
UC Berkeley
UC Berkeley Previously Published Works

Title
The role of executive function in shaping reinforcement learning

Permalink
https://escholarship.org/uc/item/34s2s52z

Authors
Rmus, Milena
McDougle, Samuel D
Collins, Anne GE

Publication Date
2021-04-01

DOI
10.1016/j.cobeha.2020.10.003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/34s2s52z
https://escholarship.org
http://www.cdlib.org/


The Role of Executive Function in Shaping Reinforcement 
Learning

Milena Rmus1, Samuel D. McDougle2, Anne G. E. Collins1,3

1Department of Psychology, University of California, Berkeley

2Department of Psychology, Yale University

3Helen Wills Neuroscience Institute, University of California, Berkeley

Abstract

Reinforcement learning (RL) models have advanced our understanding of how animals learn 

and make decisions, and how the brain supports some aspects of learning. However, the neural 

computations that are explained by RL algorithms fall short of explaining many sophisticated 

aspects of human decision making, including the generalization of learned information, one-shot 

learning, and the synthesis of task information in complex environments.. Instead, these aspects 

of instrumental behavior are assumed to be supported by the brain’s executive functions (EF). We 

review recent findings that highlight the importance of EF in learning. Specifically, we advance 

the theory that EF sets the stage for canonical RL computations in the brain, providing inputs 

that broaden their flexibility and applicability. Our theory has important implications for how to 

interpret RL computations in the brain and behavior.

Introduction

Our ability to learn rewarding actions lies at the core of goal-directed decision-making. 

Reward-driven choice processes have been extensively modeled using reinforcement 

learning (RL) algorithms [Sutton and Barto, 2018]. This formalized account of learning 

and decision making has contributed significantly to expanding the frontiers of artificial 

intelligence research [Botvinick et. al, 2019], our understanding of clinical pathologies 

[Wyckmans et. al, 2019, Radulescu & Niv, 2019], and research on developmental changes in 

learning [Segers et. al, 2018; Master et. al, 2019].

A key reason for the success of the RL framework is its ability to capture learning not 

only at the behavioral level, but also at the neural level. The neural foundations of reward-

dependent learning [Schultz et. al, 1997], and its various successors [Dabney et. al, 2020], 

have established a well defined brain network that performs RL computations. In particular, 

cortico-striatal loops enable state-dependent value-based choice selection [Frank, 2011]. 

Furthermore, dopaminergic signaling of reward-prediction errors (RPEs) in the midbrain 

and striatum induces plasticity consistent with RL algorithms, incrementally increasing/

decreasing the value of actions that yield better/worse than expected outcomes.

Despite its tremendous success, there are well known limitations of canonical RL algorithms 

[Vong et al., 2019]. Historically, many insights provided by RL research have been 
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demonstrated in relatively simplistic learning tasks, casting doubt on how useful classic 

RL models are in explaining how humans learn and make choices in everyday life. To 

solve this problem, recent research often augments RL algorithms with learning and memory 

mechanisms from different cognitive systems.

Executive functions (EF) have been identified as psychological faculties that could interact 

with RL computations. For instance, working memory (WM), as a short-term cache which 

allows us to retain and manipulate task-relevant information over brief periods [Miller 

et al., 2018; Lundqvist et al., 2018; Nassar et al., 2018], occupies a central position in 

our ability to organize goal-directed behavior. Another core EF, attention, also contributes 

to behavioral efficiency through selective processing of subsets of environmental features 

relevant for learning [Radulescu, Niv & Ballard, 2019; Norman & Shallice, 1986; Allport, 

1989]. Research on WM and attention points to the prefrontal cortex (PFC) as the primary 

site of these processes [Badre, 2020; Badre & Desrochers, 2019], suggesting that this 

network shapes information processing in the RL system during learning.

