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Abstract of the Dissertation

Pose-Guided Human Semantic Part Segmentation

by

Fangting Xia

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2016

Professor Alan Loddon Yuille, Chair

Human semantic part segmentation and human pose estimation are two fundamental and

complementary tasks in computer vision. The localization of joints in pose estimation can be

much more accurate with the support of part segment consistency while the local confusions

in part segmentation can be greatly reduced with the support of top-down pose information.

In natural scenes which consist of multiple people, human pose estimation and human part

segmentation are still challenging due to multi-instance confusion and large variations in

pose, scale, appearance and occlusion. Current state-of-the-art methods for both tasks rely

on deep neural networks to extract data-dependent features, and combine them with a

carefully designed graphical model. However, these methods have no efficient mechanism to

handle multi-person overlapping or to adapt to the scale of human instances, thus are still

limited when facing large variability in human pose and scale.

To improve the performance of both tasks over current methods, we propose three mod-

els that tackle the difficulty of pose/scale variation in two major directions: (1) introduce

top-down pose consistency into semantic part segmentation and introduce part segment con-

sistency into human pose estimation, letting the two tasks benefit each other; (2) handle the

scale variation by designing a mechanism to adapt to the size of human instances and their

corresponding parts. Our first model incorporates pose cues into a graphical model-based

part segmentation framework while our third model combines pose information within a

framework made up of fully convolutional networks (FCN). Our second model is a hierar-

ii



chical FCN framework that performs object/part scale estimation and part segmentation

jointly, adapting to the size of objects and parts. We show that all our three models achieve

state-of-the-art performance on challenging datasets.
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CHAPTER 1

Introduction

Human semantic part segmentation [RC12, LSD15] (i.e. decomposing a human body into

semantic regions) and human pose estimation [YR11, TGJ15, CY15] (i.e. predicting the po-

sition of pose joints) are two crucial and correlated tasks in computer vision. They provide

rich descriptions for human-centric image analysis, which is increasingly important for many

high-level applications, such as image/video retrieval [DA13, JS13, YKO15], person identifi-

cation [KZ12], video surveillance [YY11, LBB14], and action recognition [WTL12, WWY13].

Traditional pose estimation approaches [YR11] adopt graphical models, such as And-Or

graph(AOG) and conditional random field (CRF), to combine spatial constraints with local

observations of joints, based on low-level features like color intensities, HOG [DT05], shape-

context [BMP00], and so on. With powerful deep learning architectures and the availability

of large-scale annotated data, recent approaches [CY14] rely on deep-learned joint detectors,

and use a carefully designed graphical model to select and assemble joints into valid pose

configurations. Traditional approaches suffer from limited feature representation power, and

can only work in simple datasets with small pose and scale variation. Recent deep-based

approaches have much better invariance to pose/scale variation, but their localization of

joints is still inaccurate (e.g. joints are sometimes outside the human body) and they still

struggle in multi-person overlapping scenes.

For human semantic part segmentation, previous approaches mainly fall into two cate-

gories. One category of methods generate part segment proposals ans use graphical models

to select and assemble part segment proposals [DCX13, BF11]. These methods are often

time-consuming, and have limited power to handle the variability of pose and occlusion

in natural images. The other category of methods use fully convolutional nerual networks
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(FCN) [LSD15] to directly compute pixel-wise part labels for an image in a simple and fast

way [LSX15, XWC16]. These FCN-type methods, however, still make local confusion errors

when the person is in an extreme pose, or when there are some other people/objects nearby

with similar appearance.

In this work, we aim at improving the performance of human pose estimation and se-

mantic part segmentation in natural images. Each task has some difficult cases if solved

individually, e.g. mistakenly missing the knee joints in pose estimation when the person is

wearing a long dress, failure to distinguish ambiguous regions in semantic part segmentation

when the person is in a non-typical pose, etc. These difficulties, however, can be handled

effectively if we consider the correlation of the two tasks and take the advantages of both

tasks.

1.1 Problem Statement and Difficulties

Human pose estimation. Given an image as the input, a pose estimation approach needs

to output a list of pose configurations in the format of joint locations, for people shown in

the image. In this work, we consider 14 types of human joints which are commonly used

in previous literature: forehead, neck, left/right shoulder, left/right elbow, left/right wrist,

left/right waist, left/right knee, and left/right ankle. Fig. 1.1 demonstrates the input and

the output for the human parsing task.

Human semantic part segmentation. Given an image as the input, a semantic part

segmentation approach needs to output pixel-wise part label maps, classifying each pixel into

one of the semantic part types. In this work, we consider 6 types of semantic parts following

previous approaches: head, torso, upper arm, lower arm, upper leg, and lower leg. Fig. 1.2

illustrates the input and the output for the semantic part segmentation task.

Difficulties of both tasks. Human pose estimation and human semantic part segmen-

tation face similar challenges, e.g. large variation in pose, scale, and occlusion, and ap-

2



(a) (b)

Figure 1.1: The human pose estimation task. It takes the original image as the input

(Column (a)), and outputs a series of stick figures indicating the location of human pose

joints (Column (b)).
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(a) (b)

Figure 1.2: The human semantic part segmentation task. It takes the original image as the

input (Column (a)), and outputs pixel-wise part label map (Column (b)).

pearance, multi-person overlapping, background clutters, and so on. As shown in Fig. 1.3,

current state-of-the-art methods still perform unsatisfactorily on natural images with large

pose/scale variation or multi-person overlapping.

1.2 Overview of Dissertation

This dissertation presents three models that target at improving human pose estimation and

human semantic part segmentation in natural images with large pose/scale variation. The

three models explore three aspects that closely relate to the performance of both tasks: (1)

how pose estimation and semantic part segmentation can help each other; (2) how to tackle

the large scale variation of human instances and human parts; (3) how to combine deep

learning with traditional graphical models, utilizing the advantages of both model types.

In Chapter 1, we briefly introduce the two tasks, and give an overview of this dissertation.

In Chapter 2 and Chapter 3, we provide background for the two tasks, and compare our

4



multi-person confusion scale estimation error missing small instances

poor boundary details incomplete part regions overall pose confusion

Figure 1.3: Failure cases of current state-of-the-art methods for human pose estimation (top

row) and semantic part segmentation (bottom row).

models with previous ones generally. We give formal descriptions of our three models from

Chapter 4 to Chapter 6. This dissertation is concluded in Chapter 7. Here, we give a big

picture of our three models.

Model 1. Our first model (Chapter 4) incorporates top-down pose information into an

AOG-based part segmentation framework, and defines pose-based features that are able to

capture meaningful localization relationship between one part segment and the glocal pose

joints. This model performs better than end-to-end deep learning strategies in relatively

simple dataset with roughly known scale and typical poses.

Model 2. Our second model (Chapter 5) is a hierarchical FCN model that effectively han-

dles big scale variation in complext natural images. It performs object/part scale estimation

and part segmentation jointly, addapting to the size of objects and parts. This model can

be easily applied to both tasks, demonstraing excellent results in challenging images.
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Model 3. Our third model (Chapter 6) is an iterative framework that combines the two

tasks. It formulates the pose estimation problem as a fully-connected CRF, considers the

multi-person overlapping issue explicitly, and uses part segment consistency features during

inference. This model works quite well on complex multi-person datasets, and thus we learn

location & shape priors for semantic parts based on the estimated pose configurations, further

improving the part segmentation performance within a FCN framework.

1.3 Overview of Contributions

In our three models, we explored and validated the complementary properties of pose es-

timation and semantic part segmentation by introducing pose consistency features to help

semantic part segmentation (Model 1 & 3) and semantic part consistency features to help

pose estimation (Model 3).

We tackle two difficulties that challenge part segmentation and pose estimation in multi-

person natural images: large scale variation (Model 2) and large pose variation (Model 3),

providing efficient and satisfactory solutions on both tasks.

Detailed contributions of each model are introduced in the speficic chapter of that model.
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CHAPTER 2

Preliminaries

In order to be self contained, we provide some preliminary information in this chapter to

introduce traditional models relating to our own models. We first introduce three popular

graphical models that are popular in human pose estimation and human semantic part seg-

mentation: part-based models, And-Or graph (AOG), and conditional random field (CRF).

Then we introduce recent advances in applying deep neural networks to both tasks.

2.1 Part-Based Graphical Models

Objects in 2D images, including humans, can be modeled as collections of interrelated atomic

parts. Many part-based models, such as constellation models [FPZ03, WWP00] and picto-

rial structures [FH05, FE73], have been proposed to explicitly model the appearance of

individual parts and the non-rigid geometric deformations between parts. For human pose

estimation, “parts” refer to human pose joints like neck and shoulders. For human semantic

part segmentation, “parts” refer to semantic part regions of humans, such as head, torso,

arms, etc.

Constellation models. In constellation models, a central root node is connected with

all the part nodes. The geometric relationship between all the parts and the central node

is modeled using a Gaussian distribution. Usually a sparse set of location proposals are

first determined by an interest point operator, and then their geometric arrangement is

infered by the constellation model. Disadvantages of constellation models include: (1) a

joint Gaussian distribution can’t capture the articulations between multiple points; (2) the
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Figure 2.1: Illustration of pictorial structures model on human pose estimation.

inference algorithm normally employs some kind of heuristics, making it difficult to find the

optimal configuration of all the parts.

Pictorial structures. Pictorial structures represent objects as a collection of parts, with

connections between certain pairs of parts. The model can be described as an undirected

graph G = (V , E), where the vertices V = {v1, v2, ..., vn} correspond to the n parts, and each

edge (vi, vj) corresponds to the connected part pair vi and vj. For human pose estimation, G

is usually a tree-structured model resembling the human skeleton, and E are defined between

adjacent joint pairs, such as forehead and neck, neck and left/right shoulder, etc. A human

configuration L is defined as L = {l1, l2, ..., ln}, where li denotes the variables we would like

to infer for part i, such as part location, orientation, foreshortening, and so on.

The energy function of a particular configuration consists of unary terms that measure

how well each part matches the image data, and pairwise terms that measure how well the

relative location of each part pair matches the deformation model (see Fig. 2.1). During the

inference, we compute the optimal configuration that minimizes Equ. (2.1), where mi is the

unary term for each part i and di,j is the pairwise deformation term between part i and part

j. Generally, the unary term is the match score computed by part filters; the pairwise term

is just a function of the relative position between two parts. With the invention of distance

8



transforms [FH05], pictorial structures can be infered efficiently on images, considering a

dense set of part locations.

L∗ = argminL (
n∑
i=1

mi(li) +
∑

(vi,vj)∈E

di,j(li, lj)) (2.1)

For part detectors that produce unary scores, pictorial structures use hand-crafted fea-

tures that have limited representation power and can’t handle large variation of pose and

appearance. For pairwise term, pictorial structures use relative location only as geometric

prior, which is not strong and is not data dependent. Later models have made improvements

on pictorial structures by (1) using stronger part detectors and stronger data-dependent

pairwise terms; (2) changing the graph structure into cyclic models, mixture of trees, com-

positional tree models, and so on.

2.2 And-Or Graph (AOG)

And-Or graphs (AOGs) are another type of part-based models, capable of encoding the hier-

archical and reconfigurable composition of parts as well as the geometric and compatibility

constaints between parts. Some previous methods adopt AOGs for human pose estima-

tion [ZCL08] and human semantic part segmentation[DCX13, XZW16]. Here, we illustrate

an AOG for semantic part segmentation (see Fig. 2.2).

We can represent an And-Or graph as G = (V , E), where V is the set of vertices, com-

prising of three node types (i.e. and-nodes, or-nodes, and leaf nodes), and E is the set of

edges, defined according to parent-child relationship. In semantic part segmentation, the

leaf nodes (VL) correspond to human semantic parts at the finest level, e.g. hair and face;

the and-nodes (VA) represent higher-level parts, such as head, which is made up of smaller

parts; the or-nodes (VO) don’t have semantic meanings, but are used to specify the topology

of the graph, deciding the latent configuration type.

Let z be the state variables of the whole graph. Suppose kids(v) denotes the children of

node v, and t denotes switch variables at or-nodes, indicating the set of active nodes V(t).
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Figure 2.2: Illustration of And-Or graph model on human semantic part segmentation.

VO(t), VA(t), and VL(t) are active or-nodes, and-nodes, and leaf nodes respectively. For an

and-node v ∈ VA, we define zkids(v) = {zµ|µ ∈ kids(v)} as the state variables of all the child

nodes of v. For an or-node v ∈ VO, we use ztv to denote the state of its selected child node.

For a leaf node v ∈ VL, zv denotes the region/segment proposal chosen for part v, linking the

model to the image data. Given an image I, the AOG computes the optimal state variable

z by minimizing the energy function Equ. (2.2).

E(z|I) =
∑

µ∈VO(t)

EO(zµ) +
∑

µ∈VA(t)

EA(zµ, zkids(µ)) +
∑

µ∈VL(t)

EL(I|zµ) (2.2)

The potential EO(.) encodes the prior distribution for the choices of an or-node. The poten-

tial EA(.) captures the geometry interaction between an and-node and all its child nodes,

e.g. it can encode relative location and scale between the and-node and its child nodes. For

leaf nodes, EL(.) matches the selected region/segment part proposal to image, which can be

the output of a part score regressor.
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We can formulate the optimization of AOG under the structural learning framework, and

effectively solve the model by the cutting plane algorithm [JFY09].

2.3 Conditional Random Field (CRF)

Conditional random fields (CRFs) are a type of undirected probabilistic graphical models

that are often used for image object segmentation. Give input variables X and output

variables Y = {y1, y2, ..., yn}, a CRF models the conditional distribution P (Y |X), considering

not only how each individual output variable yi matches the input X but also the dependency

between each pair of connected output variables. In this section, we regard each human part

as a separate class and introduce how we apply a simple CRF to an image to acquire pixel-

wise part label map for human semantic part segmentation.

The graph structure for the CRF is G = (V , E). Given an image I of n pixels, we define

each pixel as a node: V = {v1, v2, ..., vn}, and define an edge between each pair of neighboring

pixels: E = {(vi, vj)}. The input variables for the CRF are the pixel values of I. The output

variables are the pixel-wise part lables L = {li|i = 1, 2, ..., n}. Suppose there are N part

categories including background, each li takes value from 1, 2, ..., N . The energy function to

minimize is defined as:

E(L|I) =
∑
vi∈V

Φ(li|I) + λ
∑

(vi,vj)∈E

Ψ(li, lj|I), (2.3)

where Φ(.) and Ψ(.) are the unary potential and pairwise potential respectively, and λ is the

model parameter.

