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Abstract

Derived Equivalent Varieties and their Zeta Functions

by

Katrina Honigs

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Martin C. Olsson, Chair

In order to shed light on Orlov’s conjecture that derived equivalent smooth, projective va-
rieties have isomorphic Chow motives, we examine the zeta functions of derived equivalent
varieties over finite fields; in this setting Orlov’s conjecture predicts equality of zeta func-
tions. It is demonstrated that derived equivalent smooth, projective varieties over finite
fields that are abelian or satisfy a certain condition on their cohomology. This condition is
satisfied, for example, by a surface or Calabi–Yau 3–fold.

One of our approaches to comparing the zeta functions of derived equivalent varieties
over finite fields comes from using the Lefschetz Fixed Point Theorem to turn the question
into one of comparing the `-adic étale cohomology of varieties. Cohomology groups are
not in general preserved under the action of Fourier–Mukai equivalences on cohomology,
but cohomological structures we call even and odd Mukai–Hodge structures, which are a
realization of the Mukai motive, are preserved. Investigation into when isomorphism of
these cohomological structures implies equality of zeta functions gives us our cohomological
condition for equality of zeta functions.

We also develop a relative version of the map Fourier–Mukai transforms induce on coho-
mology and define a relative notion of even and odd Mukai–Hodge structures, and show these
structures are preserved in a situation arising from the derived equivalence of smooth, projec-
tive varieties with semiample (anti-)canonical bundles. Using this result, it is demonstrated
that when derived equivalent smooth, projective varieties have semiample (anti-)canonical
bundles, the fibers over any fixed geometric point in their shared (anti-)canonical variety
must also have isomorphic even and odd Mukai–Hodge structures. Hence, for any such
varieties over finite fields, if their geometric fibers satisfy any of the conditions identified
for isomorphism of Mukai–Hodge structures to imply equality of zeta functions, then the
varieties themselves also have equal zeta functions.
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Chapter 0

Introduction

The formalism of derived categories, and in particular the notion of the derived category
of the abelian category of coherent sheaves on a variety, was introduced in the 1960’s by
Verdier and his advisor Grothendieck [47] as part of Grothendieck’s theory of duality, and
with the intention that these categories should be the correct setting for homological al-
gebra. Recently, derived categories have emerged as important objects in their own right,
which package cohomological information about the varieties in question in a surprisingly
manageable way. In particular, the bounded derived category of the abelian category of co-
herent sheaves on a variety X, abbreviated from here on to the “derived category of X” and
denoted Db(X), is an invariant of varieties that reveals a great deal of geometric information
about the variety X.

Varieties X and Y are derived equivalent if there is an exact equivalence of triangulated
categories between Db(X) and Db(Y ). Derived equivalence between smooth, projective va-
rieties preserves properties such as dimension, Kodaira dimension and order of the canonical
bundle, and in fact the canonical rings themselves (see Chapter 2 for more in this vein). If
A is an abelian variety, the isomorphism class of the product of A with its dual (but not
of A itself) is determined by Db(A). Connections between derived equivalence and moduli
theory have appeared as well. For instance, any variety derived equivalent to a K3 surface
X can be shown to be not only another K3 surface, but a connected component of a moduli
space classifying semi-stable sheaves on X; the characteristic 0 case was completed in work
by Mukai [31] and Orlov [33], and the characteristic p case was completed more recently by
Lieblich and Olsson [26] and Ward [50]. The question of how much information the derived
category carries is still open; quite recently, it was shown, in both cases using derived equiv-
alent Calabi–Yau 3–folds as examples, that derived equivalence does not necessarily preserve
varieties’ fundamental groups (Bak [5], Schnell [40]) or Brauer groups (Addington [2]).

Derived categories are closely related to other areas of algebro-geometric research as well,
such as birational geometry and the minimal model program, mirror symmetry, and motivic
questions, such as the Tate and Hodge conjectures. Furthermore, Orlov has conjectured that
for any smooth, projective variety X, its derived category determines its Chow motive with
rational coefficients:
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Conjecture 0.0.1 ([36, Conjecture 1]). Let X and Y be smooth projective varieties such
that Db(X) and Db(Y ) are equivalent as triangulated categories. Then the Chow motives of
X and Y with rational coefficients are isomorphic in the category of effective Chow motives,
or, equivalently if X and Y are defined over a field admitting resolution of singularities, in
Voevodsky’s category of geometric motives [49].

Since much of the work in this thesis is over finite fields, we will use Chow motives with
rational coefficients (see Definition 1.1.16), rather than geometric motives. There is a fully
faithful functor from the category C∼ratV (k)0

Q (see Definition 1.1.9) into the category of Chow
motives with rational coefficients. The category C∼ratV (k)0

Q has objects given by smooth,
projective varieties over a field k, and the Chow motive of a smooth, projective variety
X is the image of X via the functor from C∼ratV (k)0

Q to the category of Chow motives.
Given two smooth projective varieties X and Y , the morphisms from X to Y in C∼ratV (k)0

Q
are given by elements of ZdimX

∼rat
(X × Y )Q, cycles in the Chow group of X × Y that are of

codimension dimX (see Section 1.1 for the definition of cycles and Chow groups). Given
smooth, projective varieties X, Y, Z ∈ obC∼ratV (k)0

Q and morphisms from X to Y and
Y to Z, α ∈ ZdimX

∼rat
(X × Y )Q and β ∈ ZdimX

∼rat
(X × Y )Q, their composition is given by

π13∗(π
∗
12α · π∗23β), where πij is the projection from X × Y × Z to the product of its ith and

jth factors and · denotes the intersection product. So, an isomorphism between the Chow
motives of smooth, projective varieties X and Y is given by a cycle class in the Chow group
of X × Y of codimension dimX that is an isomorphism in C∼ratV (k)0

Q.
Conjecture 0.0.1 has been proved in several cases. For example, in the case where the de-

rived equivalent varieties have ample or anti-ample canonical bundles, we have the following
theorem:

Theorem 2.3.5 (Bondal and Orlov [8, Theorem 2.5]). If there is an exact equivalence
Db(X) ' Db(Y ) between smooth varieties X and Y , and X is projective and has ample or
anti-ample canonical bundle, then X is isomorphic to Y .

The cycle class of a graph of an isomorphism of varieties gives an isomorphism of motives;
the cycle class of the graph of the inverse of the isomorphism of varieties gives the inverse
in the category of motives. Hence, it is an immediate consequence of the Theorem 2.3.5,
derived equivalent varieties with ample or anti-cample canonical bundles have isomorphic
motives.

Many of the exact functors F : Db(X) → Db(Y ) between the derived categories of
smooth, projective varieties X and Y , including all equivalences (due to Orlov’s [35, Theorem
3.2.1], quoted here in Theorem 2.2.3) are isomorphic to a functor of the form controlled by
an object P ∈ Db(X × Y ), called its kernel, in the sense that there is an isomorphism
between F and RpY ∗(Lp∗1(−)⊗L P ), where pX and pY are the projections X × Y → X and
and X × Y → Y , and pullback, pushforward and tensor are in their derived versions. Such
functors are called Fourier–Mukai transforms. We will call Fourier–Mukai transforms that
give equialences Fourier–Mukai equivalences.
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Conjecture 0.0.1 has also been verified in the case where the derived equivalence Db(X)→
Db(Y ) between smooth, projective varieties is isomorphic to a Fourier–Mukai transform with
a kernel meeting a certain criterion:

Theorem 0.0.2 (Orlov [36, Theorem 1]). Let F : Db(X) → Db(Y ) be a Fourier–Mukai
transform between the derived categories of smooth, projective varieties where dim(X) =
dim(Y ) = n. Suppose the kernel P of the Fourier–Mukai transform has support of dimen-
sion n. If F is fully faithful then the Chow motive of X is a direct summand of that of Y ,
and if F is an equivalence of categories, then the motive of X is isomorphic to the motive
of Y .

Given a Fourier–Mukai transform Db(X) → Db(Y ) with kernel P ∈ Db(X × Y ), the
Mukai vector of P , denoted v(P ) is the element of the Chow group of X × Y given by
ch(P ).

√
td(X × Y ) (see Definition 3.1.1 as well as Chapter 1 for the definition of the Chern

character and Todd class). Theorem 0.0.2 is proved by showing that, under its hypotheses,
the cycle class in the Chow group of X×Y of the Mukai vector of a Fourier–Mukai equivalence
is an isomorphism between the Chow motives (with rational coefficients) of X and Y .

However, without the restriction on the dimension of the support given in Theorem 0.0.2,
the Mukai vectors of a kernel of a Fourier–Mukai equivalence is not in general a cycle of
codimension dim(X) on X × Y , and so its cycle class in the Chow group of X × Y does not
give well-defined maps between the Chow motives of X and Y .

The cycle classes of Mukai vectors of Fourier–Mukai transforms do always give maps be-
tween Mukai motives (Definition 1.4), and any derived equivalent smooth and projective X
and Y have isomorphic Mukai motives [36, Proposition 1]. These Mukai motives are defined
in the category of Chow motives, but are not in the image of C∼ratV (k)0

Q or in the full subcat-
egory of effective Chow motives in the category of Chow motives (see Definition 1.1.13), since
Tate twists must be introduced in order to define them (see Definition 1.1.16 and Section 1.2
for a more information on Tate twists).

This thesis takes a more numerical approach toward collecting evidence for Conjec-
ture 0.0.1. The zeta function of a variety over a finite field depends only on its Chow
motive (see Section 1.3), and so Orlov’s conjecture, if true, would imply that derived equiva-
lent smooth, projective varieties over a finite field have identical zeta functions (we organize
some of the ideas at play here in the diagram below). In this dissertation, we prove, strongly
using the isomorphism of Mukai motives implied by derived equivalence, that this is the
case for some situations: for abelian varieties, for varieties that satisfy a condition on their
cohomology that is met by, e.g., any surface or Calabi–Yau 3–fold, and some classes of va-
rieties depending on the semi-ampleness of their canonical or anti-canonical classes and the
behavior of their fibers over their (anti-)canonical variety.

If two smooth, projective varieties X and Y over a finite field have equal zeta functions,
then the Tate conjectures imply that we can produce a cycle class up to numerical equivalence
(see Example 1.1.5) that gives an isomorphism between the numerical motives of X and Y .
However, numerical equivalence is a coarser relation on cycles than rational equivalence,
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Figure 0.1:

the equivalence relation defining Chow groups. In Section 1.3, we give a discussion of this
application of the Tate conjectures and suggest what further conjectures would suffice to
produce an isomorphism of Chow motives. Although Section 1.3 suggests a conjectural
method for producing an isomorphism of the Chow motives of derived equivalent smooth,
projective varieties over finite fields that have equal zeta functions, this method has no
dependence on the derived equivalence, and so we are not also conjecturing a functor from
the category of derived categories of smooth, projective varieties with exact functors to the
category of Chow motives with rational coefficients that maps the derived category of a
variety to its Chow motive.

Thesis results

We will prove the following theorems:

Theorem 4.1.5. Let A and B be abelian varieties defined over a finite field F. If A and B
are derived equivalent, then A and B have equal zeta functions.

Theorem 3.3.6. Let X and Y be varieties of dimension d over a finite field F such that
Db(X) is equivalent to Db(Y ). Let ϕ be the geometric Frobenius endomorphism. If

Tr(ϕ∗|H i(X,Q`)) = Tr(ϕ∗|H i(Y,Q`))

for bd
2
c − 1 even values and dd

2
e − 1 odd values of 1 ≤ i ≤ d, then ζ(X) = ζ(Y ).

