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California 92093-0365 and Department of Chemistry and Biochemistry, University of California, San Diego,
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The Smoluchowski approach to diffusion-controlled reactions is generalized to interacting substrate
particles by including the osmotic pressure and hydrodynamic interactions of the nonideal particles
in the Smoluchoswki equation within a local-density approximation. By solving the strictly
linearized equation for the time-independent case with absorbing boundary conditions, we present
an analytic expression for the diffusion-limited steady-state rate constant for small substrate
concentrations in terms of aneffectivesecond virial coefficientB2

* . Comparisons to Brownian
dynamics simulations excluding hydrodynamic interactions show excellent agreement up to bulk
number densities ofB2

*r0&0.4 for hard sphere and repulsive Yukawa-like interactions between the
substrates. Our study provides an alternative way to determine the second virial coefficient of
interacting macromolecules experimentally by measuring their steady-state rate constant in
diffusion-controlled reactions at low densities. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1887165g

I. INTRODUCTION

Simple irreversible reactions of the typeA+B→A swith
A being the sink andB the substratesd are commonly found
in many sbiodchemical processes, such as fluorescence
quenching, enzyme catalysis, polymerization, or colloid and
protein aggregation, just to mention a few examples.1 The
key parameter for these processes is the reaction rate con-
stant, a measure for the number of reactions per unit time,
first addressed in the pioneering and now classical works of
Smoluchowski2 and Debye3 decades ago. Since then, various
improvements and refinements have been made in predicting
the rate constants for diverse reactions,1,4–12 in particular,
including solvent-mediated hydrodynamic interactionssHId
between sinksAd and substratesBd,7 or examining effects of
a nonzero concentration of the sink particles.4,13,14In most of
the previous studies interactions between the substrate par-
ticles were ignored, which is only justified in the case of very
weakly interacting substrate particles or at infinite dilution.
In recent attempts the influence of the excluded volume of
the substrate particles was examined15,16 and predicted to
yield an increased reaction rate with increasing excluded vol-
ume or substrate concentration. Along these lines, Senapati,
Wong, and McCammon17 also gave evidence for a strong
influence of substrate interactionsswithout HId on the reac-
tion rate by means of Brownian dynamicssBDd computer
simulations. We tie up to these studies in this work and aim
at a systematic examination of the substrate concentration
dependence of the rate constant, while the sinks remain at
infinite dilution.

For many of the reactions mentioned above the rate-
limiting factor is the diffusional encounter of the reactants,

particularly when the subsequent transformation does not in-
volve a large activation barrier. In our work we will focus on
the steady-stateslong-timed rate of these diffusion-limited or
diffusion-controlled reactions. The usual theoretical ap-
proach is based on the Smoluchowski equationsSEd which
becomes time independent in the steady state. For weakly
interacting particles or for small concentrations, the inhomo-
geneous density profile of the substrates around the sink var-
ies smoothly over distances large compared to the typical
interaction range and well established generalizations of the
SE are available,18 often used for instance for the problem of
colloidal sedimentation. The generalized SE employs the os-
motic pressure and density-dependent mobility of the inter-
acting particles within a local-density approximation19

sLDA d which assumes local homogeneity of the density and
is justified whenever the density varies slowly in space. Us-
ing a simple model with a spherical, isotropically reactive
sink particle, we will show that a strictly linearized version
of the generalized SE allows us to write down an analytic
solution for the first-order correction of the rate constant lin-
ear in substrate concentration. As a result, the correction co-
efficient is basically given by the second virial coefficientB2,
the first-order correction coefficient in the expansion of the
virial equation of state, but must be corrected for HI and is
also influenced by the interaction between sink and substrate.
Fortunately, many chemical reactions occur at small densities
of the reactants so that our result should be valid for a wide
range of processes and systems. Despite the simplicity of our
model the results are general and should be applicable and
extendable to more realistic and complicated systems.

