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Professor Paul H. Siegel, Chair

Right from the birth of communication theory, synchronization errors have been

a challenge. In the first part of this dissertation, we will consider a class of synchroniza-

tion error channels and develop a rigorous information theoretic analysis. We provide

analytical bounds on the capacity of channels that introduce deletions or replications.

For channels that introduce deletions and replications, we develop methods to approx-

imately estimate the achievable information rates. Following this, we consider specific

applications in magnetic recording where synchronization errors play a key role. For

these applications, we provide bounds and numerical estimates of the channel capacity

as well as the zero-error capacity.
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In the second part of the dissertation, we will focus on a coding theoretic problem

of analyzing a low-complexity decoding scheme for spatially coupled codes over the

erasure channel. We describe the operation of windowed decoding, and analytically

establish its asymptotic performance limits. For protograph-based LDPC convolutional

codes, which are a variant of the spatially coupled codes, we identify characteristics of

code ensembles that result in good performance with the windowed decoding algorithm

over erasure channels with and without memory.
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Chapter 1

Introduction

The advent of digital communications paved way for fundamental changes in

the way people communicate. With the birth of information theory, a meaningful quan-

tification of information was possible, which led to a well defined notion of the “best

speed” of communication. More importantly, it also gave rise to methods of handling

signal distortion, which was one of the big roadblocks in analog communications. In

other words, digitally communicated information was correctable in the presence of er-

rors due to physical impairments of devices used for communications. Coding theory

quickly emerged as a crucial topic in communications.

Despite the simultaneous development of information and coding theories, and

despite their common motivation, it was not until the 90s that they converged with the

discovery of codes and efficient decoding algorithms that approached the limits imposed

by information theory. It is to this development that today’s fast communication and

storage devices, the internet, and all communication networks largely owe their birth.

1.1 Digital Communication System

A digital communication system basically consists of a message transmitter, a

channel through which the message is communicated, and a receiver. Based on the chan-

nel of communication, the transmitter and the receiver are required to perform various

operations to realize successful communication. For example, in a wireless communi-

cation system, the information is typically modulated before being transmitted. This is

1
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done for various reasons including facilitating reception of signal with a small enough

antenna and using frequencies that do not undergo heavy attenuation during transmis-

sion.

Most physical communication channels are noisy, i.e., the transmitted signals

are typically impaired due to physical limitations or imperfections in the device. Com-

munication devices are therefore required to provide mechanisms for error correction.

The exact mechanism to be used is designed based on the specific application of the

device and is known both to the transmitter and the receiver prior to transmission. The

transmitter encodes information, and the receiver decodes it on reception based on its

knowledge of the encoding.

1.2 Data Storage System

Although the description so far pertains to the case of communications, the same

model applies for data storage as well. The storing of data is the transmission, the device

on which data is stored is the channel, and subsequent reading of the data on the device

is the reception. Thus, information is communicated from one time to a subsequent

time. Devices on which data is stored, e.g., hard disks in computers, flash memories in

tablets, phones etc., are also noisy. The data storing process is hence accompanied by

encoding, and data retrieval by decoding. Due to this parallel, we will not distinguish

between data communication and storage devices henceforth in this chapter, and refer

to them as communication systems.

1.3 Information & Coding Theory

In order to study a digital communication system, a mathematical model that

mimics the behavior of the communication system in consideration is first framed. Typ-

ically, communication systems are modeled probabilistically, where the randomness

arises from the noise in the system. Information theory allows us to formulate funda-

mental limits on the performance of such a system in terms of the number of messages

that can be sent each time the channel is used. Efficient coding schemes are then devised
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for the system. Codes are ranked based on their ability to correct errors introduced in

the channel, the complexity of the encoding and decoding operations, as well as the gap

between the rate at which messages can be sent using these codes and the limit dictated

by information theory.

For a class of communication systems, Shannon [103] showed that there is a

maximum rate up to which reliable information transfer is possible, i.e., the probability

of decoding to a wrong symbol vanishes to zero as the number of times the channel

is used goes to infinity, and beyond which no reliable information transfer is possible,

i.e., the error probability is strictly bounded away from zero. This limit on the rate of

information transfer is called the capacity of the communication channel. Since this

seminal work, similar results have been shown for various communication channels.

Capacity-achieving codes are those for which efficient encoding and decoding

schemes are known for rates that are close to the capacity of the channel for which they

are designed. Such codes had not been discovered until the advent of Turbo codes [13]

and the rediscovery of low-density parity-check (LDPC) codes [80]. Recent develop-

ments have produced various types of capacity-achieving codes.

1.4 Dissertation Overview

This dissertation can be divided into two main parts. The first part, comprising

Chapters 2 and 3, is information theoretic in nature. In Chapter 2, we study a class

of communication channels that introduce synchronization errors, i.e., the number of

symbols received is a random function of the number of symbols transmitted over the

channel. Such a channel introduces deletions and replications of symbols transmitted

over it. We establish bounds on the capacities of such channels. In Chapter 3, we

consider synchronization error channels that arise in the context of data storage, and

in particular, in magnetic recording. We employ similar strategies as in Chapter 2 to

establish bounds on the capacities of these channels.

In the second part of the dissertation, comprising Chapters 4 and 5, we focus on a

coding theoretic problem. We consider transmission on channels that introduce erasures

and consider a low-complexity decoding algorithm for a class of LDPC codes. In Chap-
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ter 4, we theoretically guarantee the good performance of the algorithm by establishing

that the windowed decoding threshold approaches the belief propagation threshold at

least exponentially fast in the size of the window. In Chapter 5, we identify characteris-

tics of specific code ensembles that have good performance with the proposed decoding

algorithm.

We start with a note on the notation used in the rest of the dissertation.

Notation

Non-random variables are typically written as lowercase letters, e.g., n. We

denote sets by double-stroke uppercase letters, e.g., X. We will reserve N, Z and R to

denote the sets of natural numbers, integers and real numbers, respectively. Z+ denotes

the set of non-negative integers. We define

[n], {1,2, · · · ,n},n ∈ N,

[0], /0,

[m : n],

{m,m+1, · · · ,n}, m≤ n,

/0, n < m.
and

Z±m , {−m,−m+1, · · · ,0,1, · · · ,m} ∀ m ∈ Z+.

For some n ∈ N, we will let Xn denote the set of vectors of dimension n with

elements from X. Vectors are denoted either underlined, x, or in bold face, x. Matrices

are also typically written in bold face, e.g., H. We will write x to denote a string, and λ

to denote the empty string. The length of a string, denoted |x|, is the number of symbols

in it, and by definition, |λ | = 0. With some abuse of notation, we will use “vectors of

dimension n” and “strings of length n” interchangeably with the understanding that the

string corresponding to a vector is just the concatenation of the symbols of the vector in

order. The set of all strings of length n over the alphabet X is hence also denoted Xn,

and X0 = {λ}. We write X to denote the set of all strings over the set X, i.e.,

X=
∞⋃

i=0

Xi.
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The bar “ · ” will denote the concatenation operation, so that x · y is the concatenation

of strings x and y.

In general, we assume an underlying probability space (S,B,P) over which

random variables, denoted by uppercase letters, e.g., X , are defined. Random vectors

are denoted by uppercase letters with the multiset of indices as subscripts, e.g., X[n] =

(X1,X2, · · · ,Xn), or XY[n] when the multiset of indices is itself the elements of a random

vector Y[n]. Random processes (assumed discrete-time) are denoted by script letters X ,

or subscripted by the set of natural numbers, XN.

We will use the asymptotic notations O(·), o(·), ω(·) as in [17, 59].



Chapter 2

Synchronization Error Channels :

Theory

Channels with synchronization errors have been familiar to information and cod-

ing theorists and practitioners alike ever since the advent of the digital information era.

Although Dobrushin [27] established the coding theorem for such channels as early as

1967, tackling these channels in terms of estimating information rates and constructing

codes with good performance have proved to be very tough. In the last decade, sig-

nificant progress has been made in estimating achievable information rates for certain

channels with synchronization errors. However, a coding scheme with provably “good”

performance remains elusive thus far.

In this chapter, we start with Dobrushin’s model of channels with synchroniza-

tion errors, henceforth referred to as the synchronization error channel (SEC), and con-

vert it into an equivalent channel with states. Using this alternative model, we establish

certain bounds on achievable information rates for the special cases of channels that

introduce only deletions or only replications of input symbols. For the case of SECs

that introduce deletions as well as replications, we construct sequences of channels that

“approximate” the SEC, and whose limit is related to the SEC in terms of mutual in-

formation rates. Thus, through the use of these approximate channels, we derive some

results about information rates achievable over the SEC. Although the motivation be-

hind the formulation of SECs as channels with states is straightforward, its use to obtain

non-trivial bounds on the capacity of the SEC has not been found in literature. While

6



7

this work concerns only a few asymptotic results on information rates of the SEC, we

think that the model presented here can be utilized to design codes for SECs in general.

The remainder of this chapter is organized as follows. In Section 2.1, we revisit

Dobrushin’s model of an SEC and recall the main results on capacity of SECs. Through

much of this chapter, we consider a special case of the generic SEC—the deletion, repli-

cation channel (DRC)—and construct an equivalent channel by viewing the DRC as a

channel with states in Section 2.2. Under further special cases of channels with only

deletions or only replications, we give some simple, non-trivial and sometimes tight

bounds on the capacity in Sections 2.3.1 and 2.3.2. We then construct sequences of

approximate channels for the DRC and establish certain properties of this sequence of

channels that allow us to bound the capacity of the DRC in Section 2.4. In Section 2.5,

we note the application of similar strategies to more general SECs, and we conclude

with summary and remarks in Section 2.6.

2.1 Synchronization Error Channels

Remark 2.1 (Notation). Non-random variables are written as lowercase letters, e.g., n.

We denote sets by double-stroke uppercase letters, e.g., X. We will reserve N, Z and

R to denote the sets of natural numbers, integers and real numbers, respectively. Z+

denotes the set of non-negative integers. We define

[n], {1,2, · · · ,n},n ∈ N,

[0], /0,

[m : n],

{m,m+1, · · · ,n}, m≤ n,

/0, n < m.
and

Z±m , {−m,−m+1, · · · ,0,1, · · · ,m} ∀ m ∈ Z+.

For some n ∈ N, we will let Xn denote the set of vectors of dimension n with

elements from X. We will write x to denote a string, and λ to denote the empty string.

The length of a string, denoted |x|, is the number of symbols in it, and by definition,

|λ |= 0. With some abuse of notation, we will use “vectors of dimension n” and “strings

of length n” interchageably. The set of all strings of length n over the alphabet X is
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hence also denoted Xn, and X0 = {λ}. We write X to denote the set of all strings over

the set X, i.e.,

X=
∞⋃

i=0

Xi.

The bar “ · ” will denote the concatenation operation, so that x · y is the concatenation

of strings x and y.

Throughout this chapter, we assume an underlying probability space (S,B,P)

over which random variables, denoted by uppercase letters, e.g., X , are defined. Random

vectors are denoted by uppercase letters with the multiset of indices as subscripts, e.g.,

X[n] = (X1,X2, · · · ,Xn), or XY[n] when the multiset of indices is itself the elements of a

random vector Y[n]. Random processes (assumed discrete-time) are denoted by script

letters X , or subscripted by the set of natural numbers, XN.

We will use the asymptotic notations O(·), o(·), ω(·) as in [17, 59]. �

We start by defining the synchronization error channels as considered by Do-

brushin [27].

Definition 2.1 (Memoryless SECs). Let X be a finite set. A memoryless synchronization

error channel is specified by a stochastic matrix

{q(y|x),y ∈ Y,x ∈ X}

where Y is the output alphabet. From the properties of a stochastic matrix, we have

0≤ q(y|x)≤ 1, ∑
y∈Y

q(y|x) = 1 ∀ x ∈ X. (2.1)

Further, we will assume that the mean value of the length of the output string arising

from one input symbol is strictly positive and finite, i.e.,

0 < ∑
y∈Y
|y|q(y|x)< ∞. (2.2)

For x[n] = (x1,x2, · · · ,xn) ∈ Xn and y[n] = (y1,y2, · · · ,yn) ∈ Yn
, we write

qn(y[n]|x[n]) =
n

∏
i=1

q(yi|xi).
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Let y[n] denote the concatenation of strings yi, i ∈ [n]. Then the transition probabilities

of the memoryless SEC are defined as

Qn(y|x[n]) = ∑
y[n]=y

qn(y[n]|x[n]) (2.3)

for y∈Y and x[n] ∈Xn. The memoryless SEC is given by the triplet Qn , (X,Qn,Y), the

input and the output alphabets, and the transition probabilities between input strings of

length n and all output strings. �

Consider the sequence of memoryless SECs {Qn}∞
n=1. Then, we have the fol-

lowing.

Theorem 2.1 (Capacity [27]). Let X[n] and Y denote the input and the output of the SEC

Qn. Let

Cn = sup
P(X[n])

1
n

I(X[n];Y ).

Then,

C = lim
n→∞

Cn = inf
n≥1

Cn

exists and is equal to the capacity of the sequence of SECs. �

The quantity C represents the maximum rate at which information can be trans-

ferred over the SEC with vanishing error probability. Furthermore, the following result

shows that, in estimating the capacity of the SEC, we can restrict ourselves to a subclass

of possible input processes X .

Proposition 2.2 (Markov Capacity [27]). Let XM be a stationary, ergodic, Markov

process over X. Then the capacity of the sequence {Qn}∞
n=1 is

C = sup
XM

lim
n→∞

1
n

I(X[n];Y ).

The capacity is therefore the supremum of the rates achievable through stationary, er-

godic, Markov processes XM . �

We will now give an example of a memoryless SEC. For convenience, we will

assume that the input alphabet for the SECs is X= {0,1}, i.e., the channels considered

are binary memoryless SECs. However, we note that all the results presented here can

be straightforwardly extended to the case where X is any finite set.
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Example 2.1 (Deletion-Replication Channel (DRC)). Consider the binary SEC with X=

Y= {0,1} and the following stochastic matrix.

q(y|x) =

pd, y = λ

ptp`−1
r , y = x`, ∀ `≥ 1.

Intuitively, we can think of pd as the deletion probability, pt as the transmission proba-

bility, and pr as the replication probability, i.e., when x ∈ X is sent, it is either deleted

with probability pd, or transmitted and replicated (`−1) times with probability ptp`−1
r

for `≥ 1. From (2.1), we get for pr < 1

pd+
∞

∑
`=1

ptp`−1
r = pd+

pt
1− pr

= 1,

or equivalently,

pt = (1− pd)(1− pr). (2.4)

From (2.2), we have that

0 <
∞

∑
`=1

`ptp`−1
r =

pt
(1− pr)2 =

1− pd
1− pr

< ∞

where we use Equation (2.4). Hence (pd, pr) ∈ [0,1)2. Note that when pr = 0, the DRC

is the same as the binary deletion channel (BDC); and when pd = 0, it is the binary

replication channel (BRC), also referred to as the geometric binary sticky channel [84].

�

The BDC has been the most well-studied SEC. In [85], the author surveys the

results that were known prior to 2009. To summarize, the best known lower bounds were

obtained, chronologically, through bounds on the cutoff rate for sequential decoding

[37], bounding the rate with a first-order Markov input [23], reduction to a Poisson-

repeat channel [86], analyzing a “jigsaw-puzzle” coding scheme [28], or by directly

bounding the information rate by analyzing the channel as a joint renewal process [58].

Recently, [55] and [54] independently gave the capacity of a BDC with small deletion

probabilities, and showed that it is achieved by independent and uniformly distributed

(i.u.d.) inputs. The known upper bounds for the BDC have been obtained by genie-

aided decoder arguments [24, 35]. An idea from [35] was extended to obtain some
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analytical lower bounds on the capacity of channels that involve substitution errors as

well as insertions or deletions [96]. The idea in [55] was extended to obtain a better

approximation for the capacity of the BDC with small deletion probabilities in [56].

In the case of the BDC, in contrast to these existing results, our approach explic-

itly characterizes the achievable information rates in terms of “subsequence-weights”,

which is a measure relevant in ML decoding for the BDC [85]. Additionally, the method

proposed here gives the tight bound on capacity for small deletion probabilities obtained

in [55] more directly1.

For the BRC, [84] obtained lower bounds on the capacity by numerically esti-

mating the capacity per unit cost of the equivalent channel of runs through optimization

of 8 and 16 bit codes. Here, we obtain direct analytical lower bounds on the capacity.

These, to the best of our knowledge, represent the only analytical bounds for the capac-

ity of the BRC. Moreover, we obtain an exact expression for the Markov-1 rate for the

BRC which conclusively disproves the conjecture that the capacity of SECs is a convex

function of the channel parameter.

We will use the DRC as a running example of an SEC. In Section 2.5, we discuss

the extension of the results presented to more general classes of SECs.

2.2 DRC as a Channel with States

We now construct a channel with states that is equivalent to the DRC introduced

in Example 2.1. Dobrushin’s model of SEC (cf. Definition 2.1) tracks the output string

generated by each input symbol. In our model, we track the input symbol that gave rise

to each output symbol.

2.2.1 Channel Model

Definition 2.2 (DRC with states). For a fixed n ∈ N, we write

Yi = XΓi = Xi−Zi, i ∈ [Nn] (2.5)

1Note that although we obtain the same lower bound for the capacity of the BDC as in [55], we do not
prove a converse here.
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Pn(y|x[n],Z0 = 0) = ∑
{z:|z|=|y|}

P(Z = z,Y = y|X[n] = x[n],Z0 = 0)

= ∑
{z:|z|=|y|}

P(Z = z|Z0 = 0)P(Y = y|X[n] = x[n],Z0 = 0,Z = z)

= ∑
{z:|z|=|y|}

|y|
∏
i=1

(
P(Zi = zi|Zi−1 = zi−1,Z0 = 0)

·P(Yi = yi|X[n] = x[n],Zi = zi)
)

(2.7)

= ∑
{z:|z|=|y|}

|y|
∏
i=1

(
P(Zi = zi|Zi−1 = zi−1)1{yi=xi−zi}

)
.

where Zi ∈ Z is the “state” of the channel and

Nn , sup{i≥ 0 : Γi ≤ n|Γ0 = 0}.

We will refer to the random variable Nn as the output length corresponding to n input

symbols. The state process Z is independent of the channel input process, and is a first-

order Markov process over the set of integers Z with transition probabilities for each

i ∈ N given by

P(Zi = zi|Zi−1 = zi−1)

=

pr, zi = zi−1 +1

ptp`d, zi = zi−1− `, ∀ `≥ 0,
(2.6)

where we define pt as in Equation (2.4) assuming (pd, pr) ∈ [0,1)2. We will refer to the

process Γ , ΓN where Γi = i−Zi as the index process.

We also assume the boundary condition that Z0 = Γ0 = 0, i.e., the channel is

perfectly synchronized before transmission commences. Note that the transition proba-

bilities in (2.6) indeed are well-defined since ∀ zi−1 ∈ Z, as pd < 1,

∑
zi

p(zi|zi−1) = pr+
∞

∑
`=0

ptp`d = pr+
pt

1− pd
= 1.

With the above definition, for y ∈ Y and x[n] ∈ Xn, the channel transition prob-

abilities are given as in Equation (2.7). Note that in the terms within the parenthesis
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on the right hand side of Equation (2.7), the first term is completely specified by the

transition probabilities (2.6) of the channel state process Z , and the second term is 0

or 1 accordingly as yi 6= xi−zi or yi = xi−zi respectively.

For each n ∈ N, we define the DRC with states as the channel specified by the

triplet Pn , (X,Pn,Y). �

We will start by proving a few properties of the output length Nn and the channel

state Z and index processes Γ which will be made use of subsequently.

Lemma 2.3 (Properties of Nn). The output length Nn satisfies the following properties:

(i) For any n ∈ N, Nn < ∞ a.s..

(ii) Nn→ ∞ as n→ ∞ a.s..

(iii) Nn
n →

1−pd
1−pr

a.s. as n→ ∞.

Proof. (i) This is true since pr < 1.

(ii) Since pd < 1.

(iii) Notice that, for each n ∈ N, we can write

Γn = n−Zn =
n

∑
i=1

∆i

where the ∆i’s are i.i.d. with

P(∆1 = δ ) =

pr, δ = 0

ptpδ−1
d , δ ≥ 1.

From the strong law of large numbers (SLLN), we therefore have Γn
n → E(∆1) a.s.

as n→ ∞. We also have Nn→ ∞ a.s. as n→ ∞ from point (ii) above. Therefore,
ΓNn
Nn
→ E(∆1) a.s. as n→ ∞. Further, by definition, we have ΓNn ≤ n < ΓNn+1, i.e.,

ΓNn

Nn
≤ n

Nn
≤ ΓNn+1

Nn +1

(Nn +1
Nn

)
.

Thus Nn
n → 1

E(∆1)
= 1−pd

1−pr
a.s. as n→ ∞.
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Lemma 2.4 (Properties of Z ,Γ ). The channel state process Z and the index process

Γ satisfy the following properties:

(i) Z and Γ are first-order, time-homogeneous, shift-invariant Markov chains. Fur-

ther, Z is irreducible and aperiodic.

(ii) Γ is almost surely non-decreasing, i.e.,

Γi+ j ≥ Γi ∀ j ≥ 0, i ∈ N a.s..

For any n ∈ N, a realization of Z[n] such that the corresponding Γ[n] realization

satisfies the above monotonicity property is called a compatible state path.

(iii) For every i ∈ N,

H(Zi|Zi−1) = H(Γi|Γi−1) = h2(pr)+
1− pr
1− pd

h2(pd),

where h2(x) , −x log2 x− (1− x) log2(1− x), for x ∈ [0,1], is the binary entropy

function [18]. Here, we assume from continuity that 0log2 0 = 0. Consequently,

for every n ∈ N,

H(Z[n]) = H(Γ[n]) = n
(

h2(pr)+
1− pr
1− pd

h2(pd)
)
.

Proof. (i) By definition, Z is a first-order Markov chain. Time-homogeneity implies

that

P(Zi|Zi−1) = P(Z1|Z0) ∀ i≥ 1.

This is true for the state process Z from the definition since the transition prob-

abilities in Equation (2.6) do not depend on the time index i. Shift-invariance

implies

P(Z1 = z1|Z0 = z0) = P(Z1 = z1− z0|Z0 = 0).

This is true because the state transition probabilities in (2.6) depend only on the

difference zi− zi−1.

The Γ process inherits these properties from Z through the bijection ζ : Zn 7→Zn,

where with some abuse of notation, we write Γ[n] = ζ (Z[n]) = (ζ (Zi)), i ∈ [n], with

Γi = ζ (Zi) = i−Zi, i ∈ [n], ∀ n ∈ N.

The irreducibility and aperiodicity of the Z process follow from the definition.
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(ii) Note that from Equation (2.6), Zi+1 ≤ Zi + 1 a.s. for every i ≥ 0. Hence Zi+ j ≤
Zi + j a.s. for every i≥ 0, j ≥ 0. Since Γi = i−Zi, we have Γi+ j = i+ j−Zi+ j ≥
i+ j−Zi− j = Γi with probability 1.

(iii) From the bijection ζ (See point (i) above) and Lemma 2.3, we have

H(Zi|Zi−1) = H(Γi|Γi−1) = H(Γi−1 +∆i|Γi−1)

= H(∆i|Γi−1) = H(∆i) = H(∆1)

= h2(pr)+
1− pr
1− pd

h2(pd).

Hence

H(Z[n]) =
n

∑
i=1

H(Zi|Z[i−1]) =
n

∑
i=1

H(Zi|Zi−1) = n
(

h2(pr)+
1− pr
1− pd

h2(pd)
)
.

Note that the Z process is not stationary because we fix Z0 = 0. The Γ process

is clearly not stationary since Γi depends on i. From Lemma 2.4 (ii), we can show that

for 1≤ n≤ m < ∞,

Nn ≤ Nm a.s.. (2.8)

Proposition 2.5 (Channel Equivalence). For each n ∈ N, the channels Qn and Pn are

equivalent.

Proof. Both Qn and Pn have the same input and output alphabets X and Y, respectively.

The correspondence between the transition probabilities Qn and Pn in Equations (2.3)

and (2.7) is evident by the following observations:

(i) For every parsing of y ∈ Y as y[n] in Equation (2.3), there is a corresponding state

path z ∈ Z in Equation (2.7).

(ii) For every compatible state path z ∈ Z in Equation (2.7) (See Lemma 2.4), there is

a corresponding parsing of y ∈ Y in Equation (2.3).

(iii) For these corresponding parsings of y and compatible state paths z, the terms within

the parenthesis on the right hand side of Equation 2.7, when grouped according to

the output symbols arising from the same input symbol, spell out exactly the same

probability as the terms q(yi|xi).
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Therefore, except on a set of zero probability (state paths that are not compatible), the

probability measures Qn and Pn are equal. This implies the equivalence of the channels

Qn and Pn.

As a consequence of the above equivalence, the results of Theorem 2.1 and

Proposition 2.2 carry forward to the sequence of channels {Pn}∞
n=1 specified by Equa-

tions (2.5) and (2.6).

Corollary 2.6 (Dobrushin’s results for {Pn}∞
n=1). For input X[n] and output Y[Nn] of the

channel Pn, the quantity

C = lim
n→∞

sup
P(X[n])

1
n

I(X[n];Y[Nn])

= sup
XM

lim
n→∞

1
n

I(X[n];Y[Nn]),

where XM represents stationary, ergodic, Markov processes over X, exists and is equal

to the capacity of the sequence of channels {Pn}∞
n=1. �

We will henceforth restrict our attention to this class of input processes.

Proposition 2.7 (Stationarity). The channel output process Y is stationary for station-

ary input processes X .

Proof. Let Z0 = 0 and consider semi-infinite input, state and output processes. We first

note that ∀ k, l ∈ N,k ≤ l,

P(Y[k:l] = y[k:l]|Zk−1 = 0)

= ∑
γ[k:l]

P(Γ[k:l] = γ[k:l],Xγ[k:l] = y[k:l]|Γk−1 = k−1)

(a)
= ∑

γ[k:l]

P(Γ[k:l] = γ[k:l]− z,Xγ[k:l] = y[k:l]|Γk−1 = k−1− z)

(b)
= ∑

γ[k:l]

P(Γ[k:l] = γ[k:l]− z,Xγ[k:l]−z = y[k:l]|Γk−1 = k−1− z)

= P(Y[k:l] = y[k:l]|Γk−1 = k−1− z)

= P(Y[k:l] = y[k:l]|Zk−1 = z) ∀ z≤ k−1.
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Here, (a) follows from the shift-invariance of Γ (See Lemma 2.4) and (b) from the

stationarity of X . Therefore, we have

P(Y[k] = y[k]) = ∑
z∈Z

P(Z0 = z)P(Y[k] = y[k]|Z0 = z)

= P(Y[k] = y[k]|Z0 = 0)

= P(Y[k] = y[k]|Γ0 = 0)

= ∑
γ[k]

P(Γ[k] = γ[k],Xγ[k] = y[k]|Γ0 = 0)

(c)
= ∑

γ[k]

P(Γ[ j+1: j+k] = γ[k],Xγ[k] = y[k]|Γ j = 0)

= P(Y[ j+1: j+k] = y[k]|Z j = 0)

= P(Y[ j+1: j+k] = y[k]) ∀ j,k ∈ N

where (c) follows form the time-homogeneity of Γ (Lemma 2.4). The last equality

above follows from the observation made in the beginning of the proof.

As a consequence of the above result, the entropy rate H (Y ) of the output

process is well-defined [18].

2.2.2 Bounds on the Capacity of the DRC

The formulation of the DRC as a channel with states allows us to immediately

establish the following.

Proposition 2.8 (Simple bounds on C). For the DRC,

(1− pd)
(

1− h2(pr)
1− pr

)
−h2(pd)≤C ≤ 1− pd.

Proof. We can write

I(X[n];Y[Nn]) = I(X[n];Y[Nn],Z[Nn])− I(X[n];Z[Nn]|Y[Nn])

(a)
= I(X[n];Y[Nn]|Z[Nn])− I(X[n];Z[Nn]|Y[Nn])

(b)
= (1− pd)H(X[n])− I(X[n];Z[Nn]|Y[Nn]), (2.9)
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where (a) is true because X ⊥⊥ Z and (b) from the fact that the DRC, given the Z

process realization, is equivalent to a binary erasure channel (BEC) with erasure rate

pd. Then,

n(1− pd)≥ I(X[n];Y[Nn])≥ (1− pd)H(X[n])−H(Z[Nn]).

From Lemma 2.4 (iii), and since, for any finite n, we have the extra knowledge that

Zi ≥ i−n by definition of Nn, we can show that

H(Z[Nn])≤ E(Nn)
(

h2(pr)+
1− pr
1− pd

h2(pd)
)
.

Note that the extra information Zi ≥ i−n becomes tautological when n→ ∞, and hence

lim
n→∞

H(Z[Nn])

n
=
(

lim
n→∞

E(Nn)

n

)(
h2(pr)+

1− pr
1− pd

h2(pd)
)
.

From Lemma 2.3, and for independent uniformly distributed inputs, the claim follows.

Proposition 2.8 gives bounds on the capacity for (pd, pr) ∈ [0,1)2. Three special

cases of the DRC are of particular interest: the binary deletion channel (BDC) with

pd = p, pr = 0; the symmetric deletion-replication channel (SDRC) with pd = pr = p;

and the binary replication channel (BRC) with pd = 0, pr = p. Specializing Proposition

2.8 to these cases gives us the following results.

Corollary 2.9 (Bounds on C for special cases). We have

1− p−h2(p)≤CBDC ≤ 1− p,

1− p−2h2(p)≤CSDRC ≤ 1− p,

1− h2(p)
1− p

≤CBRC ≤ 1. �

Although the bounds in Corollary 2.9 have simple closed-form expressions with

well known information theoretic functions, they are loose compared to the best known

(analytical or numerical) bounds for the capacity of these channels. We can, however,

improve these bounds. We have from Equation (2.9),

I(X[n];Y[Nn]) = (1− pd)H(X[n])+ I(Y[Nn];Z[Nn])

−H(Z[Nn])+H(Z[Nn]|X[n],Y[Nn]). (2.10)
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Writing the entropy rate of the input process X as H (X ) and defining

Ĥ (Z ), lim
n→∞

H(Z[Nn])

n
, Ĥ (Y ), lim

n→∞

H(Y[Nn])

n
,

and Ĥ (Z |X ,Y ), lim
n→∞

H(Z[Nn]|X[n],Y[Nn])

n
,

from Lemma 2.4 and Equation (2.10), we can bound

C ≥ sup
X

(
(1− pd)H (X )+Ĥ (Z |X ,Y )

)
− 1− pd

1− pr
h2(pr)−h2(pd).

Lemma 2.10. Let Hn , 1
nH(Z[Nn]|X[n],Y[Nn]) for n ∈N. Then, for the sequence {Hn}∞

n=1,

Ĥ (Z |X ,Y ) = lim
n→∞

Hn = sup
n≥1

Hn.

Proof. From Equation (2.8), we can write

(i+ j)Hi+ j = H(Z[Ni+ j]|X[i+ j],Y[Ni+ j])

= H(Z[Ni]|X[i+ j],Y[Ni+ j])+H(Z[Ni+1:Ni+ j]|X[i+ j],Y[Ni+ j],Z[Ni])

≥ H(Z[Ni]|X[i+ j],Y[Ni+ j],Ni)+H(Z[Ni+1:Ni+ j]|X[i+ j],Y[Ni+ j],Z[Ni],Ni)

(a)
= H(Z[Ni]|X[i],Y[Ni])+H(Z[Ni+1:Ni+ j]|X[i+1:i+ j],Y[Ni+1:Ni+ j],ZNi)

= iHi + jH j.

In the above, the equality labeled (a) follows from the conditional independence of Z[Ni]

and Z[Ni+1:Ni+ j] on (X[i+1:i+ j],Y[Ni+1:Ni+ j]) and (X[i],Y[Ni],Z[Ni−1]) respectively, given Ni.

From Fekete’s Lemma [32, Appendix II], this superadditivity proves the claim.

The above result implies that if we could evaluate (or lower bound) Hn for some

n, that could be used to estimate a lower bound on C.

Proposition 2.11. For the DRC,

C ≥ sup
X

(
H (X )+

H(Z1|X ,Y )

1− pr

)
(1− pd)−

1− pd
1− pr

h2(pr)−h2(pd).

Proof. We have

Hn =
1
n

H(Z[Nn]|X[n],Y[Nn])

=
1
n
E
( Nn

∑
i=1

H(Zi|Z[i−1] = z[i−1],X[n],Y[Nn])
)

=
1
n
E
( Nn

∑
i=1

H(Zi|Zi−1 = zi−1,X[i−1−zi−1:n],Y[i:Nn])
)
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where the last equality follows from the conditional independence of Zi on Z[i−2] and

X[i−2−Zi−1] and Y[i−1], given Zi−1. From the time-homogeneity and shift-invariance of

the Z process (See Lemma 2.4), as n→ ∞, the summand in the above expression

H(Zi|Zi−1 = zi−1,X[i−1−zi−1:n],Y[i:Nn])→ H(Z1|Z0 = 0,XN,YN), H(Z1|X ,Y ).

Since E(Nn)
n → 1−pd

1−pr
, optimizing over input processes X gives us the desired result.

It is not easy to evaluate the bound in Proposition 2.11. However, we can further

lower bound the capacity by introducing some conditioning.

Lemma 2.12. The sequence of lower bounds {DX
i }∞

i=1, where

DX
i ,

(
H (X )+

H(Z1|Zi,X ,Y )

1− pr

)
(1− pd)−

1− pd
1− pr

h2(pr)−h2(pd), i ∈ N

is non-decreasing.

Proof. Since we have introduced extra conditioning, the DX
i s are lower bounds. We

have

H(Z1|Zi+1) = H(Z1,Zi|Zi+1)−H(Zi|Z1,Zi+1)

= H(Zi|Zi+1)+H(Z1|Z[i:i+1])−H(Zi|Z1,Zi+1)

(a)
= H(Zi|Zi+1)+H(Z1|Zi)−H(Zi|Z1,Zi+1)

= H(Z1|Zi)+ I(Z1;Zi|Zi+1)

≥ H(Z1|Zi)

where (a) follows from the Markovity of the Z process. Since conditioning on X and

Y preserves the above chain of inequalities, we have

H(Z1|Zi+1,X ,Y )≥ H(Z1|Zi,X ,Y ) ∀ i≥ 1.

Hence {DX
i }∞

i=1 is non-decreasing.

Optimizing DX
1 over stationary, ergodic, Markov input processes X gives the

bound in Proposition 2.8. Therefore, for increasing i, we have bounds better than the

one in Proposition 2.8. In particular, as i→ ∞, following the proof of Lemma 2.3 (iii),
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we can see that Zi
i →

pr−pd
1−pd

a.s., so that the knowledge of Zi becomes tautological in the

limit, and consequently,

sup
X

lim
i→∞

DX
i = sup

X
sup
i≥1

DX
i

gives us the bound in Proposition 2.11.

Alternatively, instead of bounding the information rate as in Proposition 2.11,

we can write the following as an immediate consequence of Equation (2.10) and an

argument similar to the one made in the proof of Proposition 2.11.

Proposition 2.13 (Information rates for the DRC). For the DRC,

C = sup
X

(
(1− pd)H (X )−Ĥ (Z |Y )+Ĥ (Z |X ,Y )

)
= (1− pd)

[
sup
X

(
H (X )+

H(Z1|X ,Y )−H(Z1|Y )

1− pr

)]
. �

Following arguments similar to the ones used in Lemma 2.12, we can show the

following.

Lemma 2.14. The sequence of lower bounds {RX
i }∞

i=1, where

RX
i , (1− pd)

(
H (X )+

H(Z1|Zi,X ,Y )−H(Z1|Y )

1− pr

)
is non-decreasing, and

C = sup
X

lim
i→∞

RX
i = sup

X
sup
i≥1

RX
i . �

The task of finding the rate-maximizing input distributions appears to be tough,

with no theoretical insights2 or efficient numerical algorithms. Often, to establish lower

bounds on achievable rates, special classes of input processes are considered, and we

will resort to a similar strategy here to obtain some expressions for the bounds we have

so far developed. The following section will consider special cases of the DRC wherein

there are either only deletions, i.e., the BDC, or only replications, i.e., the BRC. In a

subsequent section, the DRC will be studied. The bounds developed in the next section

are similar to the generic bounds developed thus far.

2A new result on BDC with small deletion probability [56] provides a partial answer to this question.
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2.3 Channels with Deletions or Replications

For the case of the BDC or the BRC, evaluating some of the bounds developed in

the previous section is somewhat easy, owing to the fact that the Z process is monotonic

in these two special cases, i.e., it is non-increasing or non-decreasing with increments of

at most one, respectively. This monotonicity in Z implies that the Γ process is strictly

increasing for the BDC and non-decreasing with increments of at most one for the BRC.

This translates to the output being a subsequence of the input sequence for the BDC and

vice versa for the BRC.

2.3.1 Information Rates for the BDC

In this subsection we estimate the information rates possible over the BDC, i.e.,

pd = p, pr = 0, when the input process is either independent and uniformly distributed

(i.u.d.) or when it is a first-order Markov process.

For the BDC with i.u.d. inputs, we can easily show that Y is also an i.u.d.

sequence. Consequently,

I(Y[Nn];Z[Nn])

n
→ 0 as n→ ∞

because the only information obtained from Y[Nn] about Z[Nn] is the length of the vector,

and this information vanishes in the limit as n→ ∞. Therefore, we have from Equation

(2.10) that the lower bound in Proposition 2.11 for i.u.d. inputs is actually the symmetric

information rate (SIR). We are hence interested in evaluating Diud
i as defined in Lemma

2.12. In particular, we have the SIR

Ciud
BDC = lim

i→∞
Diud

i = sup
i≥1

Diud
i . (2.11)

We start with some definitions and notation.

