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Abstract of the Thesis

Multilevel Factor Analysis by Model

Segregation: Comparing the Performance of

Maximum Likelihood and Robust Test Statistics

by

Jonathan David Schweig

Master of Science in Statistics

University of California, Los Angeles, 2014

Professor Peter Bentler, Chair

Survey measures of classroom climate and instructional practice have become cen-

tral to policy efforts that assess school and teacher quality. Measures of classroom

climate are often formed by aggregating individual survey responses. This has

sparked a wide interest in using multilevel factor analysis to test hypotheses about

the psychometric properties of classroom climate variables. One approach to mul-

tilevel factor analysis is conducted in two steps. First, the total covariance matrix

is partitioned into separate between-group and within-group covariance matrices.

Second, conventional factor analysis is used to test models separately. This study

shows that when using this approach, rescaled and residual-based test statistics

provide better inferences about the between group-level measurement structure

than Maximum Likelihood test statistics even when the number of groups is large

and there is no excess kurtosis in the observed variables. This study presents

an empirical example and a simulation study to demonstrate how item intraclass

correlations and within group sample sizes influence test statistic performance.
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CHAPTER 1

Introduction

Survey-based measures of classroom quality have become a staple of many teacher

performance portfolios. Seventeen states and many local education agencies in-

cluding Chicago and Memphis, Tennessee include student surveys as measures

of teacher quality or professional practice (Doherty, & Jacobs, 2013). Measures

of teacher quality and professional practice are constructed based on aggregated

student survey responses. There is an increased attention in applied literature

toward using measurement models that account for the hierarchical structure of

these surveys, and the fact that individual students are associated with specific

classrooms. There is a long tradition of literature (e.g., Cronbach, 1976; Harn-

qvist, 1978; Julian, 2001; Longford & Muthén, 1992; Zyphur, Kaplan & Christian,

2008) suggesting that single-level analytic methods that do not account for hierar-

chical data structures are problematic and can be substantively misleading (Reise,

Ventura, Nuechterlein & Kim, 2005, p. 130).

Multilevel factor analysis (e.g.,Goldstein, 2003; Lee, 1990; Longford & Muthén,

1992; McDonald & Goldstein, 1989; Muthén, 1991; Muthén, 1994; Rabe-Hesketh,

Skrondal & Zheng, 2007) provides a method to analyze multivariate data that is

hierarchically structured. One widely used framework (Muthén, 1994) partitions

the total covariance matrix into independent between-groups (or group level) and

within-groups (or individual level) covariance matrices. As in conventional sin-

gle level factor analysis, it is often of interest to researchers to test measurement

hypotheses in multilevel factor analysis by using test statistics. There are sev-
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eral different approaches that can be used to assess the adequacy of measurement

models (e.g., Hox, 2010; Ryu & West, 2009) in multilevel factor analysis. These

include simultaneously modeling both within-groups and between groups covari-

ance structures, saturating (i.e. estimating all item covariances) the model at one

level and fitting a factor model at the other level, and segregating the between

and within covariance matrices and conducing factor analysis one level at a time.

In conventional factor analysis, the commonly used Maximum-Likelihood (ML)

test statistic is derived under the assumption that the observed data is continuous

and multivariate normal (e.g. Bollen, 1989). Asymptotically, when this assump-

tion holds, the ML test statistic will be appropriately distributed and inferences

drawn from the model will be valid. In fact, it has been shown that normal theory

estimators generally remain consistent and test statistics are correctly distributed

unless kurtosis in the observed variables is excessive (Browne, 1984; Muthén &

Kaplan, 1985, 1992).

Because the segregating method proceeds by conducting two conventional factor

analyses, it is often assumed that if sample sizes are sufficiently large, there is

no excess kurtosis and the measurement model is correctly specified, inferences

about the between-group covariance structure based on the ML test statistic will

be valid (e.g. Goldstein, 2003; Hox & Maas, 2004; Ryu & West, 2009). However,

there are situations where this is not the case. While the statistical basis for this

phenomenon has been developed elsewhere (Yuan & Bentler, 2002, 2006, 2007),

the poor performance of ML test statistic is not widely known, and is rarely men-

tioned in the multilevel factor analysis literature. In fact, the poor performance

of the ML test statistic is frequently mischaracterized as evidence of model mis-

specification in applied literature (Kaplan & Elliott, 1997; Mathiesen, Torsheim

& Einarsen, 2006; van Horn, 2003).

This paper is organized as follows. First, the multilevel factor analysis framework

is briefly described, along with the rationale for model testing at the between level.
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Second, the three major approaches to testing multilevel factor models are summa-

rized. Third, four test statistics are presented, including the conventional Maxi-

mum Likelihood (ML) test statistic, the Satorra-Bentler (1988) rescaled test statis-

tic, Browne’s (1982,1984) residual-based test statistic, and Yuan and Bentler’s

(1998) adjusted residual-based test statistic. Fourth, an empirical example from a

classroom environment survey illustrates how these statistics may influence infer-

ences about the measurement model in multilevel contexts. Finally, a simulation

study is presented to demonstrate the specific conditions under which test statis-

tics may yield valid inferences. The final section discusses the implications of the

results for the use of the segregating method to investigate the between-classroom

factorial structure of classroom environment surveys, and other surveys that have

a group or a cluster as the primary unit of analysis.
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CHAPTER 2

Theoretical Background

2.1 Multilevel Factor Analysis

The multilevel factor analysis framework used in this study (e.g. Goldstein, 2003;

Lee, 1990; Longford & Muthén, 1992; McDonald & Goldstein, 1989; Muthén,

1991; Muthén, 1994) is based on a score decomposition model articulated by

Cronbach and Webb (1975):

yij = yj + (yij − yj) (2.1)

where the vector of p observed scores for individual i in group j (yij) can be

decomposed into independent between groups (yj), and within groups (yij − yj)

components. The associated covariance matrix of the observed scores can be

expressed:

ΣT = ΣB + ΣW (2.2)

where ΣT , ΣB and ΣB are symmetric p × p covariance matrices. The covariance

matrices can be expressed in two separate factor models (e.g., Bollen, 1989), one

for the between-groups level:

ΣB = ΛBΦBΛT
B + ΨB (2.3)
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and another for the within-groups level

ΣW = ΛWΦWΛT
W + ΨW (2.4)

where ΛB is a p × k matrix of factor loadings for p items on k factors, and ΛW

is a p× r matrix of factor loadings for p items on r factors. Note that while it is

possible for k = r and for ΛB = ΛW , this is not necessary. ΦB and ΦW are k × k

and r × r matrices of factor covariances, respectively, and ΨB and ΨW are p× p

diagonal matrices containing unique (residual) variances. It follows that ΦB need

not equal ΦW , and ΨB need not equal ΨW .

2.2 The rationale for between-level model testing with

student surveys

Surveys of classroom environments often assume a specific measurement model

where students are are treated as objective raters of the classrooms in which they

study (e.g., Follman, 1992; Ferguson, 2012; Worrell & Kuterbach, 2001). Variance

between students within the same classroom is attributable to sampling error and

represents noise. Averaging over individual students, variance between classrooms

represents true variance in classroom quality. In this way, these surveys are often

designed to measure climate variables (Marsh et al, 2012), and the primary unit of

analysis is the classroom. Accordingly, understanding the between-classroom fac-

tor structure is critical for developing and testing theories about how the classroom

climate relates to other variables of substantive interest, such as student achieve-

ment and persistence in school. There is a long tradition of research suggesting

that multilevel factor analysis is the appropriate tool for testing the between-level

measurement models (Cronbach, 1976; Harnqvist, 1978; Julian, 2001; Longford &

Muthén, 1992; Marsh et al, 2012; Reise, Ventura, & Nuechterlein & Kim, 2005;
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Zyphur, Kaplan & Christian, 2008).