In order to examine the range of validity of our theoret-
ical result, we perform BD simulations for different systems
in which the interaction between theB particles is variedadElectronic mail: jdzubiella@ucsd.edu
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from hard sphere to attractive and repulsive Yukawa-like in-
teractions, the latter typically found in ionic solutions. The
BD simulations do not include HI, which can be accurately
treated only by more sophisticated and computationally more
expensive means, such as lattice-Boltzmann methods20 or
others.21–23 However, in comparison to the theory excluding
HI we find excellent agreement up to substrate densities
B2r0.0.4, showing the reliability of our theoretical concept
and proving its applicability to the case when HI can be
neglected, i.e., for long-ranged interactions. In principle, our
study opens up an alternative way to determine the second
virial coefficient of proteins or other particles by measuring
their reaction rate in diffusion-limited reactions at small sub-
strate densities.

The paper is organized as follows: In Sec. II we present
the basic equations of motion and approximations of our
theory and arrive at a first-order linear differential equation
which can be solved analytically. The solution for the steady-
state rate constant and density profile are presented and dis-
cussed in Sec. III. A systematic comparison to BD simula-
tions in order to examine the range of validity of our theory
follows in Sec. IV. Section V concludes our work with a few
final remarks.

II. GENERALIZED SMOLUCHOWSKI THEORY

A. Model and basic equations

Let us consider a spherical, isotropically reactive sink
particleA with diametersAA which reacts with aB particle
ssubstrated of size sBB¬s when they touch at a center-to-
center distancer =sAB=ssAA+sd /2. The sinks are at infinite
dilution while theB particles have a bulk number densityr0.
Furthermore a potentialVABsrd is acting between the sink and
the substrate particles. BothA andB are dispersed in a sol-
vent, which is taken into account by a position-dependent
diffusion constantD0sr d of the substrates, reflecting the dif-
fusion of an isolatedB particle relative to theA particle. We
assume the sink to be completely at rest, which is justified
for large sinkssAA@s. For close distances toA, D0sr d is
determined by the HI betweenA andB, while for large dis-
tances when HI are negligible,D0 is constant and is obtained
by the Stokes-Einstein relation

D0sur u → `d = D0 = s3bphsd−1, s1d

whereb−1=kBT is the thermal energy andh the solvent vis-
cosity.

The time-dependent SE for the densityrsr ,td of nonin-
teracting particles moving in a potentialVABsr d with a
position-dependent diffusion constantD0sr d is given by

]rsr ,td/]t = − = ·Jsr ,td

= = ·D0sr dfrsr ,tdb = VABsr d + = rsr ,tdg .

s2d

For weak density inhomogeneities, which is always true
for small densities or weak interactions, one can introduce
substrate interactions by using the generalized Stokes–
Einstein relation18

Dsrd = Msrd
dPsrd

dr
, s3d

whereDsrd is the collective diffusion coefficient,Msrd is the
density dependent mobility of the substrate particles, and
Psrd the osmotic pressure of the interacting particles. This is
a generalized Stokes–Einstein equation in the sense that it
generalizess1d to the case of interacting particles in a homo-
geneous solution. The mobilityMsrd is a reciprocal friction
and is defined as the proportionality constant between the
drift velocity and total force on the Brownian particles
fvelocity=Msrd3 total forceg in a steady-state situation.
Within the LDA the generalized Stokes–Einstein relation is
applied to the local, position-dependent densityrsr d of the
substrate particles, which we assume to vary smoothly over
distances large compared to the range of the interaction po-
tential. The equation of motion can now be written as18

