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We developed a new flexible approach for a co-analysis of multi-

modal brain imaging data using a non-parametric framework. In

this approach, results from separate analyses on different modalities

are combined using a combining function and assessed with a

permutation test. This approach identifies several cross-modality

relationships, such as concordance and dissociation, without explic-

itly modeling the correlation between modalities. We applied our

approach to structural and perfusion MRI data from an Alzheimer’s

disease (AD) study. Our approach identified areas of concordance,

where both gray matter (GM) density and perfusion decreased

together, and areas of dissociation, where GM density and perfusion

did not decrease together. In conclusion, these results demonstrate

the utility of this new non-parametric method to quantitatively assess

the relationships between multiple modalities.

D 2005 Elsevier Inc. All rights reserved.

Keywords: Permutation; Combining function; Multiple modalities;

Conjunction
Introduction

Often in neuroimaging studies, images from multiple imaging

modalities are acquired from the same set of subjects. Even

within MRI, for example, high-resolution structural images are

often acquired together with low-resolution images of brain

chemistry, blood flow, or function. Nevertheless, images pro-

duced by different modalities are often analyzed separately. To

address this issue, different analysis methods, including multi-

variate (Chen et al., 2004; McIntosh et al., 1996) and univariate

(i.e., voxel-by-voxel) (Pell et al., 2004; Richardson et al., 1997)
1053-8119/$ - see front matter D 2005 Elsevier Inc. All rights reserved.
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approaches, have been suggested. In general, multivariate

methods are preferable for exploring patterns and interregional

networks in multi-modal data because they place few restrictions

on patterns of associations (McIntosh and Lobaugh, 2004). For

example, Chen et al. (2004) implemented a partial least square

technique (McIntosh et al., 1996) for co-analyzing PET and

structural MRI data. However, statistical inference based on

multivariate methods often holds only in a global test for the

entire brain and has limited ability to localize signals (Kherif et

al., 2002; Worsley et al., 1997).

On the other hand, although model-based univariate methods

make assumptions about associations, they are sometimes better

suited for statistical inference. Several model-based univariate

methods have been suggested for statistical inference of multiple

modality images. In one approach (Richardson et al., 1997),

images from different modalities were scaled to the same

intensity range, and a linear regression model was fitted with

different modalities modeled by indicator variables. Differences

between modalities were assessed by contrasting these modality

variables within the linear model (Richardson et al., 1997; Van

Laere and Dierckx, 2001). Another approach in multi-modal co-

analysis is the conjunction method, which identifies areas where

significant changes overlap in multiple t statistic maps. This

method, widely used in functional neuroimaging analyses

(Friston et al., 1999; Nichols et al., 2005), was extended to

multiple imaging modalities to identify conjunction (Pell et al.,

2004).

A limitation of linear model and conjunction approaches is that

these methods only identify one specific type of relationship

between different modalities. The linear model approach only

identifies areas where changes in one modality are larger than that

of another, while the conjunction method only identifies the

overlap of significant changes across modalities. Neither of these

methods can be generalized to other types of relationships,

including both positive and negative correlation.

Therefore, to overcome this shortcoming, we propose a general

and flexible univariate non-parametric method, implementing co-

analysis and identifying cross-modality relationships with combin-
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ing functions and permutation testing (Hayasaka and Nichols,

2004). Furthermore, this method enables statistical inference

without explicitly modeling the correlation across different

imaging modalities (Hayasaka and Nichols, 2004; Lazar et al.,

2002; Pesarin, 2001), since the cross-modality correlation is

implicitly accounted for.

We evaluated the performance of this approach in a

simulation-based validation. We also applied this approach to a

multiple modality imaging data set of Alzheimer’s disease (AD)

(Johnson et al., 2005) which is known to alter both brain

structure as well as brain function (Karas et al., 2003; Matsuda

et al., 2002; Minoshima et al., 1997). We investigated local

changes in gray matter (GM) volume and cerebral perfusion,

obtained by T1-weighted structural MRI and arterial spin

labeling (ASL) perfusion MRI, respectively. Since changes in

these two modalities do not necessarily occur in the same

locations (Matsuda et al., 2002), we identified areas where

structural and perfusion changes occur together (concordance)

and areas where only one of these is observed but not the other

(dissociation).
Methods

Combining functions

Our approach combines information from separate t images by

a combining function, a function to combine multiple tests into a

single test (Lazar et al., 2002; Pesarin, 2001), which is

subsequently used in a statistical test. For example, for two

modalities each with a t statistic image, S1 and S2, a combining

function is defined, at an arbitrary voxel m Z {(x, y, z)}, in a

form

W mð Þ ¼ f S1 mð Þ; S2 mð Þð Þ

where S1(v), S2(v), and W(v) correspond to voxel values of t

images S1 and S2, and the combining function image W,

respectively. The function f is chosen so that a large value of

W(v) corresponds to a relationship of interest between S1(v) and
Fig. 1. Examples of two-dimensional critical regions of W(v) = S1(v) �
S2(v), with different threshold values.
S2(v). For instance, let W(v) = S1(v) � S2(v), the product of two

t values, which becomes large when both S1(v) and S2(v)

increase or decrease together. When thresholded, W(v) defines a

hyperbolic-shaped critical region in a 2D space of S1(v) and

S2(v), sensitive to concordance between them, as seen in Fig. 1.

