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Mutations that lead to splicing defects can have severe consequences on gene function and cause 

disease. Here, we explore how human genetic variation affects exon recognition by developing a 

multiplexed functional assay of splicing using Sort-seq (MFASS). We assayed 27,733 variants in 

the Exome Aggregation Consortium (ExAC) within or adjacent to 2,198 human exons in the 

MFASS minigene reporter and found that 3.8% (1,050) of variants, most of which are extremely 

rare, led to large-effect splice-disrupting variants (SDVs). Importantly, we find that 83% of SDVs 

are located outside of canonical splice sites, are distributed evenly across distinct exonic and 

intronic regions, and are difficult to predict a priori. Our results indicate extant, rare genetic 

variants can have large functional effects on splicing at appreciable rates, even outside the context 

of disease, and MFASS enables their empirical assessment at scale.

In Brief

Mutations that lead to splicing defects can have severe consequences on gene function and cause 

disease. Cheung et al. developed MFASS, which enables largescale screening for splicing defects. 

They tested tens of thousands of natural human genetic variants across a broad range of exons and 

revealed a surprising fraction of rare, large-effect variants that disrupt exon recognition.

Graphical Abstract
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INTRODUCTION

Any individual’s genome contains about 4 to 5 million genetic variants that differ from 

reference, and understanding how these variants give rise to trait diversity and disease 

susceptibility is a central goal of human genetics (Auton et al., 2015). A vast majority (96%–

99%) of an individual’s variants are common, though at the population level, the 

overwhelming majority of variants are rare (Montgomery et al., 2011; Nelson et al., 2012; 

Tennessen et al., 2012; UK10K Consortium et al., 2015). Common variants in the human 

population usually contribute small, additive effects toward complex traits, as negative 

selection has removed large-effect deleterious alleles (Altshuler et al., 2008). However, 

population expansion ~10,000 years ago left humans with an abundance of rare variation, 

and most Mendelian disease traits are caused by rare alleles with large effect sizes (Keinan 

and Clark, 2012). Because of their scarcity in an individual’s genome, rare variants that play 

important roles in complex traits are likely to have large functional effects (Bomba et al., 

2017), and traditional population or computational genomic methods cannot reliably 

estimate their contribution (Uricchio et al., 2016).

Recent whole-genome and transcriptome sequencing studies of large cohorts indicate that 

rare variation is playing an important role in shaping global gene expression (Battle et al., 

2017; Hernandez et al., 2017; Li et al., 2017). However, new comprehensive reverse-genetic 

studies indicate that individual mutations in promoter and enhancer regions rarely have large 

effects (Canver et al., 2015; Diao et al., 2016; Gasperini et al., 2017; Rajagopal et al., 2016; 

Sanjana et al., 2016), which could be the result of functional redundancy between 

transcription control elements (Frankel et al., 2010; Hong et al., 2008; Osterwalder et al., 

2018). How can individual rare variants be broadly shaping gene expression but at the same 

time rarely having large effects on transcriptional control? We can expect the mutational 

profiles of large-effect rare variants to mirror those that cause Mendelian traits, which are 

dominated by non-synonymous exonic mutations, structural and copy number variants, or 

mutations that affect splicing (Bamshad et al., 2011; Chong et al., 2015). Although copy 

number changes and non-synonymous mutations are easy to detect, splicing changes are 

more difficult to diagnose, as only mutations at canonical splice sites are easy to predict and 

interpret (Jian et al., 2014).

Recent evidence indicates that splicing is a major mechanism by which genetic variation 

influences traits. For common variants, large-cohort RNA sequencing (RNA-seq) studies 

that examine splicing are finding many splicing quantitative trait loci (sQTL), especially 

when considering exon-level expression differences (Battle et al., 2017; Ongen and 

Dermitzakis, 2015; Zhang et al., 2015). Moreover, a majority of eQTLs (expression 

quantitative trait loci) tend to act on an individual exon level rather than the gene level, 

indicating that cis-eQTLs might be broadly affecting exon recognition (Ramasamy et al., 

2014). In addition, functional genomic measurements of GEUVADIS individuals indicate 

that common genetic variation influencing splicing is a primary mechanism that confers 

susceptibility to common diseases (Li et al., 2016). For rare variation, analysis of 

bottlenecked populations finds that many rare variants that segregate with large-effect 

expression changes are enriched at splice sites (Pala et al., 2017). In addition, prospective 

transcriptional profiling studies for Mendelian diseases are increasingly finding many rare 
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variants that affect splicing are difficult to predict a priori (Cummings et al., 2017; Kremer et 

al., 2017). More broadly, computational splicing predictors trained on RNA-seq data and 

sequence features seem to indicate that many rare and disease variants are predicted to 

influence splicing levels (Xiong et al., 2015). Finally, mutations that cause an exon to be 

skipped can have severe functional consequences on gene function, and many known 

disease-causing mutations reduce or eliminate exon recognition (Soemedi et al., 2017; 

Baralle and Buratti, 2017).

We developed multiplexed functional assay of splicing using Sort-seq (MFASS) as a 

multiplexed, scalable platform to test the extent to which mutations, both within exons and 

introns, can lead to large-effect defects in exon recognition. MFASS uses a set of three-exon, 

two-intron minigene reporters, in which skipping of the middle exon leads to reconstitution 

of fluorescence (Figures 1A and S1A–S1D). We cloned libraries of microarray-derived 

oligonucleotides that encoded human exons and surrounding intronic sequences into these 

reporters en masse to construct reporter libraries. These libraries are then integrated into 

HEK293T human cell lines using high-efficiency, serine-integrase-based, site-specific 

integration (Figure 1A), ensuring one copy of library sequence per cell (Duportet et al., 

2014). The pooled sequence library is then separated into bins using fluorescence-activated 

cell sorting (FACS), and we use DNA-seq of the constructs to quantify the variants. We used 

MFASS to functionally classify 27,733 exonic and intronic natural genetic variants from 

Exome Aggregation Consortium (ExAC) for exon recognition across 1,626 genes in 2,198 

exon backgrounds, most of which are extremely rare variation in the human population. 

Here, we show that more than a thousand (3.8%) of these rare genetic variants leads to near 

complete loss of exon recognition, on par with the prevalence of protein-truncating variants 

within genomes. Most of the effects of rare variants on splicing are challenging to predict.

RESULTS

Optimization of MFASS

We tested human exons in several reporter designs. Our initial designs relied on the 

reconstitution of fluorescence using a pair of constant short dihydrofolate reductase (DHFR) 

introns (~100 bp) flanking the exon library (Figure S1D). However, we found that much of 

the library had little to no fluorescence above background (Figures S1E and S1F). These 

results were suggestive of intron retention, which is a process that dominates in lower 

eukaryotic organisms. In humans, due to long intron lengths, exons are first recognized by 

the splicing machinery in a process called exon definition (De Conti et al., 2013), and thus 

mutations that affect exon recognition often result in exon skipping rather than intron 

retention (Baralle and Buratti, 2017). Due to these concerns, we optimized our reporter 

designs with longer constant intron backbones and observed ~20- to 100-fold higher level of 

fluorescence overall.

In order for MFASS to work in a multiplexed, scalable format, the assay relies on a single 

copy of the reporter construct per cell before FACS, thereby ensuring that our splicing 

fluorescence readout corresponds to a single sequence. Each library sequence is integrated 

once per cell using high-efficiency site-specific genome integration (Figures 1A and S1G–

S1I) and expressed at the AAVS1 locus to minimize any pleiotropic effects. However, we 
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noticed upon transient transfection of the splicing reporter libraries that each cell contains 

hundreds of reporter copies on average (Figure S1J, top left). We characterized the copy 

number of the reporter library in human cells across culture passages by flow cytometry and 

RT-PCR and found 100,000-fold cell dilution to be sufficient without contaminating 

plasmids in single cells (Figures S1K and S1M).

Although episomal splicing reporter assays are commonly used, it has been reported that 

splicing outcomes can be more reproducible when sequences are genomically integrated 

(Smith and Lynch, 2014). We constructed reporters corresponding to individual library 

sequences and evaluated both fluorescence and RNA splicing under episomal and genomic 

expression (Figures S1N–S1Q). We selected nine sequence variants for further analysis by 

flow cytometry (Figures S1N and S1O; STAR Methods) and RT-PCR (Figures S1P and 

S1Q). Individual controls sorted from the library showed consistent behavior between 

inclusion rates estimated by RT-PCR and fluorescence output, and reporter fluorescence in 

stably integrated constructs is more consistent with RT-PCR results (Figures S1N–S1Q).

Evaluating MFASS based on Known Splicing Regulatory Elements

To test and validate MFASS, we first designed, built, and assayed a test library of 6,713 

mutations aimed at perturbing regulatory elements across a randomly chosen library of 205 

natural in-frame human exons and surrounding intronic sequences (Splicing Regulatory 

Element library). We first developed this test library in order to evaluate the MFASS assay 

and test the effects of designed mutations in a large set of natural sequence contexts. To 

mutate sequences iteratively while accounting for the creation of unintentional motifs, we 

developed a custom software toolkit for the design of in silico splicing mutations (STAR 

Methods). In particular, this toolkit incorporates information about splicing regulatory 

elements from the literature to calculate a composite score for each sequence across different 

functional classes. We chose natural human exons that are less than 100 bp and begin and 

end on frame 0 and designed a 170-bp exon library with its surrounding intronic contexts, 

which includes at least 40 bp of upstream intron and at least 30 bp of downstream intron. 