2.3 Three approaches to multilevel fit testing

Though multilevel factor analysis provides a framework to test between-classroom

measurement models, there is little consensus on the best approach to evaluate

models within that framework. There are three primary approaches described

in the methodological literature on multilevel factor analysis. a) Simultaneously

modeling the within-level and between-level structures (Muthén, 1994) b) Fitting

an unrestricted (saturated) model at the within level, and testing a measurement

model at the between level (Muthén, 1994; Hox, 2010; Ryu & West, 2009), re-

ferred to as the partially saturated model method (Ryu & West, 2009, p. 589) and

c) Segregating the between and within covariance matrices and conducting sepa-

rate factor analyses, referred to as the segregating method (Ryu & West, 2009, p.

592).

It has been shown in several studies (e.g. Hox, 2010; Ryu & West, 2009; Yuan &

Bentler, 2007) that simultaneously modeling the within and between level struc-

tures does not produce meaningful diagnostic information about the between-level

factor structure. Thus, the simultaneous modeling of between and within factor

structures makes model or theory revision difficult (Yuan & Bentler, 2007), and

this approach is not recommended in the literature. The partially saturated model

method, on the other hand, does provide level-specific diagnostic information, but

was not meant to provide parameter estimates or standard errors (Ryu & West, p.

599; Yuan & Bentler, 2007). A practical issue with this method is that estimates

of fit indices such as the Root Mean Square Error of Approximation (RMSEA)

(Steiger & Lind, 1980), and the Comparative Fit Index (CFI) (Bentler, 1990)

provided by software programs will spuriously show good fit (Hox, 2010, p. 307),

and so may be misinterpreted (e.g. Rosenberg, 2009).
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The segregating method (Yuan & Bentler, 2007), which is the focus of this paper,

is operationalized in two steps. First, the total covariance matrix is partitioned

and Maximum-Likelihood estimates (MLEs) of ΣB and ΣW in Equation (2.2) are

obtained. For balanced data, the MLEs of these two matrices are unbiased esti-

mates of the population matrices, even when the data is not normally distributed

(Muthén, 1994). Once the matrices have been separated, conventional single-level

factor analyses can be conducted. Similar approaches are described in Goldstein

(2003, p. 189) and Hox (2010). This approach potentially allows for a wide va-

riety of test statistics and fit indices (Yuan & Bentler, 2007), since the model

testing proceeds as two separate conventional single level analyses. It also allows

for parameter estimates and standard errors (Ryu & West, 2009, p. 599) to be

obtained.

Because the segregating method is a two-step procedure, parameter estimates may

be less efficient than those obtained from the partially saturated model method

(Goldstein, 2003). However, Yuan and Bentler (2007) suggested that, in small to

medium sized samples, particularly with larger models, the segregating method

may actually be more efficient than the partially saturated model method, because

parameter estimates based on a smaller model will have more numerical stability

(the segregating method will, in general, have far fewer parameters than partially

saturated model method) (Yuan & Bentler, 2007, p. 56).

2.4 Four test statistics

Test statistics used in conjunction with the segregating method can be considered

from a conventional, single-level framework, since it is operationalized by per-

forming a series of conventional factor analyses. Before defining the test statistics

used in this analysis, some general notation will be presented. Given a symmetric

matrix A, let vech(A) be the row half-vectorization of A. If the dimension of
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A is p × p, it has p∗ = (p+1)p
2

unique elements, and vech(A) is a p∗ × 1 vector.

The matrix Dp is a p2× p∗ duplication matrix (e.g., Magnus & Neudecker, 1988).

Additionally, let a function with a dot on top denote a derivative. For example,

let σ̇(θ) denote the derivative of σ(θ) with respect to θ. For a total sample size

N , let n = N − 1.

Given a p× p population covariance matrix Σ, a q-vector of free parameters θ, a

testable null hypothesis can be expressed Σ(θ) = Σ. In other words, the popula-

tion covariance matrix, Σ, can be expressed as a function of the model parameters,

θ (Bollen, 1989). This null hypothesis can be tested using a test statistic obtained

from minimizing a discrepancy function, F [S,Σ(θ)], which indicates the discrep-

ancy between the sample covariance matrix, S, and the model-implied covariance

matrix Σ(θ). Optimal estimates of model parameters, θ̂, are found at the mini-

mum of F .

Bentler and Dudgeon (1996) note that all discrepancy functions are associated

with a weight matrix, W , and an asymptotic covariance matrix Γ, which is given

by the distribution of
√
n(s− σ(θ)):

√
n(s− σ(θ))

d−→ N(0,Γ) (2.5)

Where s = vech(S) and σ(θ) = vech(Σ(θ)). Γ is a symmetric positive definite

p∗ × p∗ matrix.

Following Browne (1984) (see also Bentler & Dudgeon, 1996; Foldnes, Foss &

Olsson, 2012), a discrepancy function is correctly specified for W if

W
p−→ Γ−1 (2.6)

When the model is correct and the discrepancy function is correctly specified:

nF̂
d−→ χ2

d (2.7)
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Where F̂ = F [S,Σ(θ̂)], the minimized value of the discrepancy function. The

degrees of freedom, d, is given by d = p∗ − q (e.g., Bollen, 1989).

2.4.1 The Maximum Likelihood test statistic TML

The Maximum Likelihood (ML) discrepancy function (Jöreskog, 1967) is derived

from the normal-theory log-likelihood (e.g. Yuan & Bentler, 1999). Optimal

estimates of model parameters, θ̂, are found by minimizing

FML = log|Σ(θ)|+ tr[SΣ(θ)−1]− log|S| − p (2.8)

where | · | denotes the determinant, and tr denotes the trace of a matrix. In

conventional factor analysis, S is the typical sample covariance matrix. In using

the segregating method to investigate between-level covariance structre, S is given

by Σ̂B. FML can be understood as asymptotically equivalent to a special member

of a class of generalized least squares estimators (Browne, 1974) with a weight

matrix given by:

WML = .5DT
p [Σ(θ̂)−1 ⊗ Σ(θ̂)−1]Dp (2.9)

Corresponding to this discrepancy function, the test statistic TML can be defined

as TML = nF̂ML. When the model is correct, under the assumption of multivari-

ate normality, WML satisfies (2.6), FML is asymptotically optimal (Browne, 1974;

Foldnes, Foss & Olsson, 2012, p. 373) and TML will be asymptotically distributed

as a central chi-square variate. In fact, Browne (1984) suggests that under some

conditions, the weight matrix given in Equation (2.9) may still be correctly spec-

ified provided there is no excess multivariate kurtosis in the observed variables.
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2.4.2 The residual-based test statistics TRADF and TCRADF

Browne (1982, 1984) described a class of residual-based test statistics based on

arbitrary distributional assumptions. A thorough discussion of these statistics

can be found in Foldnes, Foss and Olsson (2012). Yuan and Bentler (2007) adapt

Browne’s (1984) residual based ADF statistic for use in conjunction with the

segregating method. The residual based test statistic, TRADF , is given by

TRADF = nêT{σ̇c(θ̂)[σ̇c(θ̂)T Γ̂σ̇c(θ̂)]
−1σ̇c(θ̂)

T}ê (2.10)

Where. ê = s− σ(θ̂), σ̇c(θ̂) is a p∗ × (p∗ − q) full rank orthogonal complement of

σ̇(θ̂) , and Γ̂ is a sample estimate of Γ. In conventional factor analysis, Γ̂ is often

obtained by calculating the fourth-order central sample moments (e.g. Bentler,

2006). In using the segregating method, Yuan and Bentler (2002, 2006, 2007)

proposed using generalized estimating equations (Liang & Zeger, 1986; Yuan &

Jennrich, 1998) to obtain Γ̂.

Yuan and Bentler (1998, 2007) suggested a small sample corrected version to

TRADF :

TCRADF =
TRADF

1 + TRADF

n

(2.11)

Neither TRADF nor TCRADF will be defined unless [σ̇c(θ̂)
T Γ̂σ̇c(θ̂)]

−1 in Equation

(2.10) is invertible.