The unary potential Φ(li|I) is defined by the output score of a part classifier. For example,

we can learn a logistic regression model for each part type, based on a feature vector φ(Ivi)

extracted from the neighboring region of pixel vi. The logistic regression models output

P (li|φ(Ivi)), and we set Φ(li|I) as in Equ. (2.4). Traditionally, the feature vector φ(Ivi)

consists of a rich set of manually designed features based on color intensities and edges.

Recently, the feature vector can also be stronger deep-learned features.
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Φ(li|I) = ln P (li|φ(Ivi)) (2.4)

The pairwise potential Ψ(li, lj|I) can also be defined using logistic regression models

trained for each part type pair. For part type pair li and lj, the logistic regression model

predicts P (li, lj|ψ(Ivi , Ivj)) and we define Ψ(li, lj|I) as in Equ. (2.5).

Ψ(li, lj|I) = ln P (li, lj|ψ(Ivi , Ivj)) (2.5)

Depending on the graph structure E , we use different approaches to perform inference on

a CRF. If the graph is a tree, message passing algorithms give exact solutions. If the CRF

only contains pair-wise potentials and the energy function is submodular, exact solutions

are also possible by running Max-Flow/Min-Cut algorithms. If exact inference is impossi-

ble, there are several approximation approaches as well. Recently, fully-connected CRF is

very popular in image segmentation, which adds an edge between each pair of pixels and

thus considers long-range interactions in the image. [KK11] proposes an efficient approxima-

tion inference algorithm on fully-connected CRF based on mean field theory while [IPA16]

performs approximation inference using linear programming relaxations.

2.4 Deep Neural Networks for Pose Estimation and Segmentation

With the advent of powerful deep learning techniques [LKF10] and the availability of large-

scale annotated data on pose estimation and segmentation (e.g. ImageNet [DDS09], MS-

COCO [LMB14] and PASCAL-Part [CML14]), dramatic progress has been made on both

human pose estimation and human semantic part segmentation.

For both tasks, there are several popular deep convolutional neural network (DCNN)

structures that researchers adopt for different purposes. To name a few, VGG-16 [SZ14],

DeepLab [CPK15a], GoogLeNet [SLJ15], Deep Residual Net [HZR15], etc.

On human pose estimation, DCNNs are usually used to compute unary score maps for all

joint types and predict pairwise relationship between forehead and neck, neck and left/right
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(a) (b)

Figure 2.3: Illustration of deep-learned feature maps used in human pose estimation. (a):

unary joint score maps; (b) regression prediction (from left shoulder to all the other joints).

shoulder, and other adjacent joint type pairs. These feature maps are later used in a graphical

model to infer the optimal pose configuration. As shown in Fig. 2.3, [IPA16] uses deep-learned

joint score maps as unary terms for a fully-connected CRF, and defines pairwise terms based

on deep-learned neighboring joint prediction maps. The unary score maps learned by DCNNs

are very accurate compared with heatmaps produced by traditional part classifiers, therefore

a simple assembling model suffice for relatively simple images. However, for natural multi-

person scenes, a strong assembling model is necessary and some difficulties haven’t been

effectively solved, e.g. large pose/scale variation, multi-person confusion, and so on.

For semantic part segmentation, recent approaches adopt fully convolutional networks

(FCNs) to directly produce pixel-wise part labels, yielding superior performance to tradi-

tional graphical models. However, FCN-type methods give coarse boundary details due to

FCN’s inherent invariance property, which is undesirable for the fine-grained task of seman-

tic part segmentation. Moreover, these methods still make local confusion errors when the

person is in a non-typical pose, or when there are multiple people overlapping each other. An

efficient mechanism to handle the large variation of pose/scale and to handle the multi-person

issue is needed.
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CHAPTER 3

Related Works

As human pose estimation and semantic part segmentation are two fundamental topics in

computer vision, many graphical models on the two topics have been proposed during the

past thirty years. With the advent of powerful deep learning techniques, some models start

to use deep-learned features, or even perform the whole task within a deep neural network.

Recently, there are also works that combine pose estimation and segmentation in graphical

models. In this chapter, we give an overall review of previous literature in these aspects.

3.1 Human Pose Estimation

Part-based graphical models are popular in human pose estimation due to the fact that

human instances are highly articulated. Binford [Bin71] expressed that objects in 2D images

can be modeled as collections of interrelated atomic parts and proposed generalized cylinder

models. Fischler and Elschlager [FE73] introduced the basic Pictorial Structural model

(PS), a tree model with local part scores and kinematic pairwise terms. However, exact

inference of PS on dense pixels was too time consuming at that time. Fast inference on

PS was made possible by Felzenszwalb and Huttenlocher [FH05], who proposed efficient

distance transform algorithms. Later, Andriluka [ARS09] improved Pictorial Structures by

learning stronger part filters using Adaboost classifiers built on shape-context features of each

part. Traditional models like PS suffer from two disadvantages. They are tree-structured

models with traditional hand-crafted features, so they have limited representation power and

can’t handle large variations in pose and appearance. Besides, the pairwise terms are just

geometric priors between part pairs, not strong and not data-dependent.
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To overcome these difficulties, some researchers resort to cyclic models and mixture of

tree models. [TF10] designed a fully connected graph of limbs and performed approximation

inference by local greedy search.Most cyclic models are very time consuming and usually take

minites to perform exact inference. [WM08] adopted mixture of tree models to reason about

occlusion and spatial constraints while [ZR12] used mixture of tree models for face landmark

localization, capturing a broad range of pose. Modes in these models are usually learned

from data, and may not have semantic meanings. These models only rely on hand-crafted

features and are still limited in handling complex natural images.

To enhance the representation power of previous methods, multimodal compositional

models are proposed. [YR11] learned modes only at the part level, considered compositional

parts that connect to simple parts and modeled their geometric constraints. [ST] treated the

entire human body as a mixture of templates. [ZM07, ZCL08, RPZ13] explored mixtures at

the middle level in hierarchical models, and introduced And-Or graph (AOG), a multi-level

mixture of MRFs. In an AOG, an and-node represents a decomposition of a mid-level part,

while an or-node is a switch that chooses among a set of its child and-nodes.

Recently, graphical models are combined with deep-learned features for even stronger

representation power. [CY14, IPA16] used a deep convolutional neural network (DCNN) to

predict unary joint score maps and relative positions of neighbouring joints, and combined

them as unary and pairwise terms in a graphical model. [CY14] clustered the relative

positions of a neighbouring joint into 11 clusters and used the DCNN to predict the cluster

id, while [IPA16] directly regress the positions of neighbouring joints from the image. For the

graphical model, [CY14] used a tree model while [IPA16] adopted a fully-connected CRF.

There are also some works that give up the pose assembling graphical model by modeling

dependencies of joints within DCNNs. [TS14, CAF15] regressed the location for all the

joints directly and modified the locations in a recurrent manner. [COL16] added extra

convolutional layers in a DCNN to model the dependency of joints in a tree structure, using

the score map of one joint to predict the score map of its neighbouring joints. These models

perform well on relatively simple datasets, but a good assembling model is really necessary

to handle the large pose variation in natural multi-person datasets.
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3.2 Human Semantic Part Segmentation

Traditional methods on human semantic part segmentation fall into two major categories.

One type of methods first generate region/segment proposals for each semantic part, then

select and assemble the region proposals by a graphical model. [BF11] generated region

proposals by UCM segmentation [AMF09], ranked the region proposals using shape and ap-

pearance features, and assembled the proposals with simple geometric constraints. [DCX13]

got region proposals by UCM and CPMC [CS12], extracted a rich set of appearance features

for each region proposal encoded by Fisher Kernel and second-order pooling, and assembled

the region proposals with a dedicated And-Or graph (AOG). The other type of methods

treat semantic part segmentation as scene parsing, adopting pixel-wise conditional random

fields (CRFs) to infer the pixel-wise part labels. [YLO12] built a CRF based on super-pixels

and tried to classify each super-pixel into one of the semantic part types. They learned unary

part classifiers for super-pixels based on traditional features, and used the output scores as

unary terms in the CRF. For the pairwise terms, they trained logistic regression models

to predict whether two neighboring pixels should have the same label, and also learned a

consistency prior between each part type pair from the training data. These traditional

methods perform well on simple images, but struggle in natural images with large pose/scale

variation.

Over the past few years, DCNNs have pushed the performance to new heights in many

computer vision tasks such as image classification, object detection, and fine-grained cate-

gorization. For semantic part segmentation, there are two directions in recent methods that

deal with DCNNs. Some extract deep-learned features for region proposals, and assemble the

region proposals using a graphical model based on those features [XZW16]. Some use fully

convolutional networks (FCNs) to output pixel-wise part labels directly [LSD15, CPK15b,

XWC16]. Graphical models with DCNN features perform well on relatively simple datasets

and give good details of parts, but they struggle in complex natural datasets with large

pose/scale variation. FCN-type methods handle the pose variation better, but only give

very coarse boundary details of parts, which is not desirable for part segmentation. Besides,
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the scale variation in multi-person natural images hasn’t been explored.

To improve FCN-type methods on boundary details, [CPK15a] added a post-processing

fully-connected CRF to the part segmentation FCN, giving clearer details of big parts such

as head and torso. However, the boundary details of small flexible parts, such as arms

and legs, are far from satisfactory. [CPK15a] also performed multi-scale score fusion inside

FCN, solving the object scale variation to some extent. However, arms and legs of small-

scale people are often missed and local confusion errors still occur for large-scale people.

Furthermore, the scale variation of human parts hasn’t been explored.

3.3 Combining Pose Estimation and Part Segmentation

Recently, some researchers consider the correlation between pose estimation and segmenta-

tion. [YLO12] performed human pose estimation and semantic part segmentation sequen-

tially for clothes parsing. [LTZ13] proposed a framework for joint pose estimation and part

labeling under a CRF. [DCS14] solved pose estimation and part segmentation within an

AOG-based framework. These methods demonstrate the complementary properties of pose

estimation and part segmentation, but they can’t handle images with large pose variation

and multi-person overlapping due to the use of less powerful features in the graphical models

and the poor quality of region proposals for parts.

In this dissertation, we propose several approaches that combine DCNNs with dedicated

graphical models, greatly boosting the representation power of models to handle large pose

variation. We also introduce part segment consistency for pose estimation and pose con-

sistency for part segmentation, further improving the performance for multi-person natural

images.
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CHAPTER 4

Pose-Guided Human Semantic Part Segmentation in

Constrained Scenes

There are some scenarios in our daily life that only require good part segmentation results

for images under constrained conditions: the image is well-cropped to mainly contain one

person, the background is relatively simple, and people have relatively standard poses such

as standing or sitting. In these cases, standard end-to-end deep models like fully convolu-

tional networks (FCNs) [LSD15] don’t necessarily outperform dedicated graphical models

(see Fig. 4.1) because the inherent invariance of deep models causes ignorance of localiza-

tion/edge details, which is undesirable for semantic part segmentation. Also, it’s worth

noting that we can get reliable (roughly right) pose estimation in these images, which may

provide helpful cues for part segmentation. Therefore, we propose a part segmentation frame-

work that follows the traditional proposal-assembling pipeline (i.e. segment/region proposals

Image FCN-32 FCN-16 Our Model

Figure 4.1: Human semantic part segmentation on Penn-Fudan Pedestrian Dataset. Images

are roughly cropped bounding boxes for pedestrians. Our model gives better boundary

details than standard FCNs [LSD15] of two scales.
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Figure 4.2: Human part segmentation using pose (pose-guided-proposals and pose-context

features) and deep-learned part semantic cues.

are first generated for human parts and then a graphical model is used to select and inte-

grates these proposed segments [YLO12, YLL14]), and uses top-down pose information for

all stages of the pipeline: segment proposal generation, proposal ranking & selection, and

proposal assembling. We visually demonstrate the effectiveness of our proposed pose cues in

Fig. 4.2.

Here we elaborate a little on our overall pipeline. As shown in Fig. 4.3, given an input

image, we first (bottom left) use a state-of-the-art pose estimation algorithm [CY14] to

estimate the locations of the joints and other salient parts of humans. We use the estimates

of the joint positions to obtain pose-guided-proposals for part segments (top left) based on the

intuition that part segments should be correlated to joint positions (e.g., the lower-arm should

appear between the wrist and the elbow), which yields a limited set of proposals with high

recall. Next we compute rich feature descriptors for each segment proposal, including a novel

pose-context feature which captures spatial/geometrical relationship between a proposed

segment and the estimated human pose joints. We also use standard appearance features
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Figure 4.3: Illustration of our human part segmentation pipeline.

and complementary deep-learned part semantic features computed by a fully convolutional

network (FCN) [LSD15, HAG15b, CPK15a, TKP15]. Then we rank the segment proposals

based on these features and select the top-ranked ones. This leaves a small number of high-

quality proposals for each part category which are used as input to the part assembling

stage.

For part assembling, we propose an And-Or graph (AOG) [ZM07, ZCL08, ZWZ12,

WY15], which is an efficient way to represent the large variability of human appearances.

We perform inference over this AOG to select and combine part segment proposals so as to

parse the human body. Compared with traditional AOGs, our AOG has more flexible and

efficient structure (i.e. each leaf node allows arbitrary number of data-mined part subtypes)

and includes an extension of the pose-context feature as a pairwise term to measure the

compatibility of adjacent parts.

We evaluate our method on a popular pedestrian parsing benchmark dataset, Penn-

Fudan [WSS07], and show that our approach outperforms other state-of-the-arts by a sig-

nificant margin.
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4.1 Pose-Guided Human Part Segmentation Pipeline

Given a pedestrian image I, we first adopt a state-of-the-art pose estimation approach [CY14]

to estimate human pose joints L = {l1, l2, · · · , l14}, where lj denotes the location of the j-th

pose joint. As shown in Fig. 4.3, based on the human pose cues, our human part segmentation

pipeline has three successive steps: part segment proposal generation, part proposal selection,

and part assembling. We will introduce the first two steps below, and elaborate on our

AOG-based part assembling method in the next section.