Overall, we randomly chose a subset of ~200 human exons and iteratively designed 60–80 

perturbations per sequence that weaken, strengthen, or destroy splicing motifs focused on 

three major motif types (Tables S1 and S2).

We used MFASS to assay the SRE library with biological replicates across two different 

intronic backbones (Figure 1A). We expanded these sorted bins over several passages and 

observed that the sorted populations remained stable (Figure 1B). We also performed bulk 

RT-PCR for each bin and found that the observed RNA splicing efficiencies corresponded 

with observed fluorescence of the bins (Figure 1C). To obtain an exon inclusion index for 

each sequence, we first considered reads that perfectly matched the SRE library and 

normalized based on read depth and weighted by the corresponding bin population 

percentage from FACS. Finally, we computed a weighted average of normalized read counts 

across all bins using the average exon inclusion level in each bin as measured by the 

GFP:RFP ratio and confirmed by bulk RT-PCR (STAR Methods). Overall, the inclusion 

indices for our library are bimodal, with most library sequences represented predominantly 

in one bin, showing either complete exon inclusion or skipping (Figure 1D).
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We measured the replicability of inclusion indices across biological replicates using the 

tetrachoric correlation (rt) due to the bimodality in our results (Pearson correlation provided 

as a comparison). We tested these libraries across two constant intron backbones (SMN1 and 

DHFR) and found that exon inclusion metrics are highly reproducible within the backbone 

across biological replicates (Figures 1E and 1F; rt = 1.00, p < 10−16, tetrachoric; r = 0.94, p 

< 10−16, Pearson, DHFR intron backbone; rt = 0.97, p < 10−16, tetrachoric, r = 0.89, p < 

10−16, Pearson, SMN1 intron backbone) and between backbones (Figure 1G; rt = 0.96, p < 

10−16, tetrachoric; r = 0.85, p < 10−16, Pearson). We consider 6,713 designed mutations 

present across both backbones in subsequent analysis and highlight data for the SMN1 

intron backbone (Figure 2).

Overall, we showed that, although the loss of exon recognition is consistent with known 

splicing motifs, the effects of these perturbations are not easily predicted for 6,713 designed 

mutations across 205 human exons (Figure 2). To focus on the mechanisms by which large-

effect splicing changes can occur, we defined large-effect variants as Δinclusion index ≤ 

−0.5 (i.e., mutations to a wild-type exon with an inclusion index of ≥0.5, which is reduced 

by an absolute value of at least 0.5), which we term “splice-disrupting variants” (SDVs). We 

quantified the percentage of SDVs for designed mutations in each category (Figure 2A). As 

expected, we found that splice-site mutations to the nearly invariant dinucleotides cause 

SDVs at the highest rates (Figure 2A). Mutations to the splice site (splice acceptor, positions 

−20 to +3; splice donor, positions −3 to +6) individually result in SDVs 48%–73% of the 

time (Figure 2A; “acceptor site” and “donor site”) and 96% of the time when mutating 

simultaneously both splice donor and acceptor (Figure 2A; “acceptor + donor site”). This is 

likely an underestimate as mutations eliminating splice site recognition may be utilizing 

alternative splice acceptors or donors, which cannot be distinguished from exon inclusion by 

MFASS. Within exons, mutations can still have strong effects. Encoded synonymous 

mutations to all putative exonic splicing enhancers (ESEs) lead to SDVs ~72% of the time 

(Figure 2A; “all exonic splicing enhancers”). Although removing clusters of putative exonic 

splicing silencers (ESSs) results in increased exon inclusion (Figure S2A; all exonic splicing 

silencers), removing the strongest identified ESE alone results in 30% SDVs (Figure 2C; 

“strongest exonic splicing enhancer”). More generally, splicing metrics, such as MaxEnt for 

splice site strength (Figure 2B) or exon hexamer metrics (Figures 2C and S2B), are 

consistent with predicted effects on splicing behavior.

Effects of Rare Human Variation on Exon Recognition

Although these results indicate that mutations intended to alter previously recognized motifs 

can commonly lead to loss of exon recognition, we wanted to explore the extent to which 

natural genetic variation in the human population results in SDVs. We generated the Single 

Nucleotide Variant library (SNV library), for which we designed and synthesized all 

cataloged exonic and intronic single-nucleotide variants (SNVs) from the ExAC, for wild-

type human exons that demonstrated exon inclusion (inclusion index ≥ 0.8) in the SRE 

library (STAR Methods). From this SNV library, we first tested two reporter constructs that 

split at distinct positions of GFP. To evaluate the splicing reporter output across two versions 

of the SNV dataset from the MFASS assay, we monitored GFP and mCherry fluorescence 

from the initial library and sorted cells using flow cytometry (Figures S3A and S3B). 
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Overall, the two different contexts displayed high correlations for detecting splice-disrupting 

variants (Figure S3C, n = 5,740, rt = 1.00, p < 10−16, tetrachoric; r = 0.94, p < 10−16, 

Pearson). Because the SNV library was examined in independent reporter constructs testing 

different frames, this indicates we will be able to use MFASS to screen for exons across in-

frame and frameshifting exons for future studies.

Overall, we quantified the effects of more than half (52.4%; 27,733 of 52,965) of the ExAC 

SNVs found across 2,198 human exons and found that 1,050 of 27,733 (3.8%) ExAC 

variants assayed led to almost complete loss of exon recognition, are broadly spread across 

543 exon backgrounds from 473 genes for 1,038 distinct genomic positions (Figure 3A), and 

show increased sensitivity at the splice region (Figure 3B). Correlations between biological 

replicates were high (n = 31,583, rt = 0.94, p < 10−16, tetrachoric; r = 0.80, p < 10−16, 

Pearson; Figure S3D). To minimize false positives, we require replicate agreement within 

0.20 instead of 0.30 used for the SRE library (STAR Methods). To ensure that MFASS-

identified SDVs are robust to experimental artifacts, we additionally analyzed a number of 

controls. First, we tested the SNV library using three control sets (Figure 3C): 24 of 24 

(100.0%) scrambled nucleotides; 70 of 71 (98.6%) skipped exons; and 945 of 977 (97.3%) 

broken splice-signal sequences result in loss of exon recognition (inclusion index < 0.5; 

Figure 3C), noting that alternative 5′ and 3′ splice site usage result in false negatives for 

MFASS. In addition, we also analyzed sequences containing synthetic errors resulting in 

single-nucleotide deletions (n = 9,801) from our designed sequence library (STAR 

Methods), and SDVs for these deletions are enriched across the exon-intron junction (Figure 

3D).

Finally, we further validated MFASS results individually for 34 SDVs across multiple 

functional classes of splicing variation across the original tested context as well as longer 

intronic contexts (Figure 3E; STAR Methods). Our results suggest that MFASS is robust 

across a majority of rare genetic variants tested for splicing defects. We individually verified 

SDVs using transient expression assays and found that nine of 11 (81.8%) showed large-

effect splicing defects, with all 11 (100.0%) showing reduced exon inclusion relative to their 

respective wild-type sequences (Figure 3E). Furthermore, we tested the effect of longer 

intronic context on individual SDVs and found that 17 of 23 (73.9%) showed large defects in 

splicing, with only one of 23 (4.3%) mutations showing no appreciable exon recognition 

defect (Figure 3E). Finally, to examine the cell-type specificity of SDVs, we further picked a 

subset of 15 SDVs with the strongest changes in exon inclusion and tested wild-type or 

matched SDV reporter constructs across three additional cell types in the ENCODE 

consortium. We found that large-effect splicing disruptions are consistent across four cell 

types in all 15 of the splice-disrupting variants assayed (15/15; 100.0%; Figures 3F and 

S3E).

Of the 1,050 SDVs detected, we observe almost equal contributions from introns (561; 54%) 

and exons (489; 46%) among the variants we tested (Figure 4A). We found that 76% of 

splice site variants are SDVs (Figure 4B, left). Variants in the broader splice region, 

synonymous exonic variants, non-synonymous exonic variants, and deeper intronic variants 

disrupt splicing more rarely at 8.5%, 3.0%, 3.1%, and 1.5%, respectively (Figures 4B, left, 

S4A, and S4B). The splice donor and acceptor regions show different patterns of sensitivity 
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to splicing disruptions (Figure 4C), with splice donor regions being more sensitive than 

splice acceptor regions. Because SNVs are not equally distributed among these categories, 

splice site SDVs only constitute 17% of all SDVs, whereas intron variants, which are the 

least sensitive to splicing disruption, comprised 16% of SDVs (Figure 4B, right). SNVs at 

the splice sites are rare in our library (Figure 4C, bottom; SNV density) and also for all ~7.4 

million ExAC variants (Figure S4C). The larger number of variants in regions away from the 

splice sites outweighs their reduced sensitivity (Figure 4C, bottom; SNV density) and 

contributes to 83% of the SDVs reported here.

Population Genetic, Evolutionary, and Functional Analyses of Splice-Disrupting Variants

A number of population genetic, evolutionary, and functional characterizations indicate that 

our measured SDVs are relevant. First, the proportion of SNVs that are SDVs shows 

significant reductions as a function of allele frequency (chi-square test; p = 1.03 3 10−4). 