By thresholding the combining function image W, areas where

the relationship of interest occurs are identified. For interested

readers, we present some suggestions of combining functions for

different scenarios in Appendix A.

Permutation test framework

Since the voxel value distribution of a combining function

image is often unknown, we employ a permutation test for

statistical inference (Holmes et al., 1996; Nichols and Holmes,

2002). Furthermore, when a combining function and a permuta-

tion test are used together, the correlation between t images is

implicitly accounted for (Hayasaka and Nichols, 2004; Pesarin,

2001).

The permutation test works by generating the distribution of a

test statistic based on random re-assignment, or permutation, of

data labels. In our method, it operates in several steps. As an

example, let us consider a two-group comparison setting on two

imaging modalities, as illustrated in Fig. 2. First, group labels (A

or B) are randomly reassigned to images of both modalities 1 and

2. Based on this random reassignment, two t statistic images, S1
and S2, are calculated on modalities 1 and 2, respectively. From

these t images, a combining function image W is calculated.

Although each voxel value W(v) can be considered as a test

statistic, for multiple comparison correction, a summary statistic

describing topological characteristics of W image needs to be

selected. Such statistic – local maximum, cluster size, or some

other statistics – is used in the subsequent test as a test statistic,

rather than each voxel value W(v). Only the largest of such test

statistics is recorded in each permutation, in order to control the

family-wise error (FWE) rate to correct for multiple comparisons

(Hayasaka and Nichols, 2003; Holmes et al., 1996). The entire

process is repeated for a sufficient number of times, typically

between 1000 and 3000 permutations for sufficient confidence in

the permutation distribution, each with a different permutation of

As and Bs. In the last permutation, the data labels are correctly

assigned: As for A images and Bs for B images. Finally, an

empirical distribution of the test statistic is generated by creating

a histogram of all the recorded statistics. Corrected P values can

be assessed by comparing the test statistic from the final

permutation, the one with the correct group labels, to this

empirical distribution.

Simulation

To examine the performance of our method, we carried out a

simulation-based validation. In each of 1000 realizations in this

simulation, two sets of twenty 36 � 36 � 20 voxel images were

generated. Each of the two sets was thought to be from one

modality. To 10 images in each set, a sphere-shaped signal of

radius r = 8 voxels was added. The locations of the signals were

different in two modalities, with 3 different settings for the

distance between the center of the signals: 0, r/2, and r (see Fig.

3). Larger distance means less overlap between the signals.

Within each modality, a t image was calculated from a two-

sample t test comparing images with and without the signal. The



Fig. 2. A schematic of the permutation test with a combining function. First, group labels (A/B) are randomly reassigned to images (1). Then based on this

permutation of labels, t images are calculated separately (2). From the t images, a combining function is calculated (3), and the test statistic is recorded on the

resulting combining function image (4). The entire process is repeated, each with a different permutation of labels (5). In the last permutation, data labels are

correctly assigned (6). Finally, an empirical distribution of the test statistic is generated by creating a histogram of the test statistics (7). P values can be assessed

by comparing the results from step (6) to the distribution found in step (7).
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resulting t images from the two modalities, S1 and S2, with large

t values at the locations of the respective signals, were combined

by a combining function. The resulting combining function

image was used as a statistic image in a permutation test with

100 permutations. In the permutation test, the cluster mass

(Bullmore et al., 1999) was used as a test statistic, which is

defined as the integration of the image intensity above the
Fig. 3. Locations of the signals in modalities 1 and 2. The distance between

the centers of the signals were set to 0, r/2, and r, where r = 8 voxels is the

radius of each signal.
cluster defining threshold, calculated at each cluster. The cluster

mass statistic is robust and sensitive to various signals, including

localized high-intensity signals and spatially extended signals

(Hayasaka and Nichols, 2004). The number of rejections at 0.05

significance level (FWE corrected) was recorded to calculate the

power.

