in computers.
Essentially, at nano-scale precision, tracks can no longer be treated as perfectly circular;
and the disk behaves not as a perfect plate but has flutter/vibration motions in the axial
direction. When audio vibrations are not present, narrow-band vibrations contribute to a
large portion of the PES [69, 70, 71]. They occur at different frequencies both below and
above the servo bandwidth, with different characteristics in different brands of products.
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Figure 3.13: An HDD error spectrum under narrow-band disturbances

3.3 Active Suspension
Suspension systems are important components in various vibration-isolation systems (e.g., in
automobiles). Figure 3.14 shows a test bed of an active suspension system built in GIPSA-
Lab, Grenoble, France. It was used as a benchmark for adaptive regulation in a special
session about vibration rejection in the 2013 European Control Conference [72] and in 2013
European Journal of Control [25].

Vibrations are generated from a mechanical shaker at the bottom of the system. An
inertial actuator is controlled to provide forces to counteract the vibrations. The residuals
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are then transmitted to a passive damper (on the top of Figure 3.14), and measured by
a force sensor. The input and the output of the system are respectively the input to the
inertial actuator and the measured residual force. The system is controlled by MATLAB in
real time, at a sampling frequency of Fs = 800 Hz.

The solid line in Figure 3.15 presents the frequency response of the plant. It can be
observed that the plant has a group of resonant and anti-resonant modes, especially at
around 50 Hz and 100 Hz. Additionally, the system is open-loop stable but has multiple
lightly damped mid-frequency zeros and high-frequency non-minimum phase zeros. These
characteristics place additional challenges not just for adaptive disturbance rejection, but
also for general feedback control.

Figure 3.14: Picture of an active suspension system

A set of disturbance profiles, consisting of narrow-band vibrations at unknown and/or
time-varying frequencies, are applied to the system for evaluation of the control scheme. Two
example profiles are shown in Figures 3.16 and 3.17. Both the disturbance-injection time
and the timing of the frequency variation, are unknown to the designers. A comprehensive
set of tests at different frequency values is performed. The results are compared with six
other participants of the benchmark.
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Figure 3.15: Frequency response of the plant in Figure 3.14
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Figure 3.16: Frequencies of time-varying vibrations on an active suspension: example one

3.4 Active Steering in Automotive Vehicles
Variable-gear-ratio steering (VGRS) is a speed-dependent steering system in automotive ve-
hicles. It uses a variable actuator to change the relative angle between the steering wheel and
the steering shaft. This advanced steering feature brings various advantages. For example,
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Figure 3.17: Frequencies of time-varying vibrations on an active suspension: example two

the steering gear ratio is set to be high when the vehicle speed is low. This allows a small
steering-wheel motion to provide a large steering angle, which is desirable in situations such
as parking. On the other hand, at high speeds, a smaller steering gear ratio can be used,
therefore enhancing vehicle stability in situations such as driving on the freeway.

A serious problem of this advanced steering system is that unexpected torque is relayed
to the driver whenever the variable-gear-ratio control is activated. To see this, suppose a
command is given to change ∆θ in Figure 3.18 by a certain degree. The variable actuator
needs to generate torque to cause this change of angle. As a consequence, a reaction torque
will be transmitted to the steering wheel, which is unexpected from the human driver. If
the human tries to maintain his/her steering position, (s)he will feel a strong torque on the
steering wheel. Besides in VGRS systems, unnatural torque is common when other active
steering schemes are used to assist the drivers. For instance, in lateral-wind compensation,
an active change of steering-shaft angle is applied to compensate perturbations in lateral
acceleration, which may cause unnaturalness for the drivers.

One way to address the problem is to configure the VGRS and the electrical power
steering (EPS) system as shown in Figure 3.18. The EPS system uses electrical motors1 to
provide assistive torque on the pinion shaft. The assistive torque can be used for regular
steering assistance and also unnatural-torque compensation.

Figure 3.19 shows an experimental steering system with EPS and VGRS. The VGRS
system is realized by a harmonic gear and a DC brushless motor. The control algorithm is
evaluated on a hardware-in-the-loop (HIL) simulator. The real-time operation environment
is realized by National Instruments’ LabVIEW Real-Time for ETS targets, which displays
simulated road views on computer screens. In this system, the command for changing the

1in contract to hydraulic power steering.
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Figure 3.18: Structure of a variable-gear-ratio steering system

gear ratio in VGRS is determined by some high-level control algorithms. The low-level EPS
control system is designed such that the velocity of the variable actuator does not affect the
steering torque.
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Figure 3.19: Experimental setup of a steering system with EPS and VGRS

The problem of structured-error compensation occurs due to mainly hardware imperfec-
tions and the task nature. With normal EPS, Figure 3.20 shows an example of the unnatural
torque during steering. Here, the driver tries to maintain a constant steering-wheel angle
and the VGRS system assists to apply a periodic steering angle. Ideally, the driver should
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feel a constant steering torque on the wheel. However, from the solid line, we observe that
the actual steering torque has various vibrations/ripples accounting for unnaturalness dur-
ing driving. This is just one common test for the steering system. With different assistant
steering characteristics, the ripple frequencies also change. One source of such errors is the
imperfect interactions between magnetic fields and conductors in the motor, which can be
amplified in the change of gear ratios by VGRS.
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Figure 3.20: Demonstration of unnatural torque in VGRS systems
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Part II

Deterministic Local Loop Shaping
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Chapter 4

A Pseudo Youla-Kucera
Parameterization

Motivated by the practical control problems in previous chapters, we now discuss the real-
ization methods of local loop shaping (LLS). The main goal of this chapter is to establish
the general framework for flexible LLS.

We start with a special case of YK parameterization:

4.1 Motivational Example
Consider a stable negative feedback loop where the plant P and the controller C are rational
and proper. Standard techniques such as PID, lead-lag, and H∞ control, can be applied to
design this controller C, to yield a baseline loop shape as discussed in Section 2.1.

Assume that P is stable in this section, and consider the following new controller

C̃ =
C +Q

1− PQ
(4.1)

where Q is a rational transfer function that is stable and proper. The new sensitivity and
complementary sensitivity functions are

S̃ =
1

1 + PC̃
=

1− PQ
1 + PC

= So × (1− PQ) (4.2)

T̃ = 1− S̃ =
PC + PQ

1 + PC
= To + SoPQ (4.3)

where So , 1/ (1 + PC) and To , PC/ (1 + PC) are the sensitivity and complementary
sensitivity functions of the baseline closed loop. The enlarged closed-loop system has the
following advantageous properties:

1. S̃ and T̃ are both affine functions of Q. Moreover, S̃ is decomposed to be the product
of the original sensitivity function 1/(1 + PC) and the add-on element 1− PQ.
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2. By observation, when P and Q are stable, S̃ and T̃ are also stable. Actually, the closed-
loop system with (4.1) has guaranteed stability, namely, C̃ is a stabilizing controller. A
standard stability proof in the literature of YK parameterization is to derive the four
transfer functions that describe all signal relations in a feedback loop in Figure 4.1.

+
-

~C P + +e
y

r
u

do

Figure 4.1: General block diagram for feedback control

We compute [
y
u

]
=

[
G̃yr G̃yd

G̃ur G̃ud

] [
r
do

]
When C̃ = (C +Q) / (1− PQ), we have

G̃yd = S̃ =
1− PQ
1 + PC

(4.4)

G̃yr = T̃ =
PC + PQ

1 + PC
(4.5)

G̃yu = PS̃ =
P (1− PQ)

1 + PC
(4.6)

G̃ud =
C̃

1 + PC̃
=

C +Q

1 + PC
(4.7)

From the stable baseline feedback loop, we know that Gyd = 1/ (1 + PC), Gyr =
PC/ (1 + PC), Gyu = P/ (1 + PC), and Gud = C/ (1 + PC), are all stable. Hence
equations (4.4) to (4.7)—composed by direct multiplications or summations of Gyd,
Gyr, Gyu, Gud, P , and Q—are all stable if P and Q are stable.

3. If C is additionally stable,1 then any feedback controller that stabilizes P can be
expressed in the form of (4.1), by choosing a proper Q that is stable and rational.
Proof for this result can be easily done after we introduce some theorems in Section

1Note: in the first two properties, the only assumptions we made are that the plant and the baseline
feedback loop are stable.
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4.2. At the moment, we provide the following intuition: let C be the baseline stabilizing
controller and C̃ be an arbitrary stabilizing controller. Solving (4.1) for Q we can get

Q =
C̃

1 + PC̃
− C

1 + PC̃
(4.8)

We have proven that any stable Q in the discussed controller structure will yield a
stable closed-loop system. Notice that C̃/

(
1 + PC̃

)
and 1/

(
1 + PC̃

)
in (4.8) are

both stable (since they are two of the closed-loop transfer functions in the stable loop
consisting of P and C̃). When C is stable, Q is clearly stable. Hence with (4.8) we
can obtain the stabilizing controller C̃.

Since stability has already been guaranteed, the affine form of Q in S̃ = (1− PQ) / (1 + PC)
makes it quite easy to directly shape the sensitivity function. The main concept is that we
can use well-developed tools to design the baseline sensitivity 1/(1 + PC), and consider
1− PQ for the add-on local loop shaping. In a sense, the original feedback design problem
is then transformed to a feedforward (and hence simpler and more intuitive) one.

4.2 Standard Youla-Kucera Parameterization
In order to present the full results of Youla-Kucera parameterization, we review several
definitions first:

Definition. Let

S , {stable, proper, rational transfer functions}
R , {proper, rational transfer functions}

Definition 4.1. (coprime) Suppose N ∈ S, D ∈ S. The pair (N,D) is called coprime over
S if there exists U ∈ S, V ∈ S such that

UN + V D = 1 (4.9)

If in addition G = N/D and D−1 is realizable, then (N,D) is called a coprime factorization
of G.

Since D−1 is realizable and D ∈ S (hence D is proper/realizable), we have the following
immediate result:

Fact 4.1. For a transfer function G with the coprime factorization G = N/D, the relative
degree of D must be zero.
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Example 4.1. If

G(z) = z−1 1 + z−1

1− 0.9z−1

then N(z) = z−1 1+z−1

1+0.95z−1 and D(z) =
(

1+0.95z−1

1−0.9z−1

)−1

form a coprime factorization for G (z),
with

0.92

1.9
N (z) +

(
1 +

0.9

1.9
z−1

)
D (z) = 1.

Remark 4.1. Coprime factorizations are not unique. For instance, N(z) = z−1 (1 + z−1) and
D(z) = 1− 0.9z−1 also form a valid coprime pair for G (z) in Example 4.1.

The general Youla-Kucera parameterization for SISO systems is presented in the next
Theorem.

Theorem 4.1. If a plant P = N/D can be stabilized by a negative-feedback controller C =
X/Y , with (N , D) and (X, Y ) being coprime factorizations over S, then any stabilizing
feedback controller can be parameterized as

Call =
X +DQ

Y −NQ
: Q ∈ S, Y (∞)−N(∞)Q(∞) 6= 0. (4.10)

Proof. See [63].

With (4.10), the new sensitivity function is (after some simplifications)

S̃ =
1

1 + PCall
=

1

1 + PC

[
1− N

Y
Q

]
=

1

1 + PC
− 1

1 + PC

N

Y
Q (4.11)

which is again, affine in Q, and stable if Q is stable.2

2More specific, 1/ (1 + PC) is stable by assumption; the last term on the right hand side of (4.11) is also
stable, as

1

1 + PC

N

Y
=

1

1 + N
D
X
Y

N

Y
=

DN

DY +NX

whereD and N are stable by definition, and 1/ (DY +NX) is stable as shown below [63]:
Let (UC , VC) and (UP , VP ), both in S, be the elements that comprise the identity (4.9). Then

UCX + VCY = 1

UPN + VPD = 1

Notice that[
VC UC

] [ 1
1+PC

P
1+PC

C
1+PC

PC
1+PC

] [
VP
UP

]
=
[
VC UC

] [ DY
NX+DY

NY
NX+DY

XD
NX+DY

XY
NX+DY

] [
VP
UP

]
(4.12)

=
1

NX +DY

All elements on the left hand side of (4.12) are stable, hence 1/(NX +DY ) is stable.
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The most appealing property is the guaranteed stability under YK parameterization.
This part is easy to see from the sensitivity function (4.11), and can be proved similar to
that in Section 4.1. Next we provide some intuition about the concept of “all stabilizing
controllers”. Let C̃ be any controller that stabilizes the closed loop. Solving

C̃ =
X +DQ

Y −NQ

we get

Q =
Y C̃ −X
NC̃ +D

. (4.13)

It is not difficult to show that (4.13) is firstly stable. From (4.11), the sensitivity function is

S̃ =
1

1 + PC̃
=

1

1 + PC

[
1− N

Y
Q

]
=

1

1 + N
D
X
Y

[
1− N

Y

Y C̃ −X
NC̃ +D

]
=

D

DY +NX

DY +NX

D +NC̃

Hence we see that by (4.13), there are cancellations of the stable baseline poles that satisfies

DY +NX = 0.

In addition, new poles from
D +NC̃ = 0

(recall that the closed loop characteristic polynomial comes from 1+N
D
C̃ = 0) are introduced,

hence the equivalence (at the steady state) with the new controller C̃.
It can now be seen that, in the choice of (4.1), the plant and the baseline controller are

parameterized by P = P/1 and C = C/1, namely, N = P , D = 1, X = C, and Y = 1 in
(4.10). These are valid coprime factorizations when P and C are stable, since we can choose,
e.g., U = C/(1 + PC) ∈ S and V = 1/(1 + PC) ∈ S to make UN + V D = 1.

Remark 4.2. About the inequality Y (z =∞)−N(z =∞)Q(z =∞) 6= 0 in (4.10):

• It makes the closed-loop transfer functions proper and rational [63]. Otherwise, if
Y (∞)−N(∞)Q(∞) = 0, the relative degree of Y −NQ is at least one, which makes
1/(Y −NQ) not proper and Call not realizable during implementation. More specific,
consider the example where P = (1.1+z−1)/(1.2+z−1) and C = 1. The baseline closed
loop is clearly stable here. If we let X = Y = 1, N = 1.1 + z−1, and D = 1.2 + z−1,
then

Call (z) =
1 + (1.2 + z−1)Q (z)

1− (1.1 + z−1)Q (z)
, Q (z) =

1

1.1 + z−1
(4.14)
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satisfies all other conditions of YK parameterization, except that

Y (z =∞)−N (z =∞)Q (z =∞) = 0.

Clearly, the controller Call(z) in (4.14) is not realizable, as its denominator is zero.
Actually, very simple verification shows that, for any

Q (z) =
1 + bQ1z

−1 + bQ2z
−2 + . . .

1.1 + z−1
, bQi ∈ R

Call (z) will not be proper.

• Y (∞) − N(∞)Q(∞) 6= 0 is however very easy to satisfy for practical problems. For
instance, consider the case where P = z−1 and C = 0.8. We can let N = z−1, D = 1,
X = 0.8, Y = 1, and Y (∞)−N(∞)Q(∞) = 1. More general:

– as the relative degree of Y is zero [Fact 4.1], we have Y (∞) 6= 0;

– and practical discrete-time plants have delays that make N contain at least one
cascaded term of z−1, hence N (∞) = 0;

– recalling that Q is proper and rational (therefore Q (∞) 6= ∞), practically we
thus will have

Y (∞)−N (∞)Q (∞) = Y (∞) 6= 0.

Remark 4.3. The original Youla-Kucera formulation requires additionally the Bezout identity
XN+Y D = 1, which gives instead So = Y D and S = (Y −NQ)D. This assumption can be
dropped without loss of generality, and has been used without proof in a group of literatures
including [24] and [73]. We provide a proof below:

Proof. (Drop of the Bezout identity in Remark 4.3) Consider the coprime factorizations P =
N/D and C = X/Y . By definition, NX+DY is stable. In addition, stability of the baseline
closed loop gives that (NX +DY )−1 is stable and proper3 (due to the stability of NX+DY
and its own inverse, NX +DY is called a unit in S). Therefore, X̃ = X (NX +DY )−1 and
Ỹ = Y (NX +DY )−1 form a coprime factorization of C.

With (N,D) being a coprime factorization of P , we have

NX̃ +DỸ = 1 (4.15)

i.e., the Bezout identity holds for the pairs (N,D) and (X̃, Ỹ ). Now we can use the standard
Youla-Kucera parameterization with C = X̃/Ỹ , P = N/D, and (4.15). The parameteriza-
tion of all stabilizing controllers is given by

X̃ +DQ̃

Ỹ −NQ̃
=
X (NX +DY )−1 +DQ̃

Y (NX +DY )−1 −NQ̃
: Q̃ ∈ S, Ỹ (∞)−N (∞) Q̃ (∞) 6= 0.

3See footnote 2 on page 44.
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Note that Q (NX +DY )−1 and Q̃ is a one-to-one correspondence in S. Letting Q̃ =
Q (NX +DY )−1, and after cancellations, we obtain the parameterization

Call =
X +DQ

Y −NQ
: Q ∈ S

Theorem 4.1 is formulated under a linear time-invariant control framework. If we make
Q time-varying, we have the following useful theorem.

Theorem 4.2. (Stability of YK parameterization with a time-varying Q filter) Under the
assumptions in Theorem 4.1. If Q is a stable time-varying filter, then the closed-loop system
remains stable. In particular, switching between stable Q’s does not cause instability.

Proof. See [74, 63].

Theorem 4.2 is particularly useful for adaptive control, where we can adapt Q for en-
hanced servo performance, without introducing instability to the closed loop. Another ap-
plication is in the field of switched control theory—a subclass of hybrid systems—where a
time-invariant plant is controlled by a set of deterministic controllers that switch among each
other at the best-suited occasion.

With the conceptual and mathematical preparations, we proceed next to the main result
of this Chapter.

4.3 Pseudo Youla-Kucera Parameterization for
Discrete-time Systems

From the viewpoint of implementation, a perfect plant model is not possible in practice.
In this sense, a practical YK parameterization has to be an approximation, or a robust
version, of the ideal case in Section 4.2. In addition, although we have achieved affine
parameterization of the sensitivity function, the design of Q is still nontrivial.4 In this
section, we discuss a special choice of the plant and controller parameterization, to form
a pseudo Youla-Kucera parameterization. The purpose of this approximation is to take
advantage of the flexibility in Section 4.1, and to extend the design simplicity and tuning
intuition under practical model imperfections.

Recall in Section 4.1, that for a stable baseline system with P ∈ S and C ∈ S,

C̃ =
C +Q

1− PQ
(4.16)

4Indeed, YK parameterization has been a well-established concept for decades, in particular in the H∞-
and adaptive-control communities. However, the appreciation of its flexibility and capacity has been growing
slowly in actual implementations.
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parameterizes all the stabilizing controllers. Candidate Q-filter designs can be found, for
example, where a linear combination of some basis transfer functions (e.g.,

∑kQ
i=0 θiz

−i in
discrete-time schemes) is used to form Q, and adaptive/H∞ control is applied to find the
scaling coefficients for the combination. Regardless of the tools that are used, to make
S̃ = So× (1− PQ) in (4.2) small at certain frequencies, we require PQ to be close to one in
the same region. Consider a block-diagram realization of C̃ in Figure 4.2. In the inner loop
marked by ?, Q should approximate P−1 at the desired frequencies. As 1 − PQ becomes
small, the overall controller (4.16) will have high gain in the interested frequency regions.

+
-

+

d

+
C P

P

Q

+ +

+ +

?

Figure 4.2: A forward-model Youla-Kucera parameterization

Instead of a direct inversion of P by Q, consider a two-step design: first to perform an
explicit model inversion P−1, and then to use Q for controlling the amount of loop shaping
and disturbance rejection. Since a perfect model of the plant is not available anyway, we
allow the adoption of a nominal inversion P̂−1. In addition, from Section 2.4, a practical
plant has delays and will not be realizable under direct inversion. We therefore use instead
z−mP̂−1(z), where m is the relative degree of P (z). For the moment we assume P̂−1(z) is
stable. This is one constraint that we can place, if we drop the assumption of perfect model
inversion, and is usually not difficult to achieve in a large class of practical systems (we will
discuss more about this in Chapter 7).

A block diagram of the aforementioned idea is shown in Figure 4.3. We have now formed
a pseudo Youla-Kucera parameterization. Compared to Figure 4.2, this is a discrete-time
scheme that have relaxed requirement on the perfect model assumption; and modifications
have been made to reduce the dependence of the plant information in the (?) loop.

The transfer function of the overall feedback controller in Figure 4.3 is

C̃(z) =
C(z) + z−mP̂−1(z)Q(z)

1− z−mQ(z)
(4.17)

In (4.17), high-gain control is directly provided by 1/(1− z−mQ(z)), instead of by 1/(1−
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Figure 4.3: A discrete-time inverse-based YK parameterization

PQ) in (4.16). This reduced dependence on P is also reflected in the sensitivity function:

S (z) =
1

1 + P (z) C̃ (z)

=
1− z−mQ (z)

1 + P (z)C (z) + z−mQ (z) (P̂−1 (z)P (z)− 1)
(4.18)

If P̂ (ejω) = P (ejω), namely, at the frequencies where good plant information is available,
(4.18) gives

S(ejω) =
1− e−mjωQ(ejω)

1 + P (ejω)C(ejω)
(4.19)

= So(e
jω)(1− e−jmωQ(ejω)) (4.20)

In the frequency regions where large model mismatch exists, we will make |Q(ejω)| small
such that the contribution of z−mQ (z) (P̂−1 (z)P (z) − 1) in (4.18) is still insignificant to
make (4.20) a valid approximation. Of course, a default assumption is that good model
information can be obtained at frequencies where enhanced servo is desired. If the system
already has large uncertainties at the disturbance frequencies, it is best not to apply large
control effort there in the first place.

By the above constructions, similar to an ideal Youla-Kucera parameterization, we have
separated the baseline system response 1/(1 + P (z)C(z)) from S(z) in (4.19), and can now
focus on designing the much simplified term 1 − z−mQ(z). The use of the inverse model
P̂−1(z) has helped to make this added module 1 − z−mQ(z) simple and depend little on
the dynamics of P (z) (only the plant delay z−m appears here). Additionally, stability and
robust stability are easily satisfied. For instance in the nominal case without modeling errors
S (z) = So (z) (1− z−mQ (z)), which is stable since Q (z) has been designed to be stable. For
the robust stability, as long as z−mQ (z) (P̂−1 (z)P (z)− 1) is small, we can see that (4.20)
is still a valid approximation and S (z) is also expected to be stable. More formally, we have
the following theorem:
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Theorem 4.3. (Nominal stability of the pseudo YK parameterization) Consider a stable
discrete-time baseline negative feedback loop consisting of the controller C (z), and the plant
P (z) whose relative degree is m. If P (z) = P̂ (z), and Q (z) and P̂−1 (z) are stable in

C̃(z) =
C(z) + z−mP̂−1(z)Q(z)

1− z−mQ(z)
(4.21)

then the new feedback loop consisting of P (z) and C̃ (z) has guaranteed stability.

Remark. notice that we are only considering stability and not attempting to parameterize
all the stabilizing controllers here.

Proof. The four essential transfer functions for the new feedback loop are

G̃yd (z) = S̃ (z) =
1− z−mQ (z)

1 + P (z)C (z)
(4.22)

G̃yr (z) = T̃ (z) =
P (z)C (z) + z−mQ (z)

1 + P (z)C (z)
(4.23)

G̃yu (z) = P (z) S̃ (z) =
P (z) (1− z−mQ (z))

1 + P (z)C (z)
(4.24)

G̃ud (z) = C̃ (z) S̃ (z) =
C + z−mP̂−1(z)Q(z)

1 + P (z)C (z)
(4.25)

Given stability of the baseline transfer functions

1

1 + P (z)C (z)
,

P (z)

1 + P (z)C (z)
,

C (z)

1 + P (z)C (z)
,

P (z)C (z)

1 + P (z)C (z)
,

and the stability of Q (z) and P̂−1 (z), (4.22) to (4.25) are all stable by observation, hence
the validity of Theorem 4.3.

A more direct proof that reveals the actual order of the system and the distribution of
closed-loop poles is as follows: let

P (z) =
BP (z)

AP (z)
, P̂ (z) =

BP̂ (z)

AP̂ (z)
, C (z) =

BC (z)

AC (z)
, Q (z) =

BQ (z)

AQ (z)

where BG (z) and AG (z) denote, respectively, the numerator and the denominator of a
transfer function G (z). We have

C̃ (z) =

BC(z)
AC(z)

+ z−m
AP̂ (z)

BP̂ (z)

BQ(z)

AQ(z)

1− z−mBQ(z)

AQ(z)

=
AQ (z)BP̂ (z)BC (z) + z−mAC (z)AP̂ (z)BQ (z)

BP̂ (z)AC (z) [AQ (z)− z−mBQ (z)]
(4.26)
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From 1 +PC̃ = 0, after some algebra, we can obtain the closed-loop characteristic equation:

AQ (z)BP̂ (z) [AC (z)AP (z) +BC (z)BP (z)]

+ z−mAC (z)BQ (z) [AP̂ (z)BP (z)− AP (z)BP̂ (z)] = 0 (4.27)

If P (z) = P̂ (z), (4.27) reduces to

AQ (z)BP̂ (z) [AC (z)AP (z) +BC (z)BP (z)] = 0 (4.28)

Hence the closed-loop poles are composed of: the baseline closed-loop poles, and the poles
of Q (z) and P̂−1 (z). The stability result of Theorem 4.3 then immediately follows.

Notice that the theorem applies to unstable plants and unstable baseline controllers as
well. If the baseline controller is stable itself, then the above scheme is a special Youla-Kucera
parameterization. We have

Lemma 4.1. (A special case of discrete-time YK parameterization) Consider a stable discrete-
time baseline negative feedback loop consisting of the controller C (z), and the plant P (z)
whose relative degree is m. If P−1 (z) and C (z) are stable, then we can use the coprime
factorizations

P (z) =
z−m

z−mP−1 (z)
, C (z) =

C (z)

1
(4.29)

to form the set of all stabilizing controllers{
Call (z) ∈ R : Call (z) =

C (z) + z−mP−1 (z)Q (z)

1− z−mQ (z)
, Q(z) ∈ S

}
(4.30)

and the sensitivity function is

S (z) =
1− z−mQ (z)

1 + P (z)C (z)
= So (z)

(
1− z−mQ (z)

)
(4.31)

Proof. follows directly by letting N (z) = z−m, D (z) = z−mP−1 (z), X (z) = C (z), and Y =
1 in Theorem 4.1. Notice that the condition that Y (∞)−N (∞)Q (∞) = 1− z−mQ (z)|z=∞ 6=
0 is automatically satisfied when Q (z) is rational and causal (and hence Q (∞) is finite).

Dropping the parameterization for all stabilizing controllers

We emphasize that it is not necessary to be able to express all the stabilizing controllers in
practical situations. For instance, a high-pass filter may be able to stabilize a plant. However,
this design would seldom be recommended in practice, as the high-frequency performance
and robustness would be seriously challenged under practical plant uncertainties and sen-
sor noises. A sub class of all the stabilizing controllers, with promising high-performance
feedback potentials, would suffice in practical loop shaping.
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This drop of the parameterization for all stabilizing controllers is made by allowing the
baseline controller C (z) to be not strictly stable.5 To see which class of stabilizing controllers
is excluded, we recall (4.26), which indicates that regardless of the choice of Q (z), AC (z)
remains in the denominator of C̃. If C (z) is unstable, C̃ (z) will thus also be unstable.
A particular case that is useful in practice is when C (z) has marginally stable poles. For
example, when it contains an integrator, the result then indicates that the integrator action
will be invariant under the controller parameterization in Theorem 4.3, and that we will not
be able to parameterize strictly stable controllers.

We remark, however, that this does not yield practical disadvantages for the controller
design. For instance, an integrator action may be needed although it is marginally stable, e.g.
to remove the steady-state bias. However, this does not mean that the baseline controller
may be selected without common engineering analysis in practice. Consider the following
example where the plant is among the class of systems that are easiest to control

P (z) = P̂ (z) = z−1Pmp (z)

Here Pmp (z) = BPmp (z) /APmp (z) is a minimum-phase transfer function with all poles and
zeros strictly inside the unit circle. Assume the relative degree of Pmp (z) is zero. If the
baseline design is chosen as

C (z) = P−1
mp (z)

−1.8

1 + z−1

then the closed loop characteristic equation is

1 + z−1BPmp (z)

APmp (z)

APmp (z)

BPmp (z)

−1.8

1 + z−1
= 0

⇔ BPmp (z)APmp (z)
[
1− 0.8z−1

]
= 0

So the closed-loop poles are all inside the unit circle. However if we parameterize according
to (4.21), then

C̃(z) =
−1.8

1+z−1P
−1
mp (z) + P−1

mp (z)Q(z)

1− z−mQ(z)
=
P−1

mp (z)

1 + z−1

−1.8 + (1 + z−1)Q(z)

1− z−mQ(z)

The controller C̃ (z) always has a pole at z = −1. This is not a wise design in motion control,
as the open loop will have infinite gains at Nyquist frequency, yielding the closed loop to be
extremely sensitive to high-frequency uncertainties.

5Of course, unstable controllers are usually less preferred unless absolutely necessary (for example, to
stabilize some unstable plants). Hence the influence of the relaxation is minor in practice.
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Robust stability

From Figure 4.3, intuitively, Q (z) controls the additional design efforts in the pseudo Youla-
Kucera parameterization. At high frequencies where the plant behavior itself can not be well
predicted, the magnitude of Q(z) (and hence the add-on control effort) can be kept small
such that S (z) remains approximately 1/(1 + P (z)C(z)) in (4.18).

More formally, if the plant is perturbed to be P̃ (z) = P̂ (z) (1 + ∆ (z)),6 standard robust-
stability analysis7 gives that the closed-loop system is stable if and only if the following hold:

• nominal stability: the closed loop is stable when ∆ (z) = 0

• robust stability: ∀ω, ∣∣∆(ejω)T (ejω)
∣∣ < 1 (4.32)

where T (ejω) comes from

T (z) = 1− 1− z−mQ (z)

1 + P̂ (z)C (z)
=
P̂ (z)C (z) + z−mQ (z)

1 + P̂ (z)C (z)
(4.33)

Equation (4.32) is not difficult to satisfy. If Q(ejω) = 0, (4.33) reduces to T (ejω) = To(e
jω).

We thus have |∆(ejω)T (ejω)| = |∆(ejω)To(e
jω)| < 1, which is the robust stability condition

for the baseline feedback loop. If e−jmωQ (ejω) = 1, then T (ejω) = 1. At these frequencies
we thus require ∆ (ejω) < 1, i.e., the mismatch between P̃ (ejω) and P̂ (ejω) has to be less
than 100%.

4.4 Comparison
Listed in Table 4.1 are the three parameterization schemes discussed in this chapter. All of
them provide the convenience that the closed-loop stability can be easily maintained, and
that the sensitivity function can be decoupled to be an affine parameterization of the Q filter.
The main differences among them are the complexity of the add-on loop shaping element,

6The uncertainty ∆ is assumed to be stable and has finite magnitude response.
7Review of robust-stability analysis: consider a general (continuous- or discrete-time) feedback system

with C, P̃ = P (1 + ∆), the vector from the (−1, 0) point to the frequency response P̃ (ω)C(ω) is given by

1 + P̃ (ω)C(ω) = 1 + P (ω)C(ω) + P (ω)C(ω)∆(ω).

Nominal stability gives that the distance |1 + P (ω)C(ω)| is always positive and P (ω)C(ω) has the correct
number of encirclements around the (−1, 0) point. Robust stability thus is guaranteed if

∣∣∣1 + P̃ (ω)C(ω)
∣∣∣ is

never zero for any ∆ at any frequency ω, which is achieved if and only if∣∣∣∣ P (ω)C(ω)

1 + P (ω)C(ω)
∆(ω)

∣∣∣∣ < 1⇔ |T (ω)∆(ω)| < 1, ∀ω.
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and the suitable systems for implementation. The general YK parameterization in the third
column does not require special assumptions on the plant, yet is most complicated in the
add-on loop shaping element: 1 − NQ/Y depends on both the plant P = N/D and the
baseline controller C = X/Y . The simple YK algorithm in column two works for stable
plants and the loop shaping element 1 − PQ uses the full information of P . The pseudo
Youla-Kucera algorithm was formed aiming to further reduce the dependence of the plant
model and improve the design intuition in the add-on loop shaping. These properties are
traded with the requirement that P̂−1 must be stable (which can be designed to be so).

Table 4.1: Comparison of the three Youla-Kucera schemes

controller
structure

simple YK
parameterization
for stable plant
(Figure 4.2)

general YK
parameterization
(Theorem 4.1)

pseudo YK
parameterization

(Figure 4.3)

sensitivity
function S = So × (1− PQ) S = So×

(
1− N

Y
Q
) S (z) =

So (z) (1− z−mQ (z))
when P̂ (z) = P (z)

add-on loop
shaping
element

1− PQ 1− N
Y
Q 1− z−mQ(z)

nominal
stability

requirements
P and Q are stable Q is stable P̂−1 (z) and Q (z) are

stable

applications continuous- and
discrete-time

continuous- and
discrete-time discrete-time

From now on we will be focusing on the pseudo Youla-Kucera parameterization scheme,
which we recall in Figure 4.4, with

S (z) =
1− z−mQ (z)

1 + P (z)C (z) + z−mQ (z) (P̂−1 (z)P (z)− 1)
(4.34)

T (z) = 1− S (z)

=
P (z)C (z) + z−mQ (z) P̂−1 (z)P (z)

1 + P (z)C (z) + z−mQ (z) (P̂−1 (z)P (z)− 1)
. (4.35)

Notice that c (k) is the only signal added to the baseline closed loop. If r (k) = 0, after
the signal processing, c (k) should approximate −d (k) for servo enhancement. We provide
next the detailed time-domain design intuitions and the formulation of Q (z) for local loop
shaping.
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Figure 4.4: Pseudo Youla-Kucera parameterization for local loop shaping

4.5 Time-domain Disturbance-observer Intuition
For either regulation or tracking control, servo design aims at maintaining e(k) small. Per-
forming the block diagram transformations in Figures 4.5 and 4.6, we obtain a unified reg-
ulation problem in Figure 4.6, where −e(k) can be regarded as a fictitious output that is
regulated in the presence of the equivalent disturbances d(k) and r(k).
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Figure 4.5: Equivalent form of Figure 4.4

In Figure 4.6, consider first the case where r(k) = 0 (regulation problem). Since y(k) =
P (q−1)(u(k) + d(k)) (for time-domain operations, we start now to use the pulse transfer
function with the delay operator q−1), the output of z−mP̂−1(z) is given by

q−mP̂−1(q−1)P (q−1)(u(k) + d(k)).