Consistent with population genetic theory, a vast majority (98.8%) of our SDVs are 

extremely rare (allele frequency from the Genome Aggregation Database [gnomAD] < 

0.5%; Figure 5A). Second, we find a significantly lower SDV rate (~2×) within genes that 

rarely have protein-truncating variants (PTVs) within ExAC, indicating strong functional 

constraint (probability of loss-of-function intolerant [pLI] ≥ 0.9; Lek et al., 2016; Figure 5B; 

two-tailed Fisher’s exact test; p = 3.0 × 10−11). Considering the rates of SDV and PTV 

overall, we conclude our SDV rate is at least on par to that of protein-truncating variants 

from ExAC. Third, SNVs that are SDVs show significantly stronger evolutionary 

conservation, suggesting purifying selection at these sites (Mann-Whitney U test; p < 10−16; 

Figure 5C). Missense variants alone do not seem to drive the conservation signature, as the 

difference in mean phyloP conservation score is greater without missense variants 

(phyloPnon-SDV = 0.04 versus phyloPSDV = 2.7) than with missense variants (phyloPnon-SDV 

= 1.4 versus phyloPnon-SDV = 3.1; Student’s two-sample t test; p < 10−16; two-sided), 

suggesting that SDVs are under stronger evolutionary conservation independent of missense 

variation. Fourth, nucleotide positions under strong evolutionary conservation have higher 

rates of SDVs, and this is especially apparent within introns (two-tailed Fisher’s exact test; p 

< 10−16; Figure 5D). However, this conservation has limited predictive power, because 

within introns there are many more SNVs at neutral sites than sites under strong 

conservation and within exons most sites are highly conserved (Figure 5E). Fifth, for exonic 

SNVs, we observed that SDVs significantly reduce exon hexamer scores when compared 

with nonSDVs, suggesting that SDVs are disrupting important functional sites for exon 

recognition (Student’s t test; p < 10−16; Figure 5F). Sixth, motif enrichments at the splice 

acceptor suggests that SDVs enriched for T to A mutations disrupt the area near the 

mechanistically important polypyrimidine tract, and for splice donors, we find that guanine-

rich motifs are less tolerated (Figure S5A). Seventh, we found several enriched gene 

ontology (GO) terms for SDVs comprising of four enriched categories (Table S3; STAR 

Methods). Two of the GO categories contain mostly collagen genes, many of which have 

large repeated protein domains. In addition, the “post-Golgi vesicle-mediated transport” GO 

category also contained a number of SDVs in genes with other repeat domains, such as 

ankyrin and spectrin repeats. Such repeat-expansion genes can often be variable between 

populations, and in-frame exon skipping events are likely to have fewer severe consequences 

(Chan et al., 2008).
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Cross-Validation of Individual SDVs

It is likely that some fraction of SDVs detected by MFASS do not reflect actual changes in 

humans because minigene reporters are widely used but imperfect models of endogenous 

exon recognition (Gaildrat et al., 2010). For example, we detect 11 SDVs with a minor allele 

frequency of greater than 0.5% that correspond to a set of common variants. Because 

common variants will likely overlap with other datasets, we first cross-referenced our ExAC 

library with the ClinVar database (Landrum et al., 2014). Only 0.5% (141/27,733) of the 

ExAC library is present in ClinVar, with eight SDVs and two annotated pathogenic variants 

in the MTMR2 and PARN genes. To look more broadly in the datasets of healthy cohorts 

other than ExAC, we cross-referenced our assayed SNVs with the Genotype Tissue-

Expression (GTEx) project (Battle et al., 2017). Overall, 9 of these 11 common variants have 

exon inclusion levels from GTEx (ΔPSI; Δpercent spliced in, Figure S5B), and three had 

globally significant differences (Figure S5B, i, ii, and v). If we extend this analysis to rare 

variants as well, we were able to determine PSI values for 1,471 assayed exons (STAR 

Methods), but only 28 are SDVs (including the common SDVs described above). Of these 

28, seven (25%) show globally significant difference in exon inclusion levels from RNA-seq. 

In addition, two additional SNVs have large-effect splicing disruptions in the single tissue 

they were expressed in (Figure S5B, viii and vi). Overall, we consider magnitude instead of 

sign concordance, which allows more stringent comparison of splicing changes for specific 

variants and that there are some important caveats with this analysis. First, we only use pre-

computed PSI values (STAR Methods), which cannot account for complex splicing defects 

like alternative splice donors or acceptors. Second, the limited intersection of the two sets of 

variants are enriched for the most common variants that we call as SDVs and are likely to be 

false positives because of the propensity of smaller effect changes in common variants.

To better understand how rare SDVs in ExAC replicate in their full gene context, we 

assembled 19 SDVs and associated wildtype controls for 12 full-length genes using 

isothermal gene assembly and examined splicing disruptions using RT-PCR upon episomal 

expression of the full gene (STAR Methods). We validated that 13 variants in nine genes 

cause splicing disruptions (Figures S5C and S5D; 68.4%, 13/19 variants or 75.0%, 9/12 

genes), with nine of 19 variants (42.1%) having appreciable effects on exon recognition. 

Interestingly, five of the detected changes involved alternative 5′ and 3′ splice site usages in 

the broader full gene context, indicating that many of the identified exon skipping events in 

MFASS might have different consequences in vivo.

Large-Effect Rare Variants on Splicing Are Challenging to Predict

Our results indicate that traditional metrics for assessing how mutations affect splicing are 

likely to fail, because although it is known that splice site variants are likely deleterious, it 

has been unclear to what extent rare genetic variation affects splicing outside of these sites. 

For example, the existing variant effect predictors for missense mutations, such as PolyPhen 

and SIFT, either largely provide no annotation for SDVs or call them benign (Figures 6A 

and S6A). Meanwhile, the SDV rate in synonymous mutations, which are usually assumed 

to be benign, is nearly equivalent to missense variants (3.0% versus 3.1%; Figure 3A).
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We used a number of contemporary variant effect predictors that are capable of predicting 

the effects of non-coding variation based on both functional genomic and/or evolutionary 

information, CADD (Kircher et al., 2014), DANN (Quang et al., 2015), FATHMM-MKL 

(Shihab et al., 2015), fitCons (Huang et al., 2017), LINSIGHT (Gulko et al., 2015), 

phastCons (Siepel et al., 2005), and phyloP (Pollard et al., 2010), as well as two specifically 

designed for splicing, SPANR (Xiong et al., 2015) and HAL (Rosenberg et al., 2015; Figure 

6B). Most predictors have low precision, with several providing no better prediction than 

random guessing. FATHMM-MKL, CADD, and DANN perform best among those not 

trained specifically for splicing but only achieve ~7% to 8% precision at any appreciable 

recall. Much of their power is the result of the ability to call intronic SDVs (Figures 6C and 

S6B), likely due to increased conservation or molecular function near or at those 

nucleotides. Not surprisingly, those predictors trained specifically for calling splice defects 

perform best. At equivalent effect size compared to our assay (>50% splicing disruption), 

SPANR achieves 44.5% precision, though only a minority of the SDVs are called (11.8%, 

Figure 6B). As we lower the threshold for calling an SDV (i.e., the predicted effect size of 

an SNV), SPANR can achieve 14.9% precision at 50% recall level, though the predicted 

effect size is ~2% loss of inclusion. More generally, the SPANR effect sizes poorly predict 

our observed inclusion rates (R2 = 0.11; Figure S6C). The increased power of SPANR over 

other predictions is largely due to its ability to predict exonic SDVs. HAL provides even 

better precision in these exonic regions (Figure 6C) but only calls SNVs within exons.

DISCUSSION

In this work, we tested over half of the variants found in 2,198 human exons across 60,000 

individuals and observed that 3.8% of these variants (1,050 of 27,733) cause loss of exon 

recognition. The rate of SDVs we find here is surprisingly high. Our SDV rate (3.8%) is 

~73% of the rate of probably damaging variants predicted by PolyPhen for the same set of 

SNVs (5.2%; 1,437 of 27,733) and ~3-fold higher than the observed rate of protein-

truncating variants found in ExAC as a whole (1.3%; 121,309 of 7,404,909; Lek et al., 

2016). We would expect such exon skipping events to be detrimental not only to protein 

function but, if our results generalize to exons that do not preserve frame, also cause large 

changes to mRNA stability through nonsense-mediated decay (Lewis et al., 2003). This may 

help explain why extremely rare variation seems to have large predicted effects on gene 

expression, even though we rarely observe mutations with large effects on transcription 

control elements (Hernandez et al., 2017; Li et al., 2017).

In MFASS, most of the assayed SNVs result in either no effect or near complete exon 

skipping, in contrast with the magnitude of variant effects from sQTLs (Battle et al., 2017; 

Pala et al., 2017; Takata et al., 2017). We speculate this apparent discrepancy is for several 

reasons. First, MFASS is not well suited to detect small-effect variations due to the 

limitations of flow cytometry. Second, the variant context in MFASS makes it unlikely that 

small-effect changes we observe reflect in vivo changes. Third, most sQTL studies analyze 

transcripts from heterogeneous cell types, as compared with more bimodal splicing events 

from single-cell sequencing studies (Shalek et al., 2013, Faigenbloom et al., 2015). Fourth, 

current sQTL studies are limited by small sample sizes and thus only powered to study 

common variation. Meanwhile, studies of rare variants find large-effect mutations that affect 
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splicing, most notably in GTEx (Li et al., 2017) and in Mendelian diseases (Kremer et al., 

2017).

