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ABSTRACT OF THE THESIS

Noise Removal using Deep Generative Model

By

Amir Hosein Afandizadeh Zargari

Master of Science in Computer Engineering

University of California, Irvine, 2021

Professor Fadi Kurdahi, Chair

A photoplethysmography (PPG) is a unsophisticated and reasonable-cost optical technique

that is frequently utilized in the healthcare field to extract useful health-related data such

as heart rate variability, blood pressure, and respiration rate. With the use of portable

wearable devices, PPG signals can be captured constantly and remotely. These measuring

devices, however, are susceptible to motion artifacts induced by everyday activities. Using

extra accelerometer sensors is the most frequent technique to minimize motion artifacts, but

they have two drawbacks: (1) Excessive power consumption; (2) the requirement for an ac-

celerometer sensor in a wearable device (which is not required in certain wearables). In this

thesis, we provide a non-accelerometer-based PPG motion artifacts reduction method that

outperforms previous methods in terms of accuracy. To rebuild clean PPG signals from noisy

PPG signals, we employ a Cycle Generative Adversarial Network (CycleGAN). In compar-

ison to the state-of-the-art, our remarkable machine-learning-based technique provides 9.5

times improvement in motion artifact removal without the use of additional sensors like an

accelerometer.
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Chapter 1

Introduction

A photoplethysmography (PPG) is an uncomplicated, inexpensive, and convenient optical

technique used for detecting volumetric blood changes in the microvascular bed of target

tissue [2]. Extraction of significant health-related information from PPG signals, ranging

from heart rate and heart rate variability to blood pressure and respiration rate, has recently

gained more attention in the literature [19].

Nowadays, PPG signals can effortlessly gathered constantly and remotely utilizing low-cost,

convenient, and portable wearable devices (e.g., smartwatches, rings, etc.), making them

a viable source for everyday wellness applications. PPG signals acquired from portable

wearable devices in everyday situations, on the other hand, are frequently captured while

a user is engaged in a variety of activities, and hence are distorted by motion distortions.

Low signal-to-noise ratio could result in erroneous vital sign extraction, which could have

life-threatening repercussions in healthcare applications. Motion artifacts can be detected

and removed from PPG signals using a variety of approaches. The majority of efforts on

motion artifact detection and filtering in PPG signals fall into one of three categories: (1)

non-acceleration based, (2) synthetic reference data, or (3) acceleration data.
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The non-acceleration based methods do not require any extra accelerometer sensor for mo-

tion artifact detection and removal. Due to the fact that some statistical factors such as

skewness and kurtosis would remain unchanged regardless of the presence of noise, these

approaches use specific statistical methodologies in previous publications. In [10], such sta-

tistical parameters are used to detect and remove the impure parts of the signal caused by

motion artifacts. In [7], authors detect motion artifacts using a Variable Frequency Complex

Demodulation (VFCDM) method. In this method, the PPG signal is normalized after ap-

plying a band-pass filter. Then, to detect motion artifacts, VFCDM distinguishes between

the spectral characteristics of noise and clean signals. Then, the unclean-marked signal

is deleted from the overall signal due to a frequency shift. In [18], the Discrete Wavelet

Transform (DWT) approach is presented as another method in this area.

Because unrecovered noisy data is eliminated from the signal in non-accelerometer based

approaches, the clean output signal is usually shorter than the original signal. To mitigate

this problem, a synthetic reference signal can be produced from the corrupted PPG signal.

In [21], authors use Complex Empirical Mode Decomposition (CEMD) to generate signals.

In [11], two PPG sensors are being used to generate a reference signal. One of the sensors is

a few millimeters away from the skin, which only measures PPG during movements. First

a band-pass filter is applied on both recorded signals; then, an adaptive filter is used to

minimize the difference between two recorded signals.