Definition 2.3 (Subsequence weights). We call a vector xA a subsequence of a vector

xB if A ⊂ B and the order of the elements in A is the same as the order in which those

elements appear in B. For ease of notation, we will write wy[i](x[ j]) to denote the number

of subsequences of x[ j] ∈ X j that are the same as y[i] ∈ Xi, which is referred to as the
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H
(i)
m = ∑

x[m+i−1]∈Xm+i−1

1
2m+i−1H(x[m+i−1]),

H(x[m+i−1]) = ∑
y[i−1]∈Yi−1

wy[i−1](x[m+i−1])(m+i−1
m

) h(x[m+i−1],y[i−1]), (2.12)

h(x[m+i−1],y[i−1]) =−
[ 0

∑
z=−m

1{x1−z=y1}
wy[2:i−1](x[2−z:m+i−1])

wy[i−1](x[m+i−1])

× log2

(
1{x1−z=y1}

wy[2:i−1](x[2−z:m+i−1])

wy[i−1](x[m+i−1])

)]
.

y[i]-subsequence weight of the vector x[ j]. We can write

wy[i](x[ j]) = ∑
S⊂[ j]:|S|=i

1{xS=y[i]}

where the elements of the set S are arranged in ascending order. Clearly, wy[i](x[ j]) = 0

for i > j. We define wλ (x[ j]) = 1 ∀ x[ j] ∈ X j for j ≥ 0. �

Definition 2.4 (Runs and run-lengths). For a binary sequence, a run is a maximal block

of contiguous 0s or 1s. The run-length of a run is the number of symbols in it. We

denote by r1(x[ j]) the length of the first run in the vector x[ j] ∈ X j, j ≥ 1. Clearly,

1≤ r1(x[ j])≤ |x[ j]|= j. �

We will denote by Zi
↑ and Zi

↓ the sets of non-decreasing and non-increasing

vectors of length i, respectively, for i≥ 1.

Theorem 2.15 (SIR for the BDC). For the BDC,

Ciud
BDC = 1− p−h2(p)+(1− p)

(
lim
i→∞

∑
m≥0

ψi,m pm(1− p)i
)
,

where ψi,m ,
(m+i−1

m

)
H
(i)
m , with H

(i)
m = H(Z1|Zi = −m,X ,Y ) is as given in Equation

(2.12).

Proof. For the BDC, we have from Lemma 2.12 that

Diud
i = 1− p−h2(p)+(1− p)H(Z1|Zi,X ,Y ).
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From Equation (2.11), we need to show that

H(Z1|Zi,X ,Y ) = ∑
m≥0

ψi,m pm(1− p)i.

We first note that H(Z1|Zi,X ,Y ) = H(Z1|Zi,X[i−Zi−1],Y[i−1]). Clearly, the above en-

tropy term is zero for i = 1. For i ≥ 2, given Zi = −m,X[m+i−1] = x[m+i−1] and Y[i−1] =

y[i−1], it is easy to see that

Z1 ∈ {z ∈ {0,−1, · · · ,−m} : x1−z = y1,wy[2:i−1](x[2−z:m+i−1])> 0}.

That is, Z1 = z only if x1−z and y1 match, and the subsequent part of the output vector

y[2:i−1] is a subsequence of the subsequent part of the input vector x[2−z:m+i−1]. Also, for

z[i−1] ∈ Zi−1
↓ (which, as noted earlier, is true for the BDC),

P(Z[i−1] = z[i−1],Zi =−m|X[m+i−1] = x[m+i−1],Y[i−1] = y[i−1])

= 1{x[i−1]−z[i−1]
=y[i−1]}p

i
tp

m
d ,

where pd = 1− pt = p, so that for 0≥ z≥−m,

P(Z1 = z,Zi =−m|X[m+i−1] = x[m+i−1],Y[i−1] = y[i−1])

= 1{x1−z=y1}p
i
tp

m
d ·wy[2:i−1](x[2−z:m+i−1]),

and

P(Zi =−m|X[m+i−1] = x[m+i−1],Y[i−1] = y[i−1]) = wy[i−1](x[m+i−1])pi
tp

m
d .

Hence, when wy[i−1](x[m+i−1])> 0,

P(Z1 = z|Zi =−m,X[m+i−1] = x[m+i−1],Y[i−1] = y[i−1])

=
1{x1−z=y1}wy[2:i−1](x[2−z1:m+i−1])pi

tp
m
d

wy[i−1](x[m+i−1])pi
tpm

d

=
1{x1−z=y1}wy[2:i−1](x[2−z1:m+i−1])

wy[i−1](x[m+i−1])
.

Since, with i.u.d. inputs, P(X[m+i−1] = x[m+i−1]|Zi =−m) = 2−(m+i−1) and

P(Y[i−1] = y[i−1]|X[m+i−1] = x[m+i−1],Zi =−m) =
wy[i−1](x[m+i−1])(m+i−1

m

) ,
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we have that H(Z1|Zi =−m,X ,Y ) = H
(i)
m as in Equation (2.12). By noting that

P(Zi =−m|Z0 = 0) =
(

m+ i−1
m

)
pm(1− p)i

from Equation (2.6) (with pd = p, pr = 0, pt = 1− p), we have the desired result.

Although evaluating H
(i)
m in general is hard since we are required to count subse-

quence weights of sequences, we can evaluate it in two specific cases: for every m when

i = 2 (when all but a single bit are deleted) and for all i when m = 1 (when only a single

bit is deleted).

Corollary 2.16 (Lower bound for Ciud
BDC). For the BDC,

Ciud
BDC ≥ Diud

2 ≥
4(1− p)3

(2− p)2 −h2(p)+(1− p)3
(

∑
m≥2

mpm−1 log2 m
)
.

Proof. It is easy to see that when i = 2, Equation (2.12) reduces to

H
(2)
m = H(Z1|Z2 =−m,X ,Y )

= log2(m+1)− 1
2m+1 ∑

x[m+1]

h2

(w(x[m+1])

m+1

)
= log2(m+1)− 1

2m+1

m+1

∑
j=0

(
m+1

j

)
h2

( j
m+1

)
, (2.13)

where w(·) denotes Hamming weight. Hence

Diud
2 = 1− p−h2(p)+(1− p)3

∑
m≥0

(m+1)H(2)
m . (2.14)

For numerically estimating H
(2)
m for large m, we can use the upper bound [81](

m+1
j

)
≤ 2(m+1)h2(

j
m+1 )

√
m+1

2π j(m+1− j)

to get a further lower bound3 on H
(2)
m . On the other hand, to obtain a looser analytic

lower bound, we can bound

1
2m+1

m+1

∑
j=0

(
m+1

j

)
h2

( j
m+1

)
≤ 1−2−m,

3We would like to get a lower bound on Diud
2 since this will be a lower bound for Ciud as well (cf.

Equation (2.11)).
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to get H(2)
m ≥ log2(m+1)−1+2−m. This gives us

Diud
2 ≥ (1− p)3

( 4
(2− p)2 + ∑

m≥0
(m+1)pm log2(m+1)

)
−h2(p).

This proves the claim. Unfortunately, it is not easy to evaluate the series

κ =
∞

∑
m=2

mpm−1 log2 m

on the right hand side of the above inequality. Consider the function

f (x) = xpx−1 lnx,

where ln(·) is the natural logarithm. The mth term in the series can then be written as

(log2 e) f (m),m≥ 2. It turns out that for

p < p∗ , exp
(
− 1+ ln2

2ln2

)
≈ 0.294832606,

we can lower bound the series κ by the integral

κ ≥ log2 e
∫

∞

2
f (x)dx = log2 e

∫
∞

2
xpx−1 lnxdx

=
log2 e
ln p

( p
ln p

(1+ ln2)−2p ln2− 1
p

Ei(2ln p)
)
,

where Ei(x) is the exponential integral function defined as

Ei(x) =
∫ x

−∞

et

t
dt,

which can be numerically evaluated to arbitrary accuracy through a Taylor series expan-

sion. Therefore, for p < p∗,

Diud
2 ≥

4(1− p)3

(2− p)2 −h2(p)+(1− p)3 log2 e
ln p

( p
ln p

(1+ ln2)−2p ln2− 1
p

Ei(2ln p)
)
.

With H
(2)
m as given in Equation (2.13), we can write

Diud
2 = 1+ p log2 p− p log2(2e)+O(p2)

for small p. This is loose compared to the bound obtained in [55]. This can be attributed

to the fact that we evaluated H(Z1|Z2,X ,Y ) rather than H(Z1|X ,Y ) to obtain Diud
2 .

In fact, this small-p series expansion of Diud
2 is no better than that of the lower bound

for the BDC in Corollary 2.9. We will improve this bound for small p in the next

subsection.
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Corollary 2.17 (Small deletion probability SIR). For the BDC,

Ciud
BDC = 1+ p log2 p−dp+O(p2)

where d≈ 1.154163765.

Proof. We can prove the claim by pursuing the other case where (2.12) is easy to eval-

uate. Instead of evaluating Diud
i exactly, we can further lower bound it as follows.

Diud
i = 1− p−h2(p)+(1− p)H(Z1|Zi,X ,Y )

= 1− p−h2(p)+(1− p)
(

∑
m≥0

P(Zi =−m)H(Z1|Zi =−m,X ,Y )
)

= 1− p−h2(p)+(1− p)
( j

∑
m=0

P(Zi =−m)H(Z1|Zi =−m,X ,Y )
)

, 1− p−h2(p)+(1− p)Ψ(i)
j

,D
(i)
j ∀ j ≥ 0, i≥ 1.

We are essentially writing a series expansion for Diud
i and lower bounding4 it by the jth

partial sum. Note that we can write

Ψ
(i)
j = Ψ

(i)
j−1 +P(Zi =− j)H(Z1|Zi =− j,X ,Y )

= Ψ
(i)
j−1 +ψi, j p j(1− p)i (2.15)

where ψi,m was defined in Theorem 2.15. Clearly, the sequence {Ψ(i)
j } j≥0 is non-

decreasing, and, in turn, so is the sequence {D(i)
j } j≥0. Since Ψ

(i)
0 = ψi,0 = 0, we have

Ψ
(i)
1 = p(1− p)iψi,1. Further, by definition,

Diud
i = lim

j→∞
D

(i)
j = sup

j≥0
D

(i)
j .

Thus for every j ≥ 0, we can write

Ciud
BDC = sup

i≥1
Diud

i = sup
i≥1

sup
j≥0

D
(i)
j

(a)
= sup

j≥0
sup
i≥1

D
(i)
j ≥ sup

i≥1
D

(i)
j ,Diud

j ,

where (a) is true since D
(i)
j ∈ [0,1] ∀ i≥ 1, j ≥ 0.

4All terms in the series expansion are non-negative.



28

From the channel model, P(X[i] = x[i]|Zi = −1) = 2−i since X ⊥⊥Z and X is

i.u.d., and

P(Y[i−1] = y[i−1]|X[i] = x[i],Zi =−1) =
wy[i−1](x[i])

i
.

For y[i−1] = x[i−1]−z[i−1]
for some realization z[i−1] ∈ Zi−1

↓ with the boundary conditions

z0 = 0 and zi =−1,

H(Z1|Zi =−1,X[i] = x[i],Y[i−1] = y[i−1]) = h2

( 1
r1(x[i])

)
1R1(x[i],y[i−1])

where R1(x[i],y[i−1]) is the event that the single deletion occurred in the first run of x[i]
to result in y[i−1]. To see this, let y[i−1] represent a received word resulting from a single

deletion upon transmission of x[i]. Consider the two mutually exclusive and exhaustive

cases in this scenario:

• The single deletion occurs in a run other than the first run of x[i]. In this case, there

is no ambiguity that Z1 = 0, and the first run of y[i−1] is either the same or larger

than5 that of x[i].

• The single deletion occurs in the first run of x[i].

– If r1(x[i]) = 1, there is no ambiguity that Z1 =−1.

– If r1(x[i])> 1, the deleted symbol could be, with equal likelihood, one of the

symbols comprising the first run of x[i]. The uncertainty in Z1 is h2

(
1

r1(x[i])

)
.

In both the above sub-cases, the uncertainty can be written as h2

(
1

r1(x[i])

)
.

Therefore,

ψi,1 = i∑
x[i]

1
2i ∑

y[i−1]

wy[i−1](x[i])

i
h2

( 1
r1(x[i])

)
1R1(x[i],y[i−1])

= i∑
x[i]

1
2i

r1(x[i])
i

h2

( 1
r1(x[i])

)
=

1
2i

i

∑
j=1

j2i− jh2

(1
j

)
+

1
2i h2

(1
i

)
=

i

∑
j=1

j
2 j h2

(1
j

)
+

1
2i h2

(1
i

)
=

1
2

i−2

∑
j=1

j
2 j log2 j+2

i
2i log2 i. (2.16)

5When the second run of x[i] disappears.
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We observe that ψi,1 is non-decreasing in i, and converges exponentially to the value

ψ1 ≈ 1.288531275. From (2.15) and (2.16), we have

D
(i)
1 = 1− p−h2(p)+ p(1− p)i+1

ψi,1

= 1+ p log2 p− p log2(2e)+ψi,1 p+O(p2).

Since Diud
i =D

(i)
1 +∑ j≥2 p j(1− p)i+1ψi, j, we have

Diud
i = 1+ p log2 p− p log2(2e)+ψi,1 p+O(p2).

Thus, from Equation (2.11)

Ciud
BDC = 1+ p log2 p−dp+O(p2) (2.17)

where d = log2(2e)−ψ1 ≈ 1.154163765. We note here that this is exactly the same

bound obtained in [55] with a completely different technique. Since this bound was

shown to be tight for small p, we have that the capacity of the BDC itself is given by the

above expression for small p.

Discussion : The advantage in the evaluation of the above bound was that, when we

restrict to the case of a single deletion, the ambiguity in the first channel state Z1 arises

only when r1(x[i]) > 1, in which case the uncertainty is exactly h2

(
1

r1(x[i])

)
. This, how-

ever, is not true when there are 2 or more deletions, wherein we will have to count

subsequence weights of sequences.

Similar bounds for symmetric first-order Markov input processes can be obtained as fol-

lows. Since the channel has no bias for the input symbols, we can confine our attention

to symmetric Markov inputs. Proceeding along the same lines as above, we can write

for P(Xi = x⊕1|Xi−1 = x) = α ∈ [0,1],

DM 1
2 =

[
max

α

(
h2(α)+(1− p)2

∑
m≥0

(m+1)pm`m(α)
)]

(1− p)−h2(p),

where

`m(α) = log2(m+1)−
m+1

∑
j=0

h2

( j
m+1

)
η(α, j,m+1),
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and η(·) is defined recursively as

η(α, j,m) = η0(α, j,m)+η1(α, j,m)

η0(α, j,m) = (1−α)η0(α, j,m−1)+αη1(α, j,m−1)

η1(α, j,m) = (1−α)η1(α, j−1,m−1)+αη0(α, j−1,m−1)

with ηk(α,km,m) = 1
2(1−α)m−1, ηk(α,(1−k)m,m) = 0 and ηk(α, j,m) = 0 ∀ j /∈ [m]

for k ∈ {0,1}.
Similarly, we can also evaluate

DM 1
1 =−h2(p)+(1− p)×

max
α

[
h2(α)+ p · sup

i≥1
(1− p)i

(
α

i

∑
j=1

j(1−α) j−1h2

(1
j

)
+ i(1−α)ih2

(1
i

))]
.

However, both DM 1
2 and DM 1

1 turn out to be better than their SIR counterparts by less

than 2%.

Discussion : Although first-order Markov inputs are expected to perform better than

i.u.d. inputs, we see that the bounds we obtained are almost the same in the two cases.

This is because we are considering two special cases, the first when i = 2 wherein all

but a single symbol were deleted, and the second when m = 1 wherein a single symbol

was deleted; and in these cases, a first-order Markov input is not significantly different

than i.u.d. inputs. �

Figure 2.1 plots the bounds on the capacity for CBDC.

2.3.2 Information Rates for the BRC

In this subsection, we will consider information rates for the BRC, i.e., pd =

0, pr = p. As in the previous subsection, we will consider i.u.d. and symmetric first-

order Markov inputs.

For the BRC, the Z process is non-decreasing. Moreover, when it increases, the

increment is at most 1 at each time instant. This simplifies the evaluation of information
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Figure 2.1: Bounds on the capacity of the BDC in bits per channel use as a function of
the deletion probability p. Diud

2 (cf. Equation (2.14)) is shown as the long-dashed blue
line and Ciud (or equivalently Diud

1 , cf. Corollary 2.17) with the O(p2) term dropped as
the solid red line (cf. Equation (2.17)). The best known numerical lower [58] and upper
bounds [35] are shown as black and white circles respectively. The best known lower
bound as p approaches 1 [86] is shown as the dash-dotted green line. The inset shows
the bounds for small p values where the red solid curve is known to be tight from [55].

rates and we will, in fact, be able to write exact expressions for the Markov-1 rates, as

will be shown shortly. In this case, even when the input is i.u.d., the term

I(Y[Nn];Z[Nn])

n
9 0 as n→ ∞

in the normalized version of Equation (2.10). Hence the expression for the information

rate in Proposition 2.13 will prove to be more useful in this subsection.

Theorem 2.18 (Markov-1 Rates for the BRC). For the BRC, the Markov-1 rate is given

as

CM 1
BRC = max

α

[
h2(α)+α ∑

l≥1

(
(1−α)

1− p
p

)l(
∑
k≥l

(
k
l

)
pkh2(

l
k
)
)

− p+(1−α)(1− p)
1− p

h2

( p
p+(1−α)(1− p)

)]
. (2.18)
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Proof. First we note that since Z1 ∈ {0,1}, we have

H(Z1|X ,Y ) = E[h2(P(Z1 = 0 | xN, yN))]

and H(Z1|Y ) = E[h2(P(Z1 = 0|yN))]. Further we have for the BRC that whenever

Yi 6= Yi−1, we must have Zi = Zi−1 or equivalently Γi = Γi−1 + 1. This means that Z1

is independent of subsequent runs of Y (and X ) given the first run of Y (and X )

since we can achieve synchronization at the end of each run. Thus we can write the

conditional probabilities P(Z1 = 0 | X , Y ) and P(Z1 = 0 | Y ) in terms of the

first runs of X and Y , i.e., P(Z1 = 0 | xN, yN) = P(Z1 = 0 | r1(xN), r1(yN)) and

P(Z1 = 0 | yN) = P(Z1 = 0 | r1(yN)). Note that we assume that Z0 = 0 so that

Y0 = X0. Thus, if x1 6= x0, then Z1 is 0 or 1 accordingly as y1 is not equal or equal to

y0, respectively. This means that there is no uncertainty in Z1 given the output sequence

(and the assumption that x0 = y0 = 0, which can be made without loss of generality).

Therefore, in estimating the entropy of Z1 given the output sequence, or the output and

the input sequences, we can confine our attention to those sequences xN and yN whose

first runs are comprised of zeros. We shall denote such runs as r0
1(·). For a first-order

Markov input process, we have, for l ≥ 0

P(r0
1(xN) = l) = (1−α)l

α,

and we can get from the definition of the BRC that

P(r0
1(yN) = k|r0

1(xN) = l) =
(

k
l

)
(1− p)l+1 pk−l

for k ≥ l. Consequently, we have

P(r0
1(yN) = k) =

k

∑
l=0

(1−α)l
α ·
(

k
l

)
(1− p)l+1 pk−l

= α(1− p)
(

p+(1−α)(1− p)
)k
.

Since Z1 = 0 excludes the first bit in the received sequence from being a replication, we

can easily obtain

P(Z1 = 0|r0
1(xN) = l,r0

1(yN) = k) =
l
k
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for k ≥ l +1{l=0}. For k ≥ 1,

P(Z1 = 0|r0
1(yN) = k) =

∑
k
l=0P(Z1 = 0,r0

1(xN) = l,r0
1(yN) = k)

P(r0
1(yN) = k)

=
∑

k
l=0(1−α)lα

(k
l

)
(1− p)l+1 pk−l( l

k)

(1− p)α
(

p+(1−α)(1− p)
)k

=
(1−α)(1− p)

p+(1−α)(1− p)
.

Therefore,

H(Z1|X ,Y ) = ∑
l≥0

(1−α)l
α

(
∑

k≥l+1{l=0}

(
k
l

)
(1− p)l+1 pk−lh2(

l
k
)
)

= α(1− p)∑
l≥1

(
(1−α)

1− p
p

)l(
∑
k≥l

(
k
l

)
pkh2(

l
k
)
)

and

H(Z1|Y ) = ∑
k≥1

α(1− p)
(

p+(1−α)(1− p)
)k

h2

( (1−α)(1− p)
p+(1−α)(1− p)

)
= (p+(1−α)(1− p))h2

( p
p+(1−α)(1− p)

)
.

Substituting these in Proposition 2.13 specialized to the BRC and first-order Markov

inputs, we have the desired result.

Corollary 2.19 (Lower bound for CM 1
BRC). For the BRC,

CM 1
BRC ≥ RM 1

2 = h2

( 1
(1− p)(4p +1)

)
+
( 2p

1− p

)((1− p)4p− p
4p +1

)
−
( 1

1− p

)( 4p

4p +1

)
h2

( p(4p +1)
4p

)
for 0≤ p≤ p∗ ≈ 0.734675821.

Proof. We have from Proposition 2.13 and Lemma 2.14 that

CM 1
BRC ≥ RM 1

2 ,max
α

[
h2(α)+

H(Z1|Z2,X ,Y )

1− p

− p+(1−α)(1− p)
1− p

h2

( p
p+(1−α)(1− p)

)]
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where we have used the expression for H(Z1|Y ) from the proof of Theorem 2.18. Ob-

serve that Z2 ∈ {0,1,2}, and among these possibilities, the only event wherein there

is an ambiguity in the value of Z1 is when Z2 = 1. Thus, we can see easily that

H(Z1|Z2,X ,Y ) = 2p(1− p)(1−α). Hence

RM 1
2 = max

α

[
h2(α)+2p(1−α)− p+(1−α)(1− p)

1− p
h2

( p
p+(1−α)(1− p)

)]
.

It can be shown that the optimal α in the above is given by

α
∗ =

1
(1− p)(22p +1)

.

Note that α∗ is always larger than 1
2 , and α∗ ≤ 1 for p ≤ p∗ where p∗ ≈ 0.734675821.

Plugging this back in the expression for RM 1
2 ends the proof.

Corollary 2.20 (Small replication probability SIR). For the BRC,

Ciud
BRC = 1+ p log2 p+rp+O(p2)

where r≈ 0.845836235.

Proof. From Proposition 2.13 and Lemma 2.14, for i.u.d. inputs,

Ciud
BRC = 1− H(Z1|Y )

1− p
+ sup

i≥1

H(Z1|Zi,X ,Y )

1− p

= 1− 1+ p
2(1− p)

h2

( 2p
1+ p

)
+ sup

i≥1

(
∑

i
m=0P(Zi = m)H(Z1|Zi = m,X ,Y )

)
1− p

= 1− 1+ p
2(1− p)

h2

( 2p
1+ p

)
+ sup

i≥1

( i

∑
m=0

(
i
m

)
pm(1− p)i−m−1

×H(Z1|Zi = m,X ,Y )
)

= 1− 1+ p
2(1− p)

h2

( 2p
1+ p

)
+ sup

i≥1

(
ip(1− p)i−2H(Z1|Zi = 1,X ,Y )

)
+O(p2),

where we have used the expression for H(Z1|Y ) from the proof of Theorem 2.18 for

α = 1
2 . The last equality is true since H(Z1|Zi = 0,X ,Y ) = 0.

As shown in the proof of Theorem 2.18, we can write

H(Z1|Zi = 1,X ,Y ) = E[h2(P(Z1 = 0|Zi = 1,r0
1(xN),r

0
1(yN)))].
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Further, there is no ambiguity in Z1 if the single replication does not occur in the first

run of xN. Therefore, for a first-order Markov input process,

H(Z1|Zi = 1,X ,Y ) = E[h2(P(Z1 = 0|Zi = 1,r0
1(xN) = l,r0

1(yN) = l +1))]

=
i−1

∑
l=1

(1−α)l
α

l +1
i

h2

( 1
l +1

)
+(1−α)ih2

(1
i

)
.

For α = 1
2 , we get

iH(Z1|Zi = 1,X ,Y ) =
1
2

i−2

∑
l=1

l
2l log2 l +2

i
2i log2 i = ψi,1

from Equation (2.16). Thus,

Ciud
BRC = 1− 1+ p

2(1− p)
h2

( 2p
1+ p

)
+ sup

i≥1

(
p(1− p)i−2

ψi,1

)
+O(p2),

= 1+ p log2 p+ log2

(2
e

)
p+ sup

i≥1

(
p(1− p)i−2

ψi,1

)
+O(p2),

= 1+ p log2 p+rp+O(p2),

where r = log2(
2
e ) +ψ1 = 2− d ≈ 0.845836235. As was the case for the BDC, we

expect this to be a tight bound for the capacity for small p.

Figure 2.2 plots these bounds. Note that the SIR and the Markov-1 rate are non-

convex in p. Further, it appears that the Markov-1 rate (and the SIR) are zero for some

values of p < 1. However, this behavior is due to the fact that the term

∑
k≥l

(
k
l

)
pkh2

( l
k

)
in Equation (2.18) is computed only up to a finite value of k (the curves in Figure 2.2

are, therefore, lower bounds for the Markov-1 rate and the SIR). For values of p close to

1, more terms in this sum need to be considered to get a better estimate of the achievable

rates.

Remark 2.2. It was expected that the capacity of a memoryless SEC was a convex

function of the channel parameters. Although this conjecture seems to be true for the

BDC [20], we see that this conjecture is false for the BRC. Note that the lower bounds

in [84] themselves lead one to question the conjecture (cf. Figure 2.2). However, the
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Figure 2.2: Lower bounds on the capacity of the BRC. The bound RM 1
2 from Corollary

2.19 is shown as the long-dashed blue line and the Markov-1 rate in Equation (2.18) is
shown as the solid red line. The SIR (α = 1

2 in Equation(2.18)) is the dash-dotted green
line. The numerical lower bounds in [84] are shown as black circles. The inset shows
the bounds for small replication probabilities.

Markov-1 rate for the BRC in Equation (2.18) settles this conjecture as being false for

the BRC. This is because if the capacity were convex in the replication probability, no

rate larger than (1− p) would be achievable, which is clearly not the case as can be seen

from Figure 2.2. This implies that, in general, in presence of synchronization errors, the

capacity is not convex in the channel parameters. In particular, it is possible that the

capacity for the BDC is non-convex as well.

2.4 Channels with Deletions and Replications

Although the bounds in the previous section provide us some idea of the achiev-

able information rates for the BDC and the BRC, they do not generalize in a straight-

forward manner for an SEC with both deletions and replications6. In order to obtain

6It is possible to obtain, albeit with a lot more effort than in the cases of the BDC or the BRC, the
lower bound DX

2 for a first-order Markov input process for a DRC. We shall omit this here.
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bounds when both deletions and replications are present, we take a different approach.

2.4.1 Approximate Non-Stationary Channels

We construct a sequence of channels that approximate the DRC Pn. To this end,

we fix m ∈ Z+ and let

Z(m)
i =

Zi, |Zi| ≤ m

m · sgn(Zi), |Zi|> m
(2.19)

for Zis given by the Z process defined in Section 2.2 with sgn : R 7→ {±1} defined as

sgn(x) =

1, x≥ 0

−1, x < 0.

We then define the channel model for the mth-approximating channel P†
n,m = (X,Y,P†

n,m)

as was done for Pn,

Y (m)
i = X

Γ
(m)
i

= X
i−Z(m)

i
, i ∈ [N(m)

n ]

where N(m)
n = sup{i≥ 0 : Γ

(m)
i ≤ n|Γ(m)

0 = 0}. It is clear that

n−m≤ N(m)
n ≤ n+m. (2.20)

The input and output alphabets of the channel P†
n,m are X and Y respectively,

same as those of Pn. The transition probability P†
n,m for the channel P†

n,m is defined as

in Equation (2.7), but with the channel states defined by the process Z (m) , {Z(m)
i }i≥1.

The transition probability of the Z (m) process itself is defined as that induced by Equa-

tions (2.19) and (2.6).

We now establish a few properties of the Z (m) process and the approximating

channels P†
n,m. We start with some properties of the state process Z (m) and the index

process Γ (m) that will be useful in proving subsequent results. The following property

establishes the non-stationarity of the sequence of channels {P†
n,m}m≥0.

Lemma 2.21 (Properties of Z (m)). The state process Z (m) is a finite, time - inhomo-

geneous Markov chain. Moreover, the boundary states {±m} are eventually absorbing

states, under the measure P, in the following two cases.
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(i) For m = o(n) when pd 6= pr.

(ii) For m = o(
√

n) when pd = pr.

Proof. From the definition of the Z (m) process in Equation (2.19), it is clear that Z(m)
i ∈

Z±m for every i ∈ N, and that it is a Markov chain. It is therefore a finite Markov chain.

The time-inhomogeneity follows by noting the transition probabilities between states,

which can be easily shown to be given as follows. For −m < j < m, i≥ 1,

P(Z(m)
i = k|Z(m)

i−1 = j) =



pr, k = j+1

(1− pr)(1− pd)p j−k
d , −m < k ≤ j

(1− pr)p j+m
d , k =−m

0, otherwise.

From the states {±m}, the transition probabilities are

P(Z(m)
i = k|Z(m)

i−1 =−m) =


1− prp(i,m), k =−m

prp(i,m), k =−m+1

0, otherwise,

where

p(i,m) =
P(Zi−1 =−m)

P(Zi−1 ≤−m)
,

and, for i such that P(Zi−1 ≥ m)> 0,

P(Z(m)
i = k|Z(m)

i−1 = m) =



1− pd(1− pr)p(i,m, pd), k = m

(1− pd)(1− pr)pm−k
d p(i,m, pd), −m < k < m

(1− pr)p2m
d p(i,m, pd), k =−m

0, otherwise,

where

p(i,m, p) =
∑

∞
l=0P(Zi−1 = m+ l)pl

P(Zi−1 ≥ m)
.

Note that it is only transitions from the boundary states {±m} that have time-dependent

probabilities.
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As was noted in the proofs of Lemmas 2.3 and 2.12, we can write the Z process

as Zn = ∑
n
i=1 Ξi where {Ξi}i≥1 is an i.i.d. process with

P(Ξ1 = ξ ) =


pr, ξ = 1

(1− pd)(1− pr)p−ξ

d , ∀ ξ ≤ 0

0, otherwise.

As noted before, from the SLLN, Zn
n → E[Ξ1] =

pr−pd
1−pd

, χ a.s. as n→ ∞. Let us write

Var[Ξ1] = E[Ξ2
1]−E[Ξ1]

2 =
pr+ pd+ p2

d−3pdpr
(1− pd)2 , ν

2.

From the central limit theorem (CLT), we have

P(Zn ≥ m) = P
(Zn−nχ√

nν
≥ m−nχ√

nν

)
n→∞−→ Q

(t
ν

)
,

P(Zn ≤−m) = P
(Zn−nχ√

nν
≤ −m−nχ√

nν

)
n→∞−→ Q

(b
ν

)
,

where

t, lim
n→∞

m−nχ√
n

and b, lim
n→∞

m+nχ√
n

with t,b ∈ R∪{±∞}, and

Q(x) =
1√
2π

∫
∞

x
e−

u2
2 du.

Writing m, limn→∞
m
n , we can say that when χ > 0,

P(Z(m)
n = m) = P(Zn ≥ m)

n→∞−→


1, m< χ

1
2 , m= χ

0, m> χ,

and when χ < 0,

P(Z(m)
n =−m) = P(Zn ≤−m)

n→∞−→


1, m<−χ

1
2 , m=−χ

0, m>−χ.
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When χ = 0, for m = o(
√

n),

P(Z(m)
n = m)

P(Z(m)
n =−m)

 n→∞−→ 1
2
.

Hence

P(Z(m)
n ∈ {±m}) n→∞−→ 1

for m = o(n) when χ 6= 0,

for m = o(
√

n) when χ = 0.

The result then follows by noting that χ is equal (or not equal) to 0 accordingly as pd is

equal (or not equal, respectively) to pr.

Lemma 2.22 (Coarseness of {Γ (m)}m≥0). For a fixed n ∈ N, for every m ∈ Z+,

{Γ[Nn]}∩ [n]⊂ {Γ
(m)

[N(m)
n ]
}∩ [n] a.s.

and

{Γ(m+1)

[N(m+1)
n ]
}∩ [n]⊂ {Γ(m)

[N(m)
n ]
}∩ [n] a.s.,

where {ΓU} denotes the set of elements of the random vector ΓU, i.e., where the random

variables are not repeated.

Proof. We first note that although Nn and N(m)
n might themselves differ, both sets {Γ[Nn]}

and {Γ(m)

[N(m)
n ]
} are subsets of [n]∪{0}. Therefore, assuming that all random variables Xi

where i /∈ [n] are constants (in particular, we assume that these random variables are all

equal to 0), we can consider the above sets of indices to be {Γ[N(m,n)]} and {Γ(m)
[N(m,n)]}

respectively, where we define

N(m,n), Nn∨N(m)
n = max{Nn,N

(m)
n }.

We have N(m,n)< ∞ a.s. for every n ∈ N,m ∈ Z+.

Let S+1 = inf{i > 0 : Zi+1 > m} and T+
1 = inf{i > 0 : ZS++1+i ≤ m}, where we

define inf /0 = ∞. Then, {S+1 + 1,S+1 + 2, · · · ,T+
1 } ∩ [N(m,n)] is the set of instances

where Zi and Z(m)
i differ for the first time as a result of Zi exceeding m. In this case,

ZS+1
=m,ZS+1 +1 =m+1 with probability 1 from the definition of the Z process. Further,

m+1≤ ZS+1 + j ≤m+ j, j = 1,2, · · · ,T+
1 a.s., implying for this range of js that S+1 −m≤



41

ΓS+1 + j ≤ S+1 + j−m−1 a.s.. But, by definition, Z(m)

S+1 + j
= m, j = 0,1, · · · ,T+

1 , and hence

Γ
(m)

S+1 + j
= S+1 + j−m. Thus, if we write U+

1 = {S+1 ,S+1 +1, · · · ,S+1 +T+
1 }, then we have

{ΓU+
1
} ⊂ {Γ(m)

U+
1
} a.s..

Since ZS+1
= Z(m)

S+1
= m, Γi ≤ ΓS+1

= S+1 −m ∀ i ≤ S+1 a.s. from Lemma 2.4. Similarly,

since ZS+1 +T+
1 +1 = Z(m)

S+1 +T+
1 +1
≤m, Γi≥ ΓS+1 +T+

1 +1≥ S+1 +T+
1 +1−m ∀ i≥ S+1 +T+

1 +1

a.s. from Lemma 2.4. It follows that the indices in {Γ(m)

U+
1
} \ {ΓU+

1
} cannot appear in

{ΓU} for any U⊂ [N(m,n)]\U+
1 . Using similar arguments, by recursively defining for

i≥ 2

S+i = inf{i > S+i−1 +T+
i−1 : Zi+1 > m},

T+
i = inf{i > 0 : ZS+i +1+i ≤ m},

and letting U+
i = {S+i ,S+i +1, · · · ,S+i +T+

i }, we can show that

{ΓU+
i
} ⊂ {Γ(m)

U+
i
} a.s.∀ i≥ 1.

Similarly, consider

S−0 = T−0 = 0,

S−i = inf{i > S−i−1 +T−i−1 : Zi <−m} and

T−i = inf{i > 0 : ZS−i +i ≥−m}, i≥ 1.

Then, ZS−i +T−i
= −m and ZS−i +T−i −1 = −m−1 with probability 1. Further, with proba-

bility 1, −m− j ≤ ZS−i +T−i − j ≤ −m− 1, j = 1,2, · · · ,T−i a.s., implying S−i +T−i − j+

m+1≤ ΓS−i +T−i − j ≤ S−i +T−i +m a.s.. By definition, Γ
(m)

S−i +T−i − j
= S−i +T−i − j+m, j =

0,1, · · · ,T−i , and consequently

{ΓU−i
} ⊂ {Γ(m)

U−i
} a.s.∀ i≥ 1

where U−i = {S−i ,S−i + 1, · · · ,S−i +T−i }. As before, the missing indices cannot appear

in ΓU for any U⊂ [N(m,n)]\U−i .

Therefore, writing U± =
⋃

i≥1(U+
i ∪U−i ), we have

{ΓU±} ⊂ {Γ(m)
U± } a.s.
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Let U0 , [N(m,n)]\U±. Since U± consists of all indices i where Γi and Γ
(m)
i differ, we

have from the above relation that almost surely,

{ΓU±}∪{ΓU0} ⊂ {Γ(m)
U± }∪{Γ

(m)

U0 }
⇒ {Γ[N(m,n)]} ⊂ {Γ(m)

[N(m.n)]}

⇒ {Γ[Nn]}∩ [n]⊂ {Γ
(m)

[N(m)
n ]
}∩ [n].

We are interested in the intersection in the last step above since only indices in the set

[n] are indices of non-constant random variables.

We can use an argument similar to the one above to show that ∀ m ∈ Z+,

{Γ(m+1)

[N(m+1)
n ]
}∩ [n]⊂ {Γ(m)

[N(m)
n ]
}∩ [n] a.s..

Thus, the process Γ (m) gets “coarser” as m is increased.The following is an im-

mediate consequence of this property.