Smooth, projective surfaces and 3–dimensional varieties with vanishing first cohomology
groups (e.g. Calabi–Yau 3–folds) fulfill the hypotheses of Theorem 3.3.6.
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Theorem 5.2.1. Let X and Y be smooth, projective varieties of dimension d over a finite
field Fq such that Db(X) is equivalent to Db(Y ). Suppose that X, and hence also Y (see
Corollary 2.3.13(c)), has a semiample canonical (or anti-canonical) bundle. Let S be the
(anti-)canonical variety of X and of Y (see Proposition 2.3.3). If, for each geometric points
s ∈ S, the fibers Xs and Ys fulfill at least one of the following hypotheses, then ζ(X) = ζ(Y ):

(i) Xs and Ys are smooth, projective varieties such that

Tr(ϕ∗|H i(Xs,Q`)) = Tr(ϕ∗|H i(Ys,Q`))

for bd
2
c − 1 even values and dd

2
e − 1 odd values of 1 ≤ i ≤ d, where ϕ is the geometric

Frobenius endomorphism and d = dimXs = dimYs.

(ii) Xs and Ys are abelian varieties of dimension 3 or lower.

Theorem 4.1.5 is shown using [34, Theorem 2.19] of Orlov, which states that if A and
B are derived equivalent varieties, then A × Â ∼= B × B̂, as well as the fact that abelian
varieties over finite fields are isogenous if and only if they have equal zeta functions (Tate
[43, Theorem 1, Section 3]).

To prove Theorem 3.3.6, we use a more general approach, which we outline here:

Outline of proof of Theorem 3.3.6. By the Lefschetz fixed-point theorem and the Riemann
hypothesis portion of the Weil conjectures, we have that ζ(X) = ζ(Y ) if and only if

Tr(ϕ∗|H i(X,Q`) = Tr(ϕ∗|H i(Y,Q`)

for all i, where ϕ is the geometric Frobenius morphism and H is `–adic étale cohomology.
When the varieties in question are smooth and projective, derived equivalences can be

realized as Fourier–Mukai functors, which induce maps on Weil cohomology theories (`–adic
étale cohomology is an example of one of these). These maps are not necessarily degree-
preserving, and, when acting on Weil cohomology theories, they introduce Tate twists, which
we must keep track of in order that the map on cohomology be compatible with the action
of geometric Frobenius.

However, two cohomological structures are preserved under this map: the even and odd
Mukai–Hodge structures, which are cohomological realizations of Mukai motives. These
structures, for a variety X, are, respectively:

dX⊕
i=0

H2i(X/K)(i),

dX⊕
i=1

H2i−1(X/K)(i)

Along with the symmetry among cohomology groups from Poincaré duality or the hard
Lefschetz theorems, the preservation of these Mukai–Hodge structures under derived equiv-
alences gives us the condition for equality of zeta functions described in Theorem 3.3.6.



CHAPTER 0. INTRODUCTION 6

We were also able to use the methods of the proof of Theorem 3.3.6 to show that zeta
functions of derived equivalent 3–dimensional abelian varieties over finite fields must be
equal, without using [34, Theorem 2.19]:

Proposition 4.2.1. Let A and B be 3–dimensional abelian varieties over a finite field Fq.
If A and B have isomorphic even and odd Mukai–Hodge structures, then ζ(A) = ζ(B).

Theorem 5.2.1 is the result of applying Theorems 3.3.6 and Proposition 4.2.1 after making
a reduction in the case of derived equivalent varieties with semi-ample canonical or anti-
canonical bundles. Derived equivalent smooth, projective varieties X and Y have isomorphic
canonical and anti-canonical varieties (Orlov [35, Theorem 3.2.1]), and so if X and Y have
semi-ample (that is, globaly generated) canonical or anti-canonical varieties, we can induce
canonical maps from each of them to their shared canonical or anti-canonical variety, giving
us more information about comparing X and Y . When X and Y are defined over a finite
field Fq, we prove that a relative version of the Mukai–Hodge structures is preserved: if
f : X → S and g : Y → S are the canonical maps, we have the isomorphisms⊕

i

R2if∗Q`(i) ∼=
⊕
i

R2ig∗Q`(i) and
⊕
i

R2i−1f∗Q`(i) ∼=
⊕
i

R2i−1g∗Q`(i).

Localizing these isomorphisms at any geometric point s in S shows that the fibers Xs and
Ys have isomorphic Mukai–Hodge structures. And so we can formulate Theorem 5.2.1: if all
the fibers Xs and Ys satisfy the hypotheses of Theorem 3.3.6 or Proposition 4.2.1, then these
pairs of fibers each have equal zeta functions, and so do X and Y .

Outline

Chapter 1 is focused on introducing the ideas at play in Figure 0. We define several categories
of pure motives, focusing on Chow motives and their universal property classifying Weil
cohomologies, as well as the implications of the Tate conjectures in relating motives to zeta
functions. We give the data and axioms of a Weil cohomology theory as well as a discussion
of the background we will need to relate zeta functions to them, including a discussion of
the Lefschetz fixed-point theorem and the various types of Frobenius morphisms. Chapter 1
concludes with a discussion of Mukai motives.

Chapter 2 gives background on derived equvialence. It starts out with a discussion of
Fourier–Mukai functors and a short literature survey about the existence and uniqueness of
Fourier–Mukai kernels in Sections 2.1 and 2.2. Then Section 2.3 gives a discussion about
the canonical bundles of derived equivalent varieties, particularly working through different
proofs of several results from Toda’s [46]. Given varieties X, Y, S and morphisms f : X → S,
g : X → S, Section 2.4 gives a criterion for when Fourier–Mukai equivalence of X and Y
implies Fourier–Mukai equivalence of the fibers Xs and Ys for geometric points s ∈ S.

In the beginning of Chapter 3, we introduce even and odd Mukai–Hodge structures,
demonstrate that they are preserved under derived equivalence, and then focus on finding
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cases where we can fill in the arrow labeled “sometimes” above, which is the heart of what is
being proved in this thesis. That is, we examine what information about comparing the zeta
functions of derived equivalent varieties can be extracted from the Mukai–Hodge structures,
culminating in the proof of Theorem 3.3.6.

Chapter 4 explores comparing zeta functions of abelian varietes. We give a proof of The-
orem 4.1.5 and some exposition on the theories involved in that proof. We also examine the
consequences of the preservation of even and odd Mukai–Hodge structures in the abelian va-
rieties case, and demonstrate that the strategy for proving Theorem 3.3.6 can be used, along
with some additional combinatorial argument, to show that abelian varieties of dimension 3
have equal zeta functions.

In Chapter 5, we apply the results from Section 2.4 to the problem of comparing zeta
functions of derived equivalent varieties over finite fields, proving Theorem 5.2.1. In order
to do this, we develop a relative version of the map that Fourier–Mukai functors induce on
cohomology, and introduce a notion of even and odd Mukai–Hodge structures, and show
these structures are preserved in a situation arising from the derived equivalence of smooth,
projective varieties with semiample (anti-)canonical bundles.

0.1 Notation

Throughout this thesis, a variety is defined to be an integral, separated scheme of finite type
over a field k.
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Chapter 1

Motives

The focus of this thesis the finite fields case of Orlov’s conjecture that derived equivalent
smooth, projective varieties have isomorphic Chow motives [36, Conjecture 1], quoted in
Conjecture 0.0.1. In this chapter, we will give some exposition on pure motives, Weil coho-
mology theories, zeta functions, and the relationships beween them.

Our treatment of these topics will not by any means be exhaustive; the theory of motives
is a large one, and connected with many deep questions. The ideas for the theories of
motives and Weil cohomologies arose in pursuit of the Weil conjectures. In Chapter 3, we
will use some results relating to Deligne’s proof of Weil conjectures, but not delve into the
full statements of the Weil conjectures or standard conjectures here. Our focus will be on
pure motives, which are defined for smooth, projective varieties, and will not discuss mixed
motives, the more-conjectural generalization to singular varieties.

Some other sources of information on motives include Kleiman’s articles [25, 24], which
focus on, respectively, motives and the connection between Weil cohomologies and the stan-
dard conjectures, Scholl’s exposition [41] on pure motives, and André’s comprehensive and
recent book [3], which gives an introduction to pure motives, mixed motives and periods.
For a detailed exposition on ⊗ and Tannakian categories, as well as cohomology theories,
motives, and the standard conjectures, see Saavedra Rivano [39].

1.1 Pure motives

Conjecture 0.0.1 refers to effective Chow motives with rational coefficients and Voevodsky’s
geometric motives, which can be used interchangeably in many situations. Voevodsky [49]
defines his category of geometric motives for varieties over a field k, when k is perfect. By
[49, 4.2.6], there is a full embedding of the category of effective Chow motives over k into
this category of motives when k admits a resolution of singularities (see Friedlander and
Voevodsky [19, Definition 3.4]) so in many situations it does not matter whether Chow
motives or Voevodsky’s category is being considered: any field of characteristic zero admits
a resolution of singularities [19, Proposition 3.5]. However, the work in this thesis focuses
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on finite fields, where the resolution of singularities has not been proved in general, so for
us the relevant category is Chow motives, and we work up to a definition of them in this
section.

Cycles and adequate equivalence relations

In order to define morphisms in the category of motives, we need to define the graded group
of algebraic cycles:

Definition 1.1.1. Given a smooth, projective integral variety X of dimension d, Zr(X) is
the free abelian group generated by irreducible closed codimension-r subvarieties of X: the
elements of Zr(X) consist of formal sums of such subvarieties with coefficients in Q. The
group of (algebraic) cycles on X is the group Z(X) :=

⊕
r Zr(X), which is graded under

the operation of intersection.

In other places in the literature, C(X) is sometimes used to denote cycle groups.

Definition 1.1.2. Let X be a smooth, projective variety and fix commutative ring R. We
define the cycle group of X with R–coefficients to be the tensor product

Z(X)R := Z(X)⊗Z R.

Definition 1.1.3. Given smooth, projective varieties X, Y , elements of ZdimX+r(X × Y )R
are called algebraic correspondences of degree r with coefficients in R between X and Y .

Any category of pure motives includes a choice of adequate equivalence relation on cycles
with R–coefficients. Note that we tensor the cycle group with the chosen coefficient ring be-
fore quotienting by an adequate equivalence relation: these two operations do not necessarily
commute.

Definition 1.1.4. An adequate equivalence relation ∼ on the group of cycles with coefficients
over a fixed ring R is an equivalence that has the following properties (cf André [3, Definition
3.1.1.1]) for any smooth projective varieties X, Y :

(1) The relation ∼ is compatible with both the R–linear structure and the graded structure
of Z(X)R.

(2) For any two cycles α, β ∈ Z(X)R, there exists a cycle that is both equivalent to α, and
properly intersects β (see Fulton [20, Section 2.4 and Chapter 7] for a comprehensive
discussion of proper intersections).

(3) Let pX and pY be the standard projections from X × Y to its first and second factors
For any α ∈ Z(X)R and all γ ∈ Z(X×Y )R that properly intersect (pX)−1(α), if α ∼ 0,
then γ∗(α) := pY (γ · p−1

Y (α)) ∼ 0. ( · denotes intersection). Condition (3) implies that
the assignment of smooth projective varieties to R–algebras sending X to Z∼(X)R is
a contravariant functor ([3, Definition 3.1.1.1]).
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We denote the group of cycle classes of X with coefficients in R modulo an adequate equiv-
alenc relation ∼ by Z∼(X)R := Z(X)R/∼.

Example 1.1.5. Two varieties are rationally equivalent if they are members of the same fam-
ily of cycles parametrized by any rational or unirational variety; see Fulton [20] or Kleiman
[24] for further discussion.

Homological equivalence is always given with respect to a Weil cohomology theory (see
Section 1.2 for a definition) we have chosen a priori : two cycles are homologically equivalent
if their images inside this Weil cohomology theory are equal.

Two cycles on a variety X are numerically equivalent if their respective intersections with
any other cycle on X have equal degrees.

The order of these classical examples of adequate equivalence relations on cycles from
finest to coarsest is rational equivalence ∼rat, algebraic equivalence, homological equivalence
and numerical equivalence. Rational equivalence is the finest of all possible adequate equiv-
alence relations [3, Lemme 3.2.2.1], and numerical equivalence is the coarsest. If R is a
Q–algebra, then Voevodsky’s adequate equivalence smash nilpotence [48] is coarser than
algebraic and finer than homological equivalence.