]rsr ,td/]t = − = ·Jsr ,td

= = · Mfrsr ,td,r gFrsr ,td=VABsr d

+ f=rsr ,tdg
dPfrsr ,tdg

drsr d G , s4d

and is a generalization of Eq.s2d to weakly interacting sub-
strate particles. The last term on the right-hand sidesrhsd of
Eq. s4d accounts for the force on a Brownian particle due to
an unbalanced osmotic pressure caused by a concentration
gradient of interacting particles. In addition, the density-
dependent mobility corrects for HI betweenB particles. Note
that for ideal particlesdP /dr=kBT, and with no HI between
B particlesMfrsr d ,r g=bD0sr d and we find Eq.s2d again. To
account for reactions at the sink we have to solve Eq.s4d
with the boundary condition

u4psAB
2 sr /rdJsr ,tdusAB

= u − kirsr ,tdusAB
, s5d

whereki is the intrinsic rate constant. In the limit of fully
absorbing boundary conditions,ki →`, while rssABd→0,
and the reaction rate is only limited by the diffusion of the
approaching substrates. We are interested in the steady-state
solution for the spherically symmetric problem, with which
the equation of motion reduces to

0 =
]

]r
Sr2Mfrsrd,rgFrsrd

]VABsrd
]r

+ S ]

]r
rsrdDdPfrsrdg

drsrd GD s6d

with the boundary conditions for diffusion-controlled reac-
tions

4psAB
2 jssABd = kr0, s7d

rssABd = 0, rs`d = r0, s8d

where jssABd is the absolute flux perpendicular through the
sink surface at radial distancesAB from the sink center and
the quantityk is the diffusion-controlled steady-state rate
constant which we are interested in.

184902-2 J. Dzubiella and J. A. McCammon J. Chem. Phys. 122, 184902 ~2005!
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The osmotic pressure can be expressed in terms of the
equation of state, or in general, the virial equation, which is
an expansion of the pressure in terms of the particle density
r. For small densities the series is usually truncated after the
second order and the osmotic pressure reads

bPsrd = r + B2r2. s9d

Conveniently, the second virial coefficientB2 can be calcu-
lated from the pair interactionVBBsr d¬Vsr d between the
substrates via19

B2 =
1

2
E dr f1 − exp„− bVsr d…g. s10d

The local mobility of the substrates will be in general re-
duced by a nonzero concentration of other surrounding par-
ticles due to HI, and for small densities the correction is
linear in r, so that we can write

Mfrsrd,rg = bD0srdf1 − arsrdg, s11d

where a.0 is the first-order correction coefficient. In Eq.
s11d we assume that the HI betweenA and B, expressed in
D0srd, is independent of the HI betweenB particles and the
resulting mobility can be factorized. For the case of hard
spheres of diameters it is well established thatas−3

.3.43.18 Substituting Eq.s11d and the derivative of Eq.s9d
with respect tor into Eq. s6d, integrating, and strictly linear-
izing in r we find

C

D0srdr2 = rsrdFb]VABsrd
]r

+
2B2

*C

D0srdr2G +
]

]r
rsrd, s12d

where we introduced theeffectivesecond virial coefficient

B2
* = B2 − a/2 s13d

and which has to be solved with boundary conditions, Eqs.
s7d and s8d. The equilibrium pair interaction, described by
B2, and the dynamic interaction, absorbed ina, compete
likewise now in altering the rate of the reaction, and can
hence be summarized in the single parameterB2

* given in Eq.
s13d. This interesting feature will be discussed in more detail
in the following section, where the result fork is presented.
Equations12d is a first-order linear differential equation and
can be solved analytically. The parameterC is an integration
constant, determined by the boundary conditions, and is re-
lated to the rate constant withC=r0k/4p.

B. Result for the steady-state rate constant

From the linearized solution of Eq.s12d we arrive at the
result for the diffusion-controlled steady-state rate constant
valid for small densitiessor weak interactionsd,

k = kDF1 + B2
*r0

Is`d
I1s`dG , s14d

wherekD is the classical result of Debye3 for ideal or infi-
nitely diluted substrates in a nonzero potentialVABsrd,

