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ABSTRACT

Synchrotron radiation was used to record angle-resolved
normal photoemission spectra of Pt(100) in the photon energy
range 6 eV < hv < 32 ev. Féatures,were;observed in the.spectra
fhat arise from both direct transitions and the ohe#dimensional”
density of states. Intensity resonances associated with
final-state structure near I' were observed, in accord with
earlier data reportéd for Pt(111) . The direct-transition
features were used to derive an.émpirical vaience-band
étructure of‘Pt between‘f and X, which is in generally good

agreement with an existing RAPW calculation.



Introduction

The study by angle-resolved photoemission (ARP), in
conjunction with the use of synchrotron radiation, of crystal
faces of the Group II-B and III-B metals has been the subject
of a number of investig"ations.]'_4 It is ndw fairly well-
established that the direct transition model, along with a
- judicious choice of final state, can be used to determine
dispersion relations from such data. However, the particular
choiée of final state is somewhat_fg‘égg in nature. Attention
is now being focused on this problem, eépecially for photoﬁ
energies where photoemission corresponds tova gap in the bulk
conduction bands.3—5 Recent ARP studies of various low
Miller-index faces of Ag,3 Au,4 and Pt4 suggests that a quasi-
frée—electron final state can be used even when such a gap
exists.

The present work represents a contribution to the study
of this phenomenon by investigating the A line of a 5d metal.
More generally, it represents a further attempt to study the
relative contribution of direct transitions and one-dimensional
density of states (ODDOS) features to ARP spectra, and to use
the direct-transition features to derive E(k) relations.

This latter aspect of ARP has been the subject of numerous

studies.6



Experimental

The apparatus employed is generally described elsewhere.l
The base pressure in these experiments was < 3 x 10'_lO Torr,
and the angular acceptance of the CMA was decreased to +2.5°.
The sample was a high-purity (99.99%) Pt crystal (Materials
Research Corporation) cut to yield a (100) fage, which was
diamond-polished to 0.5 um smoothness and etched briefly in
aqua regia. The sample was aligned to better than +1° using
the back-reflection Laue method. Bulk impurities were removed
from the sample by repeated cycles of heating in 10—6 Torr of
Ozvand ar’ bombardment, following a procedure described
earlier.7 Cleaning of the crystal was completed in situ by
cycles of Ar+ bombardment followed by annealing at 900°K.
After the final cycle, Auger analysis showed impurity (C,0,S)
levels of <0.05 monolayers. The same procedure, carried out
on the same crystal but in a different chamber, yielded a
LEED pattern indicative of a reordered 5 X 20 surface, in
agreement with previous studies.8

The photon source used was the 8° branch line at the
Stanford Synchrotron Radiation Laboratory. The geometry of
the experiment is shown in Figure 1. Only normal'emission
spectra were recorded, the angle between the Poynting vector
of the incident radiation and the electron propagation
direction being 63°. The combined energy resolution (mono-

chromator plus analyzer) varied from ca. 0.1 eV at low photon

energies to ca. 0.2 eV at high energies. Spectra were



accumulated in 5-10 minutes, and Auger analysis following
collection of all spectra showed no increase in contaminant

levels.

Results and Discussion

The normal emission ARP spectra of Pt(lOO) were taken in
the range 6 eV < hv < 32 eV. Representative spectra are shown
in Fiéure 1. The spectra contain features arising from direct
transitions and the ODDOS, as well as intensity resonances
associated with final-state structure. In order to analyze
the direct-transition features in terms of the initial-state
dispersion relations, it is first necessary to construct
suitable final state(s). The high energy baﬁd,structure of
Pt was not given by Andersén,9 who reported an RAPW calcula-
tion for this metal. However, by analogy with band-structure
calculations for palladium10 and gold,ll there are three
possible final states along A in the photon energy range
employed here; namely, bands 7, 8, and 9. Only the lowest
of these bands.will give rise to primary emission, the other
two producing emission into a secondary Mahan cone12 (i.e.,
involving surface umklapp processes). The character of band 7
is ¢ = (16,0,0), using X units of m/4a, so that for direct
transitions, emission arises from final states in the second
Brillouin zone. Bands 8 and 9“do not give rise to discernible

features in the spectra and will not be considered further.



Previous work on selected low Miller-index faces of

2,3 Au,4 and Pt4 suggests that a quasi-free-electron final

Ag,
state should be used to derive dispersioh relations, in
place of the bulk final state. This choice is related to the
surface sensitivity of photoemission and is most clearly
indicated when emission would otherwise be into a gap in the
bulk final sﬁate. The effective electron mass (m*) of the
adopted final state was found in studies of silver and gold
by fitting a quasi-free-electron parabola to the calculated
bulk final state near the center of the line under investiga-
tion. However, by necessity we followed the procedure used
for Pt(lll)4 where the effective mass m* was taken to be the
value found for the analogous state in gold. Along A, a fit
to band 7 of gold yields m* = 1.4me where m, is the free
electron mass, the valence-band minimum being adjusted to
(V0 = -1.4 eV), which gave the best overall agreement between
the empirical valence bands and the RAPW‘calculation of
Andersen.9 A comparison between the empirical and theoretical
valence bands along A is shown in Figure 2, and empirical
band energieé are given in Table 1. As can be seen from
Figure 2, for photon energies below 10 eV, the quasi-free-
electron final state lies in the first Brillouin zone.