Definition 1.1.6. The Chow group is defined to be Z(X)/∼rat, and Z(X)R/∼rat the Chow
group with R–coefficients. Elsewhere in the literature, Z(X)/∼rat or Z(X)Q/∼rat is some-
times denoted by A(X).

Pure motives

We will define several categories in the process of constructing the category of motives.

Definition 1.1.7. Let V (k) be the category of smooth, projective varieties over a field k
and the morphisms between them.

Definition 1.1.8. Fix a coefficient ring R and an adequate equivalence relation ∼. The
category of correspondences C∼V (k)R has the same objects as V (k). Given X, Y, Z ∈
obC∼V (k)R, morphisms in C∼V (k)R from X to Y given by cycles on X × Y with coef-
ficients in R, modulo ∼:

HomC∼V (k)R(X, Y ) := Z∼(X × Y )R.

Given α ∈ Z∼(X × Y )R and β ∈ Z∼(Y × Z)R, their composition in C∼V (k)R is given by
π13∗(π

∗
12α · π∗23β), where πij is the projection from X × Y × Z to the product of its ith and

jth factors and · denotes the intersection product.

Definition 1.1.9. Fix a ring of coefficients R and adequate relation ∼ on R–cycles. There
is a contravariant functor

V (k)op → C∼V (k)R (1.1)
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sending varieties to themselves and any morphism f :X→ Y in V (k) to f ∗∈ ZdimX
∼ (Y ×X)R,

which we define to be the cycle class of the transpose of the graph of f .
The category C∼V (k)0

R is given by restricting the morphisms in C∼V (k)R to correspon-
dences of degree 0.

Remark 1.1.10. Note that we may define a functor

V (k)op → C∼V (k)0
R (1.2)

by restricting the codomain of functor (1.1) since the transpose of the graph of a morphism
of varieties f : X → Y is a corresondence of degree 0 between Y and X.

Definition 1.1.11. A preadditive category is a category C such that for any objects X, Y ,
Z ∈ C, HomC(X, Y ) is an abelian category, and the composition map

HomC(X, Y )× HomC(Y, Z)→ HomC(X,Z)

is bilinear.
A pseudo-abelian category is a pre-additive category such that every idempotent has a

kernel, or equivalently, every idempotent splits.

Definition 1.1.12. Let C be a pre-additive category. Its pseudo-abelian envelope, kar(C),
also called, elsewhere in the literature, the Karoubi envelope, the pseudo-abelian completion,
or the idempotent completion, has objects given by pairs (X, e) where X is an object in
C and e is an idempotent endomorphism on X, and for any (X, e), (Y, e′) ∈ ob kar(C),
Homkar(C)((X, e), (Y, e

′)) := {f ∈ HomC(X, Y ) | f = e′ ◦ f ◦ e}. The composition of any two
morphisms f : (X, e) → (Y, e′) and g : (Y, e′) → (Z, e′′) is g ◦ f : (X, e) → (Z, e′′). This
composition is well-defined:

e′′ ◦ g ◦ f ◦ e = e′′ ◦ (e′′ ◦ g ◦ e′) ◦ (e′ ◦ f ◦ e) ◦ e = (e′′ ◦ g ◦ e′) ◦ (e′ ◦ f ◦ e) = g ◦ f.

Note that the identity map on (X, e) is e.
The pseudo-abelian envelope construction comes with a fully faithful functor C → kar(C)

that sends any object X to (X, idX) and any morphism to itself. The functor C → kar(C)
is initial among functors from C to pseudo-abelian categories.

Given an idempotent e : X → X in C, its image in kar(C) splits:

(X, idX)
e−→ (X, idX) = (X, idX)

e−→ (X, e)
e−→ (X, idX)

(X, e)
e−→ (X, idX)

e−→ (X, e) = (X, e)
e−→ (X, e) = id(X,e)

Definition 1.1.13. The category of (pure) effective motives, M eff
∼ (k)R, is defined by taking

the pseudo-abelian envelope of C∼V (k)0
R. The objects of M eff

∼ (k)R are pairs (X, e) where
X ∈ V (k) and e is an element of ZdimX

∼ (X × X) that is idempotent with respect to the
operation of composition we defined on cycles.
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We then have a fully faithful functor

C∼V (k)0
R →M eff

∼ (k)R (1.3)

sending any variety X in obC∼V (k)R to (X, id).

Remark 1.1.14. The composition of (1.2) with (1.3) is called

heff
∼,R : V (k)op →M eff

∼ (k)R.

It maps any variety X to (X, id) and any morphism of varieties f : X → Y to f ∗ ∈
ZdimX
∼ (Y ×X)R.

Definition 1.1.15. Fix a ring R and an adequate equivalence relation ∼ on R–cycles.
Given any smooth, projective variety X, heff

∼,R(X) is its effective motive with R–coefficients
modulo ∼.

Definition 1.1.16. Fix coefficient ring R and an adequate equivalence relation ∼ on R–
cyles. The category of pure motives M∼(k)R has objects triples (X, e, n) where X ∈ V (k), e
is an idempotent and n is an integer.

In the literature, the motive (Spec k, idSpec k, 1) is referred to as the Tate motive, whereas
its dual (Spec k, idSpec k,−1) is denoted by L and called the Lefschetz motive. Morphisms
(X, e, n)→ (Y, e′, n′) are in correspondence with elements of e ◦ ZdimX−n+n′

∼ (X × Y )R ◦ e′.

Remark 1.1.17. The category of pure motives can be thought of as the category of effective
motives with the addition of Tate twists; the object (X, e, n) is denotes (X, e) with n Tate
twists. See Section 1.2 for further discussion of Tate twists and their meaning in different
Weil cohomology theories.

Definition 1.1.18. There is a fully faithful functor

M eff
∼ (k)R →M∼(k)R

mapping objects (X, e) ∈ obM eff
∼ (k)R to (X, e, 0). We call its composition with heff

∼,R :
V (k)op →M eff

∼ (k)R
h∼,R : V (k)op →M∼(k)R. (1.4)

For any X ∈ obV (k), h∼,R(X) is the motive of X with R–coefficients modulo ∼.

Remark 1.1.19. Since the functor M eff
∼ (k)R → M∼(k)R is fully faithful, given varieties X

and Y , showing that heff
∼,R(X) ∼= heff

∼,R(Y ) is equivalent to showing that h∼,R(X) ∼= h∼,R(Y ).

Definition 1.1.20. For any fixed coefficient ring R, the objects of the category M∼rat(k)R
constructed with the rational equivalence relation are called Chow motives with coefficients
in R. When ∼ is given by homological equivalence, the objects of M∼hom

(k)R are some-
times called Grothendieck motives with coefficients in R. When ∼ is given by numerical
equivalence, the objects of M∼(k)R are called numerical motives with coefficients in R.

So, the category of Chow motives with rational coefficients, which we will see several times
in the remainder of the chapter, is heff

∼rat,Q, and the Chow motive (with rational coefficients)
of a smooth, projecitve variety X is h∼rat,Q(X).
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Tensor structure

Categories of pure motives have tensor structures, which we introduce in this section. First
we give some preliminary terminology.

Definition 1.1.21. Given two categories C and D, the product category C ×D has objects
given by pairs (X, Y ) of objects X ∈ C and Y ∈ D, and morphisms (X, Y ) → (X ′, Y ′)
are likewise given by pairs of morphisms X → X ′ in C and Y → Y ′ in D. Composition
is given by the respective composition of the first entries in C and the second entries in D:
(f1, f2) ◦ (g1, g2) = (f1 ◦ g1, f2 ◦ g2).

A bifunctor is a functor whose domain is a product category.

Definition 1.1.22. A category T is a ⊗–category over a commutative ring R if its sets of
morphisms have an R–module structure, and there is a tensor operation ⊗ satisfying the
following conditions (André [3, 2.2.2]):

(i) The operation ⊗ is given by a bilinear bifunctor ⊗ : T × T → T . The functor ⊗ is
bilinear if its maps from sets of morphisms in T × T to sets of morphisms in T are
bilinear maps.

(ii) There is a unital object 1.

(iii) For any objects L,M,N ∈ T , there are functorial isomorphisms aLMN : (L⊗M)⊗N ∼=
L⊗ (M ⊗N), cMN : M ⊗N ∼= N ⊗M , such that cNM = c−1

MN , and um : M ⊗ 1 ∼= M ,
u′m : 1⊗M ∼= M giving the associativity of ⊗, commutativity of ⊗, and left and right
tensor with the unital object. These functorial isomorphisms are not equalities, and
so their interaction with each other is not immediate and must be defined by axioms
called coherence conditions. We will not use coherence conditions explicitly here and
so will not include a definition; see Chapitre I Section 1 of Saavedra Rivano [39] for
further details.

Definition 1.1.23. A ⊗–category T has a rigid ⊗–category structure if it satisfies the
following additional condition:

(iv) There is an autoduality ∨ : T → T op such that for any M ∈ ob T , the functor (−)⊗M∨

is left adjoint to (−)⊗M and M∨ ⊗ (−).

Definition 1.1.24. A functor F : T → T ′ between ⊗–categories over R is a ⊗–functor if it
satisfies the following compatibility conditions with the ⊗–category structures on T and T ′:

1. F is R–linear, meaning that maps on hom-sets induced by F are R–module maps,

2. F is compatible with the tensor and unit operations: for anyM,N ∈ ob T , F (M⊗N) =
FM ⊗ FN and F1T = 1T ′ .
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Remark 1.1.25. If a functor F : T → T ′ is a ⊗–functor between ⊗–categories, then if T
and T ′ are rigid, F is automatically compatible with the duality operation.

Example 1.1.26. The category of varieties V (k) has a ⊗–category structure given by the
fiber product ×k with Spec(k) as the unital object.

For any ring of coefficients R and adequate equivalence relation ∼ on R–cycles, C∼V (k)R
inherits a ⊗–structure from V (k) via the functor V (k)op → C∼V (k)R (1.1) since the cate-
gories have the same sets of objects.

Furthermore, the category of motives M∼(k)R has a ⊗–structure: for any (X, e, r),
(Y, e′, r′) ∈ obM∼(k)R, the tensor product is (X, e, r) ⊗ (Y, e′, r′) = (X ×k Y, e ⊗ e′, r + r′)
and the unital object is (Spec k, idSpec k, 0), the image of Spec k under the functor h∼,R (1.4).

Example 1.1.27. M∼(k)R a is rigid ⊗–category: it has an autoduality given by (X, e, r)∨ =
(X, et, dimX − r), where et denotes the transpose of e. Note that we need the Tate twists
here to achieve this rigid ⊗–category structure since the sub-⊗–category of effective motives
M eff
∼ (k)R inside M∼(k)R is not stable under the duality operation.

1.2 Weil cohomology theories

So far we have defined categories of motives by constructing them; however, the category of
Chow motives with Q–coefficients enjoys a universal property of relating to Weil cohomology
theories (see Section 1.2). In this section we define a Weil cohomology theory, discuss
realizations of Tate twists in different Weil cohomologies, define Chern and Todd classes,
which we will need in later chapters, and discuss the universal property of Chow motives
with rational coefficients.

Weil cohomology theories are given by functors H∗ : V (k)op → VecGr(K) from the
category of smooth, projective varieties over a (not necessarily algebraically closed) field k
to the category of Z–graded K–vector spaces for some choice of characteristic 0 field K,
called the coefficient field of H∗, along with some other data and axioms, including Tate
twists. Note that not every definition of a Weil cohomology includes the Tate twist:it is left
out of the Kleiman [24] as it is unnecessary for the purpose of that article. However, it is
important to keep track of Tate twists in this thesis, as we will see in Chapter 3.