2.4.3 The rescaled test statistic TRML

TRML was designed to rescale TML based on excess skew and kurtosis in the

observed variables (Satorra & Bentler, 1988). Let

Û = WML −WMLσ̇(θ̂)
(
σ̇(θ̂)TWMLσ̇(θ̂)

)−1

σ̇(θ̂)TWML (2.12)
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Also let k = tr(Û Γ̂)
d

. Then:

TRML =
TML

k
(2.13)

While TRML is not generally chi-square distributed, its first moment is asymptot-

ically equal to the first moment of χ2
d (e.g. Bentler & Yuan, 1999).

2.5 Behavior of TML in the segregating methodology

In using the segregating method, TML is often expected to converge to a central

chi-square distribution with d degrees of freedom if the model is correct and there

is no excess skew or kurtosis in the observed variables. Several sources (Goldstein,

2003; Ryu & West, 2009; Hox, 2010; Hox & Maas, 2004) suggested that TML will

behave in this way and can be used to evaluate between-level measurement models.

In practice, however, and contrary to the advice given in these sources, TML may

be inflated, and may not have the correct asymptotic distribution, even when

the data is normally distributed and the model is correctly specified. The extent

of the inflation will be related to a) the proportion of total observed variance

attributable to group membership (i.e., the ICCs of the observed variables) and

b) within group sample size.

For clarity of presentation, we will assume that the groups are balanced (i.e.,

that n1 = n2 = · · · = nj = n) and that the observed variables—in this case, yj,

(yij − yj), and yij—are multivariate normal in distribution. Then, let

WW = .5DT
p [Σ−1

W ⊗ Σ−1
W ]Dp (2.14)

where ΣW is the within-groups covariance matrix as defined in Equation (2.2).

Also let

WJ = .5DT
p [Σ−1

J ⊗ Σ−1
J ]Dp (2.15)
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where ΣJ = ΣB + 1
n
ΣW . The intraclass correlation (ICC) represents the propor-

tion of observed variance attributable to group membership, and can be obtained

from the diagonal elements of ΣB and ΣW . For any given item p, the intraclass

correlation for that item can be expressed:

ICCp =
ΣBpp

ΣBpp + ΣWpp

(2.16)

where ΣBpp and ΣWpp are diagonal elements of ΣB and ΣW respectively. ICC

values range between 0 and 1, and for fixed ΣB, ICCs will increase as the elements

of ΣW → 0.

Recall that σ2 = vech(Σ). Under normal theory, the asymptotic covariance matrix

of
√
J(σ̂2

B−σ2
B) is given by the inverse of the Fisher Information (Yuan & Bentler,

2006):

Υ = W−1
J +

1

n2
((n− 1)WW )−1 (2.17)

Υ depends not only on information from ΣB, but on information from ΣW as well,

through W−1
J and through 1

n2 ((n− 1)WW )−1.

When a factor analysis is performed on Σ̂B using Maximum Likelihood estimation

in conventional software, it is associated with a weight matrix given only by WB,

the weight matrix in Equation (2.9) evaluated at Σ(θ̂)B, the estimated model-

implied between-group covariance matrix. However, Equation (2.6) implies that in

order for WB to be correctly specified for FML in using the segregating method, it

must converge to Υ−1. In order for WB to converge to Υ−1, the 1
n2 ((n− 1)WW )−1

and 1
n
ΣW terms need to be ignorable.

The ignorability of 1
n2 ((n− 1)WW )−1 and 1

n
ΣW is directly related to the ICCs

of the observed variables and within-group sample size. Keeping ΣB fixed, as

the ICC increases, the elements of ΣW approach zero, and both 1
n2 ((n− 1)WW )−1

and 1
n
ΣW become ignorable, For low ICCs, where the diagonal elements of ΣW are

relatively large, 1
n2 ((n− 1)WW )−1 and 1

n
ΣW will not be ignorable. Alternatively,

12



keeping ICC fixed, as n increases 1
n2 ((n− 1)WW )−1 and 1

n
ΣW become ignorable.

For small within group sample sizes, 1
n2 ((n− 1)WW )−1 and 1

n
ΣW will not be

ignorable.

This implies that WB is particularly likely to be misspecified for FML when ICCs

are low or within-group sample sizes are small. Under those conditions, TML will

not converge in distribution to a centrally distributed chi-square variate, even

when the model is correct and the number of groups is sufficiently large. As a

result, inferences about model structure based on TML may not be valid for the

segregated analysis of Σ̂B even when the data is normally distributed. It should

be noted that, while the above argument assumed that the groups were balanced,

this assumption was made only to simplify the presentation. Results in Yuan

and Bentler (2002, 2006) suggest that similar results would hold for the case of

unbalanced groups.

2.6 Behavior of TRADF, TCRADF and TRML

Unlike TML, the residual-based test statistics TRADF and TCRADF use information

from both between and within covariance sources through Γ̂. Thus these test

statistics are expected to converge to the correct distribution regardless of ICC or

within group sample size. TRML is expected to converge to a distribution with the

correct first moment regardless of ICC and within group sample size. The scaling

constant, k will be greater than 1. Bentler (2006) explained that tr(Û Γ̂) can be

thought of as a way to determine the discrepancy between the hypothesized model

and data distribution (carried by Û) and the true data distribution (carried by

Γ̂). In analyzing Σ̂B , the discrepancy between between Û and Γ̂ occurs because

Γ̂ is based on information from both Σ̂B and Σ̂W , and Û is based on information

from Σ̂B alone.
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2.7 Issues with TML in the study of classroom climate

The relationship between the discrepancy function, the weight matrix, item ICCs

and within-group sample size is rarely made explicit in methodological literature

on multilevel factor analysis. Even when the poor performance of TML is noted

(Hox, 2010; Muthén, 1994, p. 389; Yuan & Bentler, 2007), the possible role of

either item ICC or within-group sample size in the misspecification of FML for

WB is not described. In fact, several sources (Goldstein, 2003; Hox, 2010; Hox

& Maas, 2004; Ryu & West, 2009) suggested that the segregating method is a

“viable method” (Hox & Maas, 2004, p. 145) that can be “implemented within

the preexisting ML SEM framework” (Ryu & West, 2009, p. 600).

As a result, there is confusion in the applied literature on the interpretation of

TML. There are many cases in the applied literature where an inflated valued

of TML is assumed to suggest model misspecification, and often the theorized

between-groups model is then modified, either by removing items, adding ad-

ditional factors, or modifying paths (e.g. Kaplan & Elliott, 1997; Mathiesen,

Torsheim & Einarsen, 2006; van Horn, 2003). The possibility that TML may also

reflect the fact that FML is misspecified for WB is unexplored and untested.

The advice to use TML for model fit assessment is particularly problematic when

the segregating method is used to assess the factor structure of classroom climate

surveys, because the two conditions most likely to cause issues with the perfor-

mance of TML—low item ICCs and relatively small within-group sample sizes—are

particularly common in this field. Generally speaking, item ICCs for climate vari-

ables are often less than .1 and rarely greater than .3 (den Brok, Bergen, Stahl, &

Brekelmans, 2004; Marsh et al, p. 115; Toland & Ayala, 2005). Class sizes typi-

cally range between 12 and 25 students per class (e.g., Holfve-Sabel & Gustaffson,

2005; Kunter et al.,2008). Under these conditions, the inflation of TML is likely to

be severe. Relatedly, Type I error rates are likely to be far higher. It is unlikely

that inferences about the between-classroom measurement models based on TML

14



would be valid.

Because TML is expected to perform poorly in the evaluation of between-level

measurement models for classroom climate surveys, it may seem reasonable to

recommend the use of alternative test statistics, such as the residual-based and

rescaled test statistics, since the theory outlined above suggests these statistics

should perform well asymptotically. In fact, Yuan and Bentler (2007) recom-

mended the use of TRML and TCRADF for model evaluation in conjunction with

the segregating methodology. However, there is only limited simulation work with

the residual-based and rescaled test statistics in a multilevel context, and there are

many known issues with statistics like TRADF , TCRADF and TRML in conventional

factor analysis (e.g., Bentler & Yuan, 1999; Curran, West & Finch, 1996; Hu,

Bentler & Kano, 1992; Kaplan & Muthén, 1985; Kaplan & Muthén, 1992, Powell

& Schaefer, 2001; Yuan & Bentler, 1998), particularly with small sample sizes

and large models (large models are often defined as those containing more than

50 df (e.g. Kaplan & Muthén, 1992)). It may be expected that these conditions

would also present problems in multilevel investigations. In conventional factor

analysis, when models are large and sample sizes are small, TRADF and TRML tend

to over-reject correct models, and TCRADF tends to under-reject correct models

(Yuan & Bentler, 1999).