Often an accelerometer sensor is also embedded in wearable devices. To eliminate the effect

of motion artifacts, acceleration data can be utilized as a reference signal. In [23], with

the help of acceleration data, Singular Value Decomposition (SVD) is used for generating a

reference signal for an adaptive filter. After that, an adaptive filter removes motion artifacts

from the reference and PPG signals. In a similar approach, the authors of [25] employ a

DC remover that employs a different form of adaptive filter. In [6], another method for

motion artifact reduction is proposed, which consists of three steps: Signals are windowed,
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the resulting signal is filtered, and then a Hankel data matrix is built.

Even though using an accelerometer-based method enhances the model’s accuracy, it suffers

from two drawbacks: (1) high power consumption and (2) the requirement to integrate an ac-

celerometer sensor in a wearable device (which is not required in certain wearables). Machine

learning techniques can be used as an alternative method to eliminate noise and reconstruct

clean signals to address these challenges [5, 26]. Furthermore, machine learning techniques

are utilized in healthcare domain in processing of a variety of physiological signals such as

PPG for data analysis purposes [3, 4, 15]. The aim of this research is to propose a machine

learning non-accelemoter-based PPG motion artifacts removal approach which is low-power

and can outperform existing methods in terms of accuracy (even the accelerometer-based

techniques).

In recent studies, applying machine learning for image noise reduction has been investigated

extensively. The most recent studies use deep generative models to reconstruct or generate

clean images [8, 24]. In this study, we propose a novel approach which converts noisy PPG

signals to a proper visual representation and uses deep generative models to remove the

motion artifacts. To reconstruct clean PPG signals from noisy PPG signals, we employ a

Cycle Generative Adversarial Network (CycleGAN) [29]. CycleGAN is a novel and powerful

technique in unsupervised learning, which targets learning the distribution of two given

datasets to translate an individual input data from the first domain to a desired output

data from the second domain. The advantages of CycleGAN over other existing image

translation methods are (1) it does not require the pairwise dataset, and (2) the augmentation

in CycleGAN makes it practically more suitable for datasets with fewer images. Hence,

we use CycleGAN to remove motion artifacts from noisy PPG signals and reconstruct the

clean signals. Our experimental results clearly demonstrate the superiority of our approach

compared to the current state-of-the-art with a 9.5 times improvement with more energy

efficiency due to the elimination of accelerometer sensors.
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The remainder of this work is structured as follows. The employed dataset and our proposed

pipeline design are described in Section Methods. In the Results section, we summarize

the results of our proposed method and compare them to the current state-of-the-art in

motion artifact removal from PPG signals. Finally, in the Conclusion section, we address

the method’s strengths and shortcomings, as well as future research.

It is important to note that this thesis is based on our original paper [27] submitted to

Arxiv.org and ACM Health. Thus, it contains information of the our original paper.
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Chapter 2

Methods

In this paper, we present an accurate non-accelerometer-based motion artifacts removal

model from PPG signals. This model mainly consists of a module for noise detection and

another one for motion artifact removal. We present in Figure 2.1 the flow chart of our

proposed model. Each module is discussed in detail in the corresponding section.

Raw PPG signal
Signal segmentaion &

normalization
Noise detection

Noisy?

No

Yes

Clean PPG signal

Image construction 

Signal
reconstruction 

Cycle GANNoise detection

Noise removal

Figure 2.1: Flowchart of the proposed PPG motion artifacts noise removal

In order to train this model, two datasets of PPG signals are required: one consisting of clean
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PPG signals and the other one containing noisy PPG signals. The model’s evaluation requires

both clean and noisy signals to be taken from the same patient in the same period of time.

However, recording such data is not feasible as patients are either performing an activity,

which leads to recording a noisy signal or are in a steady-state, which produces a clean signal.

For this reason, we simulate the noisy signal by adding data from an accelerometer to the

clean signal. This is a common practice and has been used earlier in related work (e.g., [22])

to address this issue. This way, the effectiveness of the model can be evaluated efficiently by

comparing the clean signal with the reconstructed output of the model on the derived noisy

signal. In the following subsections, we explain the process of data collection for both clean

and noisy datasets.

