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Abstract: In vivo fluorescence molecular tomography (FMT) has been a popular functional
imaging modality in research labs in the past two decades. One of the major difficulties of
FMT lies in the ill-posed and ill-conditioned nature of the inverse problem in reconstructing
the distribution of fluorophores inside objects. The popular regularization methods based
on L2, L1 and total variation (TV ) norms have been applied in FMT reconstructions.
The non-convex Lq(0 < q < 1) semi-norm and Log function have also been studied recently.
In this paper, we adopt a uniform optimization transfer framework for these regularization
methods in FMT and compare their individual, as well as the combined effects on both
small, localized targets, such as tumors in the early stage, and large targets, such as liver.
Numerical simulation studies and phantom experiments have been carried out, and we found
that Lq with q near 1/2 performs the best in reconstructing small targets, while joint L2 and
Log performs the best for large targets.

Keywords: reconstruction techniques; optics; fluorescence molecular tomography;
optimization transfer

1. Introduction

Fluorescence molecular tomography (FMT) is a noninvasive functional imaging modality that has
become popular in the past two decades. Its applications include monitoring molecular activities in
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cancer imaging, drug delivery, etc. [1,2]. FMT relies on the modeling of photon transportation at
near-infrared wavelengths, which suffers from strong scattering. In addition, usually only a small amount
of measurements are available. Therefore, the FMT reconstruction problem is highly ill-posed. Different
regularization methods have been proposed to find meaningful solutions of this inverse problem.
For example, Tikhonov regularization [3] (a special case of which is the L2 regularization) has been used
to incorporate structural prior information [4–6]. Since in FMT, the targets are usually localized [7,8],
L1 norm and its variants were also studied and were found to yield sparse solutions [9,10]. A comparative
study on the L2 and L1 regularizations was made by [11], where they found that L1 is suitable for
small targets, while L2 performs better for large targets. Due to the fact that most of the FMT targets
are localized and smooth, total variation (TV ) regularization was also employed to promote local
smoothness [12]. Furthermore, a joint L1 and TV regularization approach was taken in [13], where,
however, no clear winner was identified in terms of quantitative metrics when the joint L1 and TV

method was compared to L1, TV or L2 alone, although the joint L1 and TV method provided the
most natural appearances on reconstructed images. Recently, non-convex Lq (0 < q < 1) and Log

functioned-based regularizations were also actively studied in optical tomography and were found to
have greater power than L1 in enhancing sparsity [9,14–16].

Inspired by [11], in this paper, we thoroughly compare all regularization methods: L2, L1, TV , Lq,
Log methods and the combined methods from a smoothing L2 or TV regularization and a localizing
L1, Lq or Log regularization, in hopes of identifying the best regularization method for FMT for both
small target cases and large target cases. For a fair comparison, we use the same simulation settings for
both of the small targets, such as tumors in the early stage, and large targets, such as livers or bladders.
We also conducted phantom experiments for further validation of these algorithms. The outline of this
paper is follows. In Section 2, we introduce the models, optimization transfer algorithms, image quality
metrics, as well as simulation and phantom experiment setups. In Section 3, results, including both
images and metrics, are detailed for the comparison. Finally, in Section 4, we conclude this paper with
discussion.

2. Methodology

2.1. Forward Modeling

Fluorescence molecular tomography (FMT) detects photons on the surface of an object and aims to
discover the 3D distribution of a fluorescent source inside the object [17]. Near-infrared fluorescent dye
is a typical fluorescent source [18]. A photon’s propagation is usually modeled by the radiative transport
equation, which is an integro-differential equation that is hard to solve. The diffusion equation was found
to be a good approximation [19]. The coupled diffusion equation in the continuous wave domain, along
with Robin boundary conditions, can be expressed as:

−∇ · (Dex(r)∇Φex(r)) + µa,ex(r)Φex(r) = Sk(r)

n · (Dex(r)∇Φex(r)) + αexΦex(r) = 0

−∇ · (Dem(r)∇Φem(r)) + µa,em(r)Φem(r) = ∆j(r)

n · (Dem(r)∇Φem(r)) + αemΦem(r) = 0

(1)
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where∇ denotes the gradient operator, Dex(r) = [3(µ′s,ex(r)+µa,ex(r))]
−1 and Dem(r) = [3(µ′s,em(r)+

