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The Smoluchowski approach to diffusion-controlled reactions is generalized to interacting substrate
particles by including the osmotic pressure and hydrodynamic interactions of the nonideal particles
in the Smoluchoswki equation within a local-density approximation. By solving the strictly
linearized equation for the time-independent case with absorbing boundary conditions, we present
an analytic expression for the diffusion-limited steady-state rate constant for small substrate
concentrations in terms of aeffectivesecond virial coefficienB,. Comparisons to Brownian
dynamics simulations excluding hydrodynamic interactions show excellent agreement up to bulk
number densities (B*poSOA for hard sphere and repulsive Yukawa-like interactions between the
substrates. Our study provides an alternative way to determine the second virial coefficient of
interacting macromolecules experimentally by measuring their steady-state rate constant in
diffusion-controlled reactions at low densities.2005 American Institute of Physics

[DOI: 10.1063/1.1887165

I. INTRODUCTION particularly when the subsequent transformation does not in-
Simole | ib| ) fth ith volve a large activation barrier. In our work we will focus on
Ab _Imptﬁ IrrfavkerSICBeﬂr]eactlgnts (1 the type B_"? (]Yv't d the steady-statdong-time rate of these diffusion-limited or
£ being e sink an® the substra 9sare commonly foun diffusion-controlled reactions. The usual theoretical ap-
in many (bio)chemical processes, such as fluorescence : : .
; . o . roach is based on the Smoluchowski equati®g) which

quenching, enzyme catalysis, polymerization, or colloid an . X .

. . . d ecomes time independent in the steady state. For weakly
protein aggregation, just to mention a few examﬁlé‘she . . . . .

interacting particles or for small concentrations, the inhomo-

key parameter for these processes is the reaction rate con densit file of th bstrat d the sink
stant, a measure for the number of reactions per unit timegeneous ensity profile of the substrates around the Sink var-

first addressed in the pioneering and now classical works gfS Smoothly over distances large compared to the typical
Smoluchowsk and Debyédecades ago. Since then, various Interaction rang% and well estaphshed generalizations of the
improvements and refinements have been made in predictimgE &€ a"a'l"_"blé' often used for instance for the problem of
the rate constants for diverse reactiods!? in particular, colloidal sedimentation. The generalized SE employs the os-
including solvent-mediated hydrodynamic interactigitg) ~ Motic pressure and density-dependent mobility of the inter-
between sinKA) and substratéB),’ or examining effects of 2acting particles within a local-density approximation

a nonzero concentration of the sink particté&4in most of ~ (LDA) which assumes local homogeneity of the density and
the previous studies interactions between the substrate pdfjustified whenever the density varies slowly in space. Us-
ticles were ignored, which is only justified in the case of verying a simple model with a spherical, isotropically reactive
weakly interacting substrate particles or at infinite dilution.sink particle, we will show that a strictly linearized version
In recent attempts the influence of the excluded volume off the generalized SE allows us to write down an analytic
the substrate particles was examitied and predicted to solution for the first-order correction of the rate constant lin-
yield an increased reaction rate with increasing excluded volear in substrate concentration. As a result, the correction co-
ume or substrate concentration. Along these lines, Senapaéfficient is basically given by the second virial coeffici@at
Wong, and McCammdn also gave evidence for a strong the first-order correction coefficient in the expansion of the
influence of substrate interactiofwithout HI) on the reac- virial equation of state, but must be corrected for HI and is
tion rate by means of Brownian dynami¢BD) computer also influenced by the interaction between sink and substrate.
simulations. We tie up to these studies in this work and ainfFortunately, many chemical reactions occur at small densities
at a systematic examination of the substrate concentratiogf the reactants so that our result should be valid for a wide
dependence of the rate constant, while the sinks remain @inge of processes and systems. Despite the simplicity of our