In fact, as it turns out, these specific conditions (small sample sizes and large

models) are also likely to occur with student surveys of classroom climate. In

the literature on student surveys of classroom climate, the number of classrooms

(i.e. the group level sample sizes) is typically between 50-500 (e.g. Fauth, De-

cristan, Riser, Klieme & Buttner, 2014; Holfve-Sabel & Gustaffson, 2005; Kunter

et al., 2008; Toland & Ayala, 2005). Measurement models range from 25 degrees

of freedom to well over 150 degrees of freedom (e.g., den Brok, Bergen, Stahl, &

Brekelmans, 2004; Fauth, Decristan, Riser, Klieme & Buttner, 2014; Holfve-Sabel

& Gustaffson, 2005; Kunter et al. 2008; Toland & Ayala, 2005). It is not clear
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whether, under these conditions, the residual-based test statistics or the rescaled

test statistics would continue to perform well. It is also unclear whether Yuan and

Bentler’s (2007) recommendations to use to use TRML and TCRADF , which were

based on a simulation study using high item ICCs, large within-group sample

sizes, relatively small measurement models, and a large number of groups, would

be supported under a wider range of conditions, particularly those typically found

in survey-based research on classroom climate.

The present study uses an illustrative example and a simulation in order to a)

Illustrate the extent to which TML will be inflated b) Demonstrate how item ICC

and within group sample size influence the distribution of TML c) Investigate

the performance of several alternative test statistics—specifically TRML, TRADF

and TCRADF—under a broader range of conditions, particularly those that are

frequently encountered in survey-based research on classroom climate. The em-

pirical example comes from the Tripod Classroom Environment Survey (Ferguson,

2010), which is administered to measure aspects of classroom environment. Using

the illustrative example and the simulation study, the following three research

questions were addressed:

Research Question 1: To what extent can inferences about the measurement

structure of the Tripod Classroom Environment Survey based on TML differ from

those based on residual-based and rescaled test statistics?

Research Question 2: How do item ICC and within group sample size influence

the distribution of TML ? How do item ICC and within group sample size influ-

ence the differences between the two estimated asymptotic covariance matrices,

Ŵ−1
B and Γ̂?

Research Question 3: How do TRML, TRADF and TCRADF perform under a

broader range of conditions, particularly those that are frequently encountered in

survey-based research on classroom climate?
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CHAPTER 3

Method

3.1 Data sources

The Tripod Classroom Environment Survey. The Tripod Survey (Ferguson,

2010) is designed to assess seven dimensions of teaching practice, often referred to

as the Seven Cs: Caring, Captivating, Conferring, Clarifying, Challenging, Con-

trolling, Consolidating. This version of the Tripod Survey was administered in an

urban school district in California in 2010. This example uses 5 of the 8 items from

the Challenging dimension that are rated on a 5-point scale (1 = totally untrue

and 5 = totally true). Scores based on these five items correlate approximately

.96 with the total score on the Challenging dimension, and show both good in-

ternal consistency (Cronbach’s α = .87) and aggregate-level reliability (average

ICC(2) = .76). The sample used in this analysis contained 5,508 students in 285

classrooms. The average classroom size was approximately 17 students. Students

are treated as nested within classrooms, and it is assumed that each student has

rated only one classroom. Descriptive information about the survey items is sum-

marized in Table 3.1.

Simulated Datasets. Data were generated from a population model with two

within level factors and one between level factor. This population model was

selected because several sources suggest that the between-level factor structure

is likely to be simpler than the structure at the within-level (e.g. Holfve-Sabel

& Gustaffson, 2005; Muthén & Asparouhov, 2011). Simulation conditions were

selected in order to reflect the conditions commonly reported in survey-based re-
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Table 3.1: Descriptive Statistics for Tripod Survey Variables

Item Mean St. Dev. ICC

1) My teacher asks questions to be sure we are
following along when he or she is teaching.

4.11 .40 .07

2) My teacher asks students to explain more
about answers they give.

3.93 .39 .10

3) In this class, my teacher accepts nothing less
than our full effort.

3.93 .46 .13

4) My teacher doesn’t let people give up when
the work gets hard.

4.07 .38 .10

5) My teacher wants us to use our thinking
skills, not just memorize things.

3.95 .42 .12

search on classroom climate. Four conditions were manipulated: a)Item ICCs

(ICC = .50, ICC = .26, ICC = .10, ICC = .05), b)Level 2 sample size (J = 100,

J = 200, J = 500), c)Group size (n = 10, n = 30, n = 50), d)The size of the

measurement model (df = 9, df = 54, df = 135).

For the ICC = .50 condition with 6 observed variables, the generating model used

the following parameters:

ΛW =



.7 0

.7 0

.7 0

0 .7

0 .7

0 .7


,ΛB =



.7

.7

.7

.7

.7

.7


,ΦW =

 1 .3

.3 1

 ,ΨW = ΨB = diag(.51)

(3.1)

ΨB and ΨW were 6 × 6 diagonal matrices so that all of the diagonal elements

equal .51. For the other ICC conditions used in this simulation, ΛB, ΦW and

ΨB were fixed, and ΛW and ΨW were varied. For the ICC = .26 condition, the

non-zero elements of ΛW were set to 1.41, and the diagonal elements of ΨW were

set to 2.00. For the ICC = .10 condition, the non-zero elements of ΛW were set
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to 2.1, and the diagonal elements of ΨW were set to 4.59. For the ICC = .05

condition, the non-zero elements of ΛW were set to 3.08, and the diagonal elements

of ΨW were set to 9.50. Model size was varied by adding additional items, but

keeping the general pattern of factor loadings the same as given in Equation

(3.1). In total, this simulation contained in 4 × 3 × 3 × 3 = 108 conditions.

While certain constellations of conditions may be unlikely to occur in practice

(i.e. many large classrooms, high ICCs and a small model), the inclusion of

conditions across this range allows for a more comprehensive study of the behavior

of the test statistics. 500 replications were conducted in each condition for a total

of 54,000 replications. Simulations were conducted using MPlus’s (Muthén &

Muthén, 2010) Monte Carlo capabilities. For each of the replicated data sets, the

MPlusAutomation package (Hallquist, 2012) in R (R Development Core Team,

2012) was used to obtain saturated estimates of ΣB and ΣW . TML, TRADF , TCRADF

and TRML were estimated in EQS (Bentler, 2006) using the REQS (Mair & Wu,

2012) package.

3.1.1 Analytic Approach

To address the first research question, the Tripod Survey data was used. ML es-

timates of ΣB and ΣW were obtained. Σ̂B was then used as the input covariance

matrix for a confirmatory factor analysis, where the hypothesized model was uni-

dimensional (i.e., all 5 items loaded onto one factor). Then, the four test statistics

TML, TRADF , TCRADF and TRML were estimated.

Simulated data was used to answer the second research question. For each sim-

ulation condition, the mean and standard deviation of TML was estimated, and

an empirical Type I error rate was calculated. For the purpose of this study,

the Type I error rate was calculated at the nominal α = .05 level. Because it

is expected that the empirical error rates will differ somewhat from the nominal

rate, an acceptable empirical error rate is taken as one that falls in the inter-
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val [.028, .079], the estimated 2-sided 99% adjusted Wald confidence interval (e.g.

Agresti & Coull, 1998). In addition to TML, the two asymptotic covariance matri-

ces, W−1
B and Γ̂, were compared through their square distances from each other:

‖W−1
B − Γ̂‖. Based on Equation (2.17), it is anticipated that the distance between

the two covariance matrices should increase as ICCs and within group sample

sizes decrease.