µa,em(r))]−1, with µa,ex(r), µa,em(r) being the absorption coefficients and µ′s,ex(r), µ
′
s,em(r) being the

reduced scattering coefficients at excitation and emission wavelengths, Φex(r), Φem(r) the photon
densities, r the location vector, Sk determined by the kth illumination pattern, ∆j determined by the
detector nodes, n the outward unit normal vector of the boundary, and αex, αem the Robin boundary
coefficients.

The above equations can be solved using the finite element method (FEM) at both the excitation and
emission wavelengths, where we arrived at a linear model [20]:

b = Ax (2)

Here, b ∈ RNm is the measurement of fluorescence intensity acquired from the surface of the object;
A ∈ RNm×Nn is called the system matrix; x ∈ RNn is the fluorophore distribution, which equals
the product of the unknown fluorescence dye concentration and the quantum yield at each node to be
reconstructed. Note that Nm = Nd ∗ Ns is the total number of measurements, Nd, Ns, Nn are the total
number of detectors, excitation sources and FEM mesh nodes, respectively.

2.2. Non-Negative Regularized Least Squares

FMT image reconstruction is to solve Equation (2). No direct solution exists, due to the fact that A
is severely ill-conditioned. Equation (2) is instead usually solved as a regularized least squares problem
with a non-negativity constraint:

x̂ = min
x≥0

Ψ(x) :=
1

2
‖Ax− b‖2 + λ ·R(x) (3)

where A,x,b are the same as defined in Equation (2), and λ ·R(x) is the regularization term. For our
comparison studies, we specify in this paper:

λ ·R(x) =
1

2
λ2‖x‖2L2 + λTV ‖x‖TV + λ1‖x‖L1 + λq‖x‖qLq + λLog‖x‖Log (4)

where ‖ · ‖L2 and ‖ · ‖L1 are the well-known L2 and L1 norms,

‖x‖TV =
n∑
i=1

∑
j∈nb(xi)

|xi − xj| := |C(x)| (5)

with nb(xi) denoting all the neighboring points to node xi, as defined in [13], and the semi-norms:

‖x‖log =
n∑
i=1

[log(|xi|+ δlog)− log δlog] and ‖x‖qLq =
n∑
i=1

(|xi|+ δq)
q (6)

as defined in [14]. To investigate an individual regularization method, we set the corresponding λ

as nonzero and others as zero; to study the combination of two regularization methods, only the
corresponding two λ’s are set to be nonzero.
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2.3. Optimization Transfer Algorithms

One way to solve the above optimization problem Equation (3) is to directly solve ∇xΨ = 0, with
∇xΨ being the gradient of Ψ with respect to x. If L2 is the only regularization to be considered, then
∇xΨ becomes linear, and if we further disregard the non-negativity requirement,∇xΨ = 0 can be solved
by the well-known preconditioned conjugate gradient (PCG) algorithm. However, since the gradient of
TV norm, Lq and Log semi-norms are nonlinear, one will have to follow the nonlinear version of PCG,
which suffers a very expensive backtracking line search when the non-negativity constraint is enforced.

Another approach toward solving Equation (3) is to use the optimization transfer algorithm, also
known as the majorization-minimization algorithm, which optimizes a surrogate function at each
iteration. The surrogate function is usually chosen in a way such that its minimization is much easier and
can even be analytically solved. This technique has been successfully employed to handle the TV term,
as in [13], and also has been applied to cope with the Log and semi-norms in our previous work [14].
We will follow this optimization transfer principle and handle all the regularization methods in a uniform
way. The algorithm is as follows:

Initialization;
(1) x0 = x0 ∗ 1, where x0 is a random number in (0,1) ;
(2) Compute matrix C for the TV regularization;