We may be over- or underestimating the rate of SDVs using MFASS. First, although 

minigene reporters represent an important standard for the evaluation of clinically relevant 

splicing mutations, they do not always capture the necessary context for splicing. Second, 

we only chose in-frame exons that are less than 100 bp in length. Although we see no 

appreciable difference in average conservation in ExAC SNVs for in-frame and out-offrame 

exons (Figure S4C), these constraints do enrich for genes with repeat expansions, where an 

individual skipped exon may have fewer functional consequences. Third, we may not be 

including enough intronic context to correctly diagnose mutations, even though most of the 

intronic conservation signal was contained within the tested intron sizes (Figure S6D). 

Because the intronic variation in our genome is ~3-fold greater than exonic variation, we 

might be missing a substantial number of SDVs contained within untested intron regions. In 

addition, because ExAC is an aggregation of exome data, surrounding introns have lower 

coverage and thus fewer covered SNVs. Fourth, any alternative 5′ and 3′ splice site usages 

are false negatives from MFASS, and SDVs might also manifest as alternative splice sites in 
vivo. Finally, although the large-effect SDVs appear to transfer across cell types (Figure 3F), 

some SDVs would likely be cell-type specific.

Our results suggest loss of exon recognition by rare human variants may be a major source 

of functional and expression variation, and their effects are particularly difficult to predict a 

priori using computational prediction. We show most of the large-effect rare variation on 

splicing would not be easily recognized, as only ~17% of such functional rare variation we 

found are in canonical splice sites. Compared to other multiplexed splicing reporters, 

MFASS is unique in that it screens both exonic and intronic variants, is applicable to a broad 

spectrum of human exons, uses long constant intron backbones, site-specifically integrates 

reporters at single copy, and provides increased power for detecting large-effect loss-of-

function variants (Julien et al., 2016; Ke et al., 2011; Rosenberg et al., 2015; Soemedi et al., 

2017; Adamson et al., 2018). MFASS is best suited for screening large numbers of large-

effect rare variants, which is especially useful for the analysis of mutations in Mendelian 

diseases, cancer, and population genetics. MFASS is the largest study of splicing defects in 

SNVs of natural human exons to date by ~10-fold and can likely be scaled substantially. 

More broadly, MFASS can help interpret variants found in large-exome datasets to obtain a 

broader understanding for how rare, de novo, and somatic variants shape complex traits and 

diseases (MacArthur et al., 2014).

STAR⋆METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Sriram Kosuri (sri@ucla.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Cell Lines—All cell culture reagents were obtained from Thermo Fisher 

Scientific. HEK293T chromosomal landing pad cells and derivatives, HepG2 cells, and 

HeLa S3 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 0.1 mg/mL 

streptomycin. K562 cells were cultured and maintained in RPMI supplemented with 10% 

FBS, 100 U/mL penicillin, and 0.1 mg/mL streptomycin. All cells except K562 cells were 

passaged using 1× TrypLE Express. All restriction enzymes were obtained from New 

England Biolabs. Plasmid modifications were performed either by restriction cloning or 

Gibson assembly (SGI-DNA). Synthesized genes were obtained as sequence fragments from 

either Gen9 or Twist Biosciences. All oligonucleotides indicated below were obtained from 

IDT Technologies or Eurofins.

METHOD DETAILS

Splicing Reporter Design—The organization and key features of our MFASS splicing 

reporter constructs are as follows: emerald GFP (emGFP) coding sequence is split into two 

exons that flank a constant intron backbone sequence (Figures S1A–S1D). emGFP is split at 

two different locations for various reporter designs without disrupting the downstream 

reading frame. For the SRE library and version 1 of the SNV library, the reporter library 

contains exons that start and end on phase 1. For version 2 of the SNV library, the reporter 

library contains exons that start and end on phase 0. The synthetic sequence library is cloned 

into a pair of restriction sites, AgeI and NheI, or AscI and PacI, in the middle of the 

backbone. The expression of the splicing reporter module is driven by the CAG-GS 

promoter. For selection of genomic integrants, we included a B×b1 attB site and 

promoterless puromycin such that drug resistance is conferred in the HEK293T cell library 

following site-specific recombination, due to a CAGGS promoter adjacent to the B×b1 attP 

site in the landing pad cell line. We tested two sets of longer constant intron backbones with 

>250bp of sequence for each intron, which have both been previously characterized as more 

faithful intron backbones in the context of such three-exon, two-intron reporters (Figures 

S1A–S1D). These two backbones were the C. griseus long DHFR intron backbone (Arias et 

al., 2015) and human SMN1 intron backbone (Cho et al., 2015) (Figures S1A–S1D). In 

particular, the long DHFR introns were the same introns used in previous characterizations 

of exon definition (Arias et al., 2015).

Microarray-Derived Oligonucleotide Library Design—We obtained microarray-

derived oligonucleotides of 200 to 212 bp from Agilent Technologies to generate synthetic 

DNA libraries. We selected human exons that are less than 100 bp and begin and end on 

frame 0 from the Ensembl mySQL server. We designed a 170-bp intron-exon-intron 

sequence library in silico containing all 9,634 human exons fulfilling above criteria 

(Ensembl release 73, hg19 assembly), which includes at least 40 bp of upstream intron and 

at least 30 bp of downstream intron, with the exon in the middle. We added extra native 

intronic sequences as length limitations allowed (i.e., if exons were shorter), split between 

the upstream and downstream equally with an extra base added to the donor side for odd 

number of bases added. Finally, a pair of 15-mer amplification primer sequences, containing 
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either AscI and PacI or AgeI and NheI restriction sites, were added to yield 200-mer or 212-

mer sequences for DNA synthesis respectively for the SRE or SNV libraries.

Design of SRE Library—For the SRE library, we obtained 9,634 human exons that are 

less than 100 bp and begin and end on frame 0 and designed a 170-bp exon library with its 

surrounding intronic contexts, that includes at least 40 bp of upstream intron and at least 30 

bp of downstream intron. Overall, we randomly chose 230 exons from this set and designed 

60–80 synonymous mutations per sequence that correspond to specific functional classes of 

regulatory elements governing splicing using a toolkit of custom Python scripts we 

developed for scoring these mutations using defined scoring criteria as detailed below. We 

focused on three major motif types related to splicing in our custom scoring algorithm 

(Table S1). The first major motif type is the splice acceptors and donors. These sequences 

are scored with MaxEntScan (Yeo and Burge, 2004), an algorithm based on the maximum 

entropy principle that learns splice site motif strength. The second major motif type is the 

exonic splicing enhancers/silencers (ESEs/ESSs) (Ke et al., 2011). The third major motif 

type is the conserved intronic sequences that affect splicing in either the acceptor or donor 

side of the intron (Voelker and Berglund, 2007). Next, we iteratively designed synonymous 

mutations in exons and/or introns that affect splicing (Table S2). Mutations made to 

sequences were scored in the same fashion as wild-type sequences, with a higher score as a 

proxy for increased exon inclusion. Mutations were scored and generated to weaken, 

strengthen or destroy splicing motifs. We define functional classes of mutants that differ in 

score requirements, minimum base separation between mutants and the number of mutants 

per class. Mutations were made iteratively until we generate the desired number of mutants 

or reach the maximum number of iterations. For splice sites or splice regions, the invariant 

positions of the splice donor or acceptor are not mutated, with the exception for the “weaken 

splice site” category. In addition, we tested 53 RNA-binding protein motifs obtained from 

the RNA-binding protein database (RBPDB) (Cook et al., 2011) as position frequency 

matrices and thresholded at 1% false positive rate, and 109 human single-nucleotide 

polymorphisms (SNPs) obtained from dbSNP (build 133) (Smigielski et al., 2000).

Design of SNV Library—For the SNV library, we started with a library of 2,920 natural 

exons that exhibited exon inclusion using MFASS (inclusion index ≥ 0.8; SRE library, 

DHFR intron backbone). We designed single nucleotide variants (SNVs) from the Exome 

Aggregation Consortium (Lek et al., 2016) (ExAC, version 0.3.1). We stored hg19 genomic 

coordinates of each sequence in BED file format and used bcftools to intersect the ExAC 

variants with our library of wild-type human exons to subset all relevant SNVs. We only 

synthesized variants with a filter status of “PASS,” and generated all alternate alleles (up to 

3) if more than one alternate allele was indicated. These sequences were filtered to (i) 

exclude sequences containing unique NheI or AgeI restriction sites used for library cloning 

and (ii) include SNVs only within nucleotides 11 through 160 of each 170 bp library 

sequence to avoid possible spurious interactions with restriction sites, resulting in 2,902 

exons as template with their associated variants that fit above criteria.

We designed two library subpools with redundancy for wild-type that enables separate 

retrieval of sublibraries from the microarray. We transfected these pools at the stage of 
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plasmid reporters at the ratio of 1:3 that enables increased representation of natural 

sequences. From the initial design carried through to the completion of MFASS, 80.5% of 

the designed natural sequences (2,339 of 2,902) were represented in the final cell reporter 

library. 2,198 out of 2,339 natural sequences have at least one corresponding SNV, while an 

additional 30 sequences represented in the control library. Ultimately, we only report and 

include SNV data for which data for natural sequences are available, have replicable data 

across two biological replicates, and have an inclusion index of greater than or equal to 0.5 

for wild-type. For these 2,198 exon backgrounds, we obtained the corresponding paired 

variant data for 27,733 SNVs, from which 1,050 SDVs are observed (Figures 3A and 4A).

