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SHORT GENOME REPORT Open Access

Complete genome sequence of Jiangella
gansuensis strain YIM 002T (DSM 44835T),
the type species of the genus Jiangella and
source of new antibiotic compounds
Jian-Yu Jiao1, Lorena Carro2, Lan Liu1, Xiao-Yang Gao3, Xiao-Tong Zhang1, Wael N. Hozzein4,12, Alla Lapidus5,6,
Marcel Huntemann7, T. B. K. Reddy7, Neha Varghese7, Michalis Hadjithomas7, Natalia N. Ivanova7, Markus Göker8,
Manoj Pillay9, Jonathan A. Eisen10, Tanja Woyke7, Hans-Peter Klenk2,8*, Nikos C. Kyrpides7,11 and Wen-Jun Li1,13*

Abstract

Jiangella gansuensis strain YIM 002T is the type strain of the type species of the genus Jiangella, which is at the
present time composed of five species, and was isolated from desert soil sample in Gansu Province (China). The five
strains of this genus are clustered in a monophyletic group when closer actinobacterial genera are used to infer a
16S rRNA gene sequence phylogeny. The study of this genome is part of the Genomic Encyclopedia of Bacteria and
Archaea project, and here we describe the complete genome sequence and annotation of this taxon. The genome
of J. gansuensis strain YIM 002T contains a single scaffold of size 5,585,780 bp, which involves 149 pseudogenes,
4905 protein-coding genes and 50 RNA genes, including 2520 hypothetical proteins and 4 rRNA genes. From the
investigation of genome sizes of Jiangella species, J. gansuensis shows a smaller size, which indicates this strain
might have discarded too much genetic information to adapt to desert environment. Seven new compounds from
this bacterium have recently been described; however, its potential should be higher, as secondary metabolite
gene cluster analysis predicted 60 gene clusters, including the potential to produce the pristinamycin.
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Introduction
Jiangella gansuensis strain YIM 002T (=DSM 44835T

=CCTCC AA 204001T =KCTC 19044T) is the type
strain of J. gansuensis. This organism is an aerobic,
Gram-positive, haloduric filamentous actinomycete,
placed within the genus Jiangella [1].
The genus Jiangella was first identified by Song et al.

in 2005, including five halotolerant species listed at
present by LPSN [2]. Members of this taxon isolated
from different habitats, respectively, are rarely
described except for their polyphasic approach based
on combination of phenotypic and genotypic

characteristics [1, 3–6]. The Jiangella was originally
identified as a new genus of the family Nocardioida-
ceae within the suborder Propionibacterineae [1] based
on phenotypic and genotypic criteria. However, the re-
construction of the phylogenetic relationships of Acti-
nobacteria at higher taxa was done later based on
using the 16S rRNA genes and other related evidences,
such as taxon-specific 16S rRNA gene signature nucle-
otides [7, 8]. After the genus Haloactinopolyspora was
described by Tang et al., the genus Jiangella together
with the genus Haloactinopolyspora were placed in a
novel family Jiangellaceae belong to Jiangellineae sub-
ord. nov., mainly because of theirs signature nucleotide
patterns, 16S rRNA gene similarity and phylogenetic
criteria [9]. Presently, the J. gansuensis is placed in the
family Jiangellaceae of the order Jiangellales within the
class Actinobacteria [10].
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The capacity of J. gansuensis YIM 002T to produce
seven new compounds (five pyrrol-2-aldehyde com-
pounds, jiangrines A-E; one indolizine derivative, jian-
grine F; one glycolipid, jiangolide) has previously been
shown [11], highlighting the importance of this bac-
terium and its analysis as a novel source of secondary
metabolites. As part of the GEBA project and consid-
ering its phylogenetic position and biological signifi-
cance, we finally decided to sequence the genome of
the type strain of J. gansuensis. Here we present a
summary classification and a set of features for J.
gansuensis YIM 002T, together with the description of
genomic sequencing and annotation. At the same
time, we will provide a brief introduction of its gen-
ome in this article.