4.1.1 Pose-Guided Part Segment Proposal Generation

To generate part segment proposals, we modify the RIGOR algorithm [HLR14], which can

efficiently generate segments aligning with object boundaries given user defined initial seeds

and cutting thresholds. In this paper, we propose to generate the seeds based on the esti-

mated pose joint locations. Specifically, given the observation that part segments tend to be

surrounding corresponding pose joints, for each joint we sample a set of seeds at the 5 × 5

grid locations over a 40 × 40 image patch centered at this joint. We use 8 different cutting

thresholds, yielding about 200 segment proposals for each joint. Combining proposals from

all the joints, we further prune out duplicate segments (with intersect-over-union (IOU) ≥

0.95 as threshold) and construct a segment pool S = {s1, s2, · · · , sN} that contains around

800 segment proposals for each image. We use these segments as candidate part segments

in the latter two steps.

4.1.2 Part Proposal Selection

We consider the following image features for each segment proposal si ∈ S: (i) φo2p(si), a

second order pooling (O2P) feature [CCB12] for describing appearance cues; (ii) φskin(si), an

appearance feature [KH10] capturing skin color cues; (iii) φpose(si,L), a pose-context feature

we propose in this paper, which measures the spatial relationship between the segment si

and the predicted pose joint configuration L; (iv) φc−pose(si,L), a non-linearly coded version
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of φpose(si,L); (v) φfcn(si,H), a deep-learned semantic feature using FCN, which measures

the compatibilities between the segment image patch and high-level part semantic cues from

FCN.

Figure 4.4: Illustration of our proposed pose-context feature.

We now describe the proposed pose-context feature φpose(si,L). As shown in Fig. 4.4,

centered at si, the image is equally divided into eight orientations (I−VIII) and three region

scales (S1, S2 and S3), yielding 24 spatial bins in total. Then each joint lj ∈ L falls into

one of these spatial bins, producing a binary feature to quantize the spatial relationship

of lj w.r.t. si. After that, we concatenate binary features of all the joints, and obtain a

24 × 14 = 336 dimensional pose-context feature to describe the spatial relationship of si

w.r.t. L. Specifically, S1 and S2 are the regions eroded and dilated by 10 pixels from the

segment’s boundary respectively. S3 is the rest region of image. This segment-dependent

definition of region scales depicts semantically meaningful geometric cues from the predicted

pose information, e.g. the lower boundary of the short skirt segment should be around the

knee joints. The three-scale design (rather than using the segment edge alone) makes the

feature robust to pose estimation errors.

The pose-context feature can be highly non-linear in the feature space, which might

be suboptimal for linear classifiers/regressors. This motivates us to apply non-linear coding
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technology [YYG09, WYY10] on the pose-context feature to achieve linearity. We adopt soft-

assignment quantization (SAQ) coding [LWL11] to encode the pose-context feature into its

coded version φc−pose(si,L), with a dictionary of pose-guided part prototypes D = {bm}ND
m=1,

learned via K-means clustering algorithm [HW79] on the pose-context feature representa-

tion of ground-truth part segment examples. Specifically, to balance K different part cat-

egories, we separately perform clustering and obtain Np = 6 prototypes/clusters for each

part category, resulting in a dictionary of ND = K ×Np codewords. Given D, we compute

the Euclidean distance between original pose-context feature of si and each prototype bm:

di,m =‖ φpose(si,L) − bm ‖. Thus φc−pose(si,L) is formally defined as the concatenation of

both the normalized and un-normalized codes w.r.t. D:

φc−pose(si,L |D) = [ai,1, · · · , ai,ND , a
′

i,1, · · · , a
′

i,ND
]T (4.1)

where ai,m = exp(−λdi,m) and a
′
i,m =

ai,m∑ND
j=1 ai,j

denote the un-normalized and normalized code

values w.r.t. bm respectively. λ is a hyper-parameter of our coding method. The coded

pose-context feature is adopted in training the support vector regression (SVR) models for

part proposal selection.

The learned part prototypes, which generally correspond to different viewpoints of a

part or different appearance patterns of a part (e.g. long pants or skirts for the lower-clothes

category), are used to define part subtypes in our AOG. As illustrated in Fig. 4.5a, the learned

face prototypes generally correspond to different typical views of the face category. We show

exemplar images for 3 out of 6 clusters. The other clusters correspond to the symmetric

patterns w.r.t. those shown here. Besides, we propose to encode the pairwise pose-context

feature (i.e. concatenated pose-context features of a pair of candidate segments), used as a

pairwise term in our AOG design. We perform clustering separately for each adjacent part

pair and learn a class-specific dictionary for this pairwise pose-context feature. In this paper,

the dictionary size is set by Npp = 8 for each part pair. As visualized in the right figure

of Fig. 4.5b, the learned part-pair prototypes are very meaningful which capture typical

viewpoints and part type co-occurrence patterns for adjacent parts. We show 3 out of 8

clusters.
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Figure 4.5: The learned prototypes/clusters for (a) part category face; (b) adjacent part pair

upper-clothes and lower-clothes.

For the deep-learned semantic feature, we train a FCN-16s deep neural network [HAG15b,

WSL15] with the output to be the part ground truth map, and then produce pixel-wise part

potential maps H, from which binary part label masks B can be obtained via argmax over

the potential maps. Thus, for a segment si, this deep feature φfcn(si,H) consists of three

components: (1) the mean value inside si of H for each part class; (2) the mean value along

the contour of si from H for each part class; (3) The IoU value between si and B for each

part class.

Our final feature descriptor of si is the concatenation of the aforementioned features, i.e.

φ(si,L,H) = [φo2p(si), φ
skin(si), φ

fcn(si,H),

φpose(si,L), φc−pose(si,L)]T
(4.2)

On basis of this hybrid feature representation, we train a linear support vector regressor

(SVR) [CCB12] for each part category. Let P denote the total number of part categories

and p ∈ {1, 2, · · · , P} denote the index of a part category. The target variable for training

SVR is the IoU value between the segment proposal and ground-truth label map of part p.

The output of SVR is given by Equ. (4.3),

gp(si|L,H) = βp
Tφ(si,L,H), (4.3)
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where βp is the model parameter of SVR for the p-th part category. Thus, for any part p,

we rank the segment proposals in S based on their SVR scores {gp(si) | si ∈ S}. Finally, we

select the top-np scored segments separately for each part category and combine the selected

segment proposals from all part categories to form a new segment pool S̃ ⊆ S.

4.2 Part Assembling with And-Or Graph

There are two different groups of classes (i.e. parts and part compositions) in our AOG

model: the part classes are the finest-level constituents of human body; the part compositions

correspond to intermediate concepts in the hierarchy of semantic human body constituents.

Specifically, we define them as follows. Parts : hair, face, full-body clothes, upper-clothes,

left/right arm, lower-clothes, left/right leg skin, left/right shoe. Part Compositions : head,

head & torso, upper-body, left/right leg, human body.

To assemble the selected part segments, we develop a compositional AOG model as

illustrated in Fig. 4.6a, which facilitates flexible composition structure and standard learn-

ing/inference routines. Let P and C denote the number of parts and the number of part

compositions respectively. Formally, our AOG model is defined as a graph G = (V , E), where

V = T ∪N denotes a set of vertices and E refers to the set of edges associated. Meanwhile,

T = {1, 2, · · · , P} and N = {P +1, P +2, · · · , P +C} denote the set of part indices and the

set of part composition indices respectively. In our AOG, each leaf vertex p ∈ T represents

one human body part and each non-leaf vertex c ∈ N represents one part composition. The

root vertex corresponds to the whole human body while the vertices below correspond to the

part compositions or parts at various semantic levels. Our goal is to parse the human body

into a series of part compositions and parts, which is in a hierarchical graph instantiated

from the AOG model.

The vertex of our AOG is a nested subgraph as illustrated at the bottom of Fig. 4.6a.

For a leaf vertex p ∈ T , it includes one Or-node followed by a set of terminal nodes as its

children. The terminal nodes correspond to different part subtypes learned by clustering

the pose-context feature of training part segments, and the Or-node represents a mixture
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model indicating the selection of one part subtype from terminal nodes. Formally, we define

a state variable zp ∈ {0, 1, 2, · · · , Kp} to indicate that the Or-node selects the zp-th terminal

node as the part subtype for leaf vertex p. As an example of a green node in Fig. 4.6a,

the lower-clothes part can select one kind of subtype (e.g. long pants or skirt) from its

candidate part subtypes. In addition, there is one special terminal node representing the

invisibility of the part due to occlusion/self-occlusion, which corresponds to the state zp = 0.

For a non-leaf vertex c ∈ N , it includes one Or-node linked by a set of And-nodes plus one

terminal node. The Or-node of non-leaf vertex represents this part composition has several

different ways of decompositions into smaller parts and/or part compositions. The And-node

corresponds to one possible configuration of the decomposition of c. As shown in Fig. 4.6a,

the non-leaf vertex head can be composed by one of several different configurations of two

child vertices (i.e., face and hair). Similar to the leaf vertices, we also induce a state variable

zc ∈ {0, 1, 2, · · · , Kc} to indicate that the Or-node of part composition c selects the zc-th

And-node as the configuration of child vertices for zc 6= 0 or this part composition is invisible

when zc = 0.

Further, we define another state variable y to indicate the selection of segment from the

candidate pool of a part or part composition. For a leaf vertex p ∈ T , yp ∈ {0, 1, 2, · · · , np,zp}

represents that the part p selects the yp-th segment proposal (i.e., s
p,zp
yp ) from the segment

pool S̃p,zp , outputted by its segment ranking model on subtype zp. Meanwhile, yp = 0 is a

special state which coincides with the invisibility pattern of part p (i.e., zp = 0). To make

the notations consistent, we use s
p,zp
0 to represent an “null” segment for part invisibility. For

a non-leaf vertex c ∈ N , yc ∈ {0, 1, 2, · · · , nc} indicates a segment sc,zcyc ∈ S̃c,zc is selected,

where sc,zcyc is obtained by the union of its child vertices’ candidate segments and S̃c,zc denotes

the candidate segment pool for the zc And-node. When yc = 0, likewise, the sc,zc0 represents

a null segment indicating the invisibility pattern of part composition c.

Let Ch(c, zc) denote the set of child vertices for part composition c and configuration zc.

Formally, sc,zcyc is defined by Equ. (4.4), where d represents a pixel-wise union operation of
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Figure 4.6: Illustration of our AOG design. (a) Architecture of AOG. (b) Structure of

vertices in AOG; the symbols of OR, AND and T represent the Or-node, And-node and

terminal node respectively.

combing the child vertices’ segment masks to generate a new segment.

sc,zcyc = dµ∈Ch(c,zc)s
µ,zµ
yµ (4.4)

Let Y = (y1, y2, · · · , yP , yP+1, yP+2, · · · , yP+C) and Z = (z1, z2, · · · , zP , zP+1, zP+2, · · · ,

zP+C) denote the structural solution of AOG. We define a global score function of AOG

F (Y,Z | S̃,L,H) (here S̃ =
⋃

p∈T , zp 6=0

S̃p,zp) to measure the compatibility between (Y,Z)

and (S̃,L,H) for image I, which can be calculated as shown in Equ. (4.5), where f(yp, zp)

is a local score function of leaf vertex p, which consists of only one unary term, while

f(yc, zc, {(yµ, zµ) : µ ∈ Ch(c, zc)}) denotes a score function of non-leaf vertex c, which

consists of two pairwise terms.

F (Y,Z|S̃,L,H) =
∑
p∈T

f(yp, zp) +
∑
c∈N

f(yc, zc, {(yµ, zµ) : µ ∈ Ch(c, zc)}) (4.5)
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Part Composition (c) Adjacent Part Pairs (Rc)

human body (upper-clothes, lower-clothes), (full-body clothes, left leg skin), (full-body clothes, right leg skin)

head (hair, face)

head & torso (upper-clothes, hair), (upper-clothes, face), (full-body clothes, hair), (full-body clothes, face)

upper-body (left arm, upper-clothes), (right arm, upper-clothes), (left arm, full-body clothes), (right arm, full-body clothes)

lower-body (lower-clothes, left leg skin), (lower-clothes, right leg skin), (lower-clothes, left shoe), (lower-clothes, right shoe)

left leg (left leg skin, left shoe)

right leg (right leg skin, right shoe)

Table 4.1: The list of adjacent part pairs in our AOG design.

For each leaf vertex p ∈ T (i.e. a part), we compute f(yp, zp) by Equ. (4.6), in which

wpzp and bpzp denote the weight and bias parameters of unary term for part p respectively.

Particularly, bp0 is the bias parameter for the invisibility pattern of p. Besides, gpzp is dependent

on the part subtype zp, implying the regression models defined in Equ. (4.3) are trained by

different parts and subtypes. Fig. 4.6b illustrates the structure of a leaf vertex and its

corresponding model parameters.

f(yp, zp) =

bpzp + wpzp · g
p
zp(s

p,zp
yp |L,H), zp 6= 0

bp0, zp = 0
(4.6)

For each non-leaf vertex c ∈ N (i.e. a part composition), we compute f(yc, zc, {(yµ, zµ) :

µ ∈ Ch(c, zc)}) by Equ. (4.7), where u(yc, zc, {(yµ, zµ) : µ ∈ Ch(c, zc)}) is defined in

Equ. (4.8).

f(yc, zc,{(yµ, zµ) : µ ∈ Ch(c, zc)}) =bczc + u(yc, zc, {(yµ, zµ) : µ ∈ Ch(c, zc)}), zc 6= 0

bc0, zc = 0

(4.7)

u(yc, zc, {(yµ, zµ) : µ ∈ Ch(c, zc)}) =
∑

µ∈Ch(c,zc)

w
(c,µ)
(zc,zµ)

T
ϕ(sc,zcyc , s

µ,zµ
yµ )+

∑
(p1,p2)∈Rc

w
(p1,p2)
(zp1 ,zp2 )

T
ψ(s

p1,zp1
yp1

, s
p2,zp2
yp2
|L)

(4.8)

Concretely, Equ. (4.7) can be divided into three terms:

(1) the bias term of selecting zc for the Or-node, i.e. bczc . b
c
0 is the bias parameter when

part composition c is invisible (In this case, all the descendant vertices are also invisible
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and thus the latter two terms are zero).