(3) Compute κ, with component κj =
∑Nd∗Ns

i=1

a2ij
βij

, where βij =
aij∑Nn

k=1 aik
;

for k = 1 to Nmax do
(a) κTV (xk) = 2λTV |Ct| ∗ ζ(Cxk), and gradTV (xk) = λTVC

t ∗ ((Cxk). ∗ ζ(Cxk)) ;
(b) xk+1 = ((xk −At(Axk − b) + gradTV (xk))./(κ+ κTV (xk)))+ ;
(c) xk+1 = (xk+1 − λsp./(κ+ κTV (xk)))+ ;
(d) xk+1 = xk+1./(1 + λ2./(κ+ κTV (xk))) ;
if ‖xk+1 − xk‖L2/‖xk‖L2 < δstop then

break;
end

end
where .∗ and ./ are entry-wise vector multiplication and division respectively, (·)+ denotes the
positive part of a vector,

ζ(x) =

(
1√

x21 + δTV
, · · · , 1√

x2n + δTV

)
, and (λsp)j =


λ1; if λ1 6= 0;
λLog

xkj+δLog
; if λLog 6= 0;

qλq
(xkj+δq)

1−q , if λq 6= 0,

with δTV , δLog and δq being some empirically chosen small nonnegative numbers, e.g., 1E-9. δstop
is the stopping criteria, e.g., 0.1%. More detailed derivations of the above formulas can be found
in [13,14]. All our codes were implemented with MATLAB (2013b).

Algorithm 1: Uniform Optimization Transfer Framework.
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2.4. Regularization Parameter Selection and Image Quality Metrics

There are different criteria in optical tomography for quantifying image qualities. A total of
11 methods were listed and compared in [21]. Since no single criterion captures all the features of
the reconstructed images, we base our comparison on a mixture of metrics. As proposed in our previous
work [14], we will use visual assessment along with four metrics: the volume ratio (VR) [22], the
dice similarity coefficient (Dice) [23], the mean squared error (MSE) and the contrast-to-noise ratio
(CNR) [24]. Their definitions for a reconstructed image are as follows:

V R = |ROI|
|tROI| , Dice = 2∗|ROI∩tROI|

|ROI|+|tROI| (7)

MSE = 1
N

∑N
j=1(xj − x0j)2 (8)

CNR =
Mean(x

ROI
)−Mean(x

ROB
)√

ω
ROI

V ar(x
ROI

)+(1−ω
ROI

)V ar(x
ROB

)
(9)

where ROI represents the region of interest or the voxels that have intensities greater than 50% of the
maximum of the image intensities, ROB the rest voxels, tROI the true target locations, x and x0 the
reconstructed and true image intensity at each voxel and ω

ROI
= |ROI|/|Total image|, | · | the number of

voxels, Mean mean value and Var variance. VR measures the sparsity of the reconstructed target. Dice
quantifies the shape and location accuracy. MSE is only calculated if the ground-truth is known, and
CNR is about the reconstructed image only. Generally, for a reconstructed image to have higher quality
than another, its VR and Dice should be closer to one, MSE smaller and CNR larger.

2.5. Numerical Simulations

Following our previous work [14], we conducted numerical simulations based on the Digimouse
mesh [25]. In order to get a more uniform mesh, since we do not need all the details from small organs,
we extracted the surface mesh and then used Tetgen (http://www.tetgen.org) to regenerate the internal
mesh. Our mesh has a total of 32,332 nodes and 161,439 tetrahedral elements. For our first scenario
with small targets, we simulated two capillary tubes within the mouse with diameters of 2 mm and
lengths of 20 mm as the targets. Additionally, for the second scenario, we selected the liver of the
Digimouse as the target. For all the nodes inside the targets, we set the fluorophore concentration to
be 1; otherwise, 0. We then chose a total of 60 nodes as laser excitations sources, which are uniformly
distributed in 5 rings on the trunk surface of the digimouse. All the 4,020 surface nodes that cover the
trunk were set to be detectors. Finally, we added to our simulated measurement data a uniform white
noise with a signal-to-noise ratio of 1. Note that the noise level will affect the selection of regularization
parameters, which is supposed to balance the measurement error and modeling error. The excitation
wavelength was chosen to be 650 nm and the emission wavelength 700 nm. The tissue optical properties
are µa = 0.007 mm−1, µ′s = 0.72 mm−1 at 650 nm and µa = 0.014 mm−1, µ′s = 0.78 mm−1 at 700 nm.