kD =HE
sAB

`

dr
expfbVABsrdg

4pD0srdr2 J−1

= hI1s`dj−1, s15d

and

Isrd = 2
I0srdI1srd − I2srd

I1s`d
s16d

with the integrals

I0srd =E
sAB

r

dr8
1

4pD0sr8dr82 , s17d

I1srd =E
sAB

r

dr8
expfbVABsr8dg
4pD0sr8dr82 , s18d

and

I2srd =E
sAB

r

dr8
expfbVABsr8dgI0sr8d

4pD0sr8dr82 , s19d

which are functions depending on the particular interaction
VABsrd and the position-dependent diffusion constantD0srd.
When interactions betweenA and B can be neglected,
namely,D0srd=D0, andVABsrd=0, it follows Is`d / I1s`d=1,
and the result for the steady-state rate constant reduces to

k = 4pD0sABs1 + B2
*r0d, s20d

which for noninteracting particles or at infinite dilution of
speciesB gives the classical Smoluchowski result2

k0 = 4pD0sAB. s21d

The constantIs`d / I1s`d in Eq. s14d depends on the particu-
lar interactionVABsrd and D0srd betweenA and B particles,
but is always close to 1 for Lennard-Jones or Yukawa-like
interactions typically found in solutions, and aD0srd for in-
stance given by the Oseen tensor.6 The major contribution to
the density correction stems from the effective second virial
coefficientB2

* =B2−a /2, which is a corrected second virial
coefficient for the dynamic situation and features the follow-
ing interesting trends for the steady-state rate constant. Gen-
erally a.0, imposing that HI will decrease the substrate
mobility. However, if the substrate-substrate interaction is
strongly repulsive,B2.a /2, so thatB2

* is positive, an en-
hanced reaction rate is predicted compared to the noninter-
acting case. On the contrary, a mainly attractive pair interac-
tion will in general lead to a negativeB2

* and decrease the
reaction rate. For long-ranged interactionsuB2u may be an
order of magnitude larger thana /2 and HI can be neglected,
such thatB2

* .B2. When the repulsive interaction leads to a
B2 comparable toa /2, both contributions can cancel each
other and the reaction rate just changes little or not at all with
increasing ssmalld density or sweakd interaction. For in-
stance, for the repulsive hard sphere case the effective sec-
ond virial coefficientB2

*s−3.2.09−3.43/2.0.38 is small
due to a slowing of the diffusion of the substrates which is
comparable to the effects of the enhanced osmotic pressure
in the system, leading just to a minor increase of the rate
constant with density. Our theory is in agreement with pre-
vious work15,16 where the excluded volume of the substrates
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is predicted to lead to an enhanced reaction ratesexcluding
HId. It is worth mentioning thatB2

* is half of the coefficient
of the linear first-order correction inr0 of the collective dif-
fusion coefficient of the substrates in bulk solution, latter
evident from the generalized Stokes–Einstein relations3d.
The range of validity of Eqs.s14d will be examined in Sec.
III for hard sphere and repulsive and attractive Yukawa in-
teractions excluding HI.

C. Result for the density profile

The general solution for the diffusion-controlled steady-
state density profile in linear order inr0 reads

rsrd = r0
kDI1srd

expfbVABsrdg
S1 + B2

*r0F Is`d
I1s`d

−
Isrd
I1srdGD . s22d

In order to better identify how the substrate interactions af-
fect the density profiles we rewrite the solution for the case
of no interactions between substrate and sink,D0srd=D0 and
VABsrd=0:

rsrd = ridsrdS1 + B2
*r0

sAB

r
D , s23d

where

ridsrd = r0S1 −
sAB

r
D s24d

is the classical result for ideal or infinitely diluted substrate
particles whenVAB=0 andD0srd=D0.

2,4 Equations23d pre-
dicts that a positiveB2

* will enhance the substrate density
close to the absorbent due to a higherspositived bulk pres-
sure of theB particles compared to the noninteracting case.
This is opposite to the case of negativeB2

* smainly attractive
interactionsd where a depletion ofB particles takes place
close toA due to a negative bulk pressure, and/or a larger
immobility of the approaching substrates. Comparing these
trends to the rate constants14d we conclude that an enhanced
or lower density close to the sink increases or decreases the
reaction rate, respectively, at least for small densities. These
predictions will be examined in the following section with
BD simulations.