(2) the sum of parent-child pairwise terms (i.e., vertical edges) for measuring the spatial

compatibility between the segment of part composition c and the segments of its child

vertices, i.e.
∑

µ∈Ch(c,zc)
w

(c,µ)
(zc,zµ)

T
ϕ(sc,zcyc , s

µ,zµ
yµ ), where ϕ(sc,zcyc , s

µ,zµ
yµ ) denotes a spatial com-

patibility feature of segment pair (sc,zcyc , s
µ,zµ
yµ ) and w

(c,µ)
(zc,zµ)

refers to corresponding weight

vector. Specifically, ϕ is defined by [dx; dx2; dy; dy2; ds; ds2], in which dx, dy represent

the spatial displacement between the center locations of two segments while ds is the

scale ratio of them.

(3) the sum of pairwise terms (i.e. side-way edges) for measuring the geometric compat-

ibility on all segment pairs specified by an adjacent part-pair set Rc, which defines

a couple of adjacent part pairs for c (e.g., for the part composition of lower body,

we consider lower-clothes and leg skin to be an adjacent part pair). Tab. 4.1 lists

the adjacent part pairs for each non-leaf vertex. To avoid double counting in re-

cursive computation of Equ. (4.8), Rc only includes the relevant part pairs which

have at least one child vertex of c. This side-way pairwise potential corresponds to∑
(p1,p2)∈Rc

w
(p1,p2)
(zp1 ,zp2 )

T
ψ(s

p1,zp1
yp1

, s
p2,zp2
yp2
|L) in Equ. (4.8), where ψ(s

p1,zp1
yp1

, s
p2,zp2
yp2
|L) represents

a geometric compatibility feature of segment pair (s
p1,zp1
yp1

, s
p2,zp2
yp2

) and w
(p1,p2)
(zp1 ,zp2 )

is corre-

sponding weight vector. In this paper, we use a coded version of pose-context feature

for ψ. Specifically, we adopt the same coding process as in φc−pose(si,L) but using the

concatenated pose-context features for segment pair (s
p1,zp1
yp1

, s
p2,zp2
yp2

).

In Fig. 4.6b, we illustrate the structure of a non-leaf vertex and its corresponding model

parameters.

4.3 Learning and Inference for And-Or Graph

The score function in Equ. (4.5) is a generalized linear model w.r.t. its parameters. We can

concatenate all the model parameters to be a single vector W and rewrite Equ. (4.5) by

F (Y,Z|L, S̃,H) = WTΦ(L, S̃,H,Y,Z). Φ(L, S̃,H,Y,Z) is a re-organized sparse vector
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gathering all the features based on the structural state variable (Y,Z). In our AOG model,

Z determines the topological structure of a feasible solution (i.e., parse tree), and Y specifies

the segments selected for the vertices of this parse tree. Given a set of labelled examples

{(Yn,Zn) |n = 1, 2, · · · , J}, we formulate a structural max-margin learning problem on W

( Equ. (4.9)), where ∆(Yn,Zn,Y,Z) is a structural loss function to penalize a hypothesized

parse tree (Y,Z) different from ground truth annotation (Yn,Zn).

min
W

1

2
WTW + C

J∑
n=1

ξn, s.t. ∀ Y and Z :

WTΦ(Ln, S̃n,Hn,Yn,Zn)−WTΦ(Ln, S̃n,Hn,Y,Z) ≥ ∆(Yn,Zn,Y,Z)− ξn

(4.9)

Similar to [YBS13], we adopt a relative loss as in Equ. (4.10), i.e. the loss of hypothesized

parse tree relative to the best one (Y∗,Z∗) that could be found from the candidate pool.

That is,

∆(Yn,Zn,Y,Z) = δ(Yn,Zn,Y,Z)− δ(Yn,Zn,Y
∗,Z∗), (4.10)

where δ(Y,Z,Y
′
,Z

′
) =

∑
p∈T IoU(s

p,zp
yp , s

p,z
′
p

y′p
) is a function of measuring the part segmenta-

tion difference between any two parse trees (Y,Z) and (Y
′
,Z

′
). We employ the commonly-

used cutting plane algorithm [JFY09] to solve this structural max-margin optimization prob-

lem of Equ. (4.9).

For inference on AOG models, dynamic programming (DP) is commonly used in the

literature. Our model, however, contains side-way pairwise terms which form closed loops.

These closed loops are fairly small so DP is still possible. We combine the DP algorithm

with state pruning for model inference, which has a bottom-up scoring step and a top-down

backtracking step.

For the bottom-up scoring step, we compute the score of each vertex (to be specific, the

score of the subgraph rooted at that vertex) in a bottom-up manner, only retraining the top-

k scored candidate state configurations of each vertex for subsequent inference. The score of

a subgraph Q ⊆ G (Q = (VQ, EQ)) is defined in Equ. (4.11), which is equivalent to Equ. (4.5)

when Q = G. We set k = 10, making the inference procedure tractable with a moderate

number of state configurations for each vertex. We show in a diagnostic experiment that this

30



greedy pruning scarcely affects the quality of the result while reducing the inference time

significantly.

FQ(YQ,ZQ|S̃,L,H) =
∑

p∈T ∩VQ

f(yp, zp) +
∑

c∈N∩VQ

f(yc, zc, {(yµ, zµ) : µ ∈ Ch(c, zc)}) (4.11)

After getting the score of the root vertex (i.e., whole human body), we backtrack the

optimum state value from the retained top-k list for each vertex in a top-down manner.

Concretely, for each part composition vertex c we select the best scored state configuration

value of (yc, zc, {(yµ, zµ) : µ ∈ Ch(c, zc)}), and recursively infer the optimum state values

of the selected child vertices given each µ ∈ Ch(c, zc) as the root vertex of a subgraph. In

the end, we can obtain the best parse tree from the pruned solution space of our AOG, and

output corresponding state values (Y,Z) to produce the final part segmentation result.

4.4 Experimental Evaluation

We evaluate our algorithm on the Penn-Fudan benchmark [WSS07], which consists of pedes-

trians in outdoor scenes with much pose variation. Because this dataset only provides testing

data, following previous works, we train our part segmentation models using the HumanEva

dataset [SB06], which contains 937 images with pixel-level label maps for parts annotated

by [BF11]. The labels of the two datasets are consistent, which include 7 body parts:

hair, face, upper-clothes, lower-clothes, arms (arm skin), legs (leg skin), and shoes. For

the pose model, we use the model provided by [CY14], trained on the Leeds Sports Pose

Dataset [JE10].

4.4.1 Effectiveness of Pose in the Model

Effectiveness of pose for part proposal generation. We first investigate how the pose

cues help the part proposal generation. Specifically, we compare our pose-guided segment

proposal method with the baseline algorithm, i.e. the standard RIGOR algorithm [HLR14].

For evaluating the proposal algorithms, two standard criteria are used, i.e. average part

recall (APR) and average part oracle IOU (AOI). The first measures how much portion of
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Figure 4.7: Comparison of our part segment proposal method (RIGOR+POSE) to the base-

line (RIGOR). The green asterisks on the plots represent the APR/AOI of the RIGOR pool

for the pool size n = 2000.

the ground-truth segments is covered (i.e., over 50% IOU) by the proposals, and the second

measures the best IOU the proposal pool can achieve on average of all ground-truth segments.

As shown in Fig. 4.7, our method significantly improves the quality of part segment proposals

compared to the baseline by over 10% on average.

Effectiveness of features for part proposal selection. To investigate various features

and their complementary properties for part proposal selection, we sequentially add them

into our SVR model and test the performance/quality of the selected part segments.

In Tab. 4.2, we report the AOI scores for the top-1 ranked part segment and the top-

10 ranked part segments respectively. Firstly, we can see the performance monotonically

improves with more features used, which demonstrates the effectiveness of all features we

proposed. By comparing (2) and (3), we can see a significant boost of the top-1 accuracy,

indicating that the pose information becomes much more effective with the coded pose

context feature. Finally, by adding the deep semantic feature in (4), the performance of

selected part segment improves further. We set np = 10 because it strikes a good trade off

between the quality and pool size of the selected part segments.
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Methods hair face u-cloth l-cloth arms legs shoes mean

(1): o2p + skin
57.1 53.5 70.9 70.9 26.6 20.4 15.6 45.0

68.8 66.9 80.0 81.4 54.6 55.3 45.3 64.6

(2): (1) + pose
61.7 58.6 73.2 72.7 29.9 23.4 17.5 48.1

69.9 66.4 80.6 82.3 56.4 54.3 45.8 65.1

(3): (2) + c-pose
61.8 58.9 73.2 71.9 39.8 44.8 26.5 53.8

69.9 66.4 80.5 82.4 55.8 59.1 47.4 65.9

(4): (3) + fcn
64.4 59.0 77.4 77.1 41.4 43.6 35.1 56.9

70.7 66.6 82.2 83.4 55.9 59.3 48.8 66.7

Table 4.2: Comparison of four part models by AOI score (%) for top-1 ranked segment (top)

and top-10 ranked segments (bottom). Models are numbered as (1) to (4), from top to

bottom.

Effectiveness of the AOG. To show the effectiveness of our AOG design, we set up two

experimental baselines for comparison: (1) Naive Assembling: considering only the unary

terms and basic geometric constraints as defined in the paper [BF11], e.g. upper-clothes

and lower-clothes must be adjacent. (2) Basic AOG: considering only the unary terms and

the parent-child pairwise terms, without the side-way pairwise terms.

Tab. 4.3 shows that the basic AOG with parent-child spatial relations outperforms the

naive assembling model, and by adding the pairwise side-way edges, the performance boosts

further, which demonstrates the effectiveness of each component in our AOG model. For

comparison, we also test the result of the AOG model without state pruning, which clearly

justifies the use of state pruning in AOG inference. We can see that state pruning leads to

neglectable decrease in accuracy while it reduces the inference runtime significantly, from 2

min. to 1 sec. per image.

4.4.2 Comparisons to the State of the Art

We compare our approach with four state-of-the-art methods, namely FCN [WSL15], SBP [BF11],

P&S [RC12], and DDN [LWT13]. Specially, for FCN, we use the code provided by [WSL15]
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Methods hair face u-cloth arms l-cloth legs Avg

Naive Assembling 62.3 53.5 77.8 36.9 78.3 28.2 56.2

Basic AOG 63.1 52.9 77.1 38.0 78.1 35.9 57.5

Ours 63.2 56.2 78.1 40.1 80.0 45.5 60.5

Ours (w/o pruning) 63.2 56.2 78.1 40.1 80.0 45.8 60.5

Table 4.3: Per-pixel accuracy (%) of our AOG and two baselines.

Method hair face u-cloth arms l-cloth legs shoes Avg∗

FCN [WSL15] 48.7 49.1 70.2 33.9 69.6 29.9 36.1 50.2

P&S [RC12] 40.0 42.8 75.2 24.7 73.0 46.6 - 50.4

SBP [BF11] 44.9 60.8 74.8 26.2 71.2 42.0 - 53.3

DDN [LWT13] 43.2 57.1 77.5 27.4 75.3 52.3 - 56.2

Ours 63.2 56.2 78.1 40.1 80.0 45.5 35.0 60.5

Table 4.4: Comparison of our approach with other state-of-the-art methods on the Penn-

Fudan dataset in terms of per-pixel accuracy (%). The Avg∗ means the average without

shoes class since it was not reported in other methods.

and re-train the networks with our training set.

As shown in Tab. 4.4, our model outperforms the FCN by over 10% and the state-of-the-

art DDN method by over 4%, from which we can see most improvement is from small parts

such as hair and arms. It implies that by using the pose cues we can produce high-quality

segment candidates that align to the boundaries for small parts. In addition, our AOG model

together with the pose-context feature can leverage long-range spatial context information,

making our model robust in shape variations and appearance ambiguities.

We illustrate our typical part segmentation results in Fig. 4.8, which are generally good.

The typical faliure cases of our model is listed in Fig. 4.9, due to color confusion with

other objects, multiple instance occlusion, and large variation in lighting respectively, which

generally fail most of current human part segmentation systems. For the first and the third

failure cases, we got accurate pose estimation but failed to generate satisfactory segment
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proposals for lower-clothes, which suggests that we either adopt stronger shape cues in the

segment proposal stage or seek richer context information (e.g. handbag in the first case).

For the second case, we got a bad pose estimation due to occlusion and thus mixed two

people’s parts during assembling, which indicates the necessity of handling instance-level

pose estimation or segmentation.

4.5 Conclusion

In this chapter, we present an AOG-based human part segmentation approach that performs

well on relatively simple images. We integrate top-down pose information into all three stages

of our framework (i.e. pose-guided part proposals and pose-context features in part selection

& assembling), obtaining state-of-the-art segmentation accuracy on a benchmark human

parsing dataset, Penn-Fudan. We propose semantically meaningful pose-context features

that describe the geometric relationship between segment and pose joints. Our AOG design

has flexible composition structure. We show extensive experimental results that validate the

Figure 4.8: Qualitative evaluation of our method on Penn-Fudan.

Figure 4.9: Typical failure cases of our method.
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effectiveness of each component of our framework.

Observing the failure cases of this model (see Fig. 4.9), we find that: (1) we need a

stronger pose estimation model that can handle complex multi-person scenes where people

in the image may overlap with each other and have large pose variation; (2) we should try

to combine deep neural networks with graphical models in a more efficient way to better

utilize their complementary role in the human part segmentation task. These two directions

are explored in Chapter 6.
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CHAPTER 5

Handling Scale Variation of Objects and Parts in

Natural Scenes

Human semantic part segmentation has mainly been studies under constrained conditions

which pre-suppose known scale, fairly accurate localization, clear appearances, and/or rel-

atively simple poses [BF11, ZCL11, EW12, YLO12, DCS14, LLL15]. There are few works

done on parsing animals, like cows and horses, yet these also face similar restrictions, e.g.

roughly known size and location [WY15, WSL15]. Only very recently, people start to ad-

dress the task of parsing objects, such as humans and animals, in “the wild” where there

are large variations in scale, location, occlusion, and pose. One big difficulty of this task is

the large variability of scale and location for objects and their corresponding parts. Even

limited mistakes in estimating scale and location will degrade the part segmentation output

and cause errors in boundary details.

