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Introduction 

I examine the biogeography of the river-dwelling 

freshwater pearl mussel (Margaritifera margaritif-

era L.), a species that passes a parasitic larval 

stage attached to a host fish. Two fish species are 

suitable hosts for the larvae in my study region, 

brown trout (Salmo trutta L.; migratory and resi-

dent ecotypes) and Atlantic salmon (Salmo salar 

L.; migratory ecotype). My study region encom-

passes 20 river drainages of Galicia in northwest 

Spain, approximately 30,000 km2. Previous publi-

cations from Lois (2015) include a description of 

sampling and data collection (Lois et al. 2014) and 

a spatial analysis of mussel abundance (Lois et al. 

2015) aimed at identifying the relative importance 

of biotic interactions on the distribution and abun-

dance of the parasitic pearl mussel. Here, I focus 

on the latter paper, which applied a relatively new 

spatially explicit model for river ecosystems (Ver 

Hoef et al. 2006, Ver Hoef and Peterson 2010). My 

objective here is to show that this method ad-

vances river biogeography and that future devel-

opments could further expand this new frontier. 

 Rivers have specific spatial characteristics 

that influence their biogeographical patterns. 

They are embedded in drainage basins and disper-

sal of aquatic organisms is generally constrained 

by the structure and directional connectivity of 

the dendritic network. The majority of prior stud-

ies on rivers have used techniques developed for 

terrestrial environments (Isaak et al. 2014). Some 

have concluded that biodiversity patterns across 

drainage basins are similar to those in other isolat-

ed terrestrial environments such as islands or 

mountains (Hugueny 1989). However, rivers are 

dendritic networks that have a directional flow 

(Peterson et al. 2013) that defines pathways that 

connect environments and organisms. Thus, an on

-network analysis (Peterson et al. 2013) might be 

applied to yield information about the spatial de-

pendence of biodiversity within river networks. 

 Two features create spatial dependence 

within river networks. First, the flow of water in 

rivers transports material downstream, including 

organisms originating from the river or from the 

surrounding landscape (Ward et al. 2002, Wiens 

2002). This process has been labelled the "tail-up" 

source of autocovariance in river networks 

(Cressie et al. 2006, Ver Hoef et al. 2006). Second, 

upstream movement of organisms against the 

river flow, as with fish for example (Cressie and 

O'Donnell 2010), has been labelled "tail-down" 
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autocovariance (Ver Hoef et al. 2006, Ver Hoef 

and Peterson 2010). Thus, any biogeographical 

study in rivers is likely to benefit by accounting for 

the contribution of these two ecosystem process-

es to species distribution and abundance. 

 

Sampling and Data 

Galicia, Spain contains many drainage basins with 

outlets to the ocean that provide opportunities to 

examine the distribution and abundance of fresh-

water organisms within and among basins. I used 

a two-phase doubly stratified sampling design to 

provide baseline information on the presence and 

abundance of M. margaritifera at 2436 geograph-

ic locations (Lois et al. 2014). A total of 435 rec-

ords of mussel presence and abundance in 20 riv-

er networks were used in my thesis (Lois 2015). To 

summarize the environmental conditions within 

the region, I acquired 16 gridded predictor varia-

bles (spatial resolution of 40 x 40 m) belonging to 

three categories: (a) climate (average annual pre-

cipitation, average summer precipitation, average 

annual temperature, average summer tempera-

ture, maximum summer temperature, minimum 

summer temperature), (b) geology (granitic rocks, 

detrital deposits, metamorphic rocks), and (c) 

landform characteristics (slope, forest cover, ele-

vation). I used a fourth category of predictor varia-

bles, abundance and biomass of the two host fish 

species (Atlantic salmon, migratory trout, resident 

trout, total salmonid biomass), compiled from the 

Fish Database of European Streams (Beier et al. 

2007) to account for possible effects of host fish 

on abundance of the parasitic mussel. Further in-

formation about data sources and environmental 

predictors can be found in Lois (2015) and Lois et 

al. (2015). 