Notice that q−mP̂−1(q−1) ≈ q−mP−1(q−1). Through the inverse filtering, the output of
z−mP̂−1(z) thus approximately equals u(k−m) + d(k−m). Subtracting now u(k−m), the
output of the z−m block, we get uQ (k), an approximation of d(k−m). Analogously, for the
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Figure 4.6: Equivalent form of Figure 4.5, from the viewpoint of a disturbance observer

reference-tracking problem, we have

uQ (k) = q−mP̂−1
(
q−1
) (
P
(
q−1
)
u (k)− r (k)

)
− q−mu (k)

≈ q−m
[
−P̂−1

(
q−1
)
r (k)

]
, deq (k −m)

where deq (k) = −P̂−1 (q−1) r (k) is an equivalent input disturbance for Figure 4.6.
Q(z) can now be regarded as a signal-selection filter. If we design Q(z) to have the

magnitude response similar to that in Figure 4.7, then c (k) = Q (q−1)uQ (k) will selectively
contain the signal components at the two peak frequencies. If in addition the phase of Q (z)
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Figure 4.7: Magnitude response of a candidate Q filter

is correctly designed such that the m-step delay in the estimated d (k −m) or deq (k −m) is
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properly compensated, then c (k) can recover the information of d (k) or deq (k) at the peak
frequencies.

We remark that the shape of Q(z) in Figure 4.7 is central in the proposed design scheme.
Uncertainties exist in P (z) no matter how accurately P̂−1(z) is constructed. It is not practical
(and is even dangerous) to invert P (z) over the entire frequency region. Keeping the magni-
tude of Q(z) small except at the interested disturbance frequencies forms a “selective/local”
disturbance observer, such that errors due to model mismatches do not pass through Q(z)
and get amplified by feedback.

The influence of plant delays: The phase of the delay z−m equals −mω (in rad/sec).A
smaller value of m gives easier LLS design. Moreover:

• disturbance cancellation is easier at low frequencies than that at high frequencies. For
instance, if m = 1 and the sampling time Ts equals 1/26400 sec, then at 100 Hz the
one-step delay will introduce

m× 100Ts × 360 = 1.364 degrees

of phase mismatch between d (k) and d (k −m). However at 1500 Hz, this number
increases to 20.45 degrees.

• the amount of phase mismatch increases linearly with respect to the number of delay
steps. To have a quantitative idea of a large value of m, assuming the same sampling
time of Ts = 1/26400 Hz, we can compute the period of a pure sinusoidal signal at
2640 Hz, which equals

1
2640

Ts
= 10 time steps.

If 2640 Hz is the target disturbance-rejection frequency and m is three, then we have
a mismatch of about one third of a period between d (k) and d (k −m).

The special case where Q (z) is a low-pass filter: As disturbance cancellation is easier
at low frequencies, a natural candidate for Q (z) is a low-pass filter. Indeed, if the delay is not
large then d (k −m) will be close to d (k), and the low-pass feature will avoid amplification
of the high-frequency model mismatch. This concept is investigated in the structure of the
disturbance observer (DOB) [26]. Next, we briefly analyze discrete-time DOB design, and
connect it to the pseudo Youla-Kucera parameterization.

Under the same notations used before, a standard discrete-time DOB is as shown in
Figure 4.8. The signals d (k) and n (k) are respectively the lumped input disturbance and
the sensor noise. Standard block diagram analysis gives that

Y (z) = Gyu∗ (z)U∗(z) +Gyd (z)D(z) +Gyn (z)N(z) (4.36)
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where

Gyu∗ (z) =
P̂ (z)P (z)

P̂ (z) + z−mQ (z)
(
P (z)− P̂ (z)

) (4.37)

Gyn (z) =
−z−mP (z)Q (z)

P̂ (z) + z−mQ (z)
(
P (z)− P̂ (z)

) (4.38)

Gyd (z) =
P (z) P̂ (z) (1−Q (z) z−m)

P̂ (z) + z−mQ (z)
(
P (z)− P̂ (z)

) (4.39)
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Figure 4.8: Block diagram of a standard digital disturbance observer

With a low-pass Q (z), in the high-frequency region where Q(ejω) ≈ 0, DOB is essentially
inactive, therefore Gyu∗(e

jω) ≈ P (ejω), Gyd(z) ≈ P (ejω), and Gyn(ejω) ≈ 0. In the low-
frequency region where Q(ejω) ≈ 1, if the delay is small so that (1− e−jmω)P̂ (ejω) ≈ 0, then
Gyd(e

jω) ≈ 0 in (4.39), Gyn(ejω) ≈ −1 in (4.38), and Gyu∗(e
jω) ≈ P̂ (ejω) in (4.37). The

disturbance d(k) and the model mismatch between P (z) and P̂ (z) are thus attenuated, and
the entire DOB loop behaves like the nominal plant P̂ (z). This nominal-model-following
property makes it convenient to design other feedback or feedforward controllers based on
the low-order nominal model P̂ (z). For this reason, DOB-based feedback and feedforward
servo is usually an “inside-out” design process, where the DOB and the nominal model are
selected first in the inner loop, then the feedback controller C (z) is designed in Figure 4.9.
In contract, Youla-Kucera-parameterization schemes are “outside-in” approaches, where we
build a baseline central controller C (z) first, and then parameterize stabilizing controllers.

Yet when the reference is zero, i.e., in regulation problems, Figures 4.6 and 4.9 can be
seen to be equivalent, which reveals that the pseudo Youla-Kucera parameterization scheme
also share the nominal model following property for regulation control. Difference occurs in
the treatment of reference tracking. If there is no model mismatch between P (z) and P̂ (z),
we can see that the DOB inner loop in Figure 4.9 keeps the dynamics between u∗ (k) and
y (k) intact. Indeed, using (4.37), we can get the r(k)-to-e(k) transfer function in Figure 4.9:
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+
+u
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Figure 4.9: Block diagram of a closed-loop system with a disturbance observer

Ger (z) =
1 + z−mQ (z)

(
P (z) P̂−1 (z)− 1

)
1 + P (z)C (z) + z−mQ (z)

(
P (z) P̂−1 (z)− 1

) ≈ 1

1 + P (z)C (z)

while in Figure 4.6

Ger (z) =
1− z−mQ (z)

1 + P (z)C (z) + z−mQ (z)
(
P (z) P̂−1 (z)− 1

)
and tracking performance is influenced by the term 1− z−mQ (z). We thus can still obtain
better servo in pseudo YK parameterization.

Of course, as mentioned before, Q (z), the heart of the pseudo Youla-Kucera parame-
terization, can be a general signal-selection filter other than a low-pass filter. This central
design concept is explored for LLS next.

4.6 Overview of Q-filter Design

Recall that in regions where the frequency response P (ejω) is well modeled by P̂ (ejω), the
sensitivity function [see (4.34)] satisfies the decoupled affine parameterization of Q (z):

S (z) ≈ 1− z−mQ (z)

1 + P (z)C (z)
(4.40)

T (z) = 1− S (z) ≈ P (z)C (z) + z−mQ (z)

1 + P (z)C (z)
(4.41)

If e−mjωQ(ejω) = 1, then we have S(ejω) = 0 and T (ejω) = 1, i.e., perfect disturbance
rejection and reference tracking.

At the frequencies where there are large model mismatches, high-performance servo con-
trol intrinsically has to be sacrificed for robustness. We will thus make e−mjωQ(ejω) ≈ 0, to
keep the influence of the uncertainty elements

z−mQ(z)P̂−1(z)P (z)
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and
z−mQ(z)[P̂−1(z)P (z)− 1]

small in (4.34) and (4.35).
Several classes of design problems can be considered.

Low-frequency Servo Enhancement

This is the idea of a standard disturbance observer using a low-pass Q (z). A direct result is
that any bias disturbance will be rejected. This is because under the low-pass assumption
we have 1− z−mQ (z)|z=ej0 = 1− e−jm×0Q(ej×0) = 0 at the DC frequency ω = 0. Therefore
an integral action is built into the closed-loop controller.

Various researches have been conducted to design such low-pass Q filters [75, 76, 77].
Two main design options are the cut-off frequency (defining the bandwidth) and the high-
frequency rolloff (influencing the robustness). A candidate design [78] is to select

Q (s) =
3τs+ 1

(τs+ 1)3

(τ defines the bandwidth of the filter) and then discretize Q (s) using the bilinear transform

Q(z) = Q (s) |
s= 2

Ts

1−z−1

1+z−1
=

3τ 2
Ts

(1 + z−1)
2

(1− z−1) + (1 + z−1)
3(

τ 2
Ts

(1− z−1) + 1 + z−1
)3 , (4.42)

where Ts denotes the sampling time.
Figures 4.10 and 4.11 show a simulated example of the single-stage HDD benchmark

problem discussed in Section 3.2. The corresponding loop shape design is as shown in
Figure 1.7 on page 9. The strong low-frequency enhancement is readily seen from the error
spectra. Indeed from Figure 1.7, the bandwidth has been extended to around 1000 Hz, with
much stronger low-frequency error reduction. The detailed design process is provided in [17],
which also discusses the practical modification of the plant to maximize the cut-off frequency
of Q (z).



CHAPTER 4. A PSEUDO YOULA-KUCERA PARAMETERIZATION 61

10
0

10
1

10
2

10
3

10
4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Frequency [Hz]

P
E

S
 A

m
pl

itu
de

 S
pe

ct
ru

m

 

 

w/o LLS
w/ LLS

Figure 4.10: Spectra of the position errors under low-frequency LLS enhancement
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Narrow-band Disturbance Rejection

Vibrations are frequency-dependent signals by nature. Since the closed-loop bandwidth
can not be arbitrarily increased, vibrations at frequencies above the servo bandwidth are
fundamentally difficult to handle. Actually, such band-limited disturbances, if strong enough,
will significantly limit the servo performance even when their frequencies are below the
bandwidth. A candidate design is to use a notch shape for 1− z−mQ(z) such as the one in
the bottom plot of Figure 4.12. To demonstrate the flexibility, we introduce five notches in
the magnitude of 1− z−mQ(z) here. The first three notches are very close to each other, the
other two are separated at higher frequencies.
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Figure 4.12: A Q-filter example for narrow-band disturbance rejection

Repetitive Control

This is for addressing the problem discussed in Figure 1.6 on page 8. An intuition about
repetitive control is that, if the same type of disturbance occurs after a fixed period of time,
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i.e., (1−q−N)d(k) = 0 whereN is the period of the disturbance, then at the next occurrence of
d(k) we can learn and reduce the resulting error, no matter how it behaves within one period
of time. In the magnitude response of 1 − z−mQ(z) in Figure 4.13, |1 − e−jmωQ(ejω)| has
small gains at multiples of the fundamental frequency (120 Hz in this example). Meanwhile
at other frequencies |1− e−jmωQ(ejω)| is approximately unity, yielding no change to |S̃(ejω)|
in (4.40).
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Figure 4.13: A Q-filter example for repetitive control

General Band-limited Vibration Compensation

The loop shaping in Section 4.6 was for narrow-band disturbance rejection. When excitation
sources are rich in frequency, a wider attenuation notch shape is needed in 1− z−mQ(z). As
we push further the disturbance attenuation, the trade-off amplification due to the waterbed
effect will also increase (see an example in Figure 4.14). To achieve Figures 1.3 and 1.4 on
page 7, new design considerations have to be made for controlling the waterbed.
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Figure 4.14: Q-filter design for general band-limited error reduction

In the next three chapters, we unfold the design of the aforementioned results, and provide
application examples in each class of problems.

4.7 Notes and Additional Discussions
Applications of disturbance observer: As a flexible and powerful add-on element for
servo enhancement, DOB has been applied in broad control applications, among which some
examples are: hard disk drives [79, 28], optical disk drives [31], linear motors [30], positioning
tables [27], robot arms [29], and automotive engines [80].

Pseudo Youla-Kucera parameterization and generalized disturbance observer:
Although these two are equivalent in regulation problems, in [3, 4, 5, 6, 7, 10, 16] we have
been mainly using using the disturbance-observer terminologies such as narrow-band DOB,
and repetitive DOB, to refer to the results of Figures 4.12 and 4.13.
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A tighter bound in robust-stability analysis: In Section 4.3, we have perturbed the
plant with respect to P̂ (z). Figure 4.15 shows all the operations that have been performed
to the plant. P̂−1 (z) is the pseudo inverse model we proposed when P−1 (z) is unstable
itself. The difference between these two form the first level of model mismatch. The real
plant uncertainty (the second level of model mismatch) is actually placed on P (z). If we
consider these two levels of mismatch between P̂ (z) and the actual plant, we can obtain a
tighter bound of robust stability.

~P (z) = P (z)(1 + ¢(z))P (z)P
¡1(z)P̂

¡1(z)

Figure 4.15: Perturbations to the plant in pseudo YK parameterization

• Nominal stability: the closed-loop system is stable when P̃ (z) = P (z), namely, all the
roots of (4.27) on page 51 must be inside the unit circle;

• Robust stability: when the plant is perturbed to be P̃ (z) = P (z)(1 + ∆(z)) (assume
that the uncertainty ∆(z) is stable and bounded), the following inequality has to hold
(recall the footnote 7 on page 53)∣∣∆(ejω)T (ejω)

∣∣ < 1 (4.43)

where the nominal complementary sensitivity function T = PC̃/(1 + PC̃) is given by,
after substituting in (4.21) and simplification,

T (z) =
P (z)C (z) + z−mP̂ (z)P (z)Q (z)

1 + P (z)C (z) +Q (z) (P̂−1 (z)P (z)− z−m)
.
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Chapter 5

Internal Model Based IIR Q Design for
Narrow-band Loop Shaping

In this chapter we discuss the Q filters for narrow-band loop shaping mentioned in Section 4.6.
We show that for structured vibrations with clear internal models, there exist configurations
that achieve optimal disturbance rejection.

Recalling Figure 4.4 on page 55 and Equation (4.34), we have

y (k) = P
(
q−1
)
S
(
q−1
)
d (k) + T

(
q−1
)
r (k)

where

S
(
q−1
)

=
1− q−mQ (q−1)

1 + P (q−1)C (q−1) + q−mQ (q−1)
[
P̂−1 (q−1)P (q−1)− 1

]
T
(
q−1
)

=
P (q−1)C (q−1) + z−mQ (q−1) P̂−1 (q−1)P (q−1)

1 + P (q−1)C (q−1) + q−mQ (q−1)
[
P̂−1 (q−1)P (q−1)− 1

] .
5.1 From FIR to IIR Design
Suppose d (k) = w (k) + n (k) with w (k) and n (k) being respectively the structured distur-
bance and the additive noise. To regulate P (q−1)S (q−1)w (k) to zero, it suffices to design
Q(q−1) such that (

1− q−mQ(q−1)
)
w (k)→ 0. (5.1)

For instance, if m = 1 and w (k) is a sinusoidal signal with the internal model(
1− 2 cosω1q

−1 + q−2
)
C1 sin (ω1k + ψ1) = 0, ∀k ≥ 2 (5.2)

then solving
1− z−1Q (z) = 1− 2 cosω1z

−1 + z−2 (5.3)
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yields
Q (z) = 2 cosω1 − z−1. (5.4)

This is the simplest internal-model-based Q design. Variations of this FIR-filter design
have been popular in literature for periodic-disturbance rejection. Recall that we need the
magnitude of the Q filter to be small at the non-interested frequencies for stability and
robustness. The FIR filter in (5.4) satisfies

Q
(
ejω
)∣∣
ω=0

= 2 cosω1 − 1

Q
(
ejω
)∣∣
ω=π

= 2 cosω1 − (−1) .

Regardless of the value of ω1, we have

|Q (1)−Q (−1)| = 2

namely, it is not possible to keep the gains at DC and Nyquist frequency to be small at the
same time. Typically cosω1 is positive and Q (−1) is thus larger than one,1 which indicates
that the Q design of (5.4) is sensitive to high-frequency noises and plant uncertainties. To
address such issues, in this chapter we will be using IIR Q filters in the structure of

Q
(
q−1
)

=
BQ (q−1)

AQ (q−1)
(5.5)

for enhanced LLS.

5.2 The Internal Models
Consider the multiple narrow-band signal in the general form of

w (k) =
n∑
i=1

Ci sin(ωik + ψi), (5.6)

where the frequency ωi = 2πΩiTs is in rad/sec (Ωi is the frequency in Hz, Ts is the sampling
time); Ci ( 6= 0) and ψi are respectively the unknown magnitude and phase of each sinusoidal
component. For a well-defined problem, we assume that k ≥ 0 and ωi 6= ωj, ∀ i 6= j.

Extending (5.2) to the case of multiple frequency components, we have
n∏
i=1

(
1− 2 cos (ωi) q

−1 + q−2
)
w (k) = 0 ∀k ≥ 2n. (5.7)

1Consider a practical example where Ω1 = 2000 Hz, Ts = 1/26400 sec, and ω1 = 2πΩ1Ts, then

Q (1) = 0.7777

Q (−1) = 2.7777
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The cascade form of the internal model is nonlinear in the ωi’s. Introduce new variables
ai’s, such that

A
(
q−1
)

=
n∏
i=1

(
1− 2 cos (ωi) q

−1 + q−2
)

(5.8)

=1 + a1q
−1 + · · ·+ anq

−n + · · ·+ a1q
−2n+1 + q−2n (5.9)

=1 +
n−1∑
i=1

ai
(
q−i + q−2n+i

)
+ anq

−n + q−2n,

where in the second equality we have used the fact that the coefficients of 1 and q−2 are the
same in 1− 2 cos (ωi) q

−1 + q−2, resulting in the symmetric coefficient vector

{1, a1, . . . , an, . . . , a1, 1}.

Equations (5.8) and (5.9) are respectively the (nonlinear) cascaded and the (linear) direct
forms of the polynomial A (q−1).

5.3 Multi-Q Approach
Analogous to Section 5.1, to use an IIR Q(q−1) = BQ(q−1)/AQ(q−1), the right hand side of
(5.3) must have both numerators and denominators. Recalling (5.7) and (5.9), we see that[

1− q−mQ
(
q−1
)]
w (k)→ 0

is achieved if

1− q−mQ(q−1) = K(q−1)
A(q−1)

AQ(q−1)
. (5.10)

The filter K(q−1) is necessary to make the solution causal for a general m. Without
K(q−1), (5.10) gives

Q(q−1) = qm
AQ(q−1)− A(q−1)

AQ(q−1)

where the forward shift operation qm is not directly realizable.
To get the magnitude response of 1−q−mQ(q−1) in Figure 4.12 on page 62, A(q−1)/AQ(q−1)

should have a notch-filter structure. A natural choice is to damp the roots of A(q−1) by a
scalar α ∈ (0, 1) and let

AQ(q−1) ,
n∏
i=1

(
1− 2α cos(ωi)q

−1 + α2q−2
)

(5.11)

or, in the direct form,

AQ
(
q−1
)

= 1 + a1αq
−1 + · · ·+ anα

nq−n + · · ·+ a1α
2n−1q−2n+1 + α2nq−2n (5.12)
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namely, AQ (q−1) is nothing but A(αq−1), by replacing each q−1 in A (q−1) [see (5.13)] with
αq−1:

A(q−1) = 1 + a1q
−1 + · · ·+ anq

−n + · · ·+ a1q
−2n+1 + q−2n (5.13)

The parameter α determines the width of the notch shape. An α that is closer to
one gives a sharper notch. Approximately, the width of the notch at -3dB is given by
(1− α2)/[(α2 + 1)(πTs)].2

A design guide for K(q−1) is that it should not introduce much magnitude distortion to
the achieved notch shape of A(q−1)/AQ(q−1) in (5.10). We discuss next choices of K(q−1)
for different values of m.

The Case for m = 0

For the simplest case where m = 0, a scalar value K(q−1) = k provides a realizable solution
to (5.10). Recall Q(q−1) = BQ(q−1)/AQ(q−1) = BQ(q−1)/A(αq−1) and (5.13). Equation
(5.10) now reduces to

A(αq−1)−BQ(q−1) = kA(q−1),

yielding

BQ(q−1) = (1− k) + (α− k) a1q
−1 + · · ·+ (αn − k) anq

−n+

· · ·+ (α2n−1 − k)a1q
−2n+1 + (α2n − k)q−2n. (5.14)

The parameter k provides an additional freedom to shape the magnitude response of
the Q filter. It can be shown (see Appendix A.3) that k = αn leads to the common factor
1−αq−2 in BQ(q−1), which places two zeros to the Q filter at ±

√
α. This provides balanced

magnitude response at low- and high-frequencies, and is the recommended choice for general
applications. We thus have

BQ(q−1) =
2n∑
i=0

(αi − αn)aiq
−i; ai = a2n−i, a2n = 1.

As an example, when n = 1, we have AQ (q−1) = 1+αa1q
−1+α2q−2 = 1−α2 cos (ω1) q−1+

α2q−2 and

Qm=0(q−1) =
(1− α) (1− αq−2)

1− α · 2 cos(ω1)q−1 + α2q−2
. (5.15)

The Case for m = 1

Applying analogous analysis as in Section 5.3, we reduce (5.10) to

A(αq−1)− q−1BQ(q−1) = kA(q−1), (5.16)
2This is an empirical approximation from [81].
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the solution of which is

BQ(q−1) = (1− k) q + (α− k) a1 + · · ·+ (αn − k)anq
−n+1+

· · ·+ (α2n−1 − k)a1q
−2n+2 + (α2n − k)q−2n+1.

To let the term (1− k) q vanish for realizability, we require k = 1, which gives

BQ(q−1) =
2n∑
i=1

(αi − 1)aiq
−i+1; ai = a2n−i, a2n = 1. (5.17)

In this case, if n = 1, (5.11) and (5.17) yield a1 = −2 cosω1 and

Qm=1(q−1) =
(1− α) (2 cosω1 − (1 + α) q−1)

1− 2α cosω1q−1 + α2q−2
. (5.18)

Evaluating the frequency response at ω1 and using the identity 2 cos(ω1) = ejω1 + e−jω1 ,
we obtain

Qm=1

(
ejω1

)
=
− (α− 1) (ejω1 + e−jω1) + (α2 − 1) e−jω1

1− α · (ejω1 + e−jω1) e−jω1 + α2e−2jω1
= ejω1 . (5.19)

Thus, at the center frequency ω1, the Q filter provides exactly one-step advance to counteract
the one-step delay in 1− q−1Qm=1(q−1), yielding perfect disturbance cancellation at ω1.

The Case for an Arbitrary m

Form > 1, assigningK(q−1) = k no longer gives a realizable solution. Consider the following
IIR design

K(q−1) =
N∑
i=0

ki

[
A(q−1)

A(αq−1)

]i
, ki ∈ R. (5.20)

Namely, K(q−1) is chosen as a linear combination of N filters that influence only the local
loop shape (recall that A(q−1)/A(αq−1) is a notch filter). Take the example of m = 2. When
N = 1,3 solving (5.10) gives

Q(q−1) = q2

(
1− k0

A(q−1)

A(αq−1)
− k1

A(q−1)2

A(αq−1)2

)
.

Partitioning, we obtain

Q(q−1) , q2

(
1− ρ1

A(q−1)

A(αq−1)

)(
1− ρ2

A(q−1)

A(αq−1)

)
. (5.21)

3N = 0 does not give a solvable solution since in that case K(q−1) is a scalar again.
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The numerator of Q(q−1) is given by

BQ(q−1) = q2(A(αq−1)− ρ1A(q−1))(A(αq−1)− ρ2A(q−1)).

From (5.13) and (5.12), we have

A(αq−1)− ρiA(q−1) = (1− ρi) + (α− ρi) a1q
−1 + · · ·+ (α2n − ρi)q−2n.

To make the q2 term vanish in BQ(q−1), we must have 1 − ρi = 0 for i = 1, 2, yielding
k0 = 2, k1 = −1. Therefore, after simplification,

Q(q−1) =

[∑2n
i=1(αi − 1)aiq

−i+1

A(αq−1)

]2

; ai = a2n−i, a2n = 1 (5.22)

K(q−1) = 2− A(q−1)

A(αq−1)
. (5.23)

For a general integer m, when N = m − 1, applying analogous analysis, we get the
following partitioned Q(q−1) from (5.20) and (5.10):

Q(q−1) = qm
m∏
i=1

(
1− ρi

A(q−1)

A(αq−1)

)
.

The solution pair is thus obtained when ρi = 1 ∀i, and

Q(q−1) =

[∑2n
i=1(αi − 1)aiq

−i+1

A(αq−1)

]m
(5.24)

1− q−mQ(q−1) = 1−
(

1− A(q−1)

A(αq−1)

)m
(5.25)

=
A(q−1)

A(αq−1)

m∑
i=1

(
m
i

)[
− A(q−1)

A(αq−1)

]i−1

. (5.26)

Here ai is as defined in (5.22); and from (5.25) to (5.26) we have used the identity

(1 + x)m = 1 +

(
m
1

)
x+ · · ·+

(
m
m

)
xm

where
(
m
i

)
= m!

i!(m−i)! is the binomial coefficient.

It can be observed that the general result obtained here is essentially a cascaded version
of the developed Q filter Qm=1(q−1). Recall that Qm=1(q−1) provides one-step phase advance
at the disturbance frequencies {ωi}n1 , to address the term q−1 in 1 − q−1Qm=1(q−1). For a
general m, we see that the cascaded

Q(q−1) =
[
Qm=1(q−1)

]m (5.27)
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in (5.24) works the same way, as

1− q−mQ(q−1) = 1−
[
q−1Qm=1(q−1)

]m
i.e., each Qm=1(q−1) block compensates one q−1 term, to achieve 1− e−jmωQ(ejω) = 0 when
ω ∈ {ωi}n1 . Recall that Q(q−1) is a special type of bandpass filter. Cascading multiple
Qm=1(q−1) together not only provides the compensation for q−m, but also offers an enhanced
bandpass frequency response, as |Q(ejω)|m ≤ |Q(ejω)| if m ≥ 1 and |Q(ejω)| < 1 (when ω is
outside of the passband).

Remark 5.1. The compensation difficulty gets larger as the value of m increases. This is
intuitively quite reasonable, as a larger m corresponds to more plant delays in LLS.

5.4 Direct Approach
In the previous section, we assigned an IIR structure for K (q−1) in

1− q−mQ
(
q−1
)

= K
(
q−1
) A (q−1)

A (αq−1)
. (5.28)

The order of Q (q−1) is the sum of the orders of A (αq−1) and of K (q−1). A lower-order
solution can be obtained if we relax K (q−1) to be an FIR filter

K
(
q−1
)

= ko + k1q
−1 + · · ·+ knK

q−nK . (5.29)

Letting Q (q−1) = BQ (q−1) /A (αq−1) and reordering (5.28) yield

K
(
q−1
)
A
(
q−1
)

+ q−mBQ

(
q−1
)

= A
(
αq−1

)
. (5.30)

Matching the coefficients of q−i on each side of (5.30), we can obtainK (q−1) and BQ (q−1).
More general, a polynomial equation X (q−1)A (q−1) + Y (q−1)B (q−1) = F (q−1), with

X (q−1) and Y (q−1) as the unknowns, is a Diophantine equation (Appendix B). Solutions
exist as long as the greatest common factor of A (q−1) and B (q−1) divides F (q−1).

Since q−m and A (q−1) are coprime (their greatest common factor is 1), (5.30) can be
solved if

deg
(
A
(
αq−1

))
≤ deg

(
BQ

(
q−1
))

+m

deg
(
BQ

(
q−1
))

+m = deg
(
K
(
q−1
))

+ deg
(
A
(
q−1
))
.

As deg (A (αq−1)) = deg (A (q−1)) = 2n, the minimum-order solution is obtained when

deg
(
K
(
q−1
))

= m− 1 (5.31)
deg

(
BQ

(
q−1
))

= 2n− 1.
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Example 5.1. Let m = 2, n = 1, and

A
(
αq−1

)
= 1 + αaq−1 + α2q−2.

The Diophantine equation is thus

K
(
q−1
) (

1 + aq−1 + q−2
)

+ q−2BQ

(
q−1
)

= A
(
αq−1

)
. (5.32)

Letting
K
(
q−1
)

= k0 + k1q
−1

we get

q−2BQ

(
q−1
)

= 1− k0 + (αa− ak0 − k1) q−1 +
(
α2 − k0 − ak1

)
q−2 − k1q

−3.

To have a realizable BQ (q−1), we need

1− k0 = 0, αa− ak0 − k1 = 0,

yielding

BQ

(
q−1
)

=
(
α2 − k0 − ak1

)
− k1q

−1 =
(
α2 − 1− a2 (α− 1)

)
− (α− 1) aq−1.

The final Q filter is thus

Q
(
q−1
)

=
(α2 − 1− a2 (α− 1))− (α− 1) aq−1

1 + αaq−1 + α2q−2
. (5.33)

For the case where m = 1, from (5.31), we know that K (q−1) = k0 is sufficient for the
minimum-order solution. The Diophantine equation (5.30) then reduces to (5.16). We have
the following detailed Q-filter transfer functions:

• m = 1 and n = 1:

Q
(
q−1
)

=
(α− 1) (a+ (1 + α) q−1)

1 + αaq−1 + α2q−2
(5.34)

• m = 1 and n = 2:

Q
(
q−1
)

=
a1 [(α− 1) + (α3 − 1) q−2] + (α2 − 1) [a2q

−1 + (α2 + 1) q−3]

1 + a1αq−1 + a2α2q−2 + a1α3q−3 + α4q−4
(5.35)

• m = 1 and n = 3:
Q
(
q−1
)

=
BQ (q−1)

AQ (q−1)
(5.36)

where

AQ
(
q−1
)

= 1 + a1αq
−1 + a2α

2q−2 + a3α
3q−3 + a2α

4q−4 + a1α
5q−5 + α6q−6

and

BQ

(
q−1
)

= a1

[
(α− 1) +

(
α5 − 1

)
q−4
]

+

a2

(
α2 − 1

) [
q−1 +

(
α2 + 1

)
q−3
]

+
(
α3 − 1

) [
a3q
−2 +

(
α3 + 1

)
q−5
]
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Remark 5.2. For implementation of the above filters, we need values of {ai}ni=1, which are
related to the frequencies {ωi = 2πTsΩi}ni=1 (Ωi is the center frequency in Hz) by

n∏
i=1

(
1− 2 cos(ωi)q

−1 + q−2
)

= 1 + a1q
−1 + · · ·+ anq

−n + · · ·+ a1q
−2n+1 + q−2n.

Remark 5.3. Small-scale problems can be readily solved by following Example 5.1. For larger-
scale equations, the matrix-equation approach for solving general Diophantine equations
(Appendix B) can be used. More details will be provided in the next Chapter.

5.5 Case Study and Comparison
We provide a case study and compare the two approaches (multi-Q and direct-Q) about
Q-filter design.

The following parameters are assumed:

• sampling time: Ts = 1/26400 sec

• plant delay: m = 2

• number of narrow bands: n = 1

• target frequency: 900 Hz

From Example 5.1 on the preceding page, the Q filter in the direct approach is given by
(5.33). Letting α = 0.9882, we obtain Q (z) with its frequency response shown in the dashed
line in Figure 5.1. Correspondingly in Figure 5.2, the dashed line provides the magnitude
response of 1− z−mQ (z). We observe the strong attenuation at 900 Hz and the width of the
stop band is about 100 Hz.

For the multi-Q approach, we use (5.27) to get Q (q−1) = [Qm=1 (q−1)]
m where Qm=1 (q−1)

is from (5.18). Letting α = 0.9765 yields the solid lines in Figures 5.1 and 5.2.
Both approaches give the desired shape of 1 − z−mQ (z) in Figure 5.2. In the phase

response in Figure 5.1, we can see that both filters have non-zero phases at 900 Hz—the
center frequency of the pass band. This is for compensating the delay effect z−m. The multi-
Q approach provides smaller magnitude response outside the pass band of Q (z), which
implies stronger filtering of noises and model mismatches by Q (z).

Associated with the sharper magnitude response, the solid line in the phase response
changes more aggressively in Figure 5.1. The root cause of this phenomenon is Bode’s Phase
Formula (see Section 2.4), which tells that a fast-changing phase response always comes with
a rapid magnitude response, if the system is minimum-phase.
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Figure 5.1: Internal-model based Q-design example: Q (z)
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Figure 5.2: Internal-model based Q-design example: 1− z−mQ (z)
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To see more details, note first that any filter can be decomposed to the product of a
minimum-phase filter and an all-pass filter. In the multi-Q approach, we have

Q(z) =

[
(1− α) (−a− (1 + α) z−1)

1 + aαz−1 + α2z−2

]2

=

[
(α− 1) (a+ (1 + α) z−1)

1 + aαz−1 + α2z−2

]2

.

The zero at − (1 + α) /a (= 1.10173) is outside the unit circle. Factorization yields

Q (z) =

(α− 1) a
(

1 + (1+α)
a
z
)

1 + aαz−1 + α2z−2

(
1 + (1+α)

a
z−1
)

(
1 + (1+α)

a
z
)
2

=

(α− 1) a
(

1 + (1+α)
a
z
)
z−1

1 + aαz−1 + α2z−2

(
1 + (1+α)

a
z−1
)

z−1
(

1 + (1+α)
a
z
)
2

=

(α− 1) a
(
z−1 + (1+α)

a

)
1 + aαz−1 + α2z−2

(
1 + (1+α)

a
z−1
)

z−1
(

1 + (1+α)
a
z
)
2

where the part
(α− 1) a

(
z−1 + (1+α)

a

)
1 + aαz−1 + α2z−2

is of minimum phase and (
1 + (1+α)

a
z−1
)

z−1
(

1 + (1+α)
a
z
) (5.37)

has unit magnitude response due to the equality

1 +
(1 + α)

a
e−jω = 1 +

(1 + α)

a
ejω.

