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Abstract

We propose a fully recurrent neural network
to model low-level auditory memory in a task
to discriminate intensities of sequentially pre-
sented tones across a range of varying inter-
stimulus intervals. In this model, memory
represents a sensory-trace of the stimulus and
takes the form of slow relaxation of a num-
ber of units to a globally attractive equilibrium
value near zero. The same-different judgment
is based on a derivative of the output of the dy-
namic memory. Gaussian noise added to unit
activations was found to improve the resilience
of stored information although at the cost
of decreased semsitivity. The model exhibits
many qualitative properties of human perfor-
mance on a roving-standard intensity discrim-
ination task.

Introduction: Memory and
Comparison

A critical step in the development of a model of
auditory processing is the ability to discriminate
input stimuli: the capacity to make same-different
Jjudgments about simple properties of a pair of stim-
uli. Since sequential presentation is unavoidable
for auditory processing models, some form of mem-
ory for the first stimulus is required while the sec-
ond is presented and a comparison made. If this
task is approached from an engineering perspec-
tive, the problem is easily solved with a buffer
which stores the first item perfectly (for all prac-
tical purposes) until the second item is available
(Port, 1990). However, as we will show below, there
is evidence against storage of the raw stimulus.
The process of serial comparison in relation to
the underlying memory mechanism is an impor-
tant issue. In traditional discrimination proce-
dures, where the intensity level of the standard (or
reference) stimulus, I, is held constant across tri-
als and only the AI component of the comparison
stimulus, (I + AI), changes from trial to trial, the
duration of the interstimulus interval is found to
have little or no effect. For example, in a single
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block of trials, a subject might be asked to discrim-
inate between 50 dB and 50 +AJ dB. Only a small
increase in the Weber ratio is found when the two
stimuli are separated by as much as 24 hours (Pol-
lack, 1955). However, if a between-trial roving dis-
crimination task is used, it is found that increasing
ISI does reduce performance (Berliner & Durlach,
1973) 1.

To explain why roving the level of the stan-
dard between trials has such an effect, Durlach
and Braida ((1969) proposed two modes of memory
processing for intensity discrimination: sensory-
trace coding and contezi-coding. When using con-
tezi mode, subjects are believed to base discrimina-
tion on some form of categorical description of the
standard stimulus level. guch categorical descrip-
tions are known to be very resistant to changes in
ISI. Most studies of same-different comparison in
cognitive science are implicitly models of contezt-
coded, or categorical, representations—codes that
are well-learned and highly resistant to temporal
decay (e.g., Liberman et al., 1967; Gasser and
Smith, 1991). Since in a roving-level discrimina-
tion task, intensity varies randomly, subjects can-
not learn to use a categorical representation and
must instead rely upon an ephemeral sensory trace
of the stimulus. Thus, their performance deterio-
rates with increasing ISI.

The research reported here is an attempt to
model the sensory-irace processing mode for inten-
sity resolution. We believe that such work is an
essential first step in the development of a biolog-
ically plausible general model of auditory pattern
(category) recognition. Our goal was to construct
a system that exhibits the general properties of
human performance in roving level discrimination
tasks. The evidence from human subjects exper-
iments suggests that this requires performing au-
ditory discrimination without using a special com-
parison buffer (and the specialized buffer-transfer
operations that are implied). Instead, our system
measures input signal intensity and then stores that
value for the first stimulus while decaying slowly

'In a roving discrimination task, AJ is fixed and I
varies between trials. For example, the subject might
be asked to discriminate between 50 and 52 on one trial
and between 40 and 42 dB on the next trial.
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toward the equilibrium of the system (located near
0 intensity). When the second stimulus arrives, it
re-excites the system to a value corresponding to
the intensity of the second stimulus. A differenti-
ation module computes a criterion variable based
on information available just after the onset of the
second stimulus.