2.6. Phantom Experiments

We used a cubic phantom to validate our algorithms in the scenario with small targets. The phantom
is of a dimension of 32 × 32 × 29 mm3 and was composed of 1% intralipid, 2% agar and water
in the background. The two capillary target tubes are 12 mm in length and 1 mm in diameter.
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6.5 µM DiD fluorescence dye solution was injected as the fluorescence sources. Uniformly distributed
[18F]-fluoro-2-deoxy-D-glucose (FDG) at an activity level of 100 µCi was also included in the two target
tubes for a simultaneous positron emission tomography (PET) scan, whose results will be used to validate
our FMT results. The excitation laser at a wavelength of 650 nm scanned the front surface of the phantom
at 20 illumination positions. The emission wavelength was 700 nm. The tissue optical properties are
µa = 0.0022 mm−1, µ′s = 1.10 mm−1 at both 650 nm and 700 nm wavelengths, which was determined
by a least squares algorithm. Our FMT system used a conical mirror for optical measurement collection,
and the conical mirror was inserted into a microPET system for simultaneous PET scans. Measurements
from 1,057 detectors on four sides were collected by a CCD camera and then mapped onto the cube
surfaces. For more details of the phantom experimental setup, optical property estimation, measurement
collection and mapping, please refer to [20]. For the PET images, we threshold at 20% of the maximum
FDG concentrations to identify the positions of the capillary tubes. More details on the PET set-up can
be found in [26,27]. The FEM mesh for the cubic phantom was again generated by Tetgen and consisted
of a total of 8,690 nodes and 47,581 tetrahedral elements.

3. Results

3.1. Simulation Results for Small Targets

The reconstructed images using individual regularizations are shown in Figure 1, and the quantitative
image quality metrics (VR, Dice, CNR and MSE) are shown in Table 1. We see that L2 and TV

regularization produce larger targets, while L1, Lq and Log produce sparser targets. Furthermore, we
found that for q = 1/2, Lq produces the best overall result. The image has the fewest artifacts by visual
assessment, and the corresponding MSE is the lowest, CNR second highest, while VR and Dice not too
different from the best either. We also evaluated the combined regularizations using one of the sparsity
enhancing regularizations (L1, Lq or Log) and one of the smoothing regularizations (L2 or TV ). We
have not seen any improvements on the image qualities, as indicated by Table 2.

Table 1. Metrics of the best reconstructed images using individual regularizations for
simulated small targets, with the best regularization method highlighted in bold. RegType,
and Reg λ are the regularization types and associated regularization parameters, respectively.

RegType Reg λ VR Dice CNR MSE

L2 λ2 = 5.0E-5 6.19 0.26 5.30 3.5E-3
TV λTV = 1.0E-11 6.05 0.27 5.36 3.5E-3
L1 λ1 =5.9E-4 4.59 0.27 4.99 3.6E-3
L7/8 λ7/8 = 6E-4 1.25 0.31 4.42 3.6E-3
L5/8 λ5/8 = 1.0E-4 3.49 0.34 6.08 3.1E-3
L1/2 λ1/2 =6.4E-5 2.61 0.33 5.72 3.1E-3
L3/8 λ3/8 = 3E-5 1.84 0.36 5.52 3.2E-3
L1/8 λ1/8 = 3.2E-6 2.13 0.36 5.38 3.3E-3
Log λLog = 1.3E-5 2.97 0.34 5.19 3.3E-3
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Figure 1. Simulated numerical mouse with two small tubes as targets: coronal sections
of the mouse showing (a) the simulated truth, and the reconstruction results using
regularizations based on (b) L2 with λ2 = 5.0E-5, (c) total variation (TV ) with λTV =

1.0E-11, (d) L1 with λ1 = 5.9E-4, (e) L7/8 with λ7/8 = 6.0E-4, (f) L5/8 with λ5/8 = 1.0E-4,
(g) L1/2 with λ1/2 = 6.4E-5, (h) L3/8 with λ3/8 = 3.0E-5, (i) L1/8 with λ1/8 = 3.2E-6 and
(j) Log with λLog = 1.3E-5, respectively.