The filter (5.37) is thus an all-pass filter. The zero and the pole of (5.37) are, respectively,
− (1 + α) /a (= 1.10173) and −a/ (1 + α) (= 0.9829). Both are very close to the point (1, 0)
in the Z domain, and hence do not influence the phase response at high frequencies (see Figure
5.3). Hence, The phase response in Figure 5.1 at around 900 Hz is mainly determined by the
minimum-phase portion of the Q filter. As the solid line has a rapid-changing magnitude
response, Bode’s Phase Formula (see Theorem 2.4 on page 20) thus explains the sharper
slope of the solid line in the phase response.
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Figure 5.3: Frequency response of the all-pass component in the Q filter

Similar analysis can be applied to the Q filter from the direct approach

Q (z) = (α− 1)
(α + 1− a2)− az−1

1 + αaz−1 + α2z−2

whose zero is at 1.0673—also close to the point (1, 0).

The design approach in this chapter is intrinsically suitable for multiple narrow-band local
loop shaping. Figure 5.4 shows the use of the direct-Q approach to obtain the previously
mentioned example of a five-band Q filter design. Such complex bandpass Q (z) is challenging
to obtain using conventional summation formulation Q (z) =

∑n
i=1Qi (z), especially when

the frequencies of different bands are very close to each other.
Finally, examining Figure 5.5, the enlarged version of Figure 5.2, we see that 1−z−mQ (z)

has slightly different behaviors outside the narrow band at 900 Hz: in the direct approach,
the magnitude is almost strictly 1 (0 dB) for the majority of the frequency region, and slightly
more amplified near 800 and 1000 Hz [about 1.185 (1.5dB) in the peak value]; in the multi-Q
approach, 1 − z−mQ (z) has flatter magnitude response but slightly less robustness against
noise and uncertainties (recall Figure 5.1). For narrow-band loop shaping, the impact of the
difference is quite small. When the desired attenuation region is wider, we need to be more
careful about the waterbed effect. This is the topic of the next chapter.
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Figure 5.5: Internal-model based Q-design example: 1− z−mQ (z) (enlarged view)
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5.6 Application: Vibration Rejection on an Active
Suspension

The Pseudo Youla-Kucera parameterization with the multi-Q approach is applied to the
benchmark on active suspension described in Section 3.3. In this system, the plant delay
is two. Hence two Qm=1(z) blocks are needed in (5.24). Recall the frequency response of
the plant in Figure 5.6. The system has not only nonminimum-phase zeros but also sharp
resonant and anti-resonant modes, which make the control problem intrinsically difficult. As
a benchmark, different types of vibration signals, in the frequency region between 50 Hz and
95 Hz, are applied to the system to test the performance, robustness, and complexity, of the
algorithm. The benchmark compares the open- and closed-loop residual errors among all
participants. As the baseline controller differs in each research group and the open loop is
robustly stable, we set our baseline controller to have very small gains (Cbaseline ≈ 0), so that
the performance comparison reflects directly the effect of the add-on YK parameterization.
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Figure 5.6: Frequency response of the plant in the active suspension

Three levels of evaluations are conducted:

Level 1: rejection of one narrow-band vibration

Figures 5.7 and 5.8 present the time trace and the steady-state error spectra when the system
is subjected to a 70 Hz disturbance. In the time trace, the disturbance have been significantly
attenuated such that vibration-induced errors are visually invisible under the compensation
scheme. Indeed in Figure 5.8, the spectral peak at 70 Hz has reduced from around -42 dB
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(a) Simulation: vibration injected at the fifth second
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(b) Experiment: vibration injected at the tenth second

Figure 5.7: Time-domain results of rejecting a 70 Hz vibration
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Table 5.1: Simulation and experimental results of rejecting vibrations with unknown constant
frequencies (level 1)

freq. global

attenua-

tion

disturbance

attenua-

tion

maximum

amplifica-

tion

freq. global

attenua-

tion

disturbance

attenua-

tion

maximum

amplifica-

tion

(Hz) (dB) (dB) (dB) (Hz) (dB) (dB) (dB)

S
im

u
la
ti
on

50 34.55 51.18 3.10

E
xp

er
im

en
t

50 35.80 46.61 7.58
55 34.40 56.55 4.04 55 35.43 51.38 10.91
60 34.40 52.22 3.33 60 35.51 52.10 8.89
65 34.43 50.93 3.08 65 33.54 53.89 7.52
70 34.44 55.44 2.79 70 31.42 48.37 8.02
75 34.77 54.76 2.96 75 31.05 49.01 7.85
80 34.99 46.99 3.74 80 31.44 49.04 9.29
85 34.62 45.87 4.88 85 30.23 45.70 6.63
90 32.53 45.83 4.25 90 29.40 42.62 8.20
95 25.39 48.33 4.72 95 26.42 31.58 6.64

to -90 dB, indicating a disturbance attenuation of about 48 dB and a full removal of the
70-Hz peak. These results are directly reflected in Figure 5.9, which presents the magnitude
responses of the sensitivity functions (note the sharp notch at 70 Hz and small amplifications
at other regions).4 There is a permanent disturbance at around 50 Hz and some other small
spectral peaks at low frequencies in experiments. They did not appear during simulation
but are however not amplified during experiments.

The algorithm is additionally tested at frequencies uniformly sampled between 50 Hz and
90 Hz. Table 5.1 summarizes the overall 2-norm reduction of the errors (global attenuation),
the disturbance attenuation at the vibration frequencies, and the maximum amplification in
the error spectrum. Similar to Figures 5.7 and 5.8, in all tests, the narrow-band disturbance
has been greatly attenuated within a short period of time.5

4For demonstration of the pure disturbance-rejection performance, we used a very weak baseline controller
here. This is feasible as the plant is open-loop stable.

5 As the system has two pairs of strong resonant and anti-resonant modes neat 50 Hz and 100 Hz (recall
Figure 3.15), we intentionally reduced the depth of attenuation at frequencies below 52 Hz and above 92
Hz in the experiments. This is done by selecting α to be closer to 1, and hence a sharper notch shape for
1−z−mQ (z). The simulation results do not have this modification and reflects the best possible performance.
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(a) Simulation
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(b) Experiment

Figure 5.8: Error spectra of rejecting a 70 Hz vibration
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Figure 5.9: Magnitude response of the sensitivity function with Cbaseline ≈ 0

Level 2 and level 3: rejection of two and three narrow-band vibrations

The simulation and experimental results for level-2 and -3 tests are summarized respectively
in Tables 5.2 and 5.3. Sample results are shown in Figures {5.10, 5.11, 5.12}. The complexity
of the problem has been much increased, especially in the level-3 test. It appears the strong
vibrations have excited other system modes at the beginning of all experiments (see the
small side peaks in Figure 5.12). Yet we observe consistent and strong error reduction.
In particular the waterbed effect has been very well controlled: with strong attenuation
at the disturbance frequencies, the spectral amplification has been maintained very small.6
Actually, the maximum amplification of our approach is the smallest among the benchmark
participants [25].

The benchmark has set up several evaluation quantities about overall performance, ro-
bustness, and complexity. The proposed algorithm achieved 100% in the benchmark specifi-
cation index for transient performance; 100%, 100%, and 99.78% respectively in the steady-
state simulation performance of level 1, level 2, and level 3; and ranked one, three, and two,
respectively in the experimental results of different levels. The recorded task execution time,
which measures the algorithm complexity, is also small among the benchmark participants.
Detailed summaries and discussions are provided in [25, 7].

6Compared to the simulation result, actual experiments includes various other random disturbances,
which account for the larger values in the maximum spectral amplification.
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Figure 5.10: Time-domain experimental result of rejecting two narrow-band vibrations
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Figure 5.11: Time-domain experimental result of rejecting three narrow-band vibrations
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Figure 5.12: Frequency-domain experimental result of rejecting three narrow-band vibrations

Table 5.2: Simulation and experimental results of rejecting vibrations with unknown constant
frequencies (level 2)

frequency global attenuation disturbance attenuation maximum amplification

(Hz) (dB) (dB)-(dB) (dB)

S
im

u
la
ti
on

50,70 39.87 (43.87)(49.81) 5.17
55,75 40.00 (51.22)(50.18) 3.83
60,80 40.35 (47.51)(42.28) 5.49
65,85 40.38 (46.66)(42.15) 6.69
70,90 39.66 (50.24)(41.23) 6.06
75,95 37.33 (49.84)(43.08) 4.87

E
xp

er
im

en
t 50,70 37.56 (42.95)(45.04) 10.77

55,75 38.56 (47.11)(44.71) 7.98
60,80 39.83 (41.91)(39.05) 8.10
65,85 35.31 (50.39)(38.52) 11.27
70,90 37.05 (44.28)(37.33) 7.47
75,95 35.31 (46.31)(33.15) 9.04
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Table 5.3: Simulation and experimental results of rejecting vibrations with unknown constant
frequencies (level 3)

frequency global attenuation disturbance attenuation maximum amplification
(Hz) (dB) (dB)-(dB)-(dB) (dB)

S
im

. 50,65,80 43.91 (42.63)(39.54)(40.76) 6.57
55,70,85 43.93 (47.93)(44.80)(40.36) 4.91
60,75,90 43.48 (45.57)(47.12)(40.29) 4.88
65,80,95 42.00 (44.58)(39.94)(41.39) 5.11

E
xp

. 50,65,80 41.97 (38.48)(45.66)(42.86) 7.54
55,70,85 39.59 (44.79)(44.41)(37.54) 9.46
60,75,90 38.31 (42.65)(41.75)(35.95) 8.27
65,80,95 39.01 (43.70)(37.90)(33.14) 8.26

5.7 Application: Unnatural-torque Compensation in
Active Steering

The Q filter design using the direct approach is evaluated on the active steering system
described in Section 3.4 on page 36.

In one level of the baseline electric power steering (EPS) system, we have a velocity
feedback control loop to control the EPS motor speed in Figure 5.13. Figure 5.14 shows the
frequency response of the plant. The system has a 4ms input delay, yielding m = 4 in the
Pseudo YK parameterization and Q-filter design.
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Figure 5.13: Hardware configuration of the EPS components

The top plot of Figure 5.15 demonstrates the motor velocity during a variable-speed
steering test, where we observe large tracking errors between the reference velocity and the
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Figure 5.14: Open-loop frequency response from the EPS controller output to the pinion
speed: dashed–measurement; solid–P̂ (z)

actual motor speed. Further investigation shows that there are strong narrow-band vibrations
due to imperfect motor rotations. The dashed line in Figure 5.16 presents the spectrum of
the tracking errors when we apply a constant-velocity steering. The strong spectral peak at
15 Hz contributes greatly to the tracking errors.

Applying the proposed direct Q-filter design yields the solid line in Figure 5.16. Vi-
sual comparison indicates that the algorithm has removed the original spectral peak at 15
Hz. Computing the standard deviations for the tracking errors, we obtain a 74.77% error
reduction on the 3σ value (from 0.20826 rad/s to 0.052549 rad/s).

The vibration frequency actually is time-varying. In the constant-speed tests, alternating
the motor speed ωm reveals that the vibration frequency fv changes according to fv =
γnωm, where γn depends on the number of magnetic pairs in the motor. Using this result,
an adaptive/speed-dependent Q filter is constructed for the variable-speed test in Figure
5.15. We see from the bottom plot, that the algorithm provides significant performance
enhancement, both visually and quantitatively (3σ reduces from 0.19402 to 0.102).

With the improvements in the low-level control, the full EPS system with variable gear
ratio gained much better overall response. Figure 5.17 shows the actual steering torque under
a variable speed steering test. Compared to Figure 3.20, the case without the proposed
vibration compensation, the steering-wheel angle is better maintained at a constant value,
and the errors in the steering torque is also greatly reduced.
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Figure 5.15: Time traces of the EPS tracking result during variable-speed steering
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Figure 5.16: Spectra of the tracking errors during constant-speed steering
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Figure 5.17: Steering torque with unnatural-torque compensation
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Chapter 6

Advanced Q-filter Design: “Shaping the
Waterbed”

We have discussed two approaches in designing

1− z−mQ(z) =
A(z)

AQ(z)
K(z) (6.1)

so that local loop shaping can be achieved via

S
(
ejω
)
≈ So

(
ejω
) (

1− e−mjωQ
(
ejω
))
. (6.2)

The dashed line in Figure 6.1 presents an example of the solved Q(z) and 1 − z−mQ(z)
using the direct approach, with α = 0.993, Ts = 1/26400 sec, Ω0 = 3000 Hz, and m = 2.
1 − z−mQ(z) is approximately unity except at the desired attenuation frequency 3000 Hz,
where we have

1− e−mjω0Q(ejω0) = 0, ω0 = 2πΩ0Ts.

This is because
A
(
ejω0

)
= 1− 2 cos (ω0) e−jω0 + e−2jω0 = 0

from the internal model principle. Thus, S(ejω0) = 0 and disturbances at 3000 Hz get
perfectly attenuated. Meanwhile, the magnitude of Q(z) reduces from 0dB at 3000 Hz
quickly down to -35dB (0.0178 in absolute value) in the low-frequency region, and -50dB
(0.0032) in the high-frequency region. These bandpass properties reduce the influence of the
model uncertainties, and make (6.2) a valid approximation.

With the same center-frequency configuration, the solid line in Figure 6.1 shows the solved
Q(z) and 1 − z−mQ(z) for α = 0.945. The -3dB bandwidth of the pass band for this Q(z)
is approximately 475 Hz. As we increase the servo-enhancement region, some amplifications
[less than 1.2dB (= 1.1482)] occur in the magnitude response of 1 − z−mQ (z). In simple
situations where one wide notch or multiple narrow-band notches are sufficient for the control
objective, the small amplification is an acceptable trade off. For more complicated cases,
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such waterbed-type phenomenon needs more careful treatments. In this chapter, we first
prove the inevitability of the amplification, then provide ways to control it.
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Figure 6.1: Q-filter design by direct approach: from narrow band to wide band

6.1 The Fundamental Limitation
The fact that 1− z−mQ (z) always has magnitudes higher than one, is due to several results
in fundamental complex analysis about analytic functions, harmonic functions, and Poisson
Integrals.

Theorem 6.1. Let
1− z−mQ (z) =

A (z)

AQ (z)
K (z)

where Q (z) is a proper and rational transfer function in z; K (z) is stable; and

A(z) =
n∏
i=1

(
1− 2 cos(ωi)z

−1 + z−2
)

AQ(z) =
n∏
i=1

(
1− 2α cos(ωi)z

−1 + α2z−2
)
.
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If K (z) has l unstable zeros {γi}li=1, then

1

π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω =

l∑
i=1

ln |γi| (6.3)

As a special case, when K (z) is a minimum-phase transfer function, then

1

π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω = 0 (6.4)

Proof. see Appendix A.4.

Theorem 6.1 explains the reason for the shape of 1−z−mQ (z) in Figure 6.1. An important
remark for Figure 6.1 is that, although the waterbed effect is inevitable, we can control it
and achieve smooth spread of the magnitude increase for 1− z−mQ (z), to avoid introducing
new spectral peaks in the residual error.

Corollary 6.1. (Sensitivity Integral for Add-on Loop Shaping in Pseudo YK Parameteriza-
tion) Under perfect-model assumption in pseudo Youla-Kucera parameterization, we have

1

π

ˆ π

0

ln
∣∣S (ejω)∣∣ dω =

1

π

ˆ π

0

ln
∣∣S0

(
ejω
)∣∣ dω

if 1− z−mQ (z) does not have unstable zeros. Otherwise

1

π

ˆ π

0

ln
∣∣S (ejω)∣∣ dω =

1

π

ˆ π

0

ln
∣∣S0

(
ejω
)∣∣ dω +

l∑
i=1

ln |γi|

where {γi}li=1 are the unstable zeros of 1− z−mQ (z).

Proof. From (4.20),
S
(
ejω
)

= S
(
ejω
) (

1− e−mjωQ
(
ejω
))

if there is no mismatch between P (ejω) and P̂ (ejω). Hence

1

π

ˆ π

0

ln
∣∣S (ejω)∣∣ dω =

1

π

ˆ π

0

ln
∣∣S0

(
ejω
)∣∣ dω +

1

π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω

The result follows immediately from Theorem 6.1.
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6.2 Gain Scheduling
The simplest approach to reduce the amplification is to design first the regular Q filter in
(6.1) and then scale down its magnitude via

Q (z)←− gQ (z) , g ≤ 1. (6.5)

By making Q (ejω) smaller overall, the value of 1− e−jmωQ (ejω) is closer to unity, especially
outside the pass band of Q (z). Of course, this is accomplished by the lost of perfect-error-
reduction property. Yet this simple gain-scheduling scheme offers quite effective loop shapes
as shown in Figure 6.2.
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Figure 6.2: Example wide-band local loop shaping results

Next, we discuss additional methods to flexibly control the waterbed when designing
the Q filter. These can be combined with (6.5) when the simple gain-scheduling scheme is
insufficient itself to provide a stable and high-performance closed loop.
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6.3 Add-on Pole and Zero Placement

The Effect of Fixed Zeros

In Chapter 5, we chose the IIR Q(q−1) with a customized denominator A(αq−1), but have
not placed specific structural designs for the numerator BQ(q−1). Actually BQ(q−1) is the
unknown to be solved in

K
(
q−1
)
A
(
q−1
)

+ q−mBQ

(
q−1
)

= A
(
αq−1

)
(6.6)

and its nontrivial frequency response is solely determined by the algebraic equation (6.6).
We can add a fixed part B0(q−1) such that

BQ(q−1) = B0(q−1)B
′

Q(q−1). (6.7)

Designing B0(q−1) = 1− q−1 for example, will add a scaled differentiator in Q (q−1), yielding
Q(ejω)|ω=0 = 0, i.e., zero magnitude at DC frequency. Figure 6.3 presents the effect of such
a design: in addition to a gain scaling of gQ (z), the enhanced small gain at low frequencies
clearly makes the magnitude response of 1−z−mQ (z) smaller in the highlighted dark region.
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More generally, introducing fixed zero near q = −1/q = 1 in the Z plane will provide
enhanced small gains for Q(q−1) in the high/low-frequency region. Extending this idea, we
can essentially place magnitude constraints at arbitrary desired frequencies, by letting

B0(q−1) = 1− 2β cosωpq
−1 + β2q−2 (6.8)

in (6.7), which places the fixed zeros βe±jωp to penalize the magnitude of the Q filter near ωp.
Figures 6.4 and 6.5 demonstrate two examples of such additional frequency based constraints.
The effect of B0 (q−1) is immediately seen in both Q (q−1) and 1− q−mQ (q−1).
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Figure 6.4: Effect of a fixed zero at high frequency
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Figure 6.5: Effect of a fixed zero at a specific frequency

Table 6.1 summarizes the effects of different configurations for the fixed term B0(q−1).
For band-limited loop shaping, it is natural to place magnitude constraints at both low and
high frequencies. In this case, the modules in Table 6.1 can be combined, e.g., as shown in
Figure 6.6, to form the overall enhancement in Figure 6.7.

Table 6.1: Effects of placing fixed zeros to Q(q−1)

B0(q−1) zeros small |Q(ejω)|
1 + q−1 −1 around Nyquist freq.

1 + ρq−1, ρ ∈ [0.5, 1] −ρ at high freq.
1− ρq−1, ρ ∈ [0.5, 1] ρ at low freq.

1− 2β cosωpq
−1 + β2q−2

βe±jωp around ωpβ ∈ (0, 1]
1− q−1 1 at low freq.
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The Effects of Cascaded IIR Filters

By (6.7) we essentially have cascaded the FIR filter B0(q−1) to Q(q−1). B0(q−1) has been
designed to control the magnitude response of Q(q−1) at some specific frequency regions.
IIR design can potentially create additional flexibility compared to FIR filters. From the
frequency-response perspective, cascading two bandpass filters with the same center fre-
quency provides a new bandpass Q(q−1), which can have reduced magnitudes at all frequen-
cies outside the passband. This is inspired by the multi-Q approach in the previous chapter,
and suggests us to assign an IIR bandpass B0(q−1) in

Q(q−1) = Q0(q−1)B0(q−1),

where Q0(q−1) is a regular solution from the direct or multi-Q approaches in Chapter 5.
Note that Q0(q−1) is not a conventional bandpass filter in the sense that

Q0(ejωi) = ejmωi

at its center frequency ωi [see (5.19) and (5.27)]. B0(q−1) hence needs to satisfy B0(ejωi) = 1
to preserve the property Q0(ejωi)B0(ejωi) = Q0(ejωi) = ejmωi . A standard bandpass filter
will satisfy this requirement. Recall that A(q−1)/A(αq−1) is a notch filter. One candidate
B0(q−1) is

B0

(
q−1
)

= 1− η A(q−1)

A(αq−1)
, η ∈ (0, 1],

as unity minus the notch shape A(q−1)/A(αq−1) generates a bandpass shape.
Figure 6.8 presents the Q(q−1) and 1− q−mQ(q−1) solved from the discussed algorithms

in this section. The solid lines are the direct-Q solution from Section 5.4; the dashed lines
are respectively the FIR and the IIR enhancement from this section. We observe from the
magnitude responses of 1−q−mQ(q−1), that all three methods create the required attenuation
at around 3000 Hz. Also, the additional magnitude constraints on Q(q−1) are effectively
reflected in the bottom plot of Figure 6.8: in the dashed-line Q(q−1), the design of B0(q−1) =
1 + 0.7q−1 places a zero q = −0.7 near the Nyquist frequency (eπ = −1), yielding the
small gain in the high-frequency region compared to the solid-line Q(q−1); in the dotted-line
Q(q−1), by cascading the bandpass filter B0(q−1) (= 1− αA(q−1)/A(αq−1)), we have reduced
the magnitude of Q(q−1) at both low and high frequencies.

In general, it is preferred to evenly spread the amplifications, so the solid or the dashed
lines may usually be preferred from the performance perspective. Yet if large model uncer-
tainty exists which enforces Q(q−1) to have small magnitudes at high and/or low frequencies,
the dotted line may be considered over the other designs. Nonetheless, the maximum am-
plification among all designs is around 1.6dB (1.2023) while the attenuation is quite large in
a wide frequency region.
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6.4 Design Based on Convex Optimization
In this section, we formulate the Q-design problem in an optimization framework. Using

convex optimization, we are able to design Q(z) with arbitrary magnitude (upper) bounds,
and at the same time minimize the disturbance amplification in the closed-loop system.

Consider the following construction:

1− z−mQ(z) = Fnf (z)K(z), (6.9)
K(z) = k1 + k2z

−1 + . . . knk+1z
−nk . (6.10)

Here Fnf (z) is a notch filter that provides the desired low gains (in a range of frequencies)
to the sensitivity function; K(z) is introduced for causality of Q(z) and provides additional
optimal properties to Q(z).

With the flexibility in optimization, we can make the relaxation that instead of taking
the specific damped-pole form

Fnf (z) =
1 + a1z

−1 + · · ·+ anz
−n + · · ·+ a1z

−2n+1 + z−2n

1 + a1αz−1 + · · ·+ anαnz−n + · · ·+ a1α2n−1z−2n+1 + α2nz−2n
,
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the notch filter can have a general structure

Fnf (z) =
Bnf (z)

Anf (z)
(6.11)

with

Bnf (z) = b1 + b2z
−1 + · · ·+ bnb+1z

−nb

Anf (z) = a1 + a2z
−1 + · · ·+ ana+1z

−na .

Causality Constraint

Solving (6.9) and (6.11) gives

Q(z) = zm
Anf (z)−Bnf (z)K(z)

Anf (z)
=: zm

X(z)

Anf (z)
(6.12)

X (z) = Anf (z)−Bnf (z)K(z) (6.13)

Similar as before, since zm is not causal, the coefficients of z−i need to be zero for
i = 0, 1, . . . ,m−1 inX(z) to have a realizable Q(z).1 Expanding the convolution Bnf (z)K(z)
and grouping the coefficients in Anf (z)−Bnf (z)K(z), we can obtain the causality condition
in the following matrix form:

a1

a2
...
am


︸ ︷︷ ︸

Ã

−


b1 0 . . . 0 01,nk+1−m

b2 b1 0
... 01,nk+1−m

... . . . . . . 0 01,nk+1−m
bm . . . b2 b1 01,nk+1−m


︸ ︷︷ ︸

B̃


k1

k2
...
...

knk+1

 =


0
0
...
0

 . (6.14)

Here ai = 0 if i > na and bi = 0 if i > nb. Notice the columns of B̃ span Rm if b1 6= 0.
Therefore, the value of nk+1 has to be no smaller than m for a solution to exist for a general
Ã.

As an example, if m = 4 and

Fnf (z) =
1− 2β cosω0z

−1 + β2z−2

1− 2α cosω0z−1 + α2z−2

we have na = 2, nb = 2, nk = 3, and
1

−2α cosω0

α2

0

−


1 0 0 0
−2β cosω0 1 0 0

β2 −2β cosω0 1 0
0 β2 −2β cosω0 1



k1

k2

k3

k4

 = 0

1If m = 0, causality is automatically satisfied.
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which has the solution

k1 = 1

k2 = −2 cosω0 (α− β)

k3 = α2 − β2 + 2β cosω0k2

k4 = −β2k2 + 2β cosω0k3.

and hence
Q(z) =

−β2k3 + 2β cosω0k4 − β2k4z
−1

1− 2α cosω0z−1 + α2z−2
.

Remark 6.1. In the above example, although the order of K (z) is four, the solved Q (z) is
still second-order.

Optimal Performance

As has been shown in the last section, if nk + 1 = m, the m equations in (6.14) define a
unique solution for K(z). Additionally, nk can be set to be larger than m− 1 so as to allow
more design freedom in Q(z).

First, we can minimize the infinity norm of 1 − z−mQ(z) (maximum magnitude in fre-
quency response), which will in turn minimize the error amplification in the sensitivity func-
tion S (z) ≈ So (z) (1− z−mQ (z)). This can be achieved by min ||K(z)||∞ in (6.9). Second,
to keep the system robustly stable, the magnitude of Q(z) should be small at frequencies
outside its passbands, especially at high frequencies where large model uncertainty exists.
These two objectives can be formulated into the following optimization problem:

min : ||K(z)||∞ (6.15)
s.t.: causality constraint (6.16)∣∣Q(ejω)

∣∣ ≤ δ (ω) ω = ω1, ω2 . . . (6.17)

where δ (ω) is the user-defined magnitude upper bound at frequency ω.
The causality constraint (6.14) is a set of linear equations [explicitly nk > m − 1 is

assumed in this case, since if nk = m− 1, then the solution of K(z) is unique from (6.14)],
and tractable in the optimization formulation.

Equations (6.15) and (6.17) however are not yet convex.
For (6.15), the H∞ performance objective can be easily translated to a linear matrix

inequality (LMI) by applying the bounded-real lemma (see, e.g., [82, 83]). Let A, B, C and
D be the state-space matrices of K(z). Then

min : ||K(z)||∞
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is equivalent to

min
γ,M

:γ

s.t.

 ATMA−M ATMB CT

BTMA BTMB − γI DT

C D −γI

 � 0

M � 0

γ > 0.

For (6.17), by applying convex-optimization techniques, we can transform the magnitude
constraint to a set of convex quadratic constraints. To do so, notice first that

Q(z) = zm
(
1− Fnf (z−1)K(z−1)

)
. (6.18)

Constraining |Q(ejω)| ≤ δ (ω) is equivalent to requiring |Q(ejω)|2 ≤ δ2 (ω). The zm term has
unity gain, and can be dropped in the magnitude design. Notice also, that the frequency
response of K(ejω) is

K(ejω) =

nk+1∑
n=1

kne
−jω(n−1) = φTr (ω) θ − jφTi (ω) θ

where

φTr (ω) =
[

1 cos (ω) . . . cos (nkω)
]

φTi (ω) =
[

0 sin (ω) . . . sin (nkω)
]

θT =
[
k1 k2 . . . knk+1

]
.

Denote Fnf (ejω) = Fr (ω)− jFi (ω). It can now be computed that

Fnf (e
jω)K(ejω) = ψTr (ω) θ − jψTi (ω) θ,

where

ψTr (ω) = Fr (ω)φTr (ω)− Fi (ω)φTi (ω)

ψTi (ω) = Fr (ω)φTi (ω) + Fi (ω)φTr (ω) .

By computing the magnitude square of 1 − Fnf (ejω)K(ejω), we finally obtain the following
quadratic constraint for (6.18):∣∣Q(ejω)

∣∣2 = θT
[
ψr (ω)ψTr (ω) + ψi (ω)ψTi (ω)

]
θ − 2ψTr (ω) θ + 1 ≤ δ2 (ω) .

Notice that ψr (ω)ψTr (ω) + ψi (ω)ψTi (ω) is positive semi-definite. The above constraint is
thus convex in θ.
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Summarizing, we obtain the following equivalent form of Equations (6.15)-(6.17):

min
θ,M,γ

: γ

s.t.: B̃θ = Ã ATMA−M ATMB CT

BTMA BTMB − γI DT

C D −γI

 � 0, M � 0, γ > 0 (6.19)

θT
[
ψr (ω)ψTr (ω) + ψi (ω)ψTi (ω)

]
θ − 2ψTr (ω) θ + 1 ≤ δ2 (ω) , ω = ω1, ω2, . . .

min
θ,M,γ

:γ

s.t.: B̃θ = Ã ATMA−M ATMB CT

BTMA BTMB − γI DT

C D −γI

 � 0

M � 0

γ > 0

θT
[
ψr (ω)ψTr (ω) + ψi (ω)ψTi (ω)

]
θ

− 2ψTr (ω) θ + 1 ≤ δ2 (ω) , ω = ω1, ω2, . . .

where Ã and B̃ are from (6.14).
As a final note, to make (6.19) linear also in the decision variable θ, we choose the

controllable canonical form of K (z):

A =

[
0nk−1,1 Ink−1

0 01,nk−1

]
, B =

[
0nk−1,1

1

]
C = [k2, . . . , knk+1] , D = k1.

The entire optimization problem is now convex, and can be efficiently solved using the
interior-point method (see, e.g., [84]) in modern optimization.

Optimization Result

As an example, let m = 2 and

Fnf (z) =
1− 2β cosω0z

−1 + β2z−2

1− 2α cosω0z−1 + α2z−2

where ω0 = 2πΩHzTs. Since m = 2, the order of K(z) should be no smaller than one.
Consider the case of ΩHz = 2000, Ts = 0.04 ms, α = 0.9421, and β = 0.999. Figure
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6.9 demonstrates the magnitude responses of Q(z) and 1 − z−mQ(z) using the proposed
optimization. Also plotted are the results if we ignore z−m and directly assign a standard
bandpass filter Q(z) = 1 − Fnf (z). Notice first, from the second plot, that a standard
bandpass filter does not create the desired magnitude response in 1 − z−mQ(z). Instead
there are undesired large gains at around 2100 Hz. On the contrary, the causal and optimal
designs correctly introduce a sharp notch at the desired frequency. Second, compared to the
causal solution, the optimal solution enforces reduced gains in Q(z). In this example, the
magnitude of Q(z) is constrained to be no larger than -40dB at {0, 6000, 7500, 10000, 12500
(Nyquist frequency)} Hz.
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Figure 6.9: Q-design example based on convex optimization: BP denotes “bandpass”; the
standard BP filter is obtained from Q (z) = 1− Fnf (z); the causal and optimal BP designs
are from Section 6.4
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Chapter 7

Stable Selective Model Inversion

Inverse-based design has numerous practical applications. Designing inverse models itself is
an important control problem that has received much research attention (see, e.g., [85, 86,
87, 88]).

We have been assuming a stable P̂−1(z) in the formulation of the pseudo Youla-Kucera
parameterization. If P (z) is a minimum-phase system, P−1(z) can directly be used.1 For a
practical sampled-data system, non-minimum phase zeros may occur in P (z). In [89], it was
proved that, as long as the sampling time is sufficiently short, all continuous systems with
relative degree larger than or equal to two will have nonminimum-phase zeros in their zero-
order-hold equivalent. Fractional delays also introduce unstable zeros [89, 90]. In particular,
real unstable zeros will appear at high frequencies after fast sampling.

One fundamental reason for the feasibility of stably inverting (at least partially) the plant
dynamics, is that we can (and usually need to) accept imperfections in practical inverse
design. To begin with, high-frequency uncertainties always exist in actual systems. Perfect
model inversion is at first place impractical. Also, practical feedback design has an effective
servo bandwidth, above which the control efforts are always suggested to be kept small [61]
and perfect model inversion is hence not necessary. As long as nonminimum-phase zeros
do not occur at the desired servo-enhancement regions, a stable model inversion should be
feasible.

7.1 Unstable-zero Modulation
We provide first a simple ad-hoc method to get some intuitions of the solution.

It is natural for motion-control systems to have integrator-type plant dynamics [91], as
motors commonly take force/torque as the input and generate (angular) position or velocity
as the output. For discrete-time models of such systems, high-frequency unstable zeros
usually occur on the real axis on the left half side of the complex plane. Such unstable zeros
are less challenging compared to those at low frequencies. Intuitively, if the zeros of the

1For instance, piezoelectric actuators have flat nominal magnitude response, and is minimum-phase.
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Figure 7.1: Nominal model inversion by zero modulation

continuous-time plant are all on the left half plane, approximate discrete-time stable system
inversion should not be impossible.

Consider

Pd (z) = z−3 1.447663z2 + 3.684538z + 0.183621

z2 − 1.978354z + 0.978808
(7.1)

which is the zero-order-hold (sampled at 26400 Hz) equivalent of the continuous-time transfer
function

P (s) = e−10−5s 3.74488× 109

s2 + 565.487s+ 3.19775× 105
(7.2)

with two steps of additional delays. Equation (7.2) is an initial guess (by modeling the
physics of the motor and actuator) of the nominal model of the 14-order HDD system in
Figure 3.9 on page 32. Several notch filters have been designed to attenuate the resonances
at high frequencies. The solid line in Figure 7.1 shows the frequency response of the actual
plant with notch filters. The dashed line is the response of (7.1), which overall matches well
with the actual system.