Several straightforward experimental manipulations have revealed that an isolated RL 

system fails to effectively capture human instrumental learning behavior. For example, 

while online maintenance of representations in WM is capacity-limited [Baddeley, 2012], 

standard RL models have no explicit capacity constraints. This property of RL suggests that 

if individuals rely on RL alone, learning should not be affected by the number of rewarding 

stimulus-response associations they are required to learn in a given task. However, humans 

learn much less efficiently when the number of associations to be learned in parallel exceeds 

WM capacity [Collins, 2018; Master et. al, 2019; Collins & Frank, 2017]. This suggests 

that RL operates with EFs like working memory for learning. Other work has similarly 

shown that EF-dependent planning contributes to choice alongside core RL computations 

implemented in the brain [Daw et. al 2011; Russek et. al, 2017].

However, there is also evidence that EF’s contributions to learning are not limited to 

providing a separate learning substrate: Rather, EF may also directly contribute to RL 

computations in the brain. Models of PFC-striatal loops [Hazy et al., 2007, Zhao et 

al. 2017], which posit that brain regions associated with EF and RL interact directly, 

has motivated behavioral experiments and computational modeling approaches aimed at 

identifying EF-RL interactions [Collins, 2018; Collins & Frank, 2018; Radulescu & Niv, 

2018; Segers et. al, 2018]. The advent of these modeling tools has shown that an interaction 

of multiple neurocognitive domains (e.g., RL, WM, attention) may provide a more robust 

account of goal-directed behavior, one that still maintains the centrality of canonical RL 

computations in instrumental learning [Hernaus et. al, 2018; Quaedflieg et. al, 2019].

In this paper, we review recent work that provides converging evidence for direct, 

functionally coherent contributions of EF to RL computations. More specifically, we review 

how EF (WM and attention in particular) might set the stage for RL computations in 

the brain by defining the relevant state space, action space, and reward function (Figure 

1). The ideas reviewed here can help inform future computational modeling efforts and 

experimental designs in the study of goal-directed behavior. Furthermore, it may shift our 
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interpretations of past and future findings focused on isolated RL computations towards a 

broader framework that considers EF contributions.

The ingredients of RL computations

Past work suggests that a specific brain network (primarily cortico-striatal loops) supports 

RL computations, like temporal difference learning [O’Doherty et al., 2003; Seymour et al., 

2004] and actor-critic learning [Joel et al., 2002; Khamassi et al., 2005]. These learning 

algorithms update estimates of values via reward prediction errors (RPEs). In machine 

learning, such algorithms are defined not only by how they estimate value, but also by (at 

least) three fundamental components: 1) the state space (reflecting the possible states or 

contexts an agent may be in), 2) the action space (reflecting the possible choices to be 

made), and 3) the reward function (defining valuable outcomes). The specification of these 

variables can dramatically impact the behavior of a decision-making agent. How these three 

variables are input to the brain’s RL network is poorly understood - we explore here a role 

for EF in contributing this information.

State space

The RL framework defines a state space over which learning occurs. A state can be a 

location in the environment, a sensory feature of the environment (e.g. the presence of a 

stimulus such as a light), or a more abstract internally represented context (such as a point in 

time). At each state, a decision-making agent enacts a choice in pursuit of rewards [Sutton 

and Barto, 2018]. The specification of the state space crucially impacts the behavior of 

artificial RL agents. For example, in a large state space, RL performance is limited by what 

is known as the curse of dimensionality [Sutton & Barto 2018; Vong et al., 2019]: Learning 

a vast number of state-action values quickly becomes computationally intractable. Defining 

a smaller state space limited to only task-relevant states is one path toward overcoming this 

difficulty.