Definition 1.2.1. A Weil cohomology is given by the following data and axioms. This
definition closely follows that given in de Jong’s note [15]; compare also the definition of a
Poincaré duality theory with supports, as given by Bloch and Ogus in [7]:

(D1) For every smooth, projective algebraic variety X over k, a Z–graded commutative alge-
bra H∗(X) over K with a K–bilinear multiplication H∗(X)×H∗(X)→ H∗(X) called
the cup product. By graded commutative we mean that α ∪ β = (−1)deg(α) deg(β)β ∪ α
for homogeneous α, β ∈ H∗(X).
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(D2) For every morphism f : X → Y of smooth projective varieties over K, a pullback map
f ∗ : H∗(Y )→ H∗(X) preserving grading. If we think of Weil cohomology as a functor
H∗, then f ∗ = H∗(f).

(D3) A 1–dimensional K–vector space K(1), which gives rise to Tate twists: for any K–
vector space V , V (n) := V ⊗K(1)⊗n. If n is negative, V (n) := V ⊗Hom(K(1)⊗−n, K).

(D4) For every smooth projective varietyX over k, a trace map Tr:H2 dimX(X)(dimX)→K.

(D5) For every smooth projective variety X over k and every closed subvariety Z ⊂ X of
codimension c, there is a cohomology class cl(Z) ∈ H2c(X)(c).

A Weil cohomology theory must then satisfy the following axioms:

(A1) Each H i(X) is a finite-dimensional K–vector space.

(A2) If H i(X) 6= (0), then i ∈ [0, 2 dim(X)]

(A3) Given morphisms f : X → Y and g : Y → Z of nonsingular projective varieties, we
have (g ◦ f)∗ = f ∗ ◦ g∗, which is equivalent to the functoriality of H∗.

(A4) Given nonsingular projective varieties X, Y , consider the pullbacks of the standard
projection maps p∗X : H∗(X)→ H∗(X × Y ) and p∗Y : H∗(Y )→ H∗(X × Y ). The map

H∗(X)⊗K H∗(Y )→ H∗(X × Y )

α⊗ β 7→ p∗X(α) ∪ p∗Y (β)

is an isomorphism of vector spaces, known as the Künneth isomorphism.

(A5) (Poincaré duality) For every nonsingular projective variety X and integer 0 ≤ j ≤
2 dimX, the cup product

Hj(X)×H2 dimX−j(X)(dimX)
∪−→ H2 dimX(X)(dimX)

Tr−→ K

induces a perfect duality between Hj(X) and H2 dimX−j(X)(dimX).

(A6) Trace maps are compatible with products: given nonsingular projective varieties X, Y
and any α ∈ H2 dimX(X)(dimX), β ∈ H2 dimY (Y )(dimY ), the trace map

TrX×Y : H2 dimX+2 dimY (X × Y )(dimX + dimY )→ K

satisfies TrX×Y (p∗X(α) ∪ p∗Y (β) = TrX(α) TrY (β).

(A7) Given nonsingular projective varieties X, Y and closed subvarieties Z ⊂ X, W ⊂ Y ,
we have cl(Z ×W ) = p∗X(cl(Z)) ∪ p∗Y (cl(W )).
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(A8) Let f : X → Y be a morphism of nonsingular projective varieties and Z ⊂ X
be a closed subvariety. Note that f∗[Z] = m[f(Z)] where m is the degree of the
morphism Z → f(Z). Then, TrX(cl(Z) ∪ f ∗α) = mTrY (cl(f(Z)) ∪ α) for every
α ∈ H2 dimZ(Y )(dimZ).

(A9) Suppose that f : X → Y is a morphism of nonsingular projective varieties, and let
Z ⊂ Y be a closed subvariety. Assume dim f−1(Z) = dimZ+dimX−dimY . Write the
cycle associated to f−1(Z) as [f−1(Z)]k =

∑
niZi where k = dimZ + dimX − dimY .

Then
f ∗ cl(Z) =

∑
ni cl(Zi).

(A10) Let x = Spec k. Then Trx(cl(x)) = 1.

Examples of Weil cohomologies include singular cohomology, de Rham cohomology, crys-
talline cohomology and – most important for the work here over finite fields – `–adic étale
cohomology.

Note that axiom (A8) refers to the notion pushforward, but only between cycles. We
define pushforward acting on Weil cohomologies as in [15]:

Definition 1.2.2. Given a morphism f : X → Y between nonsingular, projective varieties,
its pushforward f∗ : H∗(X) → H∗−2r(Y )(−r), where r = dimX − dimY , sends any α ∈
Hj(X) to the unique element f∗(α) of Hj−2r(Y )(−r) such that TrY (f∗(α) ∪ β) = TrX(α ∪
f ∗(β)) for all β ∈ H2 dimX−j(Y )(dimX). Equivalently, we can induce the pushforward map
by using Poincaré duality (A5) and the dual of the pullback map, as follows:

Hj(X)
(A5)−−→ H2 dimX−j(X)(dimX)∨

(f∗)∨−−−→ H2 dimX−j(Y )(dimX)∨

(A5)−−→ H2 dimY−2 dimX+j(Y )(dimY − dimX) = Hj−2r(Y )(−r)

1.2.3 Tate twists and the cohomology of the projective line. In some treatements of
Weil cohomologies, the Tate twist is defined by the relationship H2(P1) ∼= K(−1). We can
use our definition of a Weil cohomology theory to construct such an isomorphism: The trace
map Tr : H2(P1)(1) → K is nonzero since, by axiom (A10), it maps the class of a closed
point in P1 to 1. The Poincaré duality axiom (A5) implies that both the 0–degree and top
degree cohomology groups must be 1–dimensional. Twisting both sides of the trace map by
−1 then yields an isomorphism H2(P1) ∼= K(−1).

Using this information, we interpret the realization of Tate twists in each of the classical
Weil cohomology theories as follows (see [3, 3.4.4]):

1.2.4 Realizations of Tate twists. In `–adic étale cohomology, a Tate twist corresponds
to a twist by the p–adic cyclotomic character: Put another way, H0(P1,Q`) and H2(P1,Q`)
are both isomorphic to Q`, but H0(P1,Q`) carries a trivial Galois action and H2(P1,Q`) is
dual to Q`(1) := lim←m µ`m , which has the (nontrivial) natural cyclotomic Galois action of
Gal(k̄/k). So, a Tate twist by r in this situation corresponds to having the action of the rth

power of the cyclotomic character.
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In de Rham cohomology, the Tate twist tracks the Hodge filtration: H2(P1) has the
Hodge filtration of F≤0 = 0 and F>0 = k. The effect of a Tate twist by r is then to shift the
Hodge filtration by −r.

In singular cohomology, H2(P1) = 1
2πi

Q, and the bigrading of H2(P1)⊗ C ∼= C is purely
of type (1, 1). So a twist by r in singular cohomology is a multiplication by (2πi)r with a
scaling by (−r,−r) in the Hodge decomposition.

Finally, crystalline cohomology can be defined when the base field k is perfect of positive
characteristic p. The coefficient field K is defined to be W (k)[1/p], the field of fractions of
the ring of Witt vectors W (k) over k. It comes with a Frobenius map φ. The cohomology
group H2(P1) = W (k)[1/p], but the presence of the twist changes the Frobenius action to
p ·φ. More generally, a Tate twist of r on crystalline cohomology is given by multiplying the
crystalline Frobnius map by p−r.

Chern classes and characters, and Todd classes

In later chapters, we will need to use Chern and Todd classes, so we give a construction of
them here.

Definition 1.2.5. In [15, Exercise 19] de Jong defines, for any smooth, projective variety
X, a map c1 : Pic(X) → H2(X)(1) giving the first Chern classes of line bundles: Given a
line bundle L on X, if it has a nonzero section so that L ∼= O(D) where D = div(s), then
we set c1(L) = cl(D). Then in general, we can write any line bundle L as O(D1−D2) where
D1 and D2 are effective, and set c1(L) = cl(D1)− cl(D2). The map c1 is functorial: for any
morphism of varieties f : X → Y , f ∗c1(L) = c1(f ∗L).

Definition 1.2.6. The total Chern class c(E) of any vector bundle E on X is a sum
∑

i ci(E)
of elements ci(E) ∈ H2i(X)(i), called the Chern classes, and is uniquely characterized by the
following properties [15, Exercise 21]:

1. If the vector bundle E is of rank 1, then c(E) = 1 + c1(E).

2. Total Chern classes are functorial with respect to pullbacks: for any morphism of
varieties f : X → Y , f ∗c(E) = c(f ∗E).

3. For any short exact sequence of vector bundles 0 → E1 → E2 → E3 → 0, the total
Chern classes of the Ei are related by the equality c(E2) = c(E1) ∪ c(E3).

Remark 1.2.7. One could define intersection-theoretic total Chern classes (and the other
objects we will define in terms of them in this section) inside the Chow group of X modulo
rational equivalence, and recover the elements in cohomology groups defined above by ap-
plying the cycle class map. Chern classes in the Chow group are defined by the same set of
axioms as shown above, except each ci(E) is contained in Z i∼rat

(X)Q. See also [20, Chapter 3]
for further discussion.
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Definition 1.2.8. The Chern polynomial of a vector bundle E on X is the following poly-
nomial in the formal variable t:

ct(E) =
∑
i

ci(E)ti.

We formally factor the Chern polynomial as ct(E) =
∏

i(1 + αit), and call the roots αi the
Chern roots.

Definition 1.2.9. The Chern character is the sum of the exponentials of the Chern roots:

ch(E) =
∑
i

exp(αi) where exp(αi) :=
∑ αni

n!
.

From the definition of the Chern character, we can deduce that for any short exact sequence
of vector bundles 0→ E1 → E2 → E3 → 0,

ch(E2) = ch(E1) + ch(E3), (1.5)

and for any vector bundles E and E ′, ch(E ⊗ E ′) = ch(E) · ch(E ′).

Definition 1.2.10. The Todd class td(E) of a vector bundle E on a smooth, projective
variety is also defined in terms of its Chern roots:

td(E) :=
∏
i

Q(αi) where Q(α) :=
α

1− e−α

Given a short exact sequence of vector bundles as above

td(E2) = td(E1) · td(E3). (1.6)

Remark 1.2.11. So far we have only defined the Chern characters and Todd classes of
vector bundles. If F is a coherent sheaf on a smooth, projective variety X, we define ch(F)
and td(F) by taking finite resolution of F by vector bundles and applying (1.5) and (1.6).

Motives as classifiers of Weil cohomology groups

Earlier, we defined motives from a constructive point of view. Here we discuss the universal
property of Chow motives and the role of Weil cohomologies in this universal property.

Proposition 1.2.12 (André [3, 4.2.4]). Let T be a rigid ⊗–category with coeffients in R
that is pseudo-abelian and contains an object L that is invertible with respect to the tensor
product.

Suppose we have the following:

(i) There is a monoidal functor H : V (k)op → T such that the maps P1 → Spec k =
{∞} → P1 induce a decomposition H(P1) = 1⊕ L.
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(ii) For all X ∈ V (k) purely of dimension d, there is a map trX : H(X) → L⊗d such that
trX×Y = trX ⊗ trY , and that identifies H(X)∨ with H(X)⊗ L⊗−d.

(iii) For any X ∈ V (k), there are R–linear homomorphisms

crX : Zr∼rat
(X)R → HomT (1, H(X)⊗ L⊗−r)

contravariant in X, such that cnX×Y =
∑

r+s=n c
r
X ⊗ csY , and the composite

Zd∼rat
(X)R

cdX−→ HomT (1, H(X)⊗ L⊗−d)
trX ⊗ idL⊗−d ◦(−)
−−−−−−−−−−→ HomT (1,1)

coincides with the degree map of 0–cycles when X is of pure dimension d.