2.1 BIDMC Dataset

For the clean dataset, we use BIDMC dataset [20]. This dataset contains signals and numerics

extracted from the much larger MIMIC II matched waveform database, along with manual

breath annotations made from two annotators, using the impedance respiratory signal.

The original data was acquired from critically ill patients during hospital care at the Beth

Israel Deaconess Medical Centre (Boston, MA, USA). Two annotators manually annotated

individual breaths in each recording using the impedance respiratory signal. There are 53

recordings in the dataset, each being 8 minutes long and containing:

• Physiological signals, such as the PPG, impedance respiratory signal, and electrocar-

diogram (ECG) sampled at 125 Hz.

• Physiological parameters, such as the heart rate (HR), respiratory rate (RR), and blood

oxygen saturation level (SpO2) sampled at 1 Hz.

• Fixed parameters, such as age and gender.
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• Manual annotations of breaths.

2.2 Data Collection

We conducted laboratory-based experiments to collect accelerometer data for generating

noisy PPG signals. Each of these laboratory-based experiments consisted of 27 minutes

of data. A total of 33 subjects participated in the laboratory-based experiments. In each

experiment, subjects were asked to perform specific activities while the accelerometer data

were collected from them using an Empatica E4 [1] wristband worn on their dominant

hand. The Empatica E4 wristband is a medical-grade wearable device that offers real-

time physiological data acquisition, enabling researchers to conduct in-depth analysis and

visualization. Figure 2.2 shows our experimental procedure. Note that the accelerometer

signals are only required for generating/emulating noisy PPG signals, and our proposed

motion artifact removal method does not depend on having access to acceleration signals.

Rest
Finger

Tappping

Low Intensity

Finger
Tappping

High Intensity

Rest
Waving

Low Intensity

Waving

High Intensity

Rest
Shaking
Hands

Low Intensity

Shaking
Hands

High Intensity

Rest
Runnig Arm

Swings

Low Intensity High Intensity

Rest
Fist

Open/Close

Low Intensity High Intensity

Rest
3D Arm

Movement

Low Intensity High Intensity

Runnig Arm
Swings

Fist
Open/Close

3D Arm
Movement

Activity 1 Activity 2 Activity 3

Activity 4 Activity 5 Activity 6

Figure 2.2: Experimental procedure to collect accelerometer data.

According to Figure 2.2, each experiment consists of 6 different activities: (1) Finger Tapping,

(2) Waving, (3) Shaking Hands, (4) Running Arm Swing, (5) Fist Opening and Closing, and

(6) 3D Arm Movement. Each activity lasts 4 minutes in total, including two parts with

two different movement intensities (low and high), each of which lasts 2 minutes. Activity
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tasks are followed by a 30 seconds rest (R) period between them. During the rest periods,

participants were asked to stop the previous activity and put both their arms on a table,

and stay in a steady state. Accelerometer data collected during each of the activities were

later used to model the motion artifact. We describe this in the next subsection.

2.3 Noisy PPG signal generation

To generate noisy PPG signals from clean PPG signals, we use accelerometer data collected

in our study. Clean PPG signals are directly collected from the BIDMC dataset. We down-

sample these signals to 32 Hz to ensure they are synchronized with the collected accelerometer

data.

Empatica has an onboard MEMS type 3-axis accelerometer that measures the continuous

gravitational force (g) applied to each of the three spatial dimensions (x, y, and z). The scale

is limited to ±2g. Figure 2.3 shows an example of accelerometer data collected from E4.

A
cc

el
er

om
et

er
s 

(g
)

-1.26

1.46

-0.58

0.78

0.10

-0.58

Figure 2.3: An example of Accelerometer data from Connect, the subject moves into position,
walks, runs, and then simulates the turning of a car’s steering wheel. The dimensional axes
are depicted in red, green and blue.