A Model of Memory and
Discrimination

The model presented here for intensity discrimina-
tion (see Figure 1) consists of two components: (1
a model of auditory short-term memory adapt
from a model proposed by (Zipser, 1991) for corti-
cal neurons that incorporates random output fluc-
tuations; and (2) a decision model that generates a
criterion variable used to decide when two stimuli
differ based on the local change in the output of the
memory module.

Memory Model. The memory model consists of
2 linear input units and 9 fully connected logis-
tic units representing auditory short-term memory
(STM), as shown in Figure 1. The inputs have con-
nections to all STM nodes. The input units are a
binary cue input and a real-valued stimulus repre-
senting intensity in the range [0,1]. It is known
that tie rate of neural firing is an important cue
for perceived loudness (Moore, 1989) and this cor-
responds to the activation level of individual units
in this model. One of the STM units is the Out-
put unit for the dynamic memory—the only unit
trained directly during the learning phase of the
simulations. All of the memory units have the ac-
tivation function

w(t4+1) = (D wiiy; () +weiz, +weiz.+6;)+ X (t)
j

where ¢(z) = (L + e *)~!; the cue and stimulus
inputs and weights are subscripted with ¢ and s, re-
spectively. X is a random variable drawn, on each
time step for each unit, from a Gaussian distribu-
tion with mean and standard deviation u and o.
The random variable X was included during testing
trials to simulate random neural excitation of unit
activations (Zipser, 1991). It was not included dur-
ing training. In all of the simulations discussed in
this paper, the biases 8; were fixed at negative val-
ues in the range [—1.0, —2.5)], as in (Zipser, 1991),
to avoid spontaneous unit activity. Also, the dy-
namics of ¢(z) are only interesting when the biases
are negative (McAuley, 1992).

Decision Model. The decision model imple-
ments a form of comparison without using buffers.
The model consists of a set of several time-delayed
connections from the output unit of short-term
memory to the response unit. The weights on the
connections between the two units are pre-wired
and were not adjusted during training. The links
effectively implement a low-pass filter that approx-
imates the scaled derivative of the output unit’s
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Figure 1: Network architecture. The cue (C) and
stimulus (S) input units are shown below. Each
unit connects to all units in the recurrent layer.
The units of the memory module are fully intercon-
nected and all weights are learned. The response
unit R is connected to the output unit O via a set
of weighted time-delay connections. The values of
the time delays are shown on each connection along
with the corresponding weights.

activation over 5 time steps. We anticipated that
if short-term memory is effective in retaining past
input values, then a following stimulus will perturb
the memory model to the extent it differs from the
initial input value. Of course, perfect memory is
impeded by the imperfect initial encoding of the
sensory stimulus, the internal noise of the trace
memory, and the relaxation (“forgetting”) of trace
memory over time.

Training the Memory Model. The training
task, shown in panel A of Figure 2, was to store
in short-term memory a cued intensity value for an
unspecified duration. During a training sequence,
the network was presented with a cue input of 1.0

lus a random stimulus input from the interval
0,1]. The cue may be thought of as represent-
ing a signal from some other part of the nervous
system indicating that the value of the simultane-
ous external stimulus should be remembered. The
network was trained to autoassociate the current
stimulus input for a random number of time steps.
For each trial the number of time-steps was drawn
from a uniform distribution from 2 to 12. Following
the initial stimulus and cue pair, up until the next
stimulus and cue pair, the cue unit was set to 0.0
and the stimulus unit varied randomly within the
range [0, 1].

The network was trained using the real-time
recurrent learning algorithm (Williams & Zipser,
1989) to update weights. All forward weights be-
tween the input and recurrent layers and all weights
within the recurrent layer were modified during
training. Training lasted for 400,000 iterations or
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Figure 2: A. Cue, stimulus, and teacher values for
a hypothetical training sequence. B. Actual test-
ing data from a Different followed by a Same trial.
The first two stimuli presented are Different (0.6
followed by 1.0). The next two stimuli are the Same
(0.6 and 0.6). Note that all input values decay over
time and are momentarily affected by introduction
of the cue signal.

approximately 60,000 training trials. Final mean
squared error approached 0.01 on the network ex-
amined below.