Then, H admits a unique factorization

V (k)op h //

H

55M∼rat(k)R
∃!ωH // T

such that L = ωH(1(−1)), ωH ◦ TrX = trX ◦ωH and crX is given by the map

Zr∼rat
(X)R = HomM∼rat (k)R(1, (X, id, r)→ HomT (1, H(X)⊗ L⊗−r)

induced by ωH . The quadruple

(M∼rat(k)R,1(−1),TrX , {γrX}r)

(where γrX gives the identification between cycles in Zr∼rat
(X)R and the maps

HomM∼rat (k)R(1 = (Spec k, id, 0), H(X)⊗ L⊗−r)

from the definition of maps in M∼rat(k)R) is then universal among quadruples

(T ,L, trX , {crX}r)

satisfying properties as articulated in the above conditions.

Remark 1.2.13. Any Weil cohomology theory with coefficients field K containing the ring
R satisfies conditions (i), (ii), (iii). For (i), recall that for Weil cohomology theories, we
identify 1 with K ∼= H0(P1) and L with H2(P1). Pulling back by the maps in condition
(i) induces a decomposition of H∗(P1) into H0(P1) and the rest of the cohomology of P1, so
all that remains is to prove that the only nonzero cohomology groups of P1 are in degrees 0
and 2. The group H1(P1) can be shown to vanish by computing the self-intersection number
of the diagonal on P1 × P1 and using the Lefschetz fixed-point theorem. The trace map in
(D4) induces the map in (ii). The maps in (iii) come from the maps in (D5). In the case of
a Weil cohomology theory, we are mapping to the category of graded vector spaces over a
field K, so here, HomT (1, H(X)⊗ L⊗−r) = HomVectGr(K,H

∗(X)(r)).
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By Proposition 1.2.12 and Remark 1.2.13, given the data of a Weil cohomology theory,
we can produce a functor into it from a category of Chow motives with rational coefficients.
The following result shows when a functor with Chow motives as its domain determines a
Weil cohomology theory:

Proposition 1.2.14 ([3, 4.2.5.1]). Giving a Weil cohomology theory with coefficients in a
field K containing a ring R is equivalent to a ⊗–functor

H∗ : M∼rat(k)R → VectGrK

such that H i(K(−1)) = 0 for all i 6= 2.

As we would expect from this discussion, Weil cohomology theories share some qualities.
For example, for any variety X, the dimension of H i(X) is constant as H ranges over classical
Weil cohomology theories [3, 4.2.5.2].

1.3 Lefschetz fixed-point and zeta functions

For any Weil cohomology theory H, the Lefschetz fixed-point theorem holds (see Proposition
1.3.6 and Section 4 of Kleiman [24]):

Theorem 1.3.1. Let X be a nonsingular projective variety and f : X → X an endomor-
phism. Then

(Γf ·∆) =
∑

(−1)i Tr(f ∗|H i(X,Q`))

where Γf is the graph of f , ∆ is the diagonal of X and (Γf · ∆) denotes their intersection
number.

Definition 1.3.2. For each positive integer m, fix a field Fqm with qm elements so that Fqm+1

is an extension of Fqm . The (Hasse–Weil) zeta function of a nonsingular projective variety
X over a finite field Fq is the following power series in t (see for instance Milne [29]):

ζ(X) = exp
(∑
m≥1

Nm(X)
tm

m

)
,

where Nm(X) is the number of points of X with coordinates in Fqm .

Recall the following classical theorem:

Theorem 1.3.3 (Fermat’s little theorem). Let q be a prime. If a is an integer not divisible
by q, then aq

n ∼= a mod qn.
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Remark 1.3.4. Fermat’s little theorem suggests that we might hope to count points using
the Lefschetz fixed point theorem: If we have a Frobenius map ϕ that sends points x in a
variety X (actually in X := X ×Fq Fq; see below) to their mth powers, then (Γϕm · ∆) =
Nm(X). For some intuition we can check this in the case when the intersection of Γϕm and
the diagonal ∆ is transverse: then Γϕm · ∆ is precisely all pairs of points both of the form
(x, x) and (x, ϕm(x)), and so corresponds to exactly the points x = ϕm(x).

However, how should we correctly think of the action of Frobenius on a scheme?

Frobenius

In this section we define several Frobenius morphisms on schemes see Section 1 of Houzel’s
Exposé XV in SGA V [42] further discussion of Frobenius morphisms.

Definition 1.3.5. For a scheme X/Fq, the first notion of Frobenius endomorphism we might
guess at is the absolute Frobenius morphism FrX : X → X, which acts on the structure sheaf
by raising its sections to their qth powers. The absolute Frobenius morhpisms is functorial on
schemes over Fq; for any map of Fq–schemes f : X → Y , the following diagram commutes:

X
FrX //

f
��

X

f
��

Y
FrY // Y

(1.7)

Example 1.3.6. Consider the action of the absolute Frobenius morphism on Spec(Fq[t]).
The underlying map on rings Fq[t]→ Fq[t] maps t− a, for any a ∈ Fq, to (t− a)q = tq − aq.
The preimage of the prime ideal (t− a) is (t− a).

Since absolute Frobenius morphisms act identically on the underlying topological spaces
of schemes, we cannot use them to calculate zeta functions.

To construct a Frobenius morphism that we can use to calculate zeta functions, we need
to pass to X := X ×Fq Fq, the base change of X/Fq over the algebraic closure of Fq.

The following results give us information about the behavior of `–adic étale cohomology
under base change (see also Freitag and Kiehl [18, Theorem 6.1]):

Theorem 1.3.7 (Proper base change, [29, Theorem 17.7]). Let π : X → S be a proper
morphism, and let F be a constructible sheaf on X. Then Rrπ∗F is constructible for all
r ≥ 0, and for every geometric point s̄→ S, (Rrπ∗F)s̄ = Hr(Xs̄,F|Xs̄), where Xs̄ := X×S s̄
and F|Xs̄ is the inverse image of F under the map Xs̄ → X.

Corollary 1.3.8 ([29, Corollary 17.8(b)]). Let X be a complete variety over a separably
closed field k and let F be a constructible sheaf on X. For any separably closed field k′ ⊃ k,
Hr(X,F) = Hr(X ′,F ′), where X ′ is the base change of X to k′ and F ′ is the inverse of
image of F under the map X ′ → X.
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Remark 1.3.9. Given a smooth projective variety X over Fq, since Fq is separably closed,
as is Fq, and Q` is locally constant, hence constructible, Corollary 1.3.8 implies H i(X,Q`) ∼=
H i(X,Q`), and so Tr(ϕ∗|H i(X,Q`)) ∼= Tr(ϕ∗|H i(X,Q`)).

Definition 1.3.10. Let S be a scheme of characteristic p and suppose X is an S–scheme
via the morphism f : X → S. Then the Frobenius map of X relative to S, FrX/S is the base
change of the absolute Frobenius FrS to X. The fiber product of FrS and f is denoted by
X(p/S), or X(p), when S is understood:

X(p/S) //

��

X

f
��

S
FrS // S

Remark 1.3.11. Since absolute Frobenius is functorial in schemes over Fq, the diagram
(1.7) factors through X(p/S) as follows:

X
FrX

%%

f

��

FrX/S

##
X(p/S) //

��

X

f
��

S
FrS // S

The relative (to S) Frobenius is functorial on S–schemes. Also, FrX/S is an isomorphism if
and only if f is étale [42, Expose XV, §1, Proposition 2(c2), page 446].

Remark 1.3.12. Let X be a scheme over Fq and X := X ⊗ Fq. In this case, X(p/X) ∼= X.

Example 1.3.13. If X = Spec(Fq[t]), X(p/X) is Spec of the pushout of the following diagram:

Fq[t]

Fq[t] Fq[t]
(−)q
oo

OO

The pushout is Fq[t], where the maps Fq[t] → Fq[t] and Fq[t] → Fq[t] filling in the diagram
are given by inclusion and raising t to the qth power but fixing elements of Fq, respectively.
Then the map FrX/X : Spec(Fq[t]) → Spec(Fq[t]) is induced by the map Fq[t] → Fq[t] that
fixes t and maps elements of Fq to their qth powers; given any a ∈ Fq, (t− a) 7→ (tq− a). So,
considering a as a point on the variety, it is mapped to its pth power by FrX/X .

The relative Frobenius map FrX/X gives an endomorphism on X that we may use to
compute ζ(X) as described in Remark 1.3.4.
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We can also define a Frobenius map for counting rational points in another way: as the
geometric Frobenius map, the inverse of the arithmetic Frobenius map. These constructions
are often preferable since they are a generalization of the maps FrSpecFq

and its inverse, which

are members of the Galois group Gal(Fq/Fq).

Definition 1.3.14. Given a scheme X/Fq, arithmetic Frobenius FraX/Fq
is the pullback of

the absolute Frobenius map FrSpec(Fq) : SpecFq → SpecFq to X:

X

��

FraX/Fq // X

��

SpecFq
FrSpec Fq// SpecFq

Example 1.3.15. If X = Fq[t], arithmetic Frobenius FraX/Fq
is induced by the map of the

rings on the top of the following pushout diagram, which fixes t and sends elements of Fq to
their qth powers:

Fq[t] Fq[t]oo

Fq

OO

Fq

OO

(−)qoo

Definition 1.3.16. Since FrSpec(Fq) is an isomorphism, arithmetic Frobenius is an isomor-
phism. So, we may take the inverse of arithmetic Frobenius, which we call geometric Frobe-
nius. We will denote the geometric Frobenius morphism acting on X by ϕX , and suppress
the subscript when it is clear from context which variety is being acted on.

Example 1.3.17. When X = Fq[t], geometric Frobenius is induced by the map of rings
Fq[t] → Fq[t] that fixes t but sends elements of Fq to their qth roots, and so it takes points
to their qth powers.

Remark 1.3.18. Let X/Fq be a smooth, projective variety. The points in X with coordi-
nates in Fqm will be those fixed by the mth power of the geometric Frobenius map ϕX , and
so by the Lefschetz fixed-point theorem,

Nm(X) = (Γϕm · 4) =
∑

(−1)i Tr(ϕm∗|H i(X)).

for any Weil cohomology H defined for varieties over finite fields (we will use `–adic étale
cohomology to calculate the zeta functions, but try to keep the setting for this work as
general as possible).

Zeta functions are thus invariant for any Weil cohomology theory (defined over a finite
field), and so they are invariants of Chow motives with rational coefficients.
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From zeta functions to motives

In the previous section, we showed that the zeta function of any variety over a finite field
can be calculated from its cohomology groups in any Weil cohomology theory, and hence is
a motivic invariant.

However, the converse, starting with equality of zeta functions and recovering an isomor-
phism of motives, is conjectural.

Remark 1.3.19. To give an isomorphism of the motives of varieties X and Y , we need to
produce a cycle class on X × Y , and here we give a discussion of the production of such a
cycle. In later chapters, we will give arguments demonstrating, in some cases, the equality of
the zeta functions of two varieties as a consequence of a Fourier–Mukai equivalence between
them. A Fourier–Mukai equivalence induces a map on cohomology groups controlled by a
cycle on X × Y called the Mukai vector (see Definition 3.1.1). However, when we produce
(conjecturally) a cycle here using the equality of two zeta functions, it by no means recovers
this Mukai vector – in general the Mukai vector of a Fourier–Mukai equivalence between two
varieties does not define a morphism between their Chow motives.

The Tate conjectures get us partway toward producing a cycle class under rational equiv-
alence. Tate’s original articles [44], and the slightly earlier [45] are excellent references for
them.

Notation 1.3.20. Let X be a smooth projective scheme X over Fq and ` coprime with q.
The Tate conjectures are general concerned with the maps

V j(X) := Q` ⊗Q A
j(X)→ H2j(X,Q`)(j) (1.8)

where H2j(X,Q`)(j) is an `–adic étale cohomology group and Aj(X) denotes the Q–span of
the image of Zj(X) in H2j(X,Q`)(j) under the cycle map Definition 1.2.1(D5).

In [44], Tate lists the following conjectures (we use the same abbreviations for their names
as those in that article):

Conjecture 1.3.21.
T j(X) For j, (1.8) is surjective. The collection of these statments for all j is in general

known as the Tate conjecture, although sometimes that name is reserved only
for the case where j = 1.