Organism information
Classification and features
Strain YIM 002T is a free-living isolate collected
from a desert soil sample of Gansu Province during
an investigation into microbial diversity of extreme
environments. This actinobacterium forms well-
differentiated non-sporulating aerial and substrate
mycelia. Its aerial hypha was observed to have
yellow-white color at the earliest and finally turns to
orange-yellow after few days on NA medium, and its
substrate mycelia fragmented into short or elongated
rods in the early phase of the growth (Fig. 1).
Growth was observed on ISP 2, ISP 3, ISP 4, ISP 5,
nutrient agar and Czapek’s agar [1, 12]. The type
strain of this taxon is able to tolerate a pH range be-
tween 5.0 and 10.0, and able to growth at the salinity
between 0 and 10% (w/v NaCl), with no growth ob-
served at 12.5%. Optimal growth of strain YIM 002T

occurs at pH 7.0–8.0, 1–5% (w/v) NaCl and 28 °C.
The diamino acid in the peptidoglycan is LL-2,6-
diaminopimelate. MK-9(H4) is the predominant
menaquinone. The primary phospholipids profile of

strain DSM 44835T was found to consist of phos-
phatidylinositol mannosides, phosphatidylinositol and
diphosphatidylglycerol. Its major cellular fatty acids
(>10%) are anteiso-C15:0, anteiso-C17:0 and iso-C15:0.
Whole cell sugar composition includes glucose and
ribose, whereas the amino acids in the peptidoglycan
layer were LL-A2pm, alanine, glycine and glutamic
acid [1]. The DNA G + C content of the type strain
was previously determined as 70% while genome ana-
lysis showed a higher value of 70.91%.
The draft genome of J. gansuensis YIM 002T has

one almost full-length 16S rRNA gene sequence,
which correspond perfectly with the original sequence
from the species description (AY631071). The com-
parison of this 16S rRNA sequence of YIM 002T

using the EzTaxon-e server [13], showed highest simi-
larity to Jiangella alba YIM 61503T (98.93%), with
close relationships to other species within the genus,
Jiangella muralis 15-Je-017T (98.88%), Jiangella man-
grovi 3SM4-07T (98.49%) and Jiangella alkaliphila
D8-87T (98.10%). Closest other genera are Haloactino-
polyspora [9] and Phytoactinopolyspora [14]. The
strains of the genus Jiangella have many 16S rRNA
gene signature nucleotides compared with most of
other described actinomycetes. This allows for distin-
guished them easily from other actinobacteria, espe-
cially in 11 unique positions, including 127:234 (G-C),
598:640 (C-G), 672:734 (G–C), 831:855 (U–A), 833:853
(G–C), 840:846 (A–U), 950:1231 (G–C), 952:1229 (G–C),
955:1225 (G–U), 986:1219 (U–G) and 987:1218 (C–G) [9].
Phylogenetic analyses were performed using both

neighbor-joining (NJ) and maximum-likehood (ML) algo-
rithms. The NJ phylogenetic tree of the genus Jiangella
based on 16S rRNA genes provide an evidence of its
independent taxon (Figs. 2 and Additional file 1: Figure S1),
together with the genera Haloactinopolyspora and
Phytoactinopolyspora, which arouse ours reflection on the
relationship of three families among Jiangellaceae,

Fig. 1 Scanning electron micrograph of Jiangella gansuensis strain YIM 002T grown on ISP medium 2 for 14d at 28 °C. Bar size: 2 μm
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Nocardioidaceae and Pseudonocardiaceae. The ML tree
(Additional file 1: Figure S1) demonstrates the same
positions in Jiangellaceae compared with the NJ tree.
Minimum Information about the Genome Sequence is
provided in Table 1.