Simplifying the state space is a function sometimes attributed to attentional filters, which 

can specify important features of the environment [Radulescu & Niv, 2019]. In this 

framework, attention tags the task features that RL computes over [Zhang et. al, 2018; 

Niv, 2019; Radulescu, Niv & Ballard, 2019; Daniel, Radulescu & Niv, 2019]. This is 

accomplished by attention differentially weighing environmental features, assigning a higher 

weight to task-relevant ones [Niv, 2019] (Figure 2). For instance, if an agent is attempting 

to earn reward from various stimuli that differ along several dimensions (e.g. color, shape), 

with only one dimension predicting reward, an optimized learning agent would 1) identify 

that dimension, and 2) use it as the relevant state space for RL. That way, an agent can 

eschew computing values over a larger state space of all possible features [Leong, Radulescu 

et al., 2017*, Farashahi et al., 2017].

Computationally this can be achieved by implementing Bayesian inference to discover 

relevant task features that RL operates over [Radulescu, Niv & Ballard, 2019]. In 

addition to attention affording the reduction of the task complexity, attentional mechanisms 

serve another purpose. Many tasks share overlapping/competing state spaces, leading to 
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potential interference in correct action selection (e.g. the Stroop Task). Thus, defining a 

low-dimensional representation which can be applied to multiple tasks in service of goal 

pursuit makes learning both more flexible and robust [Lieder et al., 2018].

The relevant state space is not always signaled by explicit sensory cues. Thus, an agent often 

has to make an inference about their current state [Gershman et al., 2013]. Recent work in 

animals suggests that RL computations in the striatum are likely performed over these latent 

belief states [Babayan et al., 2018; Samejima & Doya, 2007]. For example, by showing 

markedly different dopamine dynamics if an expected reward is sure to arrive (e.g., 100% 

chance) versus almost sure to arrive (e.g., 90% chance) [Starkweather et al., 2017]. In this 

example, an inference about the latent state, which indicates whether a reward will arrive or 

not, dramatically alters RL computations. It is hypothesized that RL computations over these 

belief states, may be mediated by input from frontal cortices involved in the discovery and 

representation of state spaces, further supporting a link between EF and RL [Wilson et al., 

2014].

Action space

Above we reviewed a role of EF, such as working memory and attention, in attending to 

and carving out the appropriate state space for RL. A complementary idea is that EF also 

play a role in specifying (or simplifying) the action space for the RL system (Figure 3). The 

action space in the RL formalism is defined as the set of choices an agent can make. The 

choice can take the form of a basic motor action (e.g. a key press), a complex movement 

(e.g. walking to the door), or an abstract choice not defined by specific motor actions (e.g. 

choosing soup vs. salad). Defining the relevant action space may be as essential for learning 

as defining the relevant state space.

Recent studies indicate that the action space is a separable dimension for RL. First, 

behavioral evidence suggests that reward outcomes can simultaneously be assigned to task-

relevant choices as well as to task-irrelevant motor actions (i.e., reinforcing a right-finger 

button press regardless of the stimulus that was present) [Shahar et al., 2019]. Moreover, 

this process appears to be negatively related to the use of goal-directed planning strategies, 

suggesting that EF enables RL to focus in on the task-relevant action space. Similarly, recent 

modeling work suggests that a stateless form of action values can exert an influence on both 

choices and reaction times [McDougle & Collins, 2020], particularly when cognitive load 

is high. One hypothetical consequence of learning over the action dimension is that when 

executive functions are disrupted or taxed – and thus can not properly conjoin states and 

actions – action values may be learned in a vacuum. Speculatively, this bias could be linked 

to maladaptive forms of habitual behavior, such as addiction [Everitt & Robbins, 2016].

Because actions link predicted choice values with observed outcomes, one natural question 

beyond the selection of actions is how the RL system differentiates choice errors (e.g., which 

is the best object?) from choice execution errors (e.g., did I grasp the desired object?). In RL 

tasks that require reaching movements, behavioral data and fMRI responses in the striatum 

suggest that perceived action errors influence RPEs: That is, if the credit for a negative 

outcome is assigned to the motor system, the RL system appears to eschew updating the 
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value of the choice that was made [McDougle et al., 2016; McDougle et al., 2019]. These 

results suggest that simple cognitive inferences about the cause of errors (e.g., choice errors 

versus action errors) affect RL computations.