Along with the raw 3-dimensional acceleration data, Empatica also provides a moving average

of the data. Figure 2.4 visualizes the moving averaged data.
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Figure 2.4: The same data as Figure 2.3 is visualized using the moving average. From
Connect, the subject moves into position, walks, runs, and then simulates the turning of a
car’s steering wheel. The dimensional axes are depicted in red, green and blue.

The following formula is used to calculate the moving averaged of the data,

Sum+ = max(|CurrX − PrevX |, |CurrY − PrevY |, |CurrZ − PrevZ |) (2.1)

in which, Curri and Previ are respectively the current value and the previous value of the

accelerometer sensor (g) along the i-th dimension. The max(a, b, c) function returns the

maximum value among a, b, and c.

Then the following formula is used to filter the output:

Avg = 0.9× Avg + 0.1× Sum

32
(2.2)

The filtered output (Avg) is directly used as a model for motion artifacts in our study. To

simulate the noisy PPG signals, we add this noise model to a 2 minutes window of the clean

PPG signals collected from the BIDMC dataset. We use 40 out of 53 signals in BIDMC

directly as the clean dataset for training. Among these 40 signals, 20 are selected and

augmented with the accelerometer data to construct the noisy dataset for training. The 13

remaining BIDMC signals and accelerometer data were added together to form the clean

and noisy datasets for testing. In the rest of this section we describe each part of the model
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introduced in Figure 2.1.

2.4 Noise Detection

To perform noise detection, first, the raw signal is normalized by a linear transformation to

map its values to the range (0, 1). This can be performed using a simple function as below:

Signorm =
Sigraw −min(Sigraw)

max(Sigraw)−min(Sigraw)
(2.3)

where Sigraw is the raw signal and Signorm is the normalized output. Then, the normalized

signal is divided into equal windows of size 256, which is the same window size we use for

noise removal. These windows are then used as the input of the noise detection module to

identify the noisy ones.

70
70

1

256 247 238

70

140

79 70

140

61

140

1

32
16

3

10
10

10

10

1D-Convolutional 
layer with 70 filters

1D-Convolutional 
layer with 70 filters

1D-Convolutional 
layer with 140 filters

1D-Convolutional 
layer with 140 filters

Max Pooling layer

Global Average
Pooling layer

Three Dense layers

Noiseless
OR

Noisy

Figure 2.5: The structure of the noise detection model.
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The similar type of machine learning network used in [28] can be employed as a noise detec-

tion system. To explain the network structure for the noise detection method (Table 2.1 and

Figure 2.5), first, we use a 1D-convolutional layer with 70 initial random filters with a size of

10 to select the basic features of the input data and convert the matrix size from 256× 1 to

247 × 70. To extract more complex features from the data, another 1D-convolutional layer

with the same filter size 10 is required. As the third layer, a pooling layer with a filter size

of 3 is utilized. In this layer, a sliding window slides over the input of the layer and in each

step, the maximum value of the window is applied to the other values. This layer converts

a matrix size of 238 × 70 to 79 × 70. To select additional complex features, another set of

convolutional layers are used with a different filter size. This set is followed by two fully

connected layers of sizes 32 and 16. Lastly, a dense layer of size 2 with a softmax activation

would produce the probability of each class: clean and noisy. The maximum of these two

probabilities would be identified as the result of the classification. The accuracy of our pro-

posed binary classification method is 99%, which means that the system can almost always

detect a noisy signal from a clean signal.

Table 2.1: The layer configuration of the noise detection model.

Layer Structure Output

Conv1D+Relu 70× 10 247× 70
Conv1D+Relu 70× 10 238× 70
Max pooling 1D 3 79× 70
Conv1D+Relu 140× 10 70× 140
Conv1D+Relu 140× 10 61× 140
Global average pooling N/A 140
Dense+Relu 128 32
Dense+Relu 16 16
Dense+Softmax 2 2
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2.5 Noise Removal

In this section, we explore the reconstruction of noisy PPG signals using deep generative

models. Once a noisy window is detected, it is sent to the noise removal module for further

processing. First, the windows are transformed into 2-dimensional images, to exploit the

power of existing image noise removal models, and then a trained CycleGAN model is used

to remove the noise induced by the motion artifact from these images. In the final step of

the noise removal, the image transformation is reversed to obtain the clean output.