The training task is fairly difficult to learn be-
cause the stored input is real-valued and because
the interstimulus interval varies between trials. The
network has finite capacity, and cannot resolve all
the possible real-valued inputs on the unit interval.
The randomly varying ISI prevents anticipation of
the time of occurrence of the next stimulus.

Simulations

Memory Dynamics. The basis for memory in
this model is its very slow relaxation to equilib-
rium following presentation of the stimulus. The
qualitative dynamics of the trained model were ex-
plored by setting the cue and stimulus units to 0.0,
randomizing the initial activations, and then letting
the network run for the 50 randomly chosen initial
conditions. Graphs of the results of these tests are
shown in Figure 3. All graphs show only one di-
mension of trace memory, the Output unit (with
the range [0, 1]) for 50 time steps. Similarities were
observed between hidden unit activity and single
unit recordings in the auditory cortex of monkeys
performing a memory task, as described in (Zipser,
1991). Panel A of Figure 3 shows that memory
decay to equilibrium is very slow. For most ini-
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Figure 3: Qualitative dynamics of the model. Each
plot shows the activation of the Output node in the
range [0, 1] for 50 time steps from 50 random initial

conditions. A. without noise. B. with Gaussian
noise, 4 = 0, ¢ = 0.01, the maximum amount of
noise. C. with Gaussian noise, p = 0.01, o = 0.0.
D. with Gaussian noise, g = 0.0025, o = 0.005

tial conditions, decay is approximately linear. Even
though during training, the network stored stimuli
for at most 12 iterations, for some (‘high intensity’)
initial conditions the network is still relatively far
away from its asymptote after 50 iterations.

The effect of noise was also explored by adding a
Gaussian distributed random variable to the output
of each unit on each time step. The variance of this
distribution is an important parameter in determin-
ing the qualitative dynamics. Panels B and D of
Figure 3 represent standard deviations of 0.01 and
.005, respectively. Compare the activation levels in
these panels at iteration 50 with panel A. Increas-
ing the noise variance slows memory decay, but, as
we show below, this results in degraded resolution
of the original stimulus intensity. Possibly then,
optimal performance is a compromise between sen-
sitivity (improved by less noise) and memory (im-
proved by greater noise variance). Panel D would
be a candidate for such a compromise. Panel C
shows that the addition of a sufficient amount of 0-
variance noise (equivalent to the addition of a suffi-
ciently large constant) creates a second equilibrium
point in the system. This suggests that the system
achieves a longer memory span (as in Panel B and
D) by operating near a bifurcation point.

Because the rate at which the network ap-
proaches equilibrium is, at high and low activa-
tions, proportional to its overall level of activity,



one might suspect that intensity discrimination is
better at lower activations, in accordance with We-
ber’s Law (AI/I = k). While this is somewhat
true for the network, the midrange of the output
unit has a rather linear decay, and we found that
Weber’s law does not hold very well throughout the
range of intensities encoded by the memory units
of this model.

Memory Span vs Resolution in Intensity Dis-
crimination. Network memory was evaluated
using a same-different between-trial roving discrim-
ination task. Panel B of Figure 2 shows two sample
trials, one Different and one Same. I varied be-
tween 0.1 and 0.9 between trials, while AI and the
interstimulus interval (ISI), measured in discrete
time steps, remained fixed. Testing blocks con-
sisted of 1800 trials. Blocks were run for all com-
binations of AT in the set {0.02,0.04,0.06,0.08,0.1}
and ISI in the set {3,7,9,11,15,19,29} of time steps.
The model’s performance on a block of trials was
measured by computing hit and false alarm rates
for a range of response thresholds applied to the
response unit. d’ was found to be roughly constant,
excluding edge effects, indicating that the response
unit approximately obeys the assumptions of sig-
nal detection theory (Swets, 1961). The graph in
Figure 4 depicts the AI required to achieve per-
formance of d’ = 1 (implying 71% correct with no
response bias) as a function of ISI. Four different
noise conditions are plotted corresponding to fixed
p = 0.0025 and o between 0 and 0.01. All four
plots show results consistent with human perfor-
mance on a roving level discrimination task; stim-
ulus sensitivity degrades with increasing ISI. The
rate at which sensitivity decreases is inversely re-
lated to the amount of noise variance. For large
variances (shown with the filled circles in Figure
4), sensitivity is lost for shorter ISIs (where the
change in intensity at threshold is .10) yet there is
little degradation with increasing ISI. On the other
hand, with no noise (shown in the open triangles),
an intensity difference of only .04 can be resolved at
short ISIs yet performance at longer ISIs is worse
than the noisier conditions.