Ij(X) For j, the map (1.8) is injective.
Ej(X) The only class in Aj(X) numerically equivalent to 0 is 0, that is, numerical

equivalence and `–adic homological equivalence for algebraic cycles of codi-
mension j on X with rational coefficients.

SSi(X) The Galois group G = Gal(Fq/Fq) acts semisimply on H i(X).
Sj(X) The map V j(X)G → V j(X)G induced by the identity is bijective.
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Claim 1.3.22. Let X and Y are smooth, projective varieties over Fq and ` coprime with q.
If ζ(X) = ζ(Y ), then, assuming the Tate conjectures, the numerical motives of X and Y
with Q`–coefficients are isomorphic.

Proof. Let X and Y be of dimension d. We know by the Lefschetz fixed-point theo-
rem that the sets of eigenvalues of geometric Frobenius acting on

⊕
i(−1)iH i(X,Q`) and⊕

i(−1)iH i(Y ,Q`) are equal. By Deligne’s theory of weights [17, Théorème 1.6], the eigen-

values of ϕ∗ acting on degree i cohomology have absolute value q
i
2 , so we can conclude that

the sets of eigenvalues of ϕ∗ acting on H i(X,Q`) and H i(Y,Q`) are equal, for each i. By
the semisimplicity portion of the above conjectures (SSi(X) and SSi(Y )), we can induce
isomorphisms H i(X,Q`) ∼= H i(X,Q`) ∼= H i(Y ,Q`) ∼= H i(Y,Q`) that are invariant under the
action of ϕ∗ (and hence that of G).

Maps H∗(X)→ H∗(Y ) correspond to elements of H∗(X×Y ) for H any Weil cohomology
theory (cf [24, 1.3]). More, specifically, given an isomorphism H i(X) ∼= H i(Y ), we have
by Poincaré duality (A5) that H i(X) ∼= H2d−i(X)(d)∨, and hence we may identify our
isomorphism with an element of H2d−i(X)(d)∨ ⊗H i(Y ), which we can in turn identify, via
Künneth (A4), with an element γi ∈ H2d(X × Y )(d). We identify our set of isomorphisms
{H i(X,Q`) ∼= H i(Y,Q`)}i with γ =

⊕
i γi ∈ H2d(X × Y )(d). The set of isomorphisms can

be recovered from γ by pulling elements of H∗(X,Q`) back to the product X × Y via the
standard projection map, taking the cup product with γ, and pushing the result back down
to H∗(Y,Q`):

H∗(X,Q`)
p∗1−→ H∗(X × Y,Q`)

(−)∪γ−−−→ H∗(X × Y,Q`)
p2∗−−→ H∗(Y,Q`)

By the I(X×Y ) and T (X×Y ) conjectures, we can think of γ as a cycle in
⊕

j Q`⊗QA
j(X×Y ).

However, in order to produce a cycle in the Chow group as we are wishing for, more is
needed than is implied by the Tate conjctures. We would first want to produce a cycle not
just in

⊕
j Q` ⊗Q A

j(X × Y ), but in
⊕

j A
j(X × Y ), for which independence of ` would be

needed. We would need to show that one can produce a lift of γ in the Chow group of X×Y
that gives an isomorphism between the Chow motives of X and Y .

1.4 The Mukai motive

The Mukai motive has its origins in Mukai’s paper [31]; see also [26] for a thorough discussion
of realizations of the Mukai motive in the various cohomology theories.

In [36, Proposition 1], it is shown that the Mukai motive, a sum of twisted motives,
is invariant under derived equivalence. For any Weil cohomology H over a field k, the
cohomological realization of the Mukai motive of a variety X/k is the even Mukai–Hodge
structure

⊕dimX
i=0 H2i(X/K)(i) (see Definition 3.2.1).
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To construct a motive with this cohomological realization in the category of Chow mo-
tives, it is necessary to have the decomposition of motives into their graded pieces, for which
we need to assume the Künneth standard conjecture:

Conjecture 1.4.1 (Künneth standard conjecture, as stated in [24, §2]). Let H be any Weil
cohomology theory defined over a field k. For any smooth, projective variety X/k, the
Künneth components of the diagonal class ∆, which correspond to the projection operators
πi : H∗(X)→ H i(X), are algebraic.

Remark 1.4.2. Kleiman gives a discussion of the various implications among the standard
conjectures in [24]. The Künneth standard conjecture is also implied by the Tate conjecture;
Tate gives a proof in [44, Theorem (3.2)].

Katz and Messing showed that the Künneth standard conjecture holds over finite fields as
a consequence of Deligne’s proof of the Riemann hypothesis portion of the Weil conjectures
[17]:

Theorem 1.4.3 ([23, Theorem 2 (1)]). Let H be any Weil cohomology theory defined for
varieties over a finite field Fq. Let X be a smooth, projective absolutely irreducible variety
over Fq of dimension n. Then the Künneth components of the diagonal ∆ ⊂ X × X are
rationally algebraic cycles, independent of the theory H, and are a Q–linear combination of
the graphs of Frobenius and its iterates.

The projection operators πi are idempotents, and the Künneth standard conjecture im-
plies that for any variety X and i ∈ Z, (X, πi) is an element in the category of effective
Chow motives, and it splits πi (see Definition 1.1.12). The image of (X, πi) under a Weil
cohomology functor is H i(X).

Definition 1.4.4. Assuming the Künneth standard conjecture, we define the Mukai mo-
tive of a smooth, projective variety X inside the category of Chow motives with rational
coefficients to be

⊕∞
i=−∞(X, π2i, i).

Proposition 1.4.5 ([36, Proposition 1]). Let X and Y be smooth projective varieties, and

let F : Db(X)→ Db(Y ) be a fully faithful functor. Then M̃(X)Q is a direct summand of the

motive M̃(Y )Q. If, in addition, F is an equivalence, then the motives M̃(X)Q and M̃(Y )Q
are isomorphic.

Some parts are left out of the following argument; for further details, see the proof of
Lemma 3.2.4 showing the invariance of Mukai–Hodge structures under derived equivalence.
The argument is very much analogous to this one.

Sketch of proof. Under these hypotheses, by [35, Theorem 3.2.1] F is naturally isomorphic to
a Fourier–Mukai functor, call it ΦP . F has a left adjoint; call its Fourier–Mukai kernel Q ∈
Db(X×Y ). We can associate to P ∈ Db(X×Y ) the Mukai vector v(P )= ch(P )

√
td(X×Y )∈

M∼rat(k)Q(X × Y ) and similarly a cycle v(Q) to Q (see Definitions 1.2.9 and 1.2.10).
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If ΦP is fully faithful, ΦQ ◦ ΦP is isomorphic to the identity, and the composition q ◦ p
gives an identity as well, making M̃(X)Q a summand of M̃(Y )Q.

If ΦP is an equivalence, then ΦQ is fully faithful, and ΦP ◦ΦQ is naturally isomorphic to

the identity functor, so M̃(X)Q is isomorphic to M̃(Y )Q.

In addition to the even Mukai–Hodge structure, which is the realization of Mukai motive
we define above, there is also an odd Mukai–Hodge structure that is preserved under Fourier–
Mukai equivalence (Definition 3.2.1).

For any smooth, projective variety X, its odd Mukai–Hodge structure is defined to be⊕dX
i=1H

2i−1(X/K)(i). We define an analogous “odd” Mukai motive:

Definition 1.4.6. Assuming the Künneth standard conjecture, we define the Mukai mo-
tive of a smooth, projective variety X inside the category of Chow motives with rational
coefficients to be

⊕∞
i=−∞(X, π2i−1, i).

Claim 1.4.7. Let X and Y be smooth projective varieties, and let F : Db(X)→ Db(Y ) be a
fully faithful functor. Then the odd Mukai motive of X is is a direct summand of that of Y .
If, in addition, F is an equivalence, then the odd Mukai motives of X and Y are isomorphic.

The proof follows by the same argument as the proof of [36, Proposition 1].
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Chapter 2

Fourier–Mukai transforms and their
properties

2.1 Fourier–Mukai transforms: definition

Notation 2.1.1. Given a smooth, noetherian variety X defined over a field k, the bounded
derived category of the abelian category of coherent sheaves on X is denoted by Db(X).
From here on we will refer to Db(X) as the derived category of X.

We will not define derived categories here; some introductory texts on the subject are
Huybrechts’ book [22] and Căldăraru’s article [11].

Definition 2.1.2. Given two smooth, noetherian varieties X and Y defined over a field k, a
derived equivalence between them is a k–linear exact equivalence of triangulated categories
Db(X) ' Db(Y ) between their derived categories.

Definition 2.1.3. A functor F between derived categories Db(X) and Db(Y ) is a Fourier–
Mukai transform if there exists an object P ∈ Db(X × Y ), called a Fourier–Mukai kernel,
such that

F ∼= RpY ∗(Lp∗X(−)⊗L P ) =: ΦP , (2.1)

where pX and pY are the projections X × Y → X and and X × Y → Y . A Fourier–
Mukai transform that is an equivalence of categories is called a Fourier–Mukai equivalence.
There is notation in (2.1) to indicate that pushforward, pullback, and tensor are all in their
derived versions, but such notation will be suppressed in later appearances for compactness
of presentation.

Remark 2.1.4. It is not necessarily well-defined to refer to the Fourier–Mukai kernel of an
exact functor Db(X) → Db(Y ) between derived categories of smooth, noetherian varieties.
Kernels of Fourier–Mukai transforms are not always uniquely determined, though the kernels
of Fourier–Mukai equivalences are; we will explore this issues further in Section 2.2.
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Remark 2.1.5. A note on terminology: elsewhere in the literature, for instance in the
reference [6], what we call Fourier–Mukai functors are known as integral functors and the
term Fourier–Mukai transform is then reserved for what we call Fourier–Mukai equivalences
here.

Proposition 2.1.6 (Mukai [30]; see also Huybrechts [22, Proposition 5.10]). The composition
of two Fourier–Mukai transforms

ΦP : Db(X)→ Db(Y ) and ΦQ : Db(Y )→ Db(Z)

is naturally isomorphic to a Fourier–Mukai transform with kernel P�Q := π13∗(π
∗
12P⊗π∗23Q),

where πij is the projection from X ×X × Y to the product of its ith and jth factors.

2.2 Existence and uniqueness of Fourier–Mukai

transforms and natural transformations between

them

In this section we define Fourier–Mukai transforms and give a brief literature survey about
results characterizing them and morphisms between them.

Notation 2.2.1. Given triangulated categories T and T ′, we denote by ExFun(T, T ′) the
category whose objects are exact functors from T → T ′ and whose morphisms natural
transformations between them.

We frame the discussion of Fourier–Mukai transforms in this section in terms of the
following functor mapping Fourier–Mukai kernels to the transforms that they determine:

Φ(−) : Db(X × Y )→ ExFun(Db(X), Db(Y )) (2.2)

P 7→ ΦP

f : P → Q 7→ Φ(−)(f) = pY ∗(p
∗
X(−)⊗ f) : ΦP ⇒ ΦQ

To keep the notation minimal, we do not decorate Φ(−) with an X and Y , but X and Y
should be understood as the varieties associated with the domain and codomain of Φ(−) for
the remainder of the section.

The topics are as follows:

(Q1) What is the essential image of Φ(−)?

(Q2) When is Φ(−) essentially injective?

(Q3) When is Φ(−) faithful?

(Q4) When is Φ(−) full?
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Remark 2.2.2. The survey of results by Canonaco and Stellari [13] also uses the functor
Φ(−) as an organizing principle, and for ease of comparison, we have followed their numbering
scheme for questions (Q1)–(Q4). Many of the results cited here are in [13], although we
mention a few updates from work published after [13]. Also, our focus is only on derived
categories of coherent sheaves on varieties; for a discussion that includes DG categories,
categories of perfect complexes on varieties, and derived categories of quasicoherent sheaves
on varieties, see [13].