III. BROWNIAN DYNAMICS SIMULATION

A. Simulation details

For a verification of the theory in the preceding section
we perform standard Brownian dynamics simulations using
the integration technique of Ermak and McCammon,24 and in
addition accounting for hard sphere overlap.25 In order to
conduct a clear and transparent comparison to the theoretical
result we neglect HI in the BD simulations. An accurate
treatment of HI is only given by more sophisticated and
computationally expensive techniques, such as
Lattice–Boltzmann20 or others.21–23 Thus, in the following,
D0srd=D0 given by Eq.s1d and B2

* =B2. In the BD simula-
tions, the steady-state rate constantk is determined by calcu-
lating the survival probabilitySstd of the substrate particlesB
around the reactive sinkA at a timet, which is given by

Sstd = exps− kr0td s25d

for a substrate bulk densityr0. In our simulation model, the
sink is fixed in the center of the periodically repeated, cubic
simulation box with edge lengthL. SubstratesBd particles
and sinksAd react as soon as they touch each other, which
happens at a center-to-center distancerAB=sAB. The trajec-
tory of aB particle is terminated after reaction. The survival
probability can be easily measured by forming an histogram
of the times between two reactions and normalize it with
respect to the number of total reactions in one simulation. To
account for the steady-state case and simulate a fixed density
r0 far away from the sink, the annihilatedB particle is rein-
serted randomly at a position closesrAB.0.45Ld to the box
edges. Due to the long range of the steady-state density-
profile s23d, finite size effects can be large for too small box
sizes for all densities and have been analyzed by performing
finite size scaling simulations. Eventually the box lengths
used in our simulations range fromL=50s up to L=200s
depending on density and interaction of theB particles. This
involved simulations ofNB=1000–30 000 substrate particles
using 53107–23105 time steps. The integration time step
was chosen to be 0.003tB, where tB=s2/D0 is a typical
Brownian time scale in the simulation. Verlet-neighbor lists
are used to optimize computational time.26 Densities up to
B2r0&1 could be simulated; for larger densities the system
size and statistical errors become too large for reasonable
output.

B. Systems

In order to perform a systematic comparison to the the-
oretical results we consider four different systems, I, II, III,
and IV, which differ in the interaction betweenA andB and
B and B particles. In all systems the pair potentials are in
general given by

bVijsrd = bVHSsrd + Uij
si j

r
expf− ksr − si jdg s26d

wherebVHS is the hard spheresHSd interaction

bVHSsrd = H` for r ø si j

0 else,
J s27d

and the second term in Eq.s26d is a Yukawa interaction with
energy scaleUij , inverse screening lengthk, andi , j =A,B. k
will be fixed toks=1 in all our four systems. We also fix the
length scale tosAB=1.5s, which is given when the sink par-
ticle is twice as large as the substrate particlesAA=2s. We
note already that we have simulated selected densities for all
four systems for two other sink sizes, namely,sAB=s and
sAB=2s, and did not find any deviation from the results later
in the work. For high asymmetriessAA@s, which is the
more realistic case, the BD simulations unfortunately be-
come computationally expensive due too a huge number of
substrate particles which have to be simulated. Note again
that the range of the steady-state density profile increases
essentially linearly withsAB, see Eq.s23d; however, we
stress that this does not affect our theoretical results14d
which should be valid for all size ratios, and we have chosen

184902-4 J. Dzubiella and J. A. McCammon J. Chem. Phys. 122, 184902 ~2005!
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smaller sink sizes only for computational convenience.
In system I we simply considerUij =0, in which case all

interactions are hard sphere like. The second virial coeffi-
cient for HS isB2s−3=2p /3.2.09. In system II Yukawa-
like repulsionUBB=1 is added between the substrate par-
ticles. The second virial coefficient increases to a total of
B2s−3.2p /3+11.23.13.32. In system III a Yukawa attrac-
tion is added between sinksAd and substratesBd particles,
UAB=−1, while keeping theB-B interaction as in system II.
Finally, in system IV we chooseUAB=0, no interaction be-
tweenA andB, but here we focus on attraction between the
B particles,UBB=−0.5, resulting in a total negative second
virial coefficientB2s−3.−4.62. The system parameters and
corresponding values of the second virial coefficient and the
constantIs`d / I1s`d are summarized in Table I.