Table 2. Metrics of the best reconstructed images using combined regularizations for
simulated small targets.

Reg Type
TV L2

Reg λ’s VR Dice CNR MSE Reg λ’s VR Dice CNR MSE

+L1 2.0E-11, 5.9E-4 4.60 0.27 4.99 3.6E-3 5.0E-5, 6.0E-10 4.63 0.26 4.94 3.6E-3
+L7/8 3.0E-11, 6.0E-4 1.16 0.30 4.41 3.6E-3 4.9E-5, 6.1E-4 1.16 0.29 4.36 3.6E-3
+L5/8 1.0E-11, 1.0E-4 3.45 0.34 6.07 3.1E-3 4.9E-5, 1.1E-4 3.61 0.33 6.04 3.1E-3
+L1/2 1.0E-11, 6.4E-5 2.61 0.33 5.72 3.1E-3 4.9E-5, 6.4E-5 2.71 0.32 5.7 3.1E-3
+L3/8 2.0E-11, 3.0E-5 1.84 0.36 5.52 3.2E-3 4.9E-5, 3.0E-5 1.99 0.35 5.51 3.2E-3
+L1/8 1.0E-11, 3.2E-6 2.13 0.36 5.38 3.3E-3 4.9E-5, 3.2E-6 2.26 0.37 5.35 3.3E-3
+Log 3.0E-11, 1.4E-5 2.46 0.34 5.04 3.4E-3 4.9E-5, 1.4E-5 2.63 0.34 5.03 3.4E-3
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3.2. Simulation Results for Large Target

For the large target case, the reconstructed images using different individual regularizations are shown
in Figure 2 a–i, and the quantitative image quality metrics (VR, Dice, CNR and MSE) are shown in
Table 3. Visually, we could only see small differences from the reconstructed images (Figure 2 a–i).
Yet, by going through the detailed metrics, we clearly see that Log regularization is the best individual
performer. We also examined the results from combined regularizations. Table 4 lists the metrics of
the best images we obtained using the combined regularization methods. There are some small gains in
image qualities compared with the individual methods. Additionally, the best performance is achieved
when Log is combined with L2. We included the best reconstructed imaging using L2 + Log and TV +

Log in Figure 2 j–k as a reference.

Figure 2. Simulated numerical mouse with its liver as target: coronal sections of the mouse
showing reconstruction results using regularizations based on (a) L2 with λ2 = 1.0E-3,
(b) TV with λTV = 1.0E-6, (c) L1 with λ1 = 1.0E-3, (d) L7/8 with λ7/8 = 1.0E-3,
(e) L5/8 with λ5/8 = 1.0E-3, (f) L1/2 with λ1/2 = 1.0E-3, (g) L3/8 with λ3/8 = 5.0E-4,
(h) L1/8 with λ1/8 = 1.0E-3, (i) Log with λlog = 1.0E-3, (j) TV + Log with λTV = 5.0E-7
and λlog = 1.0E-3, (k) L2 + Log with λ2 = 1.0E-3 and λLog = 1.0E-3, and (l) the simulated
truth, respectively.
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Table 3. Metrics of the best reconstructed images using individual regularizations for
simulated large target, with the best regularization method highlighted in bold.

Reg Type Reg λ VR Dice CNR MSE

L2 λ2 = 1.0E-3 0.51 0.68 7.3 9.2E-3
TV λTV = 1.0E-6 0.50 0.67 7.3 8.9E-3
L1 λ1 = 1.0E-3 0.61 0.76 6.9 1.0E-2
L7/8 λ7/8 = 1.0E-3 0.62 0.76 7.0 1.0E-2
L5/8 λ5/8 = 1.0E-3 0.63 0.77 7.3 9.1E-3
L1/2 λ1/2 = 1.0E-3 0.64 0.78 7.6 8.3E-3
L3/8 λ3/8 = 5.0E-4 0.65 0.79 7.5 8.4E-3
L1/8 λ1/8 = 1.0E-4 0.67 0.79 7.5 8.4E-3
Log λLog = 1.0E-3 0.69 0.81 7.7 7.7E-3

Table 4. Metrics of the best reconstructed images using combined regularizations for
simulated large target, with the best regularization method highlighted in bold.