Library Amplification and Cloning—The splicing regulatory element (SRE) library 

was amplified with KAPA HiFi HotStart (KK2701) in eight 50 mL reactions, each with 500 

pg of oligonucleotide library, and 0.4 mM of ORC405 and ORC406 primers. The reaction 

and cycling conditions are: 95°C for 3 min, 5 cycles of 95°C for 3 s, 50°C for 20 s, 60°C for 

10 s, 15 cycles of 95°C for 3 s, 60°C for 30 s, followed by an extension of 60°C for 5 min. 

The SRE library was amplified similarly as above with ORC403 and ORC404 primers, as 

well as the following cycling conditions: 95°C for 3 min, 5 cycles of 95°C for 3 s, 50°C for 

20 s, 60°C for 10 s, 11 cycles of 95°C for 3 s, 60°C for 30 s, followed by an extension of 

60°C for 5 min. Splicing reporter plasmids and SRE library were digested with AscI and 

PacI. Reporter plasmid and library were ligated with T4 DNA ligase (New England 

Biolabs).

For the SNV library, we performed similar procedures as above with the following 

alterations: we performed emulsion PCR for the two subpools (35 cycles) containing both 

natural exons and SNVs with biotinylated primers. The second subpool was amplified 

similarly (40 cycles), with biotinylated ORC513 and ORC514 primers, and both pools were 

processed with AgeI and NheI at 37°C before ligation-based cloning in E. coli.

Generation of Landing Pad Cell Lines and Integration—For site-specific 

integration of exon libraries in HEK293T cells, we engineered a chromosomal landing pad 

cell line which allows stable expression of splicing reporter library at the AAVS1 locus, 

which is modified from Duportet et al. by CRISPR-Cas9 in order to remove expression of 

the endogenous YFP gene (Duportet et al., 2014). We characterized 25 clones expanded 

from single cells by flow cytometry, microscopy, and genomic PCR, and selected a clone 

(which we termed RCA7) that does not express any YFP or mCherry fluorescence for our 

current study.

We site-specifically integrated the splicing reporter using Bxb1 integrase into cells 

containing the chromosomal landing pad (Figures 1 and S1), first without any exon library 

sequences between the intron backbones, and later with individual exons and/or synthetic 

sequence libraries cloned in between. For the SRE library, we transfected HEK293T 

chromosomal landing pad cells, grown in six T-225 flasks (BD) per biological replicate that 

were processed in tandem. Each T-225 flask was transfected at 80% confluency with 50 μg 

of plasmids containing exon library and Bxb1 integrase, and 150 μL Polyethylenimine 

(Polysciences) or 75 μL Lipofectamine 3000 (Thermo Fisher Scientific). Cells were 

transfected for 72 hr, and then selected with 5 μg/mL puromycin (Thermo Fisher Scientific). 
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Cells were subsequently passaged serially for at least 18 days before cell sorting. For the 

SNV library, we transfected HEK293T chromosomal landing pad cells, grown in sixteen 150 

cm2 plates (45 μg plasmids per plate) for 3 days, pooled and transferred to two 4500 cm2 

roller bottles (BD Biosciences) or equivalent volume for 150 cm2 plates per biological 

replicate, selected for integrants as above, and maintained in eight 150 cm2 plates per 

biological replicate for 20 days before cell sorting.

Fluorescence-Activated Cell Sorting—We measured cell samples for GFP and 

mCherry fluorescence intensities by flow cytometry (BD LSRFortessa or LSRII) across 

passages. Cells harboring variant libraries were sorted using a FACSAria III (BD 

Biosciences) into bins based on GFP fluorescence, given a minimal amount of mCherry 

fluorescence (as thresholded using a genome-integrated mCherry driven by the pCAGGS 

promoter as a positive expression control, Figure 1A). For the SRE library (DHFR intron 

backbone), we sorted ~7.5 million cells for GFP+ and GFPneg bins, and 7.5 × 105 cells for 

GFPint bin. For the SRE library (SMN1 intron backbone), we obtained ~4 million cells for 

GFP+ and GFPneg bins, and 4.2 × 105 cells for GFPint bin. Sorted sub-libraries for each 

replicate were grown separately and passaged. We eliminated dead cells, debris, and 

doublets based on forward and side scatter, and single-color and double-negative controls 

were used for gating and calibration. For the SNV library (v1), we performed two sorts to 

ensure purity of the final populations of GFP+, GFPint and GFPneg cells (Figure S3A). For 

the first sort, we obtained 16 million cells for GFPneg library, 2.6 million cells for GFP+ 

library and 2.7 million cells for GFPint library (biological replicate 1), 15 million cells for 

GFPneg library, 2 million cells for GFP+ library and 2.8 million cells for GFPint library 

(biological replicate 2). For the purifying sort, we further sub-sorted the libraries from the 

first sort, and obtained ~2 million cells for GFPneg library, 1 million cells for GFP+ library 

and 2.5 million cells for GFPint library (biological replicate 1), and 1 million cells for 

GFPneg library, 1 million cells for GFP+ library and 2.5 million cells for GFPint library 

(biological replicate 2).

For the SNV library (v2), we sorted cells based on GFP fluorescence into four bins: GFP+, 

GFPint-hi, GFPint-lo, and GFPneg bins (Figure S3B). For both biological replicates, we 

obtained 16 million cells for GFPneg library, 2 million cells for GFP+ library, 2 million cells 

for GFPint-hi and GFPint-lo library.

DNA-seq of FACS-Sorted Libraries—To obtain cells containing a single individual 

reporter construct, we first sorted single cells by FACS from individual bins, with GFP 

fluorescence gates defined from library sort, and expanded homogeneous clones from single 

cell sort. For the SRE library, we extracted genomic DNA from 10 million cells for the 

sorted populations using blood and cell culture DNA midi kit (QIAGEN). We amplified each 

sublibrary for ~300-fold amplicon coverage, and reactions were performed in 96-well format 

in three to nine 50 μL reactions for each sublibrary proportional to bin size. Per biological 

replicate, we amplified library variants from genomic DNA with KAPA HiFi HotStart, using 

5 μg of template for GFP+ and GFPneg sub-libraries, and 2 mg of template for the GFPint 

sublibrary, with 500 nM of the primers ODY093 and ODY028 for the DHFR intron 

backbone, or the primers ODY088 and ODY089 for the SMN1 intron backbone. The 
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following cycling conditions were used: for the DHFR intron backbone, 98°C for 45 s, 23 

cycles for GFPint, or 22 cycles for GFP+ and GFPneg using: 98°C for 15 s, 68°C for 30 s, 

72°C for 30 s, followed by an extension of 72°C for 1 min; for the SMN1 intron backbone: 

98°C for 45 s, 24 cycles for GFPint, or 29 cycles for GFP+ and GFPneg of: 98°C for 15 s, 

68°C for 30 s, 72°C for 30 s, followed by an extension of 72°C for 1 min. The reactions for 

each population were pooled separately, purified and gel-extracted on 1% agarose gel and 

quantified using Tapestation 2200 (Agilent).

For the SNV library, procedures were performed similarly to the SRE library in the DHFR 

intron backbone, with the following optimizations. Library variants was amplified from 

genomic DNA (ORC515 and ODY028), and genomic DNA was extracted similar to 

procedures for the SRE library. Sorted libraries were indexed by PCR amplification, in 

twenty-four 50 μL reactions for GFPneg and eight 50 μL reactions for all other sublibraries, 

using the forward primer ORC522, and the reverse primers ODY32 through ODY41, and 

ORC531 through ORC534.

Validation of MFASS Using Individual Exon Controls—We performed individual 

controls to assess the correspondence to sequences in our library and to observe consistent 

splicing behavior across RNA and fluorescence output. For the data from Figures S1N–S1Q, 

we characterized more than 20 cell clones expanded from single cells, and only 9 individual 

sequences that perfectly match the reference SRE library were used for RT-PCR and flow 

cytometry analysis.

RNA from sorted sub-libraries as well as individual control exons were extracted using 

RNEasy MiniKit (QIAGEN). Reverse transcription-PCR was performed using Superscript 

III or Superscript IV (Thermo Fisher Scientific) according to manufacturer’s protocol using 

reverse transcription primer (Table S4), which binds to a region in exon 2 of emGFP, and 

PCR was performed with extracted cDNA. The reaction and cycling conditions are 

optimized as follows: 95°C for 2 min, 18 cycles of 98°C for 3 s, 62°C for 15 s, 72°C for 10 

s, followed by an extension of 72°C for 2 min.

34 SDVs were tested for exon inclusion by transient transfection using Lipofectamine 3000 

(Life Technologies) in HEK293T cells for 24 hr. A ratio of GFP:mCherry fluorescence was 

obtained in linear mode (BD LSRII or BD LSRFortessa) for the comparison of exon 

inclusion rates across samples. We subtracted background fluorescence based on a 

transfected empty vector control, and only consider GFP:mCherry fluorescence above the 

threshold. We tested sequences either exactly in the original sequence context in the reporter 

construct examined in MFASS, or with an additional 130 bp of endogenous intronic contexts 

(65 bp upstream and 65 bp downstream). Percent inclusion is calculated for both the 

individual SDV and its respective wild-type sequence, with the change in percent inclusion 

calculated as the absolute difference between the mutant and the wild-type sequence. All 

mutants were normalized to a no-insert control as a baseline for complete exon skipping for 

assessment of change in exon inclusion.