The transformation needs to provide visual features for unexpected changes in the signal

so that the CycleGAN model would be able to distinguish and hence reconstruct the noisy

parts. To extend the 1-dimensional noise on the signal into a 2-dimensional visual noise on

the image, we apply the following transformation:

Imgi,j = floor((Sig[i] + Sig[j])× 128) (2.4)

where Sig is a normalized window of the signal. Each pixel will then have a value between

0 and 255, representing a grayscale image.

An example of such transformation is provided in Figure 2.6 for both the clean and the noisy

signal. According to this figure, the noise effect is visually observable in these images.

Autoecnoders and CycleGAN are two of the most powerful approaches for image translation.

These methods have proven to be effective in the particular case of noise reduction. Au-

toencoders require the pairwise translation of every image in the dataset. In our case, clean

and noisy signals are not captured simultaneously, and their quantity differs. CycleGAN,

on the other hand, does not require the dataset to be pairwise. Also, the augmentation in

CycleGAN makes it practically more suitable for datasets with fewer images. Hence, we use

12



(a) Reference PPG (b) Noisy PPG

l l

1

Figure 2.6: An example of signal to image transformation.

CycleGAN to remove motion artifacts from noisy PPG signals and reconstruct the clean

signals.

CycleGAN is a Generative Adversarial Network designed for the general purpose of image-

to-image translation. CycleGAN architecture was first proposed by Zhu et al. in [29].

The GAN architecture consists of two networks: a generator network and a discriminator

network. The generator network starts from a latent space as input and attempts to generate

new data from the domain. The discriminator network aims to take the generated data as

an input and predict whether it is from a dataset (real) or generated (fake). The generator is

updated to generate more realistic data to better fool the discriminator, and the discriminator

is updated to better detect generated data by the generator network.

The CycleGAN is an extension of the GAN architecture. In the CycleGAN, two generator

13



networks and two discriminator networks are simultaneously trained. The generator network

takes data from the first domain as an input and generates data for the second domain as

an output. The other generator takes data from the second domain and generates the first

domain data. The two discriminator networks are trained to determine how plausible the

generated data are. Then the generator models are updated accordingly. This extension

itself cannot guarantee that the learned function can translate an individual input into

a desirable output. Therefore, the CycleGAN uses a cycle consistency as an additional

extension to the model. The idea is that output data by the first generator can be used

as input data to the second generator. Cycle consistency is encouraged in the CycleGAN

by adding an additional loss to measure the difference between the generated output of the

second generator and the original data (and vice versa). This guides the data generation

process toward data translation.

In our CycleGAN architecture, we apply adversarial losses [9] to both mapping functions

(G : X → Y and F : Y → X). The objective of the mapping function G as a generator and

its discriminator DY is expressed as below:

LGAN(G,DY , X, Y ) = Ey∼pdata(y)[log logDY (y)]+Ex∼pdata(x)[log log(1−DY (G(x)))] (2.5)

where the function G takes an input from domain X (e.g., noisy PPG signals), attempting

to generate new data that look similar to data from domain Y (e.g., clean PPG signals). In

the meantime, DY aims to determine whether its input is from the translated samples G(x)

(e.g., reconstructed PPG signals) or the real samples from domain Y . A similar adversarial

loss is defined for the mapping function F : Y → X as LGAN(F,DX , Y,X).