Reg Type
TV L2

Reg λ’s VR Dice CNR MSE Reg λ’s VR Dice CNR MSE

+L1 1.0E-6, 1.0E-5 0.74 0.83 6.74 1.2E-2 1.0E-3, 1.0E-3 0.68 0.81 6.95 1.1E-2
+L7/8 5.0E-7, 1.0E-3 0.67 0.80 7.14 1.0E-2 1.0E-2, 1.0E-4 0.69 0.81 7.74 7.7E-3
+L5/8 1.0E-7, 1.0E-3 0.64 0.78 7.37 8.9E-4 1.0E-3, 1.0E-3 0.68 0.81 7.35 9.1E-3
+L1/2 5.0E-7, 5.0E-4 0.68 0.81 7.40 9.0E-3 1.0E-4, 1.0E-3 0.64 0.78 7.59 8.2E-3
+L3/8 1.0E-7, 5.0E-3 0.66 0.80 7.57 8.2E-3 1.0E-3, 1.0E-3 0.67 0.80 8.12 7.2E-3
+L1/8 5.0E-7, 1.0E-4 0.70 0.82 7.65 8.0E-3 1.0E-4, 1.0E-4 0.69 0.80 7.47 8.4E-3
+Log 5.0E-7, 1.0E-3 0.70 0.82 8.01 7.2E-3 1.0E-3, 1.0E-3 0.72 0.84 7.84 7.4E-3

3.3. Phantom Experimental Results

The phantom experimental results are summarized in Figure 3 and Table 5.

Table 5. Metrics for image quality for the cubic phantom, with the best regularization
method highlighted in bold.

Reg Type Reg λ VR Dice CNR

L2 λ2 =1.0E-6 4.48 0.28 5.12
TV λTV = 3.0E-9 4.58 0.27 4.90
L1 λ1 = 9.0E+3 2.50 0.33 6.62
L7/8 λ7/8 = 1.0E+5 1.67 0.32 6.36
L5/8 λ5/8 = 4.0E+6 2.05 0.43 8.60
L1/2 λ1/2 = 5.0E+7 1.52 0.39 7.74
L3/8 λ3/8 = 6.0E+8 1.22 0.37 7.17
L1/8 λ1/8 = 1.0E+10 1.92 0.34 7.26
Log λLog = 9.0E+11 1.73 0.34 7.03
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We included the image reconstructed from PET as the true image. Among the four image metrics,
MSE is not computed, since we do not have the true image intensity information available. From
Figure 3, we clearly see the patterns we identified in the first simulation case, which are (1) L1,
Lq(0 < q < 1), and Log regularizations result in sparser and more accurate reconstructed images
than L2 and TV ; and (2) regularization Lq, q = 1/2 has produced an image with the fewest artifacts
from visual assessment and had a low VR, a high Dice and CNR, as shown in Table 5. Experiments with
a combination of the sparse parameter and smooth parameter were run for phantom data, and similar to
the simulations we had on small targets, the combination did not bring any improvements.

Figure 3. Cubic phantom with two small rods as target: coronal sections of the phantom
showing (a) PET result as truth, and reconstruction results using regularizations based on:
(b) L2 with λ2 = 1.0E-6, (c) TV with λTV = 3.0E-9, (d) L1 with λ1 = 9.0E+3, (e) L7/8

with λ7/8 = 1.0E+5, (f) L5/8 with λ5/8 = 4.0E+6, (g) L1/2 with λ1/2 = 5.0E+7, (h) L3/8 with
λ3/8 = 6.0E+8, (i) L1/8 with λ1/8 = 1.0E+10, and (j) Log with λlog = 9.0E+11, respectively.
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3.4. Regularization Parameter Selection

For a better understanding of how the best regularization parameter for each regularization was
chosen, we included, as an example, Figure 4 to show the reconstructed images using Log regularization
with different regularization parameters, as well as the comparison of the corresponding image quality
metrics. A visual assessment gave us λLog = 5E-4, 1E-3 and 5E-3. Then, their metrics indicate that
λLog = 1E-3 is the best choice, where its MSE is the smallest and VR, Dice and CNR are the largest.