infinite dilution. _ _ model the results are general and should be applicable and
~ For many of the reactions mentioned above the rateextendable to more realistic and complicated systems.
limiting factor is the diffusional encounter of the reactants, In order to examine the range of validity of our theoret-
ical result, we perform BD simulations for different systems
¥Electronic mail: jdzubiella@ucsd.edu in which the interaction between the particles is varied
0021-9606/2005/122(18)/184902/7/$22.50 122, 184902-1 © 2005 American Institute of Physics
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from hard sphere to attractive and repulsive Yukawa-like in- dIl(p)
teractions, the latter typically found in ionic solutions. The D(p) =M(p)—— dp 3
BD simulations do not include HI, which can be accurately
treated only by more sophisticated and computationally mora&vhereD(p) is the collective diffusion coefficieni(p) is the
expensive means, such as lattice-Boltzmann meffogls  density dependent mobility of the substrate particles, and
others?* 2 However, in comparison to the theory excluding I(p) the osmotic pressure of the interacting particles. This is
HI we find excellent agreement up to substrate densitiea generalized Stokes—Einstein equation in the sense that it
B,po=0.4, showing the reliability of our theoretical concept generalizegl) to the case of interacting particles in a homo-
and proving its applicability to the case when HI can begeneous solution. The mobilityl(p) is a reciprocal friction
neglected, i.e., for long-ranged interactions. In principle, ourand is defined as the proportionality constant between the
study opens up an alternative way to determine the secondrift velocity and total force on the Brownian particles
virial coefficient of proteins or other particles by measuring[velocity=M(p) X total forcd in a steady-state situation.
their reaction rate in diffusion-limited reactions at small sub-Within the LDA the generalized Stokes—Einstein relation is
strate densities. applied to the local, position-dependent dengify) of the

The paper is organized as follows: In Sec. Il we presensubstrate particles, which we assume to vary smoothly over
the basic equations of motion and approximations of oudistances large compared to the range of the interaction po-
theory and arrive at a first-order linear differential equationtential. The equation of motion can now be writtert®as
which can be solved analytlca}lly. Thg solution for the steady. ap(r Dldt==V -3(r.1)
state rate constant and density profile are presented and dis-
cussed in Sec. lll. A systematic comparison to BD simula-
tions in order to examine the range of validity of our theory =V l\/l[p(r,t),l‘]|:p(l‘,'[)VVAB(I‘)
follows in Sec. IV. Section V concludes our work with a few
final remarks. AV p(r t)]dno[lp((r)t)]]

and is a generalization of EqR) to weakly interacting sub-

Il. GENERALIZED SMOLUCHOWSKI THEORY strate particles. The last term on the right-hand sitlg) of
Eqg. (4) accounts for the force on a Brownian particle due to
an unbalanced osmotic pressure caused by a concentration

Let us consider a spherical, isotropically reactive sinkgradient of interacting particles. In addition, the density-
particle A with diameteraas Which reacts with & particle  dependent mobility corrects for HI betweBrmparticles. Note
(substrat of size ogg=:0 when they touch at a center-to- that for ideal particlesi[I/dp=kgT, and with no HI between
center distance=og=(0oapt0)/2. The sinks are at infinite g particlesM[p(r),r]=B8D.(r) and we find Eq(2) again. To

dilution while theB particles have a bulk number densifyy  account for reactions at the sink we have to solve @J.
Furthermore a potentiadag(r) is acting between the sink and with the boundary condition

the substrate particles. BothandB are dispersed in a sol- 5
vent, which is taken into account by a position-dependent 47TUAB(r/r)J(r't)|JAB: _kip(rvt)|aABv (5
diffusion constanDy(r) of the substrates, reflecting the dif-
fusion of an isolated particle relative to the\ particle. We
assume the sink to be completely at rest, which is justifie
for large sinksoaa> 0. For close distances t8, Dy(r) is
determined by the HI betweek and B, while for large dis-
tances when HI are negligibl®, is constant and is obtained
by the Stokes-Einstein relation

(4)

A. Model and basic equations

wherek; is the intrinsic rate constant. In the limit of fully
da\bsorblng boundary conditiong; — oo, while p(oag)— 0,

and the reaction rate is only limited by the diffusion of the
approaching substrates. We are interested in the steady-state
solution for the spherically symmetric problem, with which
the equation of motion reduces to

DO(|r| - OO) = DO = (3B’7T77(T)_1, (l) O ; ( ZM[p(r) r:||:p(r) AB(r)
r
where B8 t=kgT is the thermal energy ang the solvent vis-
cosity. < ot )> dH[P(r)]D ©)
The time-dependent SE for the densitly ,t) of nonin- dp(r)
teracting particles moving in a potentidlag(r) with a . . e
position-dependent diffusion constadi(r) is given by \t/iv(;t:sthe boundary conditions for diffusion-controlled reac-
dp(r,t)fat=-V -J(r,t) .
4moigi(Tap) = Kpo, (7)