Proposition 2.23. For every m ∈ Z+,

I(X[n];Y[Nn])≤ I(X[n];Y
(m)

[N(m)
n ]

) and I(X[n];Y
(m+1)

[N(m+1)
n ]

)≤ I(X[n];Y
(m)

[N(m)
n ]

).

Proof. We use the result from Lemma 2.22. Let us define

Sm =
⋂
n≥1

{ϑ ∈ S : {Γ[Nn]}∩ [n]⊂ {Γ
(m)

[N(m)
n ]
}∩ [n]}, and

Ŝm =
⋂
n≥1

{ϑ ∈ S : {Γ(m+1)

[N(m+1)
n ]
}∩ [n]⊂ {Γ(m)

[N(m)
n ]
}∩ [n]}

and let

S∗ =
⋂

m∈Z+

(Sm∩ Ŝm).

Clearly, P(S∗) = 1. Then, confining the expectations over the set S∗,

I(X[n];Y
(m)

[N(m)
n ]

)− I(X[n];Y[Nn]) = IS∗(X[n];X
Γ
(m)

[N(m)
n ]
\Γ[Nn]
|XΓ[Nn]

)≥ 0,

where IS∗(·) denotes the mutual information obtained after confining the expectations to

the set S∗. Similarly, we have I(X[n];Y
(m+1)

[N(m+1)
n ]

)≤ I(X[n];Y
(m)

[N(m)
n ]

).
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Intuitively, the above result is true because the “drift” between the input and the

output processes is bounded by m for the approximating channel P†
n,m, whereas it is

unbounded for the DRC Pn (or equivalently Qn). The result below, which gives a total

ordering of the sequence of channels {P†
n,m}m≥0 in terms of their mutual information

rates, follows immediately from Proposition 2.23.

Corollary 2.24 (Total Ordering of {P†
n,m}m≥0). For any n ∈N, the sequence {I†

n,m}m≥0,

where

I†
n,m ,

1
n

I(X[n];Y
(m)

[N(m)
n ]

),

is non-increasing. Since I†
n,m ∈ [0,1] ∀ n ∈ N and m ∈ Z+, limm→∞ I†

n,m exists and is

equal to infm≥0 I†
n,m. �

Proposition 2.25 (Information limits). For any n ∈ N, we have

In ,
1
n

I(X[n];Y[Nn]) = I†
n , lim

m→∞
↓ I†

n,m = inf
m≥0

I†
n,m.

Consequently, for a stationary, ergodic input process X ,

IX , lim
n→∞

In = inf
n≥1

In = I†
X , lim

n→∞
I†
n = inf

n≥1
I†
n ,

so that

C = sup
X

IX = sup
X

I†
X

for stationary, ergodic, Markov processes X .

Proof. The last equality in the first line is from Corollary 2.24. From Proposition 2.23,

we have In ≤ I†
n,m ∀ m ∈ Z+, from which In ≤ I†

n follows. The equality is true because

of the following. If we let Fn,m , σ({X[n],Y
(m)

[N(m)
n ]
}), the sigma-algebra generated by the

random variables {X[n],Y
(m)

[N(m)
n ]
}, then {Fn,m}m≥0 is a filtration [123, §10.1], i.e.,

Fn,m ⊂Fn,m+1 ∀ m≥ 0.

Thus, P(X[n],Y
(m)

[N(m)
n ]

) is the restriction of P to Fn,m. From [11, Theorem 2], we have that

In = I†
n .

The limit of In as n goes to infinity exists and is equal to the infimum of the

sequence from the subadditivity of the sequence {nIn}n≥1 and Fekete’s Lemma (cf. [32,

Appendix II]). The last claim made is true from Proposition 2.2.
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Corollary 2.26. For any n ∈ N, we have that

Cn = sup
P(X[n])

In =C†
n , sup

P(X[n])

I†
n

where Cn is as defined in Theorem 2.1. Therefore

C = lim
n→∞

Cn = inf
n≥1

Cn =C† , lim
n→∞

C†
n . �

Although {P†
n,m}m≥0 is a sequence of channels that approximate Pn, and have the

properties discussed so far in this subsection, they are not useful as finite-state channels

(FSCs), as shown below.

Lemma 2.27 (FSCs P†
n,m). For any m ∈ Z+, for a stationary, ergodic input process X ,

I†
X (m), lim

n→∞
I†
n,m = H (X )

so that

C†(m), sup
X

I†
X (m) = 1.

Proof. From Lemma 2.21, the states {±m} are eventually absorbing for any m ∈ Z+.

Hence, in the limit as n→ ∞, the channel only has a delay of ±m, and hence the result.

Thus, the approximating channels {P†
n,m}m≥0 do not provide useful bounds for

information rates achievable on the DRC Pn. We now attempt to obtain approximate

channels that are stationary and, as FSCs, can be used to estimate achievable rates for

the DRC.

2.4.2 Approximate Stationary Channels

Let m ∈ Z+. Fix n ∈ N. Consider the channel P?
n,m = (X,Y,P?

n,m) where

Y (m)
i = X

Γ
(m)
i

= X
i−Z(m)

i
, i ∈ [N(m)

n ]

with N(m)
n ,Γ

(m)

[N(m)
n ]

and Z(m)

[N(m)
n ]

as defined for the channel P†
n,m. The difference will be in

the underlying measure P〈m〉. Let the measure P〈m〉 be such that the Z (m) process is a

finite, time-homogeneous, first-order Markov chain with transition probabilities

P〈m〉(Z
(m)
i = k|Z(m)

i−1 = j) = P(Z(m)
i = k|Z(m)

i−1 = j)
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when −m < j < m,

P〈m〉(Z
(m)
i = k|Z(m)

i−1 =−m) =


1− pr, k =−m

pr, k =−m+1

0, otherwise,

and

P〈m〉(Z
(m)
i = k|Z(m)

i−1 = m) =



1− pd(1− pr), k = m

(1− pd)(1− pr)pm−k
d , −m < k < m

(1− pr)p2m
d , k =−m

0, otherwise.

Note that the measure P〈m〉 differs from P only for state paths that reach beyond the

states {±m}. The transition probabilities P?
n,m for the channel P?

n,m can now be defined

as in Equation (2.7), but under the measure P〈m〉. The stationarity of the channels P?
n,m

follows from the time-homogeneity of the Z (m) process.

Remark 2.3. Note that the sequence of sigma-algebras {Gm}m≥0 where Gm , σ(Z (m))

forms a filtration. The sequence of measures P〈m〉 as defined above seem to be defined

only on the corresponding sigma-algebras Gms for each m ∈ Z+. However, we can

extend these measures to the sigma-algebra B as follows.

We will first assume that S = SX ×SZ and that B = BX ×BZ with BX =

σ(X ) and BZ = σ(Z ), i.e., the space (S,B) is a product space. Since in our model

X ⊥⊥Z , there is no loss of generality in this assumption.

By defining the stationary transition probabilities P〈m〉(Z1|Z0) as in Section 2.4.2,

the measures P〈m〉 are well-defined over Gm = σ(Z (m)). Let (Z (m))−1(z), {ϑ ∈ SZ :

Z (m)(ϑ) = z} for z ∈ Z±m, and similarly Z −1(z) , {ϑ ∈ SZ : Z (ϑ) = z}. Then,

clearly

Z −1(z)⊂ (Z (m))−1(z) ∀ z ∈ Z±m

and

Z −1(z) ∈BZ ,(Z (m))−1(z) ∈ Gm ∀ z ∈ Z±m.

Then, we define

P〈m〉(Z
−1(z)) = P〈m〉((Z

(m))−1(z)) ∀ z ∈ Z±m. (2.21)
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This will imply that for every z ∈ Z±m,

P〈m〉((Z
(m))−1(z)\Z −1(z)) = 0.

By definition, we also have for z ∈ Z \Z±m that (Z (m))−1(z) = /0 so that the associ-

ated probability is zero under any measure P,P〈m〉. We can now consider the space

(SZ ,BZ ,P〈m〉) to be obtained from (SZ ,Gm,P〈m〉) along with the definition (2.21) and

subsequent completion [97, §2.6.19].

By now defining P〈m〉(X ) = P(X ) independent of m, we can extend the mea-

sure P〈m〉 to B = σ({X ,Z }) for each m ∈ Z+ as required. �

The lemma below shows that for a fixed m ∈ Z+, the FSC P?
n,m is an indecom-

posable FSC [39, §4.6].

Lemma 2.28 (P?
n,m Indecomposable). The FSC P?

n,m is indecomposable for every m ∈
Z+ for (pd, pr) ∈ (0,1)2.

Proof. Fix m ∈ Z+. We need to make a couple of modifications to put the channels

{P?
n,m}n≥1 in the parlance of discrete FSCs. First, we set

Ý (m)
i = Y (m)

i−m = X
i−m−Z(m)

i−m
= X

i−Ź(m)
i

for i ∈ [n].

Note that Ź(m)
i = m+Z(m)

i−m ∈ [0 : 2m], and hence the channel producing Ý (m)
[n] is “causal”.

Let the “state” W (m)
i of the channel P?

n,m at time i ∈ [n] be defined as

W (m)
i = (X[i−2m:i−1], Ź

(m)
i ) ∈ X2m× [0 : 2m],

where we set Xi = 0 for i /∈ [n]. Note that we need to redefine the state of the channel in

this case to keep the factorization

P〈m〉(Ý
(m)
i ,W (m)

i+1 |Xi,W
(m)
i ) = P〈m〉(Ý

(m)
i |Xi,W

(m)
i ) ·P〈m〉(W (m)

i+1 |Xi,W
(m)
i ).

Since Ź (m) is a finitely delayed, finitely shifted version of Z (m), and because

Z (m) is an irreducible, aperiodic Markov chain under the measure P〈m〉 [66, Chapter 1]

as long as (pd, pr) ∈ (0,1)2, so is Ź (m). In particular, we have that for every i≥ 2m,

min
z∈[0:2m]

P〈m〉(Ź
(m)
i = z|Ź(m)

0 = z′)> 0 ∀ z′ ∈ [0 : 2m].
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This implies that for i = 2m and x ∈ X, by choosing7 w = (x[0:2m−1],z) for any z ∈ [0 :

2m], we see that

P〈m〉(W
(m)
2m = w|X = x,W (m)

0 = w′)> 0

for every w′ ∈X2m× [0 : 2m]. From [39, Theorem 4.6.3], we have the desired result.

Remark 2.4. Note that in the description of the causal channel in the proof above, we

have discarded the part of the output Y (m)

[n−m+1:N(m)
n ]

by considering the causal output Ý (m)
[n] .

This will however not matter in the estimation of the information rate since

0≤ 1
n

I(X[n];Y
(m)

[N(m)
n ]

)− 1
n

I(X[n];Ý
(m)
[n] )≤ m

n
,

and since m ∈ Z+ is fixed, the rates are the same in the limit as n→ ∞. �

Corollary 2.29 (Capacity of FSC P?
n,m). For m∈Z+ and the sequence of FSCs {P?

n,m}n≥1

with (pd, pr) ∈ (0,1)2, the capacity is given by

C?(m) = lim
n→∞

sup
P〈m〉(X[n])

1
n

I(X[n];Y
(m)

[N(m)
n ]

), lim
n→∞

sup
P〈m〉(X[n])

I?n,m.

Proof. From Lemma 2.28 and Remark 2.4, we have C?(m) as defined in the statement

can be written as

C?(m) = lim
n→∞

sup
P〈m〉(X[n])

1
n

I(X[n];Ý
(m)
[n] ).

Now since

I(X[n];Ý
(m)
[n] ) = I(X[n];W

(m)
0 )+ I(X[n];Ý

(m)
[n] |W

(m)
0 )− I(X[n];W

(m)
0 |Ý (m)

[n] ),

we have

|I(X[n];Ý
(m)
[n] )− I(X[n];Ý

(m)
[n] |W

(m)
0 )| ≤ log2

(
(2m+1)|X|2m

)
= 2m log2 |X|+ log2(2m+1).

Therefore

C?(m) = lim
n→∞

sup
P〈m〉(X[n])

1
n

I(X[n];Ý
(m)
[n] |W

(m)
0 ).

From [39, Theorem 4.6.4], the quantity on the right hand side of the above equality

exists and is the capacity of the indecomposable FSCs {P?
n,m}n≥1.

7Set x0 = 0 by convention.
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Corollary 2.30 (Markov Capacity of P?
n,m). For the FSCs {P?

n,m}n≥1, the capacity C?(m)

can be written [32] as

C?(m) = sup
X

lim
n→∞

1
n

I(X[n];Y
(m)

[N(m)
n ]

) = sup
X

lim
n→∞

I?n,m , sup
X

I?X (m)

where the supremum is over all stationary, ergodic input sources X . Further, since the

FSCs are indecomposable, we have [16]

C?(m) = sup
XM

lim
n→∞

1
n

I(X[n];Y
(m)

[N(m)
n ]

) = sup
XM

I?XM
(m)

where XM denotes stationary, ergodic, Markov sources over the alphabet X. �

From Lemma 2.28, since {P?
n,m}n≥1 are indecomposable FSCs, we have from

[14] that

−1
n

log2P〈m〉(X[n],Y
(m)

[N(m)
n ]

)→ lim
n→∞

H(X[n],Y
(m)

[N(m)
n ]

)

n
= Ĥ (X ,Y (m)),

−1
n

log2P〈m〉(Y
(m)

[N(m)
n ]

)→ lim
n→∞

H(Y (m)

[N(m)
n ]

)

n
= Ĥ (Y (m)),

as n → ∞ a.s., where the entropies are calculated with respect to the measure P〈m〉.

Therefore

I?X (m) = H (X )+Ĥ (Y (m))−Ĥ (X ,Y (m))

can be estimated numerically using the forward passes of the BCJR algorithm [10] to

estimate Ĥ (X ,Y (m)) and Ĥ (Y (m)), as in [7, 94]. Moreover, optimizing Markov

input sources numerically is possible [57, 116] for these FSCs.

In Figure 2.3, we plot the SIRs, C?
iud(m), for the indecomposable FSCs {P?

n,m}n≥1

obtained through numerical simulations for 1 ≤ m ≤ 8 and pd = pr = p ∈ [0, 1
2 ]. The

value of n used for the estimation was 5×105. The error in estimation is consequently

upper bounded by 0.15%.

A couple of observations are worthwhile noting. First, the SIRs {C?
iud(m)}m≥0

are non-increasing. This hints at a total ordering of the FSCs {P?
n,m}m≥0 with respect

to the information rates similar to what we had in Corollary 2.24. Second, we see that

for small values of p, the SIRs get bunched up as m increases, i.e., the SIRs C?
iud(m)
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Figure 2.3: SIR estimates for the FSCs {P?
n,m}n≥1 with pd = pr = p∈ [0, 1

2 ] for different
m values are shown in solid lines. The lower bound on the capacity of the SDRC from
Corollary 2.9 is also shown as the dashed line.

converge quickly, so that we have a good estimate of

C?
iud(∞), lim

m→∞
C?

iud(m)

for p close to 0.

Proposition 2.31. For n ∈ N, we have

I?n , liminf
m→∞

I?n,m = In.

Thus,

C = sup
X

inf
n≥1

liminf
m→∞

I?n,m.

Proof. For a fixed n ∈N, since we have that P〈m〉(X[n],Y
(m)

[N(m)
n ]

)→ P(X[n],Y[Nn]) as m→∞

for every ϑ ∈ S, P〈m〉(X[n],Y
(m)

[N(m)
n ]

) converges to P(X[n],Y[Nn]) in total variation as m→∞.

Consequently, from [26, Corollary 1′], we have the desired result.
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Remark 2.5. We conjecture that I?n,m→ I?n = In as m→ ∞. From [26, Corollary 1′], one

needs to show uniform integrability of the information densities i(X[n],Y
(m)

[N(m)
n ]

) for the

conjecture to be true. Alternatively, if the sequence of channels {P?
n,m}m≥0 is totally

ordered for every n ∈ N with respect to the mutual information rates, as was the case

for the sequence {P†
n,m}m≥0 (cf. Corollary 2.24), i.e., if {I?n,m}m≥0 is a non-increasing

sequence for every n ∈ N, then we know that

lim
m→∞

I?n,m = I?n ,

and from Proposition 2.31, I?n,m ↓ In follows. Unfortunately, we are not able to show

this monotonicity in the sequence {I?n,m}m≥0 as we argued in the case of the sequence

{I†
n,m}m≥0. Although the coarseness property of the Γ (m) process (cf. Lemma 2.22) still

holds, the different measures P〈m〉 being used for each m ∈ Z+ do not allow us to gen-

eralize the result of Corollary 2.24. However, Figure 2.3 provides sufficient empirical

evidence for this monotonicity conjecture. �

2.4.3 Approximating Channels for the SDRC

In this subsection, we consider the SDRC, i.e., the case when pd = pr = p ∈
[0,1). This channel is of interest since in practice, systems prone to mis-synchronization

are usually not biased to produce more deletions or replications. For the case of the

SDRC, we can fix m to be a sublinear function of n satisfying a simple condition and

define a sequence of approximating channels whose information rates satisfy a relation

similar to Proposition 2.31.

Lemma 2.32. For the SDRC, for every n ∈ N, let m ∈ N. Then,

P〈m〉
( N(m)

nmax
i=1
|Zi| ≥ m

)
= P

( N(m)
nmax

i=1
|Zi| ≥ m

)
= O

(n+m
m2

)
. (2.22)

Proof. As noted in the proof of Lemma 2.21, we have for every n ∈ N that Zn is the nth

partial sum of the i.i.d. process {Ξi}i≥1. For the SDRC, we have E[Ξ1] = χ = 0 and

Var[Ξ1] = ν2 = 2p
1−p < ∞ since p ∈ [0,1).

Let Sn = σ({Zn}) ⊂B, the sigma-algebra generated by Zn, for every n ∈ N.

Clearly, Sn = σ({Ξ[n]}) so that {Sn}n≥1 is a filtration, and Zn ∈Sn by definition. Let
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Sn ↑S ⊂B as n→ ∞. Then for every n ∈ N, Zn ∈ L2(S,B,P) since

E[|Zn|2] = E[Z2
n ] = E

[( n

∑
i=1

Ξi

)2]
=

n

∑
i=1

E[Ξ2
i ]+

n

∑
i=1

n

∑
j=1, j 6=i

E[ΞiΞ j]

= n ·Var[Ξ1]+
n

∑
i=1

n

∑
j=1, j 6=i

E[Ξi]E[Ξ j] = n
2p

1− p
< ∞.

Further, E[Zn|Sn−1] = E[Zn−1 +Ξn|Sn−1] = Zn−1. Therefore, {Zn,Sn}n≥1 is a martin-

gale under the measure P. Consequently, {|Zn|,Sn}n≥1 is a submartingale.

Since |Zn| ∈ L2(S,B,P), from Doob’s submartingale inequality [123, §14.6], we

have

P(
n

max
i=1
|Zi| ≥ m)≤ E[|Zn|2]

m2 =
( 2p

1− p

) n
m2 .

We have from Equation (2.20) that N(m)
n ≤ n+m. The result then follows by noting that

P
( N(m)

nmax
i=1
|Zi| ≥ m

)
≤ P(

n+m
max
i=1
|Zi| ≥ m)

and the above result. The bound with respect to the measure P〈m〉 is true because

P〈m〉
(

ϑ ∈ S :
N(m)

n (ϑ)
max
i=1
|Zi(ϑ)| ≥ m

)
= P

(
ϑ ∈ S :

N(m)
n (ϑ)
max
i=1
|Zi(ϑ)| ≥ m

)
from the definition of the measure P〈m〉 (See Section 2.4.2 and Remark 2.3).

The significance of the above result can be seen by noticing that, for the SDRC,

the probability (under measure P or P〈m〉) with which the approximating channels in-

troduced in the previous two subsections differ from the actual channel can be made

arbitrarily small by setting m(n) = ω(
√

n), i.e., limn→∞
m(n)√

n = ∞, and choosing a large

enough n. For the so-chosen sequence of approximating channels, we can conclude that

the limiting channel characterizes the SDRC from the following result.

Proposition 2.33 (Approximating SDRC). For the SDRC,

IX = lim
n→∞

In = liminf
n→∞

I?n,m(n)

where m(n) = ω(
√

n), for stationary, ergodic input process X . �

We will need the following Lemma.
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Lemma 2.34. Let (T,A ) be a measurable space, and let {Qn}n≥1, Q all be probability

measures on this space. Suppose that

(i) For every n≥ 1, there is a set Bn ∈A such that Qn(A) = Q(A) for every A⊂ Bn,

A ∈A .

(ii) Q(Bn)→ 1 as n→ ∞.

Then the measures Qn converge in total variation to Q, i.e., Qn
tv−→ Q as n→ ∞.

Proof. From (ii), for every ε > 0, there exists n′(ε) ∈ N such that

Q(Bn)≥ 1− ε ∀ n≥ n′(ε).

From (i), Qn(A∩Bn) = Q(A∩Bn) for every n≥ 1, A ∈A . Therefore, for every ε > 0,

||Qn−Q||= 2 sup
A∈A
|Qn(A)−Q(A)|

= 2 sup
A∈A
|Qn(A∩BC

n )−Q(A∩BC
n )|

≤ 2ε ∀ n≥ n′(ε).

Hence Qn
tv−→ Q as n→ ∞.

Proof of Proposition 2.33. Note that

Dn,m ,
{

ϑ ∈ S :
N(m)

n (ϑ)
max
i=1
|Zi(ϑ)| ≥ m

}
is the subset of S in B where P〈m〉(X[n],Y

(m)

[N(m)
n ]

) differs from P(X[n],Y[Nn]). From Lemma

2.32, we have

P〈m(n)〉(Dn,m(n)) = P(Dn,m(n))→ 0

as n→ ∞, whenever m(n) = ω(
√

n). Consider henceforth that m(n) satisfies this con-

dition. In Lemma 2.34 above, set T = S, A = B, Qn = P〈m(n)〉 and Q = P. Note that

although P〈m(n)〉 is only defined on Fn,m(n) (cf. Proposition 2.25), we can extend it to

B such that it agrees with the measure P on every subset of Bn for each n≥ 1. Then for

each n ∈ N, we see that by setting Bn = DC
n,m(n), both conditions (i) and (ii) in Lemma

2.34 are satisfied. From this and [26, Corollary 1′], we have the desired result.
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The channels {P?
n,m}m≥0 give us a way to approach the problems of optimizing

input distributions as well as designing coding schemes for the SDRC. We can optimize

the inputs of P?
n,m, starting with small values of m, under some input assumptions, e.g.,

for fixed-order Markov inputs [57, 116]. Note that the numerical estimation of I?n,m
is possible (as described in the previous subsection) only when m < n, since setting

the channels as indecomposable FSCs (cf. Lemma 2.28) is possible only in this case.

Moreover, for a good estimate of the information rate, we will require m� n. For the

SDRC, Proposition 2.33 allows us to consider some P?
n,m(n), where m(n) is both ω(

√
n)

as well as o(n), for which a good estimate of the information rate I?n,m(n) can be obtained.

Note that due to the lack of a result analogous to Lemma 2.32 in the case of a general

DRC for m < n, generalizing these arguments when pd 6= pr is not completely justified.

Starting with some small values of m, we expect that the information rates and

optimal distributions quickly converge (in m), giving us a way to characterize optimal

inputs for the SDRC Pn. For small values of p, as in Figure 2.3, the information rates

for the SDRC can be characterized numerically for moderate values of m (much smaller

than ω(
√

n) guaranteed by Lemma 2.32). For optimizing the input distribution for an

approximation P?
n,m, we can start with optimizing inputs that are µ th-order Markov pro-

cesses, for µ ≥ 1. As was observed8 in [117], the convergence of optimal information

rates as a function of the order µ of the input Markov process is expected to be rapid.

The authors in [117] hypothesized that this convergence was exponential in µ . Similar

“diminishing returns” on increasing µ has also been observed by others [57, 116]. We

think that a similar rapid convergence of I?n,m(X
∗

M µ
) to Cn(X ∗

M µ
) also holds for m,

where I?n,m(X
∗

M µ
) is the optimal information rate achieved by a µ th-order Markov input

process on the FSC P?
n,m with pd = pr = p, and Cn(X ∗

M µ
) is the optimal information

rate achieved by a µ th-order Markov input process on the corresponding SDRC Pn.

Apart from the above advantage of facilitating numerical estimation of infor-

mation rates, the approximating channels P?
n,m have another important advantage. This

is that since they have immediate factor-graph interpretations, there is a possibility of

constructing sparse graph-based coding schemes and decoding over the joint graphical

model representing the channels as well as the codes, as was done for joint detection and

8Although the validity of the bounds in [117] is unclear (See, e.g., [28]), the rapid convergence of
information rates as a function of the order µ of the input Markov process is expected to be true.
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decoding of LDPC codes on partial response channels [65]. Instead of trying to build

codes for the SDRC Pn, the problem can be reduced to designing good codes and effi-

cient decoding schemes for the FSCs P?
n,m. For small values of the deletion-replication

probability p, we can expect these codes to perform well for the SDRC Pn as well.

2.5 Generalizations

In this section, we discuss different scenarios that can be modeled using the

channel model introduced in Section 2.2 with appropriate modifications. Wherever pos-

sible, methods for information theoretic analysis for these cases through generalizations

of the channel model presented here are highlighted.

2.5.1 Channels introducing Random Insertions

The channel model of Equation (2.5) allows us to handle deletions as well as

replications. However, the class of SECs that introduce random insertions cannot be

written in the form of Equation (2.5). A suitable modification for our model in this

scenario is to let

Yi = Xi−Zi⊕1{Zi=Zi−1+1}Vi,

where X = Y = V = {0,1}, and V = {Vi}i≥1 is a Bernoulli sequence with parameter

f (for “flip”). This means that the probability of a random insertion is f pr and that

of a replication is (1− f )pr. Note that this can be easily generalized to any finite sets

X, and arbitrary sets Y and V (with an appropriate notion of the addition operation

“⊕”). Analysis of this channel is, however, more complicated than analyzing the DRC

itself due to the cascaded additive noise channel which also depends on the “shared”

state process Z . However, when the channel produces deletions, replications, random

insertions as well as substitutions, we can write

Yi = Xi−Zi⊕Vi,

which is just a cascade of the DRC and an additive noise channel. In the binary setting,

this corresponds to a channel that deletes a bit x with probability pd, or inserts a sequence
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y with probability (1− pd)(1− pr)p|y|−1
r f w(y+x). This implies that the substitution error

probability for a bit is given by (1− pd)(1− pr) f .

The capacity (or the information rate achievable by a given input process) and

coding for a cascade of binary, memoryless channels without synchronization errors

has been studied in, e.g., [21, 49, 104, 105]. Some lower bounds on the capacity of a

cascade of a BDC and an additive noise channel were given in [34, 96]. The possibility

of extending these results to general memoryless SECs using the model presented here

remains a problem worth exploring.

2.5.2 SECs with Memory

An SEC with memory is defined as in Definition 2.1, with the only difference be-

ing that the transition probabilities qn(y[n]|x[n]) do not factorize as products of individual

probabilities q(yi|xi). As an example, one could think of an SEC where the deletion of a

symbol influences the likelihood of the following symbol being deleted, i.e., a channel

that introduces a burst of deletions. Similarly, channels that introduce a limited number

of deletions in every input subsequence of a certain length could also occur in prac-

tice. These have been studied under the name of segmented deletion channels [74,119].

Note that the definition of the segmented deletion channel is slightly different in the

references cited, where it is assumed that the input is divided into blocks of a certain

length and at most one deletion occurs within each block. Our definition is more gen-

eral and corresponds closer to reality, e.g., in the case of a frequency offset between the

transmitter and receiver clocks.

The channel model in Equation (2.5) generalizes readily to the case of DRC with

memory. Consider the Z process to be a non-increasing (so that only deletions occur),

time-homogeneous, shift-invariant Markov process of order z≥ 2 such that

P(Zi = zi|Z[i−z:i−1] = z[i−z:i−1])> 0

only for z[i−z:i−1] such that zi−z = zi−z+1 = · · · = zi− j ≥ zi− j+1 = · · · = zi−1 for some

1 ≤ j ≤ z, and zi− j− zi− j+1 ≤ 1. Then, clearly at most one deletion occurs for every

input subsequence of length z. The model in Equation (2.5) will then correspond to

a segmented deletion channel where no more than 1 deletion occurs for every z input
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symbols. Similarly, we can model other DRC with memory by suitably considering the

Z process to be a Markov process of some order with specific transitions occurring with

non-zero probability.

Although we have let z≥ 2, not all second-order Markov processes Z result in

SECs with memory. One example worth noting is when the Z process is non-decreasing

with increments of at most 1, and is such that two consecutive increments occur with

probability 0. This results in a replication channel where each symbol is transmitted

noiselessly and possibly replicated once—this is exactly the elementary sticky channel

introduced in [84], which is a memoryless SEC. We will refer to such channels that intro-

duce a bounded number of inserted symbols per input symbol as bounded, memoryless

SECs. This particular channel has also been studied in [96], where some analytical lower

bounds on the capacity were given. Another example where z= 2 does not result in an

SEC with memory but is a bounded, memoryless SEC is Gallager’s model [37] of the

insertion-deletion channel. Some analytical lower bounds for the capacity of this chan-

nel (without deletions) were given in [96]. Achievable rates for a bounded, memoryless

SEC were studied in [115], and those for a cascade of a bounded, memoryless SEC with

an inter-symbol interference (ISI) channel in [43]. Some bounds on the capacity of a

bounded, memoryless SEC with substitution errors were given in [36].

Note that the channel coding theorem for SECs with memory has not been es-

tablished. The various works on the “capacity” of such channels is an indication of such

SECs occurring widely in practice. Establishing the channel coding theorem for SECs

with memory is, therefore, important both for the theory and in practice. For SECs with

memory, since the channel model (2.5) will have the transition probabilities that still

factorize as in Equation (2.7) (with the channel state transition probabilities replaced

by the higher-order transition probabilities), it is more amenable to analysis and could

potentially be used to establish the channel coding theorem.

2.5.3 Jitter, Bit-shift and Grain-error Channels

Channels that consider mis-synchronization due to jitter or bit-shifts have been

studied in the context of magnetic recording and constrained coding [6, 9, 101]. These

represent a variant of the general model of the DRC presented here. In particular, they
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are characterized by a Z process where each valid state path z ∈ Z has increments and

decrements of size at most 1, and the transition probabilities are data-dependent. The

zeros and ones in the input correspond to the absence and presence, respectively, of

a transition in the signal. Thus, the presence of a transition cannot be deleted, i.e., a

1 in the input stream cannot be deleted, whereas the 0s can be deleted or replicated

(at most once). The authors of [101] gave bounds on the capacity and the zero-error

capacity of bit-shift channels and also presented some bounds on achievable rates over a

concatenation of the bit-shift channel with a binary symmetric channel. Similar analysis

was performed in [9] for discrete and continuous channels with timing jitter. Numerical

upper and lower bounds on the capacity of a binary channel with jitter where transitions

could “cancel” each other were given in [6].

Another class of channels that resemble these channels are the “paired” insertion-

deletion channels studied in the context of bit-patterned media recording [50], which

will also be the application studied in the next chapter. Here, the channel is similar to

the approximating FSC given in Section 2.4.2 with m = 1. In [50], the authors give

bounds on the capacity and the zero-error capacity of the channel for varying sizes of

the state space. A further specialization of this channel is the one-dimensional granular

media recording channel. This has also been studied in [82], where some bounds on

capacity and coding constructions have been proposed.

2.5.4 Permuting and Trapdoor Channels

The trapdoor channel introduced by Blackwell (See [8, §7.1]) is a channel where

the input stream is fed to a buffer at the same rate as symbols from within the buffer

are randomly drawn as the output stream. Using our model, we can define the trapdoor

channel as follows. The multiset of indices of the buffer contents at time i≥ 1 is denoted

as Bi = {β1, · · · ,βb}, which is of size b. We initialize

B1 = {0, · · · ,0︸ ︷︷ ︸
b−1

,1}

and define the output at the ith instant as Yi = XΓi for i∈ [n], where Γi has the distribution

P(Γi = β j) =
1
b ,1≤ j ≤ b. The buffer multiset is updated as Bi+1 = Bi \{Γi}∪{i+1}.
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In this case, a further simplification of the channel model might be more useful since the

channel depends not on the indices of the inputs in the buffer, but on the type [18, §12.1]

of the buffer contents at any time. This channel was generalized to define permuting

channels in [12].

Although the trapdoor channel is described easily, its capacity, even in the sim-

plest case of |X| = 2 and b = 2, has been an open problem ever since its introduction.

In [1], the authors considered coding schemes for certain non-probabilistic models of

the trapdoor channel. The capacity of the probabilistic trapdoor channel when |X| = 2

and b = 2 is known to satisfy [93]

1
2
<C(|X|= 2,b = 2)≤ log2

1+
√

5
2

≈ 0.694241914.

It is worthwhile to explore the possibility of obtaining better bounds on the capacity of

the trapdoor and permuting channels using the model presented here.

2.5.5 Molecular and Chemical Channels

A simple model for molecular or chemical channels is as follows. The channel

state Zi at time instant i is a random variable on the alphabet {0}∪ [m] and represents

the delay introduced to the input at time i. The output at time i is given as

Yi =
m

∑
z=0

Xi−z1{Zi−z=z},

i.e., the output is the sum of all the channel inputs that arrive at time i. This channel was

studied in [19] as a delay selector channel and a lower bound on the capacity was given

assuming that the state process is i.i.d.. In general, the state process can be modeled as

a Markov process, and the channel might be amenable to a similar analysis as presented

here.

2.5.6 Timing Channels

There is a link between discrete timing channels [4], where information is com-

municated not only in the signals but also in the timing of the signals and the randomness

is in the arrival times of the signals, and “good” transmission sequences for SECs. This



59

is in the sense that a information-bearing transmission sequence for an SEC must not

only be able to carry information within the sequence, but also contain information in

the ordering of the symbols within the sequence, such that even in the presence of syn-

chronization errors, the information about the symbol ordering is not completely lost.

That is to say that the sequences X[n] must be such that under limited number of synchro-

nization errors, the received sequence Y[Nn] must convey adequate information about the

state sequence Z[Nn]. Therefore, it might be of importance to study whether methods of

coding over timing can be used to obtain efficient codes and decoding schemes for the

SECs.

2.6 Conclusions

We introduced a new channel model for a class of SECs which formulated the

SEC as a channel with states. This allowed us to obtain analytical lower bounds for the

capacity of SECs with only deletions or only replications. For the case of the BDC, we

were able to write the SIR in terms of subsequence weights of binary sequences. Subse-

quence weights are known to be a quantity of interest in the maximum-likelihood decod-

ing of sequences for the BDC (cf. Equation (2.12)). Moreover, it is clear from Equation

(2.12) that the dependence of information rates for the BDC on the input statistics only

appears in the term H
(i)
m , whereas the subsequence weights influence H(x) independently

of the input statistics. Thus, our result establishes a natural link between the capacity of

the BDC and the metric relevant for ML decoding. We were also able to obtain lower

bounds on the capacity of the BDC that are known to be tight for small deletion prob-

abilities. For the BRC, we were able to exactly characterize the Markov-1 rate, which

is the first analytic lower bound on the capacity of the BRC. In doing so, we were able

to disprove the conjecture that the capacity of SECs is a convex function of the channel

parameters, at least in the case of the BRC.

For the case of an SEC with deletions and replications, we were able to provide

a sequence of approximating FSCs that are totally ordered with respect to the mutual

information rates achievable, and therefore, with respect to capacities. These approxi-

mating FSCs were shown to be such that the mutual information rate achievable for the
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SEC was equal to the limit of the mutual information rates achievable for the sequence

of FSCs. To obtain numerical estimates of achievable rates on the DRC, we defined an-

other sequence of indecomposable FSCs. Computing the mutual information rates for

this sequence of FSCs allows us to relate the mutual information rate for the DRC to the

limiting value of the mutual information rates of the sequence. For the particular case

of the SDRC, we were able to show a stronger uniformity in the convergence of these

mutual information rates.

The formulation in this work not only allows us to get estimates of mutual in-

formation rates achievable on SECs but also gives some insight into possible code con-

structions and decoding schemes for such channels. The approximations introduced for

the DRC gives us a natural way to reduce these problems. One would therefore ob-

tain progressively better performing codes for the DRC by designing good codes for the

sequence of approximating FSCs. We expect that for a small values of the deletion-

replication probability, a code constructed for an approximation with a moderate value

of m will perform well over the DRC as well. Some coding schemes for special cases

of the FSCs (with m = 1) have been known in various contexts (See Section 2.5.3). Ex-

tending these schemes to better approximations (larger m values) will prove crucial in

designing good codes for the DRC.

The present formulation of the SECs also allows us to make the following re-

marks.

• In [56], the authors conjectured that the capacity of the BDC has a Taylor-like

series expansion. We see from Theorem 2.15 that this is true for the SIR of the

BDC. We expect that the capacity also has a similar formulation.

• The capacity of a general SEC might not be convex in the channel parameters (See

Remark 2.2). It was shown in [20] that the capacity CBDC of the BDC satisfies

inf
p∈[0,1]

CBDC(p)
1− p

= lim
p→1

CBDC(p)
1− p

.

It is therefore expected that CBDC(p) is convex in p. From Theorem 2.15, we see

that the SIR Ciud
BDC of the BDC can be written as

Ciud
BDC = 1− p−h2(p)+(1− p)

(
lim
i→∞

lim
υ→∞

υ

∑
m=0

f (i,m, p)
)
,
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where f (i,m, p) = ψi,m pm(1− p)i is non-convex in p for m ≥ 1. It is interesting

to see if this double limit turns out to be convex despite

υ

∑
m=0

f (i,m, p)

being non-convex for every finite υ ≥ 1. Extending this to the case of the capacity

CBDC is also of interest.