In order address the third research question, investigating the performance of

TRADF , TCRADF and TRML under a range of conditions similar to those encoun-

tered in survey-based research on classroom climate, means and standard devia-

tions of these three test statistics were estimated for each simulation condition,

and an empirical model rejection rate was calculated. As in the case of TML, the

rejection rate was calculated at the nominal α = .05 level and acceptable rates

were those in the interval [.028, .079]. It should be noted that for several con-

ditions (when J = 100 and df = 135), the residual-based test statistics are not

estimable because [σ̇c(θ̂)
T Γ̂σ̇c(θ̂)]

−1 is not invertible under these conditions, and

so those statistics are not included in those specific analyses.
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CHAPTER 4

Results

4.1 Research Question 1

To what extent can inferences about the measurement structure of the

Tripod Classroom Environment Survey based on TML differ from those

based on residual-based and rescaled test statistics?

The estimate of TML is 136.9. This can be referred to χ2
5 and suggests strong

evidence for rejecting the null hypothesis that the proposed model holds in the

population (p < .0001). If TML were used as the basis for model evaluation, it

would be concluded that these five items are not unidimensional.

However, based on the theoretical results presented above, there is reason to

suspect that the TML test statistic should not be trusted in this particular case.

Firstly, the item ICCs are fairly low, ranging from .07 to .13 (Table 3.1). Secondly,

the average number of individuals in each classroom is fairly small. Even if all of

the distributional assumptions were satisfied, with ICCs that are in this range, the

correct specification of FML for WB would require much larger classroom sizes in

order for TML to have the correct distribution. Thus, it may be more appropriate

to make model inferences based on rescaled or residual-based test statistics. Here,

TRADF (4.54, p = .454), TCRADF (4.47, p = .484) and TRML (5.50, p = .358) all

suggest strong evidence for failing to reject the null hypothesis. In other words,

these three test statistics all suggest that the items are indeed unidimensional, an

inference that completely contradicts the inference based on TML.

It should be noted that while this example provides a clear illustration of how
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low ICCs and small within-group sample sizes can distort inferences about the

between-classroom model based on TML, it was also limited in some important

ways. First, the data generating mechanism was unknown. While the inflation

of TML relative to TRADF , TCRADF and TRML is related to ICC and within-group

sample size, it is possible that other factors, including multivariate kurtosis, play

a role in model appraisal. Second, the model is relatively small, containing only 5

variables and 5 degrees of freedom, and so while the rescaled and residual based

test statistics provide valid inferences in this case, these results may not generalize

to larger models. This issues are addressed in the analyses that follow.

4.2 Research Question 2

How do item ICC and within group sample size influence the distribu-

tion of TML? How do item ICC and within group sample size influence

the differences between the two asymptotic covariance matrices, W−1
B

and Γ̂?

Tables 4.1–4.3 present the test statistic means, variances, and empirical Type I er-

ror rates across simulation conditions. As expected, as either ICC or within group

sample size decrease, TML increases, and, relatedly, Type I error rates increase.

TML is only well behaved with 500 groups, more than 30 individuals per group

and an ICC of .50 (Table 4.1). This condition is most similar to the simulation

conditions of Ryu and West (2009) and Hox and Maas (2004), and offers some

insight into why those studies concluded that Maximum Likelihood methods were

appropriate for use in conjunction with the segregating method.

TML inflation can be quite severe. When ICCs are low and the within group

sample sizes are small, the correct model is rejected 100% of the time, and the

test statistic mean is about 20 times larger than expected, for all model sizes.

This pattern of inflation suggests that TML will not provide valid inferences about
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between-classroom measurement models in survey-based research on classroom

climate. The results presented in Tables 4.1–4.3 also suggest little evidence that

TML would ever converge to the correct distribution, regardless of the number of

groups that are included in the sample. For example, for ICC = .50, with within-

group sample sizes of 10, there is little evidence of convergence as the number of

groups increases from 100 to 500.

Table 4.1: TML Means, Standard Deviations and Type I Error Rates, df = 9
Group Sizes

10 30 50
Mean (sd) Rej Mean (sd) Rej Mean (sd) Rej

J = 500
ICC = .50 12.55 (6.15) 0.216 10.05 (4.65) 0.072 9.64 (4.29) 0.054
ICC = .26 18.37 (9.55) 0.490 11.68 (5.38) 0.142 10.58 (4.75) 0.102
ICC = .10 55.57 (35.89) 0.942 19.34 (9.21) 0.524 14.74 (6.93) 0.318
ICC = .05 176.35 (143.71) 1.00 35.87 (19.34) 0.896 22.6 (11.55) 0.644
J = 200
ICC = .50 12.34 (6.10) 0.198 10.11 (4.73) 0.088 9.77 (4.52) 0.074
ICC = .26 18.32 (9.55) 0.492 11.71 (5.56) 0.186 10.75 (4.99) 0.104
ICC = .10 63.01(50.91) 0.962 19.72 (10.07) 0.544 15.13 (7.40) 0.336
ICC = .05 193.74 (120.24) 1.00 39.36 (26.93) 0.872 24.25 (14.80) 0.690
J = 100
ICC = .50 12.52 (6.22) 0.190 10.27 (4.81) 0.092 10.20 (5.09) 0.102
ICC = .10 80.96 (61.30) 0.966 21.14 (11.76) 0.592 15.93 (8.35) 0.382
ICC = .26 19.55 (11.10) 0.514 12.01 (5.73) 0.180 11.22 (5.62) 0.158
ICC = .05 192.25 (96.32) 1.00 47.54 (41.23) 0.906 26.96 (19.26) 0.690

Note: Empirical Type I error rates in the interval [.028,.079] shown in bold.

Tables 4.4–4.6 present the square distances between W−1
B and Γ̂. As antici-

pated by theory, the two asymptotic covariance matrices diverge as either ICC

decreases, or within group sample size decreases. At ICC = .50, with group sizes

of 50, the distance between the covariance matrices is relatively small, implying a

small amount of misspecification of the discrepancy function for WB. Relatedly,

TML is relatively well behaved. For ICC = .05, however, the distances between

the covariance matrices are quite large, the misspecification of FML for WB is

more severe and TML is more inflated.
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Table 4.2: TML Means, Standard Deviations and Type I Error Rates, df = 54
Group Sizes

10 30 50
Mean (sd) Rej Mean (sd) Rej Mean (sd) Rej

J = 500
ICC = .50 73.08 (14.27) 0.502 58.87 (11.55) 0.124 58.33 (11.42) 0.110
ICC = .26 107.62 (24.04) 0.964 67.79 (13.55) 0.356 63.70 (12.80) 0.248
ICC = .10 355.59 (158.71) 1.00 111.12 (24.62) 0.968 87.38 (18.67) 0.758
ICC = .05 1054.79 (336.47) 1.00 211.24 (66.09) 1.00 133.36 (33.78) 0.994
J = 200
ICC = .50 73.46 (14.97) 0.508 61.18 (12.24) 0.192 58.67 (11.50) 0.110
ICC = .26 113.20 (32.08) 0.962 70.76 (14.57) 0.432 64.35 (12.70) 0.248
ICC = .10 445.88 (163.05) 1.00 121.21 (30.51) 0.976 91.14 (19.63) 0.84
ICC = .05 1233.88 (299.86) 1.00 262.93 (109.39) 1.00 150.01 (50.77) 0.994
J = 100
ICC = .50 78.61 (16.36) 0.630 64.67 (12.76) 0.272 61.09 (11.66) 0.172
ICC = .26 136.81 (54.23) 0.982 76.33 (16.40) 0.564 67.57 (13.38) 0.350
ICC = .10 553.58 (153.69) 1.00 151.84 (63.91) 0.992 100.86 (29.09) 0.894
ICC = .05 1144.92 (205.67) 1.00 341.59 (110.41) 1.00 190.39 (78.90) 1.00

Note: Empirical Type I error rates in the interval [.028,.079] shown in bold.