=V -Do(N[p(r, DBV Vag(r) + V p(r,1)].
2 ploap) =0, p(*) = po, (8)
For weak density inhomogeneities, which is always truewherej(oag) is the absolute flux perpendicular through the
for small densities or weak interactions, one can introducesink surface at radial distaneg,g from the sink center and

substrate interactions by using the generalized Stokesthe quantityk is the diffusion-controlled steady-state rate
Einstein relation® constant which we are interested in.
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The osmotic pressure can be expressed in terms of the * exdBVap(nD] |t .,
kp = f vl Gl UL L

equation of state, or in general, the virial equation, which is 41Dy(1)r2 (15
an expansion of the pressure in terms of the particle density AB 0
p. For small densities the series is usually truncated after thgnd
second order and the osmotic pressure reads
1) = 2010 = 12(01) (16
Bll(p) = p +Byp®. (9) 1,()
Conveniently, the second virial coefficieBy can be calcu- with the integrals
lated from the pair interactiotVgg(r)=:V(r) between the ; 1
substrates vid (1) = f dr'—— 1
olr) opg  AmDo(r)r'? (7
1
B,== | dr[1-expg-pBV(r))]. 10
. zf [1 - exp(= BV(1)] (10 [ e Va]
[4(r) = dr W, (18)
The local mobility of the substrates will be in general re- TAB ol
duced by a nonzero concentration of other surrounding parynq
ticles due to HI, and for small densities the correction is )
' i ' exf BVag(r’)]lo(r’
linear in p, so that we can write 1) :f ar’ ALV as( ,)]/g( ), (19
- A7Dy(r")r
M[p(r),r]= BDo(N[1 ~ap(r)], (19)

which are functions depending on the particular interaction
V,g(r) and the position-dependent diffusion constBxgtr).
When interactions betweeA and B can be neglected,
namely,Dq(r)=Dg, andVag(r)=0, it follows I()/l,()=1,
%hnd the result for the steady-state rate constant reduces to

where >0 is the first-order correction coefficient. In Eq.
(11) we assume that the HI betweénand B, expressed in
Dy(r), is independent of the HI betwedhparticles and the

spheres of diameterr it is well established thatwo™ .
~3.43!® Substituting Eq(11) and the derivative of Eq9) k=4mDooap(1 +Bypo), (20)
with respect t into Eq.(6), integrating, and strictly linear-

N ; which for noninteracting particles or at infinite dilution of
izing in p we find

speciesB gives the classical Smoluchowski redult

- BNas(r)  2B,C | o= 4mDorne "
Do(r)r? —p(r)[ ar ¥ Do(r)rz] * arp(r), (12 00AB

The constant(«)/14(«) in Eq. (14) depends on the particu-
where we introduced theffectivesecond virial coefficient  |ar interactionVag(r) and Dy(r) betweenA and B particles,
but is always close to 1 for Lennard-Jones or Yukawa-like
interactions typically found in solutions, andDg(r) for in-

and which has to be solved with boundary conditions, Eqs.Stance given by the Oseen tenSdihe major contribution to

(7) and (8). The equilibrium pair interaction, described by the density correction stems from the effective second virial

B,, and the dynamic interaction, absorbed dn compete coefficientB,=B,- /2, which is a corrected second virial
Iilzewise now in altering the rate’ of the reaction. and Cancoefficient for the dynamic situation and features the follow-

hence be summarized in the single paramBiegiven in Eq. ing interesting trends for the steady-state rate constant. Gen-

(13). This interesting feature will be discussed in more detailerally,“>0' Imposing that Hi will decrease the subgtratg
in the following section, where the result faris presented. mobility. However, if the substrate-substrate interaction is