We employed two combining functions in the simulation to

assess the spatial relationship between signals in the two

modalities. To assess the overlap of signals, we considered the

concordance combining function Wc(v) defined as

Wc vð Þ ¼ S1 vð Þ � S2 vð Þ if S1 vð Þ > 0 and S2 vð Þ > 0

0 otherwise

�
ð1Þ

This combining function is sensitive for large values of S1(v)

and S2(v) occurring together. Critical regions of the concordance

combining function are shown in Appendix A. We chose cluster

defining thresholds to be 8 for Wc(v). To assess the signal
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occurring only in modality 1, we considered the dissociation

combining function Wd(v), defined as

Wd vð Þ ¼ S1 vð Þ � kS2 vð Þð Þ2g: ð2Þ

The width parameter k , a positive number, controls the width of

the critical region, whereas the shape parameter g, a positive

integer, controls the shape of the critical region. A large (small)

value of k produces a narrow (wide) critical region, and a large

(small) value of g widens (narrows) the base of the critical region,

producing a rectangular (wedge) shaped critical region. The

parameter g is multiplied by 2 to ensure concave critical regions.

The critical regions corresponding to various values of k and g are

found in Appendix A. In this simulation, we used different values

of k (k = 1/3, 1/2, and 2/3) and g (g = 1, 2, and 3). This combining

function Wd (v) is sensitive to large values of S1(v) and near-zero

values of S2(v) occurring together. The function Wd(v) can be seen

as the value of S1(v) penalized by the term (kS2(v))
2g, for S2(v)

deviating from 0 (i.e., a change in modality 2). We chose the

cluster-defining threshold to be 3 for Wd (v).

In a multiple-modality imaging study, it is possible that images

in two different modalities have different smoothness despite

smoothing. Thus, we considered a case where two imaging

modalities having the same smoothness (FWHM = 6 and 6

voxels), and different smoothness (FWHM = 3 and 6 voxels for

modalities 1 and 2, respectively).

Application

Our non-parametric method was applied to a co-analysis of GM

volume changes in T1-weighted structural MRI and perfusion

changes in ASL perfusion MRI. Twenty patients with a clinical

diagnosis of probable AD according to the NINCDS-ADRDA

(National Institute of Neurological and Communicative Disorders

and Stroke–Alzheimer’s Disease and Related Disorder’s Associ-

ation) criteria (McKhann et al., 1984) and 22 cognitively normal

(CN) controls were included in this study. Their characteristics are

summarized in Table 1.

Image acquisition and processing

All the subjects were scanned on a Siemens 1.5T Vision

scanner (Erlangen, Germany). T1-weighted structural images

were acquired using an MPRAGE (magnetization prepared rapid

acquisition gradient-echo) sequence with TR/TE/TI = 10/7/300

ms, FA = 15-, and slice thickness = 1.4 mm. Perfusion weighted

images (PWI) were acquired using the DIPLOMA (double

inversions with proximal labeling of both tag and control images)

pulsed ASL method (Jahng et al., 2003) with TR/TE = 2500/15

ms and post-inversion pulse time 1500 ms. For each perfusion

scan, 5 slices of 8 mm thickness and 2 mm gap covering the

volume above the AC-PC line were acquired with a single-shot
Table 1

Characteristics of subjects in the study

Characteristics Group

AD CN

N (male/female) 20 (13/7) 22 (9/13)

Mean age (SD) 72.9 (10.8) 73.6 (7.6)

Mean MMSE score (range) 21 (17–26) 29.5 (28–30)
gradient-echo EPI (echo-planar imaging) sequence. Details on the

PWI acquisition can be found elsewhere (Johnson et al., 2005).

Each PWI was co-registered to its corresponding T1-weighted

image and corrected for partial volume effect (PVE) using a

three-compartment model (Müller-Gärtner et al., 1992; Quaran-

telli et al., 2004).

T1-weighted and perfusion images were spatially normalized

to a study-specific template. The study-specific template was

created by averaging all the centered and aligned T1-weighted

images. The T1-weighted images were also segmented (Ash-

burner and Friston, 1997; Ashburner and Friston, 2000),

smoothed (6 mm isotropic Gaussian), and averaged to create

tissue specific templates for GM, white matter (WM), and

cerebrospinal fluid (CSF). Using these templates, T1-weighted

images were normalized, segmented, and modulated according to

the optimized voxel-based morphometry (VBM) protocol (Good et

al., 2001) in SPM2 (Wellcome Department of Imaging Neurosci-

ence; London, UK). Of the segmented images, only GM

probability images were used in the subsequent analyses. The

normalization parameters from the optimized VBM protocol

(Ashburner and Friston, 1999; Good et al., 2001), both affine

(12 parameters) and non-linear (10 � 9 � 10 discrete cosine basis

functions), were applied to perfusion images to achieve normal-

ization in the same template space. Normalized perfusion images

were re-sliced to 2 � 2 � 2 mm voxel size for better use of spatial

information and smoothed with a 12-mm Gaussian kernel to

account for imperfection in co-registration and normalization. The

GM images were similarly smoothed and re-sliced.