With the emergence of fully convolutional networks (FCNs) [LSD15] and the availability

of object part annotations on large-scale datasets, e.g. PASCAL and MS-COCO, some deep-

based methods have made big improvements on object parsing [HAG15a, WSL15]. However,

these methods can still make mistakes on small or large scale objects and, in particular, they

have no mechanism to adapt to the size of the object.

In this chapter, we will introduce a hierarchical method for object part segmentation

that performs scale estimation and object parsing jointly and is able to adapt its scale to

objects and parts. It is partly motivated by the proposal-free end-to-end detection strate-

gies [HYD15, RHG15], which prove that the scale and location of a target object, and of its

corresponding parts, can be estimated accurately from the field-of-view (FOV) window by
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applying a deep neural network (Fig. 5.1a). We call our approach “Hierarchical Auto-Zoom

Net” (HAZN) which parses the objects at three levels of granularity, namely image-level,

object-level, and part-level, gradually giving clearer and better part segmentation results

(see Fig. 5.1b). The HAZN sequentially combines two “Auto-Zoom Nets” (AZNs), each of

which predicts the locations and scales for objects (the first AZN) or parts (the second AZN),

properly zooms (resizes) the predicted image regions, and refines the object parsing results

for those image regions (see Fig 5.2). The HAZN uses three FCNs [LSD15] that share the

same structure. The first FCN acts directly on the image to estimate a finite set of possible

locations and sizes of objects (e.g. bounding boxes) with confidence scores, together with a

part score map of the image. The part score map is similar to that proposed by previous

deep-learned methods. The object bounding boxes are scaled to a fixed size by zooming in

or zooming out (as applicable) and the image and part score maps within the boxes are also

scaled by bilinear interpolation for zooming in or downsampling for zooming out. Then the

second FCN is applied to the scaled object bounding boxes to make proposals (bounding

boxes) for the parts, with confidence values, and to re-estimate the part scores within the

object bounding boxes. This yields improved part scores. We then apply the third FCN to

the scaled part bounding boxes to produce new estimates of the part scores and to combine

all of them (for different object and part bounding boxes) to output final part scores, which

are our parse of the object. This strategy is modified slightly so that we scale humans dif-

ferently depending on whether we have detected a complete human or only the upper part

of a human, which can be determined from the part score map.

For dealing with scale, the adaptiveness of our approach and the way it combines scale

estimation with parsing give novel computational advantages over traditional multi-scale

methods. Previous methods mainly select a fixed set of scales and then perform fusion on

the outputs of a deep net at different layers. Computational requirements mean that the

number of scales must be small and it is impractical to use very fine scales due to memory

limitations. Our approach is considerably more flexible because we adaptively estimate scales

at different regions in the image which allows us to search over a large range of scales. In

particular, we can use very fine scales because we will probably only need to do this within
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(a) Estimation of scale from field of view

Observed region

Estimated object scale

Estimated part scale

(b) Part parsing at proper object/part scales
Image Object instance proposals Part proposals

Image-level part scores Object-level part scores Part-level part scores

Figure 5.1: Intuition of Hierarchical Auto-Zoom Net (HAZN). (a) The scale and location of

an object and its parts (the red dashed boxes) can be estimated from the observed field of

view (the black solid box) of a neural network. (b) Part segmentation can be more accurate

by using proper object and part scales. At the top row, we show our estimated object

and part scales. In the bottom row, our part parsing results gradually become better by

increasingly utilizing the estimated object and part scales.

small image regions. For example, our largest zooming ratio is 2.5 (at part level) on PASCAL

while that number is 1.5 if we have to zoom the whole image. This is a big advantage when

trying to detect small parts, such as the tail of a cow, as is shown by the experiments.

We report extensive experimental results for parsing humans on the challenging PASCAL-

Person-Part dataset [CML14] and for parsing animals on a horse-cow dataset [WY15]. Our

approach outperforms previous state-of-the-arts by a large margin. We are particulary

good at detecting small object parts. The reason why we mainly work on PASCAL im-

ages [EEG14] is that these images were chosen for studying multiple visual tasks, do not

suffer from dataset design bias [LHK14], and include large variations of objects, particularly

of scale. Parsing humans in PASCAL is considerably more difficult than in other datasets like

Fashionista [YLO12], which were constructed solely to evaluate human part segmentation.
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Figure 5.2: Testing framework of HAZN. We address object part segmentation by adapting

to the sizes of objects (object-scale AZN) and parts (part-scale AZN). The part scores are

predicted and refined by three FCNs, over three levels of granularity, i.e. image-level, object-

level, and part-level. At each level, the FCN outputs the part score map for the current

level, and estimates the locations and scales for the next level. The details of parts are

gradually discovered and improved along the proposed auto-zoom process (i.e. location/scale

estimation, region zooming, and part score re-estimation).

5.1 Hierarchical Auto-Zoon Net (HAZN)

As shown in Fig. 5.2, our Hierarchical Auto-Zoom model (HAZN) has three levels of granular-

ity for tackling scale variation in object parsing, i.e. image-level, object-level, and part-level.

At each level, a fully convolutional neural network (FCN) is used to perform scale/location

estimation and part parsing simultaneously. The three levels of FCNs are all built on the

same network structure, a modified FCN called DeepLab-LargeFOV [CPK15b]. This net-

work structure is one of the most effective FCNs in segmentation, so we also treat it as our

baseline for final performance comparison.

To handle scale variation in objects and parts, the HAZN concatenates two Auto-Zoom

Nets (AZNs), namely object-scale AZN and part-scale AZN, into a unified network. The

object-scale AZN refines the image-level part score map with object bounding box proposals

while the part-scale AZN further refines the object-level part score map with part bounding
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Figure 5.3: Object-scale Auto-Zoom Net from a probabilistic view, which predicts ROI region

N(k) at object-scale, and then refines part scores based on the properly zoomed region N(k).

box proposals. Each AZN employs an auto-zoom process: first estimates the region of

interest (ROI), then properly resizes the predicted regions, and finally refines the part scores

within the resized regions.

5.1.1 Object-Scale Auto-Zoom Net (AZN)

For the task of object part parsing, we are provided with n training examples {Ii,Li}ni=1,

where I is the given image and L is the pixel-wise semantic part labels. Our target is to learn

the posterior distribution P (lj|I, j) for each pixel j of an image I, which is approximated by

our object-scale AZN (see Fig. 5.3).

We first use the image-level FCN (see Fig. 5.2) to produce the image-level part score

map Pι1(lj|I, j), which gives comparable performance to our baseline method (DeepLab-

LargeFOV). This is a normal part parsing network that uses the original image as input

and outputs the pixel-wise part score map. Our object-scale AZN aims to refine this part

score map with consideration of object instance scales. To do so, we add a second com-

ponent to the image-level FCN, performing regression to estimate the size and location of

an object bounding box (or ROI) for each pixel, together with a confidence map indicating

the likelihood that the box is an object. This component is called a scale estimation

network (SEN), which shares the first few layers with the part parsing network in the
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image-level FCN. In math, the SEN corresponds to a probabilistic model P (bj|I, j), where

bj is the estimated bounding box for pixel j, and P (bj|...) is the confidence score of bj.

After getting {bj|∀j ∈ I}, we threshold the confidence map and perform non-maximum

suppresion to yield a finite set of object ROIs (typically 5-10 per image, with some overlap):

{bk|k ∈ I}. Each bk, the bounding box estimated from pixel k, is associated with a confidence

score P (bk). As shown in Fig. 5.2, a region zooming operation is then performed on each

bk, resizing bk to a standard-sized ROI N(k). Specifically, this zooming operation computes

a zooming ratio for bounding box bk, and then enlarges or shrinks the image within bk by

the zooming ratio. We will discuss how to compute the zooming ratio in Sec. 5.2.

Now we have a set of zoomed ROI proposals {N(k)|k ∈ I}, each N(k) associated with

score P (bk). We learn another probabilistic model P (lj|N(k), I, j), which re-estimates the

part label for each pixel j within the zoomed ROI N(k). This probabilistic model corresponds

to the part parsing network in the object-level FCN (see Fig. 5.2), which takes as input the

zoomed object bounding boxes and outputs the part scores within those object bounding

boxes.

The new part scores for the zoomed ROIs need to be merged to produce the object-level

part score map for the whole image. Since there may be multiple ROIs that cover a pixel j,

we define the neighbouring region set for pixel j as Q(j) = {N(k)|j ∈ N(k), k ∈ I}. Under

this definition of Q(j), the score merging process can be expressed as Equ. (5.1), which

essentially computes the weighted sum of part scores for pixel j, from the zoomed ROIs that

cover j. For a pixel that is not covered by any zoomed ROI, we simply use its image-level

part score as the current part score. Formally, the object-level part score Pι2(lj|I, j), is

computed as,

Pι2(lj|I, j) =
∑

N(k)∈Q(j)
P (lj|N(k), I, j)P (N(k)|I, j)

P (N(k)|I, j) = P (bk)/
∑

k:N(k)∈Q(j) P (bk)

(5.1)
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5.1.2 Part-Scale Auto-Zoom Net

The scale of object parts can also vary considerably even if the scale of the object is fixed.

This leads to a hierarchical strategy with multiple stages, called the Hierarchical Auto-Zoom

Net (HAZN), which applies AZNs to images to find objects and then on objects to find parts,

followed by a part score refinement stage. As shown in Fig. 5.2, we add the part-scale AZN

to the end of the object-scale AZN. Specifically, we add a second component (i.e. SEN) to

the object-level FCN, to estimate the size and location of part bounding boxes, together

with confidence maps for every pixel within a zoomed object ROI. Again the confidence map

is thresholded, and non-maximal suppresion is applied, to yield a finite set of part ROIs

(typically 5-30 per image, with some overlap). Each part ROI is zoomed to a fixed size.

Then, we re-estimate the part scores within each zoomed part ROI using the part parsing

network in the part-level FCN. The part parsing network is the only component of the part-

level FCN, which takes the zoomed part ROI and the zoomed object-level part scores (within

the part ROI) as inputs. After getting the part scores within each zoomed Part ROI, the

score merging process is the same as in the object-scale AZN.

It’s worth mentioning that we can easily extend our HAZN to include more AZNs at finer

scale levels if we focus on smaller object parts such as human eyes.

5.1.3 Training and Testing Phases for Object-Scale AZN

We use DeepLab-LargeFOV [CPK15b] as the basic network structure for both the scale

estimation network (SEN) and the part parsing network. The two networks, serving as

components of a multi-tasking FCN, share the first three layers.

Training the SEN. The SEN aims to regress the region of interest (ROI) for each pixel j

in the form of a bounding box, bj. Here we borrow the idea of DenseBox [HYD15] for scale

estimation, since it is simple and performs well enough for our task. In detail, at object

level, the ROI of pixel j corresponds to the object instance box that pixel j belongs to. For

training the SEN, two output label maps are needed as visualized in Fig. 5.4. The first one
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Figure 5.4: Ground truth regression target for training the scale estimation network (SEN)

in the image-level FCN. Details in Sec. 5.1.3.

is the bounding box regression map Lb, which is a four-channel output for each pixel j to

represent its ROI bj: lbj = {dxj, dyj, wj, hj}. Here (dxj, dyj) is the relative position from

pixel j to the center of bj; hj and wj are the height and width of bj. We then re-scale the

outputs by dividing them with 400. The other target output map is a binary confidence

seed map Lc, in which lcj ∈ {0, 1} is the ROI selection indicator at pixel j. It indicates

the preferred pixels for us to use for ROI prediction, which helps the algorithm prevent

many false positives. In practice, we choose the central pixels of each object instance as

the confidence seeds, which tend to predict the object bounding boxes more accurately than

those pixels at the boundary of an object instance region.

Given the ground-truth label maps of object part parsing, we can easily derive the training

examples for the SEN: H = {Ii,Lbi,Lci}ni=1, where n is the number of training instances. We

minimize the negative log likelihood to learn the weights W for the SEN, and the loss lSEN

is defined in Equ. (5.2).

lSEN (H|W) =
1

n

∑
i
(lb(Ii,Lbi|W) + λlc(Ii,Lci|W));

lc(I,Lc|W) = −β
∑

j:lcj=1

logP (l∗cj = 1|I,W)− (1− β)
∑

j:lcj=0

logP (l∗cj = 0|I,W)

lb(I,Lb|W) =
1

|L+
cj |

∑
j:lcj=1

‖lbj − l∗bj‖2

(5.2)

For the confidence seeds, we employ the balanced cross entropy loss, where l∗cj and lcj are

the predicted value and ground truth value respectively. The probability is from a sigmoid

function performing on the activation of the last layer of the CNN at pixel j. β is defined
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as the proportion of pixels with lcj = 0 in the image, which is used to balance the positive

and negative instances. The loss for bounding box regression is the Euclidean distance over

the confidence seed points, and |L+
cj| is the number of pixels with lcj = 1.

Testing the SEN. The SEN outputs both the confidence score map P (l∗cj = 1|I,W) and

a four-dimensional bounding box l∗bj for each pixel j. We regard a pixel j with confidence

score higher than 0.5 to be reliable and output its bounding box bj = l∗bj, associated with

confidence score P (bj) = P (l∗cj = 1|I,W). We perform non-maximum suppression (IOU

threshold = 0.4) based on the confidence scores, yielding several candidate bounding boxes

{bj|j ∈ I} with confidence scores P (bj). Each bj is then properly zoomed, becoming N(j).

Training the part parsing. The training of the part parsing network is standard. For the

object-level FCN, the part parsing network is trained based on all the zoomed image regions

(ROIs), with the ground-truth part label maps Hp = {Lpi}ni=1 within the zoomed ROIs.

For the image-level FCN, the part parsing network is trained based on the original training

images. We merge the part parsing network with the SEN, yielding the image-level FCN

with loss defined in Equ. (5.3). Here, lp(I,Lp) is the commonly used multinomial logistic

regression loss for classification.

lAZN(H,Hp|W) =
1

n

∑
i
lp(Ii,Lpi) + lSEN(H|W) (5.3)

Testing the part parsing. For testing the object-scale AZN, we first run the image-level

FCN, yielding part score maps at the image level and bounding boxes for the object level.