• In order to obtain bounds for the capacity of a BDC for p close to 1, one might

typically consider the case where all but one (or a few) symbols are lost. The lower

bound D2 presented here (cf. Lemma 2.12) corresponds to this situation. How-

ever, since we considered this bound for a first-order Markov input, the bounds

we obtained didn’t prove to be useful for p close to 1. It might therefore be of

interest to generalize this bound for a high-order Markov input which might give

us a strictly positive (and thereby non-trivial) achievable rate.

• The approximations of the DRC presented have another useful feature. Via the

estimation of the delayed feedback capacity of the approximating channels, tight

bounds on the capacity can be obtained [126]. By estimating the capacity for

moderate values of m, we can obtain a good estimate of the capacity of the DRC

as guaranteed by Propositions 2.31 and 2.33.
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Chapter 3

Synchronization Error Channels in

Magnetic Recording

In this chapter, we will focus on some practical scenarios where synchronization

error channels arise naturally. We will typically be interested in applications of magnetic

recording. However, many communication applications have physical limitations that

result in similar channels that are of interest here. Much of the analysis will bear a

similar flavor as the concepts introduced in the previous chapter.

Magnetic recording channels are typically modeled as binary-input intersymbol

interference (ISI) channels, also called partial response channels [53, 60]. An implicit

assumption made in these channel models is that the data are correctly written on the

disk and that errors occur only during the readback process. While this is a fairly re-

alistic assumption in conventional “low-density” recording technologies on continuous

media, it is questionable in the context of certain advanced recording technologies, such

as bit-patterned media (BPM) recording, that achieve higher storage densities. In this

paper, we will examine some of the underlying causes of errors in the recording pro-

cess, particularly in BPM recording, and then propose a new probabilistic write channel

model that captures some of the data dependence of these write errors. Thus, the input

to this write channel model is the data sequence to be recorded and the channel output

is the “noisy” sequence that actually gets stored on the medium. This leads to a descrip-

tion of the full data recording and readback process as a cascade of an imperfect write

channel and a noisy (partial response) readback channel.

62



63

Hu, Duman, Kurtas and Erden [44] proposed a model for the BPM recording

channel in which the write channel was a binary symmetric channel (BSC), and the read-

back channel was a linear, intersymbol-interference (ISI) channel with additive noise.

They proposed and evaluated detection methods for this channel, and they investigate

achievable information rates for such a system. In [49], we considered an idealized

cascaded channel model in which the write channel was again a BSC and the readback

channel was a memoryless, binary-input, additive white Gaussian noise (AWGN) chan-

nel. We studied theoretical properties of this channel, as well as the decodable regions

of LDPC codes under a number of decoding algorithms. Here, our focus is on a new

write channel model which allows us to determine and compare bounds on several rele-

vant information-theoretic limits: capacity, symmetric information rate (SIR), Markov-1

rate, and zero-error capacity.

The remainder of this chapter is organized as follows. In Section 3.1, we start

with a brief description of the write process in bit-patterned media recording, highlight-

ing the main factors leading to write errors. We present the data-dependent write channel

model in Section 3.2. Two classes of channel state processes are introduced: a Bernoulli

state process (Section 3.2) and a binary Markov state process (Section 3.2). In Section

3.2.1 we make the observation that, although proposed as a model for BPM recording,

the Markov state channel model is also relevant to high-density magnetic recording us-

ing conventional granular media. In Section 3.3 we give bounds on the capacity, the

SIR, and the Markov-1 rate of the Bernoulli state channel. Section 3.4 gives similar

bounds on the capacity for the binary Markov state channel. The SIR is numerically

computed for both of the channels considered in Section 3.2. In Section 3.5, we intro-

duce a generalization of binary Markov state channels, namely the K-ary Markov state

channels. For one such generalized channel, we numerically estimate the SIR and de-

rive bounds on the channel capacity. Finally, in Section 3.6, we explore the zero-error

capacity of the proposed class of write channel models. These results bear similar flavor

as the information theoretic results in Chapter 2.
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3.1 Bit-Patterned Media Recording

A conventional magnetic recording medium is a continuous film of magnetic

grains that coats the surface of the disk substrate. Each grain is an atomic magnetic unit

that assumes one of two possible magnetic states. A group of grains together form a bit-

cell, an entity that stores one bit of information. Therefore, as the areal information den-

sity is increased, the number of grains forming a bit-cell reduces. One of the problems

with high-density magnetic recording in conventional media is the super-paramagnetic

effect, wherein the magnetic states of individual grains change due to the influence of

neighboring grains or due to changes in temperature. When the areal information den-

sity is increased to point where there are only a few grains per bit, such uncontrolled

changes in the magnetic states of grains are detrimental to reliable information storage.

Bit-patterned media recording (BPMR) proposes to get around this problem by

making use of patterned magnetic islands separated by non-magnetic material [120].

However, this new structure of the magnetic medium introduces technical challenges

not seen in recording on conventional media. An immediate requirement of this media

structure is near-perfect synchronization of the write process to ensure that the write

head is positioned correctly over the magnetic islands on this disk, i.e., to ensure that

the head is positioned within the so-called writing window zone of the islands [77].

Assuming that this write synchronization is achieved through the use of timing synchro-

nization patterns, there is a possibility of frequency and/or phase mismatch leading to

incorrect writing. Furthermore, even without a timing mismatch, imperfections in the

configuration of the patterned magnetic islands may cause writing errors. Finally, as

in conventional magnetic recording, the switching field distribution of magnetic grains

may contribute to errors in the write process. We will refer to write errors induced by

any of these mechanisms as written-in errors.

Another important feature of BPMR is the geometry of the writing process.

Along the down-track direction, the span of influence of the magnetic write field is

typically larger than the spacing between the islands. Therefore, at any given time, the

write head influences multiple adjacent islands. So, in the process of recording a bit on

a specified island, the bit value is also recorded on a certain number of subsequent is-

lands, with these islands themselves being overwritten in the future by subsequent bits.
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Figure 3.1 gives an illustration of this idealized write process. We refer to the number of

Down-track

T
im

e

0 1 1 0 0 0 0

0 1 1 1 1 1 ×

0 1 1 1 1 × ×

0 0 0 0 × × ×

× × × × × × ×

Figure 3.1: Example illustrating writing one bit on each island in BPMR with a write
head of writing span D = 3. Depicted here are snapshots of the top view of the disk
and write mechanism. Initially, all islands, represented here using gray squares, have
unknown magnetic states represented by ×, which could be 0 or 1. At the first time
instant, the write head, shown here using a dashed rectangle, is positioned over the first
four islands. In this position, the first island is written with the data bit 0. The three
subsequent islands are also written with the first data bit 0, before being overwritten
with their own data. After each bit is written, the head is moved over to the next island
along the down-track direction. At each position of the write head, the corresponding
“current” island is highlighted with a black square boundary.

subsequent islands influenced by the write head as the writing span, D. We will assume

throughout this paper that D ≥ 1, which implies that write process has memory and, as

a consequence, the write channel is data-dependent.

3.2 Write Channel Model

Representing the channel input and output at the ith time instant as Xi and Yi,

respectively, defined over alphabets X = Y = {0,1}, the write channel model can be

written as

Yi = Xi⊕ (Xi⊕Xi−1)⊗Zi, i ∈ [n] (3.1)
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where Zi ∈ {0,1} denotes the channel state at the ith instant. Here, we assume that the

state process Z is independent of the input process X , and ⊕ and ⊗ represent addition

and multiplication in GF(2), respectively. The channel state Zi is not to be confused

with the magnetic state of the island.

It is natural to assume that the channel input and output alphabets are binary

since the (intended and actual) magnetic states of the islands can be one of two possible

states. The channel state Zi is a random variable that represents a failure in writing

due to one of the conditions mentioned in the previous section, i.e., when Zi = 1 the

write head can be assumed to have failed in writing the intended bit. However, this does

not necessarily imply a written-in error because there would be no error if the bit to be

written is the same as the existing magnetic state of the island. This is captured by the

term (Xi⊕Xi−1) that is multiplied with Zi in (3.1). This “noise” term (Xi⊕Xi−1)⊗Zi

is justified because we assume that the timing mismatch or the irregularity of island

patterns can cause the write head to be positioned, in the worst case, on the island

immediately following the correct island. We will continue with this assumption until

Section 3.5, where we construct a more general write channel model. Also note that

when the first bit is written late, i.e. when Z1 = 1, we have Y1 = X0 which represents the

pre-existing magnetic state of the first island. We will assume that X0 is equally likely to

be a 0 or a 1. Similarly, when the last bit is written late, the last island has a bit in error

if the last and the penultimate bits are different. In either case, n magnetic islands are

read and their contents are interpreted as the n data bits so that there is no blocklength

mismatch.

Based on the Zi sequence, the channel in (3.1) can be seen as producing different

types of errors. When the Zi sequence consists of isolated ones, the channel appears

to produce substitution errors. This is illustrated in the Figure 3.2. Such substitution-

like errors can occur when the write head misses islands at random and independently

of its success in writing on previous islands. Noting that when Zi = 0, Yi = Xi so that

the output reproduces the input exactly, and when Zi = 1, Yi = Xi−1 so that the output

reproduces the input with a delay of one time instant, we can see that another way to

write the relation in (3.1) is

Yi = Xi−Zi, i ∈ [n], (3.2)
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Figure 3.2: An example of substitution-like errors produced by the write channel. The
sequence Zi gives the channel state for each magnetic island. In this example, Zi = 1
for the third and the sixth islands. The sequence Xi gives the intended magnetization of
the islands, i.e., the data to be written. Taking into account the channel states Zi, the
sequence Yi shows the resulting island magnetizations. Note that substitution-like errors
occur only when Zi = 1, as was the case with the sixth island here, highlighted with a
box around the island in the Yi sequence. However, not every Zi = 1 results in an error,
as illustrated by the third island.

which is exactly the same as the model for the DRC (See Chapter 2) in Equation (2.5).

The main difference in the present scenario is the space of the channel state process Z .

Since the state space here is finite, unlike the DRC considered in Chapter 2, it suffices

to consider outputs for time instants 1 through n in Equation (3.2). As argued for the

finite-state channel approximations in Section 2.4, we have that this assumption does

not influence the mutual information rates.

When the Zi sequence consists of long runs of ones, the channel appears to pro-

duce “paired” deletion-replication errors, with replications accompanying 0→ 1 channel

state transitions and deletions accompanying 1→ 0 channel state transitions, as shown

in Figure 3.3. These deletion-replication errors can happen as a result of timing synchro-

Figure 3.3: An example of an deletion-replication error. Due to the channel state se-
quence Zi, the channel inputs are transformed as shown by the arrows between the Xi
and Yi sequences with the resulting magnetic states of the islands shown in the sequence
Yi. The inserted bit in the Yi sequence accompanying the channel state transition 0→ 1 is
shown with a box around the corresponding island. The deleted bit from the Xi sequence
accompanying the channel state transition 1→ 0 is shown with a dotted box around the
island.
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nization errors, wherein there is a frequency mismatch between the islands and the write

head; or as a result of a group of islands being separated farther than usual or having

larger switching fields. We will consider the channel under two different statistical as-

sumptions on the Z process in the following., and show how this difference in statistics

changes the typical behavior of the channel.

Bernoulli state channel

When the channel state process Z is an i.i.d. Bernoulli process with parameter

p, i.e., P(Zi = 1) = p, we will call the channel the Bernoulli state channel. In this case,

the channel is completely specified by the parameter p. We shall henceforth denote

the channel in Equation (3.1) (or (3.2)) by Wn(p). Typically, for small values of the

parameter p we can expect this channel to produce errors resembling substitution errors

(See Figure 3.2).

Binary Markov state channel

When the channel state process Z is a first-order binary Markov processwith

P(Zi = 0|Zi−1 = 1) = pd and P(Zi = 1|Zi−1 = 0) = pr, we will refer to the channel as

the binary Markov state channel and denote it by Wn(pd, pr). As noted earlier, we can

expect such a channel to typically produce paired deletion-replication errors (See Fig-

ure 3.3). Hence, the parameters pd and pr can be thought of as deletion and replication

probabilities, respectively, of the channel. However, this channel is different from the

DRC in that the state space is finite and the state transitions are Markov as described

above. In particular, this Markov process is distinct from the FSC approximations to the

DRC (Section 2.4) as well.

3.2.1 High-density recording with granular media

As mentioned in Section 2.5, the channel model in Equation (3.2) can also be

used to describe high-density magnetic recording on conventional granular magnetic

media [124]. Although media granularity is typically considered as a two-dimensional

phenomenon, we consider granularity only in one-dimension – along the down-track
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direction, and assume adjacent tracks to be independent. This simplification allows us to

establish lower bounds for performance over the two-dimensional channel as proposed

in [124].

Media granularity in one-dimension results in written-in errors as follows. At

storage densities of the order of 1 bit per grain, the variation in grain size plays an

important role in deciding the reliability of data storage. In this case, bit-cells are at

most as large as individual grains. We assume that the grains are all 1 or 2 bit-cells in

size, and that the magnetic state of each grain is decided by the last bit written on them.

This is depicted in Figure 3.4. Grains that are 2 bit-cells large will result in written-in

Down-track

T
im

e

0 1 1 0 0 0 0

0 1 1 1 1 1 1

0 1 1 1 1 × ×

0 0 0 0 × × ×

× × × × × × ×

Figure 3.4: Writing on granular media. Individual bit-cells are shown as ×’s in the first
row, corresponding to the magnetic states read from these cells, which could be 0’s or
1’s. Also shown in shades of gray are the magnetic grains: grains that comprise one bit-
cell are shown in light gray and those that comprise two bit-cells are in a darker shade
of gray. The two bit-cells comprising a grain of size 2 always have the same magnetic
state. As in the case of BPMR, the write head spans multiple bit-cells, as shown by
the dashed rectangles. The “current” bit-cell at each time instant is shown with a black
square.
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errors if the two bits written on them are different. Figure 3.5 gives an illustration of the

written-in errors in this scenario. Comparing Figures 3.3 and 3.5, it is easy to see that

Figure 3.5: Written-in errors due to media granularity. The Z process represents the
grain pattern with Zi being 1 when the corresponding bit-cell is the first bit-cell in a grain
that comprises two bit-cells. The Xi sequence shows the data to be written. The arrows
between the Xi and Yi sequences show the transformation of information according to
the grain pattern, resulting in the sequence Yi being stored. The written-in errors are
shown with a box around the corresponding bit-cell.

the channel model in this case can be written as

Yi = Xi⊕ (Xi⊕Xi+1)⊗Zi.

Using a simple time-reversal argument, it can be seen that this is exactly the channel in

(3.1). However, in this case, the Zi sequence cannot have two consecutive ones, i.e., it

satisfies the (1,∞) run-length constraint [46, Chap. 4]. We choose to model this as the

Wn(1, pr) channel since any realization of the state process for this channel satisfies the

(1,∞) run-length constraint. In [83], the authors consider this channel and derive upper

bounds for the achievable rates over the channel. Our focus here will be on obtaining

bounds on the achievable information rates for the general channel in (3.1) in the context

of the two channel state processes defined in Section 3.2.

3.3 Bernoulli State Channel

The channel space for the Bernoulli state channel defined in the previous section

is parameterized by p ∈ [0,1]. As in Section 2.4.2, we can show that Wn(p) is an
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indecomposable FSC, and therefore, its capacity C(p) is given as

C(p) = lim
n→∞

sup
P(X[n])

1
n

I
(
X[n];Y[n]

)
.

The following symmetry result is straightforward.

Proposition 3.1 (Channel symmetry). For p ∈ [0,1], C(p) =C(1− p).

Proof. Let us denote by Ip(Xn
1 ;Y n

1 ) the mutual information between the vectors Xn
1 and

Y n
1 when the channel parameter is p. Note that the channel output can be simultaneously

written as

Yi = (Xi⊗ZC
i )⊕ (Xi−1⊗Zi)

and

Yi = (Si⊗Zi)⊕ (Si+1⊗ZC
i )

where Si = Xi−1 and ZC
i = Zi⊕1. Thus

Ip(Xi;Y[n]|X[i−1]) = I1−p(Sn−i+1;Y[n]|S[n−i+2:n])

for all but a vanishing fraction of indices i ∈ N, as n→ ∞. Therefore,

C(p) = lim
n→∞

sup
P(X[n])

1
n

Ip(X[n];Y[n]) = lim
n→∞

sup
P(X[n])

1
n

n

∑
i=1

Ip(Xi;Y[n]|X[i−1])

= lim
n→∞

sup
P(X[n])

1
n

n

∑
i=1

I1−p(Sn−i+1;Y[n]|S[n−i+2:n]) = lim
n→∞

sup
P(X[n])

1
n

I1−p(S[n];Y[n])

= lim
n→∞

sup
P(X[n])

1
n

I1−p(X[n−1];Y[n]) = lim
n→∞

sup
P(X[n])

1
n

I1−p(X[n];Y[n]) =C(1− p).

The channel space can therefore be reduced to the interval p ∈ [0, 1
2 ]. Further note that

the same symmetry argument holds for not just the rate-maximizing input distribution,

but for all input distributions.

The capacity of the Bernoulli state channel is upper bounded by the achievable

rate for a genie-aided decoder, i.e., one with the Z process realization known. Given

the realization of the Z process, the inserted bits and the positions of the deleted bits

are known so that the Bernoulli state channel is equivalent to a correlated erasure chan-

nel with average erasure rate P(Zi−1 = 1,Zi = 0) = p(1− p). The resulting erasure
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channel is a correlated channel since two consecutive bits cannot be erased as erasures

correspond to 1→ 0 transitions in the Z process. Therefore,

C(p)≤ 1− p(1− p),Cgε(p) (3.3)

since the capacity of a correlated erasure channel is the same as that of a memoryless

erasure channel with the same erasure probability. We call this upper bound, Cgε(p), the

genie-erasure capacity of the channel Wn(p).

Consider

1
n

I
(
X[n];Y[n]

)
=

1
n

H(Y[n])−
1
n

H(Y[n]|X[n])
(a)
=

1
n

H(Y[n])−
1
n

n

∑
i=1

H(Yi|X[i−1:i])

=
1
n

H(Y[n])−
h2(p)

n

n

∑
i=1

P(Xi 6= Xi−1), (3.4)

where the equality labeled (a) follows from the definition of Yi in (3.1) and the fact that

Z is i.i.d.. Since the information-rate-maximizing input distribution is unknown, we

will now derive lower bounds to the capacity by making certain assumptions about the

statistics of the input process X .

3.3.1 Memoryless Input Process

We will first assume that the input process X is an i.i.d. Bernoulli process with

parameter α process. With this assumption, the maximum achievable information rate,

called the i.i.d. capacity, denoted Ciid(α, p), gives a lower bound to the capacity.

Proposition 3.2 (Input symmetry). Ciid(α, p) =Ciid(1−α, p).

Proof. Let X[n] and Y[n] be the input and output respectively of the channel Wn(p). De-

fine X̂[n] = (X1⊕ 1,X2⊕ 1, · · · ,Xn⊕ 1) and Ŷ[n] = (Y1⊕ 1,Y2⊕ 1, · · · ,Yn⊕ 1). When

X[n] is Bernoulli with parameter α , X̂[n] is Bernoulli with parameter 1−α . Further since

X[n]↔ X̂[n] and Y[n]↔ Ŷ[n] are bijections, we have Ip(X[n];Y[n]) = I(X̂[n];Ŷ[n]). Clearly, X̂[n]

and Ŷ[n] also satisfy the relation in (3.1) and consequently I(X̂[n];Ŷ[n]) = Ip(X̂[n];Ŷ[n]).

As a consequence of Propositions 3.1 and 3.2, we have

Ciid(α, p) =Ciid(α,1− p) =Ciid(1−α,1− p) =Ciid(1−α, p).
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From Proposition 3.2 and the fact that Ciid(α, p) is concave in α , we immediately

have the following.

Corollary 3.3 (Rate-maximizing i.i.d. distribution). For the Bernoulli state channel

Wn(p) with memoryless inputs

max
α∈[0,1]

Ciid(α, p) =Ciid(
1
2
, p) =Ciud(p) ∀ p ∈ [0,1],

where Ciud(p) is the symmetric information rate (SIR) of Wn(p). �

We have from (3.4)

C(p)≥Ciud(p) = H (Y )
∣∣∣
X ∼iud

− h2(p)
2

(3.5)

We can lower bound the SIR by disregarding the data-dependence of the noise

in the channel. This gives a channel equivalent to a BSC with crossover probability p
2

so that

Ciud(p)≥ 1−h2

( p
2

)
, Liud

0 (p). (3.6)

Further lower bounds can be obtained by conditioning the entropy of the output as fol-

lows.

Ciud(p) = lim
n→∞

1
n

n

∑
i=1

H(Yi|Y[i−1])−
h2(p)

2
≥ lim

n→∞

1
n

n

∑
i=1

H(Yi|Y[i−1],Xi−1)−
h2(p)

2

= h2

(
1− p

2

)
− h2(p)

2
, Liud

1 (p), (3.7)

where we have used the fact that Yi depends only on Xi−1 and Xi, and given Xi−1, Yi is

independent of Y i−1
1 . Continuing as above, we can obtain a tighter lower bound

Ciud(p)≥ lim
n→∞

1
n

n

∑
i=1

H(Yi|Y[i−1],Xi−2)−
h2(p)

2

=

(
1+ p

2

)
h2

(
1+ p2

2(1+ p)

)
+

(
1− p

2

)
h2

(
1− p

2

)
− h2(p)

2
, Liud

2 (p). (3.8)

A straightforward upper bound for the SIR, implied by (3.5) is

Ciud(p)≤ 1− h2(p)
2
,U iud

0 (p), (3.9)
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which follows because the entropy rate for a binary process H (Y )≤ 1. Note that this

bound is achieved when Y is the i.u.d.. Again, starting from (3.5), we obtain upper

bounds for the SIR by removing conditioning from the entropy of the output.

Ciud(p)≤ lim
n→∞

1
n

n

∑
i=1

H(Yi|Yi−1)−
h2(p)

2

= h2

(
1− p+ p2

2

)
− h2(p)

2
,U iud

1 (p). (3.10)

As with the lower bounds, we can find a tighter upper bound for the entropy rate H (Y )

as follows

Ciud(p)≤ lim
n→∞

1
n

n

∑
i=1

H(Yi|Y[i−2:i−1])−
h2(p)

2

=
1− p+ p2

2
h2

(
1

2(1− p+ p2)

)
+

1+ p− p2

2
h2

(
1

2(1+ p− p2)

)
− h2(p)

2
,U iud

2 (p). (3.11)

Figure 3.6 plots the lower and the upper bounds for SIR discussed above. Note

that the tighter lower and upper bounds — Liud
2 (p) in (3.8) and U iud

2 (p) in (3.11) —

almost coincide for p≤ 0.3 (and from symmetry, for p≥ 0.7). In this range, therefore,

where the bounds themselves are greater than 0.5, they approximate the SIR fairly ac-

curately. As for the channels in Section 2.4.2, the SIR can be numerically computed

for the Bernoulli state channel. This is shown as the “SIR” curve in Figure 3.6. This

indicates that the upper bound U iud
2 (p) in (3.11) is a good approximation for the SIR.

3.3.2 First-order Markov Input process

The input symmetry of the Bernoulli state channel (Proposition 3.2) can be

shown to be true for stationary ergodic input processes in general. Therefore, we con-

sider a symmetric binary Markov process X with P(Xi = 1|Xi−1 = 0)=P(Xi = 0|Xi−1 =

1) = β .

Starting from (3.4), we can arrive at lower and upper bounds for the Symmetric

Markov-1 Rate (M1R), CM 1(β , p).The lower bounds analogous to those for the SIR are

CM 1(β , p)≥ 1−h2

( p
2

)
, LM 1

0 (p),
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Figure 3.6: Lower and upper bounds for SIR given in (3.6), (3.7), (3.8), (3.9), (3.10)
and (3.11), and the upper bound for capacity in (3.3). The SIR from simulations is also
shown.

which is the same as Liud
0 (p) in (3.6),

CM 1(β , p) = H (Y )
∣∣∣
X ∼M

(2)
1 (β )

−βh2(p)≥ lim
n→∞

1
n

n

∑
i=1

H(Yi|Y[i−1],Xi−1)−βh2(p)

= h2(β (1− p))−βh2(p), LM 1
1 (β , p),

and

CM 1(β , p)≥ lim
n→∞

1
n

n

∑
i=1

H(Yi|Y[i−1],Xi−2)−βh2(p)

= (1−β (1− p))h2

(
β
(
1−β (1− p2)

)
1−β (1− p)

)
+β (1− p)h2 (β (1− p))−βh2(p), LM 1

2 (β , p). (3.12)
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The trivial upper bound analogous to U iud
0 (p) in (3.9) is

CM 1(β , p)≤ 1−βh2(p),UM 1
0 (β , p).

The upper bounds corresponding to U iud
1 and U iud

2 are

CM 1(β , p)≤ h2
(
1−β +2β

2 p(1− p)
)
−βh2(p),UM 1

1 (β , p)

and

CM 1(β , p)≤
(
β

2(1−β )(1− p+ p2)+β
2(3−β )p(1− p)+(1+β )(1−β )2)

×h2

(
β 2(1−β )(1− p+ p2)+β 3 p(1− p)+β (1−β )2

β 2(1−β )(1− p+ p2)+β 2(3−β )p(1− p)+(1+β )(1−β )2

)
+
(
2β

2(1−β )(1− p+ p2)+β
3(1−2p+2p2)+β (1−β )2)

×h2

(
β 2(1−β )(1− p+ p2)+β 3 p(1− p)+β (1−β )2

2β 2(1−β )(1− p+ p2)+β 3(1−2p+2p2)+β (1−β )2

)
−βh2(p),UM 1

2 (β , p). (3.13)

Figure 3.7 shows the contours of the bounds for CM 1 in (3.12) and (3.13). (Only the

tighter bounds, LM 1
2 (β , p) and UM 1

2 (β , p) are shown.) As was the case for i.u.d. input,

the tighter bounds (3.12) and (3.13) have almost coinciding contours for a wide range

of parameters (β , p). Unlike the case of i.i.d. inputs, the rate-maximizing input param-

eter β ∗(p) is not easily obtained. A close estimate can be obtained by maximizing the

bounds obtained above. These are shown (dashed lines) in Figure 3.7. Since the opti-

mal β values for the tighter lower and upper bounds LM 1
2 (β , p) and UM 1

2 (β , p) almost

coincide, we can say that β ∗(p) is monotonically decreasing in p in the interval [0, 1
2 ]

with β ∗(0) = 1
2 and β ∗(1/2)≈ 0.31.

Figure 3.8 compares the SIR (solid line representing Liud
2 (p) in (3.8), and dashed

line representing U iud
2 (p) in (3.11)) and the M1R (solid line for LM 1

2 (β ∗L2
(p), p) in

(3.12), dashed line for UM 1
2 (β ∗U2

(p), p) in (3.13)) over the range of p values. It is clear

that considerable gains in reliable information transfer rate are possible by using an in-

put with memory. In particular, note that whereas there is a range of p values for which

the SIR is smaller than 0.5, the M1R is strictly larger than 0.5 ∀ p. It is clear that for a

sequence of input Markov processes of increasing orders, the achievable rates are non-

decreasing. The algorithm suggested in [57,116] can be employed to optimize the input

Markov process to maximize the rate.
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Figure 3.7: Contours of lower (thin curves) and upper (thick curves) bounds for M1R
given in (3.12) and (3.13).

3.4 Binary Markov State Channel

The channel space for the binary Markov state channel defined in Section 3.2 is

(pd, pr) ∈ [0,1]2. Note that the channel space is ordered, i.e., the first parameter is the

1→ 0 transition (deletion) probability and the second the 0→ 1 transition (replication)

probability. As in the case of the Bernoulli state channel, the capacity of the binary

Markov state channel, denoted C(pd, pr), is given as

C(pd, pr) = lim
n→∞

sup
P(X[n])

1
n

I(pd,pr)(X[n];Y[n]).

When pr (resp., pd) is zero, the channel is the noise-free channel (resp., noise-free chan-

nel with a delay) and hence C(pd,0) = 1 (resp., C(0, pr) = 1). We first establish the

following symmetry property of the binary Markov state channel.

Proposition 3.4 (Channel symmetry). C(pr, pd) =C(pd, pr).
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Proof. We know that if Z[n] = (Z1,Z2, · · · ,Zn) is a Markov process, then so is the time-

reversed vector (Zn,Zn−1, · · · ,Z1) [91, §16-4]. Furthermore, since the channel is as-

sumed to have converged to the stationary distribution, the conditional distributions

P(Zi|Zi−1) and P(Zi|Zi+1) are identical (from the symmetry in the Markov process

Z ). However, note that whereas a transition Zi−1 = 0→ Zi = 1 is a replication, the

transition Zi+1 = 0→ Zi = 1 is a deletion. This implies that I(pd,pr)(Xi;Y[n]|X[i−1]) =

I(pr,pd)(Sn−i+1;Y[n]|S[n−i+2:n]), where Si = Xi−1, for all but a vanishing fraction of in-

dices i, as n→ ∞. Therefore,

C(pd, pr) = lim
n→∞

sup
P(X[n])

1
n

I(pd,pr)(X[n];Y[n]) = lim
n→∞

sup
P(X[n])

1
n

n

∑
i=1

I(pd,pr)(Xi;Y[n]|X[i−1])

= lim
n→∞

sup
P(X[n])

1
n

n

∑
i=1

I(pr,pd)(Sn−i+1;Y[n]|S[n−i+2:n])
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= lim
n→∞

sup
P(X[n])

1
n

I(pr,pd)(S[n];Y[n]) = lim
n→∞

sup
P(X[n])

1
n

I(pr,pd)(X[n−1];Y[n])

= lim
n→∞

sup
P(X[n])

1
n

I(pr,pd)(X[n];Y[n]) =C(pr, pd).

The channel space can therefore be reduced to the region pr ∈ [0,1], pd ∈ [0, pr]. As

was the case for the Wn(p) channel, we have the above pd, pr symmetry for any fixed

input distribution for the Wn(pd, pr) channel. Hence, we can assume an unordered pair

{pd, pr} parameterizing the channel space.

As for the Bernoulli state channel, we can define the genie-erasure capacity

Cgε(pd, pr) of the binary Markov state channel Wn(pd, pr). In this case, the resulting

channel is a correlated erasure channel with an average erasure probability P(Zi−1 =

1,Zi = 0) = pdpr
pd+pr

, so that

C(pd, pr)≤ 1− pdpr
pd+ pr

,Cgε(pd, pr). (3.14)

As a result of the memory in the Z process, it is considerably harder than it was for

the Wn(p) channel to obtain closed-form expressions for lower bounds on the capacity

of Wn(pd, pr) by computing information rates for known input distributions. However,

the SIR Ciud(p, p) can still be obtained numerically. Figure 3.9 shows the contours of

the SIR for the Wn(pd, pr) channel. Note that the symmetry proved in Proposition 3.4

is evident.

In Figure 3.10, we show the SIR for the case pr = pd = p, which we call the

symmetric binary Markov state channel Wn(p, p). When p = 0, the channel is noise-

less. When p = 1, the channel deterministically flips between the identity and the de-

layed channel so that every odd bit is repeated twice, and every even bit is lost, and the

maximum achievable information transfer rate is 1
2 bit per channel use. Also shown is

the genie-erasure capacity in (3.14), which in this case becomes,

C(p, p)≤Cgε(p, p) = 1− p
2
.

Interestingly enough, when p = 1, the SIR satisfies Ciud(1,1) = Cgε(1,1), which im-

plies that C(1,1) = 1
2 . We also include in Figure 3.11 the SIR obtained for the channel

Wn(1, pr), as well as the corresponding genie-erasure capacity, Cgε(1, pr) = 1
1+pr

.
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Figure 3.9: The SIR Ciud(pd, pr) estimates for the binary Markov state channel
Wn(pd, pr).

3.5 K-ary Markov State Channel

We now consider a generalization of the binary Markov state channel as de-

scribed in Equation (3.2). Here, we allow Zi ∈ {0,1, · · · ,K− 1} and let Z be a first-

order Markov process whose transition probabilities satisfy

P(Zi = z|Zi−1 = z+1) = pd,

P(Zi = z|Zi−1 = z−1) = pr,

P(Zi = z|Zi−1 = z) = 1− pd− pr

for z ∈ {1,2, · · · ,K−2}. Further, we have

P(Zi = 1|Zi−1 = 0) = pr = 1−P(Zi = 0|Zi−1 = 0)



81

Cgε(p, p)

Ciud(p, p)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
p

Figure 3.10: The SIR Ciud(p, p) and the genie-erasure capacity Cgε(p, p) for the sym-
metric binary Markov state channel Wn(p, p).

and

P(Zi = K−2|Zi−1 = K−1) = pd = 1−P(Zi = K−1|Zi−1 = K−1).

Note that when K = 2, this model gives the binary Markov state channel considered

earlier. We will hence be interested in the K-ary Markov state channel where K > 2,

which we denote by Wn(pd, pr,K). Note that this channel now generalizes the binary

Markov state channel in the sense that it allows up to (K− 1) consecutive deletions or

replications.

We further assume that the parameters pd, pr are chosen such that the process Z

is aperiodic and irreducible so that Y is ergodic. As was the case for the binary Markov

state channel, we have C(pd,0,K) =C(0, pr,K) = 1 ∀ pd, pr ∈ [0,1]. The channel space

is therefore given by pd ∈ [0,1], pr ∈ [0,1− pr]. The channel symmetry argument of
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Figure 3.11: The SIR Ciud(1, pr) and the genie-erasure capacity Cgε(1, pr) for the chan-
nel Wn(1, pr) with the Z process satisfying the (1,∞) constraint.

Proposition 3.4 holds in this case also, so that

C(pd, pr,K) =C(pr, pd,K)

where C(pd, pr,K) is the capacity of K-ary Markov state channel Wn(pd, pr,K). Hence,

the channel space can be further reduced to pd ∈ [0,1], pr ∈ [0,min{1− pd, pd}].
The genie-erasure capacity of the Wn(pd, pr,K) channel is given by the capacity

of a correlated erasure channel with an average erasure rate

P(Zi = Zi−1−1) =
K−1

∑
z=1

P(Zi−1 = z,Zi = z−1)

=
K−1

∑
z=1

P(Zi−1 = z)P(Zi = z−1|Zi−1 = z) =
K−1

∑
z=1

πz pd

= pd

1−
(

pd
pr

)K−1

 1−
(

pd
pr

)
1−
(

pd
pr

)K


, pε
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where πz =
(

pd
pr

)K−1−z
(

1−
(

pd
pr

)
1−
(

pd
pr

)K

)
is the steady state probability of Zi = z, so that

C(pd, pr,K)≤ 1− pε ,Cgε(pd, pr,K).

For the symmetric K-ary Markov state channel, we have

C(p, p,K)≤ 1− p
K−1

K
=Cgε(p, p,K)

for p ∈ [0, 1
2 ] because in this case, πz =

1
K ∀ z ∈ {0,1, · · · ,K−1}. Note that Cgε(p, p,K)

reduces to the capacity of a BEC with erasure probability p, CBEC(p) = 1− p, when

K→ ∞.

The SIR of the Wn(pd, pr,K) channel can be obtained numerically as in the case

of the Wn(pd, pr) channel. The estimated SIR for K = 3 is shown in Figure 3.12.

Figure 3.12: The SIR Ciud(p, p,3) for the symmetric ternary Markov state channel
W(p, p,3), along with the genie-erasure capacity Cgε(p, p,3). Also shown is the lower
bound on the zero-error capacity C0(W3) from Corollary 3.6.
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3.6 Zero-error capacity

The zero-error capacity C0 of a discrete-memoryless channel was introduced

by Shannon [102], from which it is readily seen that a noisy discrete-output binary-

input memoryless channel has a zero-error capacity of 0, i.e., no information can be

transmitted over such a channel with zero error. However, we will now show that the

zero-error capacity of the noisy discrete-output binary-input channel in Equation (3.1) is

strictly positive. We will denote the generic channel in (3.1) for all binary Z processes

by W.

Proposition 3.5. C0(W) = 1
2 .

Proof. Consider the 2-repetition code. The channel input process X and the message

process M satisfy the relationship X2i−1 = Mi,X2i = Mi for i = 1,2, · · · . Since X2i−1 =

X2i, Y2i = X2i = Mi so that discarding the Y2i−1s gives us M exactly, thereby achieving

zero error at a rate 1
2 . Thus, C0(W )≥ 1

2 .

It is obvious that the capacity of a channel is an upper bound on the zero-error ca-

pacity. From (3.14), we can see that C(1,1)≤ 1
2 , and the coding scheme above achieves

a rate 1
2 for any realization of Z . Thus, C(1,1) = 1

2 . Therefore, as long as the channel

admits the infinitely long alternating sequence Z = 010101 · · · , we have C0(W) = 1
2 .

Note that both the Bernoulli state channel Wn(p) and the binary Markov state

channel Wn(pd, pr) can generate the infinite sequence Z = 010101 · · · , albeit with van-

ishing probability. It is also worth noting here that this infinite sequence satisfies the

(1,∞) constraint (See Section 3.2.1).

Thus, unlike binary-input discrete memoryless channels, the binary-input dis-

crete channel in (3.1) allows a non-zero information rate even under the severe re-

quirement of zero-error. From this result and Figure 3.8, it is clear that even under

the milder condition of asymptotically vanishing error probability, random linear coset

coding achieves a lower rate than the 2-repetition code, which guarantees zero errors,

for the Bernoulli state channel over a range of p values. Referring to Figure 3.9, the

same can be said for the binary Markov state channels. However, by using a first-order

Markov input (cf. Figure 3.8), higher rates than that of the zero-error achieving scheme
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are achievable for all Bernoulli state channels, although only with asymptotically van-

ishing error probability.