Statistical analysis

For each of the GM and perfusion data sets, a two-sample t

test was performed separately to compare AD < CN. The GM t

test was adjusted for age and total intra-cranial volume as

covariates in an ANCOVA (analysis of covariance) model. In the

resulting t image SGM, a large t value corresponded to GM loss

in AD. The perfusion t test was adjusted for age and reference

perfusion as covariates in an ANCOVA model. The mean

perfusion value of the motor cortex was chosen as reference

perfusion for each subject because this region is relatively spared

from AD pathology (Braak et al., 1999). In the resulting t image

Sperf, a large t value corresponded to reduced perfusion, or

hypoperfusion, in AD.

In the permutation test, we applied the concordance combining

function Wc(v) and the dissociation combining function Wd(v) to

two t images from the GM and perfusion t tests. In particular, we

defined

U vð Þ ¼ SGM vð Þ � Sperf vð Þ if SGM vð Þ > 0 and Sperf vð Þ > 0

0 otherwise

�

ð3Þ

V vð Þ ¼ Sperf vð Þ � kSGM vð Þð Þ2g ð4Þ

W vð Þ ¼ SGM vð Þ � kSperf vð Þ
� �2g ð5Þ

The combining function U(v) is sensitive to concordance

between GM loss and hypoperfusion. On the other hand, V(v)

and W(v) are sensitive to dissociation between GM and perfusion



Fig. 4. Examples of critical regions for concordance and dissociation combining functions.
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changes; while V(v) is sensitive to hypoperfusion without GM

change, W(v) is sensitive to GM loss without perfusion change.

Fig. 4 shows examples of critical regions defined by these

combining functions in terms of SGM(v) and Sperf(v). In (4), we

chose k = 0.5 so that the critical region spans roughly from

SGM(v) = �2 to 2, and a typical t test fails to reject the null at P =

0.05 uncorrected significance level in such a critical region. Also

in (4), we chose g = 2 for a wider critical region than a typical

parabola at its base, enhancing sensitivity in that area. In (5), the

width and shape parameters were similarly chosen as k = 0.5 and

g = 2. For interested readers, more discussions on parameters k
and g, as well as the shape of critical regions, can be found in

Appendix A.

Each of these combining function images was used as a

statistic image in the permutation test. In the permutation test, the

cluster mass was used as a test statistic. To implement the

permutation test, we used a modified version of SnPM2b package

(SnPM Authors, the University of Michigan; Ann Arbor, MI,

USA), a non-parametric toolbox for SPM2. For each permutation

test, 1000 permutations were carried out. Since the accuracy of P

value estimates does not improve dramatically by running more

permutations (e.g., standard error (SE) = 0.007 for 1000

permutations compared to SE = 0.004 for 3000 permutations,

for a cluster with corrected P = 0.05 (Hayasaka and Nichols,

2003)), we limited the test to 1000 permutations in order to

conserve time and disk space.

Sensitivity analysis

A sensitivity analysis was carried out in order to understand

how much the analysis results are influenced by the choice of the

width and shape parameters k and g in the dissociation combining

functions (4) and (5). In particular, a bootstrap analysis (Efron and

Tibshirani, 1993) was performed in order to examine how the

distribution of the largest cluster mass changes when k and g are

changed. In each of 100 bootstrap samples generated, combining

functions (4) and (5) were calculated with different values of k (k =

1/4, 1/3, 1/2, 2/3, or 3/4) and g (g = 1, 2, 3, 4, 5), and the largest

cluster mass was recorded for each combination of k and g. The
same cluster defining thresholds were used as in the actual analyses

above.

Computing environment

The data analyses were performed on a Dell PC with a 3GHz

Pentium 4 processor and 1GB of RAM, using MATLAB 6.5
(MathWorks; Natick, MA, USA). For each permutation test,

computation time was under 20 min. The simulation and

sensitivity analyses were performed on a Linux workstation using

MATLAB 6.5.
Results

Simulation

Fig. 5 shows the plots of power for Wc(v) and Wd (v) for

different signal settings, with two modalities having the same

smoothness (a) and different smoothness (b).

The concordance combining function was sensitive when the

overlap between the two signals was large. However, the power

decreased as the distance increased and the area of overlap

decreased. The concordance combining function seemed slightly

more powerful when two modalities have different smoothness.

The dissociation combining function became more sensitive

when the overlap between the signals became smaller. It

appeared that, the larger the value of k, more powerful the test

became. In terms of g, the combining function was slightly more

sensitive when g = 1 compared to g = 2 or 3. However, the

difference in power between g = 2 and g = 3 was negligible.