Cell-type Specificity of SDVs across Four Human Cell Types—We tested 29 

human exons with its surrounding intronic contexts (15 SDVs with the 14 corresponding 
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wild-type sequences) across 4 human cell types. The four human cell lines tested are 

HEK293T (RCA7 cell line established in this study), HeLa S3 (ATCC CCL-2.2), HepG2 

(ATCC HB-8065) and K562 (ATCC CCL-243). We validated these constructs across cell 

types in the same manner that we validated individual exon controls in above section.

Validation of Rare SDVs in Full Genes—We considered rare 61 SNVs in 34 genes that 

have a change in inclusion index of ≤ −0.50 across both replicates from MFASS (i.e., SDVs) 

under 15kb. From these, we were able to assemble complete 12 wild-type full genes (up to 

~13kb) with at least one corresponding SDV (19 SDVs total, Figures S5C and S5D). Using 

isothermal gene assembly, mutations were introduced in the middle of the oligonucleotide 

with ~40bp overlap on each overlapping fragment, and assembled without the mutations for 

the wild-type gene sequences. Genomic sequences with wild-type and matched SNVs were 

amplified from the same human genomic DNA template (NIST, SRM 2372, or Promega, 

G1521) using PrimeSTAR GXL polymerase (R050, Takara). Each partial gene fragment was 

amplified using 25ng of genomic DNA in a single 50 μL PCR reaction, and purified with 

either the DNA Clean and Concentrator Kit (Zymo Research) or Agencourt AmPURE XP 

beads (Beckman Coulter). The reaction and cycling conditions are optimized as follows: 

94°C for 1 min, 28 to 30 cycles of 98°C for 10 s, 68°C for 5 min, followed by an extension 

of 72°C for 5 min. A linear plasmid backbone fragment (~5.2kb) was prepared for 

isothermal assembly using BamHI and SacI, purified and concentrated using DNA Clean 

and Concentrator Kit (Zymo Research), and further gel purified using Zymoclean Gel 

Recovery Kit (Zymo Research). We expressed a subset of these fully assembled genes 

between the BamHI and SacI sites of the splicing reporter plasmid backbone in this study, in 

place of the MFASS splicing reporter (see Splicing Reporter Design section). We performed 

isothermal assembly of 3 to 4 gene fragments of interest and the plasmid backbone using the 

Gibson Assembly Ultra Kit (SGI-DNA), and transformed into electrocompetent DH10B E. 
coli cells (New England Biolabs, or Life Technologies) to select for correct gene assembly. 

We confirmed the sequence for each gene with or without splice-disrupting variants using 

Sanger sequencing, before transfection into HEK293T cells for testing of mutation effects. 

We extracted and performed reverse transcription from RNA using the Cells to cDNA II kit 

(Thermo Fisher Scientific) and corresponding gene-specific primer for each exon (Table S4) 

according to manufacturer’s protocol. For each tested exon, qPCR was performed with 

SYBR FAST qPCR Mastermix (Kapa Biosystems), using 1 μL of reverse-transcribed cDNA 

in a 20 μL PCR reaction, as well as primers flanking the upstream and downstream exons, 

and compared RT-PCR gene products of wild-type and mutant sequences for each gene of 

interest. Fragments of interest were further PCR purified and verified using Sanger 

sequencing.

QUANTIFICATION AND STATISTICAL ANALYSIS

DNA-seq Read Processing and Filtering—SRE library datasets were generated from 

two Illumina MiSeq 300-bp paired-end sequencing runs and a Illumina HiSeq 2500 150-bp 

paired-end sequencing run. SNV library version 1 dataset was generated from Illumina 

MiSeq 300-bp paired-end sequencing. SNV library version 2 dataset was generated from 

Illumina NextSeq 2500 150-bp paired-end sequencing. We removed read pairs with any 

ambiguous “N” base calls, followed by read pair merging with bbmerge from the BBMap 
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suite (BBtools package version 37). We developed custom Python and bash scripts to filter 

for perfect reads aligned to our reference, from which we can aggregate read counts for 

sequences from each sorted bin. We then further process these read counts to calculate 

inclusion index (see below section on the quantification of inclusion index).

To allow for stringent analysis of replicable data for SNVs, we require a coverage of at least 

5 reads for the SRE library and at least 10 reads across all bins for the SNV library for the 

two biological replicates. Our SRE library size was 16,717 (5,975 wildtype sequences, 

10,683 mutants, 59 controls) for the SMN1 intron backbone, and 13,922 (4,920 wild-type 

sequences, 8,942 mutants, 60 controls) for the DHFR intron backbone. We additionally 

require that inclusion indices agree between biological replicates within 0.30 (SRE library) 

and 0.20 (SNV library). For the SNV library, we only analyzed a mutant sequence if its 

corresponding wild-type sequence has an inclusion index of ≥ 0.5. The final library size after 

all filtering steps for the SRE library is 10,482 (3,714 wild-type sequences, 6,713 mutants, 

55 controls). The final library size after all filtering steps for the SNV library size (version 1) 

is 6,768 (1,981 wild-type sequences, 3,853 mutants, 934 controls). The SNV library size 

(version 2) is 31,144 (2,339 wild-type sequences, 27,733 mutants that correspond to 2,198 

wild-type sequences, 1,072 controls).

Exon Inclusion Quantification—We normalized bin counts based on read depth (reads 

per million, RPM) and corresponding bin population percentage after FACS using the 

following formula:

Normalized read count GFPbin, i =
percentage sorted × raw read count GFPbin, i

reads per million

We calculated exon inclusion index for each sequence based on a weighted average of 

normalized counts across all bins. Bin weights are assigned based on GFP fluorescence 

measurements of individual bins that correspond to the extent of exon inclusion or skipping. 

For the splicing regulatory element (SRE) library and single nucleotide variant (SNV) 

library, version 1:

0 × GFP+ + 0.85 × GFPint + 1 × GFPneg
GFP+ + GFPint + GFPneg

For the SNV library, version 2:

0 × GFP+ + 0.80 × GFPint − hi + 0.95 × GFPint − lo + 1 × GFPneg
GFP+ + GFPint − hi + GFPint − lo + GFPneg

The change in inclusion index for an individual library sequence between wild-type (WT) 

and mutant is computed as follows:

Δ inclusion index = inclusion indexmutant − inclusion indexWT
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A positive Δinclusion index denotes increased exon inclusion for the mutant relative to WT, 

while a negative Δinclusion index denotes increased exon skipping for the mutant relative to 

WT.

ExAC and gnomAD Data Analysis—Annotation of variants for individual human 

samples in VCF format were obtained from the Exome Aggregation Consortium (Lek et al., 

2016) (ExAC, version 0.3.1), including global allele frequencies. We further obtained global 

allele frequencies of individual variants from the Genome Aggregation Database (gnomAD). 

We binned gnomAD global allele frequency similar to the ExAC study (Lek et al., 2016), 

and tested for significant difference between allele frequency bins using chi-square test of 

independence. We obtained the rate of protein-truncating variants from ExAC. We also 

obtained gene level evolutionary constraint estimates from ExAC based on probability of 

loss-of-function intolerance (pLI), and defined genes that are extremely intolerant of loss-of-

function as those with a pLI score ≥ 0.9. We then tested for genes with enrichment in splice-

disrupting variants (SDVs) using Fisher’s exact test.

Functional Genomic Analysis of SNVs—We functionally classified our variants using 

the Ensembl variant effect predictor (McLaren et al., 2016) (VEP v80), and filtered the most 

severe sequence ontology (SO) term for a given variant. We obtained phyloP 100-way (v1.4) 

nucleotide conservation for the hg38 genome for the SNV library, and classified quickly 

evolving regions of the genome (accelerating, phyloP < −2.0), neutral selection (−1.2 ≤ 

phyloP ≤ 1.2) and highly conserved region of the genome (deleterious, phyloP > 2.0). To 

compute genomewide locations of ExAC SNVs by gene regions, we used GENCODE 

(release 27, GRCh38 reference assembly) for exon annotation, and bedtools (Quinlan, 2014) 

to annotate intronic regions by subtracting exon coordinates from gene coordinates. To 

determine the density of SNVs for each genomic position, we determined the number of 

SNVs averaged at each relative position for the SNV library across exons and upstream/

downstream introns, and relative position is set such that the boundary of upstream intron/5′ 

exon = 0, and the boundary of 3′ exon/downstream intron boundary = 1. In addition, we 

incorporated scaled positions to normalize for variable intron and exon lengths. We 

performed similar positional SNV density analysis for genome-wide SNVs from the ExAC 

consortium across gene regions.

Motif Analysis—To define potential disruption of k-mer motifs by ExAC SNVs, we 

performed k-mer based motif enrichment analysis using kpLogo (git/e2fac18) for both splice 

acceptor (positions −20 to +3, upstream intron-exon junction) and splice donor (positions −3 

to +6, downstream exon-intron junction). Based on our SNV dataset, SDVs are background-

corrected against non-SDVs to obtain motif logos that are enriched or depleted at each 

nucleotide. We used a p value cutoff of p < 0.01, gapped k-mer length of k = 1,2,3,4 and 

fixation frequency of 0.75 (Wu and Bartel, 2017). We scored splice sites, exonic splicing 

enhancers/silencers, and conserved acceptor and donor intronic sequences based on metrics 

in Table S1.

In addition, we implemented the hexamer additive linear (HAL) model, which estimates a 

splicing strength score for every possible exon hexamer (Rosenberg et al., 2015). For each 

variant, we calculated the change in score at each position relative to the wild-type sequence. 
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We compared the distribution of maximum score change between SDVs and non-SDVs 

using the Mann-Whitney U test.