Equation(12) is a first-order linear differential equation and SIrongly repulsiveB,>a/2, so thatB, is positive, an en-
can be solved analytically. The parameis an integration hanced reaction rate is predicted pompared .to thg nonlnter—
constant, determined by the boundary conditions, and is rea;ctlng.cqse. On the contrary, a ma|r1ly*attract|ve pair interac-
lated to the rate constant with= pok/ 4. tion W|II in general lead to a negativi, .and decrease the
reaction rate. For long-ranged interactigis| may be an
order of magnitude larger thaw/ 2 and HI can be neglected,
such thaiB;z B,. When the repulsive interaction leads to a
B. Result for the steady-state rate constant B, comparable tox/2, both contributions can cancel each
From the linearized solution of E4L2) we arrive at the _other ar_1d the reaction rgtejust changgs little or not at gll with
result for the diffusion-controlled steady-state rate constanf'créasing(smal) density or (weak interaction. For in-
valid for small densitiegor weak interactions stance, for the repulsn*/e hard sphere case the effective sec-
ond virial coefficientB,o 3~2.09-3.43/2-0.38 is small
« () due to a slowing of the diffusion of the substrates which is
k= kD[l + BZPO@] (14) comparable to the effects of the enhanced osmotic pressure
in the system, leading just to a minor increase of the rate
wherek, is the classical result of DebYdor ideal or infi-  constant with density. Our theory is in agreement with pre-
nitely diluted substrates in a nonzero potentiak(r), vious work®>*®where the excluded volume of the substrates

B,=B,- a/2 (13
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is predicted to lead to an enhanced reaction (akeluding S(t) = exp(— kpot) (25)
HI). It is worth mentioning thaB; is half of the coefficient
of the linear first-order correction ipy of the collective dif-
fusion coefficient of the substrates in bulk solution, latter
evident from the generalized Stokes—Einstein relatidn

for a substrate bulk densify,. In our simulation model, the
sink is fixed in the center of the periodically repeated, cubic

simulation box with edge length. Substrate(B) particles

The range of validity of Eqs(14) will be examined in Sec. and sink(A) react as soon as they touch each other, which

Il for hard sphere and repulsive and attractive Yukawa in_happens ata gent_er—to-cgnter distange= OAB- The trajec.—
teractions excluding HI. tory of aB particle is terminated after reaction. The survival

probability can be easily measured by forming an histogram
of the times between two reactions and normalize it with
C. Result for the density profile respect to the number of total reactions in one simulation. To
account for the steady-state case and simulate a fixed density
po far away from the sink, the annihilatd®lparticle is rein-
serted randomly at a position cloggg>0.49.) to the box
kpl1(r) ( o [ 1) () edges. Due to the long range of the steady-state density-
OEXF{BVAB(V)] 2P0 [1(0) - 1,(r) |/ (22 profile (23), finite .s.ize effects can be large for too small bo.x
. . ) ) sizes for all densities and have been analyzed by performing
In order to better identify how the substrate interactions af4ite size scaling simulations. Eventually the box lengths
fect the density profiles we rewrite the solution for the cas§,seq in our simulations range frolr=500 up to L=200r
of no interactions between substrate and s(r)=Do and  gepending on density and interaction of Bearticles. This
Vag(r)=0: involved simulations ofNg=1000—30 000 substrate particles
using 5x 10'—2x 10° time steps. The integration time ste
p(r) :Pid(r)<1 +B§poUAB>. ’ ‘ ) P

The general solution for the diffusion-controlled steady-
state density profile in linear order py reads

p(r)=p

(23)  was chosen to be 0.063 where 13=02/D, is a typical
Brownian time scale in the simulation. Verlet-neighbor lists

r

where are used to optimize computational tiffeDensities up to
o B,pp=1 could be simulated; for larger densities the system
_ AB . .-
Pig(r) —p0<1 —T> (24 size and statistical errors become too large for reasonable
output.

is the classical result for ideal or infinitely diluted substrate
particles whenV,5=0 andDy(r)=Dy.>* Equation(23) pre-
dicts that a positiveB, will enhance the substrate density
close to the absorbent due to a higlpositive) bulk pres- In order to perform a systematic comparison to the the-
sure of theB particles compared to the noninteracting caseoretical results we consider four different systems, 1, 1, I,
This is opposite to the case of negat®g(mainly attractive  and IV, which differ in the interaction betweekandB and

interaction$ where a depletion oB particles takes place B andB particles. In all systems the pair potentials are in
close toA due to a negative bulk pressure, and/or a largegeneral given by

immobility of the approaching substrates. Comparing these
trends to the rate constafi4) we conclude that an enhanced BVij(r) = BVug(r) + Uijﬂi ex - x(r — a)] (26)
or lower density close to the sink increases or decreases the r