 

Parasite-Host Model in River Networks 

The freshwater pearl mussel with its host salmon-

ids is an example of a parasite-host model that 

occurs globally. Freshwater mussels (order Un-

ionoida) inhabit all continents except Antarctica 

(Bogan 2008) and they commonly have a life cycle 

where the larvae rely on host fish for their surviv-

al, growth, metamorphosis, and dispersal (Strayer 

2008). Dispersal of parasitized host fish will often 

disperse juvenile mussels into new regions along 

the river. In an upstream direction, mussels can be 

dispersed into flow-unconnected tributaries so 

that a parasitic mussel species can come to occu-

py many branches in the dendritic network. After 

a juvenile mussel drops from the host fish, its fu-

ture location is biased toward occupying a down-

stream location with displacement from the riv-

erbed by high flows. In contrast, the long-lived 

adult mussel is a benthic filter feeder living partly 

buried in the riverbed. The adult mussel has very 

limited ability to move upstream in the river net-

work and its muscular foot reduces likelihood of 

downstream displacement. With this parasite-

host system, I investigate the effects of abiotic and 

biotic (host fish) factors on mussel abundance 

within the context of a spatially explicit model for 

river networks. 

 

Modelling Parasite Abundance 

For an appreciation of its utility in river biogeogra-

phy, it is necessary to give a brief description of 

the geostatistical mixed model for river networks 

(Ver Hoef et al. 2006, Peterson and Ver Hoef 

2010, Peterson et al. 2013). This spatial stream 

network model differs notably from many terres-

trial applications of spatial mixed models that rely 

on Euclidean distances between geographical lo-

cations. In a river network, more appropriate met-

rics for quantifying spatial dependence include in-

stream distance and whether or not pairs of sites 

share flow (flow-connected or flow-unconnected). 

 The spatial stream network model includes 

fixed effect predictors along with multiple random 

effects (autocovariates), whereas terrestrial appli-

cations of spatial mixed models typically only in-

clude one random effect, pairwise Euclidean dis-

tance. The stream network analysis is framed in a 

variance components perspective, so that one can 

see the relative amount of variance explained by 

fixed effects (abiotic and biotic predictors) and 

each random effect. As stated earlier, there are 

two spatially explicit autocovariates for river net-

works, tail-up and tail-down processes. Euclidean 

distance can also be included in a stream network 

model. However, prior studies of river networks 

have found that Euclidean distance explains very 
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little of the total variance (e.g., Isaak et al. 2014, 

Lois et al. 2015). An estimate of the spatial extent 

(geostatistical range) at which autocorrelation 

occurs for tail-up and tail-down processes is ob-

tained with the stream network model. 

 The geostatistical mixed model for stream 

networks differs from a correlogram or semivario-

gram approach for accounting for spatial autocor-

relation because the mixed model uses all the da-

ta for restricted maximum-likelihood estimation of 

model parameters [fixed effects (covariates) and 

random effects (partial sill and range for each au-

tocovariate)]. In contrast, inferences from the cor-

relogram (and also variogram) approach rely on 

the shape of the autocorrelation curve (Legendre 

1993), which can be affected by how one chooses 

to bin distance values  (Diniz-Filho et al. 2003). 

 The tail-up and tail-down components in 

the stream network model can be understood 

intuitively this way. The tail-up component consid-

ers the river from its outlet to its headwaters, a 

downstream-to-upstream view that only considers 

flow-connected sites in the network. In contrast, 

the tail-down component considers the river from 

the headwaters to the outlet, a perspective that 

utilizes flow-connected and flow-unconnected 

sites. In my analyses, I was particularly interested 

in the geostatistical range for the tail-down com-

ponent, because mussel dispersal to flow-

unconnected locations only occurs in association 

with parasitism. 
 

Results and Discussion 

For the geostatistical mixed model, a spatial 

stream network (SSN) dataset containing 20 river 

networks was created using the STARS geopro-

cessing toolset (Peterson and Ver Hoef 2014).  I 

included tail-up and tail-down random effects in 

the mixed model (Peterson et al. 2013). Analysis 

was made using the SSN package (Ver Hoef et al. 