(Q1) and (Q2)

The following result shows that all equivalences F : Db(X) → Db(Y ) are in the essential
image of Φ(−), and that the restriction of Φ(−) to the full subcategory of kernels mapping to
equivalences in essentially injective.

Theorem 2.2.3 (Orlov [35, Theorem 3.2.1]). Let F be an exact functor from Db(X) to
Db(Y ), where X and Y are smooth projective varieties. Suppose that F is fully faithful and
has a right (or left) adjoint functor. Then there is an object E ∈ Db(X × Y ) such that F is
isomorphic to the functor ΦE , and the object E is determined uniquely up to isomorphism.

Theorem 2.2.4 (Canonaco and Stellari [12, Theorem 1.1], without twists). Let X and Y
be smooth, projective varieties and F : Db(X) → Db(Y ) be an exact functor such that, for
F ,G any coherent sheaves on X,

HomDb(Y )(F (F), F (G)[j]) = 0 if j < 0. (2.3)

Then there is an object P ∈ Db(X × Y ) such that ΦP is naturally isomorphic to F , and the
object P is determined uniquely up to isomorphism.

Remark 2.2.5. The result [12, Theorem 1.1] is written for varieties twisted by Brauer
classes, but here for our purposes, to avoid getting into the extra definitions not used else-
where in this document, we state a weaker version without the twists.

Claim 2.2.6. Theorem 2.2.4 implies Theorem 2.2.3, but Theorem 2.2.3 does not imply
Theorem 2.2.4.

Proof. By [13, Proposition 3.5], Theorem 2.2.3 still holds after removing the hypothesis that
F have a left or right adjoint. Since X and Y are smooth and projective, all full functors
satisfy (2.3).

It is shown in [13, Example 3.10] that for any smooth, projective variety X and L ∈
Pic(X), the functor Φ∆∗L ⊕ Φ∆∗L : Db(X)→ Db(X) satisfies (2.3) and is not full.

However, Φ(−) is not in general essentially surjective:

Theorem 2.2.7 (Rizzardo and Van den Bergh [38, Theorem 1.4]). There an exact functor
that is not a Fourier–Mukai transform from the derived category of a smooth quadric in P4

to the derived category of P4.
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Remark 2.2.8. However, even when Φ(−) fails to be essentially surjective, there is still
some interesting behavior: for any exact functor between smooth projective varieties over
an algebraically closed field there are sheaves indexed by Z that coincide with the coho-
mology sheaves of the kernel when the functor is a Fourier–Mukai transform (Rizzardo [37,
Theorem 1.1]).

Lemma 2.2.9 ([13, Lemma 4.2]). If X or Y is P1, then Φ(−) is essentially injective.

However, Φ(−) is not always essentially injective for X and Y that are smooth and
projective and even 1–dimensional:

Theorem 2.2.10 ([14, Theorem 1.1]). For every elliptic curve X over an algebraically closed
field, there exist E1, E2 ∈ Db(X ×X) such that E1 6∼= E2 but ΦE1

∼= ΦE2.

(Q3) and (Q4)

Φ(−) is not necessarily fully faithful, meaning natural transformations between Fourier–Mukai
transforms do not necessarily correspond with morphisms between their kernels:

Proposition 2.2.11 (Canonico and Stellari [14, Proposition 2.3]). If (at least) one of X
and Y is 1–dimensional, Φ(−) is neither full nor faithful.

However, Φ(−) does map isomorphisms to natural isomorphisms.

Lemma 2.2.12 (Lieblich and Olsson [26, Lemma 3.4]). Let a : P → Q be a morphism of
Fourier–Mukai kernels in in Db(X × Y ). The natural transformation Φ(−)(a) is an isomor-
phism if and only if a is an isomorphism.

Proof. The “if” direction follows immediately from functoriality. In the “only if” direction,
by assumption the maps Φ(−)(a)k(x) : Px → Qx are isomorphisms. By the Nakayama lemma
(for perfect complexes), this implies that a is an isomorphism.

2.3 Fourier–Mukai transforms and canonical bundles

In this section, we give a presentation of several results shown in Orlov [35] and Toda [46], and
some of their consequences. We start with a proof that derived equivalent smooth, projective
varieties have isomorphic canonical rings, and work through several results relating to the
supports of kernels of Fourier–Mukai equivalences.

Canonical rings under derived equivalence

Many qualities of varieties that are related to canonical bundles are preserved under derived
equivalence. At the heart of these results is the following theorem:



CHAPTER 2. FOURIER–MUKAI TRANSFORMS AND THEIR PROPERTIES 32

Lemma 2.3.1 (Bondal and Orlov [8, Proposition 1.3]; see also the exposition [22, Lemma
1.30, Theorem 3.12]). Any derived equivalence Db(X) ∼= Db(Y ) commutes with the functors

SX = (−)⊗ωX [dim(X)] : Db(X)→ Db(X) and SY = (−)⊗ωY [dim(Y )] : Db(Y )→ Db(Y ).

Remark 2.3.2. Lemma 2.3.1 is a special case of the result that, given a field k, Serre
functors, first defined in [9], commute with k–linear equivalences between k–linear categories
that have finite Hom-sets; see [22, Lemma 1.30] for proof of this result.

Serre functors formalize Serre duality, and SX and SY are examples of such functors.

We attribute the following proposition to Orlov as it is a formal consequence of [35,
Theorem 3.2.1]:

Proposition 2.3.3 (Orlov). Derived equivalent smooth, projective varieties X and Y have
isomorphic canonical (and anti-canonical) rings.

The proof here gives the same construction as provided in statements 4.1–4.4 of [46]; see
also [22, Proposition 6.1] for a similar proof.

Proof. Recall that the canonical and anti-canonical rings of a variety X are defined to be
the direct sums ⊕

m∈Z
m≥0

H0(X,ω⊗mX ) and
⊕
m∈Z
m≤0

H0(X,ω⊗mX ).

Let X and Y be derived equivalent smooth, projective varieties. By Theorem 2.2.4, we may
assume that their derived equivalence is given by a Fourier–Mukai equivalence ΦP for some
P ∈ Db(X × Y ).

To show the (anti-)canonical rings of X and Y are isomorphic, we exhibit for each m ∈ Z
an isomorphism φm : H0(X,ω⊗mX )→ H0(Y, ω⊗mY ), which we define to be the morphism that
makes the following diagram commute:

H0(X,ω⊗mX )
φm //

'
��

H0(Y, ω⊗mY )

'
��

HomX(OX , ω⊗mX )

∆X∗
��

HomY (OY , ω⊗mY )

∆Y ∗
��

HomX×X(∆X∗OX ,∆Y ∗ω
⊗m
X )

P◦(−)

��

HomY×Y (∆Y ∗OY ,∆Y ∗ω
⊗m
Y )

(−)◦P
��

HomX×X(P, p∗XωX ⊗ P )
τm◦(−) // HomY×Y (P, p∗Y ωY ⊗ P )

(2.4)

It then suffices to define each of the maps on the sides and bottom of the diagram (2.4) and
show they are all isomorphisms.
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The maps H0(X,ω⊗mX ) ∼→ Hom(OX , ω⊗mX ) and H0(Y, ω⊗mY ) ∼→ Hom(OY , ω⊗mY ) are the
standard identifications from the definition of global sections cohomology.

The maps

HomX(OX , ω⊗mX )
∆X∗−−→ HomX×X(∆X∗OX ,∆X∗ω

⊗m
X ),

HomY (OY , ω⊗mY )
∆Y ∗−−→ HomY×Y (∆Y ∗OY ,∆Y ∗ω

⊗m
Y )

induced by pushing forward by the diagonal maps ∆X : X → X ×X and ∆Y : Y → Y × Y
are also isomorphisms.

We define functors P ◦ (−) and (−) ◦ P as follows:

P ◦ (−) : Db(X ×X)→ Db(X × Y ) and (−) ◦ P : Db(X × Y )→ Db(Y × Y )

E 7→ E � P F 7→ P � F

See Proposition 2.1.6 for the definition of �. Given any E ∈ Db(X×X) and F ∈ Db(X×Y ),
P ◦ E is a kernel of ΦP ◦ΦE and F ◦ P is isomorphic to the kernel of ΦF ◦ΦP ; the following
diagrams commute up to isomorphism:

Db(X ×X)
P◦(−) //

Φ(−)

��

Db(X × Y )

Φ(−)

��
ExFun(Db(X), Db(X))

ΦP ◦(−)
// ExFun(Db(X), Db(Y ))

Db(Y × Y )
(−)◦P //

Φ(−)

��

Db(X × Y )

Φ(−)

��
ExFun(Db(Y ), Db(Y ))

(−)◦ΦP

// ExFun(Db(X), Db(Y ))

Since ΦP is a Fourier–Mukai equivalence, it has a quasi-inverse given by a Fourier–Mukai
transform ΦQ : Db(Y )→ Db(X). And so, ΦP ◦(−) and (−)◦ΦP have quasi-inverses ΦQ◦(−)
and (−) ◦ ΦQ, and P ◦ (−) and (−) ◦ P have quasi-inverses Q ◦ (−) and (−) ◦Q.

Next, observe that the following diagrams 2–commute:

Db(X ×X)
P◦(−) // Db(X × Y )

Db(X)

4∗

OO

p∗X(−)⊗P

77
Db(Y × Y )

(−)◦P // Db(X × Y )

Db(Y )

4∗

OO

p∗Y (−)⊗P

77
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Hence P ◦ (−) and (−) ◦ P induce isomorphisms:

P ◦ (−) : HomDb(X×X)(∆X∗(−),∆X∗(−)) ∼→ HomDb(X×Y )(P ◦∆X∗(−), P ◦∆X∗(−))
∼→ HomDb(X×Y )(p

∗
X(−)⊗ P, p∗Y (−)⊗ P ),

(−) ◦ P : HomDb(Y×Y )(∆Y ∗(−),∆Y ∗(−)) ∼→ HomDb(X×Y )(∆Y ∗(−) ◦ P,∆Y ∗(−) ◦ P )
∼→ HomDb(X×Y )(p

∗
X(−)⊗ P, p∗Y (−)⊗ P ),

giving the isomorphisms

HomX×X(∆X∗OX ,∆Y ∗ω
⊗m
X )

P◦(−)−−−→ HomDb(X×Y )(P, p
∗
Xω
⊗m
X ⊗ P ),

HomY×Y (∆Y ∗OY ,∆Y ∗ω
⊗m
Y )

(−)◦P−−−→ HomDb(X×Y )(P, p
∗
Y ω
⊗m
Y ⊗ P ),

in (2.4).
Finally, we construct the map τm ◦ (−) on the bottom of (2.4). Lemma 2.3.1 gives a

natural isomorphism between the functors SY ◦ ΦP
∼= ΦP ◦ SX . Thus there is a natural

isomorphism SmY [−md] ◦ ΦP
∼= ΦP ◦ SmX [−md] as well, where SX [−d] where d = dimX =

dimY be the Serre functor SX shifted by d, and SmX [−md] is composition of SX [−d] with
itself m times. Since the functors SmY [−md] ◦ΦP and ΦP ◦SmX [−md] are equivalences, by the
uniqueness portion of Theorem 2.2.4, implies there is an isomorphism between their kernels:
τm : P ⊗ p∗Xω⊗mX

∼→ P ⊗ p∗Y ω⊗mY .

Remark 2.3.4. The proof does not directly use the fact that X and Y are smooth and pro-
jective, but instead uses one of the consequences of [35, Theorem 3.2.1]: We could exchange
the requirement that X and Y be smooth and projective, in the hypothesis of Proposition
2.3.3 for the requirement that Fourier–Mukai equivalences Db(X) ∼→ Db(Y ) have kernels
that are unique up to isomorphism.

The following theorem is a direct corollary to Proposition 2.3.3 since any variety with
(anti-)ample canonical bundle is isomorphic to Proj of its (anti-)canonical ring.