B. Systems

reaction rate, respectively, at least for small densities. Thes\ﬁhereﬁv < is the hard spheréHS) interaction
predictions will be examined in the following section with A
BD simulations. forr < oy
Vis(r) = 27
BVhs(r) 0 else, (27)
IIl. BROWNIAN DYNAMICS SIMULATION and the second term in E6) is a Yukawa interaction with

energy scal&J;;, inverse screening length andi,j=A,B.
will be fixed to ko=1 in all our four systems. We also fix the
For a verification of the theory in the preceding sectionlength scale tarag=1.50, which is given when the sink par-
we perform standard Brownian dynamics simulations usingicle is twice as large as the substrate partigjg=20. We
the integration technique of Ermak and McCamnibandin  note already that we have simulated selected densities for all
addition accounting for hard sphere overfépn order to  four systems for two other sink sizes, namelyg=c and
conduct a clear and transparent comparison to the theoreticalz=20, and did not find any deviation from the results later
result we neglect HI in the BD simulations. An accuratein the work. For high asymmetriesy,> o, which is the
treatment of HI is only given by more sophisticated andmore realistic case, the BD simulations unfortunately be-
computationally  expensive  techniques, such asome computationally expensive due too a huge number of
Lattice—Boltzmanf’ or others?’ 2 Thus, in the following, substrate particles which have to be simulated. Note again
Do(r)=Dy given by Eq.(1) and B,=B,. In the BD simula- that the range of the steady-state density profile increases
tions, the steady-state rate constarg determined by calcu- essentially linearly witho,g, see EQ.(23); however, we
lating the survival probability(t) of the substrate particldd  stress that this does not affect our theoretical re&id)
around the reactive sinK at a timet, which is given by which should be valid for all size ratios, and we have chosen

A. Simulation details

Downloaded 30 Nov 2005 to 132.239.16.187. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Interaction parameters for the investigated systems in the BD simulations.

System Ung Ugs ol o B,o73 1(0)/14(°)
[ 0.0 0.0 1.5 2.09 1.00
I 0.0 1.0 15 13.32 1.00
1] -1.0 1.0 1.5 13.32 1.11
v 0.0 -0.5 1.5 -4.62 1.00
smaller sink sizes only for computational convenience. (23) and are in very good agreement for the distances shown.

In system | we simply considey; =0, in which case all The density for system | is in the highly dilute region
interactions are hard sphere like. The second virial coeffi{B,py=0.00]) and the profile matches the &rzg/r behavior
cient for HS isB,0~3=27/3=2.09. In system Il Yukawa- (24) for ideal substrate particles. Further on, the predicted
like repulsionUgg=1 is added between the substrate par-density increasédecreasearound the sink by repulsivat-
ticles. The second virial coefficient increases to a total ofractive substrate interactions is verified by the BD simula-
Byo 3=2m/3+11.23=13.32. In system Il a Yukawa attrac- tions. All observed density profiles exhibit a very small but
tion is added between sintd) and substratéB) particles, nonvanishing density value at contggr,g) =0.05, show-
Uag=-1, while keeping thé-B interaction as in system Il. ing that the assumptiop(cag)=0 for absorbing boundary
Finally, in system IV we choos®l,g=0, no interaction be- conditions in the theory is justified, but not perfect. This
tweenA andB, but here we focus on attraction between thecontact value increaseglecreasesslightly with positive
B particles,Ugg=-0.5, resulting in a total negative second (negative B,. For larger distancefr =100, not shown in
virial coefficientB,o™3=-4.62. The system parameters andFig. 2) the simulation always overestimates the density due
corresponding values of the second virial coefficient and theo the finite size of the simulation box; however, our finite
constant (=)/1,() are summarized in Table I. size scaling analysis showed only little influence on the rate

Typical examples of the calculated survival probabilitiesconstant as long as the density close to the §ink100) is
(25 are shown in Fig. 1 for systems I, I, and IV on a in accord with the theoretical prediction.
logarithmic ordinate and show linear behavior for all times  Results for the rate constant are shown in Fig. 3 where
within the uncertainty of the statistics. The density for sys-we plot the steady-state rate constant scaled by the ideal rate
tem | (hard sphergsis chosen to be very smalBy;p,  constantk, given by Eq.(21) versus the substrate density
=0.009 and the survival probability matches with the clas- scaled by the second virial coefficieB$, which can be dif-
sical theoretical resulB(t)=exp(—kopot), also shown in Fig.  ferent for each system, see Table I. Note again that we ne-
1 as a dashed line. As expected from the theory, a positive @jlect HI in our simulations, such that=0 andD(r)=D,,
negativeB, (systems Il and IY increases or decreases the andB},=B, in the theory. We find excellent agreement to the
rate constant, respectively, as is indicated by an increased @feory (lines) within the statistical uncertainties of the simu-
decreased absolute slope of ti%) curves. Linear fits |ation for the systems with repulsive substrate interaction
through these curves determine our “experimental” values ogystemsu_”” up to densitieB,p,=0.4. For system I, the
the rate constant for all systems, while the regression coeffigrq sphere case, the nonlinear regime takes over for larger
cient of the fitting procedure provides the error bars. densities and the theoretical prediction underestimates the
C. Results rate constant. For systems Il and Ill we still find good agree-