Genome sequencing information
Genome project history
This organism was selected for sequencing on the
basis of its important phylogenetic position and bio-
logical significance [15, 16], and for a better

Fig. 2 Phylogenetic tree showing the relationship of J. gansuensis YIM 002T with some other actinobacteria based on 16S rRNA gene sequences.
The Neighbour-joining tree was built using MEGA 5 [39] with the Kimura 2-parameter model. Bootstrap values (percentages of 1000 replicates)
are shown at branch points. Asterisks denote nodes that were also recovered using the Maximum Likelihood method in the branch of Jiangellaceae.
The Haloglycomyces albus act as the outgroup
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understanding of the school of ‘evolutionary taxonomy’
[17]. Sequencing of J. gansuensis YIM 002T is part of Gen-
omic Encyclopedia of Bacteria and Archaea pilot project
[18], which aims for generating high quality draft genomes
for bacterial and archaeal strains. The genome project is
deposited in the Genomes OnLine Database (GOLD) [19],
and the finished genome sequence was deposited in Gen-
Bank. Genome sequencing, finishing and annotation were
performed by the Department of Energy, Joint Genome
Institute (JGI) using state of the art genome sequencing
technology [20]. A summary of project information is
shown in Table 2, compliance with MIGS version 2.0 [21].

Growth conditions and genomic DNA preparation
J. gansuensis strain YIM 002T (=DSM 44835T) was
grown in DSMZ medium 65 (GYM Streptomyces medium)
at 28 °C. Genomic DNA was isolated using Qiagen

Table 1 Classification and general features of Jiangella gansuensis strain YIM 002T in accordance with the MIGS recommendations
[20], List of Prokaryotic names with Standing in Nomenclature [40] and the Names for Life database [41]

MIGS ID Property Term Evidence codea

Current classification Domain Bacteria TAS [42]

Phylum Actinobacteria TAS [43]

Class Actinobacteria TAS [7]

Order Jiangellales TAS [44]

Family Jiangellaceae TAS [9]

Genus Jiangella TAS [1]

Species Jiangella gansuensis TAS [1]

Type strain YIM 002T (=DSM 44835T) TAS [1]

Gram stain Positive IDA

Cell shape Filamentous IDA

Motility Non motile IDA

Sporulation Non-sporulating IDA

Temperature range 10–45 °C IDA

Optimum temperature 28 °C IDA

pH range; Optimum 7.0–8.0 TAS [1]

Carbon source Various IDA

Energy source Chemoorganotroph IDA

MIGS-6 Habitat Desert soil IDA

MIGS-6.3 Salinity Halotolerant IDA

MIGS-22 Oxygen requirement Aerobic IDA

MIGS-15 Biotic relationship Free living IDA

MIGS-14 Pathogenicity None IDA

MIGS-4 Geographic location Gansu Province, China IDA

MIGS-5 Sample collection time 2005 or before NAS

MIGS-4.1 Latitude Not reported NAS

MIGS-4.2 Longitude Not reported

MIGS-4.4 Altitude Not reported
a Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author
Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These
evidence codes are from of the Gene Ontology project [45]

Table 2 Genome sequencing project information

MIGS ID Property Term

MIGS 31 Finishing quality Non-contiguous Finished

MIGS-28 Libraries used Illumina Std shotgun library

MIGS 29 Sequencing platforms 454-GS-FLX-Titanium Illumina GAii

MIGS 31.2 Fold coverage Unknown

MIGS 30 Assemblers ALLPATHS v. R37654

MIGS 32 Gene calling method Prodigal 1.4, GenePRIMP

Locus Tag JIAGA

GenBank ID AZXT00000000

GenBank Date of Release 15-08-2013

GOLD ID Gp0001209

BIOPROJECT PRJNA224116, PRJNA63165

MIGS 13 Source Material Identifier YIM 002, DSM 44835

Project relevance Tree of Life, GEBA
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Genomic 500 DNA Kit (Qiagen, Hilden, Germany) follow-
ing the standard protocol provided by the manufacturer.
Some modifications were included for cell lysis, first freez-
ing for 20 min (−70 °C), then heating 5 min (98 °C), and
cooling 15 min to 37 °C; adding 1.5 ml lysozyme (standard:
0.3 ml, only), 1.0 ml achromopeptidase, 0.12 ml lysosta-
phine, 0.12 ml mutanolysine, 1.5 ml proteinase K (standard:
0.5 ml, only), followed by overnight incubation at 35 °C.