One zero of (7.1) is unstable, at around −2.5, as shown in Figure 7.2. Factorizing yields

Pd (z) = z−m
B∗ (z)

A (z)

(
1− z−1γ

)
where γ is the zero outside the unit circle.
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Figure 7.2: Pole-zero plots of the nominal plant models

To show the impact of the term 1− z−1γ on the frequency response, we note first, that
the servo bandwidth for the system (single-stage HDD) is usually around 1300 Hz while the
sampling frequency is 26400 Hz. Consider ejω − γ, the contribution of the unstable zero in
the frequency response. At 1300 Hz, ω = 2π× 1300/26400 ≈ 0.309 rad = 17.72 deg. Hence,
between 0 Hz and 1300 Hz (which is the main “performance region”), ejω varies only in a
small arc on the unit circle, yielding very mild changes to the value of the vector ejω − γ.
Replacing the unstable zero at γ with a stable one near (−1, 0) as shown in Figure 7.2, and
after normalization,2 we obtain

P̂ (z) = z−3 z2 + 0.850852z + 0.040681

0.355831z2 − 0.703959z + 0.348290

whose frequency response is shown in the dotted (green) line in Figure 7.1. We observe that
P̂ (z) matches well with the actual plant dynamics in the solid line. Actually, below 3000
Hz, which is sufficiently high for major servo-enhancement schemes, the dotted line appears
to be a better fit compared to the dashed (red) line. For simple systems with few zeros, such
unstable-zero modulation is seen to maintain the essential plant information.

The next example provides the modeling of the top stage in the wafer scanner discussed
2The replacement of the unstable zero will change the low-frequency gains. Normalization is carried out

to counteract this gain change.
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in Section 3.1 on page 26. From physics, the nominal plant model is

P (s) =
1

ms2 + bs
=

1

0.2556s2 + 0.279s

whose zero-order-hold equivalent (sampled at 2500 Hz) is

ZOH(P ) =
3.12943× 10−7z + 3.12897× 10−7

z2 − 1.99956z + 0.99956
≈ 3.129× 10−7 (z + 1)

(z − 1)2 .

Comparing the frequency response with the experimental data, we found that there is one
additional input delay, yielding

P (z) =
3.129× 10−7 (z + 1)

z (z − 1)2 . (7.3)

The transfer function in (7.3) has a zero on the unit circle. Shifting it to be a strictly
minimum-phase zero, and normalizing the gain such that the magnitude at 100 Hz is perfectly
preserved, we have

P̂ (z) =
3.4766× 10−7(z + 0.8)

z(z − 1)2
(7.4)

or, equivalently

P̂ (z) = z−2 3.4766× 10−7(1 + 0.8z−1)

(1− z−1)2
.

Figure 7.3 provides the measured frequency response and the nominal fitting by (7.4).
Figure 7.4 shows the frequency responses of (7.3) and (7.4). We observe that the difference
in Figure 7.4 is quite small and the model matching at low frequencies is quite accurate.

The automation of the above modulation process, and the extension to general systems
with possibly more poles and zeros, are precisely the focus of the next section.

7.2 H∞-based Optimal Design
From the above discussions, we now formally propose to perform inverse design at selective
frequency regions. Denote P̂−1(z) as the nominal stable inverse for P (z). At frequencies
where there are no nonminimum-phase zeros and no large model uncertainties (usually low
and middle frequencies), we enforce correct model matching between P̂ (z) and P (z); other-
wise (commonly at high frequencies), we construct constrains such that P̂−1(z) has a limited
magnitude response.

We use an H∞ formulation to achieve this selective model inversion.
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Figure 7.3: Frequency responses of the reticle stage in the wafer scanner: measurement and
nominal model
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Let S denote the set of all stable discrete-time rational transfer functions. We search
among S to find

M(z) = z−mP̂−1 (z) (7.5)

such that the following three criteria are satisfied:

(i) M (z) is realizable/proper. As it is commonly desired to have the minimal
amount of delays in M (z), m in (7.5) can take the value of the relative degree
of P̂−1 (z);

(ii) model matching to achieve

min ||W1(z)
(
M(z)P (z)− z−m

)
||∞.

Namely, we minimize the maximum magnitude of the model mismatch

M(z)P (z)− z−m,

weighted by the filter W1(z). The ideal solution, if P−1(z) is stable, is simply
M(z) = z−mP−1(z). The weighting function determines the interested region
where we would like to have good model accuracy.

(iii) gain constraint : as the inverse filter is used for signal processing in feedforward
and feedback configurations, we should be careful to avoid noise amplification at
high frequencies. Consider

min ||W2(z)M(z)P (z)||∞

where the magnitude of M(z)P (z) is scaled by the weight W2(z). The optimal
solution for this part alone would be that M(z) = 0, i.e., M(z) will not amplify
any of its input components.

Combining the three design goals, we get

min
M(z)∈S

∥∥∥∥[ W1(z) (M(z)P (z)− z−m)
W2(z)M(z)P (z)

]∥∥∥∥
∞
. (7.6)

The optimization in (7.6) finds the optimal inverse that preserves accurate model infor-
mation in the frequency region specified by W1(z), and in the meantime penalizes excessive
high gains of M(z) at frequencies where W2(z) has high magnitudes. As mentioned before,
typically W1(z) is a low-pass filter and W2(z) is a high-pass filter.

By the formulation of the problem, (7.6) falls into the framework of H∞ control, and can
be efficiently solved in the robust control toolbox in MATLAB. The solution exists as long
as P (z), W1(z), and W2(z) are stable. The order of M(z) will be the sum of the orders of
W1(z), W2(z), z−m and P (z). After solving (7.6), standard model-reduction techniques can
be applied to obtain a lower-order solution of M(z).
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Figure 7.5: Frequency response of the plant and its minimum-phase approximation

As an example, we apply the above formulation to the active suspension system in Sec-
tion 3.3 on page 34. The dashed line in Figure 7.5 is the frequency response of P (z) from
standard system identification. The solid line is the response of the solved P̂ (z), where we
have first obtainedM(z) = z−mP̂−1 (z) from (7.6), performed model reduction to reduce the
order of M (z) to 23, and then let

P̂ (z) = z−mM−1 (z) .

We can see that the optimal solution matches well with the actual plant dynamics, and
moreover, P̂−1(z) is stable although P (z) itself is of nonminimum phase.

Remark. We intentionally used a high-order (and challenging) example in Figure 7.5. For
many motion control problems, the plants have much simplified dynamics by the nature of
hardware design.
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Chapter 8

Enhanced Repetitive Control

8.1 Introduction
In this chapter, we provide one particular application of the pseudo Youla-Kucera parame-
terization.

Repetitive control (RC) is a well-known servo design tool for systems that are subjected to
periodic disturbances/references. It implements an internal model [92] 1/(1−z−N) (N is the
period of the disturbance/reference), or 1/(1−e−Tps) in the continuous-time case (Tp denotes
the period), into a feedback system, such that errors in the previous repetition can be used
to improve the current regulation/tracking control. Distinguished by its high performance as
well as the simple design and implementation criteria, ever since its introduction [93, 94, 95],
RC has attracted a great amount of research efforts [96, 97, 94, 95]. Its versatility has
been tested in various practical applications, including but not limited to: track-following in
magnetic and optical disk drives [98, 99, 100, 101], robot arm control [102], and regulation
control in vehicles [103]. For more complete lists of applications, readers can refer to the
survey papers [96, 97].

The configuration of the internal model and its interaction with the feedback system
vary in literature. The continuous-time RC design mainly applies a series or parallel plug-in
configuration [99, 104, 94, 105, 106, 107]. The prototype RC [95, 108] applies the Zero-
Phase-Error-Tracking [85] idea and directly cascades a robust version of 1/(1 − z−N) into
the open-loop transfer function. Additionally there are plug-in configurations of discrete RC
design, among which [109, 110] applied optimization techniques with an extended high-order
internal model.

Ultimately, a generalized version of 1− z−N or 1− e−Tps is absorbed into the denomina-
tor of the overall feedback controller, therefore creating high-gain control at the repetitive
frequencies (frequencies of the roots of 1− z−N = 0 or 1− e−Tps = 0).1 From Bode’s Integral
Theorem, enhanced servo performance at certain frequencies commonly results in deterio-

1i.e., kFs/N Hz for 1 − z−N = 0 and k/Tp Hz for 1 − e−Tps = 0. Here k = 0, 1, 2, ... and Fs is the
sampling frequency. Fs/N and 1/Tp are called the fundamental frequencies.
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rated loop shapes at other frequencies. This fundamental limitation, reflected in repetitive
control, is the comb-like magnitude response in the closed-loop sensitivity function, along
with undesired gain amplifications at frequencies other than the comb centers (see some
examples in [99, 104, 106, 107, 109, 110]). The problem is more significant if there are large
non-periodic components in the disturbance (e.g., in hard disk drive systems [70]).

Relaxing the previous performance limitations, in this chapter we discuss a new structural
RC design with improved loop-shaping properties. Instead of using the full information of
the previous errors, we use the pseudo YK parameterization to extract only the repetitive
errors in feedback control. In the frequency domain, this corresponds to a series-parallel
implementation of the internal model, with direct control of the comb-like loop shape, leading
to greatly reduced gain amplifications at the non-repetitive frequencies. An additional benefit
of the reduced gain amplification is that the proposed design shows increased ability to reject
repetitive errors at high frequencies. Finally, we discuss the control of the transient response
for obtaining a smoother and accelerated transient.

8.2 Repetitive Loop Shaping
Recall the pseudo Youla-Kucera parameterization structure in Figure 8.1. From the class
of stabilizing controllers, we seek for one advantageous Q (z) to obtain enhanced repetitive
control (ERC). The plug-in repetitive signal generator provides the compensation signal
c(k) in Figure 8.1. In the case of regulation control, r(k) = 0; we aim to have c(k) cancel
the periodic components in d(k). In the tracking-control case, c(k) functions to reduce the
tracking error between y(k) and r(k).

+

-

r(k)

u(k)

y(k)
C(z) P (z)

z
¡m

z
¡m

P̂
¡1(z)

Q(z)
d(k)

e(k)

c(k)

u
¤(k)

+

+

+

+

++

Plug-in repetitive signal generator

Figure 8.1: Block diagram of the proposed repetitive control scheme

Remark 8.1. If the z−mP̂−1(z) block is removed from Figure 8.1 and Q(z) is set to z−(N−m),
the open-loop transfer function becomes P (z) 1

1−z−NC(z), and the proposed compensator
reduces to an ideal-case plug-in repetitive controller that is similar to prior literature.
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From Chapter 4 we have

S (z) =
1− z−mQ (z)

1 + P (z)C (z) + z−mQ (z) (P̂−1 (z)P (z)− 1)
(8.1)

and the closed-loop transfer functions from d(k) and r(k) to e(k) are respectively given by

Ged(z) = −P (z)S(z) (8.2)
Ger(z) = S(z). (8.3)

Ultimately, we wish to obtain a Q filter that achieves Figure 8.2.
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Figure 8.2: Intuition for Q-filter design in ERC

In this way, the selective unity gain in Q (z) provides the desired attenuation in 1 −
z−mQ (z), and the high-frequency low gain of Q (z) keeps the influence of the uncertainty
term z−mQ (z) (P̂−1 (z)P (z)− 1) small in (8.1), so that

S(z) ≈ 1− z−mQ(z)

1 + P (z)C(z)
(8.4)
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and the actual sensitivity function has the characteristics shown in Figure 8.3.
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Figure 8.3: Magnitude response of the sensitivity function in ERC

8.3 Ideal-case Q design
To derive the detailed mathematics, assume the disturbance contains only repetitive com-
ponents that asymptotically satisfy the internal model

(1− q−N)d(k) = 0 (8.5)

or, in the tracking-control case,

(1− q−N)r(k) = 0. (8.6)

From (8.2) and (8.3), to reject d(k) or track r(k), it suffices to have S(z)d(k) and S(z)r(k)
converge asymptotically to zero. By combining (8.1), (8.5) and (8.6), one may notice that
this sufficient condition is achieved if 1− z−mQ(z) contains the term 1− z−N .

Assigning Q(z) = z−(N−m) is one way which gives a scheme similar to conventional RC.
We adopt our usual IIR design concept, and propose

Q(z) ,
BQ(z)

AQ(z)
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with

AQ(z)− z−mBQ(z) = 1− z−N . (8.7)

Designing
AQ(z) = 1− αNz−N (8.8)

and solving (8.7) yield

BQ(z) = (1− αN)z−(N−m) (8.9)

1− z−mQ(z) =
1− z−N

1− αNz−N
. (8.10)

Hence we have achieved to include 1 − z−N in the numerator of 1 − z−mQ(z), with an
additional tunable module 1−αNz−N . Here α(∈ [0, 1]) is the ratio between magnitudes of the
poles and the zeros of 1− z−mQ(z).2 If α = 0, Q(z) becomes an FIR filter (Q(z) = z−N+m)
and ERC generates a loop shape that is similar to prior publications. This will be discussed
in more details in Section 8.8. On the other hand, α = 1 cuts off the repetitive compensation.
When α ∈ [0, 1), the loop shape can be flexibly designed. For instance, let N = 10, m = 1,
and assume a sampling frequency of 26400 Hz. Increasing α from 0 to 0.99 yields the
magnitude responses in Figure 8.4. From the top plot, we observe that as α increases
towards 1 (while still satisfying α ∈ [0, 1)), 1− z−mQ(z) has a sharper comb-like magnitude
response and a smaller H∞ norm. Correspondingly in the bottom plot, Q(z) behaves as
a sharper spectral-selection filter to preserve only the repetitive components. Specifically,
if α = 0, Q(z) has a magnitude response valued always at 1, and both the repetitive and
the non-repetitive error components are directly used for feedback compensation; in the
mean time, the maximum magnitude of 1 − z−mQ(z) equals

∥∥1− z−mz−(N−m)
∥∥
∞ = 2, i.e.,

disturbances at the corresponding frequencies get amplified by 100%. One can observe that
the design of (8.8) and the introduction of α have provided an additional degree of freedom
for repetitive loop shaping, enabling the improvement in Figure 8.4, from the solid lines to
the dotted lines. Additionally we have the following theorem:

Theorem 8.1. When P (z) = P̂ (z), conventional RC amplifies non-repetitive disturbances
by 100% in the worst case. The worst-case amplification is

(
2/(1 + αN)− 1

)
× 100% in the

proposed scheme. The maximum amplification occurs to the disturbance components at the
frequencies (2k + 1) /(2TsN) Hz, k = 0, 1, . . . .

2For this analytical reason, we used αN instead of defining AQ(z) = 1 − βz−N in (8.8), to avoid the
appearance of (numerically more fragile) N

√
· in our discussion. Yet for practical implementation, β , αN

can directly be used without the need of computing αN online.
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Proof. The maximum disturbance amplification corresponds to the maximum magnitude
response of 1− z−mQ(z) in (8.1). For (8.10), the squared magnitude response is∣∣Q (ejω)∣∣2 = Q

(
e−jω

)
Q
(
ejω
)

(8.11)

=
1− e−jωN

1− αNe−jωN
× 1− ejωN

1− αNejωN
=

1− cos (ωN)
1+α2N

2
− αN cos (ωN)

(8.12)

where ω = 2πΩHzTs.
Noting that cos (ωN) ∈ [−1, 1], we need only consider the behavior of the function

f (x) =
1− x

1+α2N

2
− αNx

, x ∈ [−1, 1] .

The derivative of f (x) is

f
′
(x) =

−1
2
(1− αN)2(

1+α2N

2
− αNx

)2 , x ∈ [−1, 1] .

It is straightforward to see that f ′ (x) monotonically decreases as x increases from −1 to
1. Thus, min {f (x)} and max {f (x)} are attained respectively at x = 1 and x = −1, with
min {f (x)} = 0 and

||1− z−mQ(z)||2∞ = max {f (x)} =

(
2

1 + αN

)2

. (8.13)

Taking the square root of (8.13) gives the maximum amplification gain. Solving x =
cos (2πΩHzTsN) = −1 gives that the maximum occurs at the frequencies ΩHz = (2k +
1)/(2TsN), k = 0, 1, . . . . In the special case of α = 0 (conventional RC)

||1− z−mQ(z)||∞ =
√

max {f (x)}|α=0 = 2

The proof is done by computing the relative amplification (||1− z−mQ||∞ − 1)× 100%.

8.4 Robustness and Implementation of Q(z)
It is necessary to incorporate a low-pass filter in Q(z) to make the influence of the uncertainty
term z−mQ(z)

[
P (z)P̂−1(z)− 1

]
small in (8.1). In the context of repetitive control, it is

additionally possible (and recommended) to apply a zero-phase low-pass filter. One simple
and flexible construction is as follows. Define first the following zero-phase low-pass filter as
a base structure

q0(z, z−1) =
(1 + z−1)n0(1 + z)n0

4n0
(8.14)
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Figure 8.4: Magnitude responses of 1− z−mQ(z) and Q(z) with different values of α

where 2n0 is the number of placed zeros at the Nyquist frequency. To have additional freedom
on the cut-off frequency, we can add extra zero-phase pairs given by

qi(z, z
−1) = qi(z

−1)qi(z), (8.15)

qi(z) =
1− 2 cos(ωiTs)z

−1 + z−2

2− 2 cos(ωiTs)
. (8.16)

Here i is the index number; ωi is in rad/sec; qi(z−1) is obtained by replacing every
z in qi (z) by z−1. The filter qi(z, z−1) places four zeros at e±ωiTs to remove the frequency
components at ωi’s, and is normalized by (2−2 cos(ωiTs))

2 to have a unity DC gain. The zero-
phase property is preserved since the frequency responses of qi(z−1) and qi(z) are complex
conjugates of each other.

Defining

q(z, z−1) =

nq∏
j=0

qj(z, z
−1),

where nq is the number of zero-phase pairs in (8.15), we can now construct the practical
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version of Q(z):

Q(z) =
(1− αN)z−(N−m−nq)

1− αNz−N
z−nqq(z, z−1) (8.17)

where nq is the highest order of z in q(z, z−1) (so that z−nqq(z, z−1) is realizable). It can be
noted that Q(z) is causal as long as N − m − nq ≥ 0. Figure 8.5 presents one realization
of (8.17), with N memory elements for the repetitive signal generator. The bandwidth of
the low-pass filter q(z, z−1) can roughly be tuned by comparing the magnitude responses of[
P (z)P̂−1(z)− 1

]
Q(z) and 1+P (z)C(z). Note that Q (z) is clearly stable in itself. From the

stability condition in general pseudo Youla-Kucera parameterization, the closed-loop system
has guaranteed stability if P̂ (z) = P (z) and P̂ (z)−1 is stable.

When the plant is perturbed to be P̃ (z) = P (z)(1 + ∆(z)) (assume the uncertainty ∆(z)
is stable and has a bounded H∞ norm), we have the robust-stability condition:

‖∆(z)T (z)‖∞ < 1 (8.18)

where T (z) is the nominal complementary sensitivity function (see Section 4.3 on page 53).

z¡nqq(z; z¡1)

®Nz¡m¡nq

z¡N+m+nq

yQ(k)xQ(k)
(1¡ ®N)

u¤Q(k)

Figure 8.5: Implementation of the Q filter

8.5 Transient Response and Algorithm Implementation
With the plug-in compensator, a new feedback system is formed. The plug-in repetitive
controller may be turned on or off depending on the presence of repetitive disturbances.
Although the two closed loops are designed to be asymptotically stable, switching between
the two stabilizing controllers in general does not yield smooth response [111]. This as-
pect should be carefully recognized for plug-in repetitive control, as N—the period of the
repetitive disturbance/reference—can be large in practice. We note that Figure 8.5 has the
following state-space realization

xQ(k) = (1− αN)u∗Q(k) + αNxQ(k −N)

yQ(k) = xQ(k −N +m+ nq)
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where u∗Q(k), yQ(k) ∈ R, and xQ(k) ∈ RN . As N may be large, αN can be quite small. When
xQ(k) is initialized to zero, the first N−m−nq values of yQ(k) equal zero. Starting from the
time instant N −m−nq + 1, yQ(N −m−nq + i) = (1−αN)u∗Q(i) for i ∈ [1, N ]. At this first
period of actual compensation, depending on the baseline closed-loop dynamics, the impulse
of u∗Q(k) can create high-amplitude transient response in the error signal. Additionally,
all the information in u∗Q(k), including the non-repetitive components, are fed back by the
compensation signal c(k) in Figure 4.6, yielding mismatched cancellation for the non-periodic
errors.

To reduce the possible overshoot and amplification of non-repetitive components, we can
apply a time-varying α for transient improvement. It is proposed to initialize α at 1, and
gradually reduce it to a designed value αend (from steady-state analysis), following the decay
rule

α(k + 1) = αend − (αend − α(k))αrate, (8.19)

with α(0) = 1 and the decay rate αrate ∈ (0, 1). Notice that when α = 1, the Q filter is es-
sentially turned off in (8.17). By the above construction, at the first period of compensation,
u∗Q is gradually (weighted by 1− αN) released to yQ.

As for the settling time of the Q filter, the transient duration is determined by the pole
location of the filter. Let nt denote the number of periods for the impulse response of Q(z)
to reduce to less than 36.8% (≈ e−1) of its peak value. From (8.17), this time constant is
determined by (αN)nt = e−1, i.e.,

nt =
−1

logαN
. (8.20)

Here we allow non-integer value of nt (e.g., nt = 0.5 means that it takes half the time of a
period to settle).

From (8.20), the smaller the term αN , the shorter the settling time. In the case that
α = 0, limα→0(nt) = 0.

Combining the above discussion with that of Figure 8.4, we can obtain in Table 8.1,
the influence of α on various closed-loop properties. Notice the two conflicting objectives
of maintaining (a) short transient duration and (b) small transient overshoot as well as
good steady-state performance. Initializing α at 1 keeps the transient smooth and gradually
reducing it afterward helps to accelerate the transient. Yet to maintain the steady-state
performance, the final value of α may be required to be not too small. A slightly more
complicated design of α is to first reduce it from 1 to a middle value αmid and then increase
it to a final αend (see Figure 8.11).

In summary, the following design procedures are suggested for implementing the proposed
algorithm:

1. analyze the plant; obtain z−m and P̂−1(z).

2. design for steady-state performance according to Sections 8.3 and 8.4: obtain (8.17),
check the frequency responses of 1− z−mQ(z) and S(z) [from (8.10) and (8.1) respec-
tively]; compute the maximum amplification from Theorem 8.1. Here it is suggested to
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start with an α that is close to unity (this gives smaller amplification of non-repetitive
errors), and alter the value if stability or the desired performance metric is not reached.

3. transient improvement : compute (8.20) and simulate the time-domain closed-loop
response–if large overshoot occurs, consider the time-varying α and initialize it at
1 as discussed in this section; if transient is excessively long, choose an intermediate
value for α that is smaller than its steady-state value; keep the final value of α the
same as the one designed in step 2).

Table 8.1: Influence of α on the transient and the steady-state performance

value of α(∈ [0, 1])
steady-state
performance

transient
overshoot

transient
duration

large

small
amplification of
non-repetitive
components

small long

small converse of the
above possibly large short

8.6 Application: Repeatable-runout Rejection on a
Hard Disk Drive

This section provides a design example in the track-following control of the single-stage HDD
system discussed in Section 3.2 on page 30. In this regulation-control example, the period of
the repeatable disturbance is thus N = 220, at a fundamental frequency of 7200/60 = 120
Hz. The baseline controller is a PID controller with several notch filters. The resulting
baseline feedback system has a 5.45-dB gain margin, a 38.2-deg phase margin, and a 1.19-
kHz open-loop servo bandwidth.

In the ERC design, we model P (z) to contain the plant as well as the notch filters. The
frequency responses of P (z) and P̂ (z) (m = 2 in this example) have been shown in Figure 7.1
on page 106. Since modeling errors appear after around 2 kHz, the zero-phase low-pass filter
in Section 8.4 is designed to have a cut-off frequency of 2025 Hz, with n0 = 1 in (8.14);
ω1 = 2π × 122000 rad/sec and ω2 = 2π × 8400 rad/sec in (8.16). In view of the large value
of N , α is designed to be 0.999 to achieve good steady-state performance. Correspondingly,
αN becomes 0.8024. αN is directly implemented instead of α.

The magnitude responses of Q(z) and 1−z−mQ(z) have been shown in Figure 8.2. Notice
the repetitive spectral-selection property (at multiples of the fundamental frequency 120 Hz)
in Q(z). This indicates that ERC only “observes” the periodic components and filters out
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the non-repetitive noise in the disturbance estimation.3 For robustness, the zero-phase low-
pass filter keeps the Q-filter gain small at high frequencies, yielding the gradual reduction
of compensation capacity at high frequencies in 1 − z−mQ(z). The magnitude responses of
the actual closed-loop sensitivity functions are shown in Figure 8.3. We can see that the
designed loop shape in 1 − z−mQ(z) is successfully transformed to the closed-loop system,
and that the loop shape at the non-repetitive frequencies is preserved in Figure 8.3. The
loop-shaping results can be compared with those in [107, 109, 106].
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Figure 8.6: Magnitude responses of 1/T (z) for ERC robust stability

Figure 8.6 shows the magnitude responses of 1/T (z), the inverse of the complementary
sensitivity function. From (8.18), in order to preserve the robust stability, magnitude of
the plant uncertainty has to be lower than that of 1/T (z) at all frequencies. From the top
plot, we observe that the introduction of ERC largely preserves the robust stability bounds
(compared to the baseline closed-loop system), especially in the high-frequency region. The
minimal value of the solid line is −4.7dB (0.582 in absolute value) at 1327 Hz, i.e., the plant
should not have an uncertainty that is larger than 58.2% at this frequency. The necessity of

3Note that a constant disturbance is also repetitive, and observed by Q(z).
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the zero-phase low-pass filter q(z, z−1) is evident from the bottom plot. Without q(z, z−1),
three percent (-31dB) of model uncertainty at 6000 Hz will drive the system unstable.

Simulation is conducted by applying a full set of practical disturbances that includes the
disk-flutter disturbance, the sensor noise, the repeatable runout (RRO), and the input force
disturbance. Figure 8.7 presents the spectra of the position error signals (PES) (in the steady
state) with and without ERC. One can remark that the repetitive errors below 2000 Hz are
successfully removed,4 and that amplification of other errors is visually not distinguishable.
As a performance metric in HDD industry, the 3σ (σ denotes the standard deviation) value
of the PES reduces from 10.77% Track Pitch (TP) to 9.30% TP, indicating a 13.6 percent
improvement.
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Figure 8.7: Spectra of PES with and without ERC

The bottom plot of Figure 8.8 shows the PES spectrum with ERC and α = 0, which
corresponds to previous RC schemes. It is observed that the repetitive disturbance compo-
nents are also significantly reduced. However, due to the amplification of the non-periodic
components (see the amplified peaks compared to Figure 8.7, and also the enlarged view in
the top plot of Figure 8.8), the overall 3σ value does not improve but is instead amplified, as
can be predicted from the steady-state loop-shaping analysis in Figure 8.4. In addition, to
avoid excessive high-frequency disturbance amplification, the bandwidth of the zero-phase
low-pass filter in Q(z) has to be reduced to 1585 Hz. In this environment that consists of not

4The multiple spectral peaks between 800 Hz and 1300 Hz are due to the non-repetitive disk-flutter
disturbances.
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only repetitive but also a significant amount of non-repetitive disturbances, a conventional
RC has experienced difficulty improving the overall regulation performance.
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Figure 8.8: PES spectrum in ERC with an FIR Q

To investigate further the transient performance, we provide next the simulation results
using an additional disturbance profile that is richer in repetitive components. Figures 8.9
and 8.10 demonstrate time traces of PES using different configurations of α in Q(z). In all
cases, the baseline feedback loop has been running for 3 revolutions before ERC is turned
on. In Figure 8.9, α maintains at 0.999 in the top plot throughout the simulation, and is
configured to exponentially decay from 1 to 0.999, at the rate of 0.9/sample in the bottom
plot. We observe that the dynamic switching algorithm provides a much smoother transient
response with no visually distinguishable overshoots.

In the top plot of Figure 8.10, the final value of the time-varying α is chosen as 0.99.
Compared to the bottom plot of Figure 8.9, we can see that a smaller α yields shorter
transient response, as predicted by the analysis in Section 8.5. More specifically, the time
constants [defined by (8.20)] for α = 0.999 and 0.99 are respectively 4.5432 and 0.4523
revolutions. One can observe from Figure 8.9 and the top plot of Figure 8.10, that the
transient durations are indeed about 4.5 and 0.5 revolutions, in agreement with what have
just been computed from (8.20). Note that α = 0.99 yields worse disturbance rejection
results at the steady state. This is supported by the analysis in Section 8.3. One way to
balance the performance is to let α first reduce quickly from 1 to 0.99, and then gradually
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Figure 8.9: Comparison of the transient responses with and without the time-varying α
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increase to the final value 0.999, as shown in Figure 8.11. The bottom plot of Figure 8.10
depicts the achieved PES time trace using such a configuration.
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8.7 Application: Repetitive Tracking and Regulation on
a Wafer Scanner

Besides regulation control, the proposed algorithm has also been implemented in tracking
control on the wafer-scanner testbed described in Section 3.1 on page 26.

The top stage is used for verification of the proposed algorithm. The system has a
nominal model

P̂ (z) = z−2 3.4766× 10−7(1 + 0.8z−1)

(1− z−1)2

with a baseline PID controller. The applied reference trajectory is shown in the solid line in
Figure 8.12. The dashed line in Figure 8.12 shows the tracking result when we apply only the
baseline feedback controller. For the resulting tracking errors, the 3σ value is 3.814 × 10−4

m.
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Figure 8.12: Reference trajectory and the actual wafer-stage position without ERC

By the nature of the process, the trajectory is repeatedly applied. Figure 8.13 presents
the experimental results of the tracking errors for the first twenty repetitions, where the
top and the bottom plots provide respectively the position errors without repetitive control
and with the proposed ERC. No transient control for α is applied in Figure 8.13. We can
observe that repetitive control has greatly reduced the tracking errors at the steady state.
The 3σ value reduces from 3.814 × 10−4 m at the first repetition to 4.160 × 10−6 m at the
20th repetition, indicating a 99.7% reduction.
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Figure 8.13: Tracking errors with ERC but without transient control
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Figure 8.14: Tracking errors with ERC and transient control
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The proposed algorithm in Section 8.5 is then applied to additionally accelerate the tran-
sient response. Figure 8.14 shows the results for ERC with transient control. Comparing the
results with that in Figure 8.13, we can see that the transient duration has been significantly
reduced while at the same time the steady-state performance has been preserved.

0 20 40 60 80 100 120 140 160 180 200
−170

−160

−150

−140

−130

−120

−110

−100

A
m

pl
itu

de
 (

dB
)

 

 

w/o RC: 3σ=2.4326e−005

0 20 40 60 80 100 120 140 160 180 200
−170

−160

−150

−140

−130

−120

−110

−100

A
m

pl
itu

de
 (

dB
)

 

 

prior RC: 3σ=2.6384e−005

0 20 40 60 80 100 120 140 160 180 200
−170

−160

−150

−140

−130

−120

−110

−100

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

 

 

proposed RC: 3σ=2.1206e−005

Figure 8.15: Spectra of the tracking errors under different RC schemes

To compare the performance of ERC with that of a conventional RC, a reference tra-
jectory that consists of four sinusoidal components at 20, 40, 60, and 80 Hz is tested. Ad-
ditionally a random disturbance obeying a normal distribution is applied to the system to
examine the performance of the algorithms under noisy environments. Figure 8.15 shows
the spectra of the resulting tracking errors. Without repetitive control, large peaks appear
at 20, 40, 60, and 80 Hz in the first subplot. Using a conventional RC (α = 0), spectral
peaks at the repetitive frequencies are removed as shown in the middle plot. However, since
all error components in the previous repetition are applied, the non-repetitive errors can be
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seen to have increased (see the additional spectral peaks at the non-repetitive frequencies).
This is also well explained by the loop-shaping results in Figure 8.4. In the proposed scheme,
only the repetitive components are reduced, and no visual amplification of the non-repetitive
disturbances is observed.

8.8 Notes and references
Connections of ERC With Prior Repetitive-control Schemes With (8.17), the
equivalent feedback controller in Figure 8.1 is

Ceq (z) =
q(z, z−1)(1− αN)z−N P̂−1 (z) + (1− αNz−N)C (z)

1− [1− (1− αN)(1− q(z, z−1))] z−N
.

For the ideal case of q(z, z−1) = 1 (perfect disturbance rejection),

Ceq (z) =
(1− αN)z−N P̂−1 (z) + (1− αNz−N)C (z)

1− z−N
.

One can remark that the internal model is absorbed in the loop in a series-parallel fashion (the
two terms in the numerator of Ceq (z) are in parallel form, and the common part 1/(1−z−N)
is in series with them).

Table 8.2 summarizes the equivalent overall feedback controllers in different repetitive-
control schemes. The ideal forms in the second and the third columns provide perfect
disturbance rejection but are highly sensitivity to model mismatches. low-pass filters in the
form of q(z, z−1) or q(s) are used in the robust versions. C(z) and C(s) denote the baseline
feedback controllers. On the fourth line of Table 8.2, P−1

ZPET (z) in prototype RC denotes the
ZPET inverse [85] that approximates P−1(z).