Figure 4. Selection of regularization parameters for Log on a large target, by visual and by
metrics, respectively: (a) reconstructed fluorescence molecular tomography (FMT) images
with Log regularization using different regularization parameters; (b) normalized metrics for
the images in (a).
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4. Discussion and Conclusions

We thoroughly compared a number of regularization methods in the reconstruction of FMT for both
small targets and large targets using numerical simulations. We also included phantom experiments.
The optimization transfer algorithm was adopted for a uniform iterative update formula. We started the
iterative algorithm from a uniform initial value that can be randomly chosen on interval (0,1) and ran a
maximum of 5,000 steps for both the numerical simulations and phantom experimental data or until the
normalized error of the iterative update becomes less than 0.1%, which is the preset stopping criteria,
δstop, for our algorithms. We used visual assessment along with four different image quality metrics,
VR, Dice, MSE and CNR, to analyze the reconstructed images. For the simulated data, each iteration
takes about 1.6 s to finish on an Intel i5 2400 3.1 GHz PC with 8 GB memory; while for the phantom,
each iteration takes only about 0.09 s, since its mesh is much smaller. For the small target case, both
numerical simulations and the phantom experiment demonstrated that non-convex regularizations, Lq,
for q near 1/2 provided VR and Dice values closest to one, while maintaining a small MSE and a high
CNR. The combination of smoothing and localizing regularization does not seem to improve the image
quality in comparison with the best individual method for this case. However, for the large target case,
the joint L2 and Log performed the best, by providing the best VR, Dice, CNR and MSE at the same
time, when compared with the individual or combined regularization methods.

Despite the potentially slow convergence of optimization transfer algorithms [13,28], we found that
for all the regularization methods, the normalized error ‖xk+1 − xk‖L2/‖xk‖L2 became less than 0.1%
in less than 1,000 iterations for the large target case; while it may take up to 5,000 iterations before the
normalized error reaches the 0.1% level for the small target cases. For example, we see in Figure 5 (left)
that the normalized error becomes < 0.1% in about 500 iterations for the large target case using Log
regularization, whereas in Figure 5 (right), the normalized error becomes < 0.1% only after about 800
iterations for the small target case using Lq, q = 1/2 regularization.

Figure 5. Normalized error as the iteration number increases: (left) for a large target using
Log regularization; and (right) for a small target using L1/2, respectively. The red line
indicates the 0.1% level.

The choice of the stopping criterion is critical. This partially explains why our findings for the large
target case are somewhat different from the conclusions in [11]. The sparsity enhancing regularizations,
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especially the Log, suppress the noise much faster than L2. Then, in combination with the smoothing
effect of L2, the joint Log and L2 provided the most satisfactory image. We did notice though that if
we require an even smaller stopping criterion, the sparsity enhancing nature of Log will cause the image
quality to deteriorate for this large target scenario. We plan to investigate this issue more in the future.

In summary, FMT and other optical tomography modalities have been active research topics in the
past two decades. However, due to the high scattering of photons in tissues, reconstructed images still
suffer from low spatial resolution. The newly proposed non-convex regularizations were proven to
outperform the previously known L1 regularization in enhancing image sparsity and suppressing noises.
Yet, their power on large targets was not clear. In this paper, we have made a comprehensive comparison
of L2, L1, TV, Lq(0 < q < 1), Log regularizations and the combination of a smoothing L2 or TV
regularization and a localizing L1, Lq(0 < q < 1) or Log regularization. We found that for small targets,
Lq for q around 1/2 performs the best; whereas for large targets, joint L2 and Log is the best choice.
These conclusions should provide useful guidance for selecting the best regularization methods for FMT
in either small or large target scenarios.
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