In more complex situations with a large action space, EF can aid the learning process 

by attempting to reduce the size of this space. That is, the brain can create “task-sets”, 

or selective groupings of state-action associations and use contextual cues to retrieve the 

appropriate task set. To illustrate, if one learns the motor commands for copying text 

on both a PC and a Mac, to avoid interference it is beneficial to associate the specific 

motor sequences (ctrl-c versus command-c) with their respective contexts (typing on a PC 

keyboard versus a Mac keyboard). Indeed, humans appear to cluster subsets of actions with 

associated sensory contexts during instrumental learning [Collins & Frank, 2013; Franklin 

& Frank, 2018], and they do so in a manner which suggests that high-level inferences about 

task structure shape low-level reinforcement learning computations over actions.

Moreover, selecting a task-set can itself be seen as a choice made in a high-level context. 

Learning to make this abstract choice can also occur via RL, such that RL computations 

happen over two different state-action spaces in parallel -- an abstract context and task-set 

space, and a more concrete stimulus-action space [Eckstein & Collins, 2020; Ballard et 

al., 2018]. There is recent computational, behavioral, and neural evidence that hierarchies 

of RL computations happen in parallel over more and more abstract types of states and 

choices, facilitating complex learning abilities [Badre & Frank, 2012; Frank & Badre, 2012; 

Eckstein & Collins, 2020]. Such learning may be supported by hierarchies of representations 

in prefrontal context [Koechlin & Summerfield, 2007; Badre & D’Esposito 2009]. This 

again highlights a role for EF in setting the stage for RL computations to support complex 

learning.

Rewards & expectations

Goal-directed behavior is dependent on making correct predictions about the outcome of 

our choices. RPEs, which serve as a teaching signal, occupy a central position in the RL 

framework, linking midbrain dopaminergic activity with RL computations [Schultz, et. al, 

1997]. Most RL research since has focused on simple forms of learning from outcomes that 

are primary or secondary rewards, such as food, money, or points. However, the path to 

an RPE is not always straightforward: For instance, recent work departs from the role of 

dopaminergic signaling in standard RPEs based on scalar rewards, extending the domain of 

RL to learning from indirect experiences (e,.g., secondary conditioning) and more abstract 

learning of associations based on sensory features [Langdon et. al, 2018, Sharpe et. al, 

2020]. These findings suggest that the currency of RL computations goes beyond primary 

and secondary rewards. There is early evidence that EF could be implicated in setting this 

currency.

One such example relates to the value of information. Humans are motivated to 

reduce uncertainty about their environment [White et. al, 2019]. Thus, acquisition of 

novel information should in itself function as reinforcement. Most information-seeking 

mechanisms, however, are not accounted for in the traditional RL framework. By contrast, 
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recent work has shown that uncertainty reduction and information gain are indeed reflected 

in neural RL computations [Mikhael et. al, 2019]. Evidence from fMRI studies suggests 

that corticostriatal circuits incorporate the utility of information in reward computations, 

such that information is conceptualized as a reward that reinforces choices [Charpentier 

et. al, 2018], even when it is not valenced [White et. al, 2019]. The prefrontal cortex also 

appears to track information and uncertainty [Starkweather et al., 2018], which can be held 

in working memory to influence decision making [Honig et. al 2020] (Figure 4).

The theoretical framework of hierarchical RL also dissociates the role of exploiting 

information about the environment from the role of primary/secondary rewards, while 

emphasizing that both act as a teaching signal [Botvinick et al., 2009]. In particular, when 

learning a multi-step policy that ultimately leads to a rewarding goal, agents identify and 

use subgoals en route to terminal rewards. These subgoals generate pseudo-rewards in 

hierarchical RL models, and appear to drive activity in the canonical reward-processing 

regions in the brain, even though these rewards are 1) not inherently rewarding, and 2) are 

clearly distinguished from terminal rewards [Mas-Herrero et. al, 2019; Diuk et al., 2013]. 