. _ ment(theory within the error bajgill up to B,pg=0.7. This
Examples of the density profiles for systems |, Il, and IV

are plotted in Fig. 2 compared to the theoretical prediction

1:'I'I'I'I'I'I'I'I'I

0.1
F IV: Bp,=-0.40

o System I Bp,=0.001
o System II: B,p=0.51
o SystemIV: B,p=-0.40

S(1)

A

0.01F  IL:Bp=0.51N N

I: B,p=0.001

PR PO TP TR NN L S P R I4|”5|”6| I7I”8|”9I”10
01234 5 6 7 8 9 10 i

FIG. 2. Steady-state density profilp&) of the substrates around the sink
FIG. 1. Typical examples of the survival probabilift) on a logarithmic  particle from BD simulationgsymbols and theory(lines) according to Eq.
scale vs time scaled by the ideal substrate rate conlgid8t) and substrate  (23) for three different parameter setds the distance from the center of the

bulk density p,. The straight dashed line is the ideal resutt) sink. The circles are close to the infinite dilution linfz4), while squares
=exp(—kgpot), while the noisy data are BD simulation results for chosen and diamonds are for positive and negati&gfor nonzero bulk densities
densities in systems I, II, and IV. po, respectively.
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We are confident that our theoretical treatment is valid also
in the general case including HI; when the density-profiles of
the substrates are slowly varying in space, the correlations in
the system are usually well approximated by those in the
bulk, even in the dynamic cas&However, a verification of
our theory including HI is highly desired and abandoned to
X ] future work, where the HI need to be treated by accurate
1 = means.
—4 ] In principle, our study provides an alternative way to
estimate the second virial coefficient of interacting macro-
molecules experimentally by measuring their steady-state
Y P = rate constant in diffusion-controlled reactions at low densi-
. 075 . . . : X
IB,1p, ties. In such experiments, the effective sink-substrate inter-
action has to be known and the hydrodynamic quantities
FIG. 3. Dimensionless reaction rakék, from BD simulations(symbols Dy(r) and @ must be approximated, e.g., by using the Oseen

and theory[lines, Eq.(14)] vs density of the substrate particles for the four : : :
different systems (circles, Il (squarej Il (diamond$, and IV (triangles. tensorff and approximating the substrate particles by hard

Note that the density is scaled by the corresponding second virial coeﬁiSPheres_ V\gth an effective hydrodynamic radius,
cient, see Table I, that is why the theoretical curves for systems | and Il aréespectlvel)}.
on top of each other and have the same absolute slope as the curve for The generalized Smoluchowski equation used in our
system IV. work can also be understood as a LDA in the recently pro-
) posed framework of dynamic density functional theory
agreement for a larger density range as compared t© H&DFT),?® where equilibrium correlations are used to ap-
could be anticipated since for soft repulsive interactions it isproximate the dynamical correlation in a Brownian system. It
known that higher order virial coefficient8; and so ohare  \yas shown by BD simulations that DDFT including more
less important even for higher densﬁ?és!—lowgver, for  sophisticated approximations than LDA works well in the
larger densities the shortcomings of the linearized Smolugase of dense one-dimensidiiaind three-dimensional hard
attractive substrate interactiofsystem I\j the agreement is  jnteractions® 32 and seems to provide a powerful tool to
good only for smaller densitietB,p0=0.20. Equilibrium  extend our work to more strongly correlated systems, i.e.,
statistics has showr_1 that for attractive interactions, a LDAnycleating or aggregating colloids, polymerization, or bind-
approach usually fails to give an accurate description of thehg in crowded protein solution.

system behavior even for weak interactions, which could  Finally, we hope that our approach will shed some light
also be the case here. The theoretical curves for systemsph interpretations of experimental rate constant
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