Several connections can be made from Table 8.2. First, comparing “Prototype RC” with
“Proposed ERC with an FIR Q”, we can observe that the former can be regarded as a special
case of the latter with C(z) = 0 and P̂−1(z) = P−1

ZPET (z). Second, if we replace z−N P̂−1(z)
with P−1

∑
mwmz

−mN and let C(z) := Co(z)
∑

mwmz
−mN , then the high-order RC can be

realized in a similar fashion as the proposed ERC with an FIR Q filter.
It can now be seen that with an FIR Q filter, the proposed ERC has close connections

with prior RC schemes. From the second and the third rows of Table 8.2, an IIR Q provides
a different integration of the internal model and introduces the additional design freedom of
α.
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Chapter 9

Decoupled Disturbance Observer for
DISO Systems

9.1 Introduction
In Section 4.5, we have discussed the concept of disturbance observers and its connection
to pseudo Youla-Kucera parameterization, mainly for the control of SISO systems. The
central concept of a disturbance observer is that, if the plant dynamics can be properly
inverted, then the equivalent input disturbance can be extracted from the control signal and
the measured plant output. This design principle has clear intuitions for SISO systems. For
dual-input-single-output (DISO), and more generally multiple-input-single-output (MISO)
systems, the situation is more complex. The main difficulty is that, there are multiple
actuators (and hence multiple control inputs) while only one combined output signal y ,∑N

i=1 yi is measured. It becomes nontrivial to generate estimated disturbances for each
control channel using just the single output y. It also remains unclear how the compensation
effort should be distributed to each actuator, as the disturbance information is coupled with
the cross-channel control inputs in the output signal.

In this chapter, we discuss a decoupled disturbance observer (DDOB) to address the
nontrivial model inversion and the distribution of compensation efforts in MISO systems. We
focus on the separation between the external disturbances and the internal control actions.
This enables us to have a partial-inverse based disturbance-rejection scheme, where no cross-
channel coupling effects enter as internal disturbances, and designers have the flexibility to
distribute the compensation effort according to the mechanical properties of each actuator
as well as the disturbance characteristics. These features make DDOB especially beneficial,
e.g., for vibration rejection, where the disturbance consists of energy components at different
frequency ranges, and it is ideal for each control channel to be flexibly adjusted for customized
servo enhancement.
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9.2 DDOB Structure: Open-loop Configuration
Consider a sampled-data DISO system P (z) = [P1(z), P2(z)] with the input-output (IO)
relation:

Y (z) = P1(z)U1 (z) + P2(z)U2 (z) +D (z) (9.1)

where Y (z), Ui (z) (i = 1, 2) and D (z) represent respectively the Z transforms of the plant
output, the plant inputs, and the lumped external disturbance.

Figure 9.1 shows the structure of the proposed DDOB for the second channel P2(z). The
idea is to apply the compensation signal c2 (k) to this second actuator, such that the overall
lumped disturbance d (k) is compensated. Here P̂i(z) is the nominal model of Pi(z), and mi

is the relative degree of P̂i(z).

-

c2(k) Q2(z)

P1(z)

P2(z)

d(k)

y(k)

+

u1(k)

u2(k)

+
-

z
¡m2

P̂1(z)

z
¡m2P̂¡1

2
(z)

+-

u
¤

2
(k)

+

+ +
+

y1(k)

Figure 9.1: Block diagram of DDOB for P2(z)

Time-domain Disturbance-rejection Criteria

From Figure 9.1, the output of Q2(z) is

C2 (z) = Q2(z)
{
z−m2P̂2(z)

[
Y (z)− P̂1(z)U1 (z)

]
− z−m2U2 (z)

}
(9.2)

which is equivalent to, after substituting in (9.1),

C2(z) = Q2(z)
[
z−m2P̂−1

2 (z)
(
P1(z)− P̂1(z)

)
)U1(z)

+z−m2

(
P̂−1

2 (z)P2(z)− 1
)
U2(z)

]
+Q2(z)z−m2P̂−1

2 (z)D(z). (9.3)

If Pi(z) = P̂i(z), (9.3) reduces to

C2 (z) = Q2(z)z−m2P̂−1
2 (z)D (z) . (9.4)
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Recall in Figure 9.1, that

Y (z) = P1(z)U1 (z) + P2(z−1)U∗2 (z) + (D (z)− P2(z)C2 (z))

where U1 (z) and U∗2 (z) are from the outer-loop control design and D (z) − P2(z)C2 (z)
explains how the external disturbance is compensated in the inner DDOB loop. Applying
(9.4), we have

D (z)− P2(z)C2 (z) =
(
1− z−m2Q2(z)

)
D (z) . (9.5)

Equation (9.5) contains no information about the first controlled channel. It is now seen
that the disturbance rejection is entirely decoupled to the second channel, and relies on the
design of a single filter Q2(z). By the above construction, the disturbance D (z) is decoupled
from Y1(z), the position output of the first actuator, and “observed” in the compensation
signal C2 (z).

Model-following Property

One can remark that when Pi(z) differs from P̂i(z), the model mismatch is absorbed as an
internal disturbance in (9.3) (see the first two terms in the square brackets). Notice that
C2 = U2 −U∗2 in (9.3). Solving for U2 (z) and substituting the result to (9.1), we can obtain
the IO relation:

Y (z) = Gyd(z)D (z) +Gyu1(z)U1 (z) +Gyu∗2
(z)U∗2 (z) ,

where the three transfer functions are given by

Gyd(z) = 1− P̂−1
2 (z)P2(z)z−m2Q2(z)

1 +
(
P̂−1

2 (z)P2(z)− 1
)
z−m2Q2(z)

Gyu1(z) = P1(z)−
P̂−1

2 (z)P2(z)
(
P1(z)− P̂1(z)

)
z−m2Q2(z)

1 +
(
P̂−1

2 (z)P2(z)− 1
)
z−m2Q2(z)

Gyu∗2
(z) =

P2(z)

1 +
(
P̂−1

2 (z)P2(z)− 1
)
z−m2Q2(z)

.

If z−m2Q(z) = 1, the above reduces to

Gyd(z) = 0, Gyu1(z) = P̂1(z), Gyu∗2
(z) = P̂2(z). (9.6)

Here Gyd(z) = 0 explains the disturbance-rejection result in Section 9.2. Additionally, we
observe that the dynamics between the nominal inputs (u1 and u∗2) and the output is now
forced to follow the nominal model P̂i(z) (i = 1, 2)—thus the rejection of modeling mismatch
within the DDOB loop. DDOB hence has the nominal-model-following property. Notice
that although it is not practical to have z−m2Q(z) = 1 over the entire frequency region, (9.6)
equally holds if we replace z with ejω, in which case the model following is enforced at the
frequencies where e−m2jωQ(ejω) = 1.
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Operation of Two DDOBs

Swapping every applicable sub-index between 1 and 2 in the preceding discussions, we get
the DDOB for P1(z). By linearity and (9.4), if two DDOBs operate simultaneously, the
disturbance compensation is achieved by

D (z)− P1(z)C1 (z)− P2(z)C2 (z) =
(
1− z−m1Q1(z)− z−m2Q2(z)

)
D (z) . (9.7)

One can remark that if a single DDOB already achieves canceling the disturbance (i.e.,
D(z)− P1(z)C1(z) approximates 0), then the second DDOB is not necessary and we should
set Q2(z) = 0. This is the ideal situation when one actuator alone can effectively handle
all the disturbances. In practice, this may not always be feasible due to the mechanical
limitation of the actuator. One approach to utilize (9.7) is to make

z−m1Q1(z) + z−m2Q2(z) ≈ 1

in the interested frequency region. Since there is only one constraint and two filters to
design, the selection of Q1(z) and Q2(z) will not be unique. We propose to apply frequency-
dependent DDOBs based on the actuator dynamics and disturbance properties. For example,
in HDD applications, the VCM actuator (P1(z) in Figure 9.1) has a large actuation range and
the microactuator (P2(z) in Figure 9.1) suits only for small-range positioning. Additionally,
P̂−1

1 (z) has properties similar to a double differentiator in the high-frequency region [28, 113],
yielding large high-frequency noises in the output of P̂−1

1 (z). Such actuator dynamics renders
DDOB for P1(z) to have increased difficulties as the disturbance frequency gets higher and
higher. The microactuator on the other hand has a model of a DC gain plus resonances
above 4 kHz, and a better signal-to-noise ratio during implementation of P̂−1

2 (z). From the
above considerations, in the low-frequency region, we can apply DDOB to the large-stroke
VCM actuator, by assigning Q1(z) to be a low-pass/band-pass filter and Q2(ejω) ≈ 0. At
middle and high frequencies, the precise and faster-response microactuator can be more
effectively used. This is achieved by assigning Q1(ejω) ≈ 0 and Q2(z) to have a band-pass
structure. Throughout this chapter, unless otherwise stated, we assume the above decoupled
disturbance-rejection scheme.

Extension to General MISO Systems

In the construction of DDOB in Figure 9.1, we have applied the P̂1(z) block to remove the
coupling of u1(k) in y(k). Extending this concept to a general multiple-input-single output
system, we obtain Figure 9.2, which depicts the block diagram for designing DDOB for the
n-th actuation stage. Two paths are constructed for each control signal ui(k), i = 1, . . . , n−1:
the first through the physical actuator dynamics Pi(z), the second through the model P̂i(z).
Notice the minus sign after each P̂i(z) block. The effect of ui(k) is thus removed from y(k),
and d(k) is the only remaining signal component that flows into the block z−mnP̂−1

n (z). Using
analogous analysis as that in Section 9.2, we can get

D (z)− Pn(z)Cn (z) =
(
1− z−mnQn(z)

)
D (z) (9.8)
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if Pi(z) = P̂i(z). Equation (9.8) has the same structure as (9.5). The same design techniques
can thus be applied to design Qn(z).

-

cn(k) Qn(z)

P1(z)

Pn(z)

d(k)

y(k)

+

u1(k)

P̂1(z)
+

-

z
¡mn z

¡mnP̂¡1

n
(z)

+-

+

+ +
+

+

+

+

+

P2(z)
u2(k)

Pn¡1(z)
un¡1(k)

P̂2(z)

P̂n¡1(z)
... ...

-

-

+

+

Figure 9.2: DDOB for general MISO systems

9.3 Nominal Stability and Frequency-domain
Loop-shaping Criteria

This section discusses the design criteria and the nominal stability when DDOB is applied
to a closed loop consisting of the DISO plant and a baseline feedback controller C(z) =
[C1(z), C2(z)]T . Figure 9.3 shows the closed-loop controller implementation. We focus on
the regulation problem to reject d(k), and assume r is zero for stability and loop-shaping
analysis. We will present analysis of DDOB for the secondary actuator. The result for
the first actuator is immediate after inter-changing the sub-indexes between 1 and 2 in the
transfer functions.

For simplified analysis, the influence of DDOB can be absorbed into the second-channel
controller. We have
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c2(k) Q2(z)

P1(z)

P2(z)

d(k)
y(k)

+

u1(k)

u2(k)

e(k)

+
-

-
r = 0

z
¡m2C2(z)

C1(z)
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P̂1(z)

z
¡m2P̂¡1

2
(z)

+

+ +
+

+

Figure 9.3: Block diagram of the closed loop with DDOB for P2(z)

Proposition 9.1. Figure 9.3 is equivalent to Figure 9.6, with

C2,s(z) =
1

1− z−m2Q2(z)
(9.9)

C2,p(z) =
[
1 + P̂1(z)C1(z)

]
z−m2P̂−1

2 (z)Q2(z). (9.10)

Proof. Splitting the output of Q2(z) into two parts, and relocating the summing junction
after P̂1(z), we get Figure 9.4a. Since the reference is zero, Figure 9.4a is equivalent to Figure
9.4b. Finally, noting that the P̂1(z)C1(z) block in Figure 9.4b does not influence the path
from C1(z) to P1(z), we obtain Figure 9.5a, which is equivalent to Figures 9.5b and 9.6, with
the add-on serial and parallel terms given by (9.9) and (9.10).

Remark. Figure 9.5a and Figure 9.3 can both be implemented in practice. Figure 9.3 is more
suited for regulation while Figure 9.5a works for both tracking and regulation problems.

From Figure 9.6, the loop transfer function from the feedback error to the output y(k) is

L (z) (9.11)
=P1 (z)C1 (z) + P2 (z)C2,s (z) (C2 (z) + C2,p (z)) (9.12)

=P1 (z)C1 (z) + P2 (z)
C2 (z) +

(
1 + P̂1 (z)C1 (z)

)
z−m2P̂−1

2 (z)Q2 (z)

1− z−m2Q2 (z)
. (9.13)

If Pi = P̂i, (9.13) simplifies to

L (z) =
P1 (z)C1 (z) + P2 (z)C2 (z) + z−m2Q2 (z)

1− z−m2Q2 (z)
.
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+
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+

+ -

-
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+ -
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2
(z)Q2(z)

C2(z)

C1(z)

+

+ +

+

(a) An equivalent form of the system in Figure 9.3: the input to z−m2 P̂2(z) is
relocated; the summing junction before Q2(z) is separated

+

z¡m2P̂¡1

2
(z)Q2(z)

Q2(z)

P1(z)

P2(z)

d(k)

y(k)

+

C1(z)

+
+

-

z
¡m2

P̂1(z)C1(z)
+ +

C2(z)

+

+ +
+

(b) An equivalent form of Figure 9.6: the signs of the signals are changed after
another relocation of block diagrams

Figure 9.4: Block diagram transformation for Figure 9.3

The sensitivity function of the closed-loop system is therefore given by

S (z) =
1

1 + L (z)
=

1− z−m2Q2 (z)

1 + P1 (z)C1 (z) + P2 (z)C2 (z)
. (9.14)

Notice that 1/ (1 + P1 (z)C1 (z) + P2 (z)C2 (z)) is the baseline closed-loop sensitivity
function. S (z) therefore is stable as long as Q2 (z) is stable. Additionally, similar to SISO
pseudo YK parameterization, 1 − z−m2Q2 (z) can be applied as a frequency-domain design
criteria for loop shaping. Specifically, from (9.14), the complementary sensitivity function is
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(a) An equivalent form of Figure 9.4b

h
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(z)Q2(z)
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(b) An equivalent form of Figure 9.5a

Figure 9.5: Block diagram transformation for Figure 9.4: DDOB is decomposed to series
and parallel modules

P1(z)

P2(z)

C1(z)

-

C2(z) C2;s(z)

C2;p(z)

y(k)
d(k)

+

+ +
+

+

+

Figure 9.6: An equivalent block diagram of the system in Figure 9.5

T (z) =
P1 (z)C1 (z) + P2 (z)C2 (z) + z−m2Q2 (z)

1 + P1 (z)C1 (z) + P2 (z)C2 (z)
. (9.15)

In the frequency regions where z−m2Q2 (z) is approximately 1, S (z) ≈ 0 in (9.14) and T (z) ≈
1 in (9.15), i.e., the closed-loop system has enhanced performance of disturbance rejection
and reference following. When z−m2Q2 (z) is approximately 0, S (z) and T (z) are close
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to their baseline versions (without DDOB) and the original system response is preserved.
One can notice that the DDOB inherits the affine loop-shaping criteria about SISO YK
parameterization. Indeed, DDOB is a special case of MIMO Youla-Kucera parameterization.
Before connecting these two concepts, we provide first the full version of the nominal-stability
condition:

Theorem 9.1. (DDOB nominal stability) Given an internally stable baseline feedback system
in Figure 9.3, if the exact model of the plant is available and the following conditions hold:

(i) P̂1 (z) and C (z) are stable;
(ii) P̂2(z) is a minimum-phase system;
then the closed-loop system in Figure 9.3 is internally stable as long as Q2(z) is stable.

Proof. From (9.13), under the stated conditions, the closed-loop characteristic polynomial
comes from

1 + P1C1 + P2

C2 +
(

1 + P̂1C1

)
z−m2P̂−1

2 Q2

1− z−m2Q2

= 0

namely,

1 + P1C1 + P2C2 − z−m2Q2 − z−m2Q2P1C1 + z−m2Q2P2P̂
−1
2 + z−m2Q2P2P̂

−1
2 P̂1C1 = 0

If Pi = P̂i, then the two pairs of terms (−z−m2Q2, z−m2Q2P2P̂
−1
2 ) and (−z−m2Q2P1C1,

z−m2Q2P2P̂
−1
2 P̂1C1) get canceled. However the canceled terms will still contribute to internal

states. The actual closed-loop characteristic polynomial is

DQ2DP2NP̂2
DP̂1

DC1 (DP1DP2DC1DC2 +NP1NC1DP2DC2 +NP2NC2DP1DC1)

where N(·) and D(·) denote respectively the numerator and the denominator of a transfer
function.

Notice that
DP1DP2DC1DC2 +NP1NC1DP2DC2 +NP2NC2DP1DC1

is the characteristic polynomial for the baseline system. The internal stability follows readily
from the assumptions.

9.4 DDOB is A Special Youla-Kucera Parameterization
for DISO systems

Standard MIMO YK Parameterization

We first extend the discussions of Chapter 4 and review YK parameterization for general
MIMO systems. Dimensions of transfer functions now play important roles. We have:
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Definition 9.1. (right coprime) Suppose N ∈ Sny×nu and D ∈ Snu×nu . The pair (N,D)
is called right coprime over S if there exists U ∈ Snu×ny , V ∈ Snu×nu such that

UN + V D = Inu .

If D−1 is additionally realizable, then (N,D) is called a right-coprime factorization of a
rational and proper transfer function G = ND−1 ∈ Rny×nu .

(left coprime) Suppose N ∈ Sny×nu and D ∈ Sny×ny . The pair (N,D) is called left
coprime over S if there exists U ∈ Snu×ny , V ∈ Sny×ny such that

NU +DV = Iny .

If D−1 is additionally realizable, then (N,D) is called a left-coprime factorization of
G = D−1N ∈ Rny×nu .

Theorem 9.2. Consider a nu-input-ny-output plant P . Let P have the right-coprime fac-
torization P = ND−1, with N ∈ Sny×nu and D ∈ Snu×nu. Assume a stabilizing controller
C = XY −1 (in a negative feedback loop), with X ∈ Snu×ny and Y ∈ Sny×ny being the right-
coprime factorization elements of C. Then the set of all stabilizing controllers for P is given
by {

(X +DQ) (Y −NQ)−1 : Q ∈ Snu×ny
}

(9.16)

or, in the left-coprime format,{(
Ȳ − Q̄N̄

)−1 (
X̄ + Q̄D̄

)
: Q̄ ∈ Snu×ny

}
(9.17)

where P = D̄−1N̄ is the left-coprime factorization of P with N̄ ∈ Sny×nu , D̄ ∈ Sny×ny ;
C = Ȳ −1X̄ is the left-coprime factorization of C with X̄ ∈ Snu×ny , Ȳ ∈ Snu×nu. For
well-posedness, the mild requirements

det (Y (∞)−N (∞)Q (∞)) 6= 0

and
det
(
Ȳ (∞)− Q̄ (∞) N̄ (∞)

)
6= 0

are assumed in (9.16) and (9.17).

Proof. See [63].

A Special DISO YK Parameterization

For DISO systems, consider the case when P1 (z) is stable and the second actuator P2(z) is
a minimum-phase system that can be factorized as P2(z) = z−m2P2m(z), where P2m(z) has
a relative degree of zero.1

1The notation P2m reads “the transfer function of the second actuator, with the m-delay term separated”.
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Note that P−1
2m(z) = z−m2P−1

2 (z) is stable from the minimum-phase assumption, and that
z−m2 is stable by definition. We have z−m2 ∈ S, P−1

2m(z) ∈ S, and hence

P2(z) =
z−m2

P−1
2m(z)

=
z−m2

z−m2P−1
2 (z)

is a valid coprime factorization for P2(z). The full DISO plant P (z) can then be (left-coprime)
factorized as

P (z) = [P1 (z) , P2 (z)] =
(
P−1

2m (z)
)−1 [

P−1
2m (z)P1 (z) , z−m2

]
. (9.18)

For simplicity, we will also make the practical assumption that the baseline stabilizing
controllers C1(z) and C2(z) are stable—namely, C1(z), C2(z) ∈ S—so that the following is
a valid (left) coprime factorization for the baseline controller:

C (z) =

[
C1 (z)
C2 (z)

]
= I−1

2×2

[
C1 (z)
C2 (z)

]
. (9.19)

From (9.17) in Theorem 9.2, all the stabilizing controllers can be factorized as

Call (z) =(
I −

[
Q1 (z)
Q2 (z)

]
[P−1

2m (z)P1 (z) , z−m2 ]

)−1([
C1 (z)
C2 (z)

]
+

[
Q1 (z)
Q2 (z)

]
P−1

2m (z)

)
. (9.20)

Introduce now the dummy variable

M (z)

,P (z)×
(
I −

[
Q1 (z)
Q2 (z)

]
[P−1

2m (z)P1 (z) , z−m2 ]

)−1

(9.21)

=
(
P−1

2m (z)
)−1

[P−1
2m (z)P1 (z) , z−m2 ]

(
I −

[
Q1 (z)
Q2 (z)

]
[P−1

2m (z)P1 (z) , z−m2 ]

)−1

=
[P1 (z) , z−m2P2m (z)]

1− P−1
2m (z)P1 (z)Q1 (z)− z−m2Q2 (z)

(9.22)

where in the last equality of (9.22), we have used the matrix identity

B (I + AB)−1 = (I +BA)−1B

and the fact that
I − [P−1

2m (z)P1 (z) , z−m2 ]

[
Q1 (z)
Q2 (z)

]
is a scalar transfer function.
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The closed-loop sensitivity function thus can be expressed as

S(z) = (1 + P (z)Call(z))−1

=

{
1 +M (z)×

([
C1(z)
C2(z)

]
+

[
Q1(z)
Q2(z)

]
P−1

2m(z)

)}−1

,

which is equivalent to [by using (9.22)]

S (z) =
1− P−1

2m(z)P1(z)Q1(z)− z−m2Q2(z)

1 + P1(z)C1(z) + P2(z)C2(z)
. (9.23)

Notice that

So(z) =
1

1 + P1(z)C1(z) + P2(z)C2(z)
=

1

1 + P (z)C(z)

is the sensitivity function of the baseline feedback system. Therefore

S(z) = So(z)
{

1− P−1
2m(z)P1(z)Q1(z)− z−m2Q2(z)

}
(9.24)

which reduces to (9.14) for DDOB if Q1 (z) = 0. Indeed the feedback controller also becomes
the same as that in DDOB. To see this, when Q1 (z) = 0, we have the following simplification
of (9.20):

Call (z)

=

(
I −

[
0

Q2 (z)

]
[P−1

2m (z)P1 (z) , z−m2 ]

)−1([
C1 (z)
C2 (z)

]
+

[
0

Q2 (z)

]
P−1

2m (z)

)
=

[
1 0

−Q2 (z)P−1
2m (z)P1 (z) 1− z−m2Q2 (z)

]−1 [
C1 (z)

C2 (z) +Q2 (z)P−1
2m (z)

]
=

1

1− z−m2Q2 (z)

[
1− z−m2Q2 (z) 0

Q2 (z)P−1
2m (z)P1 (z) 1

] [
C1 (z)

C2 (z) +Q2 (z)P−1
2m (z)

]
=

[
C1 (z)

C2(z)+Q2(z)P−1
2m(z)[1+P1(z)C1(z)]

1−z−m2Q2(z)

]
. (9.25)

On the other hand, from Figure 9.6 and Equations (9.9)–(9.10), the overall equivalent
feedback controller in DDOB based control is

C
′
(z) =

[
C1 (z)

C2,s (z) (C2 (z) + C2,p (z))

]
=

[
C1 (z)

C2(z)+[1+P̂1(z)C1(z)]z−m2 P̂−1
2 (z)Q2(z)

1−z−m2Q2(z)

]
,

which is nothing but (9.25) when Pi = P̂i (notice that P−1
2m = z−m2P−1

2 ).
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Removal of the assumption on C2 (z) being stable: Similar to the derivation of
the pseudo Youla-Kucera parameterization in Chapter 4, we see that DDOB itself does not
require C2 (z) to be strictly stable (Theorem 9.1). If we additionally want to enable the
parameterization of all stabilizing controllers, stability of C2(z) is required for (9.19) to be
a valid coprime factorization for the special DISO YK parameterization.

Changes to the sensitivity function: Note that (9.24) shares a similar characteristics
as (9.7). Designing Q1 (z) = z−m1P2m(z)P̂−1

1 (z) in (9.24) actually recovers (9.7). DDOB
therefore provides an intuitive explanation of the DISO Youla-Kucera parameterization,
from the view point of disturbance cancellation.

9.5 Robust Stability
This section analyzes the robust-stability condition when the plant is perturbed to

P̃1(ejω) = P1(ejω)
(
1 +W1(ejω)∆1(ejω)

)
(9.26)

P̃2(ejω) = P2(ejω)
(
1 +W2(ejω)∆2(ejω)

)
, (9.27)

where W1(ejω) and W2(ejω) are frequency weighting functions, and the multiplicative uncer-
tainties satisfy |∆i(e

jω)| ≤ 1. Notice that since the perturbed plant is for stability analysis
rather thanH2/H∞ synthesis, we do not restrictWi(e

jω) to come from the frequency response
of a transfer function.

As the DISO plant is a special MIMO system, the µ-analysis (see, e.g., [114]) tool can
be applied to derive the robust stability condition. Usually the structured singular value µ
is only approximated by its upper bound. However, for the special case of DISO plants, we
have a closed-form solution for µ:

Theorem 9.3. The closed-loop system in Figure 9.3 is stable w.r.t. the perturbed plant
(9.26) and (9.27), if and only if the nominal stability in Theorem 9.1 holds and the following
structured singular value µ satisfies µ (ω) < 1 for any ω ∈ [0, π]

µ =
|1− z−m2Q2| |P1C1| |W1|
|1 + P1C1 + P2C2|

+
|P2C2 + (1 + P1C1) z−m2Q2| |W2|

|1 + P1C1 + P2C2|
. (9.28)

Proof. Consider first the general closed-loop system for DISO plants under perturbation,
as shown in Figure 9.7, wherein C̃i’s are the equivalent feedback controller. Figure 9.7
can be transformed to the generalized representation in Figure 9.8. From µ-analysis, the
closed-loop system is stable w.r.t. the plant perturbations if and only if G is stable and
the structured singular value of G satisfies: ∀ω, µ∆ (G(ejω)) < 1. In Figure 9.8, consider
the smallest (in the sense of H∞ norm) perturbation ∆ such that the following stability
boundary is attained:

det
(
I + ∆(ejω)G(ejω)

)
= 0. (9.29)
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Figure 9.7: General closed-loop system for DISO plants under perturbations

·

¢1 0

0 ¢2 ¸

G

-

Figure 9.8: Generalized block diagram of Figure 9.7

After standard block-diagram analysis, the generalized plant G can be shown to be

G =
WC̃P

1 + PC̃
=

1

1 + P1C̃1 + P2C̃2

[
W1C̃1

W2C̃2

] [
P1 P2

]
. (9.30)

Substituting ∆ = diag{∆1,∆2} and (9.30) to (9.29) yields (for simplified notation, the
frequency index is omitted)

det (I + ∆G)

= det

I +

[
∆1 0
0 ∆2

]
1 + P1C̃1 + P2C̃2

[
W1C̃1

W2C̃2

] [
P1 P2

]
=1 +

P1∆1W1C̃1 + P2∆2W2C̃2

1 + P1C̃1 + P2C̃2

, (9.31)

where the last equality has used the identity det (I + AB) = det (I +BA).
Combining (9.31) and (9.29), the minimum-H∞-norm perturbation is obtained when
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|∆1| = |∆2| =: |∆0| and

1−

∣∣∣∣∣ P1W1C̃1

1 + P1C̃1 + P2C̃2

∣∣∣∣∣ |∆0| −

∣∣∣∣∣ P2W2C̃2

1 + P1C̃1 + P2C̃2

∣∣∣∣∣ |∆0| = 0.

By definition, the structured singular value is

µ =
1

|∆0|
=

∣∣∣P1C̃1

∣∣∣ |W1|+
∣∣∣P2C̃2

∣∣∣ |W2|∣∣∣1 + P1C̃1 + P2C̃2

∣∣∣ . (9.32)

When DDOB is in the feedback loop as shown in Figure 9.6, we have C̃1 = C1 and C̃2 =
C2,s (C2 + C2,p), where C2,s and C2,p are respectively given by (9.9) and (9.10). Therefore,
letting P̂i = Pi and after simplifications, we get

C̃1 = C1

C̃2 =
C2 + (1 + P1C1) z−m2P−1

2 Q2

1− z−m2Q2

which, combined with (9.32), gives the explicit form of (9.28).

Notice that µ is linear w.r.t. |W1| and |W2|. Overall (9.28) indicates that in the regions
where a good model is available for the plant, the structured singular value is small and we
have flexible design freedom in Q2(z). If e−m2jωQ2(ejω) = 0, DDOB is turned off at this
frequency and (9.28) is simply the structured singular value of the baseline feedback system.
This infers that the baseline system needs to be robustly stable. In the frequency region
where e−m2jωQ2(ejω) is close to unity, µ ≈ |W2| and the robust stability depends on the
magnitude of model uncertainty of the secondary actuator in this region. Therefore, if |W2|
goes beyond one at certain frequencies (particularly near Nyquist frequency), certainly one
should not apply the model based DDOB here, and the magnitude of Q(z) should be kept
small.

9.6 Decoupled Sensitivity and DDOB for DISO systems
This section discuss a reduced-order implementation of DDOB. The main result is that,
DDOB provides a natural enhancement scheme to the decoupled sensitivity (DS) feedback
design idea, which is the most popular design technique in dual-stage HDDs (see, e.g.,
[115, 116, 117]).

In Figure 9.9, the DS controller has the transfer function

C(z) =

[
Cv(z)

(
1 + P̂2(z)Cm(z)

)
Cm(z)

]
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Here the sub-indexes v and m represent VCM and microactuator respectively. Consider first
the baseline system formed only by P1(z), P2(z) and C(z). The idea of decoupled sensitivity
design is that, if P2(z) = P̂2(z), direct computation gives that

1 + P (z)C(z) = (1 + P1(z)Cv(z)) (1 + P2(z)Cm(z)) .

Consequently, the total sensitivity function S(z) = 1/(1 + P (z)C(z)) is decoupled to the
cascaded connection of 1/(1 + P1(z)Cv(z)) and 1/(1 + P2(z)Cm(z)).

c1(k) Q1(z)

+

-

P̂2(z)

P1(z)

P2(z)
d(k)

y(k)- +

-

z
¡m1 +-

z
¡m1P̂¡1

1
(z)

Cv(z)

Cm(z)

P̂2(z)

DS controller

1°2°

+
+ +

+

+
+

Figure 9.9: Control of dual-stage systems with DDOB and decoupled sensitivity
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+ +

+
+

Figure 9.10: A reduced-order implementation of Figure 9.9

Consider the combined implementation of DS and DDOB for the first actuator in Figure
9.9. Notice that P̂2(z) appears in both DDOB and the DS controller. In addition, since
the reference is zero in regulation control, the signal at 1© is the negative of the signal at
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2©. We can thus replace the input of z−m1P̂−1
1 (z) by the negative of the component at

2©. With some block-diagram relocation and sign rearrangement, we can obtain in Figure
9.10, the equivalent realization of the block diagram in Figure 9.9. We have now saved the
computation of one P̂2(z) block. Figure 9.10 is simpler to implement and analyze as well.

9.7 Case Study: Control of Dual-stage HDDs
The proposed DDOBs are applied in this section to the dual-stage benchmark introduced
in Section 3.2 on page 30. A set of disturbance data is obtained from audio-vibration
experiments on an actual HDD. We will design DDOBs for both the Voice-Coil-Motor (VCM)
and microactuator (MA) actuators. The former is denoted as VCM DDOB, and the latter
as MA DDOB.

Two major resonances exist in the VCM plant, and are compensated via two notch filters
at 3.0 kHz and 6.5 kHz. The 11-order resonance-compensated VCM model is treated as a
generalized plant P1(z). P̂1(z) is chosen to be a second-order transfer function that captures
the friction mode at around 60 Hz in Figure 3.11. As the notch filters introduced some
additional phase loss to P1(z), overall P̂1(z) contains a two-step delay, i.e., m1 = 2. Through
the above design, both the magnitude and the phase of P1(z) are well captured by P̂1(z) at
frequencies up to around 6 kHz.

The microactuator also contains two resonances that are compensated by notch filters
(at 6.5 kHz and 9.6 kHz). This actuator is a minimum-phase system (DC gain plus reso-
nances) by nature, which simplifies the P̂2(z) design. We directly model P̂2(z) to include the
resonances and have m2 = 1.

The baseline feedback loop uses the decoupled sensitivity design in Section 9.6, with the
magnitude responses of the decoupled sensitivities 1/(1+P1(z)Cv(z)) and 1/(1+P2(z)Cm(z))
plotted in Figure 9.11.

The flexibility of DDOB is explained in Figure 9.12, where we use the direct Q-design
method in Section 5.4 [see (5.33) and (5.34) on page 73] to obtain

Q1 (z) =
(α2 − 1− a2 (α− 1))− (α− 1) az−1

1 + αaz−1 + α2z−2

Q2(z) =
(α− 1) (a+ (1 + α) z−1)

1 + αaz−1 + α2z−2

and vary the coefficient a = −2 cos (2πΩHzTs) to test the system performance at different
frequencies. Six frequency values are evaluated, with the resulting sensitivity functions
plotted in Figure 9.12. The first three results come from VCM DDOB, with Q2 (z) = 0;
and Q1(z) centered at 500 Hz, 900 Hz, and 1500 Hz respectively. The remaining three are
generated by MA DDOB, with Q1 (z) = 0; and Q2(z) centered at 2300 Hz, 3100 Hz, and
3900 Hz. It is observed that by simple alternation of one coefficient in the Q filters, the servo
loop can be customized to a great extent.
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Figure 9.11: Magnitude responses in the decoupled-sensitivity design
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Figure 9.12: Magnitude responses of the sensitivity functions with different Q-filter config-
urations

For the application to audio-vibration rejection, Figures 9.13 and 9.14 present respectively
the frequency- and time-domain PES signals. Two Q filters are used, one at 1200 Hz for
the VCM DDOB, another at 2900 Hz for the MA DDOB. A scaling factor of 0.9 was used
to slightly reduce the Q-filter gains to avoid excessive waterbed effect (see Chapter 6). It
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can be observed that the spectral peaks at the corresponding frequencies are significantly
reduced by DDOBs, and that the magnitudes of position errors are decreased to half of the
original values.
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Figure 9.13: Spectra of the position error signals using a projected disturbance profile from
actual experiments
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Figure 9.14: Time traces of the position error signals in Figure 9.13
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Part III

Adaptive Band-limited Local Loop
Shaping
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Chapter 10

Parameter Adaptation Algorithms

10.1 Overview
To place enhanced servo at the desired frequency regions, we need knowledge of the spectral
peaks in the error/disturbance signals. This is particularly true for loop-shaping applications
such as Figures 1.3 to 1.5 on page 8. For tracking control, the trajectory may be pre-defined
offline, and thus available for customized servo design. For regulation problems, however,
spectral peaks of the disturbances can be unknown and even time-varying. In this chapter,
we study approaches to automate the identification process of the spectral peaks.