Table 4.3: TML Means, Standard Deviations and Type I Error Rates, df = 135
Group Sizes

10 30 50
Mean (sd) Rej Mean (sd) Rej Mean (sd) Rej

J = 500
ICC = .50 177.93 (22.55) 0.728 151.27 (18.48) 0.248 144.41 (17.36) 0.122
ICC = .26 263.08 (48.18) 0.998 174.22 (22.50) 0.668 157.51 (19.23) 0.384
ICC = .10 899.07 (270.84) 1.00 289.69 (46.98) 1.00 218.16 (29.11) 0.972
ICC = .05 2552.47 (512.77) 1.00 574.96 (170.26) 1.00 342.00 (64.83) 1.00
J = 200
ICC = .50 185.74 (23.90) 0.814 154.93 (18.90) 0.310 148.12 (17.44) 0.180
ICC = .26 300.61 (79.66) 1.00 180.36 (23.26) 0.770 162.35 (19.74) 0.466
ICC = .10 1125.38 (221.85) 1.00 324.90 (71.50) 1.00 232.20 (35.11) 0.994
ICC = .05 3009.19 (437.05) 1.00 660.18 (202.01) 1.00 408.67 (123.65) 1.00
J = 100
ICC = .50 204.02 (30.38) 0.926 163.11 (19.66) 0.470 156.3 (19.01) 0.340
ICC = .26 378.52 (106.55) 1.00 195.50 (29.51) 0.910 173.29 (22.64) 0.668
ICC = .10 1424.66 (227.68) 1.00 423.72 (107.89) 1.00 273.63 (66.51) 1.00
ICC = .05 2485.48 (248.38) 1.00 911.03 (175.26) 1.00 520.02 (123.77) 1.00

Note: Empirical Type I error rates in the interval [.028,.079] shown in bold.
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Table 4.4: Square Distances Between Asymptotic Covariance Matrices, df = 9
Group Sizes

10 30 50
J = 500
ICC = .50 13.37 6.93 5.89
ICC = .26 79.20 13.59 8.45
ICC = .10 930.55 74.89 28.98
ICC = .05 7371.88 388.32 121.33
J = 200
ICC = .50 24.97 16.36 14.40
ICC = .26 98.54 25.16 17.67
ICC = .10 1010.64 96.7 41.33
ICC = .05 7864.97 440.61 141.81
J = 100
ICC = .50 43.98 27.98 28.42
ICC = .26 130.40 13.59 33.41
ICC = .10 1144.99 117.3 63.28
ICC = .05 8502.18 486.50 178.86

Table 4.5: Square Distances Between Asymptotic Covariance Matrices, df = 54
Group Sizes

10 30 50
J = 500
ICC = .50 132.70 77.79 72.13
ICC = .26 437.04 112.50 86.69
ICC = .10 7547.11 667.49 286.63
ICC = .05 58907.71 3317.32 1097.86
J = 200
ICC = .50 261.67 190.56 176.47
ICC = .26 959.62 282.88 212.88
ICC = .10 8429.14 912.93 430.09
ICC = .05 63017.13 3871.44 1301.13
J = 100
ICC = .50 458.82 364.11 324.45
ICC = .26 1293.77 507.18 373.91
ICC = .10 9697.79 1350.5 647.05
ICC = .05 69335.72 4908.45 1669.69
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Table 4.6: Square Distances Between Asymptotic Covariance Matrices, df = 135
Group Sizes

10 30 50
J = 500
ICC = .50 572.75 335.9 343.99
ICC = .26 3099.04 617.33 468.70
ICC = .10 30286.52 2679.83 1233.39
ICC = .05 234646.43 13045.81 4553.31
J = 500
ICC = .50 1158.64 759.65 756.52
ICC = .26 4092.00 1101.68 922.85
ICC = .1033777.94 3520.95 1849.29
ICC = .05 248861.52 15157.23 5553.22
J = 500
ICC = .50 2036.26 1361.54 1508.60
ICC = .26 5746.05 1829.12 1772.68
ICC = .1040686.82 4864.94 3033.12
ICC = .05 282624.76 18259.65 7540.48

4.3 Research Question 3

How do TRML, TRADF and TCRADF perform under a broader range of con-

ditions, particularly those that are frequently encountered in survey-

based research on classroom climate?

4.3.1 Performance of TRADF

Consistent with theoretical expectation, there is evidence that TRADF converges

to the correct distribution as the number of groups increases regardless of ICC or

within-group sample size. This pattern of convergence is most apparent in Table

4.7 as the number of groups increases from 100 to 500. With 100 groups, TRADF

over rejects the correct model for nearly all ICC and within group sample size

conditions. Contrary to this pattern, TRADF has a mean that is too low at ICC =

.05 and n = 10, which may reflect some of the instability of the estimates at low

ICCs and small sample sizes. With 500 groups, TRADF is much better behaved.

However, when the model is sufficiently large, the number of groups would have

to be enormous in order for TRADF to provide correct inferences. In Table 4.9,
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when the model is large and the number of groups is small, TRADF rejects the

correct model 100% of the time. Even with 500 groups the empirical Type I error

rates approach 90%. This is consistent with results from both conventional and

multilevel factor analysis, where it has been shown that TRADF and other similar

statistics converge slowly to the appropriate distribution (e.g. Curran, West &

Finch, 1996; Hu, Bentler & Kano, 1992; Kaplan & Muthén, 1985; Kaplan &

Muthén, 1992, Powell & Schaefer, 2001; Yuan & Bentler,1998, 2003, 2007).

4.3.2 Performance of TCRADF

TCRADF shows well-behaved means, standard deviations and empirical Type I

error rates across a wide variety of simulation conditions. Table 4.7 which displays

results for the small models (df = 9) shows that TCRADF performs well when the

number of groups is sufficiently large, relative to the size of the model. This

pattern continues in Table 4.8, with the medium sized models (df = 54), provided

that the number of groups is sufficiently large (J = 200 or J = 500). However,

when the number of groups is small relative to the size of the model (for example,

in the condition with J = 100 and df = 54), the multilevel version of TCRADF

performs similarly to the conventional version (Yuan & Bentler, 1998; Bentler &

Yuan, 1999). That is, the statistic accepts more correct models than would be

expected by chance.

4.3.3 Performance of TRML

Consistent with theory, in all ICC and group size conditions, the scaling constant

for TRML, k, is larger than 1. The amount of rescaling changes as a function

of within group sample size and item ICC. At ICC = .50, there is virtually no

rescaling at all. At ICC = .05, the TML value is scaled by almost 90%. There is

also some evidence that the mean of TRML converges appropriately as the number
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of groups increases. For small models, relatively large sample sizes and high ICCs,

TRML behaves well. These conditions are most similar to the conditions that lead

Yuan and Bentler (2007) to recommend TRML for model testing. However, when

the full range of simulation conditions are considered, it becomes clear that TRML,

cannot adequately control Type I errors when group sizes are small or when ICCs

are low. In the condition where [σ̇c(θ̂)
T Γ̂σ̇c(θ̂)]

−1 is not invertible and neither

TRADF nor TCRADF are estimable, TRML is unable to control Type I errors under

any of the simulation conditions. The current study suggests that, contrary to

the recommendation of Yuan and Bentler (2007), and even though TRML always

performs better than TML, TRML should not be used to make inferences about

model fit in conjunction with the segregating method.
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Table 4.7: TRML, TRADF and TCRADF Performance, df = 9
Group Sizes

10 30 50
Mean (sd) Rej Mean (sd) Rej Mean (sd) Rej

J = 500
TRML ICC = .50 9.59 (4.69) 0.078 9.19 (4.23) 0.062 9.16 (4.06) 0.046

ICC = .26 9.56 (4.97) 0.082 9.26 (4.23) 0.054 9.21 (4.12) 0.048
ICC = .10 9.59 (4.69) 0.078 9.19 (4.23) 0.062 9.16 (4.06) 0.046
ICC = .05 10.31 (7.33) 0.128 9.60 (5.02) 0.098 9.43 (4.80) 0.084