2014) in R (R Development Core Team 2016). The 

model explained 52% of the variance in mussel 

abundance; two biotic predictors (salmonid bio-

mass and resident trout density) were the only 

significant fixed effects, explaining 2% of the vari-

ance. In contrast, the tail-up and the tail-down 

components of spatial covariance explained 38% 

and 12%, respectively. Thus, approximately three 

times more variation in mussel abundance was 

explained by the downstream-to-upstream per-

spective in contrast to the upstream-to-

downstream perspective, which suggests passive 

downstream processes are more important in de-

termining mussel abundance in river networks. 

 Relative to the results for the full dataset, 

upstream processes (fish movements) were sug-

gested to be more important in determining mus-

sel abundance where migratory host fish were 

present. I obtained this result by analyzing two 

subsets of data representing locations with (n = 

161) and without (n = 274) migratory host fish, 

which approximates the fragmentation of host 

fish populations by dams in the different basins of 

the study region. The amount of variance ex-

plained for these two subsets of data differed 

markedly. Mussel abundance was higher and ca. 

25% more variance in mussel abundance was ex-

plained where migratory host fish were present 

than where they were absent. Where migratory 

host fish were present, 78% of the variance in 

mussel abundance was explained; fixed effects 

accounted for 23%, tail-up for 23% and tail-down 

31%, thereby suggesting a relatively greater im-

portance for parasitized fish movements. Several 

additional lines of evidence support migratory 

host fish as having an essential positive effect on 

mussel abundance in this parasite-host system 

(Schwalb et al. 2011, Lois 2015, Lois et al. 2015). 

The results indicate an important negative impact 

of dams excluding migratory host fish from mussel 

populations. 

 The spatial extent of autocorrelation in 

mussel abundance in river networks was estimat-

ed using geostatistical range (Isaak et al. 2014). 

For the full dataset of mussel abundance, the 

range of spatial autocorrelation was ca. 17 km for 

the tail-up component and ca. 0.7 km for the tail-

down. In contrast, the subset for presence of mi-

gratory host fish had larger range for tail-down 

(16 km) than tail-up (0.1 km). Thus, my results 

suggest that the spatial extent over which biotic 

interactions affect mussel abundance is greater 

than 15 km. This finding identifies the scale at 

which conservation efforts directed to simultane-
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ously managing parasite and host populations 

would be most effective. This endeavor would 

conserve a biotic interaction, critical for the sur-

vival of the parasite population. 

 The geostatistical mixed model for spatial 

stream networks provided predictions of mussel 

abundance at a 1-km spatial resolution using uni-

versal kriging (Krige 1966). The kriging-based esti-

mates of mussel abundance gave a spatially con-

tinuous perspective that accounted for the spatial 

extent of biotic interactions in the 20 river net-

works. As an example for conservation applica-

tion, I combined kriging predictions with data on 

population age structures to identify four catego-

ries of river networks for conservation planning 

(Lois 2015). The ability to predict features of biodi-

versity at an intermediate spatial resolution (e.g., 

1–10 km) can facilitate designing conservation 

regions, targeting areas for restoration, or identi-

fying critical areas of human impact (Lois 2015). 

 The spatial stream network technique has 

now been used to analyze physico-chemical 

stream data, fish counts, macroinvertebrate data 

(e.g., Peterson and Ver Hoef 2010, Isaak et al. 

2014, Frieden et al. 2014) and biotic interactions 

(Lois et al. 2015). Future developments in spatial 

stream network models are likely to include ex-

tensions to population genetic data and develop-

ment of multivariate models to study the biogeog-

raphy of riverine biotic communities. Spatial 

stream network models are poised to exploit the 

current growth of freshwater biodiversity data-

bases, enabling macro-scale analyses of freshwa-

ter biodiversity in river networks. The future holds 

exciting possibilities for understanding biotic inter-

actions and other biogeographical processes in 

riverine environments. Broader application of the 

model-based analyses described above has the 

potential to expand the frontier of river biogeog-

raphy. 
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