The overall adaptive SISO pseudo Youla-Kucera parameterization scheme is shown in
Figure 10.1. A similar construction can be made for the MISO problem in Chapter 9. The
central adaptation algorithm will be the same for both cases.

-

y(k)
C(q¡1) P (q¡1)

q
¡m

q¡mP̂¡1(q¡1)

Q(q¡1)

d(k)

+

+

+

+

++

d̂(k ¡m)

Noise 
reduction

Parameter 
adaptation 

algorithm (PAA)

w(k)
A(q¡1)
A(®q¡1)

Copy of parameters

Figure 10.1: Structure of adaptive pseudo YK parameterization for regulation control



CHAPTER 10. PARAMETER ADAPTATION ALGORITHMS 154

50 100 150 200 250 300 350 400
−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Frequency (Hz)

Figure 10.2: An example bandpass filter

Recall that the input to the Q filter is a delayed and noisy estimate of the actual distur-
bance. We can use this d̂ (k −m) signal for parameter adaptation on Q (q−1). To see the
reason of the noise-reduction block in Figure 10.1, note that the residual output is

y (k) = S
(
q−1
)
P
(
q−1
)
d (k)

≈
(
1− q−mQ

(
q−1
)) P (q−1)

1 + P (q−1)C (q−1)
d (k)

,
(
1− q−mQ

(
q−1
))
yo (k) (10.1)

where yo (k) is the baseline output without the add-on pseudo YK compensation scheme.
Using P (q−1) / [1 + P (q−1)C (q−1)] (or a nominal version of it) as the noise-reduction block
makes w (k) ≈ yo (k) and the adaptation hence directly focus on yo (k), which is invariant
with respect to Q (q−1).

Remark. Of course, if prior knowledge about a coarse region of the disturbances is available,
additional filtering (using e.g., a bandpass filter similar to that in Figure 10.2) can be ap-
plied in the noise-reduction block. This will further improve the signal-to-noise ratio in the
adaptation.

For the moment, we focus on the adaptation for narrow-band loop shaping, and assume
the disturbance consists of n independent sinusoidal components with additive noises. Gen-
eralizations will be made in the next chapter.

For the considered class of problem, we have designed, in (10.1),

1− q−mQ
(
q−1
)

=
A (q−1)

AQ (q−1)
K
(
q−1
)
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where

A(q−1) =
n∏
i=1

(
1− 2 cos(ωi)q

−1 + q−2
)

(10.2)

= 1 + a1q
−1 + · · ·+ anq

−n + · · ·+ a1q
−2n+1 + q−2n (10.3)

AQ(q−1) = A(αq−1)

=
n∏
i=1

(
1− 2α cos(ωi)q

−1 + α2q−2
)

(10.4)

= 1 + a1αq
−1 + · · ·+ anα

nq−n + · · ·+ a1α
2n−1q−2n+1 + α2nq−2n (10.5)

and K (q−1) is [Section 5.4]
K
(
q−1
)

= k0 + k1q
−1 + . . .

or a structured IIR filter [Section 5.3]:

K
(
q−1
)

=
m∑
i=1

(
m
i

)[
− A(q−1)

A(αq−1)

]i−1

. (10.6)

In the special case where m = 1, we have K (q−1) = 1, and can simply construct adap-
tation based on v (k) = A (q−1) /A (αq−1)w (k). When m > 1, the direct input-output
dynamics in (10.1) is nonlinear w.r.t. the coefficients [a1, a2, . . . , an]T or [ω1, ω2, . . . , ωn]T in
Q(q−1). However, noticing that in

v (k) =
(
1− q−mQ

(
q−1
))
w (k) = K

(
q−1
) A (q−1)

A (αq−1)
w (k) ,

K (q−1) is an auxiliary filter and the main shape of 1 − q−mQ (q−1) is from the notch filter
A (q−1) /A (αq−1), we can thus still use

v (k) =
A (q−1)

A (αq−1)
w (k) (10.7)

as the model for adaptation. Indeed, in (10.6), K (q−1) is nothing but a combination of
normalized notch filter, and does not change the major loop shape outside the desired servo-
enhancing frequencies.

Remark. Notice that if w (k) is composed of pure sinusoidal signals and the notch filter
A (q−1) /A (αq−1) is configured to have the correct center frequencies, then (10.7) will gen-
erate a null output v (k).

The general adaptation algorithm has the iterative structure of

θ̂ (k) = θ̂ (k − 1) + [Adaptation gain× Error] . (10.8)
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Depending on whether we choose directly the filter coefficient

θ = [a1, a2, . . . , an]T (10.9)

or other generalized versions of the coefficients for the cascaded filter

θ = [ω1, ω2, . . . , ωn]T , (10.10)

different parameter adaptation algorithms (PAA) can be formed. We discuss the two cases
for (10.9) and (10.10), respectively, in Section 10.2 and Section 10.3.

As A (q−1) /A (αq−1) and Q (q−1) share the same parameter vector θ, after adaptation
on A (q−1) /A (αq)−1, the identified θ̂ is directly implemented in Q (q−1) as shown in Figure
10.1.

10.2 Adaptation of the Direct-filter Structure

The Adaptation Model and the Predictor

Equation (10.7) gives
A
(
αq−1

)
v (k) = A

(
q−1
)
w (k) . (10.11)

Using (10.5) and (10.3), we get the direct difference equation of (10.11)

v (k) = w (k) + w (k − 2n)− α2nv (k − 2n) + an [w (k − n)− αnv (k − n)]

+
n−1∑
i=1

ai
[
w (k − i) + w (k − 2n+ i)− αiv (k − i)− α2n−iv (k − 2n+ i)

]
, (10.12)

which has the vector-form representation:

v (k) = ψ (k − 1)T θ +
(
w (k) + w (k − 2n)− α2nv (k − 2n)

)
. (10.13)

with the parameter vector θ and the regressor vector ψ (k − 1) defined as

θ = [a1, a2, . . . , an]T (10.14)
ψ (k − 1) = [ψ1 (k − 1) , ψ2 (k − 1) , . . . , ψn (k − 1)]T (10.15)
ψi (k − 1) = w (k − i) + w (k − 2n+ i) (10.16)

− αiv (k − i)− α2n−iv (k − 2n+ i) ; i = 1, ..., n− 1

ψn (k − 1) = w (k − n)− αnv (k − n) . (10.17)

Consider now the adaptive version of (10.11):

Â
(
αq−1, θ̂ (k)

)
v̂ (k) = Â

(
q−1, θ̂ (k)

)
w (k) . (10.18)



CHAPTER 10. PARAMETER ADAPTATION ALGORITHMS 157

Replacing θ (k) and v (k) with θ̂ (k) and v̂ (k) respectively in (10.13), we get

v̂ (k) = ψ (k − 1)T θ̂ (k) + w (k) + w (k − 2n)− α2nv̂ (k − 2n) . (10.19)

Here θ̂ (k) is the estimate of θ; ψ (k − 1) consists of

ψi (k − 1) = w (k − i) + w (k − 2n+ i) (10.20)
− αiv̂ (k − i)− α2n−iv̂ (k − 2n+ i) ; i = 1, ..., n− 1,

ψn (k − 1) = w (k − n)− αnv̂ (k − n) . (10.21)

Note that for an ideal Q (q−1), the output v (k) equals zero. The signal v̂ (k) is thus an
estimation error signal:

e (k) = v̂ (k)− 0 (10.22)

yielding

e (k) = φ (k − 1)T θ̂ (k) + w (k) + w (k − 2n)− α2ne (k − 2n) (10.23)

with

φ (k − 1) = [φ1 (k − 1) , . . . , φn (k − 1)]T

φi (k − 1) = w (k − i) + w (k − 2n+ i) (10.24)
− αie (k − i)− α2n−ie (k − 2n+ i) ; i = 1, ..., n− 1

φn (k − 1) = w (k − n)− αne (k − n) . (10.25)

e (k) and θ̂ (k) are respectively the a posteriori estimation error and the a posteriori
parameter estimate. Replacing θ̂ (k) by θ̂ (k − 1) in (10.23), we obtain the a priori estimation
error

eo (k) = − (−φ (k − 1))T θ̂ (k − 1) +
(
w (k) + w (k − 2n)− α2ne (k − 2n)

)
. (10.26)

At time k, before computation of the up-to-date parameter estimate θ̂ (k), eo (k) (rather than
e (k)) is the available error from the latest information θ̂ (k − 1).

The application of a posteriori information in (10.26) is essential for adaptation in noisy
environments. Notice that e (k) is more accurate than eo (k), since the former is updated by
a more recent coefficient vector θ̂ (k).

Directly applying eo (k) to update θ̂ (k) will yield a PAA that requires

1

A (αq−1)
− 1

2

to be strictly positive real (SPR) for adaptation stability. This condition is usually chal-
lenging to satisfy in practice. We apply instead the PAA using the output error predictor
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with a fixed compensator, which greatly relaxes the stability condition and provide good
performance in noisy environments [118].

The idea is to apply a filtered version of e (k) as the adaptation error, to update θ̂(k) (in
the a posteriori sense). The fixed compensator C (q−1) is proposed to be given by

C
(
q−1
)

= 1 + c1αq
−1 + · · ·+ cnα

nq−n + · · ·+ c1α
2n−1q−2n+1 + α2nq−2n, (10.27)

i.e., by replacing every ai in A (αq−1) by ci. We will discuss shortly the reasons for this
choice.

The a posteriori adaptation error ε (k) is therefore

ε (k) = C
(
q−1
)
e (k) = e (k) + α2ne (k − 2n) + ϕ (k − 1)T θc. (10.28)

where

θc = [c1, c2, . . . , cn]T ,

ϕ (k − 1) = [ϕ1 (k − 1) , ϕ2 (k − 1) , . . . , ϕn (k − 1)]T ,

ϕi (k − 1) = αie (k − i) + α2n−ie (k − 2n+ i) ; i = 1, ..., n− 1,

ϕn (k − 1) = αne (k − n) .

At time instant k, the previous e (k − i) is available ∀i = 1, . . . 2n. Yet from (10.19), e (k)
can only be updated after θ̂ (k) has been obtained. The implementable a priori adaptation
error is given by

ε0 (k) = e0 (k) + α2ne (k − 2n) + ϕ (k − 1)T θc. (10.29)

Estimation of θ̂ (k) can now be performed through the following PAA:

θ̂ (k) = θ̂ (k − 1) +
F (k − 1) (−φ (k − 1)) ε0 (k)

1 + φ (k − 1)T F (k − 1)φ (k − 1)
, (10.30)

F (k) =
1

λ (k)

[
F (k − 1)− F (k − 1)φ(k − 1)φT (k − 1)F (k − 1)

λ (k) + φT (k − 1)F (k − 1)φ(k − 1)

]
, (10.31)

where F (k) and λ (k) are respectively the adaptation gain and the forgetting factor. λ (k)
is a positive real number no larger than one, and can be designed depending on the nature
of the process [55].

Remark. It may appear strange at first, to have a negative sign in front of φ (k − 1) in (10.30).
We explain next why this had happened and how it may be transformed to a standard form.
Instead of (10.22), we can define the estimation error from the other way around:

ē (k) = v (k)− v̂ (k) = −v̂ (k) (10.32)

which is more conventionally adopted. Equation (10.32) gives, after substitution to (10.19)–
(10.25),

ē (k) = −φ (k − 1)T θ̂ (k)− w (k)− w (k − 2n)− α2nē (k − 2n) (10.33)
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with

φi (k − 1) = w (k − i) + w (k − 2n+ i)

+ αiē (k − i) + α2n−iē (k − 2n+ i) ; i = 1, ..., n− 1

φn (k − 1) = w (k − n) + αnē (k − n) .

After noting e (k) = −ē (k), we can see that (10.23) and (10.33) are equivalent. If we
had followed the notation of (10.32), we will then have ε̄ (k) = C (q−1) ē (k) = −ε (k) and
ε̄o (k) = −εo (k), yielding

−φ (k − 1) εo (k) = φ (k − 1) ε̄o (k) .

Thus (10.30) can be equivalently represented as

θ̂ (k) = θ̂ (k − 1) +
F (k − 1)φ (k − 1) ε̄0 (k)

1 + φ (k − 1)T F (k − 1)φ (k − 1)
,

which is in the standard PAA form. The reason for the difference in notation is that in
(10.23), ∂e (k) /∂θ̂ (k) = φ (k − 1) while in (10.33), ∂ē (k) /∂θ̂ (k) = −φ (k − 1). Before fil-
tering by the compensator C (q−1), the two PAAs aim at minimizing in the following negative
directions of the gradient vector:

−Oθ̂(k)

{
1

2
e2 (k)

}
= −

∂ 1
2
e2 (k)

∂θ̂ (k)
= −e (k)

∂e (k)

∂θ̂ (k)
(10.34)

−Oθ̂(k)

{
1

2
ē2 (k)

}
= −ē (k)

∂ē (k)

∂θ̂ (k)
. (10.35)

For (10.23), (10.34) equals −φ (k − 1) e (k), while for (10.33), (10.35) equals φ (k − 1) ē (k).

In practice, to apply Equations (10.30)-(10.31), one computes φ (k − 1) from (10.24) to
(10.25); gets e (k) and eo (k) from (10.23) and (10.26); and then obtains εo (k) from (10.29).

Due to the fact that the more accurate a posteriori e (k) is used in the adaptation, the
above PAA maintains good performance when the adaptation input w (k) contains additional
noise terms. The parameters converge to their true values if the initial conditions are not
far away from the global minima. The algorithm is subjected to the following sufficient but
not necessary stability condition [118]: the transfer function

C (q−1)

A (αq−1)
− 1

2
(10.36)

should be SPR.
For the design of C (q−1), it is common practice in the field of system identification,

to apply first some stable adaptation algorithm and assign the resulting rough estimate of
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A (αq−1) to C (q−1). Under such situations, C (q−1) is close to A (αq−1), (10.36) is approx-
imately 1/2, and thus SPR. The design of the compensator in (10.27) was meant for this
reason.

More specific, to obtain θc, the coefficients of C (q−1), we propose the series-parallel
predictor1 in the next subsection. This type of predictor is always stable and actually
provides unbiased estimation when the adaptation input is noise free [118].

Initialization with a Series-Parallel Predictor

Recall the adaptation model in (10.13), that

v (k) = ψ (k − 1)T θ +
(
w (k) + w (k − 2n)− α2nv (k − 2n)

)
. (10.37)

If we do not use the a posteriori term e (k) but only replace θ by θ̂ (k − 1), we get the a
priori prediction of v (k):

v̂o (k) = ψ (k − 1)T θ̂ (k − 1) +
(
w (k) + w (k − 2n)− α2nv (k − 2n)

)
. (10.38)

The a priori prediction error is given by

eo (k) = v (k)− v̂o (k) . (10.39)

eo (k) will be applied as the adaptation source. It can be seen that the series-parallel
predictor is much more simplified compared to the parallel predictors. The computation can
be further reduced by the observation that for a tuned Q (q−1), the ideal output v (k) is zero.
This simplifies the regression vector to:

ψi (k − 1) = w (k − i) + w (k − 2n+ i) ; i = 1, ..., n− 1 (10.40)
ψn (k − 1) = w (k − n) , (10.41)

and the estimation error in (10.39) now becomes

eo (k) = −ψ (k − 1)T θ̂ (k − 1)− (w (k) + w (k − 2n)) . (10.42)

With the above information, the following RLS type parameter adaptation algorithm
(PAA) can be constructed:

θ̂ (k) = θ̂ (k − 1) +
F (k − 1)ψ (k − 1) eo (k)

1 + ψ (k − 1)T F (k − 1)ψ (k − 1)
(10.43)

F (k) = F (k − 1)− F (k − 1)ψ (k − 1)ψ (k − 1)T F (k − 1)

1 + ψ (k − 1)T F (k − 1)ψ (k − 1)
. (10.44)

1Correspondingly, the predictors in Section 10.2 are known as the parallel predictors, for their use of the
a posteriori information.
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The adaptation algorithm is always stable. The proof is provided in Appendix A.5 and
[6]. [6] also provides a different (and slightly less complex) derivation of the PAA.

When parameters have converged for the above PAA, the value of θ̂ is applied to initialize
C(q−1) and Q̂(q−1). It will be shown in later sections, that this transient period of running
the series-parallel prediction is actually quite small, and we can move very quickly to the
high-performance parallel predictor.

Dynamic Switching Between the Two-stage Adaptation

This section discusses how to connect the two developed PAAs. Conventionally, switching
between two sets of predictors is usually done by choosing a fixed transition time instant.
As for the confirmation of parameter convergence, common choices are to monitor either the
adaptation gain or the adaptation error. For the former case, since the adaptation gain F (k)
is in general a matrix, some operation such as taking the trace is needed to judge the size of
F (k). For the latter, monitoring the adaptation error is well-suited for processes with high
signal-to-noise ratio. However, when the parameters are biased or the adaptation algorithm
has local convergence, it is difficult to decide the threshold for convergence. We propose
an algorithm to automate the switching by directly focusing on the values of the parameter
estimate θ̂ (k). It is considered that θ̂ (k) has converged if

1. max
(
|δθ̂ (k) |

)
, max

(
|θ̂ (k)− θ̂ (k − 1) |

)
is less than a pre-defined tolerance.

2. condition 1) holds continuously for a number of samples.

One can remark that the proposed algorithm is an approximation of the Cauchy criterion
[119] for convergence. Note also, that the tolerance in condition 1) is directly related to the
parameters and is much easier to choose than the threshold of the adaptation gain or that
of the adaptation error.

Obtaining the Frequencies from the Identified Parameters

The frequencies and the identified parameters are mapped by

n∏
i=1

(
1− 2 cos(ωi)q

−1 + q−2
)

= 1 + a1q
−1 + · · ·+ anq

−n + · · ·+ a1q
−2n+1 + q−2n. (10.45)

For the simplest case where n = 1, we have a1 = −2 cosω1, from which we can compute
ω1 = 2πΩ1Ts, where the unit of Ω1 is Hz. The parameter a1 is online updated and Ω1 can
be computed offline for algorithm tuning.

For n > 1, as (1− 2 cos(ωi)q
−1 + q−2) = (1− ejωiq−1) (1− e−jωiq−1), the values of ωi can

be computed offline via calculating the angle of the complex roots of

1 + a1q
−1 + · · ·+ anq

−n + · · ·+ a1q
−2n+1 + q−2n = 0.
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Figure 10.3: Spectra of the adaptation input

Parameter Initialization

When initializing θ̂ (0), we can first estimate the disturbance frequencies {ω̂i (0)}ni=1, and then
expand the product on the left hand side of (10.45), to obtain {âi (0)}ni=1 for implementation
in the PAA.

An Example

Figures 10.3 to 10.4 show details of an application of the PAA to the HDD benchmark in
Section 3.2. The input to the adaptation, namely, the signal w (k), has the spectrum shown
in Figure 10.3, where two major peaks and several side peaks are present.

Figure 10.4 shows the identified frequencies using the two-stage adaptation scheme. The
first stage, the series-parallel predictor, was turned on at around 1.25-th revolution (1 rev-
olution = 8.33 ms). The dynamic switching algorithms then operated to find a continuous
30-sample window where all online identified coefficients did not have abrupt changes in
values. We can see that at around 1.35-th revolution, the first stage converged close to the
actual frequency values. At around 1.48-th revolution, the auto-switching algorithm made
the transition, from the series-parallel predictor to the more accurate parallel predictor, and
gave unbiased estimation.
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Figure 10.4: Adaptive identification of two vibrations at 500 and 1200 Hz

10.3 Adaptation of the Cascaded-filter Structure
Instead of using the direct filter structure A (q−1) = 1+a1q

−1 + · · ·+anq
−n+ · · ·+a1q

−2n+1 +
q−2n in A (q−1) /A (αq−1), in this section, we discuss adaptation on the cascaded filter struc-
ture:

y (k) = H
(
q−1
)
w (k) , H

(
q−1
)

=
A (βq−1)

A (αq−1)
=

n∏
i=1

Ho

(
ωi, q

−1
)
, (10.46)

where
Ho

(
ωi, q

−1
)

=
1− 2βq−1 cosωi + β2q−2

1− 2αq−1 cosωi + α2q−2
. (10.47)

Here, we have made the structure of the notch filter more general, with β not necessarily
being one, but α < β ≤ 1.

Remark. Cascaded filters are very popular in digital signal processing. One main advantage
of using this filter structure is that it is numerically more efficient and stable for high-order
filters [120].

Updating directly ωi gave rise to [121], which was later refined in [122]. We notice,
however, from the control aspect of view, that the value of ωi is not directly needed (cosωi
is the term really implemented in the controller). To directly estimate ωi, [121] and [122]
needed to calculate trigonometric functions within each iteration, which can be expensive
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or inconvenient in applications where the computation power is limited. We introduce θi =
cos(ωi), and construct adaptation as follows:

In (10.47), letting

Ao
(
θi, γq

−1
)
, 1− 2γq−1θi + γ2q−2, γ = α, β (10.48)

and introducing the unknown parameter vector θ = [θ1, θ2 · · · θn]T , we can simplify (10.46)
to

H
(
θ, q−1

)
=

n∏
i=1

Ho

(
θi, q

−1
)

=
n∏
i=1

Ao (θi, βq
−1)

Ao (θi, αq−1)
, (10.49)

where we used the notation H (θ, q−1) to emphasize that this is a transfer function with
unknown parameter θ. The objective of the PAA is to find the best parameter estimate,
such that the following cost function is minimized

Vk =
k∑
j=1

1

2
[eo (j)]2 , (10.50)

where eo (k) = H (θ, q−1)w (k) is the output error.
The transfer function H (θ, q−1) is nonlinear in θ. To find the best estimation, the cel-

ebrated Gauss-Newton Recursive Prediction Error Method (RPEM) (Chapter 11 in [55])
suggests to apply the following iterative formulas

θ̂ (k) = θ̂ (k − 1) +
F (k − 1)ψ(k − 1)eo(k)

λ (k) + ψT (k − 1)F (k − 1)ψ(k − 1)
(10.51)

F (k) =
1

λ (k)

[
F (k − 1)− F (k − 1)ψ(k − 1)ψT (k − 1)F (k − 1)

λ (k) + ψT (k − 1)F (k − 1)ψ(k − 1)

]
, (10.52)

where ψ(k − 1) = [ψ1(k − 1), . . . , ψn(k − 1)]T , ψi(k − 1) = −∂eo (k) /∂θ̂i (k − 1) is the i-th
element of the regressor vector (in the negative direction of the gradient of eo (k)), and λ (k)
is the forgetting factor.

The above modified algorithm has several nice properties:

1. stability of the Gauss-Newton RPEM is guaranteed if H(θ̂ (k) , q−1) is stable during
the adaptation [55], which can be easily checked by monitoring if |θ̂i (k) | < 1, due to
our cascaded construction of (10.49).

2. θ̂ (k) unbiasedly converges to a local minimum [55].

3. it inherits most of the advantages of [47, 122], such as fast convergence, computational
efficiency, and numerical robustness. Moreover, it does not require computing sine and
cosine functions.
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Algorithm

Similar to [122], for obtaining first eo (k) = H (θ, q−1)w (k), we introduce

xj (k) =

j∏
i=1

Ho

(
θi, q

−1
)
w (k) , (10.53)

from which we have
xj (k) =

1− 2βθiq
−1 + β2q−2

1− 2αθiq−1 + α2q−2
xj−1 (k) , (10.54)

i.e., in state-space representation

Zi (k + 1) =
[ 2αθi −α2

1 0

]
Zi (k) +

[ 1
0

]
xi−1 (k) (10.55)

xi (k) = [2 (α− β) θi, β
2 − α2]Zi (k) + xi−1 (k) . (10.56)

We can then iteratively get eo (k), with eo (k) = xn (k) and x0 (k) = w (k).

The regressor vector: To get ψi (k − 1) = −∂eo (k) /∂θ̂i (k − 1), we notice that

∂eo (k)

∂θ̂i (k − 1)
=
∂H

(
θ̂i (k − 1) , q−1

)
w (k)

∂θ̂i (k − 1)

=
∂Ho

(
θ̂i (k − 1) , q−1

)
∂θ̂i (k − 1)

∏
j 6=i

Ho

(
θ̂j (k − 1) , q−1

)
w (k)

=
∂Ho

(
θ̂i (k − 1) , q−1

)
∂θ̂i (k − 1)

H−1
o

(
θ̂i (k − 1) , q−1

)
eo (k) . (10.57)

Using (10.48) and (10.49), we get

∂Ho (θi, q
−1)

∂θi
=

∂Ao(θi,βq−1)
∂θi

Ao (θi, αq
−1)

A2
o (θi, αq−1)

−
Ao (θi, βq

−1)
∂Ao(θi,αq−1)

∂θi

A2
o (θi, αq−1)

,

where ∂Ao (θi, γq
−1) /∂θi = −2γq−1, γ = α, β.

Substituting the above back to (10.57), and changing θi to its estimated value θ̂i (k − 1),
we arrive at the following simple formula:

ψi (k − 1) = −2 [eFi
(β, k)− eFi

(α, k)] , (10.58)

where eFi
(γ, k) = γq−1/Ao

(
θ̂i (k − 1) , γq−1

)
eo (k) , γ = α, β, which can again be calculated

using a state-space realization

Wi (γ, k + 1) =
[

2αθ̂i (k) −γ2

1 0

]
Wi (γ, k) +

[ 1
0

]
eo (k) (10.59)

eFi
(γ, k) =

[
γ, 0

]
Wi (γ, k) . (10.60)
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Implementation

The recursive parameter estimation is finally summarized as follows:
Initialization: αo = 0.8, αend = 0.995, αrate = 0.99,2 β = 0.9999, Zi (0) = Wi (γ, 0) = 0,

F (0) ≈ 100/E [eo]2 · I, θ̂ (0) = initial guess of the parameters, λ (0) = λ0, λ (∞) = λend,
λrate = 0.99.

Main loop: for k = 1, 2, . . .

step 1, prediction error computation: for i = 1 : n

xi (k) = [2 (α− β) θ̂i (k − 1) , β2 − α2]Zi (k) + xi−1 (k) , (10.61)

with x0 (k) = w (k) and eo (k) = xn (k).

step 2, regressor vector computation: for i = 1 : n

eFi
(γ, k) =

[
γ, 0

]
Wi (γ, k) , γ = α, β (10.62)

ψi (k − 1) = −2 (eFi
(β, k)− eFi

(α, k)) . (10.63)

step 3, parameter update using (10.51) and (10.52).

step 4, projection of unstable parameters: for i = 1 : n, if |θ̂i (k) | > 1, θ̂i (k) = θ̂i (k − 1).

step 5, a posteriori prediction error ē (k) computation and state vector update: for i = 1 : n

x̄i (k) =
[
2 (α− β) θ̂i (k) , β2 − α2

]
Zi (k) + x̄i−1 (k) (10.64)

Zi (k + 1) =
[

2αθ̂i (k) −α2

1 0

]
Zi (k) +

[ 1
0

]
x̄i−1 (k) , (10.65)

with x̄o (k) = w (k) and ē (k) = x̄n (k).

Wi (γ, k + 1) =
[

2αθ̂i (k) −γ2

1 0

]
Wi (γ, k) +

[ 1
0

]
ē (k) , (10.66)

for γ = α, β.

step 6, forgetting factor and notch filter shape coefficient update: replace α by αend −
[αend − α]αrate, and

λ (k + 1) = λend − [λend − λ (k)]λrate. (10.67)

Remark. Similar to Section 10.2, the a posteriori information is applied to improve the
estimation precision. As long as the initial parameter guesses are not too far away from the
true values, the estimation is unbiased in noisy environments [55].

2α is designed to increase exponentially from αo to α∞, at the rate of αrate, such that the notches get
sharper and sharper to better capture the narrow-band frequencies.
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Figure 10.5: Online identified parameters for the two main spectral peaks in Figure 10.3

An Example

Consider the same adaptation input as shown in Figure 10.3 on page 162. Figure 10.5
shows the online identification of the parameters θ̂1 and θ̂2. Figure 10.6 shows the equiva-
lent online frequency estimation, via the transformation Ω̂1 = cos−1(θ̂1)/(2πTs) and Ω̂2 =
cos−1(θ̂2)/(2πTs). The convergence speed is again very fast, and the transient period is much
less than one revolution of the disk rotation (1 revolution = 83.3 ms).
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Figure 10.6: Frequency values computed from the data in Figure 10.5

10.4 Notes and Additional Discussions
The main results in this chapter are based on theories of system identification and adaptive
control. The notation and equation style follow those of [55, 118, 56].

For more details of algorithm implementation, readers can refer to, respectively, [3, 7],
[6], and [9], for applications of the PAAs in Sections 10.2, 10.2, and 10.3.

Order of Adaptation and Parameter Convergence

In the derivations of this chapter, we have assumed that the number of the adaptation
parameters in {θi}ni=1 is the same as the number of frequency components in the actual
disturbance signal. The choice of the size of {θi}ni=1 (which we denote as the order of
adaptation) requires designers to have some engineering judgment during implementation.
If there are more than n, say r (> n), narrow-band signals in w (k), the parameters will
converge to a local optimal point3 which corresponds to minimizing n components of the
signal w (k). This result is demonstrated via the example shown in Figure 10.7. If, on
the contrary, r < n, then we will still be able to identify r frequency components in w (k).
Notice however, that in this case the adaptation model is over-determined and the optimum
parameter estimate will not be unique. For the cascaded adaptation where θi = cos (ωi),

3The location of the local optima depends on the initialization of the parameter estimate.
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n−r values of {θi}ni=1 will have no determined convergence points. For the direct adaptation
where θi = ai, we have

1+a1αq
−1+· · ·+anαnq−n+· · ·+a1α

2n−1q−2n+1+α2nq−2n =
r∏
i=1

(
1− 2α cos(ωi)q

−1 + α2q−2
)

×
n∏

i=r+1

(
1− 2α cos(ωi)q

−1 + α2q−2
)
. (10.68)

For the last n− r terms on the right hand side of (10.68), the frequency coefficients ωi will
also be undetermined.

Overall Closed-loop Stability with the PAAs

The stability and SPR conditions in this chapter apply only to the parameter adaptation
algorithms. For the overall closed-loop system in Figure 10.1, we have discussed the stability
condition in Chapter 4: given that Q (z) is stable, if we have a good model match between
P̂ and P , then stability is guaranteed in the framework of Youla-Kucera parameterization.

Notice that the poles of the Q filter are the roots of A (αq−1), which satisfies

A(αq−1) = 1 + a1αq
−1 + · · ·+ anα

nq−n + · · ·+ a1α
2n−1q−2n+1 + α2nq−2n (10.69)

=
n∏
i=1

(
1− 2α cos(ωi)q

−1 + α2q−2
)

(10.70)

=
n∏
i=1

(
1− αejωiq−1

) (
1− αe−jωiq−1

)
For the cascaded-filter adaptation in Section 10.3, we directly adapt θi = cos(ωi), and

have the stability-monitoring step to make sure
∣∣∣θ̂i∣∣∣ < 1. Hence at each time instance,

stability of Q (z) is guaranteed for the YK parameterization.
For the direct-filter adaptation, {ai}ni=1 are estimated. Notice that we have designed

α ∈ (0, 1). When the order of adaptation matches the number of frequency components in
the actual disturbance, the parameters will converge towards the true values corresponding
to (10.70), yielding the stability of Q (z). Simulation and experimental verifications show
that the roots of Q (z) are also stable during the adaptation transient. Actually, as α −→ 0,
all roots of A (αq−1) converge to the origin, and the Q filter becomes an FIR. In practice,
it may however be preferred not to turn on the compensation when the filter parameters
are rapidly changing. In this case, designers can delay the Q-filter implementation for a few
steps during the initial adaptation transient.
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Figure 10.7: Narrow-band disturbance identification example: adaptation input has more
frequency components than the adaptation model in the cascaded-filter adaptation
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Chapter 11

Implementations of Adaptive Local Loop
Shaping

11.1 Remarks About Practical Implementation
We have discussed the general design concepts of LLS, pseudo YK parameterization, and
adaptive Q filters. In this section, we provide several notes that are relevant to practical
implementation.

Algorithm Tuning

For filters in the structure of A (q−1) /A (αq−1), the width of the notch shape is determined by
the parameter α. When α is smaller than but very close to one, A (q−1) /A (αq−1) is almost
one except at the center frequencies of the notch shape. The closed-loop robust stability will
then be quite easy to satisfy. In practice, it is suggested to always start with an α that is
close to one, and gradually reduce it to reach the desired attenuation bandwidth, without
violating the stability conditions.

Order of the Internal Model

By construction, the proposed PAAs in Chapter 10 have good robustness against adapta-
tion noise. It is yet always beneficial to apply as most engineering experiences as possible,
and obtain a close estimation of n, the number of narrow-band disturbances. If indeed no
information on n is available, several series-parallel predictors (which are low-cost in com-
putation compared to the parallel predictors) in Section 10.2 can be run as shown in Figure
11.1, where a group of predictors with different orders are applied for the same adaptation
input. We can then compare the resulted estimation errors (see an example in Figure 11.2),
and choose the smallest PAA order that brings the error down to a satisfactory level.
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Figure 11.1: Flow chart to determine the number of spectral peaks online
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Figure 11.2: An example for identifying the number of multiple narrow-band disturbances

Disturbance Detection

The adaptive compensator may not need to be run for the entire time. We can include a
disturbance detector to provide instructions on the timing of the adaptation. As an example,
in HDD servo control, every effort is made towards reducing the Track Mis-Registration
(TMR = 3σ value of the position error, where σ denotes the standard deviation). Figure 11.3
presents one example disturbance detector, where the TMR is calculated online in a moving
window of 20 samples. When online TMR exceeds the normal operation bound (in this
example, 15% Track Pitch), the detector reports alert to the central adaptive compensator
and turns on the adaptation. Figure 11.3 is the online result of an application example to
be discussed in Section 11.2. We see that large error occurs after 1 revolution and is quickly
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reduced to be below 15% Track Pitch. This is the result of fast disturbance rejection after
the adaptive compensation scheme is turned on.
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← Disturbance detected
     Adaptation starts

Figure 11.3: Online TMR monitoring in an HDD example

The Plant and the Resonances

One may notice that, in several of the application examples discussed so far, we have chosen
to include notch filters as part of the plant. In this way, the “notched system” has a much
smoother frequency response, and can be approximated by a low-order nominal model P̂ (z).
It should however be noted that notch filters will inevitably introduce more phase delays to
the plant, thus increasing the difficulty of loop-shaping algorithms.