As discussed before, adversarial losses alone cannot guarantee that the learned function can

map an individual input from domain X to the desired output from domain Y . In [29], the

authors argue that to reduce the space of possible mapping functions even further, learned

14



mapping functions (Y and F ) need to be cycle-consistent. This means that the translation

cycle needs to be able to translate back the input from domain X to the original image as

X → G(X) → F (G(X)) ∼ X. This is called forward cycle consistency. Similarly, backward

cycle consistency is defined as: y → F (y) → G(F (y)) ∼ y. This behavior is presented in our

objective function as:

Lcyc(G,F ) = Ex∼pdata(x)[∥F (G(x))− x∥1] + Ey∼pdata(y)[∥G(F (y))− y∥1] (2.6)

Therefore, the final objective of CycleGAN architecture is defined as:

L(G,F,DX , DY ) = LGAN(G,DY , X, Y ) + LGAN(F,DX , Y,X) + λLcyc(G,F ) (2.7)

where λ controls the relative importance of the two objectives.

In Equation 2.7, G aims to minimize the objective while an adversary D attempts to maxi-

mize it. Therefore, our model aims to solve:

G∗, F ∗ = argminL(G,F,DX , DY ) (2.8)

The architecture of the generative networks is adopted from Johnson et al. [14]. This

network contains four convolutions, several residual blocks [12], and two fractionally-strided

convolutions with stride 0.5. For the discriminator networks, they use 70 × 70 PathGANs

[17, 13, 16].

After the CycleGAN is applied to the transformed image, the diagonal entries are used to

retrieve the reconstructed signal.

Sigrec[i] = Img[i, i]/256 (2.9)
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Chapter 3

Results

In this section, we assess the efficiency of our model based on the following measures: root

mean square error (RMSE) and peak-to-peak error (PPE). A signal window size of 256 and

an image size of 256 by 256 were used for all experimental purposes, and 25% of the data was

assigned for validation. The noise detection module had an accuracy of 99%. The summary

of the results for noise removal, including the improvement for each noise type and noise

intensity, can be found in Table 3.1.

For each noise type, there are two entries in this table, one corresponding to the slow move-

ment and the other one corresponding to the fast movement. The average S/N value for

slow movements is 21.7dB, as provided in the table, while the average S/N value for fast

movements is 14.0dB. For each of the measures, RMSE and PPE, we calculated the error

between the generated signal and the reference signal as well as the error between the noisy

signal and the reference signal in order to observe the improvement of the model on the noisy

signal. The degree of improvement on each noise type is added in a separate column in the

table. According to the table, the average of improvement on RMSE is 41× and the average

of improvement on PPE is 58×.
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Table 3.1: Results of the proposed method.

Noise Type S/N (dB)
RMSE Gen.

(BPM)
RMSE Nsy.

(BPM) RMSE Imprv.
PPE Gen.
(BPM)

PPE Nsy.
(BPM) PPE Imprv.

Waving 20.04 0.213 41.76 196.07× 0.136 32.89 241.60×
Waving 11.30 2.43 55.30 22.75× 1.088 37.90 34.84×
3D Arm Movement 20.17 1.644 92.12 56.03× 0.772 44.03 57.06×
3D Arm Movement 13.12 1.688 65.99 39.10× 0.700 48.49 69.29×
Shaking Hands 21.66 1.556 61.89 39.78× 0.576 28.62 49.71×
Shaking Hands 14.96 4.203 84.31 20.06× 2.677 64.58 24.12×
Finger Tapping 22.99 1.758 63.43 36.07× 0.653 45.14 69.14×
Finger Tapping 13.99 3.008 21.76 7.235× 1.191 10.70 8.99×
Fist Open Close 25.11 1.648 35.74 21.69× 0.528 24.51 46.44×
Fist Open Close 16.69 2.151 51.28 23.84× 1.113 42.65 38.33×
Running Arm 20.14 2.056 22.93 11.16× 0.715 19.32 27.02×
Running Arm 13.98 3.807 77.73 20.42× 1.348 50.75 37.64×

Average 17.85 2.18 56.19 41.18× 0.958 37.465 58.68×

An example of a reconstructed signal is presented in Figure 3.1, together with the noisy PPG

and the reference PPG signal. As we can see in this figure, the noise is significantly reduced,

and the peak values are adjusted accordingly, confirming that the image transformation

successfully represents the noise in a visual format.