The zero-error capacity of the Wn(pd, pr,K) channel, denoted by C0(WK), sat-

isfies the following bounds.

Corollary 3.6. 1
K ≤C0(WK)≤ K+1

2K .

Proof. Repeating every bit K times achieves zero error, since every Kth bit is always

correct for any realization of the Z process. Hence, C0(WK)≥ 1
K =C0(WK).

The smallest upper bound for the capacity is also an upper bound for the zero-

error capacity. Thus,

C0(WK)≤ min
pd,pr

C(pd, pr,K)≤ min
pd,pr

Cgε(pd, pr,K) =Cgε

(
1
2
,
1
2
,K
)
=

K +1
2K

.

Observe that when K = 2, the minimum genie-erasure capacity occurs at pd = pr = 1

and at this point the upper bound Cgε(1,1,2) is same as the lower bound C0(W2) which

was used in the proof of Proposition 3.5.

Note that the bounds proposed above are loose asymptotically, i.e., 1
K → 0 and

K+1
2K → 1

2 as K→ ∞.

3.7 Conclusions

We proposed a new write channel model for bit-patterned media recording that

reflects the data dependence of write synchronization errors. For Bernoulli and Markov

channel state models, we computed bounds and numerical estimates for the maximum

achievable information rate under different assumptions on the channel input statistics.

We then generalized the Markov channel state model to allow a channel state space of

size K > 2 and computed the SIR numerically for the case K = 3. Finally, we showed

that the rate-1
2 2-repetition code achieves the zero-error capacity over the new write

channel when the channel state space is binary. Bounds on the zero-error capacity of the

general K-ary Markov channel state model were also presented.
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Chapter 4

Windowed Decoding of Spatially

Coupled Codes

Sparse graph codes have been of great interest in the coding community for close

to two decades, after it was shown that statistical inference techniques on graphical

models representing these codes had decoding performance that surpassed that of the

best known codes. One class of such codes are low-density parity-check (LDPC) codes,

which although introduced by Gallager in the 60’s [38] were rediscovered in the 90’s

after the advent of Turbo Codes [13] and iterative decoding. Luby et al. showed [78,79]

that a decoder based on belief propagation (BP) [92] had very good performance for

these codes over the binary erasure channel (BEC). This superior performance of LDPC

codes was shown by Richardson and Urbanke [99] to be true over a broader class of

binary-input, memoryless, symmetric-output (BMS) channels. Furthermore these codes

were optimized to approach capacity on many of these BMS channels [2, 3].

The convolutional counterparts of LDPC block codes were first introduced by

Felstrom and Zigangirov in [33], although a similar construction was suggested in [110].

There is considerable literature on the constructions and analysis of these ensembles

[30, 31, 69, 111]. The BP thresholds for these ensembles were reported in [108]. In [67]

the authors construct regular LDPC convolutional codes based on protographs [112] that

have BP thresholds close to capacity. In [63], Kudekar et al. considered convolutional-

like codes which they called spatially coupled codes and showed that the BP thresholds

of these codes approached the maximum a-posteriori (MAP) thresholds of the underly-

87
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ing unstructured ensembles over the BEC. This observation was made for protograph-

based generalized LDPC codes in [71]. Evidence for similar results over general BMS

channels was given in [62], and proven recently in [64]. Moreover this phenomenon,

termed threshold saturation, was shown to be a more generic effect of coupling by

showing an improvement in performance of systems based on other graphical models

: the random K-SAT, Q-COL problems from computation theory, Curie-Weiss model

from statistical mechanics [42], and LDGM & rateless code ensembles [5]. Non-binary

LDPC codes obtained through coupling have also recently been investigated [114].

The good performance of spatially coupled codes is apparent when both the

blocklength of individual codes and the coupling length becomes large. However, as

either of these parameters becomes large, BP decoding becomes complex. We therefore

consider a windowed decoder that exploits the structure of the coupled codes to reduce

the decoding complexity while maintaining the advantages of the BP decoder in terms of

performance. An additional advantage of the windowed decoder is the reduced latency

of decoding. The windowed decoding scheme studied here is the one used to evaluate the

performance of protograph-based codes over erasure channels with and without memory

[47, 48, 90], which will be the topic of the next chapter. The main result in this chapter

is that the windowed decoding thresholds over the BEC approach the BP thresholds

exponentially in the size of the window W . Since the BP thresholds are themselves

close to the MAP thresholds for spatially coupled codes, windowed decoding thus gives

us a way to achieve close to ML performance with complexity reduced further beyond

that of the BP decoder. Although the results presented here are proved only for the BEC,

similar asymptotic behavior is expected on general BMS channels.

This chapter is organized as follows. Section 4.1 gives a brief introduction to

spatially coupled codes. In Section 4.2 we discuss the windowed decoding scheme. We

state here the main result which we prove in Section 4.3. We give some numerical results

in Section 4.4 and conclude in Section 4.5. Much of the terminology and notation used

in here is reminiscent of the definitions in [63].
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4.1 Spatially Coupled Codes

We describe the (dl,dr) spatially coupled ensemble that was introduced in [63]

in terms of its Tanner graph. There are M variable nodes at each position in [L] ,

{1,2, · · · ,L}. We will assume that there are M dl
dr

check nodes at every integer position,

but only some of these interact with the variable nodes. The variable (check) nodes at

position i constitute the ith section of variable (check, respectively) nodes in the code.

The L sections of variables are together referred to as the chain and L is called the

chain length. For each of the dl edges incident on a variable at position i ∈ [L], we first

choose a section uniformly at random from the set {i, i+1, · · · , i+ γ−1}, then choose

a check uniformly at random from the M dl
dr

checks in the chosen section, and connect

the variable to this check. We refer to the parameter γ as the coupling length. It can

be shown (see, e.g., [63]) that this procedure amounts roughly to choosing each of the

dr connections of a check node at position i uniformly and independently from the set

{i− γ +1, i− γ +2, · · · , i}. Observe that when γ = 1 this procedure gives us L copies of

the (dl,dr)-regular uncoupled ensemble. Since we are interested in coupled ensembles,

we will henceforth assume that γ > 1. Further, we will typically be concerned with this

ensemble when L� γ , in which case the design rate given by

R(dl,dr,γ,L) = 1− dl

dr

(
1+O(

γ

L
)
)

(4.1)

is close to 1− dl
dr

.

BP Performance

In the following we will briefly state known results that are relevant to this work.

See [63] for detailed analysis of the BP performance of spatially coupled codes. The

BP performance of the (dl,dr,γ,L) spatially coupled ensemble when M → ∞ can be

evaluated using density evolution. Denote the average erasure probability of a message

from a variable node at position i as xi. We refer to the vector x = (x1,x2, · · · ,xL) as the

constellation.

Definition 4.1 (BP Forward Density Evolution). Consider the BP decoding of a (dl,dr,

γ,L) spatially coupled code over a BEC with channel erasure rate ε . We can write the
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forward density evolution (DE) equation as follows. Set the initial constellation to be

x(0) = (1,1, · · · ,1) and evaluate the constellations {x(`)}∞
`=1 according to

x(`)i =

0, if i /∈ [L] ∀ `,

ε

(
1− 1

γ ∑
γ−1
j=0(1− 1

γ ∑
γ−1
k=0 x(`−1)

i+ j−k)
dr−1

)dl−1
, otherwise.

(4.2)

This is called the parallel schedule of the BP forward density evolution. �

For ease of notation, we will write

xi = ε

(
1− 1

γ

γ−1

∑
j=0

(1− 1
γ

γ−1

∑
k=0

xi+ j−k)
dr−1

)dl−1
= εg(xi−γ+1, · · · ,xi+γ−1). (4.3)

It is clear that the function g(·) is monotonic in each of its arguments.

Definition 4.2 (FP of BP Forward DE). Consider the parallel schedule of the BP for-

ward DE for the (dl,dr,γ,L) spatially coupled code over a BEC with erasure rate ε .

It can be easily seen from the monotonicity of g(·) in Equation (4.3) that the sequence

of constellations {x(`)}∞
`=0 are ordered as x(`) � x(`+1) ∀ ` ≥ 0, i.e., x(`)i ≥ x(`+1)

i ∀ ` ≥
0, i ∈ [L] (the ordering is pointwise). Since the constellations are all lower bounded by

the all-zero constellation 0, the sequence converges pointwise to a limiting constellation

x(∞), called the fixed point (FP) of the forward DE. �

It is clear that the FP of forward DE x(∞) satisfies

x(∞)
i =

0, i /∈ [L]

εg(x(∞)
i−γ+1, · · · ,x

(∞)
i+γ−1), i ∈ [L].

Definition 4.3 (BP Threshold). Consider the parallel schedule of the BP forward DE for

the (dl,dr,γ,L) spatially coupled code over a BEC with erasure rate ε . The BP threshold

εBP(dl,dr,γ,L) is defined as the supremum of the channel erasure rates ε ∈ [0,1] for

which the FP of forward DE is the all-zero constellation, i.e., x(∞) = 0. �

Table 4.1 gives the BP thresholds evaluated from BP forward DE for the (dl =

3,dr = 6) coupled ensemble for a few values of γ and L rounded to the sixth decimal

place. The MAP threshold of the underlying (dl,dr)-regular ensemble is εMAP(dl =

3,dr = 6)≈ 0.488151. We see from the table that the BP thresholds for (dl,dr) spatially
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Table 4.1: BP Thresholds εBP for the (dl = 3,dr = 6,γ,L) spatially coupled code
ensemble.

L\γ 2 3 4
16 0.487983 0.488207 0.489805
32 0.487656 0.487923 0.488044
64 0.487014 0.487514 0.487733

coupled codes are close to the MAP threshold of the (dl,dr)-regular unstructured code

ensemble for all γ when L is large enough. Note that some of the thresholds in Table 4.1

are larger than the corresponding MAP threshold of the underlying ensemble. This is

because, for small values of L, the rate of the spatially coupled ensemble (cf. Equation

(4.1)) is much smaller than that of the underlying regular ensemble.

It was shown in [63] that the BP thresholds satisfy

lim
γ→∞

lim
L→∞

ε
BP(dl,dr,γ,L) = lim

γ→∞
lim
L→∞

ε
MAP(dl,dr,γ,L) = ε

MAP(dl,dr).

This means that the BP threshold saturates to the MAP threshold under these limits, and

we can obtain MAP performance with the reduced complexity of the BP decoder. Later

when we analyze the windowed decoder, we will want to keep the coupling length γ

finite and hence will be concerned with the quantity

ε
BP(dl,dr,γ), lim

L→∞
ε

BP(dl,dr,γ,L) (4.4)

as a measure of the performance of the BP decoder. It immediately follows from [63,

Theorem 10] that

ε
BP(dl,dr,γ)≤ ε

MAP(dl,dr).

4.2 Windowed Decoding

The windowed decoder (WD) exploits the structure of the spatially coupled

codes to break down the BP decoding scheme into a series of sub-optimal decoding

steps—we trade-off the performance of the decoder for reduced complexity and decod-

ing latency. When decoding with a window of size W , the WD performs BP over the

subcode consisting of the first W sections of the variable nodes and their neighboring

check nodes and attempts to decode a subset of symbols (those in the first section) within
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the window. These symbols that we attempt to decode within a window are referred to

as the targeted symbols. Upon successful decoding of the targeted symbols (or when a

maximum number of iterations have been performed) the window slides over one sec-

tion and performs BP, attempting to decode the targeted symbols in the window in the

new position.

More formally, let x be the constellation representing the average erasure prob-

ability of messages from variables in each of the sections 1 through L. Initially, the

window consists only of the first W sections in the chain. We will refer to this as the

first window configuration, and as the window slides to the right, we will increment the

window configuration. In other words, when the window has slid through (c− 1) sec-

tions to the right (when it consists of sections c,c+1, · · · ,c+W −1), it is said to be in

the cth window configuration. The cth window constellation, denoted y{c}, is the average

erasure probability of the variables in the cth window configuration. Thus,

y{c} = (y1,{c},y2,{c}, · · · ,yW,{c}) = (xc,xc+1, · · · ,xc+W−1)

for c ∈ [L], where we assume that xc = 0 ∀ c > L. Thus the cth window constellation,

y{c}, represents the “active” sections within the constellation x. While referring to the

entire constellation after the action of the cth window, we will write x{c}. When the

window configuration being considered is clear from the context, with some abuse of

notation, we drop the {c} from the notation and write y = (y1, · · · ,yW ) to denote the

window constellation.

Remark 4.1 (Note on notation). When we wish to emphasize the size of the window

when we write the constellation, we write y〈W 〉 = (yi,〈W 〉,y2,〈W 〉, · · · ,yW,〈W 〉). Note that

the window configuration and the window size are specified as subscripts within curly

brackets {·} and angle brackets 〈·〉, respectively. Finally, when the constellation after a

particular number of iterations ` of DE is to be specified, we write y(`) = (y(`)1 ,y(`)2 , · · · ,
y(`)W ), where the iteration number appears as a superscript within parentheses (·). Al-

though y(`){c},〈W 〉 would be the most general way of specifying the window constellation

for the cth window configuration with a window of size W after ` iterations of DE, for

notational convenience we will write as few of these parameters as possible based on

the relevance to the discussion. �
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4.2.1 Complexity and Latency

For the BP decoder, the number of iterations required to decode all the symbols

in a (dl,dr,γ,L) spatially coupled code depends on the channel erasure rate ε . Whereas

when ε ∈ [0,εBP(dl,dr)] this required number of iterations can be fixed to a constant

number, when ε ∈ (εBP(dl,dr),ε
BP(dl,dr,γ,L)] the number of iterations scales as O(L)

[87]. Therefore, in the waterfall region, the complexity of the BP decoder scales as

O(ML2). For the WD of size W , if we let the number of iterations performed scale as

O(W ), the overall complexity is of the order O(MW 2L). Thus, for small window sizes

W <
√

L, we see that the complexity of the decoder can be reduced. A larger reduction

in the complexity is possible if we fix the number of iterations performed within each

window.

Another advantage of using the WD is that the decoder only needs to know the

symbols in the first W sections of the code to be able to decode the targeted symbols.

Therefore, in latency-constrained applications, the decoder can work on-the-fly, result-

ing in a latency which is a fraction W
L that of the BP decoder.

4.2.2 Asymptotic Performance

The asymptotic performance of the (dl,dr,γ,L) spatially coupled ensemble with

WD can be analyzed using density evolution as was done for the BP decoder. We will

consider the performance of the ensemble with M→ ∞ when the transmission happens

over a BEC with channel erasure rate ε ∈ [0,1]. Further we will assume that for each

window configuration, infinite rounds of message passing are performed.

Definition 4.4 (WD Forward Density Evolution). Consider the WD of a (dl,dr,γ,L)

spatially coupled code over a BEC with channel erasure rate ε with a window of size

W. We can write the forward DE equation as follows. Set the initial constellation x{0}
according to

xi,{0} =

1, i ∈ [L]

0, i /∈ [L].

For every window configuration c = 1,2, · · · ,L, let

y(0){c} = (xc,{c−1},xc+1,{c−1}, · · · ,xc+W−1,{c−1})
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and evaluate the sequence of window constellations {y(`){c}}∞
`=1 using the update rule

y(`)i,{c} = εg(z(`−1)
i−γ+1,{c}, · · · ,z

(`−1)
i+γ−1,{c}), i ∈ [W ],

where for every `,

z(`)i =

xc+i−1,{c−1}, i /∈ [W ]

y(`)i , i ∈ [W ],

and set x{c} as

xi,{c} =

xi,{c−1}, i 6= c

y(∞)
1,{c}, i = c.

�

Discussion : Note that the constellation x{c} keeps track of the erasure probabilities

of targeted symbols of all window configurations up to the cth, followed by erasure

probability of 1 for the variables in sections c+ 1 through W , and zeros for sections

outside this range. As defined, x{c} discards all information obtained by running the

WD in its cth configuration apart from the values corresponding to the targeted symbols.

In practice, it is more efficient to define

xi,{c} =

xi,{c−1}, i /∈ {c,c+1, · · · ,c+W −1}

y(∞)
i−c+1,{c}, otherwise.

In the sequel, we will stick to Definition 4.4. We do this for two reasons: first, discarding

some information between two window configurations can only perform worse than

retaining all the information; and second, this assumption makes the analysis simpler

since we then have y(0){c} = 1 ∀ c ∈ [L]. �

Definition 4.4 implicitly assumes that the limiting window constellations y(∞)
{c}

exist. The following guarantees that the updates for xi,{c} are well-defined.

Definition 4.5 (cth Window Configuration FP of FDE). Consider the WD forward DE

(FDE) of a (dl,dr,γ,L) spatially coupled code over a BEC with erasure rate ε with a

window of size W. Then the limiting window constellation y(∞)
{c} exists for each c ∈ [L].

We refer to this constellation as the cth window configuration FP of forward DE. �
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Discussion : As noted earlier, y(0){c} = 1 ∀ c ∈ [L], and y(0){c} = 1 � ε � y(1){c}. By induc-

tion, from the monotonicity of g(·), this implies that y(`){c} � y(`+1)
{c} ∀ ` ≥ 0. Since these

constellations are lower bounded by 0, the cth window configuration FP of FDE y(∞)
{c}

exists for every c ∈ [L]. �

The cth window configuration FP of forward DE therefore satisfies

y(∞)
i,{c} =

xc+i−1,{c−1}, i /∈ [W ]

εg(y(∞)
i−γ+1,{c}, · · · ,y

(∞)
i+γ−1,{c}), i ∈ [W ]

(4.5)

for every c ∈ [L]. Since the x{0} vector has non-zero values by definition, from the con-

tinuity of the WD FDE equations, so do the vectors x{c} ∀ c. Hence 0 cannot satisfy

Equation (4.5), i.e., 0 cannot be the cth window configuration FP of forward DE. There-

fore, y(∞)
{c} � 0 ∀ c ∈ [L]. This means that WD can never reduce the erasure probability of

the symbols of a spatially coupled code to zero, although it can be made arbitrarily small

by using a large enough window. Therefore, an acceptable target erasure rate δ forms

a part of the description of the WD. We say that the WD is successful when x{L} � δ .

Lemma 4.1 (Maximum of x{L}). The vector x{L} obtained at the end of WD forward

DE satisfies xi−1,{L} ≤ xi,{L} ∀ i ∈ [L− γ + 1]. Moreover, ∃ x̂ ∈ [0,1] independent of L

such that xi,{L} ≤ x̂ ∀ i.

Proof. By definition, xi,{L} = y(∞)
1,{i} ∀ i ∈ [L]. The claim is true for i = 1 since x1,{L} =

y(∞)
1,{1} ≥ 0 = x0,{L}. For the ith window configuration, it is clear from Definition 4.4 that

y(0){i−1} � y(0){i}, i ∈ [L−γ +1]. By induction, from the monotonicity of g(·), it follows that

y(∞)
1,{i−1} ≤ y(∞)

1,{i} for i in this range.

For i ∈ {L− γ + 2, · · · ,L}, the above claim is not valid because we defined

x j,{c} = 0 for j > L and we cannot make use of the monotonicity of g(·) since some

arguments (corresponding to sections up to the Lth section) are increasing and others

(corresponding to the sections beyond the Lth section) decreasing. Nevertheless, we can

still claim that xi,{L} ≤ xi,{∞} ∀ i ∈ N where x{∞} is the vector of erasure probabilities

obtained after WD for a spatially coupled code with an infinite chain length, i.e., L = ∞.

For L = ∞, the sequence {xi,{∞}} is non-decreasing and since the xi,{∞} are probabili-

ties, they are in the bounded, closed interval [0,1]. Consequently, the limit limi→∞ xi,{∞}
exists in the interval [0,1], and limi→∞ xi,{∞} = supi xi,{∞} , x̂.
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As a consequence of Lemma 4.1, we can say that the WD is successful when

x̂ ≤ δ . This definition of the success of WD is independent of the chain length L and

allows us to compare the performance of WD to that of the BP decoder through the

thresholds defined in Equation (4.4). Note that although the upper bound for x̂ in Lemma

4.1 is a trivial bound, we will in the following give conditions when x̂ can be made

smaller than an arbitrarily chosen δ , thereby characterizing the WD thresholds.

Definition 4.6 (WD Thresholds). Consider the WD of a (dl,dr,γ,L) spatially coupled

code over a BEC of erasure rate ε with a window of size W. The WD threshold

εWD(dl,dr,γ,W,δ ) is defined as the supremum of channel erasure rates ε for which

x̂≤ δ . �

Discussion : Since we defined the WD threshold based on x̂, it is clear that this is

independent of the chain length L. On the other hand, if we used maxi∈[L] xi,{L} ≤ δ as

the condition for success of the WD in our definition, we would obtain an L-dependent

threshold. But x̂ denotes the “worst-case” remnant erasure probability after WD, and

imposing constraints on x̂ therefore guarantees good performance for codes with any L.

Note that keeping x̂≤ δ is sufficient to guarantee an a-posteriori erasure proba-

bility pe smaller than δ because

pe = ε

( x̂
ε

) dl
dl−1

= x̂
( x̂

ε

) 1
dl−1 ≤ x̂≤ δ . �

We will now state the main result and prove it in the following section.

Theorem 4.2 (WD Threshold Bound). Consider windowed decoding of the (dl,dr, γ,L)

spatially coupled ensemble over the BEC. Then for a target erasure rate δ < δ∗, there

exists a positive integer Wmin(δ ) such that when the window size W ≥Wmin(δ ) the WD

threshold satisfies

ε
WD(dl,dr,γ,W,δ )≥

(
1− dldr

2
δ

dl−2
dl−1
)(

ε
BP(dl,dr,γ)− e−

1
B (

W
γ−1−A ln ln D

δ
−C)
)
. (4.6)

Here A,B,C,D and δ∗ are strictly positive constants that depend only on the ensemble

parameters dl,dr and γ . �

Theorem 4.2 says that the WD thresholds approach the BP threshold εBP(dl,dr,γ)

defined in Equation (4.4) at least exponentially fast in the ratio of the size of the window
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W to the coupling length γ for a fixed target erasure probability δ < δ∗. Moreover, the

sensitivity of the bound to changes in δ is small in the exponent in (4.6) owing to the

ln ln 1
δ

factor, but larger in the first term in the product on the right hand side of (4.6)

where it is roughly linear in δ . However, since we intend to set δ to be very small,

e.g. 10−15, the first term does not influence the bound heavily. The requirement that

W ≥Wmin(δ ) is necessary to keep the term within parentheses in the exponent non-

negative. Therefore the minimum window size required, Wmin(δ ), also depends on the

constants A,C and D and, in turn, on the ensemble parameters dl,dr and γ .

The bound guaranteed by Theorem 4.2 is actually fairly loose. Numerical results

suggest that the minimum window size Wmin(δ ) is actually much smaller than the bound

obtained from analysis (cf. Section 4.3). Density evolution also reveals that for a fixed

window size, the WD thresholds are much closer to the BP threshold than the bound

obtained from Theorem 4.2. We note here that the gap between analytical results and

numerical experiments is mainly due to the reliance on bounding the density evolution

function in Equation (4.3) using the counterpart for regular unstructured LDPC ensem-

bles, which proves to be easier to handle than the multivariate Equation (4.3). However,

the scaling of the WD thresholds with the window size and the target erasure probability

seem to be as dictated by the bound in (4.6), suggesting that Theorem 4.2 captures the

essence of the WD algorithm.

Table 4.2 gives the WD thresholds obtained through forward DE for the (dl =

3,dr = 6,γ = 3,L) spatially coupled ensemble for different target erasure rates δ and dif-

ferent window sizes W . These thresholds have been rounded to the sixth decimal point.

A few comments are in order. As can be seen from the table, the thresholds are close

Table 4.2: WD Thresholds εWD for the (dl = 3,dr = 6,γ = 3) spatially coupled code
ensemble with window size W and target erasure rate δ .

W\δ 10−6 10−12 10−18

4 0.068403 0.000772 0.000008
8 0.472992 0.390749 0.254339

16 0.487504 0.487504 0.487504

to εBP(dl = 3,dr = 6,γ = 3) ≈ 0.487514 even for window sizes that are much smaller

than the Wmin(δ ) obtained analytically, e.g., W = 16. Moreover, the WD thresholds are

more sensitive to changes in δ for small window sizes where the bound in Theorem 4.2



98

is not valid. It is obvious that the thresholds decrease as δ is decreased. Also note that

for a fixed target erasure rate, the window size can be made large enough to make the

WD thresholds close to the BP threshold.

4.3 Performance Analysis

In this section, we prove Theorem 4.2 in steps. First, we analyze the performance

of the first window configuration. We will characterize the first window configuration FP

of forward DE. We will establish that for the variables in the first section of the window,

the FP erasure probability can be made small at least double-exponentially in the size of

the window. We will show that this is possible for all channel erasure rates smaller than

a certain ε , which we will call the first window threshold εFW(dl,dr,γ,W,δ ), provided

the window size is larger than a certain minimum size.

Once we have this, we consider the performance of the cth window configuration

for 1 < c≤ L. In this case also, we will show that the FP erasure probability of the first

section within the window is guaranteed to decay double-exponentially in the window

size. As for the first window configuration, this result holds provided the window size

is larger than a certain minimal size and this time the minimal size is slightly larger than

the minimal size required for the first window configuration. Moreover, such a result is

true for channel erasure rates smaller than a value which is itself smaller than the first

window threshold, and this value will be our lower bound for the WD threshold.

4.3.1 First Window Configuration

From Definition 4.4, forward DE for the first window configuration amounts

to the following. Set y(0){1} = 1 and evaluate the sequence of window constellations

{y(`){1}}∞
`=1 according to

y(`)i,{1} =


0, i≤ 0

εg(y(`−1)
i−γ+1,{1}, · · · ,y

(`−1)
i+γ−1,{1}), i ∈ [W ]

1, i >W.

(4.7)
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Since y(0){1} is non-decreasing, i.e., y(0)i,{1} ≤ y(0)i+1,{1} ∀ i, so is the first window configura-

tion FP, y(∞)
{1}, by induction and monotonicity of g(·).

Figure 4.1 shows the first window configuration FP of forward DE for the (dl =

3,dr = 6,γ = 3,L) ensemble with a window of size W = 16 for a channel erasure rate

ε = 0.48812.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0

1 1

Figure 4.1: The first window configuration FP of forward DE for the (dl = 3,dr = 6,γ =
3,L) ensemble with a window of size W = 16 for ε = 0.48812. The left and the right
boundaries are fixed at 0 and 1 respectively. The sections within the window are indexed
from 1 to W = 16. The first section has a FP erasure probability y(∞)

1,{1} ≈ 2×10−15.

The scheduling scheme used in the definition of the window configuration FPs

is what is called the parallel schedule. In general, we can consider a scheduling scheme

where, in each step, a subset of the sections within the window are updated. We say that

such an arbitrary scheduling scheme is admissible if every section is updated infinitely

often with the correct boundary conditions, i.e., with the correct values set at the left

and the right ends of the window. It is easy to from the standard argument of nested

computation trees (see, e.g., [63]) that the FP is independent of the scheduling scheme.

We know that the first window configuration FP of forward DE, y(∞)
{1}, is non-

decreasing, i.e., y(∞)
i,{1} ≤ y(∞)

i+1,{1} ∀ i. The following shows the ordering of the FP values

of individual sections in windows of different sizes. With the understanding that we

are considering only the first window configuration in this subsection, we will drop the

window configuration number from the notation for window constellations throughout

this subsection for convenience.

Lemma 4.3 (FPs and Window Size). Let y〈W 〉 and y〈W+1〉 denote the first window config-

uration FPs of forward DE with windows of sizes W and W +1 respectively for ε ∈ [0,1].
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Then,

yi,〈W 〉 ≥ yi,〈W+1〉 ≥ yi−1,〈W 〉

where yi,〈W 〉 denotes the FP erasure probability of the ith section in a window of size W.

Proof. Consider the following schedule. Set y(0)〈W+1〉 = (y〈W 〉,1) and evaluate the se-

quence of window constellations {y(`)〈W+1〉} according to Equation (4.7). Clearly, we

have

y(1)〈W+1〉 � (y〈W 〉,ε)� (y〈W 〉,1) = y(0)〈W+1〉

so that the sequence {y(`)〈W+1〉} is pointwise non-increasing by induction. We claim that

this schedule is admissible. This is true because the DE updates are first performed

infinitely many times over the first W sections to obtain y(0)〈W+1〉, and then over all the

W + 1 sections infinitely many times again. Therefore the updates are performed over

all sections infinitely often with the correct boundary conditions. The limiting FP must

hence be exactly y〈W+1〉 and the first inequality in the statement of the lemma holds.

Intuitively, this is true because in going from W to W + 1 and checking the ith section,

we have moved further away from the right end of the window (where yi = 1) while

remaining at the same distance from the left end (where yi = 0).

To prove the second inequality, consider the following schedule. Set y(0)i,〈W 〉 =

yi+1,〈W+1〉, i = 1, · · · ,W and evaluate the sequence of constellations {y(`)〈W 〉} according to

Equation (4.7). Since y(0)0,〈W 〉 = 0≤ y1,〈W+1〉, we must have y(1)〈W 〉 � y(0)〈W 〉 and by induction

the sequence of constellations thus obtained is also pointwise non-increasing. Again we

claim that the above mentioned schedule is admissible. This is true because we first

update all W sections within the window and also the zeroth section infinitely often, and

then set the boundary condition that the zeroth section also has all variables completely

known. In all, every section within the window gets updated infinitely often with the

correct boundary conditions. The limiting FP must hence be exactly y〈W 〉 and the second

inequality claimed in the statement of the lemma follows. As in the previous case, this

is intuitively true because in going from the (i+1)th section with window size W +1 to

the ith section with window size W , we have moved closer to the left end of the window

while maintaining the distance from the right end.
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We now give some bounds on the FP erasure probabilities of individual sections

within a window.

Lemma 4.4 (Bounds on FP). Consider the WD of the (dl,dr,γ,L) ensemble with a

window of size W over a channel with erasure rate ε . The first window configuration

FP y satisfies

yi ≥
(

ε(
γ−1

2γ
)dl−1

) (dl−1) j−1
dl−2

y(dl−1) j

i+ j

yi ≤ ε

(
1−αk(1− yi+k)

dr−1
)dl−1

for i ∈ [1,W ], j ∈ [0,W +1− i],k ∈ [0,γ−1], where αk = (1− (γ−k−1)(γ−k)
2γ2 )dr−1.

Proof. For the lower bound, we have

yi = εg(yi−γ+1, · · · ,yi+γ−1)≥ εg(0, · · · ,0︸ ︷︷ ︸
γ

,yi+1, · · · ,yi+1︸ ︷︷ ︸
γ−1

)
(a)
≥ ε

(
γ−1

2γ
yi+1

)dl−1

where (a) follows from the fact [63, Lem. 24(iii)] that

g(yi−γ+1, · · · ,yi+γ−1)≥ ȳdl−1
i

where ȳi =
1
γ2 ∑

γ−1
j,k=0 yi+ j−k. Applying this bound recursively for yi,yi+1, · · · ,yi+ j−1, we

get

yi ≥
(

ε(
γ−1

2γ
)dl−1

) (dl−1) j−1
dl−2

y(dl−1) j

i+ j ,Φe−φ j(dl−1) j

where Φ =
(

ε( γ−1
2γ

)dl−1
) −1

dl−2 ≥ 1 and φ j = ln
(

Φ

yi+ j

)
≥ 0. When i+ j = W + 1, since

yW+1 = 1,

yi ≥Φe−φ(dl−1)W+1−i
, i = 1,2, · · · ,W

with φ = φW+1−i = lnΦ.

For the upper bound,

yi ≤ εg(yi+k, · · · ,yi+k︸ ︷︷ ︸
γ+k

,1, · · · ,1︸ ︷︷ ︸
γ−k−1

)
(b)
≤ ε

(
1−αk(1− yi+k)

dr−1
)dl−1

, fk(ε,yi+k)
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for k ∈ [0,γ − 1], where αk = (1− (γ−k−1)(γ−k)
2γ2 )dr−1. Here (b) follows from [63, Lem.

24(i)]

g(yi−γ+1, · · · ,yi+γ−1)≤ (1− (1− ȳi)
dr−1)dl−1.

Note that for k = γ − 1, fγ−1(ε,x) = f (ε,x), the forward DE update equation for the

(dl,dr)-regular ensemble. This proves the Lemma. We now discuss the utility and

limitations of the upper bounds derived here.

Figure 4.2 plots the bounds fk(ε,yi+k) for the (dl = 3,dr = 6,γ = 3,L) ensemble

for two values of ε , one below and the other above the BP threshold εBP(dl,dr). As is

0

0.1

0.2

0.3

f
k
(ε

1
,y

i+
k
)

0 0.1 0.2 0.3
yi+k

k = 0

k = 1
k = 2

0

0.15

0.3

0.45

f
k
(ε

2
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i+
k
)
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yi+k

k = 0

k = 1

k = 2

Figure 4.2: The upper bounds fk(ε,yi+k) for two values of ε : ε1 = 0.3 < εBP(dl,dr)≈
0.4294 < ε2 = 0.45 for the (dl = 3,dr = 6,γ = 3,L) ensemble.

clear from the figure, the tightest bounds are obtained for k = γ−1. Note that the bound

when k = 0 can be recursively computed to obtain a universal upper bound yub on all

the window constellation points yi for a given (dl,dr,γ,L) ensemble, given by the fixed

point of the equation

y = f0(ε,y) = ε

(
1− (

γ +1
2γ

)dr−1(1− y)dr−1
)dl−1

which is plotted in Figure 4.3. As can be seen from the plot, these upper bounds are only

marginally tighter than the trivial upper bound of ε . In general, we can write yW ≤ yub

and use the other upper bounds fk(·, ·) to obtain better bounds for other sections as

follows. In the sequel, we shall write fk1,k2,··· ,kc(ε,y) to denote fk1(ε, fk2(ε, · · · fkc(ε,y)))

and similarly define

fkc(ε,y), fk(ε, fk(ε, · · · , fk(ε,y)))︸ ︷︷ ︸
c

.
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Figure 4.3: Universal upper bounds yub on the constellation points yi as a function of
ε for the (dl = 3,dr = 6,γ = 2,L) ensemble. These bounds are only marginally tighter
than the straightforward upper bound ε . Also, the bounds are non-decreasing in γ .

Thus, for j = c(γ − 1)+ d,0 ≤ c,0 ≤ d < γ − 1, we can write yi ≤ fd,(γ−1)c(ε,yi+ j).

The FP value of the erasure probability of a variable node in the first section, y1, can

therefore be bounded in terms of the window size W as y1 ≤ fd,(γ−1)c(ε,yub), where c =⌊
W−1
γ−1

⌋
,d =W−1−c(γ−1). This bounding is particularly useful when ε ≤ εBP(dl,dr)

when the fixed point of the fγ−1(·, ·) upper bound is zero. It is sometimes possible that

f(γ−1)c(ε,yub) ≤ fd,(γ−1)c(ε,yub), in which case we can retain the tighter upper bound

f(γ−1)c(ε,yub). Figure 4.4 shows an example of the upper bound on y1 graphically. As

yub

ŷ1

0

0.1

0.2

0.3

f
k
(ε
,y

)

0 0.1 0.2 0.3
y

k = 0

k = 2

Figure 4.4: Upper bound, ŷ1 ≥ y1, for the (dl = 3,dr = 6,γ = 3,L) ensemble with a
window of size W = 9. The channel erasure rate ε = 0.3.

a consequence of this upper bound, as W → ∞, we have that y1→ 0 for ε ≤ εBP(dl,dr).

However, for ε > εBP(dl,dr), these upper bounds are not very useful since the FP of the

fγ−1(·, ·) upper bound is non-zero (cf. Figure 4.2).



104

The following shows that once the FP erasure probability of a section within the

window is smaller than a certain value, it decays very quickly as we move further to the

left in the window.

Lemma 4.5 (Doubly-Exponential Tail of the FP). Consider WD of the (dl,dr,γ,L) en-

semble with a window of size W over a channel with erasure rate ε ∈ (0,1). Let dl ≥ 3

and let y be the first window configuration FP of forward DE. If there exists an i ∈ [W ]

such that yi < δ0 ,
(
(dr−1)

dl−1
dl−2
)−1

, then

yi− j(γ−1) ≤Ψe−ψ(dl−1) j

where Ψ = δ0ε
−1

dl−2 and ψ = ln(Ψ

δ0
) = 1

dl−2 ln 1
ε
> 0.

Proof. Since the FP is non-decreasing, we have

yi−(γ−1) = εg(yi−2(γ−1), · · · ,yi)≤ εg(yi,yi, · · · ,yi) = ε(1− (1− yi)
dr−1)dl−1 (4.8)

≤ ε((dr−1)yi)
dl−1

which can be applied recursively to obtain

yi− j(γ−1) ≤ ε

(dl−1) j−1
dl−2 (dr−1)

dl−1
dl−2 ((dl−1) j−1)y(dl−1) j

i

< ε

(dl−1) j−1
dl−2 (dr−1)

dl−1
dl−2 ((dl−1) j−1)

δ
(dl−1) j

0 ,Ψe−ψ(dl−1) j
(4.9)

where Ψ and ψ are as defined in the statement. It is worthwhile to note that δ0 is a lower

bound on the breakout value for the (dl,dr)-regular ensemble [70]. The emergence

of the breakout value in this context is not entirely unexpected since it is known that

for the (dl,dr)-regular ensemble, the erasure probability decays double-exponentially

in the number of iterations below the breakout value, and in case of spatially coupled

ensembles, the counterpart for the number of iterations is the number of sections (cf.

Equation (4.8)).