Then we zoom onto the bounding boxes and parse these regions based on the object-level

FCN, yielding part score maps at the object level. By merging the part score maps from the

two levels, we get better parsing results for the whole image.
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5.2 Experimental Evaluation

5.2.1 Implementation Details

Selection of confidence seeds. To train the scale estimation network (SEN), we need to

select confidence seeds for object instances or parts. For human instances, we use the human

instance masks from the PASCAL-Person-Part dataset and select the central 7 × 7 pixels

within each instance mask as the confidence seeds. To get the confidence seeds for human

parts, we first compute connected part segments from the groundtruth part label map, and

then also select the central 7× 7 pixels within each part segment. We present the details of

our approach for humans because the extension to horses and cows is straightforward.

Zooming ratio of ROIs. The SEN networks in the FCNs provide a set of human/part

bounding boxes (ROIs), {bj|j ∈ I}, which are then zoomed to a proper human/part scale.

The zooming ratio of bj, f(bj, L
bj
p ), is decided based on the size of bj and the previously

computed part label map L
bj
p within bj. We use slightly different strategies to compute

the zooming ratio at the human and part levels. For the part level, we simply resize the

bounding box to a fixed size, i.e. fp(bj) = st/max(wj, hj), where st = 255 is the target size.

Here wj and hj are the width and height of bj. For the human level, we need to consider

the frequently occurred truncation case when only the upper half of a human instance is

visible. In practice, we use the image-level part label map L
bj
p within the box, and check the

existence of legs to decide whether the full body is visible. If the full body is visible, we use

the same strategy as parts. Otherwise, we change the target size st to 140, yielding relative

smaller region than the full body visible case. We select the target size based on a validation

set. Finally, we limit all zooming ratio fp(bj) within the range [0.4, 2.5] for both human and

part bounding boxes to avoid artifacts from up or down sampling of images.
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5.2.2 Experimental Protocol

Dataset. We conduct experiments on humans part parsing using the PASCAL-Person-

Part dataset annotated by [CML14]. The dataset contains detailed part annotations for

every person, e.g. head, torso, etc. We merge the annotations into six clases: Head, Torso,

Upper/Lower Arms and Upper/Lower Legs (plus one background class). We only use those

images containing humans for training (1716 images in the training set) and testing (1817

images in the validation set), the same as [CYW15]. Note that parsing humans in PASCAL

is challenging because it has larger variations in scale and pose than other human parsing

datasets. In addtion, we also perform parsing experiments on the horse-cow dataset [WY15],

which contains animal instances in a rough bounding box. In this dataset, we adopt the same

experimental setting as in [WSL15].

Training. We train the FCNs using stochastic gradient descent with mini-batches. Each

mini-batch contains 30 images. The initial learning rate is 0.001 (0.01 for the final classifier

layer) and is decreased by a factor of 0.1 after every 2000 iterations. We set the momentum

to be 0.9 and the weight decay to be 0.0005. The initialization model is a modified VGG-

16 network [SZ14] pre-trained on ImageNet [DDS09]. Fine-tuning our network on all the

reported experiments takes about 30 hours on a NVIDIA Tesla K40 GPU. After training,

the average inference time for one PASCAL image is 1.3 s/image.

Evaluation metric. The object parsing results is evaluated in terms of mean IOU (mIOU).

It is computed as the pixel intersection-over-union (IOU) averaged across classes [EEG14],

which is also adopted recently to evaluate parts [WSL15, CYW15]. We also evaluate the part

parsing performance w.r.t. each object instance in terms of AP r
part as defined in [HAG15a].

Network architecture. We use DeepLab-LargeFOV [CPK15b] as building blocks for the

FCNs in our Hierarchical Auto-Zoom Net (HAZN). Recall that our HAZN consists of three

FCNs working at different levels of granularity: image level, object level, and part level. At

each level, HAZN outputs part parsing scores, and estimats locations and scales for the next
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Method head torso u-arms l-arms u-legs l-legs bg Avg

DeepLab-LargeFOV [CPK15b] 78.09 54.02 37.29 36.85 33.73 29.61 92.85 51.78

DeepLab-LargeFOV-CRF 80.13 55.56 36.43 38.72 35.50 30.82 93.52 52.95

Multi-Scale Averaging 79.89 57.40 40.57 41.14 37.66 34.31 93.43 54.91

Multi-Scale Attention [CYW15] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39

HAZN (no object scale) 80.25 57.20 42.24 42.02 36.40 31.96 93.42 54.78

HAZN (no part scale) 79.83 59.72 43.84 40.84 40.49 37.23 93.55 56.50

HAZN (full model) 80.76 60.50 45.65 43.11 41.21 37.74 93.78 57.54

Table 5.1: Part parsing accuracy (%) on PASCAL-Person-Part in terms of mean IOU. We

compare our full model (HAZN) with two sub-models and four state-of-the-art baselines.

level of granularity (e.g. objects or parts).

5.2.3 Results on Parsing Humans in the Wild

Comparison with state-of-the-arts. As shown in Tab. 5.1, we compare our full model

(HAZN) with four baselines. The first baseline is called DeepLab-LargeFOV [CPK15b]. The

second baseline is DeepLab-LargeFOV-CRF, which adds a post-processing step to DeepLab-

LargeFOV by means of a fully-connected Conditional Random Field (CRF) [KK11]. CRFs

are commonly used as postprocessing for object semantic segmentation to refine bound-

aries [CPK15b]. The third one is Multi-Scale Averaging, which feeds the DeepLab-LargeFOV

model with images resized to three fixed scales (0.5, 1.0 and 1.5) and then takes the average

of the three part score maps to produce the final parsing result. The fourth one is Multi-

Scale Attention [CYW15], a most recent work which uses a scale attention model to handle

the scale variations in object parsing.

Our HAZN obtains the performance of 57.5%, which is 5.8% better than DeepLab-

LargeFOV, and 4.5% better than DeepLab-LargeFOV-CRF. Our model significantly im-

proves the segmentation accuracy in all parts. Note we do not use any CRF for post pro-

cessing. The CRF, though proven effective in refining boundaries in object segmentation, is
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not strong enough at recovering details of human parts as well as correcting the errors made

by the DeepLab-LargeFOV.

The third baseline (Multi-Scale Averaging) enumerates multi-scale features which is com-

monly used to handle the scale variations, yet its performance is poorer than ours, indicating

the effectiveness of our Auto-Zoom framework.

Our overall mIOU is 1.15% better than the fourth baseline (Multi-Scale Attention), but

we are much better in terms of detailed parts like upper legs (around 3% improvement). In

addition, we further analyze the scale-invariant ability in Tab. 5.2, which both methods aim

to improve. We can see that our model surpasses Multi-Scale Attention in all instance sizes

especially at size XS (9.5%) and size S (5.5%).

Importance of object and part scale. As shown in Tab. 5.1, we study the effect of the

two scales in our HAZN. In practice, we remove either the object-scale AZN or the part-scale

AZN from the full HAZN model, yielding two sub-models: (1) HAZN (no object scale),

which only handles the scale variation at part level. (2)HAZN (no part scale), which only

handles the scale variation at object instance level.

Compared with our full model, removing the object-scale AZN causes 2.8% mIOU degra-

dation while removing the part-scale AZN results in 1% mIOU degradation. We can see

that the object-scale AZN, which handles the scale variation at object instance level, con-

tributes a lot to our final parsing performance. For the part-scale AZN, it further improves

the parsing by refining the detailed part predictions, e.g. around 3% improvement of lower

arms as shown in Tab. 5.1, yielding visually more satisfactory results. This demonstrates

the effectiveness of the two scales in our HAZN model.

Part parsing accuracy w.r.t. size of human instance. Since we handle human with

various sizes, it is important to check how our model performs with respect to the change

of human size in images. In our experiments, we categorize all the ground truth human

instances into four different sizes according to the bounding box area of each instance sb

(the square root of the bounding box area). Then we compute the mean IOU (within the
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bounding box) for each of these four scales.

The four sizes are defined as follows: (1) Size XS: sb ∈ [0, 80], where the human instance

is extremely small in the image; (2) Size S: sb ∈ [80, 140]; (3) Size M: sb ∈ [140, 220]; (4)

Size L: sb ∈ [220, 520], which usually corresponds to truncated human instances where the

human’s head or torso covers the majority of the image.

The results are given in Tab. 5.2. The baseline DeepLab-LargeFOV performs badly at

size XS or S (usually only the head or the torso can be detected by the baseline), while our

HAZN (full model) improves over it significantly by 14.6% for size XS and 10.8% for size S.

This shows that HAZN is particularly good for small objects, where the parsing is difficult

to obtain. For instances in size M and L, our model also significantly improve the baselines

by around 5%. In general, by using HAZN, we achieve much better scale invariant property

to object size than a generally used FCN type of model. We also list the results for the other

three baselines for reference.

In addition, it is also important to jointly perform the two scale AZNs in a sequence. To

show this, we additionally list the results from our model without object/part scale AZN in

the 5th and the 6th row respectively. By jumping over object scale (HAZN no object scale),

the performance becomes significantly worse at size XS, since the model can barely detect

the object parts at the image-level when the object is too small. However, if we remove part

scale (HAZN no part scale), the performance also dropped in all sizes. This is because using

part scale AZN can recover the part details much better than only using object scale. Our

HAZN (full model), which sequentially leverage the benefits from both the object scale and

part scale, yielding the best performance overall.

Instance-wise part parsing accuracy. We evaluate our part segmentation results w.r.t.

each human instance in terms of AP r
part as defined in [HAG15a]. The segment IOU threshold

is set to 0.5. A human instance segment is correct only when it overlaps enough with

a groundtruth instance segment. To compute the intersection of two segments, we only

consider the pixels whose part labels are also right.

To generate instance segmentation (which is not our major task), we follow a similar
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Method Size XS Size S Size M Size L

DeepLab-LargeFOV [CPK15b] 32.5 44.5 50.7 50.9

DeepLab-LargeFOV-CRF 31.5 44.6 51.5 52.5

Multi-Scale Averaging 33.7 45.9 52.5 54.7

Multi-Scale Attention [CYW15] 37.6 49.8 55.1 55.5

HAZN (no object scale) 38.2 51.0 55.1 53.4

HAZN (no part scale) 45.1 53.1 55.0 55.0

HAZN (full model) 47.1 55.3 56.8 56.0

Table 5.2: Part parsing accuracy w.r.t. size of human instance (%) on PASCAL-Person-Part

in terms of mean IOU.

strategy to [HAG15a] by first generating object detection box and then doing instance seg-

mentation. Specifically, we use faster R-CNN [RHG15] to produce a set of object bounding

box proposals, and each box is associated with a confidence score. Then within each bound-

ing box, we use FCN to predict a coarse object instance mask, and use the coarse instance

mask to retrieve corresponding part segments from our final HAZN part label map. Last,

we use the retrieved part segments to compose a new instance mask where we keep the

boundary of part segments. In the instance overlapping cases, we follow the boundary from

the predicted instance mask.

We first directly compare with the number reported by [HAG15a], on the whole val-

idation set of PASCAL 2010. Our full HAZN achieves 43.08% in AP r
part, 14% higher

than [HAG15a]. We also compare with two state-of-the-art baselines on the PASCAL-Person-

Part dataset: DeepLab-LargeFOV [CPK15b] and Multi-Scale Attention [CYW15]. For both

baselines, we applied the same strategy to generate instances but used different part parsing

strategies. As shown in Tab. 5.3, our model is 12% points higher than DeepLab-LargeFOV

and 6% points higher than Multi-Scale Attention, in terms of AP r
part.
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Qualitative results. We visually show several example results from the PASCAL-Person-

Part dataset in Fig. 5.5. The baseline DeepLab-LargeFOV-CRF produces several errors due

to lack of object and part scale information, e.g. background confusion (1st row), human

part confusion (3rd row), or important part missing (4th row), etc., yielding non-satisfactory

part segmentation results. Our HAZN (no part scale), which only contains object-scale AZN,

already successfully relieves the confusions for large scale human instances while recovers the

parts for small scale human instances. By further introducing part scale, the part details

and boundaries are recovered even better, which are more visually satisfactory.

More visual examples are provided in Fig. 5.7, comparing with more baselines. It can

be seen that our full model (HAZN) gives much more satisfied part parsing results than the

state-of-the-art baselines. Specifically, for small-scale human instances (e.g. the 1, 2, 5 rows

of the figure), our HAZN recovers human parts like lower arms and lower legs and gives more

accurate part boundaries; for medium-scale or large-scale human instances (e.g. the 3, 4, 9,

10 rows of the figure), our model relieves the local confusion with other parts or with the

background.

Failure cases. Our typical failure modes are shown in Fig. 5.6. Compared with the baseline

DeepLab-LargeFOV-CRF, our models give more reasonable parsing results with less local

confusion, but they still suffer from heavy occlusion and unusual poses.

5.2.4 Results on Parsing Animals

To show the generality of our method to instance-wise object part parsing, we also applied

our method to horse instances and cow instances presented in [WY15]. All the testing

procedures are the same as those described above for humans.

DeepLab-LargeFOV [CPK15b] Multi-Scale Attention [CYW15] HAZN(full model)

AP r
part 31.32 37.53 43.72

Table 5.3: Instance-wise part parsing accuracy on PASCAL-Person-Part in terms of AP r
part.
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Head Torso Upper Arms Lower Arms Upper Legs Lower Legs

Image DeepLab-LargeFOV-CRF HAZN (no part scale) HAZN (full model) Ground truth

Figure 5.5: Qualitative comparison on the PASCAL-Person-Part dataset. We compare with

DeepLab-LargeFOV-CRF [CPK15b] and HAZN (no part scale). Our proposed HAZN models

(the 3rd and 4th columns) attain better visual parsing results, especially for small scale human

instances and small parts such as legs and arms.

Head Torso Upper Arms Lower Arms Upper Legs Lower Legs

Image DeepLab-LargeFOV-CRF HAZN (no part scale) HAZN (full model)Ground truth

Figure 5.6: Failure cases for both the baseline and our models.