In addition to the direct-transition peaks that yield
the data points shown in Figure 2, peaks arising from the

density of states (DOS) were also observed. The DOS peak

with most intensity occurs at a binding energy of 0.5 eV.



This peak can be seen in the spectra at 19 eV < hv € 32 ev;
it is masked at lower photon energies by direct-transition
peaks. A weaker DOS feature is observed at a binding energy
of 4.0 eV. The relative intensities of both the 0.5 eV and
the 4.0 eV peaks increase with.photon energy. We interpret
this trend as arising from a decrease in the electron mean
free path, reducing the extenf of ii conservation and leading
to an enhancement of DOS features.6 The intensities of these
DOSrpeaks are unusually large for Group VIII metals, where
direct-transition features have been found to dominate. This
_probably.arises because bdth the ODDOS and three-dimensional
density of states (TDDOS) contribute to its intehsity.
Although ODDOS features arising from band 4 (F7) and bands
5 and 6.(F8) are not explicitly observed ét most photon
energies, they do undergo intensity resonances, along with
bands 2 and 3, in the photon energy range 17 eV < hv < 22 eV.
Resonances were also observed in our ARP study of Pt(lll);4
they were found to arise at photon energies where the bulk
final state crosses bands 2-6 near I'. The resonant maxima
in Pt(100) occur at the same photon energies as those observed
for Pt(11l1) (bands (2,3) at 20.5 eV, band 4 at 19.5 eV, and
bands (5,6) at 17.5 eV), and occur at the same binding energies
(bands (2,3) at 4.1 eV, band 4 at 2.8 eV, and bands (5,6) at
1.4 eV).

Apart from secondary-electron structure, the remaining

features in the spectra can be assigned as direct transitions.



Since the radiation incident on the sample wés p-polarized,
features should be observed from all six initial-state bands.13
However, band 1 was not observed in our spectra, presumably
because of a low cross-section dﬁe to its s-p character,
although the situation is complicated by the presence of
structure in the inelastic tail, similar to that reported
by Willis and coworkersl4 for tungsten.

The agreement between the empirical and theoretical
band structures, shown in Figure 2, is generally good,
although discrepancies are observed. Unfortunately, it is
not possible to use symmetry about I' or X to make a more
reliable choice of the final-state valence-band minimum,
because of the limited photon energy range available. The
major discrepancies are in bands 2, 4, and 5; the lower bind-
ing energy of band 4 is also found at ' from the ODDOS
structure at resonance. Band 5 is seen to lie higher than
calculated, although it should be noted that for hv = 20 eV
the positions of peaks associated with this band are difficult
to determine. Apart from band 2, which was found to be higher
than calculated, the remaining discrepancy is in band 3
between (4,0,0) and (6,0,0), where there is a deviation in
the curvature.

It is apparent from our analysis of direct-transition
features, shown in Figure 2, that dispersion is observed
when emission would correspond to a gap in éhe bulk final

state. Although the exact form of this band is not known,



its position at both I' and X is available. From the final-
state resonances observed both in this work and in the spectra

of Pt(11l), TI'(7) lies 16.5 eV above E the position of X(7)

F;

was calculated by Andersen to be 8.9 eV above EF'

Summarz

This communication has described the experimental
determination of the platinum valence-band structure between
I' and X by analysis of direct-transition features in the ARP
data. Before this could be échieved, features were identified
in the spectra arising from the one-dimensional denéity of
states and final-state resonances. The empirical band
structure was derived usingla quasi-free-electron final state
and, as in earlier studies, direct transitions into fhis
state could be assigned even when a gap was present in the
bulk conduction-band structure. This study therefore adds
further credence to the idea of a surface-modified final

state in the analysis of ARP data.
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Table 1

Empirical Band Energies Along A In Platinum

(eV below EF)

E(JL) Band 1 Band 2 Band 3 Band 4 Band 5

Ia Band 6
0,0,0 - 4.08 4.08 2.8 1.4 1.4
2,0,0 - 4.4 3.8 2.5 1.8 1.35
3,0,0 - 4.6 3.75 2.3 - 1.15
4,0,0 - 4.9 3.4 2.0 1.45 0.9
5,0,0 - 5.2 3.2 - 1.05 0.45
6,0,0 - 5.6 1.6 - - -
7,0,0 - - 0.3 0.5 - -
8,0,0 - - - 0.45 - -

aError limits are estimated as *0.07 eV.
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Figure Captions

Figure 1.

Figure 2.

Selected normal emission spectra of Pt(100) in the
photon energy range 11 < hv < 30 evV. The inset
gives the experimental éeometry.

Empirical dispersion relations (circies) and
theoretical bands (lines) along A for platinum.
The scale_at the top gives the final state shifted

down by the indicated photon energy. The final

"state crosses from the first to the second

Brillouin zone at ca. hv = 11 eV.
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