We now show that the FP erasure probability of a message from a variable node

in the first section, y1, can be made small by increasing the window size W for any

ε < εBP(dl,dr,γ). Assuming that the window size is “large enough,” we will count the

number of sections, starting from the right, that have a FP erasure probability larger than

a small δ for a channel erasure rate ε = εBP(dl,dr,γ)−∆ε .
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Definition 4.7 (Transition Width). Consider WD of a (dl,dr,γ,L) spatially coupled code

over a BEC of erasure rate ε . Let y be the cth window configuration FP of forward DE.

Then we define the transition width τ(ε,δ ) of y as

τ(ε,δ ) = |{i ∈ [W ] : δ < yi ≤ 1}|. �

We first upper bound τ(ε,δ )≤ τ̂(ε,δ ) and then claim from Lemma 4.3 that by

employing a window whose size is larger than τ̂(ε,δ ), we can guarantee y1 ≤ δ .

Definition 4.8 (First Window Threshold). Consider WD of the (dl,dr,γ,L) spatially

coupled ensemble with a window of size W over a BEC with erasure rate ε . The first

window threshold εFW(dl,dr,γ,W,δ ) is defined as the supremum of channel erasure

rates for which the first window configuration FP of forward DE y satisfies y1 ≤ δ . �

From Definitions 4.7 and 4.8, we can see that by ensuring that W ≥ τ̂(ε,δ ), we

can bound εFW(dl,dr,γ,W,δ )≥ ε .

Proposition 4.6 (Maximum Transition Width). Consider the first window configuration

FP of forward DE y for the (dl,dr,γ,L) spatially coupled ensemble with a window of

size W < L for ε ∈ [ εBP(dl ,dr,γ)+εBP(dl ,dr)
2 ,εBP(dl,dr,γ)) = E . Then,

τ(ε,δ )≤ (γ−1)
(
A ln ln

D

δ
+B ln

1
∆ε

+ Ĉ
)
, τ̂(ε,δ )

provided δ ≤ δ0. Here ∆ε = εBP(dl,dr,γ)−ε , and A,B, Ĉ,D and δ0 are strictly positive

constants that depend only on the ensemble parameters dl,dr and γ . �

Remark 4.2. To prove the above proposition, we will use some results from [63] sum-

marized below. We define h(y), f (ε,y)− y where

f (ε,y) = ε(1− (1− y)dr−1)dl−1,

the DE update equation for randomized (dl,dr)-regular ensembles. For ε in the interval

(εBP(dl,dr),1), the equation h(y) = 0 has exactly three roots in the interval [0,1], given

by 0,yu(ε) and ys(ε). Between 0 and yu(ε), h(y) is negative, attaining a unique mini-

mum at ymin(ε). Between yu(ε) and ys(ε), h(y) is positive, attaining a unique maximum
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at ymax(ε). Beyond ys(ε), h(y) is negative again. Between 0 and ymin(ε), h(y) is upper

bounded by a line through the origin with slope

−µ1(ε),
h(ymin(ε))

ymin(ε)
,

i.e., the line l(y) = −µ1(ε)y. Between ymin(ε) and yu(ε), h(y) is upper bounded by a

line passing through (yu(ε),0) with a slope

µ2(ε),min{ −h(ymin(ε))

yu(ε)− ymin(ε)
,h′(yu(ε))}.

Between yu(ε) and ymax(ε), h(y) is lower bounded by a line through (yu(ε),0) with a

slope

µ3(ε),min{ h(ymax(ε))

ymax(ε)− yu(ε)
,h′(yu(ε))}.

Between ymax(ε) and ys(ε), h(y) is lower bounded by the line through (ys(ε),0) with

slope

−µ4(ε),max{ −h(ymax(ε))

ys(ε)− ymax(ε)
,h′(ys(ε))}.

Beyond ys(ε), h(y) is upper bounded by the line through (ys(ε),0) with slope

−µ5(ε), h′(ys(ε)).

Each of the µi(ε)’s, i = 1, · · · ,5, defined above is strictly positive for ε in the speci-

fied range. For a general ε , we will drop the dependence of each of these parameters

on ε from the notation. When ε = ε∗ , εMAP(dl,dr), the corresponding parameters

are themselves shown with ∗’s. These properties of h(y) are illustrated in Figure 4.5.

We can lower bound ymin as ymin ≥ 1
d2

l d2
r
, and the slope µ1 as µ1 ≥= 1

8d2
r
, µ̃1 ∀ ε ∈

(εBP(dl,dr),1).

Further, |h′(y)| ≤ dldr ∀ y ∈ [0,1]. We have h′(0) = h′(1) = −1, h′(ymin) =

h′(ymax) = 0. h′′(0) = h′′(ŷ) = h′′(1) = 0, where

ŷ = 1−
( dr−2

dldr−dl−dr

) 1
dr−1

,

and

h′′(y)

> 0, y ∈ (0, ŷ)

< 0, y ∈ (ŷ,1).

From Rolle’s Theorem, ymin ≤ ŷ≤ ymax. We first give some simple bounds for the µi’s

defined earlier which will be useful in the proof.
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h
(y
)

y0 yu ys

ymin

ymax

−µ1 µ2

µ3 −µ4

−µ5

Figure 4.5: Plot of h(y) (in solid blue) for the (dl = 3,dr = 6) ensemble for ε = 0.47
illustrating the properties stated above. We have dropped the dependence of all the
parameters on ε from the notation. The tangents at 0,yu and ys are shown as dashed
red lines. The other lines used in bounding h(y) are shown as dash-dotted green lines.
The µi’s, i = 1, · · · ,5, are shown in the same color as the lines, whose absolute values of
slopes they represent, that bound h(y) in various regions.

Lemma 4.7 (µ4,µ5 bounds). For ε ∈ (εBP(dl,dr),1), we have 0 < µ4 ≤ µ5 < 1.

Proof. Since h′′(y)< 0 for y ∈ (ymax,1), h′(y) monotonically decreases in this interval.

Thus, 0< µ5 =−h′(ys)< 1. From the mean value theorem, we have h′(ξ ) =− h(ymax)
ys−ymax

≥
h′(ys) for some ξ ∈ [ymax,ys] so that 0 < µ4 =

h(ymax)
ys−ymax

≤−h′(ys) = µ5 < 1.

The values yu and ys are referred to as the unstable and stable fixed points (FPs)

of DE for the (dl,dr)-regular ensemble, respectively. This is because both these values

satisfy h(y) = 0 or y = f (ε,y) = ε(1− (1− y)dr−1)dl−1. The ε for which the FP is

y ∈ [0,1] is given by

ε(y) =
y

(1− (1− y)dr−1)dl−1 .

The BP threshold is hence the smallest value of ε(y), i.e., εBP(dl,dr) = min{ε(y),y ∈
[0,1]}. The value of y that achieves this minimum is denoted yBP. Then, ∀ ε ∈ [εBP(dl,

dr),1], the unstable and stable FPs are given by

yu(ε) = y ∈ [0,yBP] : ε(y) = ε,

ys(ε) = y ∈ [yBP,1] : ε(y) = ε. (4.10)

Figure 4.6 plots these stable and unstable FPs. The reason why ys is called the stable FP

(and yu the unstable FP) can be explained through Figure 4.6. For ε ∈ (εBP(dl,dr),1],
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Figure 4.6: The unstable and stable FPs of DE for the (dl = 3,dr = 6)-regular ensemble
as given by Equation (4.10). yu(ε) is shown as the thick blue curve and ys(ε) as the thin
red curve. By definition, ys(ε)≥ yBP and yu(ε)≤ yBP. yBP and εBP≡ εBP(dl = 3,dr = 6)
are also shown. Note that ys(ε

BP) = yBP = yu(ε
BP).

when the forward DE updates are performed, the value y monotonically decreases from

1 and converges to the first solution of the equation h(y) = 0, which happens to be ys(ε)

for ε in this range. Therefore, performing BP always results in the FP ys and hence the

adjective “stable”. Similarly for yu, which is a solution never reached through BP, it can

be shown that a small perturbation from the value of yu will result in convergence to

either ys or 0. Therefore, yu’s are “unstable” FPs.

We can define the derivatives y′s and y′u of ys and yu, respectively, with respect to

ε for ε ∈ (εBP(dl,dr),1). It is easy to see that y′s is monotonically decreasing and y′u is

monotonically increasing in ε . For details and proofs of the aforementioned properties,

see [63, Appendix II], [98]. �

Proof of Proposition 4.6. Note that when W is smaller than the claimed upper bound on

the transition width, the claim is trivially true; i.e., the transition width cannot be longer

than the window size. However, in this case, we cannot guarantee y1 ≤ δ . Hence, we

will assume that W is larger than the bound. In the following, we will often use the

bound

f (ε,yi−γ+1)≤ yi ≤ f (ε,yi+γ−1).

We now define a schedule that results in a FP window constellation that dom-

inates the FP of the parallel schedule, y, for a channel erasure rate ε ∈ E . We then
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upper bound the actual transition width by the transition width of the dominating FP.

We generate the dominating FP in steps.

i) Set y(0) = 1 and evaluate the sequence of window constellations {y(`)} according

to Equation (4.7), but with the boundary conditions

y(`)i =

y(`)1 , i≤ 0

1, i >W.

We have the FP in this case, yA, satisfying yA � y by induction. Further,

yA
1 = εg(yA

1 , · · · ,yA
1︸ ︷︷ ︸

γ

,yA
2 , · · · ,yA

γ ) (4.11)

≥ εg(yA
1 , · · · ,yA

1︸ ︷︷ ︸
2γ−1

) = f (ε,yA
1 ),

so that yA
1 ≥ ys. Note that yA

1 ≤ yu cannot happen since, starting from 1, yA
1 will

equal the first solution of (4.11), which from the continuity of the DE equations is

guaranteed to have a solution no smaller than ys. Starting from the right end, we

now count the number of sections until yA
i ≤ ys +ϒA where we choose ϒA =

y∗s−ys
2 .

Recall that the ∗-ed values correspond to ε∗ = εMAP(dl,dr). We first observe that

yA
W−γ+1 ≤ εg(yA

W , · · · ,yA
W ) = f (ε,yA

W ).

Hence,

yA
W − yA

W−γ+1 ≥ yA
W − f (ε,yA

W ) =−h(yA
W )≥ µ5(yA

W − ys),

which implies that yA
W−γ+1− ys ≤ (1− µ5)(yA

W − ys). From similar reasoning, we

can show that

yA
W−m(γ−1)− ys ≤ (1−µ5)(yA

W−(m−1)(γ−1)− ys)≤ (1−µ5)
m(yA

W − ys)

≤ (1−µ5)
m(yub− ys).

Since µ5 < 1 from Lemma 4.7, the above difference is decreasing in m. From

the definition of yub (note that this upper bound is valid even for the boundary
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conditions specified here) in the proof of Lemma 4.4, it is easy to see that yub ≥ ys

so that the right hand side of the above chain of inequalities is non-negative. Thus,

yA
W−m(γ−1) ≤ ys +ϒA if

m≥
⌈

ln yub−ys
ϒA

ln 1
1−µ5

⌉
.

Let µ̃5 = min{µ5,ε ∈ E }. Then, we can write from the mean value theorem

ϒA =
y∗s − ys

2
=

ε∗− ε

2
y′s(ε̂)

for some ε̂ ∈ [ε,ε∗]. We can lower bound this as

ϒA ≥
ε∗− ε

2
y′s(ε

∗)≥ ∆ε

2
y′s(ε

∗)

where the first inequality follows from the fact that y′s is decreasing in ε in the

interval (εBP(dl,dr),1) and the second from ε∗ ≥ εBP(dl,dr,γ). Therefore this

width is no more than

(γ−1)
( ln 2(yub−yBP)

y′s(ε∗)∆ε

ln 1
1−µ̃5

+1
)

sections, since yBP ≤ ys.

ii) From the definition of ϒA, we have ys +ϒA = y∗s −ϒA. Let iA be the largest index

for which yA
iA ≤ y∗s −ϒA. Set y(0) = yA and evaluate the sequence of window con-

stellations {y(`)} according to Equation (4.7) performing the updates only for those

sections with indices i < iA. Further, perform the updates for the channel erasure

rate ε∗ since we only require an upper bound on the transition width. We set the

left end of the window to perform these updates to 0, i.e., yi = 0 ∀ i ≤ 0. Let yB

denote the FP window constellation at the end of this procedure. By induction, we

have yB
i ≤ y∗s −ϒA ∀ i≤ iA. Also, yB

iA−1 ≥ f (ε∗,yB
iA−γ

) so that

yB
iA−1− yB

iA−γ ≥ h(yB
iA−γ)≥ µ

∗
4 (y
∗
s − yB

iA−γ)

which implies that

y∗s − yB
iA−γ ≥

y∗s − yB
iA−1

1−µ∗4
.
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Similarly, it can be shown that as long as yB
iA−1−m(γ−1) ≥ y∗max,

y∗s − yB
iA−1−m(γ−1) ≥

y∗s − yB
iA−1−(m−1)(γ−1)

1−µ∗4

and by induction

y∗s − yB
iA−1−m(γ−1) ≥

y∗s − yB
iA−1

(1−µ∗4 )
m ≥

ϒA

(1−µ∗4 )
m .

Note that since µ∗4 < 1 from Lemma 4.7, the above difference is increasing in m.

Thus, there are no more than

(γ−1)
( ln 2(y∗s−y∗max)

y′s(ε∗)∆ε

ln 1
1−µ∗4

+1
)

sections with yB
i ∈ [y∗max,y

∗
s ].

iii) Let imax be the largest index i such that yB
i ≤ y∗max. We define ϒB =

yu−y∗u
2 and

count the number of sections with FP values yB
i between y∗u +ϒB and y∗max. Since

yB
imax
≥ f (ε∗,yB

imax−(γ−1)) we have

yB
imax
− yB

imax−(γ−1) ≥ h(yB
imax−(γ−1))≥ µ

∗
3 (y

B
imax−(γ−1)− y∗u)

which implies that

yB
imax−(γ−1)− y∗u ≤

yB
imax
− y∗u

1+µ∗3
.

Again by induction,

yB
imax−m(γ−1)− y∗u ≤

yB
imax
− y∗u

(1+µ∗3 )
m

as long as yB
imax−m(γ−1) ≥ y∗u. Since µ∗3 > 0, the above difference is decreasing in m,

and consequently, yB
imax−m(γ−1) ≤ y∗u +ϒB if

m≥
⌈

ln y∗max−y∗u
ϒB

ln(1+µ∗3 )

⌉
.

Writing

ϒB =
yu− y∗u

2
=−ε∗− ε

2
y′u(ε̆)
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from the mean value theorem for some ε̆ ∈ [ε,ε∗], we can bound this as

ϒB ≥−
ε∗− ε

2
y′u(ε

∗)≥−∆ε

2
y′u(ε

∗)

where the first inequality follows because −y′u is decreasing in ε in the interval

(εBP(dl,dr),1) and the second because ε∗ ≥ εBP(dl,dr,γ). This implies that there

are no more than

(γ−1)
( ln 2(y∗max−y∗u)

−y′u(ε∗)∆ε

ln(1+µ∗3 )
+1
)

sections with FP values between y∗u +ϒB and y∗max.

iv) From the definition of ϒB, we have y∗u +ϒB = yu−ϒB. Let iB be the largest index

i such that yB
i ≤ yu−ϒB. Set y(0) = yB and evaluate {y(`)} according to Equation

(4.7) performing the updates only for sections with indices i ≤ iB with channel

erasure rate ε . Again we set the left end of the window to 0 while performing

the updates. Denote the FP obtained at the end of this procedure as yC. Clearly,

yC
i ≤ yu−ϒB ∀ i≤ iB. Since yC

iB−γ+1 ≤ f (ε,yC
iB), we have

yC
iB− yC

iB−γ+1 ≥−h(yC
iB)≥ µ2(yu− yC

iB)

so that

yu− yC
iB−γ+1 ≥ (1+µ2)(yu− yC

iB).

From similar reasoning, as long as yC
iB−m(γ−1) ≥ ymin,

yu− yC
iB−m(γ−1) ≥ (1+µ2)(yu− yC

iB−(m−1)(γ−1))

and by induction

yu− yC
iB−m(γ−1) ≥ (1+µ2)

m(yu− yC
iB)≥ (1+µ2)

m
ϒB.

Since µ2 > 0, the above difference is increasing in m. By letting µ̃2 = min{µ2,ε ∈
E } and noting that

yu− ymin ≤ yBP− ymin ≤ yBP− 1
d2

l d2
r
,

we have that there are no more than

(γ−1)
( ln

2(yBP− 1
d2
l d2r

)

−y′u(ε∗)∆ε

ln(1+ µ̃2)
+1
)

sections with FP values in the interval [ymin,yu].
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v) Let iC be the largest index i such that yC
i ≤ ymin. Proceeding as above, we have

yC
iC − yC

iC−γ+1 ≥−h(yC
iC)≥ µ1yC

iC

and by induction,

yC
iC−m(γ−1) ≤ (1−µ1)

myC
iC .

Thus, between δ0 and ymin, there are no more than

(γ−1)
( ln yBP

δ0

ln 1
1−µ̃1

+1
)

sections with FP values in the interval [δ0,ymin], since ymin ≤ yBP and µ1 ≥ µ̃1.

vi) Let iD be the largest index i such that yC
i ≤ δ0. From Lemma 4.5, we know that

the tail decays doubly-exponentially for i ≤ iD. From (4.9), we have yC
iD−m(γ−1) ≤

Ψe−ψ(dl−1)m ≤ Ψ̃e−ψ̃(dl−1)m
, where

Ψ = δ0ε
− 1

dl−2 ≤ δ0(
εBP(dl,dr,γ)+ εBP(dl,dr)

2
)
− 1

dl−2 , Ψ̃

and

ψ =
1

dl−2
ln

1
ε
≥ 1

dl−2
ln

1
εBP(dl,dr,γ)

, ψ̃.

Thus there are no more than

(γ−1)
( 1

ln(dl−1)
ln ln

Ψ̃

δ
+

ln 1
ψ̃

ln(dl−1)
+1
)

sections with yC
i ∈ [δ ,δ0].

Finally, collecting all these terms, we conclude that the transition width of the

FP obtained from the procedure highlighted in the steps i) through vi) is upper bounded

by

τ̂(ε,δ ) = (γ−1)
(
A ln ln

D

δ
+B ln

1
∆ε

+ Ĉ
)
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where the constants A,B and D are as follows

A=
1

ln(dl−1)
,

B=
1

ln(1+ µ̃2)
+

1
ln(1+µ∗3 )

+
1

ln( 1
1−µ∗4

)
+

1
ln( 1

1−µ̃5
)
,

Ĉ=
ln 1

ψ̃

ln(dl−1)
+

ln yBP

δ0

ln 1
1−µ̃1

+
ln

2(yBP− 1
d2
l d2r

)

−y′u(ε∗)

ln(1+ µ̃2)
+

ln 2(y∗max−y∗u)
−y′u(ε∗)

ln(1+µ∗3 )

+
ln 2(y∗s−y∗max)

y′s(ε∗)

ln 1
1−µ∗4

+
ln 2(yub−yBP)

y′s(ε∗)

ln 1
1−µ̃5

+6,

and D = Ψ̃. Note that these constants depend only on the ensemble parameters dl,dr

and γ . Since it is clear that the FP obtained through the procedure in steps i) through

vi) above dominates pointwise the first window configuration FP of forward DE with a

window of size W for channel erasure rate ε , we can guarantee that the transition width

is upper bounded by the above expression. This completes the proof.

Note that the above result means that the smallest window size that guarantees

y1 ≤ δ for a channel erasure rate εBP(dl ,dr,γ)+εBP(dl ,dr)
2 is

Ŵmin(δ ) = (γ−1)
(
A ln ln

D

δ
+B ln

1
∆εmax

+ Ĉ
)

= τ̂

(
εBP(dl,dr,γ)+ εBP(dl,dr)

2
,δ
)

where ∆εmax =
εBP(dl ,dr,γ)−εBP(dl ,dr)

2 . When W ≥ Ŵmin(δ ), we have

ε
FW(dl,dr,γ,W,δ )≥ ε

BP(dl,dr,γ)− e−
1
B (

W
γ−1−A ln ln D

δ
−Ĉ). (4.12)

Discussion : We restricted ε ∈ E in Proposition 4.6 to obtain constants that are in-

dependent of ε . As can be seen from the proof of the proposition, these constants are

dependent on ε , unless each is optimized in the range E . As we let the minimum ε in E

approach εBP(dl,dr), the constants in the expression for τ̂(ε,δ ) blow up and the upper

bound will be useless. It is therefore necessary to keep the minimum of ε ∈ E strictly

larger than εBP(dl,dr) and the value chosen in the above was motivated by our intent

to ensure that the first window threshold was closer to εBP(dl,dr,γ) than to εBP(dl,dr).
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Note that the increase in the upper bound for τ(ε,δ ) with decrease in ε is purely an

artifact of the upper bounding technique we have employed; i.e., it is obvious that as we

decrease ε , τ(ε,δ ) also decreases. �

4.3.2 cth Window Configuration, 1 < c≤ L

We now evaluate the performance of the windowed decoding scheme when the

window has slid certain number of sections from the left end of the code. We arrive

at conditions under which x̂ is guaranteed to be smaller than δ while operating with a

window of size W . We start by establishing a property of x̂.

Lemma 4.8 (FP Equation Involving x̂). Consider the function Ω(y) where

Ω(yi) =


π(yi), i < 1

εg(π(yi−γ+1), · · · ,π(yi+γ−1)), i ∈ [W ]

1, i >W

where

π(yi) =


y1, i < 1

yi, i ∈ [W ]

1, i >W.

Then there exists a solution ω to the equation y = Ω(y) such that ω1 = x̂. Moreover, ω

is the smallest such constellation, i.e., if ω̂ = Ω(ω̂), then ω̂ � ω .

Proof. We have

x̂ = x∞,{∞} = y(∞)
1,{∞}

(4.5)
= εg(y(∞)

−γ+2,{∞}, · · · ,y
(∞)
0,{∞},y

(∞)
1,{∞}, · · · ,y

(∞)
γ,{∞})

= εg(x∞,{∞}, · · · ,x∞,{∞}︸ ︷︷ ︸
γ

,y(∞)
2,{∞}, · · · ,y

(∞)
γ,{∞})

= εg(x̂, · · · , x̂︸ ︷︷ ︸
γ

,y(∞)
2,{∞}, · · · ,y

(∞)
γ,{∞}).

Hence, if we define ω as

ωi =

x̂ = y(∞)
1,{∞}, i≤ 1

y(∞)
i,{∞}, i > 1,
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then it is clear that ω = π(ω) = Ω(ω).

Note that any fixed point ω̂ of the function Ω(·) has to satisfy ω̂ � y(∞)
{1} for

the same channel erasure rate ε ∈ [0,1] from the monotonicity of g(·). In particular,

ω � y(∞)
{1}. From the continuity of the DE equations in Definition 4.4, it follows that ω

is the least solution to the equation y = Ω(y), since it is the limiting constellation of the

sequence of non-decreasing constellations {y(∞)
{n}}∞

n=1.

The following proposition forms the central argument in the proof of Theorem

4.2. Using the bound on the maximum transition width from Proposition 4.6, we obtain

an upper bound on x̂ for a given window size W and erasure rate ε ∈ E . From this,

we arrive at a lower bound for ε that guarantees x̂ ≤ δ when δ is an arbitrarily chosen

value smaller than δ∗ (which depends only on dl,dr) and the window size is larger than

Wmin(δ ) (which depends only on the code parameters dl,dr,γ and the decoder parameter

δ ). This gives us our lower bound on the WD threshold.

Proposition 4.9 (WD & FW Thresholds). Consider WD of the (dl,dr,γ,L) spatially

coupled ensemble with a window of size W ≥Wmin(δ ) = Ŵmin(δ )+ γ − 1 over a BEC

with erasure rate ε . Then, we have

ε
WD(dl,dr,γ,W,δ )≥

(
1−dldr

2
δ

dl−2
dl−1
)

ε
FW(dl,dr,γ,W − γ +1,δ )

provided δ < δ∗ =
(

2
dldr

) dl−1
dl−2

, where εFW(dl,dr,γ,W,δ ) is the first window threshold.

Proof. We start with the first window configuration FP of forward DE when the chan-

nel erasure rate is ε and show that this FP dominates the cth window configuration FP

of forward DE for every c for a smaller channel erasure rate υ ≤ ε . To prove this, it

suffices to show that the FP ω defined in Lemma 4.8 for channel erasure rate υ is dom-

inated pointwise by the first window configuration FP for channel erasure rate ε . This

establishes υ as being a lower bound on the WD threshold εWD.

Set y(0) = y(∞)
{1}, the first window configuration FP of forward DE for channel

erasure rate ε . Evaluate {y(`)}∞
`=1 according to y(`) = Ω(y(`−1)) where Ω(·) is as defined
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in Lemma 4.8, but for channel erasure rate υ = ε−∆ε . Then, the following are true:

y(0)i =


εg(0, · · · ,0︸ ︷︷ ︸

γ−i

,y(0)1 , · · · ,y(0)i+γ−1), 1≤ i < γ

εg(y(0)i−γ+1, · · · ,y
(0)
i+γ−1), γ ≤ i≤W

and

y(1)i =


υg(y(0)1 , · · · ,y(0)1︸ ︷︷ ︸

γ−i

,y(0)1 , · · · ,y(0)i+γ−1), 1≤ i < γ

υg(y(0)i−γ+1, · · · ,y
(0)
i+γ−1), γ ≤ i≤W.

For γ ≤ i≤W ,

y(1)i =
υ

ε
y(0)i =

ε−∆ε

ε
y(0)i ≤ y(0)i . (4.13)

Let us write

gi(σ ,y1, · · · ,yi+γ−1), g(σ , · · · ,σ︸ ︷︷ ︸
γ−i

,y1, · · · ,yi+γ−1)

and

Gi(ε,σ ,y1, · · · ,yi+γ−1), εgi(σ ,y1, · · · ,yi+γ−1)

for 1≤ i < γ . For i in this range, consider

y(0)i − y(1)i = Gi(ε,0,y
(0)
1 , · · · ,y(0)i+γ−1)−Gi(υ ,y

(0)
1 ,y(0)1 , · · · ,y(0)i+γ−1)

=
[
Gi(ε,0,y

(0)
1 , · · · ,y(0)i+γ−1)−Gi(υ ,0,y

(0)
1 , · · · ,y(0)i+γ−1)

]
−
[
Gi(υ ,y

(0)
1 ,y(0)1 , · · · ,y(0)i+γ−1)−Gi(υ ,0,y

(0)
1 , · · · ,y(0)i+γ−1)

]
(a)
= ∆ε

∂Gi

∂ε

∣∣∣
ξ ,σ=0,y(0)

− y(0)1
∂Gi

∂σ

∣∣∣
υ ,ζ ,y(0)

(4.14)

where ξ ∈ [υ ,ε] and ζ ∈ [0,y(0)1 ]. Here, (a) follows from the mean value theorem. We

have
∂Gi

∂ε

∣∣∣
ξ ,σ=0,y(0)

= gi(σ ,y1, · · · ,yi+γ−1)
∣∣∣
ξ ,σ=0,y(0)

=
y(0)i
ε

.

Since ∂Gi
∂σ

= ε
∂gi
∂σ

, we focus on gi. Expanding out the expression for gi, it can be written

as

gi =
[
1− 1

γ

(
(αi,1−

γ− i
γ

σ)dr−1 + · · ·

+(αi,γ−i−
1
γ

σ)dr−1 +α
dr−1
i,γ−i+1 + · · ·+α

dr−1
i,γ

)]dl−1
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where

αi, j+1 =

1− 1
γ ∑

i+ j
c=1 yc, 0≤ j ≤ γ− i−1

1− 1
γ ∑

i+ j
c=i+ j−γ+1 yc, γ− i≤ j ≤ γ−1.

Clearly, 0≤ αi, j+1 ≤ 1 ∀ 1≤ i < γ,0≤ j ≤ γ−1. Therefore,

∂gi

∂σ
=

(dl−1)(dr−1)
γ

g
dl−2
dl−1
i

[
(αi,1−

γ− i
γ

σ)dr−2 γ− i
γ

+ · · ·+(αi,γ−i−
1
γ

σ)dr−2 1
γ

]
(a)
≤ dldr

γ2 g
dl−2
dl−1
i

(γ− i)(γ− i+1)
2

≤ dldr

2
g

dl−2
dl−1
i .

Here, (a) holds because 0 ≤ (αi, j+1− γ−i− j
γ

σ) ≤ 1 ∀ 0 ≤ j ≤ γ − i− 1. This implies

that

∂Gi

∂σ

∣∣∣
υ ,ζ ,y(0)

≤ dldr

2
g

dl−2
dl−1
i ε

∣∣∣
υ ,ζ ,y(0)

=
dldr

2
υ

1
dl−1
(

υg(ζ , · · · ,ζ︸ ︷︷ ︸
γ−i

,y(0)1 , · · · ,y(0)i+γ−1)
) dl−2

dl−1

(b)
≤ dldr

2
υ

1
dl−1
(

υg(y(0)1 , · · · ,y(0)1︸ ︷︷ ︸
γ−i

,y(0)1 , · · · ,y(0)i+γ−1)
) dl−2

dl−1

=
dldr

2
υ

1
dl−1 (y(1)i )

dl−2
dl−1

(c)
≤ dldr

2
υ

1
dl−1 (y(1)γ )

dl−2
dl−1 ≤ dldr

2
(y(1)γ )

dl−2
dl−1

(4.13)
≤ dldr

2
y(0)

dl−2
dl−1

γ .

Here, the inequality labeled (b) is true because ζ ≤ y(0)1 , (c) follows from the observation

that y(1)i ≤ y(1)i+1, i ≥ 1, which is in turn true since y(0) and π(y(0)) were non-decreasing.

Substituting back in (4.14), we have for 1≤ i < γ

y(0)i − y(1)i ≥ ∆ε
y(0)1
ε
− y(0)1

dldr

2
y(0)

dl−2
dl−1

γ .

Thus if ∆ε

ε
≥ dldr

2 y(0)
dl−2
dl−1

γ , y(0)i ≥ y(1)i ∀ i≥ 1, and hence π(y(0)) dominates y(1) pointwise.

Recall that

π(yi) =

y1, i < 1

yi, i≥ 1.

It therefore follows by induction that the limiting constellation y(∞) exists, and is also

dominated by π(y(0)). It is clear that y(∞) satisfies y(∞) = Ω(y(∞)). From Lemma 4.8,

y(∞) � ω and hence y(∞)
1 ≥ x̂.
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If the window size is chosen to be W ≥ Ŵmin(δ )+ γ−1,Wmin(δ ), then for the

first window, we can guarantee y(0)γ ≤ δ for some δ < δ0 for all channel erasure rates

smaller than εFW ≡ εFW(dl,dr,γ,W − γ + 1,δ ). From the above argument, it follows

that we can ensure x̂≤ δ for all erasure rates smaller than εFW
(

1− dldr
2 δ

dl−2
dl−1
)

. As long

as

δ < δ∗ ,
( 2

dldr

) dl−1
dl−2

<
( 1

dr−1

) dl−1
dl−2

= δ0,

this erasure rate is a non-trivial lower bound on the WD threshold εWD.

From Proposition 4.9 and Equation (4.12), we immediately have that

ε
WD(dl,dr,γ,W,δ )≥

(
1− dldr

2
δ

dl−2
dl−1
)(

ε
BP(dl,dr,γ)− e−

1
B (

W−γ+1
γ−1 −A ln ln D

δ
−Ĉ)
)

provided W ≥Wmin(δ ). By making the substitution C = Ĉ+1, we see that this proves

Theorem 4.2.

4.4 Experimental Results

In this section, we give results obtained by simulating windowed decoding of

finite-length spatially coupled codes over the binary erasure channel. The code used for

simulation was generated randomly by fixing the parameters M = 1024, dl = 3,dr =

6, with coupling length γ = 3 and chain length L = 64. The blocklength of the code

was hence n = ML = 65,536 and the rate was R ≈ 0.484375. From Table 4.1, the BP

threshold for the ensemble to which this code belongs is εBP(dl = 3,dr = 6,γ = 3,L =

64)≈ 0.487514.

Figure 4.7 shows the bit erasure rates achieved by using windows of length W =

4,6,8, i.e., the number of bits within each window was WM = 4096,6144 and 8192

respectively. From the figure, it is clear that good performance can be obtained for a

wide range of channel erasure rates even for small window lengths, e.g., W = 6,8. In

performing the simulations above, we let the decoders (BP and WD) run for as many

iterations as possible, until the decoder could solve for no further bits. For the windowed

decoder, this meant that within each window configuration, the decoder was allowed to

run until it could solve no further bits within the window. Figure 4.8 plots the average
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Figure 4.7: Bit erasure probability of the (dl = 3,dr = 6,γ = 3,L= 64) spatially coupled
code with M = 1024 achieved with a windowed decoder of window sizes W = 4,6 and
8.

number of iterations for the BP decoder and the average number of iterations within

each window configuration times the chain length (which corresponds to the average

number of iterations) for the WD. We can see that for randomly chosen spatially coupled

codes, a modest reduction in complexity is possible by using the windowed decoder in

the waterfall region. Interestingly, the average number of iterations required per window

configuration is independent of the chain length below certain channel erasure rates. The

number of iterations required decreases beyond a certain value of ε because for these

higher erasure rates, the decoder is no longer able to decode and gets stuck quickly.

Although the smaller window sizes have a large reduction in complexity and a decent

BER performance, the block erasure rate performance can be fairly bad, e.g., for the

window of size 4, the block erasure rate was 1 in the range of erasure rates considered in

Figure 4.7. However, the block erasure rate improves drastically with increasing window

size—for the window of size 8, the block erasure rate at ε = 0.44 was ≈ 6.3×10−4.

The above illustration suggests that for good performance with reduced com-

plexity via windowed decoding, careful code design is necessary. For a certain variety of

spatially coupled codes—protograph-based LDPC convolutional codes—certain design
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Figure 4.8: Average number of iterations 〈`〉 for BP and WD as a function of the channel
erasure rate is shown for each window size in solid lines. For the WD, we show in dashed
lines, the average number of iterations required within each window configuration.

rules for good performance with windowed decoding were given in [48] (See Chapter

5), and ensembles with good performance for a wide range of window sizes (including

window sizes as small as γ) over erasure channels with and without memory were con-

structed. For these codes constructed using PEG [45] and ACE [113] techniques, not

only can the error floor be lowered but also the performance of a medium-sized win-

dowed decoder with fixed number of iterations can be made to be very close to that of

the BP decoder [48]. It is for such codes that the windowed decoder is able to attain

very good performance with significant reduction in complexity and decoding latency.

4.5 Conclusions

We considered a windowed decoding (WD) scheme for decoding spatially cou-

pled codes that has smaller complexity and latency than the BP decoder. We analyzed

the asymptotic performance limits of such a scheme by defining WD thresholds for

meeting target erasure rates. We gave a lower bound on the WD thresholds and showed
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that these thresholds are guaranteed to approach the BP threshold for the spatially cou-

pled code at least exponentially in the window size. Through density evolution, we

showed that, in fact, the WD thresholds approach the BP threshold much faster than is

guaranteed by the lower bound proved analytically. Since the BP thresholds for spatially

coupled codes are themselves close to the MAP threshold, WD gives us an efficient way

to trade off complexity and latency for decoding performance approaching the optimal

MAP performance. Since the MAP decoder is capacity-achieving as the degrees of vari-

ables and checks are increased, similar performance is achievable through a WD scheme

for a target erasure floor.

Through simulations, we showed that WD is a viable scheme for decoding finite-

length spatially coupled codes and that even for small window sizes, good performance

is attainable for a wide range of channel erasure rates. However, the complexity re-

duction for randomly constructed spatially coupled codes is not as significant as that

obtained for protograph-based LDPC convolutional codes with a large girth. Thus, char-

acterizing good spatially coupled codes within the ensemble of randomly coupled codes

is a question that remains.

The WD scheme was analyzed here for the BEC and, therefore, the superior per-

formance of these codes and the low complexity and latency of the WD scheme make

these attractive for applications in coding over upper layers of the internet protocol.

Furthermore, the same scheme can be employed for decoding spatially coupled codes

over any channel. However, for channels that introduce errors apart from erasures, the

WD scheme can suffer from error propagation. Analysis of the WD scheme and provid-

ing performance guarantees over such channels will play a key role in making spatially

coupled codes and the WD scheme practical.
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Chapter 5

Windowed Decoding of

Protograph-based LDPC

Convolutional Codes

In this chapter, we will consider an application of the windowed decoder intro-

duced in the previous chapter to decode a class of LDPC codes. We will consider de-

coding LDPC Convolutional Codes (LDPC-CC) that are constructed from protographs.

As noted in the previous chapter, whereas irregular LDPC block codes have also been

shown to have BP thresholds close to capacity [98], the advantage with convolutional

counterparts is that good performance is achieved by relatively simple regular ensem-

bles. Also, the construction of finite-length codes from LDPC-CC ensembles can be

readily optimized to ensure desirable properties, e.g., large girths and fewer cycles, us-

ing well-known techniques of LDPC code design. Similar decoding schemes have been

proposed in [68, 73]. However, the aim in these papers was not to reduce the decoding

latency or complexity. When used to decode terminated (block) LDPC-CC, the win-

dowed decoder provides a simple, yet efficient way to trade-off decoding performance

for reduced latency. Moreover, the proposed scheme provides the flexibility to set and

change the decoding latency on the fly. This proves to be an extremely useful feature

when the scheme is used to decode codes over upper layers of the internet protocol.

Our contributions here are to study the requirements of LDPC-CC ensembles

for good performance over erasure channels with windowed decoding (WD). We are

123
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interested in identifying characteristics of ensembles that present a good performance-

latency trade-off. Further we seek to find such ensembles that are able to withstand

not just random erasures but also long bursts of erasures. We reiterate that we will be

interested in designing ensembles that have the aforementioned properties, rather than

designing codes themselves.