These findings were consistent in both smoothness settings

(same or different smoothness), and the difference in power

between these two settings was negligible.

These results indicate that the concordance and dissociation

combining functions are calibrated to detect the relationship of

interest between the two modalities.

Separate GM and perfusion analyses

The results from the separate GM and perfusion t tests are

shown in Fig. 6a, in which areas of GM loss (green) and

hypoperfusion (red) are shown. A liberal threshold was used in

these results (P < 0.001 uncorrected) to give an overview of

regional patters of GM loss and hypoperfusion. The pattern of

GM loss was consistent with similar VBM studies of AD (Baron

et al., 2001; Karas et al., 2003), with large areas of GM loss

seen in the bilateral inferior and posterior parietal areas, as well

as in the bilateral posterior cingulate cortices (PCC). The pattern

of hypoperfusion was consistent with similar studies using PET

and SPECT (Matsuda et al., 2002; Minoshima et al., 1997), with

large areas of hypoperfusion in the right PCC and in the right

posterior parietal area. Also a large area of hypoperfusion was



Fig. 5. The power of the permutation test with different combining functions for different signal settings in two modalities, under the same smoothness (a) or

different smoothness in two modalities (b). The centers of signals are apart 0, r/2, and r, where r = 8 voxels is the radius of each signal (see Fig. 3). As the

distance increases, the area of overlap between signals decreases.
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seen in the right middle frontal gyrus with some extension into

the superior frontal gyrus.

Combining function thresholds

A scatter plot of all the voxel values of SGM and Sperf is shown

in Fig. 7, with the cluster defining thresholds for the concordance

and dissociation analyses overlaid. Each of these thresholds was

chosen so that it was low enough for clusters to form, yet high

enough for spatial localization of clusters.

Concordance (GM loss and hypoperfusion)

Areas of concordance, GM loss and hypoperfusion occurring

together, are shown in Fig. 6b (P < 0.05 corrected). Large

clusters for concordance were mainly found in the bilateral PCC

with some extension into the precunei, as well as in the right

posterior parietal area. Some small clusters were also found in

the left posterior parietal lobe and in the bilateral superior

prefrontal areas. These concordance clusters identified the areas

of overlap between GM loss and hypoperfusion seen in Fig. 6a.

Dissociation (hypoperfusion without GM change)

Areas of dissociation, hypoperfusion without GM change, are

shown in Fig. 6c (P < 0.05 corrected). A large dissociation cluster
was found in the right PCC and precuneus, located superior to the

concordance cluster found earlier. Another large dissociation

cluster was found in the right middle frontal gyrus with some

extension into the superior frontal gyrus.

Dissociation (GM loss without perfusion change)

Areas of dissociation, GM loss without perfusion change, are

shown in Fig. 6d (P < 0.05 corrected). Large dissociation clusters

were found in the bilateral inferior parietal areas, and a few small

dissociation clusters were seen in the bilateral PCC and precunei

inferior to the concordance cluster found earlier.

Sensitivity analysis

Fig. 8 shows plots of the median of the largest cluster mass

from bootstrap samples, as well as the inter-quartile range, for

various values of the width parameter k (top) and the shape

parameter g (bottom). These results are from the dissociation

combining function for hypoperfusion without GM change (4),

but the results are similar for the combining function for GM loss

without perfusion change (5) (not shown). From the figure, it can

be seen that a change in k influenced the distribution of the

largest cluster mass. A small value of k produced larger clusters,

possibly due to a wide critical region. On the other hand, a large

value of k produced smaller clusters, possibly due to a narrow



Fig. 7. A scatter plot of GM and perfusion t scores. The cluster defining

thresholds for the concordance and dissociation analyses are also shown.

Fig. 6. (a) Results from the separate analyses of GM and perfusion data. Areas of GM loss (green) and hypoperfusion (red) in AD compared to CN are indicated

( P < 0.001 uncorrected). (b) Results from the concordance analysis. Clusters of significant concordance (GM loss and hypoperfusion) are shown (U >

8 threshold, P < 0.05 corrected). (c) Results from the dissociation analysis (hypoperfusion without GM change). Clusters of significant dissociation are shown