TRADF ICC = .50 9.79 (4.79) 0.072 9.41 (4.41) 0.060 9.42 (4.28) 0.056
ICC = .26 9.69 (4.84) 0.070 9.49 (4.45) 0.070 9.44 (4.33) 0.058
ICC = .10 9.79 (4.79) 0.072 9.41 (4.41) 0.06 9.42 (4.28) 0.056
ICC = .05 9.02 (4.27) 0.046 9.60 (4.63) 0.086 9.53 (4.70) 0.094

TCRADF ICC = .50 9.56 (4.57) 0.064 9.20 (4.21) 0.050 9.21 (4.10) 0.040
ICC = .26 9.46 (4.61) 0.062 9.28 (4.24) 0.060 9.23 (4.14) 0.052
ICC = .10 9.56 (4.57) 0.064 9.20 (4.21) 0.050 9.21 (4.1) 0.040
ICC = .05 8.82 (4.10) 0.034 9.38 (4.41) 0.074 9.31 (4.48) 0.078

J = 200
TRML ICC = .50 9.42 (4.61) 0.074 9.25 (4.3) 0.064 9.30 (4.32) 0.062

ICC = .26 9.43 (4.84) 0.058 9.28 (4.38) 0.052 9.35 (4.35) 0.056
ICC = .10 9.42 (4.61) 0.074 9.25 (4.30) 0.064 9.30 (4.32) 0.062
ICC = .05 9.91 (6.40) 0.130 10.02 (6.26) 0.102 9.88 (5.75) 0.088

TRADF ICC = .50 9.96 (5.04) 0.096 9.81 (4.73) 0.088 9.87 (4.78) 0.078
ICC = .26 9.76 (4.88) 0.076 9.77 (4.66) 0.072 9.90 (4.83) 0.086
ICC = .10 9.96 (5.04) 0.096 9.81 (4.73) 0.088 9.87 (4.78) 0.078
ICC = .05 8.21 (3.69) 0.026 9.70 (4.56) 0.072 9.97 (4.86) 0.076

TCRADF ICC = .50 9.38 (4.45) 0.064 9.26 (4.22) 0.05 9.30 (4.25) 0.054
ICC = .26 9.20 (4.32) 0.052 9.22 (4.16) 0.044 9.33 (4.29) 0.054
ICC = .10 9.38 (4.45) 0.064 9.26 (4.22) 0.05 9.30 (4.25) 0.054
ICC = .05 8.83 (3.97) 0.038 9.18 (4.12) 0.05 9.36 (4.28) 0.052

J = 100
TRML ICC = .50 9.59 (4.76) 0.072 9.42 (4.39) 0.050 9.72 (4.85) 0.086

ICC = .26 9.91 (5.49) 0.098 9.49 (4.49) 0.064 9.75 (4.90) 0.074
ICC = .10 9.59 (4.76) 0.072 9.42 (4.39) 0.050 9.72 (4.85) 0.086
ICC = .05 8.99 (5.75) 0.096 11.33 (9.48) 0.124 10.63 (7.25) 0.128

TRADF ICC = .50 10.86 (5.60) 0.122 10.56 (5.29) 0.118 10.89 (5.75) 0.152
ICC = .26 10.70 (5.51) 0.134 10.55 (5.25) 0.122 10.89 (5.85) 0.150
ICC = .10 10.86 (5.60) 0.122 10.56 (5.29) 0.118 10.89 (5.75) 0.152
ICC = .05 7.45 (3.51) 0.020 10.26 (4.81) 0.086 10.88 (5.81) 0.150

TCRADF ICC = .50 9.55 (4.32) 0.064 9.33 (4.16) 0.054 9.57 (4.45) 0.070
ICC = .26 9.43 (4.28) 0.048 9.33 (4.13) 0.048 9.56 (4.50) 0.076
ICC = .10 9.55 (4.32) 0.064 9.33 (4.16) 0.054 9.57 (4.45) 0.070
ICC = .05 6.82 (2.94) 0.006 9.12 (3.84) 0.034 9.55 (4.46) 0.078

Note: Empirical Type I error rates in the interval [.028,.079] shown in bold.
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Table 4.8: TRML, TRADF and TCRADF Performance, df = 54
Group Sizes

10 30 50
Mean (sd) Rej Mean (sd) Rej Mean (sd) Rej

J = 500
TRML ICC = .50 56.31 (11.02) 0.084 53.96 (10.59) 0.052 55.38 (10.84) 0.074

ICC = .26 57.11 (12.64) 0.122 54.09 (10.82) 0.062 55.52 (11.16) 0.068
ICC = .10 56.31 (11.02) 0.084 53.96 (10.59) 0.052 55.38 (10.84) 0.074
ICC = .05 68.80 (21.62) 0.380 58.39 (17.60) 0.164 56.86 (14.24) 0.124

TRADF ICC = .50 64.28 (13.3) 0.282 61.62 (12.72) 0.192 63.48 (12.97) 0.242
ICC = .26 64.68 (13.34) 0.278 61.74 (12.88) 0.200 63.47 (13.31) 0.248
ICC = .10 64.28 (13.30) 0.282 61.62 (12.72) 0.192 63.48 (12.97) 0.242
ICC = .05 60.24 (11.88) 0.168 61.66 (12.95) 0.192 63.22 (13.91) 0.260

TCRADF ICC = .50 56.68 (10.37) 0.072 54.61 (9.98) 0.06 56.07 (10.12) 0.062
ICC = .26 57.00 (10.38) 0.074 54.69 (10.10) 0.052 56.05 (10.38) 0.054
ICC = .10 56.68 (10.37) 0.072 54.61 (9.98) 0.060 56.07 (10.12) 0.062
ICC = .05 53.54 (9.42) 0.032 54.63 (10.16) 0.054 55.83 (10.83) 0.064

J = 200
TRML ICC = .50 56.47 (11.50) 0.082 56.11 (11.11) 0.088 55.79 (10.88) 0.084

ICC = .26 59.55 (16.50) 0.172 56.48 (11.55) 0.102 56.19 (11.05) 0.092
ICC = .10 56.47 (11.50) 0.082 56.11 (11.11) 0.088 55.79 (10.88) 0.084
ICC = .05 76.74 (21.21) 0.540 70.37 (28.15) 0.354 62.96 (20.48) 0.224

TRADF ICC = .50 81.20 (19.29) 0.648 81.26 (19.61) 0.662 81.2 (18.75) 0.668
ICC = .26 81.76 (20.1) 0.660 81.02 (19.26) 0.656 81.55 (18.98) 0.660
ICC = .10 81.20 (19.29) 0.648 81.26 (19.61) 0.662 81.20 (18.75) 0.668
ICC = .05 65.97 (13.13) 0.312 80.43 (19.01) 0.658 81.86 (19.36) 0.668

TCRADF ICC = .50 56.93 (9.56) 0.054 56.94 (9.77) 0.054 56.97 (9.18) 0.052
ICC = .26 57.16 (9.85) 0.068 56.84 (9.61) 0.058 57.14 (9.28) 0.056
ICC = .10 56.93 (9.56) 0.054 56.94 (9.77) 0.054 56.97 (9.18) 0.052
ICC = .05 49.12 (7.32) 0.004 56.56 (9.44) 0.048 57.27 (9.47) 0.064

J = 100
TRML ICC = .50 60.24 (12.45) 0.170 59.41 (11.58) 0.152 58.42 (11.22) 0.108

ICC = .26 70.61 (27.19) 0.370 60.77 (12.93) 0.194 59.17 (11.77) 0.136
ICC = .10 60.24 (12.45) 0.170 59.41 (11.58) 0.152 58.42 (11.22) 0.108
ICC = .05 73.09 (20.97) 0.464 89.20 (29.85) 0.658 77.78 (31.76) 0.450