Typical examples of the calculated survival probabilities
s25d are shown in Fig. 1 for systems I, II, and IV on a
logarithmic ordinate and show linear behavior for all times
within the uncertainty of the statistics. The density for sys-
tem I shard spheresd is chosen to be very smallsB2r0

=0.001d and the survival probability matches with the clas-
sical theoretical resultSstd=exps−k0r0td, also shown in Fig.
1 as a dashed line. As expected from the theory, a positive or
negativeB2 ssystems II and IVd increases or decreases the
rate constant, respectively, as is indicated by an increased or
decreased absolute slope of theSstd curves. Linear fits
through these curves determine our “experimental” values of
the rate constant for all systems, while the regression coeffi-
cient of the fitting procedure provides the error bars.

C. Results

Examples of the density profiles for systems I, II, and IV
are plotted in Fig. 2 compared to the theoretical prediction

s23d and are in very good agreement for the distances shown.
The density for system I is in the highly dilute region
sB2r0=0.001d and the profile matches the 1−sAB/ r behavior
s24d for ideal substrate particles. Further on, the predicted
density increasesdecreased around the sink by repulsivesat-
tractived substrate interactions is verified by the BD simula-
tions. All observed density profiles exhibit a very small but
nonvanishing density value at contactrssABd.0.05, show-
ing that the assumptionrssABd=0 for absorbing boundary
conditions in the theory is justified, but not perfect. This
contact value increasessdecreasesd slightly with positive
snegatived B2. For larger distancessr *10s, not shown in
Fig. 2d the simulation always overestimates the density due
to the finite size of the simulation box; however, our finite
size scaling analysis showed only little influence on the rate
constant as long as the density close to the sinksr &10sd is
in accord with the theoretical prediction.

Results for the rate constant are shown in Fig. 3 where
we plot the steady-state rate constant scaled by the ideal rate
constantk0 given by Eq.s21d versus the substrate density
scaled by the second virial coefficientB2, which can be dif-
ferent for each system, see Table I. Note again that we ne-
glect HI in our simulations, such thata=0 andD0srd=D0,
andB2

* =B2 in the theory. We find excellent agreement to the
theoryslinesd within the statistical uncertainties of the simu-
lation for the systems with repulsive substrate interaction
systemssI–III d up to densitiesB2r0.0.4. For system I, the
hard sphere case, the nonlinear regime takes over for larger
densities and the theoretical prediction underestimates the
rate constant. For systems II and III we still find good agree-
mentstheory within the error barsd till up to B2r0.0.7. This

TABLE I. Interaction parameters for the investigated systems in the BD simulations.

System UAB UBB sAB/s B2s
−3 Is`d / I1s`d

I 0.0 0.0 1.5 2.09 1.00
II 0.0 1.0 1.5 13.32 1.00
III −1.0 1.0 1.5 13.32 1.11
IV 0.0 −0.5 1.5 −4.62 1.00

FIG. 1. Typical examples of the survival probabilitySstd on a logarithmic
scale vs time scaled by the ideal substrate rate constantk0 s21d and substrate
bulk density r0. The straight dashed line is the ideal resultSstd
=exps−k0r0td, while the noisy data are BD simulation results for chosen
densities in systems I, II, and IV.