We copy the baseline numbers from [WSL15], and give the evaluation results in Tab. 5.4.

It shows that our baseline models from the DeepLab-LargeFOV [CPK15b] already achieve
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competative results with the state-of-the-arts, while our HAZN provides a big improvement

for horses and cows. The improvement over the state-of-the-art method [WSL15] is roughly

5% mIOU. It is most noticeable for small parts, e.g. the improvement for detecting horse/cow

head and cow tails is more than 10%. This shows that our auto-zoom strategy can be

effectively generalized to other objects for part parsing.

We also provide qualitative evaluations in Fig. 5.8, comparing our full model with three

state-of-the-art baselines. The three baselines are explained in Sec. 5.2.3. We can observe

that using our model, small parts such as legs and tails have been effectively recovered, and

the boundary accuracy of all parts has been improved.

Horse Cow

Method Bkg head body leg tail Avg. Bkg head body leg tail Avg.

SPS [WY15] 79.14 47.64 69.74 38.85 - - 78.00 40.55 61.65 36.32 - -

HC∗ [HAG15a] 85.71 57.30 77.88 51.93 37.10 61.98 81.86 55.18 72.75 42.03 11.04 52.57

JPO [WSL15] 87.34 60.02 77.52 58.35 51.88 67.02 85.68 58.04 76.04 51.12 15.00 57.18

LargeFOV 87.44 64.45 80.70 54.61 44.03 66.25 86.56 62.76 78.42 48.83 19.97 59.31

HAZN 90.94 70.75 84.49 63.91 51.73 72.36 90.71 75.18 83.33 57.42 29.37 67.20

Table 5.4: Mean IOU (mIOU) over the Horse-Cow dataset. We compare with the semantic

part segmentation (SPS) [WY15], the Hypercolumn (HC∗) [HAG15a] and the joint part

and object (JPO) results [WSL15]. We also list the performance of DeepLab-LargeFOV

(LargeFOV) [CPK15b].

5.3 Conclusion

To handle the big scale variation in natural images, we explain in this chapter an object

part segmentation model called “Hierarachical Auto-Zoom Net” (HAZN), yielding per-pixel

segmentation of the object parts. It adaptably estimates the scales of objects, and their

parts, by a two-stage process of Auto-Zoom Nets. We show that on the challenging PASCAL

dataset, HAZN performs significantly better (by 5% mIOU), compared to state of the art
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methods, when applied to humans, horses, and cows. Unlike standard methods which process

the image at a fixed range of scales, HAZN’s strategy of searching for objects and then for

parts enables it, for example, to zoom in to small image regions and enlarge them to scales

which would be prohibitively expensive (in terms of memory) if applied to the entire image

(as fixed scale methods would require).

The “auto-zoom” idea of HAZN can be easily applied to other tasks, e.g. human pose

estimation, fine-grained part localization, and so on. In Chapter 6, we use the “auto-zoom”

idea to significantly improve the performance of multi-person human pose estimation in

natural images.

Looking at the failure cases of HAZN (see Fig. 5.6), we notice that HAZN can still

make errors about the overall pose configuration (e.g. regarding arms as legs, regarding a

second person’s legs as the first person’s, etc.) when the person is in an extreme pose, or the

appearance of different parts are very similar, or there are other people overlapping with this

person. This motivates us to combine useful top-down pose information with the deep-based

segmentation model HAZN, which we also explore in Chapter 6.
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Head Torso Upper Arms Lower Arms Upper Legs Lower Legs

Image DeepLab-LargeFOV HAZN (full model) Ground TruthDeepLab-LargeFOV-CRF Multi-scale Averaging

Figure 5.7: More qualitative comparison on PASCAL-Person-Part. The baselines are ex-

plained in Sec. 5.2.3.
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Cow Head Horse Head Legs Torso Tail

Image DeepLab-LargeFOV HAZN (full model) Ground TruthDeepLab-LargeFOV-CRF Multi-scale Averaging

Figure 5.8: Qualitative comparison on the Horse-Cow Dataset. The baselines are explained

in Sec. 5.2.3.
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CHAPTER 6

Combining Human Pose Estimation and Semantic Part

Segmentation in Multi-Person Natural Scenes

Human pose estimation [YR11, BM09, CY15] and human semantic part segmentation [YLO12,

DCX13, CPK15b, XZW16] are two crucial and correlated tasks in human-centric analysis.

They are helpful in many high-level applications, spanning from fine-grained recognition and

tracking, to video surveillance and human activity recognition. Dramatic progress has been

made on both tasks with the advent of powerful deep convolutional neural networks (DC-

NNs) and the availability of pose/segment annotations on large-scale datasets. However,

these methods are still limited in natural scenes with multiple people, where multi-person

overlapping/occlusion, extreme human poses and large object scale variation exist. Each

task faces some challenging cases if solved individually, e.g. inaccurate localization or erro-

neous visibility prediction of the knee joints in pose estimation when the person is wearing

a long dress, failure to distinguish ambiguous regions in semantic part segmentation when

the person is in non-typical pose, etc. These difficult cases can still be handled effectively

if we consider the correlation of the two tasks and let the two tasks benefit each other (see

Fig. 6.1).

In Chapter 4, we have already proved the effectiveness of pose information in semantic

part segmentation by incorporating top-down pose cues into an AOG-based framework.

We only use deep learning to extract features for part region proposals, and rely on SVM

and AOG to select and assemble part proposals. This works in relatively simple images

like Penn-Fudan Pedestrian [WSS07], but would fail in multi-person natural images like

PASCAL [EEG14]. In Chapter 5, we rely mainly on deep-based models (i.e. variants of

FCN [CPK15b] with the powerful architecture VGG-16 [SZ14]) and find that they perform
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quite well on the challenging dataset PASCAL. However, some severe pose errors cannot be

avoided since the deep models doesn’t model the dependency between the output variables,

and also the boundary details of arms and legs are far from satisfactory. This motivates us

to find a way to incorporate useful pose cues into the deep-based segmentation framework,

giving guidance of top-down configurations.

With the popularity of deep learning techniques, current prevailing approaches for hu-

man pose estimation rely on strong joint detectors trained by DCNNs [CY14, TGJ15], and

use a simple graphical model to select and assemble joints into a valid pose configuration.

These methods perform much better than traditional ones, but the localization of joints is

still inaccurate (e.g. sometimes outside the human body) and these methods still struggle in

cases where there are multiple people overlapping each other. A very recent work, Deeper-

Cut [IPA16], explicitly considers the multi-person issue, using a fully-connected CRF to si-

multaneously cluster joint candiates into human instances and label each joint candidate its

joint type. Deeper-Cut handles multi-person overlapping well, but it’s very time-consuming

(4 minutes per image) and its performance on datasets with large scale variation are not satis-

factory. Treating Deeper-Cut as a good starting point, we propose to: (1) model consistency

with semantic part segmentation results by incorporating simple segment-based unary and

pairwise terms into the fully connected CRF, penalizing joint candidates and joint candidate

pairs whose locations doesn’t agree with their corresponding semantic parts; (2) employ the

idea of “auto-zoom” to first detect human bounding boxes and then perform multi-person

pose estimation within each properly resized bounding boxes. With these two strategies, our

model gives better results than Deeper-Cut in multi-person scenes, and reduces the running

time to only 8 seconds per image (including the time of computing all necessary features).

For semantic part segmentation, previous approaches either use graphical models to se-

lect and assemble region proposals [DCS14, XZW16], or use fully convolutional neural net-

works [LSD15] (FCNs) to directly produce pixel-wise part labels. Traditional graphical

models are often complicated and time-consuming, and can’t handle the large variability

of pose and occlusion in natural images. FCN-type approaches, though simple and fast,

still make local confusion errors when the person is in a non-typical pose, or when there
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(a)

(b2)

(b1) (c1)

(c2)

head torso

u-arm l-arm

u-leg l-leg

Figure 6.1: Human pose estimation and semantic part segmentation are two complementary

tasks and can benefit each other. Column (a): the original image. Column (b): original

pose estimation and semantic part segmentation. Column (c): our final pose estimation

result using semantic part information, and our final part segmentation result using pose

information. (c1) corrects the location error of ankle joints in (b1) for the person in the

middle; (c2) gives much clearer details of lower arms and legs than (b2) for the two people

in the middle.

are some other object/person nearby with similar appearance. In this chapter, we propose

to use top-down pose cues so as to relieve local confusion in semantic part segmentation.

Specifically, we infer feature maps that capture joints and skeleton information from a good

pose estimate, and feed these feature maps together with the original image to a dedicated

FCN to refine the part segmentation results.

We perform experiments on Pascal-Person-Part [CML14], a challenging multi-person

dataset with detailed annotations of pose joints and semantic parts. We compare with

other state-of-the-arts on both tasks, demonstrating the effectiveness of our approach.
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Joint-DCNN-I

Part-DCNN-I

joint score map

joint neighbor
prediction map

semantic part score map

Fully-connected
CRF

unary terms

image-dependent pairwise terms

segment-based
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final pose 
estimation 

joint label map skeleton label map

Location & Shape Priors

Part-DCNN-II

final semantic part
segmentation

image

Figure 6.2: Overall model pipeline.

6.1 The Model

Given an image I, our task is to output a pixel-wise part label map Lpart which provides the

semantic part segmentation, and also a list of scored pose configurations Cpose = {(ci, si)|i =

1, 2, . . . }, where ci is the location of pose joints for a single person and si is the score of this

pose configuration.

Fig. 6.2 illustrates the overall pipeline of our model, in which the main components

are three DCNNs (i.e. Joint-DCNN, Part-DCNN-I and Part-DCNN-II) as well as a fully-

connected conditional random field (CRF). The three DCNNs employ roughly the same

network structure (i.e. ResNet-101, one type of Deep Residual Net [HZR15]), but for different

purposes. Given an image I, we first pass I to Joint-DCNN to get two feature maps: pixel-

wise joint score map and pixel-wise joint neighbor prediction map. Proposals for each joint

type are generated from the joint score map, and traditional unary terms (based on joint

score map) and pairwise terms (based on joint neighbor prediction map) are computed for

the fully-connnected CRF. We also pass I to Part-DCNN-I to get a semantic part score map
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in relatively good quality. Based on the semantic part score map, we compute segment-

based consistency terms for joint proposals, which are also used in the CRF. The CRF

assembles joint proposals into a series of pose configurations, partitioning and labeling joint

proposals at the same time. These pose configurations are our final result for the human

pose estimation task. We further use these pose configurations to refine semantic part

segmentation. Specifically, we generate intuitive joint label map and skeleton label map from

these pose configurations, and pass them to Part-DCNN-II, which utilize them as location

and shape priors to refine the semantic part score map. The output of Part-DCNN-II is the

final result for the semantic part segmentation task.

In our experiments on PASCAL-Person-Part, we inherit some ideas from the Auto-Zoom

Net [XWC16] to deal with the large object scale variation in PASCAL images and to lessen

the inference time of CRF. For an image I, human detection boxes of I are produced by

Faster R-CNN [RHG15]. Each detection box is properly zoomed (e.g. small person will be

enlarged and extra large person will be shrinked) and serves as the input to our pipeline in

Fig. 5.2. Results of human pose estimation and semantic part segmentation for all detection

boxes are then merged as the final results for the whole image I.

6.1.1 Human Pose Estimation Model

For pose estimation, we follow one line of works that first generate joint location propos-

als for each joint type and then select and assemble those joint proposals into valid pose

configurations. Thanks to the recent powerful DCNN structures such as Deep Residual

Net [HZR15] and DeepLab [CPK15b], using only a few proposals per joint type still guar-

antees state-of-the-art performance. Specifically, for each detection box of an image, we

generate only 6 proposals per joint type by performing thresholding (score threshold = 0.2)

and non-maximum suppresion (NMS, nms distance threshold = 16) on the joint score map

outputted by Joint-DCNN-I.

Suppose we generate n proposals in total, with image location g1, g2, . . . , gn. To select

and assemble these joint proposals, we use a fully-connected CRF that aims to infer: (1)
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the joint type lgi for each joint proposal gi (background is also a type); (2) a binary variable

lgi,gj for each proposal pair (gi, gj) indicating whether gi and gj belong to the same person.

The CRF treats each joint proposal as a node (V = {g1, g2, . . . , gn}), and defines an edge

between each pair of the joint proposals (E = {(gi, gj)|i = 1, 2, . . . , n, j = 1, 2, . . . , n, i < j}).

Let L = {lgi |gi ∈ V} ∪ {lgi,gj |(gi, gj) ∈ E}. Given image I and its semantic part label

map Lpart, the energy function of the CRF is defined as Equ. (6.1), where A(I|lgi) and

B(I, Lpart|lgi , lgj , lgi,gj) are the unary potential and pairwise potential respectively.

φ(L|I, Lpart) =
∑
gi∈V

A(I|lgi) +
∑

(gi,gj)∈E

B(I, Lpart|lgi , lgj , lgi,gj) (6.1)

Now we explain how we define and compute the potentials and how the part segment

consistency is incorporated. As shown in Equ. (6.2), the unary potential A(I|lgi) relies solely

on P (lgi |I), the probability of pixel location gi being of the joint type lgi , which can be

directly acquired from the pixel-wise joint score map outputted by Joint-DCNN-I.

A(I|lgi) = log
1− P (lgi|I)

P (lgi |I)
(6.2)

The pairwise potential B(I, Lpart|lgi , lgj , lgi,gj), as shown in Equ. (6.3), is based on P (lgi , lgj |

I, Lpart), which is the output of a logistic regression model for joint type pair lgi and lgj . For

each joint type pair lgi and lgj , the logistic regression model (see Equ. (6.4)) is separately

trained on the training set, treating ground-truth joint pair of type lgi and lgj (of the same

person) as positive examples while treating all other pixel pairs as negative examples, using

feature vector f(gi, gj, lgi , lgj |I, Lpart).

B(I, Lpart|lgi , lgj , lgi,gj) =

log
1−P (lgi ,lgj |I,L

part)

P (lgi ,lgj |I,Lpart)
(lgi,gj = 1)

0 (lgi,gj = 0)
(6.3)

P (lgi , lgj |I, Lpart) =
1

1 + exp(−ω · f(gi, gj, lgi , lgj |I, Lpart))
(6.4)

Given two joint proposals gi and gj as well as their joint type labels lgi and lgj , the

feature vector f encodes information to help decide whether the two proposals belong to

the same person. f includes pairwise image-dependent features fdata proposed by [IPA16],
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which are computed from the joint neighbor prediction map output by the Joint-DCNN.