The rest of the chapter is organized as follows. Section 5.1 introduces LDPC

convolutional codes . In Section 5.2 we briefly describe the application of the win-

dowed decoder for LDPC-CCs constructed from protographs. Possible variants of the

WD scheme will also be discussed. Section 5.3 deals with the performance of LDPC-

CC on the binary erasure channel. Starting with a short recapitulation of known results

for BP decoding, we will discuss the asymptotic analysis of the WD scheme in de-

tail. Finite-length analysis will include performance evaluation using simulations that

reinforce the observations made in the analysis. For erasure channels with memory, we

analyze LDPC-CC ensembles both in the asymptotic setting and for finite lengths in Sec-

tion 5.4. We also include simulations illustrating the good performance of codes derived

from the designed protographs over the Gilbert-Elliott channel. Finally, we summarize

our findings in Section 5.5.

5.1 LDPC Convolutional Codes

In the following, we will define LDPC-CC, give a construction starting from

protographs, and discuss various ways of specifying ensembles of these codes.

5.1.1 Definition

A rate R = b/c binary, time-varying LDPC-CC is defined as the set of semi-

infinite binary row vectors v[∞], satisfying H[∞]vT
[∞] = 0T

[∞], where H[∞] is the parity-check
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matrix

H[∞] =



H0(1)

H1(1) H0(2)
... H1(2)

. . .

Hms(1)
... . . . H0(t)

Hms(2)
. . . H1(t)

. . .
. . . ... . . .

Hms(t)
. . .
. . .



(5.1)

and 0[∞] is the semi-infinite all-zero row vector. The elements Hi(t), i = 0,1, · · · ,ms in

(5.1) are binary matrices of size (c−b)× c that satisfy [95]

• Hi(t) = 0, for i < 0 and i > ms, ∀ t ≥ 1

• ∃ t > 0 such that Hms(t) 6= 0

• H0(t) has full rank ∀ t ≥ 1.

The parameter ms is called the memory of the code and νs = (ms + 1)c is referred to

as the constraint length. The first two conditions above guarantee that the code has

memory ms and the third condition ensures that the parity-check matrix is full-rank.

In order to get sparse graph codes, the Hamming weight of each column h of H[∞]

must be very low, i.e., wH(h)� νs. Based on the matrices Hi(t), LDPC-CC can be

classified as follows [33]. An LDPC-CC is said to be periodic if Hi(t) = Hi(t+τ) ∀ i =

0,1, · · · ,ms, ∀ t and for some τ > 1. When τ = 1, the LDPC-CC is said to be time-

invariant, in which case the time dependence can be dropped from the notation, i.e.,

Hi(t) = Hi ∀ i = 0,1, · · · ,ms, ∀ t. If neither of these conditions holds, it is said to be

time-variant.
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Terminated LDPC-CC have a finite parity-check matrix

H[L] =



H0(1)

H1(1) H0(2)
... H1(2)

. . .

Hms(1)
... . . . H0(L)

Hms(2)
. . . H1(L)
. . . ...

Hms(L)


where we say that the convolutional code has been terminated after L instants. Such a

code is said to be (J,K) regular if H[L] has exactly J 1’s in every column and K 1’s in

every row excluding the first and the last ms(c− b) rows, i.e., ignoring the terminated

portion of the code. It follows that for a given J, the parity-check matrix can be made

sparse by increasing c or ms or both, leading to different code constructions [106]. In

this paper, we will consider LDPC-CC characterized by large c and small ms. As in [67],

we will focus on regular LDPC-CC which can be constructed from a protograph.

5.1.2 Protograph-based LDPC-CC

A protograph [112] is a relatively small bipartite graph from which a larger graph

can be obtained by a copy-and-permute procedure—the protograph is copied M times,

and then the edges of the individual replicas are permuted among the M replicas to obtain

a single, large bipartite graph referred to as the derived graph. We will refer to M as the

expansion factor. M is also referred to as the lifting factor in literature [98]. Suppose the

protograph possesses NP variable nodes (VNs) and MP check nodes (CNs), with degrees

J j, j = 1, · · · ,NP, and Ki, i = 1, · · · ,MP, respectively. Then the derived graph will consist

of n = NPM VNs and m = MPM CNs. The nodes of the protograph are labeled so that

if the VN Vj is connected to the CN Ci in the protograph, then Vj in a replica can only

connect to one of the M replicated Ci’s.

Protographs can be represented by means of an MP×NP bi-adjacency matrix

B, called the base matrix of the protograph where the entry Bi, j represents the num-

ber of edges between CN Ci and VN Vj (a non-negative integer, since parallel edges
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are permitted). The degrees of the VNs (CNs respectively) of the protograph are then

equal to the sum of the corresponding column (row, respectively) of B. A (J,K) regular

protograph-based code is then one with a base matrix where all VNs have degree J and

all CNs, excluding those in the terminated portion of the code, have degree K.

In terms of the base matrix, the copy-and-permute operation is equivalent to

replacing each entry Bi, j in the base matrix with the sum of Bi, j distinct size-M permu-

tation matrices. This replacement is done ensuring that the degrees are maintained, e.g.,

a 2 in the matrix B is replaced by a matrix H(M)
2 = P(M)

1 ⊕P(M)
2 where P(M)

1 and P(M)
2 are

two permutation matrices of size M chosen to ensure that each row and column of H(M)
2

has two ones. The resulting matrix after the above transformation for each element of B,

which is the bi-adjacency matrix of the derived graph, corresponds to the parity-check

matrix H of the code. The derived graph therefore is nothing but the Tanner graph

corresponding to the parity-check matrix H of the code.

For different values of the expansion factor M, different blocklengths of the de-

rived Tanner graph can be achieved, keeping the original graph structure imposed by

the protograph. We can hence think of protographs as defining code ensembles that are

themselves subsets of random LDPC code ensembles. We will henceforth refer to a pro-

tograph B and the ensemble C it represents interchangeably. This means that the density

evolution analysis for the ensemble of codes represented by the protograph can be per-

formed within the protograph. Furthermore, the structure imposed by a protograph on

the derived graph can be exploited to design fast decoders and efficient encoders. Pro-

tographs give the code designer a refined control on the derived graph edge connections,

facilitating good code design.

Analogous to LDPC block codes, LDPC-CC can also be derived by a protograph

expansion. As for block codes, the parity-check matrices of these convolutional codes

are composed of blocks of size-M square matrices. We now give two constructions of

(J,K) regular LDPC-CC ensembles.

Classical construction

We briefly describe the construction introduced in [107]. For convenience, we

will refer to this construction as the classical construction of (J,K) regular LDPC-CC
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ensembles. Let a be the greatest common divisor (gcd) of J and K. Then there exist

positive integers J′ and K′ such that J = aJ′, K = aK′, and gcd(J′,K′) = 1. Assuming

we terminate the convolutional code after L instants, we obtain a block code, described

by the base matrix

B[L] =

L︷ ︸︸ ︷

B0

B1 B0
... B1

. . .

Bms

... . . . B0

Bms
. . . B1
. . . ...

Bms


where ms = a− 1 is the memory of the LDPC-CC and Bi, i = 0, · · · ,ms are J′ ×K′

submatrices that are all identical and have all entries equal to 1. Note that an LDPC-

CC constructed from the protograph with base matrix B[L] could be time-varying or not

depending on the expansion of the protograph into the parity-check matrix.

The protograph of the terminated code has NP = LK′ VNs and MP = (L+ms)J′

CNs. The rate of the LDPC-CC is therefore

RL = 1−
(

L+ms

L

)
J′

K′
= 1−

(
1+

ms

L

)
(1−R) (5.2)

where R = 1− J′
K′ is the rate of the non-terminated code. Note that RL → R and the

LDPC-CC has a regular degree distribution [67] when L→ ∞. We will assume that

the parameters satisfy K′ > J′ and L ≥ 1−R
R ms so that the rates R and RL of the non-

terminated and terminated codes, respectively, are in the proper range.

The classical construction was proposed in [107] and it produces protographs for

some (J,K) regular LDPC-CC ensembles. However, not all (J,K) regular LDPC-CC

can be constructed, e.g. ms becomes zero if J and K are relatively prime and conse-

quently the resulting code has no memory. In [67], the authors addressed this problem

by proposing a construction rule based on edge spreading. We denote an ensemble of

(J,K) regular LDPC-CC constructed as described here as Cc(J,K) with the subscript c

for “classical” construction.
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Modified construction

We propose a modified construction that is similar to the classical construction

except that we do not require that ms = a− 1, i.e., the memory of the LDPC-CC is

independent of its degree distribution. We further disregard the requirement that the

Bi matrices are identical and have only ones, i.e., parallel edges in the protograph are

allowed. However, the sizes of the submatrices Bi, i = 0,1, · · · ,ms will still be J′×
K′. We will denote a (J,K) regular LDPC-CC ensemble constructed in this manner

as Cm(J,K), with subscript m for “modified” construction. Note that the rate of the

Cm(J,K) ensemble is still given by Equation (5.2). Further, the independence of the

code memory and the degree distribution allows us to construct LDPC-CC even when J

and K are co-primes. This is illustrated in the following example.

Example 5.1. Let J = 3 and K = 4. Clearly, a classical construction of this ensemble is

not possible. However, with the modified construction, we can set ms = 1 and define the

ensemble Cm(J,K) given by

B0 =


1 0 1 1

0 1 0 1

1 1 1 0

 ,B1 =


1 0 0 0

0 1 0 1

0 0 1 0


with design rate RL = 1− 3

4

(L+1
L

)
for a termination length L. Note that these submatri-

ces are by no means the only possible ones. Another set of submatrices satisfying the

constraints is

B̂0 =


2 0 0 1

0 2 0 1

0 0 2 0

 , B̂1 =


0 0 1 0

0 0 0 1

1 1 0 0

 . �

The above example brings out the similarity between the proposed modified con-

struction and the technique of edge spreading employed in [67], wherein the edges of

the protograph defined by the matrix

B′0 =


2 0 1 1

0 2 0 2

1 1 2 0


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are “spread” between the matrices B0 and B1 (or between B̂0 and B̂1) to obtain a (3,4)

regular LDPC-CC ensemble with memory ms = 1. The advantage of the modified con-

struction is thus clear—it gives us more degrees of freedom to design the protographs in

comparison with the classical construction. In particular, the ensemble specified by the

classical construction is contained in the set of ensembles allowed by the modified con-

struction, meaning that the best performing Cm(J,K) ensemble (with memory the same

as that of the Cc(J,K) ensemble) is at least as good as the Cc(J,K) ensemble. Note that

in [67], there was no indication as to how edges are to be spread between matrices. With

windowed decoding, we will shortly show that different protographs (edge spreadings)

have different performances. We will also identify certain design criteria for efficient

modified constructions that suit windowed decoding.

5.1.3 Polynomial representation of LDPC-CC ensembles

We have thus far specified LDPC-CC ensembles by giving the parameter L and

the matrices Bi, i = 0,1, · · · ,ms. An alternative specification of terminated protograph-

based LDPC-CC ensembles using polynomials is useful in establishing certain proper-

ties of (J,K) regular ensembles and is described below.

Instead of specifying (ms + 1) matrices Bi of size J′ × K′, we can specify the

K′ columns of the (ms +1)J′×K′ matrix

B[1] =


B0

B1
...

Bms


using a polynomial of degree no more than d = (ms + 1)J′− 1 for each column. The

polynomial of the jth column

p j(x) = p(0)j + p(1)j x+ p(2)j x2 + · · ·+ p(d)j xd (5.3)

is defined so that the coefficient of xi, p(i)j , is the (i + 1, j) entry of B[1] for all i =

0,1, · · · ,d and j = 1,2, · · · ,K′. Therefore, an equivalent way of specifying the LDPC-

CC ensemble is by giving L and the set of polynomials {p j(x), j = 1,2, · · · ,K′}. With
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this notation, the lth column of B[L] is specified by the polynomial xJ′i p j(x) where

l = iK′+ j for unique 0 ≤ i ≤ L− 1 and 1 ≤ j ≤ K′. We can hence use “the column

index” and “the column polynomial” interchangeably. Further, to define (J,K) regular

ensembles, we will need the constraints

p j(1) = J ∀ 1≤ j ≤ K′

and
K′

∑
j=1

p[m]
j (1) = K ∀ 0≤ m≤ J′−1,

where p[m]
j (x) is the polynomial of degree no larger than ms obtained from p j(x) by

collecting the coefficients of terms with degrees l where l = hJ′+m for some 0≤ h≤ms,

i.e., l = m(mod J′):

p[m]
j (x) = p(m)

j + p(J
′+m)

j x+ · · ·+ p(msJ′+m)
j xms =

ms

∑
h=0

p(hJ′+m)
j xh. (5.4)

We will refer to these polynomials as the modulo polynomials. Let us denote the set of

polynomials defining an LDPC-CC ensemble as P = {p j(x), j ∈ [K′]}, where [K′] =

{1,2, · · · ,K′}, and the modulo polynomials as Pl = {p[l]j (x), j ∈ [K′]}, l = 0,1, · · · ,J′−
1. Later in the paper, we will say “the summation of polynomials pi(x) and p j(x)”

to mean the collection of the ith and the jth columns of B[1]. The following example

illustrates the notation.

Example 5.2. For (J,2J) codes, we have J′= 1 and K′= 2, the component base matrices

Bi, i = 0, ...,ms are 1×2 matrices. With the first column of the protograph B[1], we asso-

ciate a polynomial p1(x) = p(0)1 + p(1)1 x+ · · ·+ p(ms)
1 xms of degree at most ms. Similarly,

with the second column we associate a polynomial p2(x) = p(0)2 + p(1)2 x+ · · ·+ p(ms)
2 xms ,

also of degree at most ms. Then, the (2i+1)th column of B[L] can be associated with the

polynomial xi p1(x), and the (2i+ 2)th column with the polynomial xi p2(x). As noted

earlier, we will use the polynomial of a column and its index interchangeably, e.g. when

we say “choosing the polynomial xi p1(x),” we mean that we choose the (2i+ 1)th col-

umn of B[L]. Similarly, by “summations of polynomials p1(x) and p2(x),” we mean

the collection of the corresponding columns of B[L]. In order to define (J,2J) regu-

lar ensembles, we will further have the constraint p1(1) = p2(1) = J. In this case,
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since J′ = 1, p[0]1 (1) + p[0]2 (1) = 2J is the same as the previous constraint, because

p[0]1 (1)+ p[0]2 (1) = p1(1)+ p2(1). �

We define the minimum degree of a polynomial a(x) as the least exponent of x

with a positive coefficient and denote it as mindeg(a(x)). Clearly, 0≤mindeg(a(x))≤
deg(a(x)). Let us define a partial ordering of polynomials with non-negative inte-

ger coefficients as follows. We write a(x) � b(x) if mindeg(a(x)) = mindeg(b(x)),

deg(a(x)) = deg(b(x)) and the coefficients of a(x) are no larger than the corresponding

ones of b(x). The ordering � satisfies the following properties over polynomials with

non-negative integer coefficients: if a(x)� b(x) and c(x)� d(x), then

a(x)+ c(x)� b(x)+d(x)

a(x)c(x)� b(x)d(x).

We define the boundary polynomial β (a(x)) of a polynomial a(x) to be β (a(x))= xi+x j

where i = mindeg(a(x)) and j = deg(a(x)). Note that when i = j, we define β (a(x)) =

xi. We have for any polynomial a(x), β (a(x))� a(x).

5.2 Windowed Decoding

LDPC-CC are characterized by a very large constraint length νs = (ms+1)K′M.

Since the Viterbi decoder has a complexity that scales exponentially in the constraint

length, it is impractical for this kind of code. For terminated LDPC-CC, decoding can

be performed as in the case of an LDPC block code, meaning that each frame carrying

a codeword obtained through the termination can be decoded with belief propagation

(BP), i.e., the sum-product algorithm (SPA) [61, 121]. Note that since the BP decoder

can start decoding only after the entire codeword is received, the total decoding latency

ΛBP is given by ΛBP = Tcw + Tdec, where Tcw is the time taken to receive the entire

codeword and Tdec is the time needed to decode the codeword. In many practical appli-

cations this latency is large and undesirable. Moreover, for non-terminated LDPC-CC,

a BP decoder cannot be employed.

However, LDPC-CCs are a variant of the spatially coupled codes introduced

in Chapter 4. In particular, we note that L denotes the chain length, and the memory
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ms corresponds to the coupling length γ in the parlance of spatially coupled codes (cf.

Section 4.1). We can therefore exploit the convolutional structure of the parity-check

matrix representing these codes and define a windowed decoder as was done for spatially

coupled codes.

WK ′M

WJ ′M

msK
′M

(L+ms)J
′M

LK ′M

Figure 5.1: Illustration of windowed decoding (WD) with window of size W = 4 for
a Cm(J,2J) LDPC-CC with ms = 2 and L = 16 at the fourth decoding instant. This
window configuration consists of JW = WJ′M = 4M rows of the parity-check matrix
and all the (W +ms)K′M = 12M columns involved in these equations: this comprises
the red (vertically hatched) and the blue (hatched) edges shown within the matrix. Note
that the symbols shown in green (back-hatched) above the parity-check matrix have all
been processed. The targeted symbols are shown in blue (hatched) above the parity-
check matrix and the symbols that are yet to be decoded are shown in gray above the
parity-check matrix.

The convolutional structure of the code imposes a constraint on the VNs con-

nected to the same parity-check equations—two VNs of the protograph that are at least

(ms + 1)K′ columns apart cannot be involved in the same parity-check equation. This

characteristic can be exploited in order to perform continuous decoding of the received

stream through a “window” that slides along the bit sequence. Moreover, this structure

allows for the possibility of parallelizing the iterations of the message passing decoder

through several processors working in different regions of the Tanner graph. A pipeline

decoder based on this idea was proposed in [33]. In this paper we consider a windowed
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decoder to decode terminated codes with reduced latency. Note that whereas a similar

sliding window decoder was used to bound the performance of BP decoding in [68], we

are interested in evaluating the performance of the windowed decoder from a perspective

of reducing the decoding complexity and latency.

Consider a terminated (J,K) regular parity-check matrix H built from a base

matrix B. The windowed decoder works on sub-protographs of the code and the win-

dow size W is defined as the number of sets of J′ CNs of the protograph B consid-

ered within each window. In the parity-check matrix H, the window thus consists of

JW =WJ′M =W (c−b) rows of H and all columns that are involved in the check equa-

tions corresponding to these rows. We will henceforth refer to the size of the window

only in terms of the protograph with the corresponding size in the parity-check matrix

implied. The window size W ranges between (ms +1) and (L−1) because each VN in

the protograph is involved in at most J′(ms + 1) check equations; and, although there

are a total of MP = J′(L+ms) CNs in B, the decoder can perform BP when all the VN

symbols are received, i.e., when L≤W ≤ L+ms. As was seen in Chapter 4, apart from

the window size, the decoder also has a (typically small) target erasure probability δ ≥ 0

as a parameter. The aim of the WD is to reduce the erasure probability of every symbol

in the codeword to a value no larger than δ .

At the first decoding instant, or equivalently, in the first window configuration,

the decoder performs belief-propagation over the edges within the window with the aim

of decoding all of the first K′ symbols in the window, called the targeted symbols (cf.

Chapter 4). The window slides down J′ rows and right K′ columns in B after at least a

fraction (1−δ ) of the targeted symbols are recovered (or, in general, after a maximum

number of belief-propagation iterations have been performed), and continues decoding

at the new window configuration at the next decoding time instant.

In the terminated portion of the code, the window configuration will have fewer

edges than other configurations within the code. Since the WD aims to recover only the

targeted symbols within each window configuration, the entire codeword is recovered

in L decoding time instants. Figure 5.1 shows a schematic representation of the WD for

W = 4.

The decoding latency of the K′ targeted symbols with WD is therefore given by
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ΛWD = TW +Tdec(W ), where TW is the time taken to receive all the symbols required

to decode the K′ targeted symbols, and Tdec(W ) is the time taken to decode the targeted

symbols. The parameters Tcw and TW are related as

TW =
(W +ms)K′

LK′
Tcw =

W +ms

L
Tcw,

since at most (W +ms)K′ symbols are to be received to process the targeted symbols.

The relation between Tdec and Tdec(W ) is given by

Tdec(W ) =
W
L

Tdec,

since the complexity of BP decoding scales linearly in blocklength and the WD uses BP

decoding over WK′ symbols in each window configuration. We assume that the number

of iterations of message passing performed is fixed to be the same for the BP decoder

and the WD. Thus, in latency-limited scenarios, we can use the WD to obtain a latency

reduction of

ΛWD ≤
W +ms

L
ΛBP , wΛBP.

The smallest latency supported by the code-decoder system is therefore at most a frac-

tion wmin = 2ms+1
L that of the BP decoder. As pointed out earlier, the only choice for

non-terminated codes is to use some sort of a windowed decoder. For the sequence of

ensembles indexed by L, with the choice of the proposed WD with a fixed finite window

size W , the decoding latency vanishes as O( 1
L). We will typically be interested in small

values of W where large gains in decoding latencies are achievable. Since the decod-

ing latency increases as W increases, the trade-off between decoding performance and

latency can be studied by analyzing the performance of the WD for the entire range of

window sizes.

Remark 5.1 (Latency Flexibility). Although reduced latency is an important character-

istic of WD, what is perhaps more useful practically is the flexibility to alter the latency

with suitable changes in the code performance. The latency can be controlled by varying

the parameter W as required. If a large latency can be handled, W can be kept large en-

suring good code performance and if a small latency is required, W can be made small

while paying a price with the code performance (We will see shortly that the perfor-

mance of WD is monotonic in the window size).
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One possible variant of WD is a decoding scheme which starts with the small-

est possible window size and the size is increased whenever targeted symbols cannot

be decoded, i.e., the target erasure probability cannot be met within the fixed maxi-

mum number of iterations. Other schemes where the window size is either increased

or decreased based on the performance of the last few window configurations are also

possible.

5.3 Memoryless Erasure Channels

In this section, we confine our attention to the performance of the LDPC-CC

when the transmission occurs over a memoryless erasure channel, i.e., a binary erasure

channel (BEC) parameterized by the channel erasure rate ε .

5.3.1 Asymptotic analysis

We consider the performance of the LDPC-CC in terms of the average perfor-

mance of the codes belonging to ensembles defined by protographs in the limit of infi-

nite blocklengths and in the limit of infinite iterations of the decoder. This represents

the setting where the results of Chapter 4 are directly applicable, since protograph-based

LDPC-CCs are a variant of spatially coupled codes.

For LDPC-CC based on protographs, the BP decoding thresholds can be numer-

ically estimated using the Protograph-EXIT (P-EXIT) analysis [75].The processing at a

CN of degree dC results in an updating of the mutual information on the dth
C edge as

Iout,dC = C
(
Iin,1, · · · , Iin,dC−1

)
=

dC−1

∏
i=1

Iin,i (5.5)

and the corresponding update at a VN of degree dV gives

Iout,dV = V
(
Ich, Iin,1, · · · , Iin,dV−1

)
= 1− ε

dV−1

∏
i=1

(1− Iin,i) (5.6)

where Ich = 1− ε is the mutual information obtained from the channel. Note that the

edge multiplicities are included in the above check and variable node computations. The
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a-posteriori mutual information I at a VN is found using

I = 1− ε

dV

∏
i=1

(1− Iin,i) = 1− (1− Iout,dV )(1− Iin,dV )

where the second equality follows from (5.6).

Example 5.3. The protograph B3,6 = (3 3) has a BP threshold of ε∗BP ≈ 0.4294. Note

that all the CNs in the protograph are of degree 6 while all the VNs are of degree 3. This

BP threshold is expected because B3,6 corresponds to the (3,6) regular LDPC block

code ensemble. The following protograph B′3,6 has a BP threshold ε∗BP ≈ 0.4879 for

L = 40. Note that, as before, all VNs are of degree 3 and all the CNs except the ones in

the terminated portion of the code are of degree 6.

B′3,6 =



1 1 0 0 0 0 · · · 0 0

1 1 1 1 0 0 · · · ...
...

1 1 1 1 1 1 · · · 0 0

0 0 1 1 1 1 · · · 0 0

0 0 0 0 1 1 · · · 0 0

0 0 0 0 0 0 · · · 1 1
...

...
...

...
...

... . . . 1 1

0 0 0 0 0 0 · · · 1 1


This is the Cc(3,6) ensemble constructed in [107]. In terms of the notation introduced,

this is given as B0 = B1 = B2 = [1 1]; or equivalently as p1(x) = p2(x) = 1+ x+ x2.�

The above example illustrates the strength of protographs—they allow us to

choose structures within an ensemble defined by a pair of degree distributions that may

perform better than the ensemble average. As noted in Chapter 4,the BP performance of

regular LDPC-CC ensembles has been related to the MAP decoder performance of the

corresponding unstructured ensemble [63].

Remark 5.2. In the limit of infinite blocklength, each term in the base protograph B is

replaced by a permutation matrix of infinite size to obtain the parity-check matrix, and

therefore the latency of any window size is infinite, apparently defeating the purpose

of WD. Our interest in the asymptotic performance, however, is justified as it allows

us to establish lower bounds on the probability of failure of the windowed decoder to
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recover the symbols of the finite length code. In practice, it is to be expected that the gap

between the performance of a finite length code with WD and the asymptotic ensemble

performance of the ensemble to which the code belongs increases as the window size

reduces due to the reduction in the blocklength of the subcode defined by the window.

We define the threshold εWD
(i) (B,W,δ ) of the ith window configuration to be the

supremum of the channel erasure rates for which the WD succeeds in retrieving the tar-

geted symbols of the ith window with a probability at least (1−δ ), given that each of the

targeted symbols corresponding to the first (i−1) window configurations is known with

probability 1− δ . Figure 5.2 illustrates the threshold εWD
(i) (B,W,δ ) of the ith window

configuration. The windowed threshold εWD(B,W,δ ) is then defined as the supremum

WK ′M

WJ ′M

1− ε

msK
′M

1− δ

Figure 5.2: Illustration of the threshold of the ith window configuration εWD
(i) (B,W,δ ).

The targeted symbols of the previous window configurations are known with probability
1−δ . The targeted symbols within the window are highlighted with a solid blue bar on
top of the window. The symbols within the blue (hatched) region in the window are
initially known with probability 1− ε . The task of the decoder is to perform BP within
this window until the erasure probability of the targeted symbols is smaller than δ . The
window is then slid to the next configuration.

of channel erasure rates for which the windowed decoder can decode each symbol in the

codeword with probability at least 1−δ .

We assume that between decoding time instants, no information apart from the

targeted symbols is carried forward, i.e., when a particular window configuration has

been decoded, all the present processing information apart from the decoded targeted

symbols themselves is discarded. With this assumption, it is clear that the windowed

threshold of a protograph-based LDPC-CC ensemble is given by the minimum of the

thresholds of its window configurations. For the classical and modified constructions

of LDPC-CC described in Section 5.1.2, all window configurations are similar except
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the ones at the terminated portion of the code. Since the window configurations at the

terminated portions can only perform better, the windowed threshold is determined by

the threshold of a window configuration not in the terminated portion of the code. Note

that the performance of WD when the information from processing the previous window

configurations is made use of in successive window configurations, e.g., when symbols

other than the targeted symbols that were decoded previously are also retained, can only

be better than what we obtain here.

We now prove a monotonicity property of the WD for LDPC-CCs. Note that

this property is evidently true for spatially coupled codes in general from Theorem 4.2.

Proposition 5.1 (Monotonicity of WD performance in W ). For any Cm(J,K) ensemble

B,

ε
WD(B,W,δ )≤ ε

WD(B,W +1,δ ). �

We now state two lemmas which will be made use of in the proof of the above

Proposition. The proofs of these lemmas are straightforward and have been omitted.

Lemma 5.2 (Monotonicity of C). The CN operation in (5.5) is monotonic in its argu-

ments, i.e.,

0≤ x≤ x′ ≤ 1⇒ C(x,y)≤ C(x′,y) ∀ y ∈ [0,1],

where the two-argument function C(x,y) = xy. �

Lemma 5.3 (Monotonicity of V). The VN operation in (5.6) is monotonic in its argu-

ments, i.e.,

0≤ x≤ x′ ≤ 1⇒ V(x,y)≤ V(x′,y) ∀ y ∈ [0,1],

where V(x,y) = 1− (1− x)(1− y). �

The operational significance of the above lemmas is the following: if we can

upper (lower) bound the mutual information on some incoming edge of a CN or a VN,

and use the bound to compute the outgoing mutual information from that node, we get

an upper (lower) bound on the actual outgoing mutual information. Thus, by bounding

the mutual information on some edges of a computation tree and repetitively applying

Lemmas 5.2 and 5.3, one can obtain bounds for the a-posteriori mutual information at

the root of the tree.
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Proof of Proposition 5.1. Consider the ith window configuration for window sizes W

and W + 1 shown in Figure 5.3. We are interested in a window configuration that is

not at the terminated portion of the code. Call the Tanner graphs of these windows

W

W + 1

Figure 5.3: Sub-protographs of window sizes W and W + 1. The edges connected to
targeted symbols from previous window configurations are shown in darker shade of
gray.

A = (VA,CA,EA) and B = (VB,CB,EB) respectively, where VA,VB and CA,CB are the sets

of VNs and CNs respectively and EA,EB are the sets of edges. Clearly, VA ⊂ VB,CA ⊂
CB, and EA ⊂ EB. Any VN in VA that is connected to some variable in VB \VA has to

be connected via some CN in CB \CA. The edges between these CNs and VNs in VA

are shown hatched in Figure 5.3. Consider the computation trees for the a-posteriori

message at a targeted symbol in VA and that for the same symbol in VB. Call them TA

and TB respectively. Then we have TA ⊂TB.

We start by augmenting TA, creating another tree T +
A that has the same struc-

ture as TB. In particular, T +
A includes the additional edges corresponding to the hatched

region. In T +
A and TB, we denote the set of these edges by Eu(T

+
A ) and Eu(TB) re-

spectively, and we assign 0 mutual information to each edge in Eu(T
+

A ).

Now, let ITA , IT +
A and ITB be the a-posteriori mutual information at the roots

of the trees TA, T +
A and TB respectively. Then it is clear that ITA = IT +

A , since the

messages on edges in Eu(T
+

A ) are effectively erasures and zero out the contributions

from the checks in C+
A \CA = CB \CA. On the other hand, if we denote by Ie(TB) the

mutual information associated with an edge e ∈ Eu(TB), and by Ie(T
+

A ) the mutual

information associated with the corresponding edge in T +
A , we know that Ie(T

+
A ) = 0

so that Ie(T
+

A ) ≤ Ie(TB). Hence, we have from Lemmas 5.2 and 5.3 that IT +
A ≤ ITB .

Since ITA = IT +
A , it follows that ITA ≤ ITB , as desired.
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It follows immediately from the definition of the windowed threshold that

ε
WD(B,W,δ )≤ ε

WD(B,W,δ ′) ∀ δ ≤ δ
′.

Furthermore, from the continuity of the density evolution equations (5.6) and (5.5),

we have that when we set δ = 0, we decode not only the targeted symbols within the

window but all the remaining symbols also. Since the symbols in the right end of the

window are the “worst protected” ones within the window (in the sense that these are

the symbols for which the least number of constraints are used to decode), we expect the

windowed thresholds εWD(B,W,δ = 0) to be dictated by the behavior of the submatrix

B0 under BP. In the following, when the base matrix B of the protograph correspond-

ing to an ensemble C is unambiguous, we will write εWD(B,W,δ ) and εWD(C ,W,δ )

interchangeably.

We next turn to giving some properties of LDPC-CC ensembles with good per-

formance under WD. We start with an example that illustrates the stark change in per-

formance a small difference in the structure of the protograph can produce.

Example 5.4. Consider WD with the ensemble Cc(3,6) in Example 5.3 with a window

of size W = 3. The corresponding protograph defining the first window configuration is
1 1 0 0 0 0

1 1 1 1 0 0

1 1 1 1 1 1


and we have εWD(Cc(3,6),W = 3,δ = 0) = 0. This is seen readily by observing that

there are VNs of degree 1 that are connected to the same CNs. In fact, from this reason-

ing, we see that εWD(Cc(J,K′J),W,δ = 0) = 0 ∀ J ≤W ≤ L.

As an alternative, we consider the modified construction of Section 5.1.2 to ob-

tain the Cm(J,K) ensemble B′ given by B0 = [2 2],B1 = [1 1]. This ensemble has a

BP threshold εBP(B′) ≈ 0.4875 for L = 40 which is quite close to that of the ensemble

Cc(3,6), εBP(Cc(3,6)) ≈ 0.4879. WD with a window of size 3 for this ensemble has

the first window configuration 
2 2 0 0 0 0

1 1 2 2 0 0

0 0 1 1 2 2


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which has a threshold εWD(B′,W = 3,δ = 0) ≈ 0.3331, i.e., we can theoretically get

close to 68.3% of the BP threshold with < 10% of the latency of the BP decoder. Note

that this improvement in threshold has been obtained while also increasing the rate of

the ensemble, since ms = 1 for the B′ ensemble in comparison with ms = 2 for Cc(3,6).

�

The above example illustrates the tremendous advantage obtained by using Cm

(J,K) ensembles for WD even under the severe requirement of δ = 0. The following is

a good rule of thumb for constructing LDPC-CC ensembles that have good performance

with WD.

Design Rule 5.1. For Cm(J,K′J) ensembles, set p(d j)
j ≥ 2 for all j ∈ [K′] where d j =

mindeg(p j(x)). �

The above design rule says that for (J,K′J) ensembles, it is better to avoid

degree-1 VNs within a window. Note that none of the Cc(J,K′J) ensembles satisfy

this design rule. We now illustrate the performance of LDPC-CC ensembles with WD

when we allow δ > 0.

Example 5.5. We compare three LDPC-CC ensembles. The first is the classical LDPC-

CC ensemble C1 = Cc(3,6). The second and the third are LDPC-CC ensembles con-

structed as described in Section 5.1.2. The ensemble C2 is defined by the polynomials

p1(x) = 2+ x2, p2(x) = 2+ x and C3 is defined by q1(x) = q2(x) = 2+ x.

We first observe that all three ensembles have the same asymptotic degree distri-

bution, i.e., all are (3,6) regular LDPC-CC ensembles when L→ ∞. While C1 and C2

have a memory ms = 2, C3 has a memory ms = 1. Therefore, for a fixed L, while C1 and

C2 have the same rate, C3 has a higher rate. Another consequence of a smaller ms is that

C3 can be decoded with a window of size Wmin(C3) = 2. Further note that whereas C2

and C3 satisfy Design Rule 5.1, C1 does not. For a window of size 3, the subprotographs

for ensembles C1 and C3 are as shown in Example 5.4, and that for ensemble C2 is as

shown below 
2 2 0 0 0 0

0 1 2 2 0 0

1 0 0 1 2 2


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In Figure 5.4, we show the windowed thresholds plotted against the window size

for the three ensembles C1,C2 and C3 by fixing L = 100 for δ ∈ {10−6,10−12}.
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Figure 5.4: Windowed threshold ε∗ ≡ εWD as a function of the window size for the
ensembles Ci, i = 1,2,3 with δ ∈ {10−6,10−12}. The rates of the ensembles C1 and C2
are 0.49 whereas that of C3 is 0.495. The corresponding Shannon limits are therefore
0.51 for C1 and C2, and 0.505 for C3.

A few observations are in order. The monotonicity of εWD(B,W,δ ) in W as

proven in Proposition 5.1 is evident. The windowed thresholds εWD(B,W,δ ) for C2

and C3 are fairly close to the maximum windowed threshold even when W = Wmin.

The windowed thresholds for ensembles C2 and C3 are robust to changes in δ , i.e.,

the thresholds are almost the same (the points overlap in the figure) for δ = 10−6 and

δ = 10−12. Further, the windowed thresholds εWD(Ci,W,δ ) are fairly close to the BP

thresholds εBP(Ci), i = 1,2,3 for W ≥ 12. We will see next that this last observation is

not always true. �

Remark 5.3 (Effect of termination). The better BP performance of the Cc(J,K) ensem-

ble in comparison with that of the (J,K)-regular block code ensemble (cf. Example 5.3)

is because of the termination of the parity-check matrix of Cc(J,K) codes. More pre-
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cisely, the low-degree CNs at the terminated portion of the protograph are more robust

to erasures and their erasure-correcting power is cascaded through the rest of the proto-

graph to give a better threshold for the convolutional ensemble in comparison with that

for the corresponding unstructured ensemble [106]. From the definition of the WD, we

can see that the sub-protograph within a window does not have the lower-degree checks

if previous targeted symbols are not decoded. Therefore, we would expect a deteriora-

tion in the performance. Furthermore, the Design Rule 5.1 increases the degrees of the

CNs in the terminated portion. Therefore, the effect of different termination on the WD

performance is of interest.

Example 5.6. Tables 5.1 and 5.2 illustrate the WD thresholds for Cm(J,2J) ensembles

that satisfy Design Rule 5.1 except when J = ms + 1. These ensembles are defined by

the polynomials

p1(x) = p2(x) = (J−ms)+ x+ x2 + · · ·+ xms.