(V > 3 threshold, P < 0.05 corrected). (d) Results from the dissociation analysis (GM loss without perfusion change). Clusters of significant dissociation are

shown (W > 4 threshold, P < 0.05 corrected).
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critical region. The value of g seems to have only a slight

influence on the analysis results.
Discussion

The proposed new method quantitatively assesses different

relationships between GM and perfusion changes, using a simple

and flexible non-parametric framework consisting of a combining

function and a permutation test. In contrast to previous methods for

analysis of multi-modality imaging, our approach is highly

versatile; different cross-modality relationships are examined using

the same permutation test framework just by selecting appropriate

combining functions. Even though different combining functions

were used in different analyses, no explicit modeling of voxel

value distribution and cross-modality correlation was needed, as

these were modeled implicitly in a combining function and a

permutation test. Implicit modeling of the inter-modality correla-

tion was particularly an important property in our analyses, since it



Fig. 8. The results from the sensitivity analysis by bootstrapping. The

median of the bootstrap largest cluster mass from the dissociation

combining function (hypoperfusion without GM change) is shown as a

function of k at g = 2 (top) and as a function of g at k = 1/2 (bottom). Inter-

quartile ranges are also shown.
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is reasonable to assume that perfusion and GM volume are

somewhat correlated (Ibáñez et al., 1998; Kanetaka et al., 2004;

Matsuda et al., 2003).

In our concordance analysis, we found GM loss and hypo-

perfusion (despite PVE correction) in the posterior parietal lobe and

PCC. Thus, hypoperfusion in these areas is greater than that

expected from GM loss (Ibáñez et al., 1998). From our dissociation

analyses, we found hypoperfusion without GM change in the PCC

(superior to the concordant region) and middle frontal gyrus. Such

hypoperfusion may be due to deafferentation of these regions

resulting from GM loss in other remotely connected brain regions

(Braak et al., 1999; Meguro et al., 2001; Mielke et al., 1996). We

also found GM loss without perfusion change in inferior parietal

areas and in the PCC inferior to the concordant region. In these

areas, perfusion loss may not be reduced beyond the level expected
Fig. 9. (a) To identify changes in the same direction, critical regions have to be i

concordance combining function with different thresholds. (c) Critical regions o
from GM loss. Overall, our findings were consistent with the results

of a previous neuroimaging study using MRI and SPECT (Matsuda

et al., 2002), in which areas of reduced GM volume and cerebral

perfusion were observed in the posterior part of the brain, while

hypoperfusion was more apparent than GM loss in frontal brain

regions. Further studies are needed to investigate the clinical

significance of these findings.

Our approach can be easily implemented in co-analyses of other

MRI imaging modalities or even extended to other modalities such

as PET or SPECT imaging. Furthermore, this method can be

generally extended to more than two modalities. For instance, in

addition to GM loss and hypoperfusion in our example, an

investigator might be interested in functional decline associated

with these structural as well as physiological changes. In such case,

the investigator may examine concordance among three modalities,

structural MRI, ASL perfusion MRI, and BOLD functional MRI,

by using a combining function

X vð Þ ¼ SGM vð Þ � Sperf vð Þ � SfMRI vð Þ

where SfMRI corresponds to a t image associated with functional

decline among AD patients. This combining function is sensitive

for GM loss, hypoperfusion, and functional decline occurring

together. Our method is also useful in longitudinal studies to

capture changes of different modalities over time, which might

provide deeper insight in disease progression.

In this approach, there are obstacles and limitations that should

be mentioned. First, as in other multi-modality imaging methods,

co-registering and normalizing different imaging modalities are not

simple, since some imaging modalities are more prone to

distortions and artifacts than other modalities. A limitation specific

to our approach is that selection of combining functions is arbitrary

and subjective. A combining function is chosen according to a

user’s interest, and there is an infinite number of possible

combining functions to choose from. For our dissociation

combining functions V(v) and W(v), for example, there are many

possibilities for the choice of parameters k and g in (4) and (5).

Furthermore, in addition to a polynomial form as seen in these

functions, there are other possible forms of combining functions,

such as trigonometric, logarithmic, or exponential functions, and

combinations thereof. Clearly it is impossible to evaluate all

possible combining functions objectively, but a combining function

can be chosen from a handful of candidates. As it can be seen from
n the top-right or bottom-left quadrant. (b) Critical regions of the positive

f the conjunction combining function with different thresholds.



Fig. 10. To identify changes in opposite directions, critical regions have to

be in the bottom-right or top-left quadrant.
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our simulation and sensitivity analysis, we can evaluate sensitivity

and robustness of combining functions from a simulation and a

sensitivity analysis, respectively. Interested readers can also choose

a combining function from the ones suggested in Appendix A

according to their hypotheses. Another limitation specific to our

approach is lack of weighting mechanism to correct for variability

difference between modalities. For example, in our concordance

combining function U(v), there is no weighting for SGM(v) or

Sperf(v), even though SGM(v) seems to be less variable than Sperf(v)