Genome sequencing and assembly
All general aspect of library construction and sequen-
cing performed can be found at the JGI website. The
complete sequence in one scaffold was obtained from

9 contigs with the assembly method ALLPATHS v.
R37654, obtaining a total size of 5.5 Mbp from a total
volume data of 4 Gbases (Fig. 3).

Genome annotation
Prodigal [22] was used to identify genes as part of the
JGI genome annotation pipeline [23, 24] followed by a
round of manual curation using the JGI GenePRIMP
pipeline [25]. The National Center for Biotechnology In-
formation non-redundant database, UniProt, TIGR/Fam,
Pfam, PRIAM, KEGG, COG, and InterPro databases
were used to analyse the predicted CDSs after transla-
tion. RNA genes identification was done using HMMER

Fig. 3 Graphical map of the J. gansuensis strain YIM 002T chromosome. The genome circular map was set up by the CGView Server [46]. From
the outside to the center: Genes on forward strand (colored by COG categories), Genes on reverse strand (colored by COG categories), GC
content, GC skew, where green indicates positive values and magenta indicates negative values
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3.0 [26] (rRNAs) and tRNAscan-SE 21.23 [27] (tRNAs).
INFERNAL 1.0.2 [28] was used for prediction of other
non-coding genes. Integrated Microbial Genomes Expert
Review platform [29] permitted the additional gene pre-
diction analysis and functional annotation. CRISPR ele-
ments were detected with CRT [30] and PILER-CR [31].
General statistics are shown in Table 3.

Genome properties
The assembly of the draft genome sequence consists of
one scaffold for the strain YIM 002T (Fig. 1), with 70.9%
GC content (Table 3) in 5,585,780 nucleotides. From a
total of 5104 genes, there were 4905 protein-coding
genes, 149 pseudogens and 50 RNA genes. Numbers of
the genes were assigned a putative function (48.86%),
while the remaining protein-coding genes were anno-
tated as hypothetical proteins. COGs categories distribu-
tions for the genes are presented in Table 4.

Insights from the genome sequence
The genome of YIM 002T with a high G + C content and
the smallest size within the Jiangella genomes (Table 3)
may be the result of selection and mutation [32], which
could involve several factors, such as environment,
aerobiosis and others [33]. Generally speaking, a larger
genome size may correlate with more complex habitat,
suggesting that the genome encodes a large metabolic
and stress-tolerance potential [34]. However, after we
investigated the genome size of other type strains of
Jiangella species, we found the size of the other three
strains sequenced of this genus, J. alkaliphila, J. alba

and J. muralis greater than 7 Mbp based on the genome
data from NCBI. This result could implicate that the
tight packing and small size of J. gansuensis is likely
an adaptation for reproductive efficiency or com-
petitiveness [35]. As a halotolerant actinobacterium,
solute and ion transporter were predicted in its gen-
ome. At the same time, the genome shows properties
related to solution of nitrate and sulfonate transport
systems. Moreover, nitrite reductase and nitrogen fix-
ation protein NifU were also detected.
The capacity of this microorganism to produce antibi-

otics has been recently proved with the description of
seven new compounds (five pyrrol-2-aldehyde com-
pounds, jiangrines A-E; one indolizine derivative, jian-
grine F; one glycolipid, jiangolide) [11]. However, its
potential should be higher, taken account the 45 biosyn-
thetic clusters found within the JGI tool [36] and the
497 genes implicated in these clusters. As most of the
clusters appear to be putative genes in this analysis, a