FIG. 2. Steady-state density profilesrsrd of the substrates around the sink
particle from BD simulationsssymbolsd and theoryslinesd according to Eq.
s23d for three different parameter sets.r is the distance from the center of the
sink. The circles are close to the infinite dilution limits24d, while squares
and diamonds are for positive and negativeB2 for nonzero bulk densities
r0, respectively.

184902-5 Substrate concentration dependence J. Chem. Phys. 122, 184902 ~2005!
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agreement for a larger density range as compared to HS
could be anticipated since for soft repulsive interactions it is
known that higher order virial coefficientssB3 and so ond are
less important even for higher densities.27 However, for
larger densities the shortcomings of the linearized Smolu-
chowski equation also take their effects. In the system with
attractive substrate interactionsssystem IVd the agreement is
good only for smaller densitiessB2r0&0.20d. Equilibrium
statistics has shown that for attractive interactions, a LDA
approach usually fails to give an accurate description of the
system behavior even for weak interactions, which could
also be the case here. The theoretical curves for systems I
and II are on top of each other and have the same absolute
slope as the data for system IV because the density is scaled
by the correspondingB2. For zero density the curves for
systems I, II, and IV intersect atk/k0=1 which is the classi-
cal ideal gas limit for no interactions betweenB andB, andA
andB. Curve III intersects at a larger valuek/k0.1.26 due
to the additionalA-B interaction in this system. This is also
the main reason for the increased absolute slope compared to
systems I, II, and IV, but additionally the constant
Is`d / I1s`d.1.1 is enhanced by the attractiveA-B interac-
tion in this system.

IV. CONCLUDING REMARKS

In conclusion we have derived an analytic expression for
the density profile and rate constant for weakly interacting
substrate particles for the steady-state case of diffusion con-
trolled reactions. For this purpose we used the Smolu-
chowski equation, which was generalized within a LDA to
account for the osmotic pressure and HI of the interacting
substrates. A comparison to BD simulations excluding hy-
drodynamic interactionssaccounted for in the theory bya
=0d showed excellent agreement for densities up toB2r0

.0.4 for repulsive interactions and up toB2r0.0.20 for
Yukawa-like attractions. Our BD simulations do not include
HI but support our theoretical concept and prove its validity
when HI can be neglected, i.e., for long-ranged interactions.

We are confident that our theoretical treatment is valid also
in the general case including HI; when the density-profiles of
the substrates are slowly varying in space, the correlations in
the system are usually well approximated by those in the
bulk, even in the dynamic case.18 However, a verification of
our theory including HI is highly desired and abandoned to
future work, where the HI need to be treated by accurate
means.

In principle, our study provides an alternative way to
estimate the second virial coefficient of interacting macro-
molecules experimentally by measuring their steady-state
rate constant in diffusion-controlled reactions at low densi-
ties. In such experiments, the effective sink-substrate inter-
action has to be known and the hydrodynamic quantities
D0srd anda must be approximated, e.g., by using the Oseen
tensor,6 and approximating the substrate particles by hard
spheres with an effective hydrodynamic radius,
respectively.18

The generalized Smoluchowski equation used in our
work can also be understood as a LDA in the recently pro-
posed framework of dynamic density functional theory
sDDFTd,28 where equilibrium correlations are used to ap-
proximate the dynamical correlation in a Brownian system. It
was shown by BD simulations that DDFT including more
sophisticated approximations than LDA works well in the
case of dense one-dimensional28 and three-dimensional hard
spheres,29 and three-dimensional particles with very soft
interactions,30–32 and seems to provide a powerful tool to
extend our work to more strongly correlated systems, i.e.,
nucleating or aggregating colloids, polymerization, or bind-
ing in crowded protein solutions.33

Finally, we hope that our approach will shed some light
on interpretations of experimental rate constant
measurements34 and will be useful in extending existing
works on the time dependence of the rate constant,5,6,35

crowding effects in reactions,10,11 finite sink
concentration,4,13,14or anisotropic reactivity6,36 to the case of
interacting substrate particles.
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