In the context of the underlying dynamics shown
in Figure 3, these results can be explained. A rela-
tively large internal noise variance can slow memory
decay to equilibrium and consequently slow loss of
resolution over time. In this model, there is a trade-
off between memory and resolution. Memory is im-
proved at the cost of resolving power and improved
resolution sacrifices memory performance. Optimal
discrimination in a task in which ISI varies within
trials might be best achieved by a noise condition
which produces a weighted balance between mem-
ory span and resolving power.

Discussion

These simulations bear on at least two issues: the
nature of human memory for intensity of sensory
stimulation, and the role of noise in facilitating the
memory function of a dynamic system.
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Figure 4: AT required for d’ of 1 (or maximum per-
cent correct discrimination of 71%) as a function of
interstimulus interval. Each line represents a con-
dition with neural noise added, having a mean of
(u = 0.0025) and standard deviation as specified in
the legend. The filled circles have the most noise
variance and the open triangle has the least vari-
ance

Comparison with Human Sensory Memory.
We have attempted to model certain properties
of human performance on auditory discrimination
tasks. Although we only modelled performance for
a single tone, our model can easily be extended
by creating a bank of identical modules, cover-
ing the entire auditory spectrum. The results of
these simulations exhibit some critical properties of
human performance on analogous roving-standard
discrimination tasks. Our model is able to store
the intensity of a stimulus for a short while and
exhibits decay with accompanying loss of perfor-
mance. The critical effect of interstimulus interval
on our model’s performance is analogous to results
with human subjects found by Berliner and Durlach
(1973).

One aspect of the current model that seems in-
correct is that it confounds decay with intensity—
inputs stored longer evolve in state-space through
representations of less intense inputs, since the fixed
point of the system lies near 0 intensity. A more
appropriate consequence of decay would seem to
be greater uncertainty about intensity—rather than
weaker perceived intensity. This may be achiev-
able within our current model by using several trace
memory modules with equilibria at different loca-
tions in activation space. A stimulus would decay
towards lower intensities in some modules, but to
higher intensities in others. The mean activity, or
population code, of the modules would then repre-
sent the stimulus trace, with variance representing
the level of stimulus uncertainty.

The Role of Noise in Trace Memory. In our
model, a dynamic system has learned to function



near a bifurcation point—where a single attractor
gives way to a pair of attractors. Adding a constant
to unit activations acts as a bifurcation parameter
and creates a second attractor. One consequence
of this is that the vector field of the system state-
space is relatively weak—and the equilibrium near
zero is less attractive than it would be farther from
the bifurcation point. The effect of adding noise is
to ‘tease’ the memory dynamics by causing vacilla-
tion between systems with one and two attractors.
Thus relaxation toward equilibrium is slowed and
the system behaves as though the vector field were
flatter. Of course, the noise also increases uncer-
tainty in the resolution of stimulus intensity.

As suggested for the intensity decay problem, the
undesiragble effects of noise might be minimized by
replication of the memory module, while preserving
the benefits (improved performance at long ISI).
For example, if several independent modules were
used to store the intensity of a single frequency
band, their mean would provide a much better esti-
mate of the original intensity than a single module
could. It is interesting to hypothesize that the well-
documented noisy behavior of real neural systems
functions in part to improve memory span in a way
similar to that of our model, by slowing relaxation
to equilibrium.
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