More specifically, given that gi belongs to type lgi and gj belongs to type lgj , the joint

neighbor prediction map predicts the location of gj (denoted as g̃j) from the location of gi

and predicts the location of gi (denoted as g̃i) from the location of gj. fdata describes the

distance and angle between two pairs of vectors (gigj vs. gig̃j , and gjgi vs. gj g̃i): fdata = [

|gigj − gig̃j|, |gjgi − gj g̃i|, < gigj , gig̃j >, < gjgi, gj g̃i > ], in which |.− .| is the euclidean

distance between two vectors and < ., . > is the angle between two vectors.

In addition to fdata, f also includes our novel consistency features fseg based on the

semantic part segmentation Lpart. fseg describes the location consistency between gigj and

their corresponding semantic parts. In our design, each joint type is associated with one

or two semantic part types and each neighbouring joint type pair is associated with one

semantic part type. Given Lpart, suppose lgi= forehead and lgj= neck, then gi is related to

the head region, gj is related to the head and the torso regions, and gigj is related to the

head region. In this case, the segment-based consistency features fseg are made up of: (1)

a 2-d binary feature indicating the location of gi w.r.t. the head region: inside the region

or not, around the boundary of the region or not; (2) a 4-d binary feature indicating the

location of gj w.r.t. the head region and the torso region respectively; (3) the proportion

of pixels on the line gigj that fall inside the head region; (4) the IOU overlap between an

oriented rectangle computed from gigj (aspect ratio = 2.5:1) and the head region.

Based on the unary and pairwise potentials explained above, the CRF infers the best la-

bels L for the generated joint proposals g1, g2, . . . , gn, selecting and assembling them into a list

of pose configurations. We adopt the inference algorithm introduced in [IPA16], transform-

ing the CRF into an integer linear programming (ILP) problem with additional constraints

on L: lgi,gj + lgj ,gk 6 lgi,gk + 1, ∀i, j = 1, 2, . . . , n.

For each detection box of I, the inference algorithm gives the labels L for joint proposals

within 1 sec. and we can acquire a list of pose configurations based on L, with pose score

equal to the sum of unary scores for all visible joints. For each detection box, we choose

only one pose configuration whose center is closest to the detection box center, and add that

pose configuration to our final pose estimation result Cpose.
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6.1.2 Semantic Part Segmentation Model

We train a part segmentation model Part-DCNN-II to segment an image into semantic parts

with estimated high-quality pose configurations Cpose. We define two pose feature maps from

Cpose, a joint label map and a skeleton label map, and use them as inputs to Part-DCNN-II

besides the original image. For the joint label map, we draw a circle with radius 3 at each

joint location in Cpose. For the skeleton label map, we draw a stick with width 7 between

neighbouring joints in Cpose. Fig. 6.2 illustrates the two simple and intuitive feature maps.

Part-DCNN-II is different from Part-DCNN-I in that it has a new stream that uses two

pose feature maps to estimate semantic part score map and this part score map is later fused

with the original part score map estimated from only the image. We use extra supervision to

train the part score map estimated from pose feature maps. To handle the big object scale

variation, we use the idea of “auto-zoom” [XWC16]. For each detection box of an image I,

we crop the box out of I and the two feature maps, properly resize them, and feed them to

Part-DCNN-II, getting the part score map for the detection box. The part score maps for

all detection boxes of I are then resized to their original size and merged according to the

detection box score.

6.2 Experimental Evaluation

We perform extensive experiments on PASCAL-Person-Part [CML14], which are PASCAL

person images with large variation in pose and scale. There are 14 annotated joint types

(i.e. forehead, neck, l/r shoulder, l/r elbow, l/r wrist, l/r waist, l/r knee and l/r ankle) and

we combine part labels into 6 semantic part types (i.e. head, torso, upper arm, lower arm,

upper leg and lower leg). We only use those images containing persons for training (1716

images) and validation (1817 images).
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6.2.1 Human Pose Estimation

Comparison to state-ot-the-arts. Some previous evaluation metrics like PCK and PCP,

don’t penalize false positives that are not part of the groundtruth. So following [IPA16], we

compare our model with other state-of-the-arts in terms of Mean Average Precision (mAP).

The computation is the same as described in [IPA16]. Briefly speaking, pose configurations

in Cpose are first matched to groundtruth pose configurations according to overlap, and then

AP for each joint type is computed and reported. Each groundtruth can only be matched

to one estimated pose configuration. Unassigned pose configurations in Cpose are all treated

as false positives.

Our model is compared with two other state-of-the-arts: (1) Chen & Yuille [CY15],

a tree-structured model designed specifically for single-person estimation with occlusion,

using unary scores and image-dependent pairwise terms conditioned on DCNN features; (2)

Deeper-Cut [IPA16], an integer linear programming model that jointly performs multi-person

detection and multi-person pose estimation. These two methods both use strong assembling

model.

We also build two other baselines, which use simple assembling model. One is AOG-

Simple, which only uses geometric connectivity between neighbouring joints. The other

one is AOG-Seg, which adds part segment consistency features to AOG-Simple. The part

segment consistency features are the same as those used in our fully-connected CRF. To

test the effectiveness of our proposed part segment consistency, we also list the result of our

model without the consistency features (“Our Model (w/o seg)”).

The results are shown in Tab. 6.1. We can see that our model outperforms all the other

methods, improving over arm joints and leg joints significantly, and that a good assembling

model is indispensable in challenging multi-person scenes like PASCAL.

Detailed joint localization accuracy. Our proposed part segment consistency features

not only help in the overall pose estimation results, but help improve the accuracy of de-

tailed joint localization. Previous evaluation metrics PCP, PCK and mAP treat any joint

66



Method Head Shoulder Elbow Wrist Hip Knee Ankle U-Body Total (mAP)

Chen & Yuille [CY15] 45.3 34.6 24.8 21.7 9.8 8.6 7.7 31.6 21.8

Deeper-Cut [IPA16] 41.5 39.3 34.0 27.5 16.3 21.3 20.6 35.5 28.6

AOG-Simple 56.8 29.6 14.9 11.9 6.6 7.3 8.6 28.3 19.4

AOG-Seg 58.5 33.7 17.6 13.4 7.3 8.3 9.2 30.8 21.2

Our Model (w/o seg) 56.8 52.1 42.7 36.7 21.9 30.5 30.4 47.1 38.7

Our Model (final) 58.0 52.1 43.1 37.2 22.1 30.8 31.1 47.6 39.2

Table 6.1: Mean Average Precision (mAP) of Human Pose Estimation on PASCAL-Person-

Part.

estimate within a certain distance of the groundtruth to be correct, but they don’t encourage

joint estimates to be as close as possible to the groundtruth. Therefore, we design a new

evaluation metric called Average Distance of Keypoints (ADK). For each groundtruth pose

configuration, we compute its reference scale as half of the distance between forehead and

neck, then find only one pose configuration estimate among the generated pose configura-

tion proposals that has the highest overlap with the groundtruth configuration. For each

joint that is visible in both the groundtruth configuration and the estimated configuration,

the relative distance (w.r.t. the reference scale) between the estimated location and the

groundtruth location is computed. Finally, we compute the average distance for each joint

type across all the testing images.

The result is shown in Tab. 6.2. It can be seen that our model reduces the average

distance of keypoints significantly for wrists and lower-body joints by employing consistency

with semantic part segmentation.

Qualitative evaluation. In Fig. 6.3, we visually demonstrate our pose estimation results

on PASCAL-Person-Part, comparing with the recent state-of-the-art (Deeper-Cut [IPA16])

and also a sub-model of ours (Our Model (w/o seg)) which doesn’t consider part segment

consistency. It can be easily seen that our model gives more accurate prediction of joints on

heads, arms and legs, and is especially better at handling people of small scale (see the 6th
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Method Forehead Neck Shoulder Elbow Wrist Hip Knee Ankle Ave.

Chen & Yuille [CY15] 37.5 29.7 51.6 65.9 72.0 70.5 79.9 78.6 60.7

Deeper-Cut [IPA16] 32.1 30.9 37.5 44.6 53.5 53.9 65.8 67.8 48.3

AOG-Simple 33.0 33.2 66.7 82.3 90.5 89.7 101.3 101.1 74.7

AOG-Seg 32.2 31.6 59.8 72.4 85.1 85.7 97.1 92.7 69.6

Our Model (w/o seg) 27.7 26.9 33.1 40.2 47.3 51.8 54.6 53.4 41.9

Our Model (final) 26.9 26.1 32.7 39.5 45.3 50.9 52.3 51.8 40.7

Table 6.2: Average Distance of Keypoints (ADK) (%) of Human Pose Estimation on

PASCAL-Person-Part.

and 7th row of Fig. 6.3) and extra large scale (see the first two rows of Fig. 6.3). We attribute

this to our “auto-zoom” strategy and the incorporation of part segment consistency.

6.2.2 Human Semantic Part Segmentation

Comparison to the state-of-the-arts. We evaluate part segmentation in terms of mean

pixel IOU (mIOU) following previous works [CPK15b, XWC16]. In Tab. 6.3, we compare

our model with three other state-of-the-art methods as well as one inferior baseline (i.e.

the output part label map of Part-DCNN-I,without the help of pose information) of our

own model. It can be seen that our model surpasses previous methods and the added pose

information is effective in improving the segmentation results. Our advantages mainly lie in

small flexible parts: arms and legs, and that’s exactly where pose consistency can help.

Qualitative evaluation. Fig. 6.4 visually illustrates the advantages of our model over

two other recent methods, Attention [CYW15] and HAZN [XWC16]. Our model estimates

the overall part configuration more accurately. For example, in the 2rd row of Fig. 6.4, we

correctly labels the right arm of the person while the other two baseline methods label it as

upper-leg and lower-leg. Furthermore, our model gives clearer details of arms and legs (see

the last three rows of Fig. 6.4), especially for small-scale people.
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Image Deeper-Cut Our Model (w/o seg) Our Model (full)

Figure 6.3: Visual comparison of human pose estimation on PASCAL-Person-Part.
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6.3 Conclusion

In this chapter, we explore and prove the complementary properties of human pose estima-

tion and human semantic part segmentation in complex multi-person images. We present an

efficient framework that perform the two tasks iteratively, improving the results gradually.

For human pose estimation, we adpot a fully-connected CRF that jointly performs human

instance clustering and joint labeling, using deep-learned features and part segment based

consistency features. This model gives better localization of joints, especially for arms and

legs. For human semantic segmentation, we train a FCN that uses estimated pose configura-

tions as shape and location priors, successfully relieving local confusions of people and giving

clearer details of arms and legs. We also adopt an effective “auto-zoom” strategy that deals

with object scale variation for both tasks and helps reduces the inference time of the CRF

by a factor of 30. We test our approach on the challenging PASCAL-Person-Parts dataset

and show that it outperforms state-of-the-art methods for both tasks.

There’s still much space for improvement. For example, we can construct simple graphical

models within a DCNN structure, making end-to-end training of human pose estimation

possible. We can also perform pose estimation and part segmentation simultaneously, to

further improve the results.

Method Head Torso U-arms L-arms U-legs L-legs Background Ave.

Attention [CYW15] 81.47 59.06 44.15 42.50 38.28 35.62 93.65 56.39

HAZN [XWC16] 80.76 60.50 45.65 43.11 41.21 37.74 93.78 57.54

LG-LSTM [LSX15] 82.72 60.99 45.40 47.76 42.33 37.96 88.63 57.97

Our model (w/o pose) 79.83 59.72 43.84 40.84 40.49 37.23 93.55 56.50

Our model (final) 80.21 61.36 47.53 43.94 41.77 38.00 93.64 58.06

Table 6.3: Mean Pixel IOU (mIOU) of Human Semantic Part Segmentation on PASCAL-

Person-Part.
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Image Attention HAZN Our Model Ground-truth

Figure 6.4: Visual comparison of human semantic part segmentation on PASCAL-Person-

Part. Compared with Attention [CYW15] and HAZN [XWC16], our model is better at

estimating the overall configuration, recovering small instances, and giving accurate details

of arms and legs.
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CHAPTER 7

Discussion and Conclusion

This dissertation proposes advancements in 2D human pose estimation and 2D semantic part

segmentation to improve upon state-of-the-art performance. Current prevailing methods for

the two tasks rely on deep neural networks or dedicated graphical models, achieving good

performance on simple images with well-cropped person instances in standard poses. These

methods, nevertheless, don’t provide efficient mechanism to handle the following difficulties:

(1) large variability of human pose; (2) large variability of human instances and human

semantic parts; (3) multi-person overlapping. Therefore, they still struggle in multi-person

natural images. Our proposed models, instead, directly tackle these difficulties, improving

the performance of both tasks in multi-person images with large pose/scale variation.

We have explored and proved the complementary properties of pose estimation and se-

mantic part segmentation, yielding models that are more robust to large pose variation. In

our first model, we incorporate top-down pose cues as well as deep-learned features into an

AOG-based semantic part assembling model, producing state-of-the-art results for images

with constrained layouts. In our third model, we introduce part segment consistency terms

into a fully-connected pose-assembling CRF, which outputs pose configurations with more

accurate joint localization and less ambiguation in multi-person scenes. At the same time,

we incorporate pose consistency terms into a part segmentation FCN, effectively correcting

configuration errors in semantic part segmentation.

We handle the large scale variability in natural images by designing a mechanism to

adapt to the size of human instancces adn their corresponding parts. In our second model,

we adopt a hierarchical FCN framework that performs object/part scale estimation and

part segmentation jointly, greatly recovering missing details of arms and legs for small-scale
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human instances and effectively relieving local confusions for large-scale human instances.

There’s still space for improvement on our proposed models. We can design layers that

have the function of an assembling model within a DCNN architecture, making an end-to-

end human pose estimation system. We can also design models that perform pose estimation

and semantic part segmentation simultaneously within DCNNs, in order to make the two

tasks benefit each other in a better way.
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