Assessment of Variant Prediction Algorithms—To computationally predict the 

effects of rare genetic variants on splicing, we used various prediction algorithms that are 

able to assess coding and/or non-coding SNVs in our assay. We selected Δinclusion index ≤ 

−0.5 as the threshold for splice-disrupting variant (SDV) and designate our calls as true 

positives. We assessed performance by varying the score threshold at which a variant is 

called splice-disrupting (considering whether the score is positively or negatively correlated 

to Δinclusion index). We assessed various genomic predictors that use a variety of machine 

learning methods, annotations, and training sets to predict the functional impact of coding 

and non-coding variants. These methods incorporate a variety of functional data, including 

conservation, histone modifications, DNase hypersensitivity, transcription factor binding, 

transcript abundance, and protein-level scores.

We obtained functional scores of single nucleotide variants from four genomic predictors 

based on the hg19 assembly: raw CADD scores from CADD v1.3 (r0.3 Exome Aggregation 

Consortium dataset), DANN whole-genome SNV scores (Nov. 2014), FATHMMMKL (git/

908d865), fitCons multi-cell (i6 dataset, git/20f336d) highly significant scores (p < ~0.003), 

and LINSIGHT (git/58fe558). For SPANR (splicing-based analysis of variants) (Xiong et 

al., 2015), we obtained the predicted change in percent spliced in (Δψ, or ΔPSI) for single 

nucleotide variants in our SNV library across the genome. The hexamer additive linear 

model (HAL) (Rosenberg et al., 2015) can only assess exonic variants.

To consider the predictive power of conservation alone, we obtained phyloP 100-way (v1.4) 

nucleotide conservation for the hg19 genome for the SNV library. In addition, we obtained 

phastCons (v1.4) scores for 100-way eutherian mammalian nucleotide conservation for our 

SNV library and genome-wide SNVs from the ExAC consortium (Siepel et al., 2005). To 

assess the functional effects of missense, exonic single nucleotide variants from the SNV 

library, we used variant annotations from PolyPhen (v2.2.2) and SIFT (v5.2.2).

We assessed above predictors using receiver operating characteristic and precision-recall 

analysis. We used the pROC package version 1.10.0 to compute and plot the ROC curves, 

calculate the 95% confidence interval, and calculate the area under the curve. The precision 

recall curves were plotted with a custom function which evaluates each method by varying 

the score threshold at which a sequence is classified as an SDV, and calculating the 

corresponding precision and recall. The area under the precision recall curve is calculated 

with the trapz function in R.

Analysis of SDVs from GTEx RNA-seq—Genotype data (from Illumina SNP arrays, 

whole exome sequencing, or whole genome sequencing) and RNA-seq data were obtained 

from the GTEx database (v6p release). To get a list of high-quality SNVs for further 

analyses, we used a quality filter of GQ ≥ 20 for whole-genome sequencing and whole-

exome sequencing and a quality filter of IGC ≥ 0.2 for Illumina SNP arrays, all of which 

were provided by GTEx. These cutoffs are similar as recommended by the GATK package 

(Van der Auwera et al., 2013). In addition to the genotyped SNPs, we also identified dbSNPs 
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(version 146) that are expressed in the RNA-seq data by requiring a minimum total read 

coverage of 10 and a minimum read coverage of 3 for the alternative allele.

The RNA-seq data in FASTQ format were first adaptor-trimmed. Subsequently, the reads 

were aligned to the hg19 genome and transcriptome (Ensembl Release 75) using HISAT2 

(Kim et al., 2015) with parameters–mp 6,4–no-softclip–no-mixed–no-discordant. Only 

uniquely mapped read pairs were retained for further analyses. Samples with fewer than 25 

million uniquely aligned read pairs were excluded due to low depth for splicing analysis. In 

total, 7822 RNA-seq datasets from 47 tissues and 515 donors were retained.

Percent-spliced-in (PSI) values were calculated using the method described in Schafer et al. 

(Schafer et al., 2015). This analysis was carried out for all internal exons from the 

GENCODE comprehensive annotation (v24lift37). To ensure the accuracy of PSI estimation, 

we required the exons to be covered by ≥ 15 total reads (inclusion reads + exclusion reads) 

or ≥ 2 exclusion reads per sample.

We compared PSI values from tissues expressing the gene containing an SDV with a cutoff 

of transcript per million (TPM) ≥ 1 based on median gene TPM values. After filtering on 

expression, exon PSI for 28 SDVs (out of 1,050 ExAC SDVs in this study) were available in 

at least one tissue sample. The distribution of PSI values across tissues was compared for 

individuals with the alternative SDV alleles versus those with the corresponding reference 

alleles. Comparisons were made with the Mann-Whitney U test, and adjusted p values were 

calculated using the Benjamini-Hochberg procedure at an FDR of 5%.

Gene Ontology Enrichment Analysis—We performed Gene Ontology (GO) 

enrichment analysis between SDV-containing genes (n = 473, for 1,050 SDVs) and all genes 

in the ExAC SNV library (n = 1,616, for 27,733 SNVs) using topGO. We determined over-

representation of GO terms for SDV genes based on gene counts using Fisher’s exact test. 

Each GO term is tested independently and only terms with p < 0.01 are shown (see Table 

S3).

Software—bbmerge from the BBMap suite (v37) was used to merge raw paired-end 

sequencing files. Custom python and bash scripts used for read processing, and mapping 

reference and synthetic error read counts. Further analysis was performed with Python 2.7, 

using Pandas v0.21.0 and Numpy v1.13.3, and R v3.4.2, using tidyverse including dplyr 

v0.7.4 and ggplot2 v2.2.1. Variant analyses were performed using Ensembl variant effect 

predictor (v80), CADD (v1.3), MaxEntScan (Yeo and Burge, 2004), DANN (https://

cbcl.ics.uci.edu/public_data/DANN/), FATHMM-MKL (git/908d865), fitCons (i6 dataset, 

git/20f336d), HAL (git/ca54d11), kpLogo (git/e2fac18), LINSIGHT (git/58fe558), 

phastCons (v1.4), phyloP (v1.4), PolyPhen (v2.2.2), SIFT (v5.2.2), and SPANR/SPIDEX 

(v1.0) (http://annovar.openbioinformatics.org/en/latest/).

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data reported in this paper is GEO: GSE120695. 

Pre-processed datasets are available upon request. All code needed to reproduce the analyses 

is included in the following repository: https://github.com/KosuriLab/MFASS
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Highlights

• MFASS: massively parallel splicing minigene reporter for exonic and intronic 

variants

• Tested 27,733 natural human variants in 2,198 exons for defects in exon 

recognition

• Most splice-disrupting variants are rare, not at splice sites, and hard to predict

• MFASS enables variant assessment of large-effect splicing defects at scale
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Figure 1. Multiplexed Functional Assay of Splicing using Sort-Seq
(A) We cloned synthetic human exons (black) and surrounding intronic sequences (dark 

gray) into our reporter plasmid containing a split-GFP reporter with flanking constant intron 

backbones (light gray), followed by site-specific integration into HEK293T cells using Bxb1 

integrase. Cells are sorted into bins based on fluorescence, followed by amplicon sequencing 

of DNA from cells in each sorted bin. We calculated exon inclusion index for each sequence 

using a weighted average of normalized read counts based on exon inclusion level from bins 

(STAR Methods).
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(B) We used FACS to sort the genomically integrated SRE library into three separate 

populations (left). After expansion, the sorted populations remained stable(right). GFP-int, 

GFP-intermediate. For this library (SMN1 intron backbone), we obtained ~4 million cells 

for GFP+ and GFPneg bins and 4.2 × 105 cells for GFPint bin. The percentage of cells sorted 

is as follows: GFP+ (33.3%); GFPneg (44.5%); and GFPint (5.6%).

(C) The observed RNA splicing efficiencies of the sorted bins as measured by RT-PCR 

correspond almost directly with observed fluorescence of the bins.

(D) We plotted the percentage of reads for each construct in the SRE library containing both 

natural and mutant exons (n = 10,477). We showed that most sequences fall predominantly 

into one bin, exhibiting either complete exon skipping or inclusion, allowing for facile 

classification of exon skipping variants of large effects (Δinclusion index %0.5). 

Corresponding exon inclusion indices for each bin are indicated at top panel. The data 

shown in (D) correspond to the SMN1 backbone.

(E–G) SRE library splicing behavior replicates between individual biological replicates and 

across two constant intron backbones. Tetrachoric correlation indicates whether two distinct 

measurements are concordant in one of the four quadrants and is more suited to assess large-

effect variants.

(E) Exon inclusion indices show strong correlation between two independent biological 

replicates for C. griseus DHFR intron backbone (rt = 1.00, p < 1016, tetrachoric; r = 0.94, p 

< 1016, Pearson).

(F) Exon inclusion indices show strong correlation between two independent biological 

replicates for human SMN1 intron backbone (rt = 0.97, p < 1016, tetrachoric; r = 0.89, p < 

1016, Pearson). For (E) and (F), after calculation of correlation coefficients, sequences for 

which inclusion indices do not agree within 0.30 (outside the dashed lines) are excluded 

from subsequent analysis.

(G) Results are robust across different intron backbones (rt = 0.96, p < 1016, tetrachoric; r = 

0.85, p < 1016, Pearson).