Table 3 Genome Statistics

Attribute Value % of total a

Genome size (bp) 5,585,780 100.00

DNA coding (bp) 4,761,339 85.24

DNA G + C (bp) 3,960,974 70.91

DNA scaffolds 1 -

Total genes 5,104 -

Protein-coding genes 4,905 98.03

RNA genes 50 0.98

Pseudo genes 149 2.98

Genes in internal clusters 1763 34.54

Genes with function prediction 2,504 48.86

Genes assigned to COGs 2,156 42.07

Genes with Pfam domains 1,734 33.97

Genes with signal peptides 456 8.69

Genes with trandmembrane helices 1230 23.43

CPISPR repeats 0 -
a The total is based on either the size of genome in base pairs or the total
number of genes in the predicted genome

Table 4 Number of genes associated with the general COG
functional categories

Code Value % age a Description

J 160 3.18 Translation, ribosomal structure and biogenesis

A 1 0.02 RNA processing and modification

K 230 4.58 Transcription

L 116 2.31 Replication, recombination and repair

B 1 0.02 Chromatin structure and dynamics

D 21 0.42 Cell cycle control, cell division, chromosome
partitioning

V 60 1.19 Defence mechanisms

T 75 1.49 Signal transduction mechanisms

M 96 1.91 Cell wall/membrane biogenesis

N 0 0.00 Cell motility

U 18 0.36 Intracellular trafficking, secretion, and vesicular
transport

O 69 1.37 Posttranslational modification, protein turnover,
chaperones

C 160 3.18 Energy production and conversion

G 223 4.44 Carbohydrate transport and metabolism

E 298 5.93 Amino acid transport and metabolism

F 56 1.11 Nucleotide transport and metabolism

H 114 2.27 Coenzyme transport and metabolism

I 111 2.21 Lipid transport and metabolism

P 179 3.56 Inorganic ion transport and metabolism

Q 84 1.67 Secondary metabolites biosynthesis, transport
and catabolism

R 311 6.19 General function prediction only

S 151 3.00 Function unknown

- 2868 57.09 Not in COGs
aThe total is based on the total number of protein-coding genes in the genome
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second approach was carried out to detect the variety of
biosynthetic types and enhance manual genome annota-
tions of secondary metabolite biosynthesis. The software
pipeline antiSMASH for secondary metabolite gene cluster
identification, annotation and analysis was used [37, 38].
From this analysis, 60 gene clusters were identified, in-
cluding 20 gene clusters in which the most similar clusters
were still unknown (Additional file 2: Table S1). The result
of the analysis shown the potential of J. gansuensis to
produce pristinamycin, an antibiotic derived from Strepto-
myces pristinaespiralis effective against staphylococcal
infections, and other antibiotics.

Conclusions
The genome sequence and annotation of J. gansuensis
YIM 002T were presented. This draft genome possess a
smaller size (5.59 Mb) compared with other Jiangella
species, and contents 2504 function predicted proteins,
indicating that J. gansuensis possibly discarded many
genes to adapt to the extreme desert conditions during
its evolution. Although the processes of nitrous metabol-
ism and secondary metabolism need further investiga-
tion to fully understand the related pathways, we believe
that J. gansuensis participates in nitrogen cycling and has
an important ability to produce secondary metabolites.
This genome will contribute to further studies on phylo-
genetics and the mechanisms of environmental adapta-
tion. A combined study together with genomes of other
members in the family Jiangellaceae will help us to
better understand the ecological role of this taxon and
its relationships to other actinobacteria.

Additional files

Additional file 1: Figure S1. Phylogenetic tree showing the relationship
of J. gansuensis YIM 002T with some other actinobacteria based on 16S
rRNA sequences. The maximum-likelihood tree was built using MEGA 5 [39].
Bootstrap values (percentages of 1000 replicates) are shown at branch
points. Haloglycomyces albus was used as outgroup. (PDF 92 kb)

Additional file 2: Table S1. Number of gene clusters associated with
antiSMASH. (DOCX 73 kb)
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