In the proposed YK parameterization schemes, it is also an option to model the real
plant (without the notch filters) accurately when constructing P̂ (z). We would then have a
higher-order model, but with less plant delays and easier Q designs.

If we are interested in servo enhancement at frequencies much below the resonant frequen-
cies, the effect of phase change due to notch filters will be insignificant. The performance
difference of the two modeling schemes will then be quite small. Designers can make a
selection based on the particular servo requirement and the specific implementation cost.
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Time-varying Disturbances

In the general parameter adaptation algorithm

θ̂ (k + 1) =θ̂ (k) + [Adaptation gain× Error]

F (k + 1) =
1

λ (k)

[
F (k)− F (k)φ (k)φ (k)T F (k)

λ (k) + φ (k)T F (k)φ (k)

]
,

it is well-known that altering the forgetting factor is the key for time-varying parameter
adaptation [55, 118]. For a non-unity λ (k) = λ, the overall objective at time k changes from

min
k∑
i=1

Error2

to

min
k∑
i=1

λk−iError2.

A smaller λ (k) (∈ [0, 1]) thus gives faster forgetting of the history errors. We suggest the
following tuning rules for disturbances whose frequencies change w.r.t. time:

(i) rapid initial convergence: initialize λ(k) to be exponentially increasing from λ0

to 1 in the first several samples, where λ0 can be taken to be between [0.92, 1)

(ii) disturbances with sudden parameter changes: for such applications, when the
prediction error encounters a sudden increase, indicating a change of disturbance
characteristics, reduce λ (k) to a small value λ (e.g. 0.92), and then increase it
back to its steady-state value λ (usually close to 1), using the formula λ(k) =
λ− λrate(λ− λ(k − 1)), with λrate preferably in the range (0.9, 0.995).

(iii) disturbances with continuously changing parameters: in this case, keep λ(k)
strictly smaller than one, using e.g., a constant λ(k)(∈ [0, 1]).

11.2 Application: Adaptive Rejection of Narrow-band
and Audio Vibrations in HDDs

We discuss next application of the SISO pseudo Youla-Kucera parameterization, with direct
Q design [Section 5.4] and direct-filter adaptation [Section 10.2], to the single-stage HDD
simulation benchmark in Section 3.2.

The frequency response of the plant is as shown in Figure 3.9 on page 32. The solid line
of Figure 11.4 presents the sensitivity function of the baseline feedback system.

Two narrow-band disturbances at 500 Hz and 1200 Hz were injected at the end of the first
revolution to test the system performance. The upper plot in Figure 11.5a shows the time
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Figure 11.4: Frequency responses of the sensitivity functions with and without compensation

trace of the position error signal (PES) without adaptive pseudo YK parameterization. The
corresponding steady-state frequency spectrum is plotted in the dotted line in Figure 11.5b.
It is observed that with only the baseline feedback controller, the PES had strong energy
components at 500 Hz and 1200 Hz; the TMR was 21.56% Track Pitch (TP). Notice that
1200 Hz is higher than the bandwidth of the baseline servo system. Without compensation,
disturbance at this frequency was actually amplified.

We have seen how the disturbance detector works in Figure 11.3. After successful dis-
turbance detection, adaptation was turned on at 1.25-th revolution. Figure 11.6 shows the
identified disturbance frequencies.1 At around 1.48-th revolution, the series-parallel pre-
dictor automatically switched to the more accurate parallel predictor, and the disturbance
compensation was turned on.

The frequency- and time-domain compensation results are shown in Figures 11.4, 11.5b,
and 11.5a. After convergence, the closed-loop sensitivity function had the frequency response
as shown in the dotted line of Figure 11.4. Correspondingly in Figure 11.5b, the major
narrow-band components were fully attenuated, while the frequency spectra in other regions
were hardly influenced. In the time domain, the lower plot in Figure 11.5a demonstrates
the PES time trace with compensation, where we note the PES dropped to be significantly
below 10% TP. The corresponding TMR (after convergence) was reduced to 8.39% TP–less
than one half of the value without compensation.

1Recalled from Figure 10.4 on page 163.
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Figure 11.5: Time- and frequency-domain PES reduction
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Figure 11.6: Identification of the disturbance frequencies in Figure 11.5a

Figure 11.7a and Figure 11.7b show the performance of the algorithm at higher frequencies
and with the parameters initialized far away from their true values. Notice that in this case
study, more small spectral peaks appear as input noise to the PAA (see Figure 11.7a), yet
the algorithm found and fully rejected the two major disturbance components.

In Figure 11.4, we used an α very close to one for narrow-band disturbance rejection.
The adaptation also works for wider-band disturbances, by choosing a smaller value of α
(see an example loop shape in Figure 6.2 on page 93). Figures 11.8a and 11.8b show the
performance of the algorithm for rejecting the audio vibrations discussed in Section 3.2. It
is clear that the proposed algorithm correctly located and attenuated the spectral peaks of
the vibrations. The influence of the large error peaks are indeed significant to the system:
after removal of them, the 3σ value of the errors reduced from 24.18 to 13.14, namely, we
have a 45.66 percent performance gain.
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(b) Online identification results

Figure 11.7: Rejecting two narrow-band disturbances at 964 Hz and 1426 Hz
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(b) Parameter adaptation for achieving Figure 11.8a

Figure 11.8: Rejecting multi-band audio-vibrations at high frequencies
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11.3 Application: Time-varing Vibration Rejection on
an Active Suspension

Recall the results of narrow-band vibration rejection on the active suspension in Section 5.6.
In all the discussed tests there, the vibration frequencies were actually unknown [25], and
the controller parameters were updated online via the PAA in Section 10.2. The steady-state
performance has been extensively shown in Figures 5.7 to 5.12, we now provide the part of
the results about adaptation.

Figure 11.9a shows the time trace of the residual errors (experimental result) for a time-
varying vibration with the following characteristics: the disturbance frequency changes in
the pattern of null→75Hz→85Hz→75Hz→65Hz→75Hz→null, occurring respectively at 5
sec, 8 sec, 11 sec, 14 sec, 17 sec, and 32 sec. In the presence of various frequency jumps, the
algorithm is seen to provide rapid and strong vibration compensation. This is due to the
correct online identification of the vibration frequencies in Figure 11.9b. Here, a disturbance
detector similar to that in Section 11.1 is used to automatically turn on the identification
at 5 sec (the time when disturbance was injected). Comparing the data at 2 sec and 7 sec
in Figure 11.9a, we see that the steady-state residual errors with the compensation scheme
(data at 7 sec) has been reduced to be at the same magnitude as the baseline case (at 2 sec)
where no disturbance presents.

Figure 11.10a shows the experimental results when the disturbance is a chirp vibration
whose frequency sweeps between 50 Hz and 95 Hz. Figure 11.10b is the identified frequency
values. Under such time-varying vibrations, we see the proposed algorithm maintains its
effectiveness of compensating the disturbance. The slight degraded performance at around
14 sec, 20 sec, and 24 sec is due to the transient in the changing frequency, and the intentional
limit of the performance above 86 Hz [7, 16].

Similar performances have been achieved for the case where we have multiple time-varying
vibrations at different frequencies. Interested readers can refer to the details in [7, 16].



CHAPTER 11. IMPLEMENTATIONS OF ADAPTIVE LOCAL LOOP SHAPING 181

0 5 10 15 20 25 30 35 40
−0.02

−0.01

0

0.01

0.02

R
es

id
ua

l f
or

ce
 [V

]

 

 

Open loop

0 5 10 15 20 25 30 35 40
−0.02

−0.01

0

0.01

0.02

Time [sec]

R
es

id
ua

l f
or

ce
 [V

]

 

 

Closed loop

(a) Time-domain results
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(b) Frequency identification for achieving Figure 11.9a

Figure 11.9: Experimental results of rejecting vibrations with frequency jumps
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Figure 11.10: Experimental result of rejecting a chirp disturbance
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Chapter 12

Solving the Robust Strictly Positive Real
Problem Via Convex Optimization

We have seen the requirement of strictly positive realness in the parameter adaptation al-
gorithms. We briefly described how the condition can be satisfied in Chapter 10. In this
chapter, a systematic treatment of the problem is provided.

12.1 Introduction
The strictly positive real (SPR) condition of a transfer function has substantial importance in
adaptive control and system identification [56, 55]. An essential problem (see, e.g., [123, 124,
125, 118] and the references therein) in a group of recursive parameter adaptation algorithms
is: given an uncertain polynomial A (σ) (σ denotes s in continuous-time problems and z
in discrete-time problems), design a polynomial compensator C (σ) such that the transfer
function

C (σ)

A (σ)
− α (12.1)

is SPR for all possible values of A (σ). Here α (∈ [0, 1]) is a fixed scalar that depends on the
adaptation algorithm. For instance, in the output error method with a fixed compensator,
we have seen that C(z)/A(z)− 1/2 being SPR is crucial to assure the stability of the PAA
[Section 10.2]. In this case, A(z) comes from the transfer function of the plant to be identified.
Conventionally, one has to guess or apply another parameter adaptation algorithm to obtain
a C(z) that is hopefully close to A(z) [118]. The same problem occurs in the more general
pseudo linear regression algorithm, where the importance of the SPR condition has been
remarked in Section 8.6 of [56].

The SPR condition is a strong requirement and is not easy to guarantee for an uncertain
A (σ). Investigation of the above problem has therefore been popular in the control commu-
nity. Approaches that use: (a) complex polynomial analysis [126, 127, 128, 129, 130, 123,
125, 131, 132, 133, 134]; (b) geometrical design [132, 133]; and (c) linear matrix inequalities
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[135, 136] have been proposed to address the problem. More specific, [123, 131] and [134]
characterized the SPR condition and discussed the case when A (σ) belongs to a set of stable
and known polynomials. [132] and [133] analyzed the situation when the uncertainty in A (σ)
comes from its root locations or bounded uncertain frequency responses. An important gen-
eral classification was discussed in [126, 127, 128, 135, 129, 130, 136], where A (σ) is assumed
to lie in a known polytope, with bounded coefficients in the polynomial. Among the existing
results, the majority discussed the case where α = 0; [128] and [135] investigated the more
difficult situation where α > 0. [123, 127, 128, 129, 136, 125, 131, 135, 134, 130] mainly
analyzed the continuous-time version of the problem. The discrete-time robust SPR prob-
lem has different characteristics compared to the continuous-time version [128]. Within this
category, [126] provided conditions for the existence of a solution but did not discuss how to
construct it; [133] showed a geometrical design approach for systems with disk uncertainties;
later in [135], LMIs are formed to analyze the general SPR condition for an uncertain trans-
fer function G (σ)− α. The formation and realization of a compensator C (σ) was however
not discussed, and the equations are slightly more complex than the present approach.

The most natural (and recommended in the related text books [56, 118, 55]) way of
designing C (σ) is to make it “close” to A (σ), such that C (σ) /A (σ) − α is approximately
1−α (usually α ≤ 1). In fact, this is also substantial for parameter convergence in adaptation
algorithms (see Section 4.5.4 of [137]). This aspect has however been largely discredited in
previous robust SPR design algorithms.

In this chapter, we present a convex-optimization approach to address the robust SPR
problem (with a general non-negative α). The common polytopic uncertainty [126, 127, 128,
135, 129, 130, 136] is adopted here. We will be focusing on the discrete-time version of the
problem, partially due to its popularity in system identification and adaptive control, as we
have encountered in Chapter 10, and partially because of the fact that results in the more
explored continuous-time robust SPR problem do not necessarily generalize to discrete-time
systems [128, 135].1 Additional contributions are as follows. First, we provide a design
approach that not only assures the robust SPR condition but also finds the optimal C (σ)
that is “closest” to A (σ). Second, we discuss the achievement of additional optimal properties
to the compensator design. This provides us the possibility to investigate several new issues.
For instance, in output error based adaptation algorithms, it is favorable for the compensator
to have minimum order and/or small gain in the high-frequency region.

12.2 SPR Analysis
Definition 12.1. A proper and rational discrete-time transfer function G(z) is strictly pos-
itive real (SPR) if2

1An extension of the algorithm is discussed in Section 12.7, so that the continuous-time problem can be
similarly addressed.

2Note that definitions of SPR functions are not uniform in the literature, see [138] for historical remarks.
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1. G(z) does not possess any pole outside of or on the unit circle in the complex plane;

2. ∀|ω| < π, G(e−jω) +G(ejω) = 2Re {G(ejω)} > 0.

From the above definition, the following properties can be obtained:
If G(z) is SPR, then

1. it is asymptotically stable;

2. the phase response of G(z), after normalization to [−π, π], lies inside the region (−π
2
, π

2
)

(see, e.g., [126, 134]);

3. the Nyquist plot of G(z) lies in the closed right-half complex plane [139].

Property 1 and 2 are direct results of the first and the second points in Definition 1. The
third property is an equivalent statement of Property 2.

The robust SPR problem we will be solving is stated as follows:

Problem 12.1. Given α ∈ [0, 1] and a monic3 stable polynomial

A(z) = 1 + a1z
−1 + a2z

−2 + · · ·+ anz
−n, (12.2)

with n unknown but bounded coefficients

ai ≤ ai ≤ āi, i = 1, 2, . . . , n, (12.3)

find a polynomial C(z) such that C(z)
A(z)
− α is SPR.

Remark 12.1. Notice that the region of coefficients as specified in (12.3) need to be a subset
of the stability region of A (z). For example, for A (z) = 1 + a1z

−1 + a2z
−2, the stability

region (obtained by bilinear transformation z = (1 + s) / (1− s) and Routh test) is a reverse
triangle (see Figure 12.1) defined by

1− a1 + a2 > 0

1 + a1 + a2 > 0 (12.4)
2− 2a2 > 0.

The rectangle

a1 ≤ a1 ≤ a1

a2 ≤ a2 ≤ a2

must stay inside the shape of (12.4).
3A monic polynomial is a polynomial whose leading coefficient is equal to 1.
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Figure 12.1: Stability region of a second-order polynomial of z−1

In practical applications, α is usually strictly positive [56, 55]. In this case the problem
can be normalized as shown in the following proposition.

Proposition 12.1. For α > 0, there exists a polynomial C (z) such that C(z)
A(z)
−α is SPR, if

and only if C
′
(z)

A(z)
− 1

2
is SPR for some polynomial C ′(z).

Proof. Under the assumption that α > 0,

C(z)

A(z)
− α = 2α

(
C
′
(z)

A(z)
− 1

2

)
where C ′(z) = C(z)/ (2α). The proof follows by noting the fact that scaling a transfer
function by a positive number does not change the SPR property.

For the above normalized problem, [124] has shown that the SPR condition of

Re
{
C
′
(ejω)/A(ejω)− 1/2

}
> 0

is equivalent to
|A(ejω)/C

′
(ejω)− 1| < 1,

from which it is clear that letting C ′(z)/A(z) ≈ 1 is a feasible solution. This is the suggested
way of designing the compensator C ′(z) in text books of system identification and adaptive
control [137, 118, 56, 55], and is also important for the parameter convergence, as discussed
in Section 12.1.
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12.3 Polytopic Uncertainty
In this section, we briefly review the characterization of the polytopic constraint (12.3) and
provide a general result of the robust SPR problem.

Notice that (12.2) can be equivalently represented as

A(z) = 1 +
[
z−1, z−2, . . . , z−n

]
[a1, a2, . . . , an]T . (12.5)

Consider an n dimensional vector space that contains the coefficient vector [a1, a2, . . . , an]T .
An alternative representation of (12.3) is to use the concept of convex hull (see, e.g., [60]),
which states that [a1, a2, . . . , an]T can be characterized by the extreme edge vectors that are
defined by lower and upper bounds of ai’s:

[a1, a2, . . . , an]T =
2n∑
j=1

θj [bj,1, bj,2, . . . , bj,n]T , θj ≥ 0,
2n∑
j=1

θj = 1,

where bj,i = ai or āi. There are 2n edge vectors. This number can be reduced if some
parameters are known a prior. Applying the above result to (12.5) yields

A(z) =
2n∑
j=1

θjAj(z), θj ≥ 0,
2n∑
j=1

θj = 1, (12.6)

where Aj(z)’s are the edge polynomials defined by bj,i’s. Note that since A(z) is stable by
assumption,4 all the Aj(z)’s therefore are also stable.

As a second-order example, when A (z) = 1 + a1z
−1 + a2z

−2, with a1 ≤ a1 ≤ ā1 and
a2 ≤ a2 ≤ ā2 as shown in Figure 12.2, the convex-hull formulation then says that any
point inside the rectangle can be expressed as a convex combination of the four edge points:
[a1, a2]T , [ā1, a2]T , [a1, ā2]T , and [ā1, ā2]T .

Equation (12.6) provides a convenient interpretation of the uncertainty in A(z). Instead
of a polynomial of unknown coefficients (in an entire vector space), we now have a convex
combination of a finite number of fixed polynomials. Moreover, we have the following result:

Lemma 12.1. If A(z) is given by (12.6), then C(z)
A(z)
− α is SPR if and only if C(z)

Ai(z)
− α is

SPR ∀i = 1, 2, . . . , 2n.

Proof. This is an enhanced version of Lemma 3.1 in [128]. The “only if” part of the proof is
trivial since C(z)/Ai(z) corresponds to θj = 1 for j = i and θj = 0 for j 6= i in (12.6). The
“if” part of the proof is similar to that in [128] and omitted here.

4To obtain the robust stability condition of such ’interval polynomials’ with bounded coefficients, the
Kharitonov’s Theorem [140, 141] provides a complete solution to the continuous-time domain problem and
has motivated various research towards its discrete-time equivalences (see, e.g., [142, 143] and the references
contained therein.)
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a1
a2

a1 ¹a1
¹a2
a2

Figure 12.2: The 2D convex hull containing [a1, a2]T

12.4 Achieving the Robust SPR Condition
Given the SPR problem, we have first shown that the uncertain A(z) has the equivalent
representation in (12.6). Lemma 12.1 then leads to investigation of the SPR condition for
each edge transfer function C(z)/Aj(z)− α. From Definition 12.1, the SPR condition itself
is specified at an infinite amount of frequencies. We now apply the positive-real lemma to
translate the infinite dimensional problem to a single LMI:

Lemma 12.2. (positive-real lemma) A square discrete-time system

Gp(z) = Cp (zI − Ap)−1Bp +Dp

is SPR if and only if there exists a positive definite matrix P = P T � 0 such that the
following matrix inequality holds[

P − ATp PAp CT
p − ATp PBp

Cp −BT
p PAp DT

p +Dp −BT
p PBp

]
� 0. (12.7)

Proof. see [144, 145, 146].

Let G(z) = C(z)/K(z)− α, where K(z) represents an edge polynomial Aj(z). Define

C(z) = c0 + c1z
−1 + · · ·+ clz

−l

K(z) = 1 + k1z
−1 + · · ·+ knz

−n, (12.8)

The order of C(z) is a design parameter here. Depending on the values of l and n,
different situations exist for the design of (12.7):

Case 1: if l ≥ n, it is straightforward to show that

C(z)

K(z)
− α = (c0 − α) +

(c1 − c0k1) zl−1 + · · ·+ (cn − c0kn) zl−n + cn+1z
l−n−1 + · · ·+ cl

zl + k1zl−1 + · · ·+ knzl−n
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which has the following state-space realization:

Ap =

[
0l−1,1 Il−1,l−1

0 ∗

]
l×l
, Bp =

[
0l−1,1

1

]
(12.9)

∗ = [01,l−n−1,−kn, . . . ,−k1]

Cp =
[
cl, . . . , cn+1, cn, . . . , c1

]
− c0

[
01,l−n, kn, . . . , k1

]
Dp = c0 − α.

Here the controllable canonical form is proposed, so that when we form (12.7), the matrix
on the left-hand side is linear in the decision variables [c0, c1, . . . , cl].

Case 2: if n > l, similar analysis gives

Ap =


0 1 0

. . .
... . . . . . . 0
0 . . . 0 1
−kn . . . −k2 −k1


n×n

, Bp =


0
...
0
1


n×1

(12.10)

Cp = −c0

[
kn . . . kl+1 , kl . . . , k1

]
+
[

01,n−l, cl, . . . , c1

]
Dp = c0 − α.

Equation (12.9) or (12.10) can now be applied to construct (12.7). Such constructions
are repeated for each edge transfer function. We can now formulate the following feasibility
problem:

find c0, . . . cl ∈ R and Pj = P T
j � 0 (12.11)

s.t.
[
Pj − ATp,jPjAp,j CT

p,j − ATp,jPjBp,j

Cp,j −BT
p,jPjAp,j DT

p,j +Dp,j −BT
p,jPjBp,j

]
� 0, j = 1, 2, . . . 2n,

where for each j, (Ap,j, Bp,j, Cp,j, Dp,j) is defined by (12.9) or (12.10), with K(z) = Aj(z).
By construction, Cp,j and Dp,j depend affinely on ci’s. Problem (12.11) is thus a convex,
actually semidefinite programming (SDP) problem, and can be solved by efficient interior-
point methods (using, e.g., [84]) in convex optimization.5

12.5 Optimal Properties
Section 12.4 provides a tool to obtain a feasible solution. Another main design aspect is
to obtain coefficients c0, . . . , cl in (12.11) with designer-assigned optimal properties, one of
which is to keep C(z)/A(z) close to 1. In this section, together with the “close-to-1” condition,

5When the problem is formulated for computer solvers, the positive definite constraint P = PT � 0 is
transformed to P−εI � 0, where ε is a small positive number chosen as the lower bound of all the eigenvalues
of P .
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we provide a few examples to obtain the optimal compensator C(z). The discussions are
separated into subsections, but they can be combined by a weighted sum or the minimum
of the weighted costs, to satisfy multiple design objectives. All the results in this section are
subject to the baseline SPR requirement in Section 12.4.

C(z)/A(z) Being Close to 1 The intuition and the importance of this objective has been
discussed in Section 12.2. For the z-domain transfer function C(z)/A(z) to be close to 1,
we aim at minimizing the maximum value of |C(ejω)/A(ejω) − 1| over the entire frequency
region, i.e.,

min
c0,...cl∈R

∥∥∥∥C(z)

A(z)
− 1

∥∥∥∥
∞
. (12.12)

In a more general and flexible form, we consider

min
c0,...cl∈R

‖R(z)‖∞ ,

∥∥∥∥W (z)

V (z)
C(z)− η

∥∥∥∥
∞

(12.13)

with W (z) = w0 + w1z
−1 + · · · + wlz

−l, V (z) = 1 + v1z
−1 + · · · + vlz

−l, and C(z) =
c0 + c1z

−1 + · · · + clz
−l. For simplicity, it is assumed that W (z), V (z) and C(z) have the

same order. If not, one can classify different situations in a way similar to that in Section
12.4, or simply constrain the coefficients of the excessive high-order terms to be zero. Using
(12.13), we can essentially constrain C(z) to have an arbitrary desired (if feasible) frequency
response.

Equation (12.13) can be transformed to a tractable optimization problem in a form similar
to (12.11), by utilizing the bounded-real lemma.6 To do that, we need the following system
construction: notice that H(z) , W (z)C(z) = h0 + h1z

−1 + · · · + h2lz
−2l is given by the

convolution


h0

h1
...
...
h2l

 =



w0 0 · · · · · · 0

w1 w0
. . . . . . ...

... . . . . . . . . . ...

... . . . . . . . . . 0
wl wl−1 · · · w1 w0

0 wl
. . . . . . w1

... . . . . . . . . . ...

... . . . . . . . . . wl−1

0 · · · · · · 0 wl


︸ ︷︷ ︸

(2l+1)×(l+1)


c0

c1
...
...
cl



6Recall also its application in Section 6.4.
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from which R(z) = H(z)/V (z)− η has the following state-space realization:

Ar =

[
02l−1,1 I2l−1,2l−1

0 ∗

]
2l×2l

, Br =

[
02l−1,1

1

]
(12.14)

∗ = [01,l−1,−vl,−vl−1, . . . ,−v1] , Dr = h0 − η

Cr = [h2l, h2l−1, . . . , h1]− h0 [01,l, vl, . . . , v1] .

The bounded-real lemma then says that (12.13) can be achieved if and only the following
problem can be solved:

min
γ,Pr,ci

: γ ≥ 0 (12.15)

s.t. : −

 ATr PrAr − P ATr PrBr CT
r

BT
r PrAr BT

r PrBr − γI DT
r

Cr Dr −γI

 � 0 (12.16)

Pr = P T
r � 0

Again, we used the controllable canonical form in (12.14), so that the left hand side of
(12.16) is affine in γ, Pr and ci. After adding the SPR constraint (12.11), the minimization
in (12.15) remains a convex optimization problem.

A candidate polynomial A(z) is needed in (12.12). For the specific polytopic uncertainty
(12.3), the center of the polytope can be used.

Minimum-Order Compensator The order of the compensator is directly related to
the required computation complexity in the related system identification or adaptive control
problems. The common practice in system identification is to apply l = n in (12.8). With the
proposed algorithms, it is however possible to find the compensator C(z) with the minimum
number of coefficients. This can be rapidly achieved through the optimization formulation,
by starting the feasibility problem (12.11) with l = n, and iteratively reducing l until (12.11)
becomes infeasible.

A related design is to obtain sparse (having large amounts of zeros) coefficients in C(z).
In that case, if a feasible order l is firstly assigned, we can apply the 1-norm approximation for
cardinality minimization (see, e.g., [60]), and add the cost function minci,Pi

‖ [c0, c1, . . . , cl]
T ‖1

to (12.11), which shall provide a sparse [c0, c1, . . . , cl].

Minimum High-Frequency Gains In the output error method with a fixed compensator
[Section 10.2], the output error is filtered through C(z) to obtain the adaptation error,
denoted as υ (k), for parameter identification or adaptive control. Excessive high-frequency
components in υ (k) reduces the signal-to-noise ratio and increases the quantization error.
It is therefore favorable to limit the high-frequency magnitude of C(z) (and hence the high-
frequency energy in υ (k)).
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Recall that the compensator is given by C(z) = c0 + c1z
−1 + · · ·+ clz

−l, whose frequency
response C(ejω) at ω = π is C(ejπ) = C(z)|z=−1. To minimize the high-frequency gain (at
the Nyquist frequency) of C(z), we can add the following objective:

min
∣∣C(ejπ)

∣∣ =
∣∣∣[1,−1, 1,−1, . . . ] [c0, c1, . . . , cl]

T
∣∣∣ (12.17)

which is linear in the decision variables ci’s.

12.6 Design Examples
Consider identification of the following second-order system:

B(z)

A(z)
=

b0 + b1z
−1 + b2z

−2

1− 2βa1z−1 + β2z−2
,

where the damping ratio β = 0.98 and the sampling period Ts = 1/26400 sec. Such a
transfer function generalizes various rigid-body models of mechanical systems, and can also
represent the model of vibrations with a single-frequency component. Assume that we know
the resonance of the system is between 700 Hz and 1000 Hz, i.e., the unknown numerator
coefficient a1 ∈ [cos (2πTs × 700) , cos (2πTs × 1000)]. When using the output error identifi-
cation method with a fixed compensator and a forgetting factor of 1, one will have α = 1/2
in C(z)/A(z) − α. Figure 12.3 demonstrates the frequency response of 7 possible 1/A(z)’s
uniformly sampled from the uncertainty region. One can observe that in a large frequency
region, the phase responses of 1/A(z) is below -90 degree, i.e., Re (1/A(ejω)) ≤ 0. Therefore,
1/A(z) is not SPR, not to say 1/A(z)− 1/2.

It is easy to check that ∀a1 ∈ [cos (2πTs × 700) , cos (2πTs × 1000)], A(z) is stable. The
first condition for SPR transfer functions is thus satisfied. The two edge polynomials
in this case are A1(z) = 1 − 2βa1z

−1 + β2z−2 and A2(z) = 1 − 2βā1z
−1 + β2z−2, with

a1 = cos (2πTs × 700) and ā1 = cos (2πTs × 1000). Formulating and solving (via [84]) the
feasibility design in Section 12.4, with l = n = 2, we obtain

C(z) = 12.36− 10.71z−1 − 1.162z−2. (12.18)

Plotting the frequency responses of the sampled 1/A(z) and C(z)/A(z) − 1/2 in Figure
12.4, one observes that ∀ω, C(z) is capable of providing robust compensation such that
C(ejω)/A(ejω) − 1/2 stays strictly in the open right-half complex plane (phase∈

(
−π

2
, π

2

)
),

which, combined with the condition that A(z) is always stable, indicates the success of the
robust SPR design.

Notice however in Figure 12.4, that large gain variations exist in C(z)/A(z) − 1/2
and that C(z)/A(z) is far away from the unity function. Indeed, the roots of C(z) are
{0.9637,−0.0976} while the roots of A(z) always appear in complex pairs and range from
βe±j2πTs×700 (0.9664 ± 0.1625i) to βe±j2πTs×1000 (0.9524 ± 0.2310i). It is thus seen that the
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Figure 12.3: Frequency responses: samples of the uncertain 1/A(z)
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Figure 12.4: Frequency responses of the sampled 1/A(z) and C(z)/A(z)− 1/2



CHAPTER 12. SOLVING THE ROBUST STRICTLY POSITIVE REAL PROBLEM
VIA CONVEX OPTIMIZATION 194

−20

0

20

40

60

M
ag

ni
tu

de
 (

dB
)

10
1

10
2

10
3

10
4

−180

−90

0

90

P
ha

se
 (

de
g)

 

 

Frequency  (Hz)

1/A(z)

C(z)/A(z)−1/2

Figure 12.5: Sampled frequency responses of 1/A(z) and C(z)/A(z)−1/2: with the objective
of min ||C(z)/A(z)− 1||∞

obtained C(z) makes C(z)/A(z) − 1/2 robustly SPR, but does not reflect intuitive infor-
mation about the system A(z) and additionally may negatively influence convergence of the
adaptation process. The algorithm in Section 12.5 is then applied to improve the result. The
objective of min ||C(z)/A∗(z)−1||∞ is enforced, with A∗(z) being the center of the polytope.
The resulted solution is C(z) = 1.027−1.932z−1 +0.9464z−2. Figure 12.5 shows the sampled
frequency responses of the newly obtained C(z)/A(z)− 1/2. Besides the achievement of the
robust SPR requirement, C(ejω)/A(ejω) − 1/2 is significantly confined to be in a smaller
region: compared to Figure 12.4, the phase of C(ejω)/A(ejω)−1/2 is close to 0 degree at the
majority of frequencies; the magnitude response is condensed to be within 0.2503 (-12.03 dB)
and 2.6931 (8.605 dB); specifically at high frequencies, C(ejω)/A(ejω)−1/2 is approximately
0.5107 (-5.836 dB). Therefore, C(z)/A(z) is much closer to 1 from the optimal design. The
roots of C(z) in this case are {0.9402± 0.1928i}, which reflect much more information about
A(z) compared to (12.18).

Finally we explore the optimal C(z) that has the minimum high-frequency magnitude.
Applying the algorithms in Section 12.5, we obtain the new optimal solution

C∗(z) = 6.7331− 0.7938z−1 − 5.5802z−2. (12.19)

Comparing the frequency responses of (12.18) and (12.19) in Figure 12.6, and noticing
the deep notch in the solid line of the magnitude responses, we can see that (12.19) indeed
provides strong high-frequency gain attenuation due to the cost function design in (12.17).
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Figure 12.6: Frequency responses of the optimal C∗(z) and the C(z) from the feasibility
design

12.7 Further Discussions and Extensions
In this chapter, a convex optimization approach is proposed to address the design of robust
strictly positive real transfer functions. It is shown that a feasibility SDP formulation can be
used to provide the compensator that achieves the desired robust SPR condition. Moreover,
the important issue of maintaining the designed transfer function to be close to 1 is ad-
dressed, by adding an infinity-norm minimization in the optimization. Additional concepts
of cost function design are introduced, which lead to solutions of several new problems. All
the formulated optimization problems can be efficiently solved by interior-point methods in
convex optimization.

Notice that although the focus has been placed on the discrete-time SPR analysis. By
applying the continuous-time positive-real lemma and bounded-real lemma, the present work
can be easily extended to solve the continuous-time version of the problem. There is yet one
additional condition that makes the latter problem easier to solve: in the continuous-time
case, for the SPR condition to hold, the relative degree of Gp (s) equals zero or one [126, 139],
hence greatly simplifying the formulation of matrix inequalities.



196

Chapter 13

Conclusions and Future Works

13.1 Concluding Remarks
Motivated by the needs from various practical problems, we have discussed the idea of local
loop shaping (LLS) for linear feedback control. At a time when general (low-frequency) loop
shaping is mature and easily achievable, we focused on add-on enhancements to strengthen
the local (in the frequency domain) performance of the system, with the following design
goals:

1. performance: to achieve strong error attenuation at single or multiple bands of fre-
quencies, with minimum amplification of the sensitivity function;

2. flexibility: to make the algorithm easily tunable in practice, and expandable for dif-
ferent control tasks (e.g., repetitive control, vibration rejection, bandwidth extension,
and so on);

3. adaptability: to build robustness to the closed loop for online self identification of
the disturbance characteristics.

We also studied generalizations of LLS, and learned that LLS is equally achievable for MISO
systems.