See also Figure S1.
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Figure 2. Effects on Exon Recognition Are Not Easily Predicted across 6,713 Designed Mutations 
in Splicing Regulatory Elements
(A) We quantitatively measured exon inclusion for iteratively designed mutations (n = 

6,713) across categories of splicing regulatory elements from 205 human exons (see Tables 

S1 and S2 for categorical explanations and definitions). We defined SDVs as variants that 

result in a Δinclusion index ≤ −0.5, relative to the wild-type sequence (STAR Methods). We 

only consider SNVs when the corresponding wild-type sequence is also detected, requiring 

that the wild-type exons demonstrate inclusion in our assay (inclusion index of ≥0.5) for 

variants to be considered an SDV. Here, we highlight the data for the SMN1 intron backbone 

and detected 21.3% (1,428/6,713) of variants as SDVs across all categories. See also Figure 

S2A for mutations to exons that are skipped in MFASS (inclusion index of <0.5) across 

designed categories. Splice acceptor, positions −20 to +3; splice donor, positions −3 to +6.
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(B) Mutating the splice acceptor and splice donor sites adversely affects exon inclusion 

based on MaxEnt prediction for included exons (inclusion index of ≥0.5; Yeo and Burge, 

2004).

(C) Decreasing overall exon hexamer score leads to more exon skipping. Hexamer scores are 

based on the HAL model (Rosenberg et al., 2015). An alternative score metric is evaluated 

in Figure S2B (Ke et al., 2011). ***p < 0.001.

See also Figure S2 and Tables S1 and S2.
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Figure 3. MFASS Enables Functional Characterization of Variant Effect on Splicing at Scale 
across Libraries of Human Exons and Variants
(A) The number of SNVs per exon sequence (top) and the Δinclusion index (bottom) of the 

27,733 ExAC SNVs are plotted against the wild-type exon backgrounds (n = 2,198) and 

colored by the inclusion index of the corresponding wild-type (WT) sequence. Both the top 

and bottom panels are ordered in decreasing number of variants tested from 44 to 1 per 

human exon background, with an average of 12.6 human variants and 3.8 SDVs per assayed 

wild-type exon sequence background. We found 1,050 of 27,733 SNVs tested (3.8%) are 

SDVs (Δinclusion index ≤ −0.5) and are broadly spread across the 543 human exon 

backgrounds in 473 genes. Dashed line indicates the threshold (Δinclusion index = −0.5), 

below which we call SDVs.

(B) The change in inclusion index as a function of relative position for our SNV library 

across 2,198 human exon sequences shows that the splice donor and acceptor sites are most 

sensitive to mutations. Intron-exon boundary on the left corresponds to the splice acceptor, 

and the intron-exon boundary on the right corresponds to the splice donor. The splice donor 

is more sensitive to mutation because its consensus site is longer and more conserved. The 

bottom panel displays the relative sensitivity of each position. Each bin corresponds to 1 or 2 

nucleotides per position, and locations are relative as we test a range of exon lengths.

(C) Three control sets for validating the SNV library (n = 1,072). Most control sequences 

that were designed to cause exon skipping led to almost complete loss of exon recognition. 

The three control sets were (1) scrambled sequences (n = 24), (2) a previously tested subset 

of exons that were skipped in the SRE library (n = 71), and (3) breakage of the splice sites (n 

= 977). The broken splice-signal control library mutates 5′ splice sites (SD) at the 

downstream intron from GT to CC and 3′ splice sites (SA) at the upstream intron from AG 

to TT. SA, splice acceptor; SD, splice donor. We included the distribution of wild-type 

sequences (i.e., natural exons; n = 2,339, of which 2,198 sequences have relevant SNV data; 

STAR Methods). These exons initially demonstrated exon inclusion in the SRE library 

(inclusion index ≥ 0.8), and we subsequently retested them and their associated SNVs in the 

SNV library.
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(D) We analyzed the effects of single-base deletions derived from synthetic errors on exon 

inclusion. We showed the effect of exon inclusion for synthetic deletions (n = 9,801) across 

replicates, with an SDV rate of 3.59%. We observed an enrichment of SDVs at or near the 

splice sites.

(E) We validated large-effect rare variants detected by MFASS (n = 34) and their 

corresponding wild-type sequences. We measured exon inclusion in either the original 

sequence context examined in MFASS (n = 11) or as a more stringent test with an additional 

130 bp of longer intronic contexts (n = 23) in HEK293T cells. For the longer set, we tested 

SDVs that represent variant classes in Figure 4B: missense variants (n = 3); synonymous 

variants (n = 3); intron variants (n = 4); splice donor (n = 4); splice acceptor (n = 5); and 

splice region variants (n = 4). The levels of exon inclusion were calculated for both the 

individual SDV and its respective wild-type sequence. All mutants were normalized to a no-

insert control as a baseline of complete exon skipping for the assessment of change in exon 

inclusion. Dashed line indicates the threshold (D% inclusion = 50%), below which we call 

splicing-disrupting variants (SDVs).

(F) To examine the cell-type specificity of SDVs, we further picked a subset of 15 SDVs 

from the long intronic context with the strongest change in inclusion levels for testing their 

effects across 4 cell types and validated reporter constructs for WT or the corresponding 

SDVs. n = WT, SDV: 14,15 (HEK293T), 14,15 (HeLa S3), 14,15 (HepG2), 14,15 (K562). 

We found that large-effect splicing disruptions are consistent across 4 cell types in all 15 of 

the splice-disrupting variants assayed (15 of 15; 100%). The generalizability of per variant 

exon inclusion measurements across cell types is included in Figure S3E.

See also Figure S3.
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Figure 4. Global Analysis of Splice-Disrupting Variants across 27,733 ExAC SNVs in or near 
2,198 Human Exons
(A) We functionally classified our variants by variant class from the Ensembl variant effect 

predictor (STAR Methods). SDVs (n = 1,050) from natural genetic variation are split almost 

equally between exonic and intronic regions (blue and red, respectively). Dashed line 

separates the exonic regions (4%) and intronic regions (17%) of the splice region variants. 

Splice site variants are defined as those within 2 bp of intron adjacent to exon, whereas 

splice region variants are located 3 bp into the exon and 8 bp into the intron, excluding 

splice sites.

(B) Splice site mutations are by far the most likely region to result in an SDV (left). 

However, because SNVs at splice sites are relatively rare, SDVs in regions other than the 

splice site constitute 83% of all SDVs (right). The distributions for non-SDVs across variant 

classes and the distribution of SDV effect sizes are shown in Figure S4A.

(C) The percentage of SDVs as a function of position along the exon and surrounding intron 

sequence shows that splice donor regions are more sensitive Than splice acceptor regions 

(top panel).Plotted below is the average change in mammalian evolutionary conservation 

(phyloP score averages) and ExAC SNV density as a function of location. Each bin 

corresponds to 1 to 2 nucleotides per position, and locations are relative to account for 

variable exon length.

See also Figure S4.
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Figure 5. Population Genetics, Evolutionary, and Functional Analyses of SDVs across 27,733 
ExAC SNVs
(A) The percentage of SDVs as a function of allele frequency shows significant reductions 

across allele frequencies from the Genome Aggregation Database (gnomAD) (chi-square 

test; p = 1.03 × 10−4). A vast majority (97.9%) of the ExAC variants assayed were rare 

(gnomAD global minor allele frequencies [MAF] ≤ 0.5%). Allele frequencies are not 

available for 2,460 variants because of insufficient coverage in gnomAD.

(B) We analyzed the proportion of SDVs and PTVs in genes predicted to be intolerant to 

loss-of-function alleles (pLI ≥ 0.9) and tolerant genes. We observe both significantly fewer 

SDVs (two-tailed Fisher’s exact test; p = 3.03 × 10−11) and significant fewer PTVs (two-

tailed Fisher’s exact test; p < 10−16) for exons within intolerant genes. Dashed lines mark the 

overall percentage of SDVs (3.8%) and PTVs (1.2%) in our dataset without considering the 

pLI metric.

(C) SDVs are under stronger evolutionary conservation as evidenced by higher overall 

phyloP scores (Mann-Whitney U test; p < 10−16).

(D) Within introns, we found that positions that are evolutionarily conserved (deleterious; 

phyloP > 2.0; purple) have a higher SDV rate than those under neutral (−1.2 ≤ phyloP ≤ 1.2; 

blue) or accelerating selection (phyloP < −2.0; green; two-tailed Fisher’s exact test; p < 

10−16).

(E) There are more SNVs outside of regions of high intron conservation, which leads to 

many SDVs located within nucleotides that display neutral selection.

(F) We observed a significantly higher negative maximum change in predicted exonic 

hexamer scores within exonic SDVs than non-SDVs (Student’s t test; p < 10−16). ***p < 

0.001.

See also Figure S5.
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Figure 6. Evaluation of Genomic and DeepLearning Predictors for Rare Variation on Splicing
(A) Functional prediction from SIFT and PolyPhen for missense SDVs (n = 250) show few 

are predicted to be loss-of-function variants. The distributions for missense non-SDVs for 

SIFT and PolyPhen are shown in Figure S6A.

(B) Precision-recall curves for algorithms that can predict splicing or non-coding genetic 

variants. Dashed line represents the overall percentage of SDVs (3.8%) from MFASS. 

Corresponding receiver operating characteristic (ROC) curves are shown in Figure S6B.

(C) Precision-recall curves for algorithms that can predict splicing or non-coding genetic 

variants, focusing on either intronic or exonic variants only.

See also Figure S6.
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