The processing of pseudo-rewards is additionally assumed to be driven by the prefrontal 

cortex, suggesting a link to EF [Ribas-Fernandes et al., 2019].

Beyond expanding the space of rewarding outcomes, there is also evidence that EF may 

affect RPEs in an alternative way: namely, by inputting reward expectations that have not 

yet been learned by the RL network. For example, work by Collins and colleagues (2017) 

has shown that the magnitude of RPEs in the striatum is affected by cognitive load such 

that learning a small number of stimulus-response associations leads to attenuated striatal 

RPEs. This result is explained by “top-down” input of predictions from working memory: 

Information held in working memory in simple learning environments creates expectations 

of reward that are learned faster than in the RL system, and thus weaken RL RPEs (Collins 

& Frank 2018, Collins 2018). Similar results are observed in planning tasks, where an 

EF-dependent planned expectation of reward modulates the classic representation of RPEs in 

the striatum (Daw et al 2011). Taken together, these results demonstrate a key role for EF in 

defining the reward function for the RL system, and in contributing to the value estimation 

process.

Conclusions & discussion

We have reviewed and summarized computational, behavioral and neural evidence which 

collectively suggest that (1) executive function shapes reinforcement learning computations 

in the brain, and (2) neural and cognitive models of this interaction provide useful accounts 

of goal-directed behavior. We discussed the EF-RL interaction vis-a-vis the specification of 

the state space, action space, and reward function that RL operates over.

This new framework has important implications for applying both neural and cognitive 

computational models to study individual differences in learning. Although it is tempting to 

study individual differences with simple RL models, it is essential that we carefully consider 

the role of alternative neurocognitive systems in learning. Evidence of individual learning 

differences captured by an RL model might not reflect differences in the brain’s RL process, 
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but rather in upstream EF that shapes RL. Indeed, recent work on development [Segers et. 

al, 2018; Daniel et al, 2019], schizophrenia [Collins et. al, 2014], and addiction [Renteria 

et. al, 2018; Wyckmans et. al, 2019] has shown that individual variability in learning 

might be driven by both EF and RL, and/or the interaction of the two. Thus, building 

improved models of the interplay between different neurocognitive systems should help us 

better understand individual differences across the lifespan and in clinical disorders. This 

expansion of the RL theoretical framework can deepen our understanding of how learning is 

supported in the brain, and inform future interventions and treatments.
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Highlights:

• Learning is supported by the brain’s reinforcement learning (RL) network

• Executive functions (EF) support other forms of learning, but also interact 

with and shape RL

• EF help define the state and action spaces for the brain’s RL computations

• EF signal non-rewarding reinforcing outcomes included in reward prediction 

error

• Neural and cognitive models unifying RL and EF may improve our 

understanding of goal-directed behavior
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Figure 1. 
Schematic of EF contributions (WM, attention) to RL computations. EF can optimize RL 

computations in the domain of 3 relevant RL-components: state space, reward functions, and 

action space. Q(s,a) reflects the estimated value of a state and action. RPE is the reward 

prediction error used to update Q(s,a).

Rmus et al. Page 12

Curr Opin Behav Sci. Author manuscript; available in PMC 2022 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
EF specifies the relevant state space, allowing the RL system to efficiently operate over a 

subset of task-relevant states. See Figure 1 for notations.
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Figure 3. 
Contribution of executive functions in action selection.

Rmus et al. Page 14

Curr Opin Behav Sci. Author manuscript; available in PMC 2022 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Traditional model of putative neural mechanisms involved in reward learning suggests that 

the RPEs are primarily driven by the primary and/or secondary reinforcement. More recent 

work posits that RPEs are also influenced by the factors other than the scalar rewards, 

including information, novelty and subgoal, as well as expectations/predictions.
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