(a) Reference PPG (b) Noisy PPG (c) Reconstructed PPG

l l l

1
Figure 3.1: The reconstructed signal of Figure 2.6 alongside with the noisy and the reference
signals
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3.1 Comparison

In this section we compare our model’s efficiency with the state-of-the-art (Table 3.2). To

minimize the difference between our experimental setup and the setups used in the related

works we use the same measures. It should be noted that it is not feasible to perform a close

comparison between our model and the existing works, due to the differences in the dataset

and the lack of a public dataset providing noisy and clean signals simultaneously.

Table 3.2: The summary comparison of our result with the existing methods. MAE stands
for Mean absolute error.

Paper Method Accelerometer Before Outcome

Proposed method CycleGAN No PPE 37.46 BPM
RMSE 56.18
BPM

PPE 0.95 BPM
RMSE 2.18 BPM

Hanyu and Xiaohui [10] Statistical Evaluation No PPE 8.1 BPM PPE 7.85 BPM
Bashar et al. [7] VFCDM No N/A 6.45% false positive
Lin and Ma [18] DWT No PPE 13.97 BPM PPE 6.87 BPM
Raghuram et al. [21] CEMD LMS Syn. PPE 0.466 BPM PPE 0.392 BPM
Hara et al. [11] NLMS and RLS Syn. RMSE 28.26 BPM RMSE 6.5 BPM
Tanweer et al. [23] SVD and X-LMS Yes N/A PPE 1.37 BPM
Wu et al. [25] DC remover and RLS Yes N/A STD 3.81
Bac´a et al. [6] MAR and AT Yes N/A MAE 2.26 BPM

In comparison to non-accelerometer-based methods, our model significantly outperforms

these models. The best performance observed in previous work is reported in [11] that

improves the average RMSE from 28.26BPM to 6.5BPM (4.3× improvement). However, our

model’s improvement on average RMSE is from 56.18 to 2.18 (25.8× improvement). In most

of the existing accelerometer-based methods, no value is provided for the degree of the input

noise. Although the best reported PPE belongs to [21] with an outcome of 0.392BPM, the

best improvement is achieved by [18] from 13.97BPM to 6.87BPM (2.03× improvement).

However, our model’s improvement on average PPE is from 37.46BPM to 0.95BPM (39.4×

improvement).
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Chapter 4

Discussion

Noise reduction has been extensively studied in image processing, and the introduction of

powerful models such as CycleGAN has shown promising results in terms of noise reduction

in images. Inspired by this fact, we proposed a signal to image transformation that visualizes

signal noises in the form of image noise. To the best of our knowledge, this is the first use of

CycleGAN for bio-signal noise reduction which eliminates the need for an accelerometer to

be embedded into wearable devices, which in turn helps to reduce the power consumption

and cost of these devices.

It should be noted that despite the significant benefits of our proposed method in removing

noise in different situations, it may not be effective in all possible scenarios. Clearly, the

intensity of noise applied to the signals, and the variations of the noise, also called noise

categories, are controlled for the purpose of this study. When the signal is faded in the

noise, this method may not be applicable. Although it will improve the error, it does not

guarantee a reasonable upper bound. However, the same limitations also exist in the related

works.
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Chapter 5

Conclusions

In this study, we introduced an image processing approach to the problem of noise removal

from PPG signals where the noise is selected from a set of noise categories that simulate

the daily routine of a person. This method does not require an accelerometer on the sensor,

therefore, it can be applied to other variations of physiological signals, such as ECG, to

reduce the power usage of the measuring device and improve its efficiency. In this work, the

novel use of CycleGAN as an image transformer is leveraged to transform such physiological

signals. On average, the reconstructed PPG performed using our proposed method offers 41×

improvement on RMSE and 58× improvement on PPE, outperforming the state-of-the-art

by a factor of 9.5.
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