(see Fig. 7). A difference in degrees of freedoms could also result

in variability difference between modalities. To correct this

problem, some sort of weighting mechanism (Hayasaka and

Nichols, 2004) could be employed, but determining optimal

weights could raise another challenge.
Fig. 11. Critical regions for the concordance (top) and conjunction (bottom) combin

(left), as well as for negative S1(v) and positive S2(v) (right).
In conclusion, we have developed a non-parametric method for

co-analysis of multi-modal brain imaging data and demonstrated its

effectiveness in structural and perfusion MRI data. This approach

can be implemented in co-analyses of other MRI, PET, or SPECT

imaging modalities, improving analyses and interpretation of

findings in multi-modal imaging studies.
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Appendix A. Examples of combining functions

To facilitate selection of appropriate combining functions, we

present examples of combining functions for four possible

scenarios. In a study with two modalities 1 and 2, let S1 and S2
be the t statistic images based on the contrast of interest,

respectively. Then we consider situations where our interests

are:

1. Changes or effects in the same direction in both modalities

2. Changes or effects in opposite directions

3. Changes or effects observed in one of the modalities, but not the

other

4. Comparing the magnitude: of changes or effects between

modalities
ing functions with different thresholds, for positive S1(v) and negative S2(v)



Fig. 13. Critical regions of the dissociation function at threshold = 3, with

different values of k (a) and g (b). A large (small) value of k produces a

narrow (wide) critical region. A large (small) value of g widens (narrows)

the base of the critical region, producing a rectangular (wedge) shaped

critical region.
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A.1. Changes in the same direction

To identify changes or effects in the same direction in both

modalities 1 and 2, we need to define a combining function

which becomes large when both S1 and S2 are highly positive or

negative at the same time. In such cases, we should choose

combining functions whose critical regions are in the top-right

quadrant or in the bottom-left quadrant, as seen in Fig. 9a. If we

are interested in both S1 and S2 being positive (negative), then

the critical region should be in the top-right (bottom-left)

quadrant. The concordance combining function

X vð Þ ¼ S1 vð Þ � S2 vð Þ ð6Þ

is a possible combining function in this setting. Critical regions of

this combining function can be limited to positive changes in the

top-right quadrant by constraining S1(v) > 0 and S2(v) > 0 (Fig.

9b), or to negative changes in the bottom-left quadrant by

constraining S1(v) < 0 and S2(v) < 0. Another possible combining

function is the conjunction combining function

X vð Þ ¼ min S1 vð Þ; S2 vð Þð Þ: ð7Þ

This is a non-parametric equivalent of the conjunction method

mentioned in the Introduction (Nichols et al., 2005). This

combining function identifies the overlap of areas S1(v) > w and

S2(v) > w, for an arbitrary threshold value w (Fig. 9c).

A.2. Changes in opposite directions

To identify changes or effects in opposite directions in

modalities 1 and 2, we need to define a combining function

which becomes large when either S1 or S2 is highly positive, and

the other is highly negative at the same time. In such cases, we

should choose combining functions whose critical regions are in

the top-left quadrant or in the bottom-right quadrant, as seen in

Fig. 10. Critical regions on the bottom-right quadrant are

sensitive to S1(v) being highly positive and S2(v) being highly

negative occurring together, while critical regions on the top-left
Fig. 12. To identify changes in modality 1 but not in modality 2, critical

regions need to be along the horizontal axis to identify large values of S1(v)

and near-zero values of S2(v) occurring together.
quadrant are sensitive to S1(v) being highly negative and S2(v)

being highly positive occurring together. This can be achieved by

negating either S1(v) or S2(v) in combining functions (6) and (7).
Fig. 14. In order to compare changes in two modalities, critical regions have

to be above or below the S1(v) = S2(v) line, depending on the inequality.

For example, if we hypothesize S1(v) > S2(v), then we can use a combining

function X(v) = S1(v) � S2(v) whose critical regions lie below the S1(v) =

S2(v) line.
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For example, by negating S1(v), the concordance combining

functions (6) becomes

X vð Þ ¼ � S1 vð Þ � S2 vð Þ: ð8Þ

Similar to (6), critical regions for (8) can be limited to the

bottom-right quadrant (S1(v) > 0 and S2(v) < 0) or top-left quadrant

(S1(v) < 0 and S2(v) > 0), as seen in Figs. 11a and b, respectively.

The critical regions for the conjunction combining function are in

the bottom-right quadrant if S2(v) is negated (9), and in the top-left

quadrant if S1(v) is negated (10),

X vð Þ ¼ min S1 vð Þ;�S2 vð Þð Þ ð9Þ

X vð Þ ¼ min �S1 vð Þ; S2 vð Þð Þ ð10Þ

as seen in Figs. 11c and d, respectively.