Note that J ≥ ms + 1. The ensembles are terminated so that the rate is RL = 0.49. The

worst threshold with WD (corresponding to the least window size Wmin = ms + 1) is

denoted εWD
ms+1. The largest threshold with WD is denoted εWD

L−ms
and the BP threshold as

εBP. The increase in the gap between εWD
L−ms

and εBP with increasing J illustrates the loss

Table 5.1: WD Thresholds for ms = 1, RL = 0.49-Cm(J,2J) ensembles with δ = 10−12

and window size ms +1,L−ms. BP Thresholds are provided in the last column.
J εWD

ms+1 εWD
L−ms

εBP

2 0.0008 0.3162 0.3342
3 0.4499 0.4857 0.4872
4 0.4449 0.4469 0.4961
5 0.3915 0.3923 0.4969
6 0.3469 0.3475 0.4959
7 0.3115 0.3118 0.4891
8 0.2829 0.2832 0.4785
9 0.2595 0.2597 0.4666

due to edge multiplicities (“weaker” termination). This is because the terminations at the

beginning and at the end of the code are different, i.e., the CN degrees in the terminated

portion at the beginning of the code are 2(J −ms) which increases with J; whereas

those at the end of the code are 2, a constant. Thus, much of the code performance is
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Table 5.2: WD Thresholds for ms = 2, RL = 0.49-Cm(J,2J) ensembles with δ = 10−12

and window size ms +1,L−ms. BP Thresholds are provided in the last column.
J εWD

ms+1 εWD
L−ms

εBP

3 0.0189 0.4882 0.4876
4 0.4875 0.4947 0.4958
5 0.4493 0.4501 0.4971
6 0.3941 0.3945 0.4972
7 0.3489 0.3492 0.4969
8 0.3131 0.3133 0.4967
9 0.2843 0.2845 0.4957

10 0.2607 0.2608 0.4937

determined by the “stronger” (smaller check-degree) termination, the one at the end of

the code for J > ms + 1. This is also seen by the fact that the gap between εWD
ms+1 and

εWD
L−ms

decreases as J increases, meaning that the termination at the beginning of the code

is weak and increasing the window size helps little. Note that the Cm(3,6) ensemble in

Table 5.2 is in fact the Cc(3,6) classical ensemble, and that εWD
L−ms

is larger than the

corresponding BP threshold. This is possible since WD only demands that the erasure

probability of the targeted symbols is reduced to δ . In contrast, BP demands that the

erasure probability of all the symbols is reduced to 0. �

From the above discussion, we can add the following as another design rule.

Design Rule 5.2. For Cm(J,K) ensembles, keep the termination at the beginning of

the code strong, preferably stronger than the one at the end of the code. That is, use

polynomials P = {p j(x), j ∈ [K′]} such that each of the sums

K′

∑
j=1

p(0)j , · · · ,
K′

∑
j=1

p(J
′−1)

j

is kept as small as possible. �

Remark 5.4 (Targeted symbols). We have thus far in this chapter, as well as Chapter

4, considered only the first K′ VNs in the sub-protograph contained within the window

to be the targeted symbols. However, as an alternative way to trade-off performance

for reduced latency, it is possible to consider other VNs also as targeted symbols. In

this case, the window would be shifted beyond all the targeted symbols after processing

each window configuration. For a window of size W , let us denote by εWD
i (B,W,δ ) the
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windowed threshold when the targeted symbols are the first iK′ VNs, 1 ≤ i ≤W . Note

that this is different from the ith window configuration threshold εWD
(i) (B,W,δ ). Hence,

εWD(B,W,δ ) = εWD
1 (B,W,δ ). By definition, εWD

i (B,W,δ )≤ εWD(B,W,δ ).

Example 5.7. Consider the Cm(6,12) ensemble with ms = 1 defined by p1(x) = p2(x) =

3+3x, denoted C4; and the Cm(4,8) ensemble with ms = 1 defined by q1(x) = q2(x) =

2+2x, denoted C5. Also consider ensembles C6 and C7 given by r1(x) = r2(x) = 2+4x

and s1(x) = s2(x) = 2+2x+2x2 respectively. Both C6 and C7 are Cm(6,12) ensembles,

but with memory ms = 1 and 2 respectively. Table 5.3 gives the windowed thresholds

εWD
i (C j,W = 4,δ ) with iK′ targeted symbols for a window of size 4 for j = 4,5,6,7.

Table 5.3: Windowed thresholds εWD
i for ensembles C j with iK′ targeted symbols,

window size W = 4, and δ = 10−12, for j = 4,5,6,7.
i C4 C5 C6 C7
1 0.4429 0.4912 0.4835 0.4924
2 0.4429 0.4905 0.4835 0.4919
3 0.4427 0.4824 0.4828 0.4824
4 0.4294 0.3331 0.3331 0.3331

One might expect the windowed threshold εWD(B,W,δ ) to be higher for an en-

semble for which εWD
W (B,W,δ ) is higher. This is not quite right: we see that for ensem-

bles C4 and C5, εWD
4 (C4,4,10−12) ≈ 0.4294 > 0.3331 ≈ εWD

4 (C5,4,10−12) whereas

εWD
i (C5,4,10−12) > εWD

i (C4,4,10−12) ∀ i < 4. This can again be explained as the ef-

fect of stronger termination in C5 in comparison with C4. This is also evident in the

larger thresholds for the (6,12) ensemble C6 with same memory as C4, but stronger ter-

mination. Also, keeping the same termination and increasing the memory improves the

performance, as is exemplified by the larger thresholds of C7 in comparison with those

of C5. �

The windowed thresholds εWD
i (B,W,δ ) quantify the unequal erasure protection

of different VNs in the sub-protograph within the window. Furthermore, it is clear

that for good performance, it is advantageous to keep fewer targeted symbols within a

window.
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5.3.2 Finite length performance evaluation

The finite length performance of LDPC codes under iterative message-passing

decoding over the BEC is dependent on the number and the size of stopping sets present

in the parity-check matrix of the code [22, 100]. Thus, the performance of the codes

varies based on the parity-check matrix used to represent the code and, consequently,

the performance of iterative decoding can be made to approach that of ML decoding

by adding redundant rows to the parity-check matrix (See e.g. [41]). However, since

we are exploiting the structure of the parity-check matrix of the convolutional code, we

will not be interested in changing the parity-check matrix by adding redundant rows as

this destroys the convolutional structure. The ensemble stopping set size distribution for

some protograph-based LDPC codes was evaluated in [25] where it was shown that a

minimum stopping set size that grows linearly in blocklength is important for the good

performance of codes with short blocklengths. This analysis is similar to the analysis

of the minimum distance growth rate of LDPC-CC ensembles—see [72] and references

therein. It is worthwhile to note that although the minimum stopping set size grows

linearly for protograph codes expanded using random permutation matrices, the same is

not true for codes expanded using circulant permutation matrices [15]. In the following

we will evaluate the finite length performance of codes constructed from Cm(J,K) en-

sembles with WD through Monte Carlo simulations. Here we considered WD with only

the first K′M symbols as the targeted symbols.

In Figures 5.5 and 5.6, the symbol error rate (SER) and the codeword error rate

(CER) performance are depicted for codes C1 ∈ C1 and C2 ∈ C2, where the ensembles

C1 and C2 were defined in Example 5.5. The codes used were those constructed by

expanding the protographs using circulant matrices (and sums of circulant matrices) and

techniques of progressive edge growth (PEG) [45] and approximate cycle extrinsic mes-

sage degree (ACE) [113] to avoid small cycles in the Tanner graphs of the codes. The

girth of both the codes C1 and C2 was 12. The parameters used for the construction

were L = 20 and M = 512 so that the blocklength n = LK′M = 20480 and RL = 0.45.

The BP thresholds for ensembles C1 and C2 with L = 20 were 0.4883 and 0.4882 re-

spectively. As is clear from Figure 5.5 and 5.6, code C2 outperforms code C1 for small

window sizes (W = 3,5), confirming the effectiveness of the proposed design rules for
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Figure 5.5: SER performance for Belief Propagation and Windowed Decoding over
BEC.

windowed decoding. For larger window sizes (W = 10), there is no marked difference in

the performance of the two codes. It was also observed that for small M values (< 128),

the performance of codes constructed through circulant permutation matrices was better

than those constructed through random permutation matrices. This difference in perfor-

mance diminished for larger M values.

We include in Figure 5.6, for comparison, a lower bound on the CER Pcw. The

Singleton bound, PSB, represents the performance achievable by an idealized (n,k) bi-

nary MDS code. This bound for the BEC can be expressed as

Pcw ≥
n

∑
j=n−k+1

(
n
j

)
ε

j(1− ε)n− j = PSB.

Note that by the idealized (n,k) binary MDS code, we mean a binary linear code that

achieves the Singleton bound dmin ≤ n− k+ 1 with equality. This code does not exist

for all values of k and n.
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Figure 5.6: CER performance for BP and Windowed Decoding over BEC. Also shown
is the (Singleton) lower bound PSB as SB.

5.4 Erasure Channels with Memory

We now consider the performance of LDPC-CC ensembles and codes over era-

sure channels with memory. We consider the familiar two-state Gilbert-Elliott channel

(GEC) [29, 40] as a model of an erasure channel with memory. In this model, the chan-

nel is either in a “good” state G, where we assume the erasure probability is 0, or in an

“erasure” state E, in which the erasure probability is 1. The state process of the chan-

nel is a first-order Markov process with the transition probabilities P{E → G} = g and

P{G→ E} = b. With these parameters, we can easily deduce [122] that the average

erasure rate ε and the average burst length ∆ are given by

ε = P{E}= b
b+g

, ∆ =
1
g
.

We will consider the GEC to be parameterized by the pair (ε,∆). Note that there is a

one-to-one correspondence between the two pairs (b,g) and (ε,∆).

Discussion : The channel capacity of a correlated binary erasure channel with an av-

erage erasure rate of ε is given as (1− ε), which is the same as that of the memoryless
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channel, provided the channel is ergodic. Therefore, one can obtain good performance

on a correlated erasure channel through the use of a capacity-achieving code for the

memoryless channel with an interleaver to randomize the erasures [25, 125]. This is

equivalent to permuting the columns of the parity-check matrix of the original code. We

are not interested in this approach since such permutations destroy the convolutional

structure of the code and as a result, we are unable to use the WD for such a scheme. �

Construction of LDPC block codes for bursty erasure channels has been well

studied. The performance metric of a code over a bursty erasure channel is related to

the maximum resolvable erasure burst length (MBL) denoted ∆max [125], which, as the

name suggests, is the maximal length of a single solid erasure burst that can be decoded

by a BP decoder. Methods of optimizing codes for such channels therefore focus on

permuting columns of parity-check matrices to maximize ∆max, e.g. [51, 52, 76, 88, 89,

109]. Instead of permuting columns of the parity-check matrix, in order to maintain the

convolutional structure of the code, we will consider designing Cm(J,K) ensembles that

maximize ∆max.

5.4.1 Asymptotic Analysis

As noted earlier, the performance of LDPC-CC ensembles depends on stopping

sets. The structure of protographs imposes constraints on the code that limit the stop-

ping set sizes and locations, as will be shown shortly. We will initially consider the

performance with BP decoding, and later specialize to the case of WD. Since the base

matrix with WD is a submatrix of that of the base matrix of the underlying protograph,

the results for WD will be easily obtained once the results with BP are known.

Let us define a protograph stopping set to be a subset S(B) of the VNs of the

protograph B whose neighboring CNs are connected at least twice to S(B). These are

also denoted as S(P), in terms of the set of polynomials defining the protograph. We

define the size of the stopping set as the cardinality of S(B), denoted |S(B)|. We call the

least number of consecutive columns of B that contain the stopping set S(B) the span

of the stopping set, denoted 〈S(B)〉. Let us denote the size of the smallest protograph

stopping set of the protograph B by |S(B)|∗, and the minimum number of consecutive
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columns of the protograph B that contain a protograph stopping set by 〈S(B)〉∗. When

the protograph under consideration is clear from the context, we will drop it from the

notation and use |S|∗ and 〈S〉∗. The minimum span of a stopping set is of interest

because we can give simple bounds for ∆max based on 〈S(B)〉∗. Note that the stopping

set of minimal size and the stopping set of minimal span are not necessarily the same

set of VNs. However, we always have

|S(B)|∗ ≤ 〈S(B)〉∗.

The following example clarifies the notation.

Example 5.8. Let us denote the base matrix corresponding to the protograph of the

ensembles Ci of Example 5.5 as B(i), i = 1,2,3. For ensembles C1 and C3, the first two

columns of B(i), i = 1,3 form a protograph stopping set, i.e., S(B(i)) = {V1,V2}, i = 1,3

is a stopping set. This is clear from the highlighted columns below

B(1) =



1 1 0 0 0 0 · · ·
1 1 1 1 0 0 · · ·
1 1 1 1 1 1 · · ·
0 0 1 1 1 1 · · ·
0 0 0 0 1 1 · · ·
...

...
...

...
...

... . . .


,

B(3) =



2 2 0 0 0 0 · · ·
1 1 2 2 0 0 · · ·
0 0 1 1 2 2 · · ·
0 0 0 0 1 1 · · ·
...

...
...

...
...

... . . .


.

Therefore, |S(B(i))|∗≤ 2 and 〈S(B(i))〉∗≤ 2. Since no single column forms a protograph

stopping set, |S(B(i))|∗ ≥ 2 and 〈S(B(i))〉∗ ≥ 2, implying |S(B(i))|∗ = 〈S(B(i))〉∗ = 2, i =

1,3.

For ensemble C2, the highlighted columns of B(2) in the following matrix form
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a protograph stopping set, i.e., S(B(2)) = {V1,V4} is a stopping set.

B(2) =



2 2 0 0 0 0 · · ·
0 1 2 2 0 0 · · ·
1 0 0 1 2 2 · · ·
0 0 1 0 0 1 · · ·
0 0 0 0 1 0 · · ·
...

...
...

...
...

... . . .


.

Thus, |S(B(2))|∗ ≤ 2 and 〈S(B(2))〉∗ ≤ 4. As no single column of B(2) is a protograph

stopping set and no three consecutive columns of B(2) contain a protograph stopping set,

it is clear that |S(B(2))|∗ ≥ 2 and 〈S(B(2))〉∗ ≥ 4, so that

2 = |S(B(2))|∗ ≤ 〈S(B(2))〉∗ = 4.

In these cases, it so happened that the stopping set with the minimal size and the stopping

set with the minimal span were the same. �

Our aim in the following will be to obtain bounds for the maximal 〈S(B)〉∗ over

Cm(J,K) ensembles with memory ms, which we denote 〈S(J,K,ms)〉∗, and design pro-

tographs that achieve minimal spans close to this optimal value.

The analysis of the minimal span of stopping sets for unstructured LDPC ensem-

bles was performed in [118]. However, the structure of the protograph-based LDPC-CC

allows us to obtain 〈S(J,K,ms)〉∗ much more easily for some Cm(J,K) ensembles.

We start by observing that if one of the VNs in the protograph is connected

multiple times to all its neighboring CNs, then it forms a protograph stopping set by

itself. In order to obtain a larger minimum span of stopping sets, it is desirable to avoid

this case, and we include this as one of our design criteria.

Design Rule 5.3. For a Cm(J,K) ensemble, choose the polynomials p j(x) such that for

every j ∈ [K′], there exists 0≤ i j ≤ (ms +1)J′−1 such that p(i j)
j = 1. �

Using the polynomial representation of LDPC-CC ensembles is helpful in this

case since we can easily track stopping sets as those subsets that have polynomials

whose coefficients are all larger than 1. From this fact, we can prove the following.



153

Proposition 5.4 (〈S〉∗ for Cm(J,2J) protographs). For Cm(J,2J) protographs of memory

ms defined by polynomials p1(x) and p2(x), 〈S〉∗ can be upper bounded as

〈S〉∗ ≤



2ms, 0 = i2 ≤ i1, j2 ≤ j1 = ms

2ms−1, 0 = i2 ≤ i1, j1 < j2 = ms

2ms−1, 0 = i1 < i2, j2 ≤ j1 = ms

2ms−2, 0 = i1 < i2, j1 < j2 = ms

where il = mindeg(pl(x)) and jl = deg(pl(x)), l = 1,2.

Proof. From the definitions made in the statement of Proposition 5.4, we have 0≤ il <

jl ≤ ms, l = 1,2. We assume il < jl in order to satisfy Design Rule 5.3. Since the code

has memory ms, we have i = min{i1, i2} = 0 and j = max{ j1, j2} = ms. Consider the

subset of columns of B corresponding to the polynomial r(x) = p1(x)b1(x)+ p2(x)b2(x)

where

b1(x) =

xi2, i2 = j2−1

xi2 + xi2+1 + · · ·+ x j2−1, i2 < j2−1

and

b2(x) =

xi1, i1 = j1−1

xi1 + xi1+1 + · · ·+ x j1−1, i1 < j1−1.

We claim that this is a protograph stopping set. To see this, consider the columns cor-

responding to the above subset with β (p1(x)) and β (p2(x)) as the column polynomials

defining B. We have

r̂(x) = β (p1(x))b1(x)+β (p2(x))b2(x)

= (xi1 + x j1)(xi2 + xi2+1 + · · ·+ x j2−1)

+(xi2 + x j2)(xi1 + xi1+1 + · · ·+ x j1−1)

= xi1+i2 + xi1+i2+1 + · · ·+ xi1+ j2−1

+ x j1+i2 + x j1+i2+1 + · · ·+ x j1+ j2−1

+ xi1+i2 + xi1+i2+1 + · · ·+ x j1+i2−1

+ xi1+ j2 + xi1+ j2+1 + · · ·+ x j1+ j2−1

= 2xi1+i2 + · · ·+2xi1+ j2−1 +2xi1+ j2 + · · ·+2x j1+ j2−1
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when jl > il +1, l = 1,2. Similarly, it can be verified that r̂(x) has all coefficients equal

to 2 in all other cases also. Clearly, r̂(x)� r(x) and thus r(x) can only differ from r̂(x) in

having larger coefficients. Therefore, r(x) also has all coefficients greater than 1. This

shows that the chosen subset of columns form a protograph stopping set. Based on the

parameters il, jl, l = 1,2, we can count the number of columns included in the span of

this stopping set and therefore give upper bounds on 〈S〉∗ as claimed :

〈S〉∗ ≤



2( j1− i2), 0 = i2 ≤ i1, j2 ≤ j1 = ms

2( j2− i2)−1, 0 = i2 ≤ i1, j1 < j2 = ms

2( j1− i1)−1, 0 = i1 < i2, j2 ≤ j1 = ms

2( j2− i1−1), 0 = i1 < i2, j1 < j2 = ms.

We see from the above that 〈S(J,2J,ms)〉∗ ≤ 2ms and a necessary condition for

achieving this span is the first of four possible cases listed above, which we include as

another design criterion.

Design Rule 5.4. For Cm(J,2J) ensembles with memory ms, set

mindeg(p2(x)) = 0 and deg(p1(x)) = ms. �

Corollary 5.5 (Optimal Cm(J,2J) protographs). For Cm(J,2J) protographs with mem-

ory ms and J > 2, 〈S(J,2J,ms)〉∗ = 2ms.

Proof. Consider the protograph of the ensemble given by p1(x) = (J− 1) + xms and

p2(x) = (J− 1)+ x. Let the polynomial r(x) = p1(x)a1(x)+ p2(x)a2(x) represent an

arbitrary subset (chosen from the 22ms−1− 1 non-empty subsets) of the first (2ms− 1)

columns of B, for any choice of polynomials a1(x) and a2(x) with coefficients in {0,1}
and maximal degrees (ms−1) and (ms−2) respectively:

ai(x) =
di

∑
j=0

a( j)
i x j, i = 1,2, d1 = ms−1,d2 = ms−2

where a( j)
i ∈ {0,1} and not all a( j)

i s are zeros. When a1(x) 6= 0, let i1 = deg(a1(x)).

Clearly, r(x) is a monic polynomial of degree (ms+ i1). When a1(x) = 0 and a2(x) 6= 0,
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let i2 = deg(a2(x)). Then, r(x) is a monic polynomial of degree (1+ i2). Since in both

these cases r(x) is a monic polynomial, there is at least one coefficient equaling 1. Thus,

〈S〉∗ > 2ms−1. Finally, notice that

p1(x)+ xms−1 p2(x) = (J−1)+ xms +(J−1)xms−1 + xms

= (J−1)+(J−1)xms−1 +2xms,

with all coefficients strictly larger than 1. Note that p1(x) corresponds to the first column

of the protograph and xms−1 p2(x) to the 2mth
s column. Thus, we have 〈S〉∗ = 2ms. Since

we have 〈S(J,2J,ms)〉∗ ≤ 2ms from Proposition 5.4, we conclude that 〈S(J,2J,ms)〉∗ =
2ms.

Note that ensemble C2 in Example 5.5 achieves 〈S(J,2J,ms)〉∗, as was observed

in Example 5.8. It also satisfies Design Rules 5.1, 5.3 and 5.4. We bring to the reader’s

attention here that constructions other than the one given in the proof of the above corol-

lary that achieve 〈S〉∗ = 2ms are also possible. These constructions allow us to design

Cm(J,2J) ensembles for a wide range of required 〈S〉∗. We quickly see that a drawback

of the convolutional structure is that if ms is increased to obtain a larger 〈S〉∗, the code

rate RL decreases linearly for a fixed L.

We give without proof the following upper bound for 〈S〉∗ for Cm(J,K′J) en-

sembles, as it follows from Proposition 5.4.

Proposition 5.6 (〈S〉∗ for Cm(J,K′J) protographs). For Cm(J,K′J) protographs defined

by polynomials P = {p j(x), j ∈ [K′]}, we have

〈S〉∗ ≤ min
(l1,l2)∈[K′]2,l1<l2

{〈Sl1,l2〉}

where 〈Sl1,l2〉 is the upper bound for the minimal span 〈Sl1,l2〉 of stopping sets Sl1,l2

confined within subsets of the form rl1,l2(x) = a1(x)pl1(x)+a2(x)pl2(x) given by

〈Sl1,l2〉=



K′(ms(l1, l2)−1)+(l2− l1 +1), i(l1, l2) = il2 ≤ il1, jl2 ≤ jl1 = j(l1, l2)

K′(ms(l1, l2)−1)+1, i(l1, l2) = il2 ≤ il1, jl1 < jl2 = j(l1, l2)

K′(ms(l1, l2)−1)+1, i(l1, l2) = il1 < il2, jl2 ≤ jl1 = j(l1, l2)

K′(ms(l1, l2)−1)− (l2− l1−1), i(l1, l2) = il1 < il2, jl1 < jl2 = j(l1, l2).
(5.7)
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where we have used the notation ilu = mindeg(plu(x)), jlu = deg(plu(x)), u = 1,2,

i(l1, l2) = min{il1, il2}, j(l1, l2) = max{ jl1, jl2} and ms(l1, l2) = j(l1, l2)− i(l1, l2). �

Discussion : By looking at the stopping sets confined within columns corresponding

to two polynomials only, we can use Proposition 5.4 to upper bound the span of these

stopping sets. The minimal such span over all possible choices of the two columns

therefore gives an upper bound on the minimal span of the (J,K′J) protograph. Since

〈Sl1,l2〉 ≤ K′ms ∀ l1, l2 from Equation (5.7), we have 〈S(J,K′J,ms)〉∗ ≤ K′ms, which is

similar to the result in Proposition 5.4. This bound is, however, loose in general.

For terminated codes, we can give an upper bound for 〈S〉∗ that is tighter in some

cases.

Corollary 5.7 (〈S〉∗ for Cm(J,K) protographs). For Cm(J,K) protographs terminated

after L instants, 〈S〉∗ ≤ K′L.

Proof. From the Singleton bound for the protograph, we have 〈S〉∗ ≤ J′(L+ms). Since

we need ms ≤ R
1−RL for a positive code rate in (5.2), 〈S〉∗ ≤ J′L

1−R = K′L.

Note that for Cm(J,K′J) protographs, this is tighter than the bound 〈S〉∗≤K′ms≤
K′(K′−1)L, which, in the worst case, is a factor (K′−1) times larger. However, since

we are interested mainly in ensembles for which ms � L, this bound might be looser

than the one in Proposition 5.6 for Cm(J,K′J) ensembles.

Example 5.9. Consider the Cm(J,K′J) ensemble with memory ms = u(K′−1)+1,ms ≤
(K′−1)L defined by the polynomials

pl(x) = (J−1)+ x jl , l ∈ [K′],

jl = ms− u(l− 1). It can be shown by an argument similar to the one used to prove

Corollary 5.5 that for the protograph of this ensemble, 〈S〉∗ = K′u+ 2. This is exactly

the bound in Proposition 5.6 since

min
l1<l2
{〈Sl1,l2〉}= 〈SK′−1,K′〉= K′u+2.

Thus, in this case

〈S〉∗ = K′

K′−1
(ms−1)+2 =

⌈
K′

K′−1
ms

⌉



157

which is roughly only a fraction of the (loose) upper bound for 〈S(J,K′J,ms)〉∗ sug-

gested in the discussion of Proposition 5.6. The constructed Cm(J,K′J) protographs

are thus optimal in the sense of maximizing the minimal span of stopping sets, i.e.,

〈S(J,K′J,u(K′−1)+1)〉∗ = K′u+2 ∀ u ∈ [L−1]. They also satisfy Design Rules 5.1

and 5.3 for J > 2. Although Proposition 5.6 gave a tight bound for 〈S〉∗ in this case, it

is loose in general. �

We can show that the Cm(J,K) protographs have minimal spans at least as large

as the corresponding spans of Cm(a,K) protographs.

Proposition 5.8. 〈S(J,K,ms)〉∗ ≥ 〈S(a,K,ms)〉∗ where a = gcd(J,K)≥ 2.

Proof. The equality is trivial when a = J. When 2≤ a < J = aJ′, one way of construct-

ing the Cm(J,K) ensembles with memory ms is to let each set of modulo polynomials

Pl themselves define Cm(a,K) ensembles with memory ms. The result then follows by

noting that a stopping set for the polynomials P has to be a stopping set for every set

of polynomials Pl , l = 0,1, · · · ,J′−1.

The construction proposed above often allows us to strictly increase the minimal

span of the Cm(J,K) ensemble in comparison with the Cm(a,K) ensemble, as illustrated

by the following example.

Example 5.10. Consider the construction of a Cm(4,6) ensemble with memory 3. Let

us call it C8. The different parameters in this case are J = 4, K = 6, a = 2, J′ = 2,

K′ = 3 and ms = 3. Since ms = u(K′− 1)+ 1 with u = 1, we have for Cm(2,6) pro-

tographs, 〈S(2,6,3)〉∗ = 5 from Example 5.9 and we will define the modulo polyno-

mials P0 to be the optimal construction that achieves this minimal span, i.e., P0 =

{1+x3,1+x2,1+x}. Then, by defining P1 = {1+x3,1+x3,1+x3}, we can show that

〈S(P)〉∗ = 6 and hence 〈S(4,6,3)〉∗ ≥ 6 > 5 = 〈S(2,6,3)〉∗. Note that the protograph

defined by P has no degree-1 VNs associated with the component matrix B0. In fact,

the constructed Cm(4,6) ensemble has εWD(C8,ms + 1,10−12) ≈ 0.6469, fairly close

to the Shannon limit of εSh = 2
3 , even with the smallest possible window size. Table

5.4 lists the windowed thresholds of this ensemble with different numbers of targeted

symbols within the smallest window for δ = 10−12. �
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Table 5.4: WD thresholds εWD
i for the ensemble C8, with iK′ targeted symbols, window

size ms +1, and δ = 10−12.
i 1 2 3 4

εWD
i 0.6469 0.6184 0.5803 0.4997

The asymptotic analysis for WD is essentially the same as that for BP. We will

consider WD with only the first K′ symbols within each window as the targeted sym-

bols. We are now interested in the sub-protograph stopping sets, denoted S(B,W ), that

include one or more of the targeted symbols within a window. Let us denote the minimal

span of such stopping sets as 〈S(B,W )〉∗. Since stopping sets of the protograph of the

LDPC-CC are also stopping sets of the sub-protograph within a window, and since such

stopping sets can be chosen to include some targeted symbols within the window, we

have 〈S(B,W )〉∗ ≤ 〈S(B)〉∗. In fact, 〈S(B,W )〉∗ = 〈S(B)〉∗ when

W ≥
⌈〈S〉∗

K′

⌉
+ms

since in this case the first K′
⌈
〈S〉∗
K′

⌉
columns are completely contained in the window.

Further, we have

〈S(B,W )〉∗ ≤ 〈S(B,W +1)〉∗.

This is true because a stopping set for window size W involving targeted symbols is not

necessarily a stopping set for window size W + 1, whereas a stopping set for window

size W +1 is definitely a stopping set for window size W .

Remark 5.5. When the first iK′ symbols within a window are the targeted symbols, we

have for i≤W −ms

〈Si(B,W )〉∗ = 〈S(B,W − i+1)〉∗

where 〈Si(B,W )〉∗ denotes the minimal span of stopping sets of the sub-protograph

within the window of size W involving at least one of the iK′ targeted symbols, and

〈S1(B,W )〉∗ = 〈S(B,W )〉∗. Consequently, we have

〈Si(B,W )〉∗ ≤ 〈S(B,W )〉∗.

The definition of 〈Si(B,W )〉∗ can be extended to accommodate W −ms +1≤ i≤W , as

in the case of windowed thresholds. In particular, we have 〈SW (B,W )〉∗ = 〈S(B0)〉∗ ≤
J′, where the last inequality is from the Singleton bound. �
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Example 5.11. Consider the ensemble C2 defined in Example 5.5. With a window of

size W = ms + 1 = 3, we have 〈S(C2,3)〉∗ = 2 with the corresponding stopping set

S3 = {V2,V3} highlighted below
2 2 0 0 0 0

0 1 2 2 0 0

1 0 0 1 2 2


and with a window size W = 4, we have 〈S(C2,4)〉∗ = 〈S(C2)〉∗ = 4, and the corre-

sponding stopping sets S4 = {V1,V4} and S′4 = {V1,V2,V4} are as follows
2 2 0 0 0 0 0 0

0 1 2 2 0 0 0 0

1 0 0 1 2 2 0 0

0 0 1 0 0 1 2 2

 ,


2 2 0 0 0 0 0 0

0 1 2 2 0 0 0 0

1 0 0 1 2 2 0 0

0 0 1 0 0 1 2 2

 .

Note that for window size 3, whereas the minimal span of a stopping set involving VN

V2 is 2, that of a stopping set involving V1 is 4. However, for window size 4, the stopping

set involving V1 with minimal span, denoted S4, and that involving V2, S′4, each have a

span of 4, although their cardinalities are 2 and 3 respectively. We have in this case,

S4 ⊂ S′4. Notice that 〈S2(C2,4)〉∗ = 〈S(C2,3)〉∗ = 2. �

5.4.2 Finite length analysis

We now show the relation between the parameters ∆max and 〈S(B)〉∗. We shall

assume in the following that 〈S〉∗ ≥ 2, i.e., every column of the protograph has at least

one of the entries equal to 1. We will consider the expansion of the protographs by a

factor M to obtain codes.

Proposition 5.9. For any (J,K) regular LDPC-CC, ∆max ≤M〈S〉∗−1.
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Proof. Clearly, the set of the M〈S〉∗ columns of the parity-check matrix correspond-

ing to the 〈S〉∗ consecutive columns of B that contain the protograph stopping set with

minimal span must contain a stopping set of the parity-check matrix. Therefore, if all

symbols corresponding to these columns are erased, they cannot be retrieved.

Corollary 5.10. A terminated Cm(J,K′J) LDPC-CC with ms = u(K′−1)+1,u∈ [L−1]

can never achieve the MBL of an MDS code.

Proof. From the Singleton bound, we have ∆max ≤ n− k = (L+ms)M, assuming that

the parity-check matrix is full-rank. From Proposition 5.9 we have,

∆max ≤M〈S(J,K′J,u(K′−1)+1)〉∗−1 =

⌈
K′

K′−1
ms

⌉
M−1

where the second equality follows from the discussion in Example 5.9. Since we require

ms ≤ R
1−RL = (K′−1)L for a non-negative code rate in (5.2),

∆max ≤
⌈
(K′−1)ms +(K′−1)L

K′−1

⌉
M−1 < (L+ms)M

which shows that the MBL of an MDS code can never be achieved.

Remark 5.6. Although the idealized binary (n,k) MDS code does not exist, there are

codes that achieve MDS performance when used over a channel that introduces a single

burst of erasures in a codeword. For example, the (2n,n) code with a parity-check matrix

H = [In In] has an MBL of ∆max = n. �

Despite the discouraging result from Corollary 5.10, we can guarantee an MBL

that linearly increases with 〈S〉∗ as follows.

Proposition 5.11. For any (J,K) regular LDPC-CC, ∆max ≥M(〈S〉∗−2)+1.

Proof. From the definition of 〈S〉∗, it is clear that if one of the two extreme columns

is completely known, all other symbols can be recovered, for otherwise the remaining

columns within the span of the stopping set S will have to contain another protograph

stopping set, violating the minimality of the stopping set span 〈S〉∗ (The two extreme

columns are pivots of the stopping set [88].) The largest solid burst that is guaranteed to

have at least one of the extreme columns completely known is of length M(〈S〉∗−2)+1.

Therefore, ∆max ≥M(〈S〉∗−2)+1.
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Example 5.12. For the Cm(J,K′J) ensemble with memory ms = u(K′−1)+1,u∈ [L−1]

in Example 5.9, we have

MK′
(

ms−1
K′−1

)
+1≤ ∆max ≤MK′

(
ms−1
K′−1

)
+2M−1

from Propositions 5.9 and 5.11. Thus, we can construct codes with MBL proportional

to ms. �

The MBL for WD ∆max(W ) can be bounded as in the case of BP based on

〈S(B,W )〉∗. Assuming that the window size is W ≥ ms + 1, the targeted symbols are

the first K′ symbols within the window, and the polynomials defining the ensemble are

chosen to satisfy Design Rule 5.3, we have 〈S(B,W )〉∗ ≥ 2. Propositions 5.9 and 5.11

in this case imply that

M(〈S(B,W )〉∗−2)+1≤ ∆max(W )≤M〈S(B,W )〉∗−1.

5.4.3 Numerical results

The MBL for codes C1 and C2 (the same codes used in Section 5.3.2) was com-

puted using an exhaustive search algorithm, by feeding the decoder with a solid burst

of erasures and testing all the possible locations of the burst. The MBL for the codes

we considered was 1023 and 1751 for codes C1 and C2, respectively. Note that for

code C1, the MBL ∆max = 1023 = 2M−1, i.e., code C1 achieves the upper bound from

Proposition 5.9. More importantly, the maximum possible ∆max was achievable while

maintaining good performance over the BEC with the BP decoder. However, the MBL

for code C2, ∆max = 1751 < 2047 = 4M− 1, is much smaller than the corresponding

bound from Proposition 5.9. In this case, although other code constructions with ∆max

up to 2045 were possible, a trade-off between the BEC performance and MBL was ob-

served, i.e., the code that achieved ∆max = 2045 was found to be much worse over the

BEC than both codes C1 and C2 considered here. Such a trade-off has also been ob-

served by others, e.g. [51]. This could be because the codes that achieve large ∆max

are often those that have a very regular structure in their parity-check matrices. Nev-

ertheless, our code design does give a large increase in MBL (> 70%) when compared

with the corresponding codes constructed from Cc ensembles, without any decrease in
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code rate (same ms). The MBL achieved as a fraction of the maximum possible MBL

∆max/(n− k) was roughly 9.1% and 15.5% for codes C1 and C2, respectively.

In Figure 5.7, 5.8 and 5.9, we show the CER performance obtained for codes C1

and C2 over GEC channels with ∆ = 10,50 and 100 respectively, and ε ∈ [0.1,0.6]. As
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Figure 5.7: CER Performance on the Gilbert-Elliott Channel with ∆= 10 with Singleton
bound (SB).

can be seen from the figures, for W = 3, code C2 always outperforms code C1, while for

W = 5 there is no such gain when ∆ = 100. However, for W = 10 and for BP decoding,

code C1 slightly outperforms C2.

Note that the code C2 outperforms C1 for small ε when the average burst length

∆ = 100 for large window sizes and for BP decoding. This can be explained because

in this regime, the probability of a burst is small but the average burst length is large.

Therefore, when a burst occurs, it is likely to resemble a single burst in a codeword, and

in this case we know that the code C2 is stronger than C1. Also note the significant gap

between the BP decoder performance and the Singleton bound, suggesting that unlike

some moderate length LDPC block codes with ML decoding [76], LDPC-CC are far

from achieving MDS performance with BP or windowed decoding.
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Figure 5.8: CER Performance on the Gilbert-Elliott Channel with ∆= 50 with Singleton
bound (SB).

5.5 Conclusions

We studied the performance of a windowed decoding scheme for LDPC con-

volutional codes over erasure channels. We showed that this scheme, when used to

decode terminated LDPC-CC, provides an efficient way to trade-off decoding perfor-

mance for reduced latency. Through asymptotic performance analysis, several design

rules were suggested to avoid bad structures within protographs and, in turn, to ensure

good thresholds. For erasure channels with memory, the asymptotic performance analy-

sis led to design rules for protographs that ensure large stopping set spans. Examples of

LDPC-CC ensembles that satisfy design rules for the BEC as well as erasure channels

with memory were provided. Finite length codes belonging to the constructed ensem-

bles were simulated and the validity of the design rules as markers of good performance

was verified. The windowed decoding scheme can be used to decode LDPC-CC over

other channels that introduce errors and erasures, although in this case error propagation

due to wrong decoding within a window will have to be carefully dealt with.
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Figure 5.9: CER Performance on the Gilbert-Elliott Channel with ∆ = 100 with Single-
ton bound (SB).

For erasure channels, while close-to-optimal performance (in the sense of ap-

proaching capacity) was achievable for the BEC, we showed that the structure of LDPC-

CC imposed constraints that bounded the performance over erasure channels with mem-

ory strictly away from the optimal performance (in the sense of approaching MDS per-

formance). Nevertheless, the simple structure and good performance of these codes, as

well as the latency flexibility and low complexity of the decoding algorithm, are attrac-

tive characteristics for practical systems.
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