Besides the LLS idea, we mention the following experiences we obtained along the way:

Precision Control and Vibration Rejection

In linear systems, these problems are essentially all about loop shaping. The internal model
principle provides a systematic way to customize the closed loop for enhanced loop-shaping
design.
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Inverse-based Control and Youla-Kucera Parameterization

By using inverse models, we gain quite a few benefits in the design and tuning of YK
parameterization. After establishing the connection between disturbance observer and YK
parameterization, we can see that YK schemes have actually been more broadly used (under
a different name) then it is known. In motion control, model inversion is quite easy to
achieve. For general systems, if a full inversion is not available, we can use optimization
tools to obtain a selective model inversion.

Reduced-complexity Adaptive YK Parameterization

FIR filters are great tools for adaptive control, as they maintain their stability during change
of their coefficients. This is a main reason for their popularity in literatures of adaptive YK
parameterization. IIR filters, as long as its stability is carefully preserved, has the potential
of more flexible and reduced-complexity implementation in adaptive control. This is the
direction we pursued in the design and adaptation of pseudo YK parameterization.

Control of Waterbed Effect

In LTI systems, Bode’s Integral Formula always holds (practically). However, the waterbed
effect can definitely be controlled, as we can see from the YK parameterization schemes,
where we translate the feedback design problem, to an affine (and hence much easier) one.
In particular, in pseudo YK parameterization, the control of the waterbed effect further
simplifies to minimizing the infinity norm of 1− z−mQ (z).

Optimization in Controls

The theory of optimization is more and more integrated in control engineering. In our study
of digital-filter design, robust SPR design, and infinity-norm minimization, optimization
techniques provided great benefits, e.g., to, translate infinite dimensional problems to finite
ones, and to directly tell whether a problem is achievable or not. In particular, LMI and
semidefinite programming are closely related to many control problems. Mature theories
and tools are nowadays available for building such a linkage.

13.2 Topics of Future Research
Transient Control

Except for the enhanced repetitive control [Chapter 8] and adaptive YK parameterizations
[Part II], we have been mostly concerned with the steady-state performance of linear systems.
This is the case for general loop-shaping designs as well. Our experience in enhanced repet-
itive control clearly indicates that transient, at least in linear systems, is controllable (via
time-varying and nonlinear control). There are definitely more to explore. For instance, if
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there are large mismatches between the initial states of the plant and its coprime-factorization
model, a transient error will be generated. Although eventually it will die out (given a sta-
ble closed-loop design), the performance degradation may be too large to ignore in practical
systems. Besides the plant model states, the initial states of the Q filter do not need to be
zero as well. Some solution concepts can be investigated from the initial value compensation
problem [147].

Youla-Kucera Parameterization for Nonlinear Systems

For the special YK parameterization scheme in Figure 4.2 on page 48, if we replace the
transfer function P with a general nonlinear function y = f (u), a result similar to the
affine Q parameterization can be made (although the design criteria for Q need to be re-
constructed). However, it gets fundamentally more challenging to construct general and
pseudo YK parameterizations in nonlinear systems. Actually, general nonlinear systems do
not have transfer functions, and new tools need to be developed for the analysis of YK
parameterization here. Also, for the pseudo YK scheme, the inverse of nonlinear systems
becomes nontrivial, and may only be achievable for a sub class of systems.

Nonlinear YK Parameterization for Linear Systems

Related to the first topic of future research, we remark that even for linear systems, the con-
trollers can be nonlinear. In certain cases, this nonlinearity is introduced for performance
purpose (e.g., the mentioned transient control problem). In other situations, nonlinear con-
trol might be necessary for safety reasons. For instance, any practical system is subjected
to the problem of actuator saturation, which is an intrinsic nonlinearity. High-gain feed-
back control is essentially about creating stronger control efforts to the plant. Thus there
is a principle conflict between high performance and actuator safety. In the add-on YK
parameterization schemes, the design again narrows down to the Q-filter implementation. A
meaningful extension would be to construct certain anti-windup (see. e.g., [148, 149, 150])
mechanism for recovering some performance when saturation indeed occurs.

Adaptive Repetitive Control

When the period of the reference or the disturbance is unknown or uncertain, robustness
and/or adaptiveness need to be built in repetitive control. The first option has been investi-
gated in literatures such as [151, 109, 152, 153]. Less results, however, are available for a true
adaptive repetitive control algorithm that online identifies the order of the internal model
1 − z−N . For an uncertain N , robust repetitive control is a viable option, especially if the
fundamental frequency of the harmonic components is not too large. If on the other hand
very few knowledge about N is known, or if the period is changing, then it would be more
beneficial to construct rigorous parameter adaptation algorithms for estimating N . More
general, this belongs to the problem of online identification about the system orders, which
has been much less explored in system identification theory.
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Bandwidth Adaptation and Constrained Adaptation

We adapted only the center frequencies when using LLS to attenuate spectral peaks. It would
be greatly beneficial also to online adaptively determine the bandwidth of the attenuation
regions. However, if we are to focus only on error reduction, then standard adaptation
algorithms will tend to increase the bandwidth as much as possible, making the closed-
loop vulnerable to guarantee robustness and even stability. This is the trade off between
performance and robustness in adaptive control. Either some constrained adaptation can be
introduced to keep the system in a region of stability, or some dead zone need to be created
in the PAA, to stop the adaptation when the desired performance has been achieved. The
determination of the stability region and dead-zone threshold may however be not easy for
different systems and disturbances.
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Appendix A

Proof of Theorems

A.1 Proof of Bode’s Integral Formula
Theorem. Let L (s) be a proper, scalar rational transfer function, of relative degree larger
than 1. Let S(s) = (1 + L(s))−1 and assume that S(s) has no poles in the right half plane,
and has q ≥ 0 zeros in the closed right half plane, at locations p1, p2, ..., pq. Then

ˆ ∞
0

ln |S (jω)| dω = π

q∑
k=1

pk

Proof. (key steps only) Consider the simple case where we have a real unstable pole in L(s).
We construct the complex integral with s shown in the contour in Figure A.1. Here R→∞.
Since lnS (s) is analytic within the contour, the whole contour integral sums up to zero.
This is the result of Cauchy Integral Theorem. It is not difficult to show that the part of the
integral along the arc with radius R is zero under the assumption of relative degree larger
than 1.1 Therefore the integral along the imaginary axis (which is the quantity that we want
to compute) plus the integral along the contour C (consisting of the path I → II → III) in
Figure A.2 is zero, namely, when R→∞

ˆ 0

−j∞
lnS (s) ds+

ˆ j∞

0

lnS (s) ds+ lim
ε→0

ˆ
C

lnS (s) ds = 0 (A.1)

Now we focus on the contour C in Figure A.2. Decompose first
1To see this, note that when L(s) is small, a Taylor expansion for ln (1 + L(s)) gives

ˆ
R

lnS (s) ds = −
ˆ
R

ln (1 + L (s)) ds ≈ −
ˆ
R

(ln 1 + L(s)) ds ≈ −
ˆ
R

L(s)ds

Since L(s) decays to zero at a rate that is at least as fast as 1/s2 for large s, the above integral goes to zero
when the radius of the circle goes to infinity.
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Figure A.1: Contour of s for Bode’s Integral

Figure A.2: Partial contour for Bode’s Integral (ε→ 0)

S (s) = (s− p)S∗ (s)

⇒
ˆ
C

lnS (s) ds =

ˆ
C

ln (s− p) ds+

ˆ
C

lnS∗ (s) ds (A.2)

so that we can separate the analytic part of lnS (s) as lnS∗ (s). We will show that as ε→ 0,´
C

lnS∗ (s) ds→ 0 and
´
C

ln (s− p) ds approaches to some constant value that will show up
in Bode’s Integral Formula. For the first part, if we add a path IV to make a closed contour
I → II → III → IV , we have ˛

lnS∗ (s) ds = 0
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due to the fact that lnS∗(s) is analytic on and within the contour. Hence
ˆ
C

lnS∗ (s) ds+

ˆ
IV

lnS∗ (s) ds = 0

⇒
ˆ
C

lnS∗ (s) ds = −
ˆ
IV

lnS∗ (s) ds = −
ˆ −εj
εj

lnS∗ (s) ds

=

ˆ εj

−εj
lnS∗ (s) ds

In this way we need to just compute a line integral. The function lnS∗ (s) is analytic so it
is bounded by some finite value fm > 0, therefore∣∣∣∣ˆ εj

−εj
lnS∗ (s) ds

∣∣∣∣ ≤ ˆ εj

−εj
|lnS∗ (s)| ds ≤

ˆ εj

−εj
fmds = fm2εj → 0 (A.3)

Now switch to proving the second part. This needs just some small steps of algebra. As

lnxdx = d [x lnx− x]

we have ˆ
C

ln (s− p) ds =

ˆ
C

d [(s− p) ln (s− p)− (s− p)]

= [(s− p) ln (s− p)− (s− p)]|εj−εj
= [(s− p) ln (s− p)]|εj−εj + [− (s− p)]|εj−εj
= [s ln (s− p)]|εj−εj + [−p ln (s− p)]|εj−εj + [− (s− p)]|εj−εj

The terms [s ln (s− p)]|εj−εj and [− (s− p)]|εj−εj all go to zero as ε→ 0, for the remaining term
we use the property of log functions:

lnx = ln
(
|x| ej∠x

)
= ln |x|+ ln ej∠x = ln |x|+ j∠x

and have

lim
ε→0

[−p ln (s− p)]|εj−εj = lim
ε→0

[−p ln |s− p| − pj∠ (s− p)]|εj−εj
= lim

ε→0
[−pj∠ (s− p)]|εj−εj

Draw a picture of the vector s−p in Figure A.2. We will see that as s goes along the contour
starting at −εj and ending at εj, the angular change of ∠ (s− p) is 2π as ε→ 0. Hence

ˆ
C

ln (s− p) ds = [−pj∠ (s− p)]|εj−εj → −2πpj (A.4)
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Combining (A.2) (A.3) and (A.4) we get
ˆ
C

lnS (s) ds→ −2πpj

as ε→ 0. Using (A.1), we obtain
ˆ 0

−j∞
lnS (s) ds+

ˆ j∞

0

lnS (s) ds = 2πpj

When there are multiple unstable open-loop poles, the above analysis can be easily extended
and we have

ˆ 0

−j∞
lnS (s) ds+

ˆ j∞

0

lnS (s) ds = 2jπ
∑
k

Re (pk) = 2jπ
∑
k

pk (A.5)

In control engineering we prefer using ω instead of s in the left half side of the above equation.
To make this happen, we note that

ˆ 0

−j∞
lnS (s) ds+

ˆ j∞

0

lnS (s) ds = j

ˆ 0

−∞
lnS (jω) dω + j

ˆ ∞
0

lnS (jω) dω

= j

ˆ ∞
0

lnS (−jω) dω + j

ˆ ∞
0

lnS (jω) dω

= j

ˆ ∞
0

[lnS (−jω) + lnS (jω)] dω

= j

ˆ ∞
0

ln [S (−jω)S (jω)] dω

= 2j

ˆ ∞
0

ln |S (jω)| dω

Putting the above result to (A.5), we obtain the final conclusion
ˆ ∞

0

ln |S (jω)| dω = π
∑
k

pk

A.2 Proof of Internal Model Principle
Consider the block diagram in Figure A.3. The relationship between the disturbance d(k)
and the output y(k) is

y(k) =
1

1 + P (q−1)C(q−1)
d(k)
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+
- C P +

d

+e
y

0
u

Figure A.3: Explanation of internal model principle

When
d (k) =

Bd (q−1)

Ad (q−1)
δ (k)

we have
y(k) =

1

1 + P (q−1)C(q−1)

Bd (q−1)

Ad (q−1)
δ (k) (A.6)

Let P (q−1) = Bp(q
−1)/Ap(q

−1), and C(q−1) = Bc(q
−1)/Ac(q

−1). (A.6) becomes

y(k) =
Ap(q

−1)Ac(q
−1)

Ap(q−1)Ac(q−1) +Bp(q−1)Bc(q−1)

Bd (q−1)

Ad (q−1)
δ (k)

If Ac(q−1) = Ad(q
−1)A

′
c(q
−1) then

y(k) =
Ap(q

−1)A
′
c(q
−1)Bd(q

−1)

Ap(q−1)Ac(q−1) +Bp(q−1)Bc(q−1)
δ (k)

which indicates that y(k) converges to zero if the closed-loop system is asymptotically stable,
hence the rejection of the disturbance. The convergence speed here depends on the closed-
loop poles. Notice that the inclusion of Ad(q−1) in the denominator of the controller builds
an anti-disturbance signal generator for cancellation of d (k).

A.3 Proof for Section 5.3: Zeros of an IIR Filter
Structure

The Q-filter numerator in (5.14) can be partitioned into

BQ (z) = bnz
−n +

n−1∑
i=0

(
biz
−i + b2n−iz

−2n+i
)
, (A.7)
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where bi = (αi − k)ai, a0 = 1, and ai = a2n−i. Letting k = αn gives bn = 0 and

biz
−i + b2n−iz

−2n+i

=αnaiz
−i [(αi−n − 1

)
+
(
α−i+n − 1

)
z−2n+2i

]
(A.8)

We claim that biz−i + b2n−iz
−2n+i always contains the factor 1 − αz−2. To see this,

substituting in z−2 = α−1 to (A.8), we can observe that [(αi−n − 1) + (α−i+n − 1) z−2n+2i] =
[(αi−n − 1) + (α−i+n − 1)αi−n] = 0, which proves that 1 − αz−2 is a common factor of
biz
−i + b2n−iz

−2n+i. Since bn = 0, BQ(z) in (A.7) thus contains the common factor 1−αz−2.

A.4 Proof for Theorem 6.1: Waterbed Effect in Local
Loop Shaping

We need first two fundamental results about complex integrals.

Theorem A.1. (Poisson Integral Formula for the disk) If f is a function analytic2 on and
inside the unit disk, then for any interior points s0 = r0e

jθ0, r0 < 1, we have

f
(
r0e

jθ0
)

=
1

2π

ˆ π

−π
f
(
ejθ
) 1− r2

0

1− 2r0 cos (θ − θ0) + r2
0

dθ (A.9)

Proof. See any text book on complex analysis. One version that is more orientated to control
engineering is in [154].

Corollary A.1. If f is a function harmonic3 outside the unit disk, then for any point exterior
to the unit disk s0 = r0e

jθ0 , r0 > 1, we have

f
(
r0e

jθ0
)

=
1

2π

ˆ π

−π
f
(
ejθ
) r2

0 − 1

1− 2r0 cos (θ − θ0) + r2
0

dθ. (A.10)

Proof. The proof follows from Theorem A.1 by taking the real part of (A.9) and considering
f (1/s). Interested readers can refer to [154] for more details.

Now we formaly prove Theorem 6.1.

Proof. First, 1− z−mQ (z) is strictly stable. The roots of A (z) are on the unit circle. If the
stable K (z) does not have zeros outside the unit circle, then ln (1− z−mQ (z)) is analytic

2One intuition for a function to be analytic in domain D is that it must not have singularities (poles) in
D.

3A harmonic function is formally defined as a real-valued function f (σ, ω) that satisfies the Laplace
equation ∂2f

∂σ2 + ∂2f
∂ω2 = 0 (for the 2-dimentional case). A particular case that is interesting to us is that the

real and the complex parts of analytic functions are harmonic.
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outside the unit disk. Hence, the real part of ln (1− z−mQ (z)), with z = rejω, is a harmonic
function. From Corollary A.1, letting z0 = r0e

jω0 with r0 > 1, we have

Re
{

ln
(
1− z−m0 Q (z0)

)}
= ln

∣∣1− z−m0 Q (z0)
∣∣

=
1

2π

ˆ π

−π
ln
∣∣1− e−mjωQ (ejω)∣∣ r2

0 − 1

1− 2r0 cos (ω − ω0) + r2
0

dω

(A.11)

Next, take the limit r0 →∞. The right hand side of (A.11) tends to

1

2π

ˆ π

−π
ln
∣∣1− e−mjωQ (ejω)∣∣ dω

=
1

2π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω +

1

2π

ˆ 0

−π
ln
∣∣1− e−mjωQ (ejω)∣∣ dω

=
1

2π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω +

1

2π

ˆ 0

−π
ln
∣∣1− emjωQ (e−jω)∣∣ dω

=
1

π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω (A.12)

Notice that for m > 0,
lim
z0→∞

(
1− z−m0 Q (z0)

)
= 1

Hence we have the following limiting situation of (A.11):

1

π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω = 0

Following the proof of Bode’s Integral Formula (Appendix A.1), if K (z) introduces ad-
ditional unstable zeros, denoted as γi, i = 1, . . . , l, we can perform all-pass factorization and
let

1− z−mQ (z) = f (z)
l∏

i=1

γ̄i
|γi|

z − γi
1− γ̄iz

where f (z) is minimum-phase. Then

ln
∣∣1− e−mjωQ (ejω)∣∣ = ln

∣∣f (ejω)∣∣
and (A.11) becomes

ln |f (z0)| = 1

2π

ˆ π

−π
ln
∣∣f (ejω)∣∣ r2

0 − 1

1− 2r0 cos (ω − ω0) + r2
0

dω

=
1

2π

ˆ π

−π
ln
∣∣1− e−mjωQ (ejω)∣∣ r2

0 − 1

1− 2r0 cos (ω − ω0) + r2
0

dω (A.13)
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Noting

ln
∣∣1− z−m0 Q (z0)

∣∣ = ln |f (z0)|+ ln

∣∣∣∣∣
n∏
i=1

γ̄i
|γi|

z0 − γi
1− γ̄iz0

∣∣∣∣∣
= ln |f (z0)|+

n∑
i=1

ln

∣∣∣∣ γ̄i|γi| z0 − γi
1− γ̄iz0

∣∣∣∣
and taking the limit of z0 →∞, we get

lim
z0→∞

ln |f (z0)| =
l∑

i=1

ln |γi| (A.14)

Combining (A.13) and (A.14) gives

1

π

ˆ π

0

ln
∣∣1− e−mjωQ (ejω)∣∣ dω =

l∑
i=1

ln |γi| > 0

A.5 Proof for Section 10.2: Stability of the
Series-Parallel Predictor

The adaptation law is

θ̂ (k) = θ̂ (k − 1) +
F (k − 1)ψ (k − 1) eo (k)

1 + ψ (k − 1)T F (k − 1)ψ (k − 1)
(A.15)

or, equivalently

θ̂ (k + 1) = θ̂ (k) +
F (k)ψ (k) eo (k + 1)

1 + ψ (k)T F (k)ψ (k)
. (A.16)

For stability analysis, we first transform the PAA to the a posteriori form. We have:

• the ideal output for a tuned controller (y (k) = 0):

0 = y (k + 1) = ψ (k)T θ +
(
w (k + 1) + w (k − 2n+ 1)− α2ny (k − 2n+ 1)

)
= ψ (k)T θ + (w (k + 1) + w (k − 2n+ 1))

• the a posteriori prediction of y (k + 1):

ŷ (k + 1) = ψ (k)T θ̂ (k + 1) + (w (k + 1) + w (k − 2n+ 1)) (A.17)
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• the a posteriori prediction error:

e (k + 1) = y (k + 1)− ŷ (k + 1) = −ψ (k)T θ̃ (k + 1) (A.18)

where
θ̃ (k + 1) = θ̂ (k + 1)− θ (A.19)

• the a priori prediction error:

eo (k + 1) = −ψ (k)T θ̃ (k) (A.20)

Pre-multiplying ψT (k) to (A.16) yields

ψT (k) θ̂ (k + 1) = ψT (k) θ̂ (k) +
ψT (k)F (k)ψ (k)

1 + ψT (k)F (k)ψ (k)
eo (k + 1) . (A.21)

Subtracting ψT (k) θ from each side in (A.21), and substituting in (A.18) and (A.20), we
have

e (k + 1) =
eo (k + 1)

1 + ψT (k)F (k)ψ (k)
. (A.22)

Substituting (A.22) back to (A.16), we arrive at the PAA in the a posteriori form:

θ̂ (k + 1) = θ̂ (k) + F (k)ψ (k) e (k + 1) (A.23)

e (k + 1) = −ψ (k)T θ̃ (k + 1) (A.24)

From (A.23) and (A.19), we get

θ̃ (k + 1) = θ̃ (k) + F (k)ψ (k) e (k + 1) . (A.25)

Combining (A.22) and (A.25), we can construct the equivalent feedback loop for the
adaptive system as shown in Figure A.4.

The nonlinear block NL in Figure A.4 is shown to be passive and satisfies the Popov
Inequality (Section 3.3.4 of [118]). The linear block L = 1 − 1/2 is strictly positive real.
Therefore, the parameter adaptation algorithm is asymptotically hyperstable. Applying
Theorem 3.3.2 from [118], we have

lim
k→0

e (k) = 0. (A.26)

Recalling that e (k) = −ψ (k − 1)T θ̃ (k), θ = [a1, a2, . . . , an]T , and

ψi (k − 1) = w (k − i) + w (k − 2n+ i) ; i = 1, ..., n− 1, (A.27)
ψn (k − 1) = w (k − n) , (A.28)
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1
-

+

×F(k)
1z−

+

+

ɶ( 1)kθ +

( 1)e k + +

-
1/2

1/2

-

+
×

( 1)e k +

L

NL

Ã(k)ÃT (k)
Figure A.4: Equivalent feedback loop of the adaptive system

(see Section 10.2), we have

e (k) =ψ (k − 1)T θ̃ (k)

=
n−1∑
i=1

(w (k − i) + w (k − 2n+ i)) ãi (k) + w (k − n) ãn (k)

=

(
n−1∑
i=1

(
q−i + q−2n+i

)
ãi (k) + q−nãn (k)

)
w (k)

→0 as k →∞. (A.29)

Based on the assumption that w (k) has n independent frequency components, the Fre-
quency Richness Condition for Parameter Convergence holds. Therefore, the only solution
to the above equation is limk→∞ ãi (k) = 0, i.e., the parameters converge to their true values.
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Appendix B

Mathematical Backgrounds

B.1 The Diophantine Equation
An important problem in algebra is to solve the polynomial equation:

AX +BY = F (B.1)

where A, B, F are polynomials of real coefficients; X and Y are unknown polynomials to
be solved. (B.1) is called the Diophantine equation, named after the Alexandrian Greek
mathematician Diophantus (200 AD to 298 AD).
Remark B.1. One immediate application of the Diophantine equation in control theory, is to
design feedback systems by pole placement, where F is the assigned closed-loop characteristic
polynomial; and the transfer function of the plant is B/A.

The simplest case of the problem is when all polynomials are constrained to be scalar
numbers, e.g. 3x + 5y = 1 where x and y are integers. A particular solution pair is
(x, y) = (7,−4). The solution is not unique, as we can see that any integer Q in the
following equations also yields a valid solution:

x = 7 + 5Q

y = −4− 3Q.

The solution set may also be empty. Consider, for example, the integer equation 4x+2y = 1.
The left-hand side of the equality is always even while the right-hand side is always odd.

We discuss the existence and computation of the solutions below. For control engineering,
most commonly we use the matrix method for computation.

Existence of solutions

The Diophantine equation has solutions if and only if the greatest common factor (gcf) of A
and B divides F . For example, the gcf of 3 and 5 are 1 in 3x+ 5y = 1, while in 4x+ 2y = 1,
the gcf of 4 and 2 is 2, which does not divide 1.
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Formal proof∗1 A formal proof of the result naturally follows during finding the gcf by
the Euclid’s algorithm. This is an iterative algorithm initialized by A0 = A and B0 = B. At
every step, let An+1 = Bn and Bn+1 be the remainder of An divided by Bn. The iteration
ends when Bn+1 = 0. The gcf is then G = Bn. For instance, consider the gcf of 48 and 18.
The solution is tabulated as follows

iteration number 0 1 2 3

Ai 48 18 12 6 (gcf)
Bi 18 12 (= 48− 18× 2) 6 (= 18− 12) 0 (= 12− 6× 2)

The procedure is the same in solving polynomial Diophantine equations. Consider the
following example

iteration number 0 1 2

Ai 1 + q−1 1− q−2 1 + q−1 (gcf)

Bi 1− q−2 1 + q−1( = 1 + q−1

− (1− q−2)× 0)

0( = 1− q−2

−(1 + q−1)× (1− q−1))

There are no division steps in the solution tables. We can actually backtrack to find

AX
′
+BY

′
= Bn , G. (B.2)

If G divides F then we have F = GF
′ , yielding

AX
′
F
′︸ ︷︷ ︸

X

+B Y
′
F
′︸ ︷︷ ︸

Y

= F. (B.3)

Computation of solutions

Polynomial method∗

When the gcf satisfies
F = GF

′
(B.4)

a particular solution can be found from (B.2) and (B.3). Solving additionally the minimum-
order solutions N and D for

AN +BD = 0

we can get the general solution

X̃ = X
′
F +NQ (B.5)

Ỹ = Y
′
F −DQ (B.6)

1Materials marked by ∗ are supplementary.
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The above can be combined in the following polynomial matrix:[
X
′
Y
′

N D

] [
A 1 0
B 0 1

]
=

[
G X

′
Y
′

0 N D

]
Apply elementary row operations to [

A 1 0
B 0 1

]
so that [

A 1 0
B 0 1

]
→
[
G X

′
Y
′

0 N D

]
(B.7)

The solution elements in (B.4)–(B.6) then immediately appear on the right hand side of
(B.7).

For example, consider performing pole placement to a plant

a
1 + q−1

(1− q−1)2

and the target closed loop has two poles at 0.8 and the remaining poles at the origin. We
need

a
(
1 + q−1

)
X
(
q−1
)

+
(
1− q−1

)2
Y
(
q−1
)

=
(
1− 0.8q−1

)2 (B.8)

The greatest common factor of a (1 + q−1) and (1− q−1)
2 is 1. Forming[

a (1 + q−1) 1 0

(1− q−1)
2

0 1

]
we can perform the row operations[

a (1 + q−1) 1 0

(1− q−1)
2

0 1

]
→
[

1 + q−1 1/a 0
1− 2q−1 + q−2 0 1

]
→
[

1 + q−1 1/a 0
−4q−1 − 1

a
(1 + q−1) 1

]
→
[

1 + q−1 1/a 0
−q−1 − 1

4a
(1 + q−1) 1

4

]
→
[

1 1
a
− 1

4a
(1 + q−1) 1

4

−q−1 − 1
4a

(1 + q−1) 1
4

]
→
[

1 1
a
− 1

4a
(1 + q−1) 1

4

0 − 1
4a

(1 + q−1) + q−1
[

1
a
− 1

4a
(1 + q−1)

]
1
4

(1 + q−1)

]
=

[
1 1

4a
(3− q−1) 1

4

0 1
4a

[
− (1− q−1)

2
]

1
4

(1 + q−1)

]
Thus, after simplification, the solutions of (B.8) is

X
(
q−1
)

=
1

4a

(
3− q−1

) (
1− 0.8q−1

)2
+Q

(
q−1
)
× 1

4a

[
−
(
1− q−1

)2
]

Y
(
q−1
)

=
1

4

(
1− 0.8q−1

)2 −Q
(
q−1
)
× 1

4

(
1 + q−1

)
where Q (q−1) is any polynomial of q−1.



APPENDIX B. MATHEMATICAL BACKGROUNDS 226

Matrix method

If the orders of the polynomials are fixed, then the polynomial equation can be solved by
solving a matrix equality. Let q−1 be the polynomial variable and

A
(
q−1
)

= a0 + a1q
−1 + a2q

−2 + · · ·+ anq
−n

B
(
q−1
)

= b0 + b1q
−1 + . . . bnq

−n

X
(
q−1
)

= x0 + x1q
−1 + . . . xn−1q

−n+1

Y
(
q−1
)

= y0 + y1q
−1 + . . . yn−1q

−n+1

F
(
q−1
)

= f0 + f1q
−1 + . . . f2n−1q

−2n+1

Matching the coefficients in A (q−1)X (q−1) +B (q−1)Y (q−1) = F (q−1), we have

a0 0 0 . . . 0 b0 0 0 . . . 0
a1 a0 0 . . . 0 b1 b0 0 . . . 0
a2 a1 a0 . . . 0 b2 b1 b0 . . . 0
...

...
... . . . ...

...
...

... . . . ...
an an−1 an−2 . . . a0 bn bn−1 bn−2 . . . b0

0 an an−1 . . . a1 0 bn bn−1 . . . b1

0 0 an . . . a2 0 0 bn . . . b2
...

...
... . . . ...

...
...

... . . . ...
0 0 0 an 0 0 0 . . . bn


︸ ︷︷ ︸

S



x0

x1
...

xn−1

y0

y1
...

yn−1


=



f0

f1
...
fn
fn+1

fn+2
...

f2n−1



The matrix S is called the Sylvester matrix and is non-singular if and only if A (q−1) and
B (q−1) are coprime.


	Contents
	List of Figures
	List of Tables
	I Background and Introduction
	1 Introduction
	1.1 Practical Servo Control Problems
	1.2 Local Loop Shaping
	1.3 Organization and Contributions of this Dissertation
	Practical Youla Parameterization
	Inverse-based Feedback
	Generalized Disturbance Observer
	Adaptive Vibration Rejection
	Control of the Waterbed Effect
	MISO Control Design

	1.4 Format and Notations

	2 Elemental Tools and Concepts
	2.1 Performance Goals in Feedback Design
	2.2 Fundamental Limitations for LTI Systems
	2.3 Internal Models of Signals
	2.4 Discrete-time Plant Delay
	2.5 Convex Optimization

	3 Application Examples
	3.1 Advanced Manufacturing
	3.2 Hard Disk Drives
	3.3 Active Suspension
	3.4 Active Steering in Automotive Vehicles


	II Deterministic Local Loop Shaping
	4 A Pseudo Youla-Kucera Parameterization
	4.1 Motivational Example
	4.2 Standard Youla-Kucera Parameterization
	4.3 Pseudo Youla-Kucera Parameterization for Discrete-time Systems
	4.4 Comparison
	4.5 Time-domain Disturbance-observer Intuition
	4.6 Overview of Q-filter Design 
	Low-frequency Servo Enhancement
	Narrow-band Disturbance Rejection
	Repetitive Control
	General Band-limited Vibration Compensation

	4.7 Notes and Additional Discussions

	5 Internal Model Based IIR Q Design for Narrow-band Loop Shaping
	5.1 From FIR to IIR Design
	5.2 The Internal Models
	5.3 Multi-Q Approach
	The Case for m=0
	The Case for m=1
	The Case for an Arbitrary m

	5.4 Direct Approach
	5.5 Case Study and Comparison
	5.6 Application: Vibration Rejection on an Active Suspension
	5.7 Application: Unnatural-torque Compensation in Active Steering

	6 Advanced Q-filter Design: ``Shaping the Waterbed''
	6.1 The Fundamental Limitation
	6.2 Gain Scheduling
	6.3 Add-on Pole and Zero Placement
	The Effect of Fixed Zeros
	The Effects of Cascaded IIR Filters

	6.4 Design Based on Convex Optimization 
	Causality Constraint
	Optimal Performance
	Optimization Result


	7 Stable Selective Model Inversion
	7.1 Unstable-zero Modulation
	7.2 H-based Optimal Design

	8 Enhanced Repetitive Control
	8.1 Introduction
	8.2 Repetitive Loop Shaping
	8.3 Ideal-case Q design
	8.4 Robustness and Implementation of Q(z)
	8.5 Transient Response and Algorithm Implementation
	8.6 Application: Repeatable-runout Rejection on a Hard Disk Drive
	8.7 Application: Repetitive Tracking and Regulation on a Wafer Scanner
	8.8 Notes and references

	9 Decoupled Disturbance Observer for DISO Systems
	9.1 Introduction
	9.2 DDOB Structure: Open-loop Configuration
	Time-domain Disturbance-rejection Criteria
	Model-following Property
	Operation of Two DDOBs
	Extension to General MISO Systems

	9.3 Nominal Stability and Frequency-domain Loop-shaping Criteria 
	9.4 DDOB is A Special Youla-Kucera Parameterization for DISO systems
	Standard MIMO YK Parameterization 
	A Special DISO YK Parameterization

	9.5 Robust Stability
	9.6 Decoupled Sensitivity and DDOB for DISO systems
	9.7 Case Study: Control of Dual-stage HDDs


	III Adaptive Band-limited Local Loop Shaping
	10 Parameter Adaptation Algorithms
	10.1 Overview
	10.2 Adaptation of the Direct-filter Structure
	The Adaptation Model and the Predictor
	Initialization with a Series-Parallel Predictor
	Dynamic Switching Between the Two-stage Adaptation
	Obtaining the Frequencies from the Identified Parameters
	Parameter Initialization
	An Example

	10.3 Adaptation of the Cascaded-filter Structure
	Algorithm
	Implementation
	An Example

	10.4 Notes and Additional Discussions
	Order of Adaptation and Parameter Convergence
	Overall Closed-loop Stability with the PAAs


	11 Implementations of Adaptive Local Loop Shaping
	11.1 Remarks About Practical Implementation
	Algorithm Tuning
	Order of the Internal Model
	Disturbance Detection
	The Plant and the Resonances
	Time-varying Disturbances

	11.2 Application: Adaptive Rejection of Narrow-band and Audio Vibrations in HDDs
	11.3 Application: Time-varing Vibration Rejection on an Active Suspension

	12 Solving the Robust Strictly Positive Real Problem Via Convex Optimization
	12.1 Introduction
	12.2 SPR Analysis
	12.3 Polytopic Uncertainty
	12.4 Achieving the Robust SPR Condition
	12.5 Optimal Properties
	12.6 Design Examples
	12.7 Further Discussions and Extensions

	13 Conclusions and Future Works
	13.1 Concluding Remarks
	13.2 Topics of Future Research

	Bibliography
	A Proof of Theorems
	A.1 Proof of Bode's Integral Formula
	A.2 Proof of Internal Model Principle
	A.3 Proof for Section 5.3: Zeros of an IIR Filter Structure
	A.4 Proof for Theorem 6.1: Waterbed Effect in Local Loop Shaping
	A.5 Proof for Section 10.2: Stability of the Series-Parallel Predictor

	B Mathematical Backgrounds
	B.1 The Diophantine Equation