A.3. Changes in one modality only

If we are interested in, for instance, changes occurring in

modality 1 but not in modality 2, we need to choose a combining

function whose critical regions are along the horizontal axis toward

highly positive value of S1(v) (Fig. 12). Such combining function

is sensitive to highly positive values of S1(v) (i.e., a large change in

modality 1) and near-zero values of S2(v) (i.e., little change in

modality 2). The dissociation combining function is suitable for

such situation, which is defined as

X vð Þ ¼ S1 vð Þ � kS2 vð Þð Þ2g ð11Þ

where k is the width parameter, and g is the shape parameter. The

width parameter k, a positive number, controls the width of the

critical region; a large (small) value of k produces a narrow (wide)

critical region (Fig. 13a). The shape parameter g, a positive integer,
controls the shape of the critical region; a large (small) value of g
widens (narrows) the base of the critical region, producing a

rectangular (wedge) shaped critical region (Fig. 13b). The

parameter g is multiplied by 2 so that the critical region is

concave. Though it is not feasible to perform an exhaustive search

to determine the optimal values of k and g, it is possible to decide

these values among a list of possible values a priori by a simulation

as demonstrated above.

A.4. Comparing changes between modalities

If we are interested in comparing changes between two

modalities, we can choose combining functions whose critical

region is above or below the S1(v) = S2(v) line (Fig. 14), depending

on the inequality (S1(v) < S2(v) or S1(v) > S2(v), respectively). For

example, if we hypothesize that S1(v) is larger than S2(v) (i.e.,

changes in modality 1 is larger than that of modality 2), then we

can define a combining function

X vð Þ ¼ S1 vð Þ � S2 vð Þ: ð12Þ

This is a non-parametric equivalent of Richardson et al.’s

(1997) method discussed in the Introduction. Fig. 14 shows

examples of critical regions for this combining function.

This combining function is also useful in a longitudinal study

setting. For example, if images are acquired on two different time
points, then t images at the 1st and 2nd time points can be

compared using (12). One advantage of such approach over a

paired t test is that covariates, such as neuropsychological test

scores, can vary across the two time points.
References

Ashburner, J., Friston, K., 1997. Multimodal image coregistration and

partitioning—A unified framework. NeuroImage 6 (3), 209–217.

Ashburner, J., Friston, K.J., 1999. Nonlinear spatial normalization using

basis functions. Hum. Brain. Mapp. 7 (4), 254–266.

Ashburner, J., Friston, K.J., 2000. Voxel-based morphometry—The

methods. Neuroimage 11 (6 Pt. 1), 805–821.

Baron, J.C., Chetelat, G., Desgranges, B., Perchey, G., Landeau, B., de la

Sayette, V., Eustache, F., 2001. In vivo mapping of gray matter loss with

voxel-based morphometry in mild Alzheimer’s disease. NeuroImage 14

(2), 298–309.

Braak, E., Griffing, K., Arai, K., Bohl, J., Bratzke, H., Braak, H., 1999.

Neuropathology of Alzheimer’s disease: what is new since A.

Alzheimer? Eur. Arch. Psychiatry Clin. Neurosci. 249 (Suppl. 3),

14–22.

Bullmore, E.T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E.,

Brammer, M.J., 1999. Global, voxel, and cluster tests, by theory and

permutation, for a difference between two groups of structural MR

images of the brain. IEEE Trans. Med. Imag. 18 (1), 32–42.

Chen, K., Reiman, E.M., Caselli, R., Bandy, D., Alexander, G.E., 2004.

Linking functional and structural brain networks: study of normal aging

using the partial least square and dimension reduction techniques.

Neurobiol. Aging 25 (S2), 269.

Efron, B., Tibshirani, R.J., 1993. An Introduction to the Bootstrap.

Chapman and Hall/CRC, Boca Raton, FL.

Friston, K.J., Holmes, A.P., Price, C.J., Buchel, C., Worsley, K.J., 1999.

Multisubject fMRI studies and conjunction analyses. NeuroImage 10

(4), 385–396.

Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J.,

Frackowiak, R.S., 2001. A voxel-based morphometric study of ageing

in 465 normal adult human brains. NeuroImage 14 (1 Pt. 1), 21–36.

Hayasaka, S., Nichols, T.E., 2003. Validating cluster size inference: random

field and permutation methods. NeuroImage 20 (4), 2343–2356.

Hayasaka, S., Nichols, T.E., 2004. Combining voxel intensity and cluster

extent with permutation test framework. NeuroImage 23 (1), 54–63.

Holmes, A.P., Blair, R.C., Watson, J.D., Ford, I., 1996. Nonparametric

analysis of statistic images from functional mapping experiments.

J. Cereb. Blood Flow Metab. 16 (1), 7–22.
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