TRADF ICC = .50 143.50 (45.63) 0.988 144.83 (40.46) 0.990 142.43 (42.71) 0.986
ICC = .26 144.59 (46.84) 0.986 144.95 (40.85) 0.986 142.84 (42.32) 0.984
ICC = .10 143.50 (45.63) 0.988 144.83 (40.46) 0.990 142.43 (42.71) 0.986
ICC = .05 86.07 (23.38) 0.682 137.14 (40.21) 0.980 143.45 (41.21) 0.982

TCRADF ICC = .50 56.91 (7.23) 0.008 57.41 (6.45) 0.006 56.84 (7.05) 0.006
ICC = .26 57.04 (7.33) 0.012 57.40 (6.55) 0.008 56.94 (6.96) 0.006
ICC = .10 56.91 (7.23) 0.008 57.41 (6.45) 0.006 56.84 (7.05) 0.006
ICC = .05 45.03 (6.33) 0.00 56.04 (6.75) 0.004 57.12 (6.66) 0.006

Note: Empirical Type I error rates in the interval [.028,.079] shown in bold.
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Table 4.9: TRML, TRADF and TCRADF performance, df = 135
Group Sizes

10 30 50
Mean (sd) Rej Mean (sd) Rej Mean (sd) Rej

J = 500
TRML ICC = .50 137.54 (17.49) 0.090 138.66 (16.87) 0.080 137.05 (16.46) 0.062

ICC = .26 141.22 (25.47) 0.154 139.46 (17.94) 0.100 137.56 (16.78) 0.064
ICC = .10 167.56 (48.68) 0.400 143.89 (22.88) 0.174 140.01 (18.57) 0.110
ICC = .05 179.15 (35.42) 0.670 160.21 (45.33) 0.350 146.69 (26.88) 0.220

TRADF ICC = .50 195.17 (29.99) 0.866 198.46 (28.92) 0.904 197.07 (29.26) 0.886
ICC = .26 194.25 (29.28) 0.860 198.83 (29.28) 0.898 197.13 (28.95) 0.886
ICC = .10 190.42 (27.82) 0.864 198.70 (29.68) 0.892 197.55 (28.90) 0.890
ICC = .05 180.78 (25.25) 0.758 197.38 (29.59) 0.898 197.89 (29.44) 0.892

TCRADF ICC = .50 139.55 (15.39) 0.056 141.30 (14.68) 0.078 140.57 (15.00) 0.064
ICC = .26 139.10 (15.14) 0.064 141.48 (14.87) 0.078 140.61 (14.87) 0.060
ICC = .10 137.17 (14.36) 0.038 141.39 (15.03) 0.086 140.83 (14.80) 0.060
ICC = .05 132.13 (13.57) 0.008 140.72 (14.97) 0.078 140.99 (14.99) 0.070

J = 200
TRML ICC = .50 143.36 (18.4) 0.158 142.22 (17.3) 0.124 140.87 (16.61) 0.1

ICC = .26 159.57 (41.28) 0.344 144.19 (18.54) 0.14 141.91 (17.3) 0.112
ICC = .10 207.24 (40.85) 0.852 159.36 (34.52) 0.368 148.33 (22.15) 0.216
ICC = .05 220.39 (38.75) 0.946 180.52 (56.55) 0.59 172.92 (51.39) 0.46

TRADF ICC = .50 483.47 (113.75) 1.00 491.95 (111.34) 1.00 485.81 (98.10) 1.00
ICC = .26 487.13 (110.77) 1.00 491.28 (108.80) 1.00 487.08 (101.72) 1.00
ICC = .10 463.15 (97.98) 1.00 484.40 (103.82) 1.00 490.88 (117.35) 1.00
ICC = .05 353.32 (69.62) 1.00 436.21 (127.34) 0.998 491.01 (119.39) 1.00

TCRADF ICC = .50 138.98 (9.26) 0.004 139.80 (8.87) 0.002 139.51 (8.27) 0.00
ICC = .26 139.35 (9.05) 0.00 139.79 (8.74) 0.002 139.53 (8.59) 0.00
ICC = .10 137.43 (8.79) 0.00 139.23 (8.87) 0 139.5 (9.59) 0.002
ICC = .05 125.79 (8.89) 0.00 133.48 (14.03) 0.00 139.51 (9.53) 0.004

J = 100
TRML ICC = .50 157.21 (23.39) 0.372 150.08 (18.19) 0.232 149.30 (18.01) 0.208

ICC = .26 200.01 (57.33) 0.656 155.98 (23.37) 0.330 151.80 (19.63) 0.258
ICC = .10 267.82 (46.44) 0.998 205.56 (53.38) 0.762 173.39 (41.35) 0.506
ICC = .05 209.04 (39.39) 0.886 250.46 (49.47) 0.976 218.84 (53.80) 0.844

Note: empirical Type I error rates in the interval [.028,.079] shown in bold.

31



CHAPTER 5

Summary and Conclusion

As surveys of the classroom environment have gained traction as components of

teacher evaluation portfolios, there has been an increased amount of attention paid

to using multilevel factor analyses to explore hypotheses about the measurement

structure of between-classroom phenomena. The segregating method has many

theoretical benefits. It allows for the separate testing and identification of mea-

surement models at the between level and within level. This is a key advantage

over approaches that simultaneously fit models to ΣB and ΣW , since many studies

have found that the simultaneous testing of between and within models can make

diagnosing sources of model misfit difficult (e.g. Hox, 2010; Ryu & West, 2009;

Yuan & Bentler, 2007).

The current study, however, clarifies an important characteristic of the segregating

method for applied research. Namely, at ICC and sample size configurations likely

to be encountered when data about the classroom environment is collected by sur-

veying students, the commonly used Maximum Likelihood test statistic obtained

from the segregating method is likely not asymptotically distributed as central

chi-square variates under the null hypothesis. This suggests that the reliance on

the ML test statistic can result in unwarranted model modifications or revisions.

The current study used an illustrative example and a simulation study to investi-

gate the performance of test statistics under conditions likely to be encountered in

using the segregating method in applied research on classroom climate. The results

reflect some general patterns that are worth noting here. As with any simulation
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study, caution should be used in generalizing these results to other conditions

not included in the study. More work would be needed to investigate how other

conditions, such as differences in factor loadings, alternative (non-normal) distri-

butions, and imbalanced group-sizes, would influence test statistic performance.

Inferences about model fit based on TML can lead to invalid conclu-

sions about the between-classroom factor structure

At ICC and sample size configurations likely to be encountered when data about

classroom climate are collected by surveying students, TML is not asymptotically

distributed as central chi-square variate under the null hypothesis. The Tripod

Survey example demonstrated that inferences based on TML can lead to invalid

conclusions about the between-classroom factor structure when ICCs are low and

within-classroom sample sizes are small. The simulation study shows the extent to

which TML can be inflated. In some conditions, the mean of the test statistic was

nearly 20 times too large, and every model was rejected. Thus, TML is very poorly

behaved in general and should not be used to make inferences about between-level

measurement models. While beyond the scope of the current study, these results

suggest that, beyond issues with assessing model fit, Maximum Likelihood esti-

mation would result in biased standard errors. This is because, typically speak-

ing, estimated standard errors are computed using σ̇(θ̂)TWMLσ̇(θ̂) (e.g. Bentler,

2006). Based on results presented elsewhere (Hox, 2010; Yuan & Bentler, 2007), it

is anticipated that the parameter estimates themselves will be unbiased. Further

research is needed to address these issues.

TCRADF can provide valid inferences, provided the number of groups

is sufficiently large

While both the rescaled and residual based test statistics show evidence supporting

the hypothesis that they would converge to the appropriate distribution regardless
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of item ICC and within-group sample size, only TCRADF showed adqueate perfor-

mance over a wide range of conditions. TRADF showed a tendency to over-reject

correct models for all but the largest samples, consistent with findings in conven-

tional factor analysis. TRML , too, over-rejected correct models, particularly for

small between-level sample sizes. Only TCRADF is recommended for use in con-

junction with the segregating methodology. However, caution should be used with

small samples, where TCRADF shows a tendency to under-reject correct models.
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