Corollary 2.3.5 (Weaker version of Bondal and Orlov [8, Theorem 2.5]). If there is an
exact equivalence Db(X) ' Db(Y ) between smooth varieties X and Y , and X is irreducible,
projective and has ample or anti-ample canonical bundle, then X is isomorphic to Y .

Remark 2.3.6. Bondal and Orlov’s result [8, Theorem 2.5] is stronger than Corollary 2.3.5,
and is not a corollary of Proposition 2.3.3 as it does not assume that Y is projective.

Canonical bundles and supports

The maps φm : H0(X,ω⊗mX )→ H0(Y, ω⊗mY ) constructed in the proof of Proposition 2.3.3 also
give information about the supports of images of sheaves under Fourier–Mukai equivalence.
In this section we work through proofs of several results in [46].
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Notation 2.3.7. For any σ ∈ H0(X,ω⊗mX ), we denote its image under φm by σ†, following
the notation used in [46].

We can identify any element σ ∈ H0(X,ω⊗mX ) with a map ∆∗OX → ∆∗ω
⊗m
X . Then, we

have the natural transformation Φσ (in the notation of (2.2)), which we denote by σ : id⇒
SX : Db(X)→ Db(X), and is given, for any E ∈ Db(X), σE : E ⊗σ→ E ⊗ ω⊗m

The following lemma will be instrumental in proving the other results in this section.

Lemma 2.3.8. Given any E ∈ Db(X), Supp(E) ⊆ (σ)0 if and only if Supp(ΦP (E)) ⊆ (σ†)0,
where (σ)0 denotes the zero-locus of σ.

Proof. The proof of this lemma comes from applying the following two claims together:

Claim 2.3.9. The support of E is contained in (σ)0 if and only if σlE : E → E ⊗ ωlX is the
zero map for some l.

Claim 2.3.10. For any E ∈ Db(X), σE : E → E ⊗ ωX is the zero map if and only if
σ†ΦP (E) : ΦP (E)→ ΦP (E)⊗ ωY is the zero map.

Proof of Claim 2.3.10. Given σ as above, σ† : id ⇒ SY is given by composing the transfor-
mations in the following diagram:

Db(Y )

id

��

Φ−1
P

��
Db(X)

SX

��
id
��
σ⇒

ΦP

��
Db(X)

Φ−1
P

zz

Db(Y )

SYrr
Db(Y )

+3τ

Hence, σ†ΦP (E)
∼= ΦP (E)

ΦP (σE)−−−−→ ΦP (E ⊗ ωX)
τE−→ ΦP (E)⊗ ωY (see [46, Lemma 4.5]). By this

definition, if σE is a zero map, then so is σ†ΦP (E). The converse follows as well since σ = (σ†)†

can be constructed form σ†.

Definition 2.3.11. Given any object a in a derived category Db(X), we define its (set-
theoretic) support Supp a to be

⋃
SuppH i(a), the union of the supports of its cohomology

sheaves.

Definition 2.3.12. For any scheme X and closed subscheme Z, we define the full subcate-
gory Db

Z(X) ⊂ Db(X) as follows:

Ob(Db
Z(X)) :=

{
a ∈ Db(X)

∣∣ Supp a ⊂ Z
}
.
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Compare parts (a) and (b) of the following corollary to Lemmas 4.6 and 7.4 in [46].

Corollary 2.3.13. (a) Let σi, i ∈ I be a set of elements in H0(X,ω⊗m). Define, for each
i, Ei := (σi)0, the zero locus of σi, and E†i := (σ†i )0. Then the Fourier–Mukai transform
ΦP maps objects in Db

∩iEi
(X) to objects in Db

∩iE†i
(Y ).

(b) Let Z be the base locus of ω⊗mX and Z† be the base locus of ω⊗mX . Then ΦP maps objects
in Db

Z(X) to objects in Db
Z†(Y ).

(c) If X and Y are derived equivalent varieties and ωY is semiample, then ωX is semiample.

Proof. (a) This statement follows directly from Lemma 2.3.8.
(b) Since Z is the intersection of the zero loci of all σ ∈ H0(X,ω⊗m), this statement is a

special case of (a).
(c) A line bundle is said to be semiample if some tensor power of it is basepoint-free. By

part (b), ω⊗mX has an empty base locus if and only if ω⊗mY does.

Proposition 2.3.14. Let ΦP : Db(X) → Db(Y ) be an equivalence between smooth, projec-
tive varieties with semiample (anti-)canonical bundles and, hence, shared (anti-)canonical
variety S (by Proposition 2.3.3). Then Supp |P | ⊆ X ×S Y .

Proof. There is some power of ω⊗mX that is base-point-free and so, by the proof of Corollary
2.3.13(c), ω⊗mY is also base-point-free. We can use these line bundles to then induce the
canonical maps f : X → S and g : Y → S.

For any s ∈ S, f−1(s) can be expressed as an intersection of divisors
⋂
iEi. Observe

that then g−1(s) =
⋂
iE
†
i . By Corollary 2.3.13, if the support of E ∈ Db(X) is contained in

f−1(s), then the support of ΦP (E) is contained in g−1(s). In particular, for any x ∈ f−1(s),
the complex P{x}×Y = ΦP (k(x)), where k(x) is the skyscraper sheaf at x, is supported
in g−1(s).

2.4 Fourier–Mukai transforms and fibers

Adjoints of Fourier–Mukai transforms

Proposition 2.4.1 (Mukai [30]). Let X and Y be smooth, projective varieties. A Fourier–
Mukai transform ΦP : Db(X) → Db(Y ) with kernel P ∈ Db(X × Y ) has left and right
adjoints that are also Fourier–Mukai transforms. The kernels of the left and right adjoints
are, respectively

PL := P∨ ⊗ p∗Y ωY [dim(Y )] and PR := P∨ ⊗ p∗XωX [dim(X)],

where P∨ is defined to be the derived dual RHom(P,OX×Y ) (see also [22, Definition 5.7]).
The maps pX and pY are the standard projections from X × Y to X and Y , respectively.
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Note that if ΦP is an equivalence, then PL and PR are isomorphic, and ΦPL
∼= ΦPR

is the
quasi-inverse of ΦP .

Claim 2.4.2. Let G a F : C → D be an adjunction. If the unit idD ⇒ F ◦ G is an
isomorphism, then F is an equivalence of categories and G is its quasi-inverse. Likewise, if
the counit G ◦ F ⇒ idC is an isomorphism, then F is an equivalence of categories and G is
its quasi-inverse.

See Mac Lane [27, IV] for background information about adjunctions.

Proof. If the unit is an isomorphism, then the natural isomorphism idD ⇒ F ◦G states that
G is a right quasi-inverse to F , and so F is full and essentially surjective and G is faithful
and essentially injective.

The adjunction further implies that in each of these cases, both F and G are fully faithful:
Given any X, Y ∈ obD, since F is essentially surjective, Hom(X, Y ) = Hom(FZ, FW ) for
some Z,W ∈ C, and so we have the following series of isomorphisms:

Hom(X, Y ) = Hom(FZ, FW ) ∼= Hom(FZ, FGFW )
∼= Hom(GFZ,GFW ) = Hom(GX,GY ). (2.5)

The first isomorphism in (2.5) comes from the unit, and the second comes from the definition
of the adjunction G a F . By (2.5), there is an isomorphism Hom(X, Y ) ∼= Hom(GX,GY ),
and hence Hom(FX,FY ) ∼= Hom(FGX,FGY ) ∼= Hom(X, Y ), implying that both F and G
are fully faithful.

Since F is fully faithful and essentially injective, it is an equivalence, and G gives its
quasi-inverse and so is an equivalence as well.

The proof that if the counit is an isomorphism, then F is an equivalence and G is its
quasi-inverse is similar.

Kernels on fiber products

Assumption 2.4.3. LetX, Y, S be smooth, projective varieties, let there be a Fourier–Mukai
equivalence ΦP : Db(X)→ Db(Y ), maps f : X → S, g : Y → S, and let i : X×S Y → X×Y
be an inclusion. Assume that there is a complex Q ∈ Db(X ×S Y ) such that i∗Q ∼= P .

Remark 2.4.4. In the setting of Assumption 2.4.3, note that the functor πX∗(π
∗
Y (−)⊗Q),

where πX : X ×S Y → X and πY : X ×S Y → Y are the projection maps, is isomorphic to
the functor ΦP .

Notation 2.4.5. We denote the functor πX∗(π
∗
Y (−)⊗Q) described in Remark 2.4.4 by ΦQ; it

will be clear from context whether the kernel being referenced is in Db(X×SY ) or Db(X×Y ).

Remark 2.4.6. In the setting of Assumption 2.4.3, ΦQR
and ΦQL

give left and right adjoints,
respectively, to ΦQ, where

QL := Q∨ ⊗ π∗Y ωY [dim(Y )] and QR := Q∨ ⊗ π∗XωX [dim(X)].
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Notation 2.4.7. We denote the units of the adjunctions ΦP a ΦPR
and ΦPL

a ΦP by

ηP : id⇒ ΦPR
◦ ΦP and ηPL

: id⇒ ΦP ◦ ΦPL
,

and the units of ΦQ a ΦQR
and ΦQL

a ΦQ by

ηQ : id⇒ ΦQR
◦ ΦQ and ηQL

: id⇒ ΦQ ◦ ΦQL
.

To distinguish these units from each other, we decorate them with the left adjoints the
adjunctions they arise from. As observed in Remark 2.4.4, ηP = ηQ and ηPL

= ηQL
.

Remark 2.4.8. Also, in Theorem 3.14 of [13], it is shown that if an exact functor between the
derived categories of smooth projective varieties over an algebraically closed characteristic 0
field is full, then it is faithful as well. However, since we are avoiding making assumptions
on our ground field, we will need to show faithfulness in addition to fullness.

Claim 2.4.9. The natural transformation ηQ is realized by the following natural map on
kernels of id and ΦQR

◦ ΦQ where γX,X , γX,Y and γY,X are projection maps along the first
and third, first and second, and second and third factors of X×S Y ×SX, respectively, πX is
the projection to the first factor of X×SY , and by ∆ we mean the natural maps X → X×SX
and Y → Y ×S Y :

η̄Q : ∆∗OX → γX,X∗(γ
∗
X,YQ⊗ γ∗Y,X(Q∨ ⊗ π∗XωX [dim(X)])).

Likewise, ηPL
is realized by the following map on kernels

η̄QL
: ∆∗OY → λY,Y ∗(λ

∗
Y,X(Q∨ ⊗ π∗Y ωY [dim(Y )])⊗ λ∗X,YQ)

where λY,Y , λY,X and λX,Y are projection maps along the first and third, first and second, and
second and third factors of Y ×SX×S Y , respectively, and pY is the projection Y ×SX → Y .

Notation 2.4.10. Let s ∈ S be a geometric point, and Xs, Ys be the fibers of X and Y
over s. Given Q ∈ Db(X ×S Y ), we denote Qs by the pullback of Q to Xs.

Let a : Xs → X and b : Ys → Y be the inclusions.
The maps γX,X,s, γX,Y,s and γY,X,s denote the projection maps from Xs×(k(s) Ys×(k(s) Xs

to its first and third, first and second, and second and third factors. The maps λY,Y,s, λY,X,s
and λX,Y,s are projection maps to the first and third, first and second, and second and third
factors of Ys ×k(s) Xs ×k(s) Ys.

Claim 2.4.11. Suppose we are in the setting of Assumption 2.4.3. There exists R ∈
Db(Ys ×k(s) Xs) such that id ∼= ΦR ◦ ΦQs.

Proof. Since ΦQ is an equivalence, ηQL
is an isomorphism. So by Lemma 2.2.12, η̄Q is an

isomorphism as well.



CHAPTER 2. FOURIER–MUKAI TRANSFORMS AND THEIR PROPERTIES 39

Since η̄Q is an isomorphism, so is its pullback (a, a)∗η̄Q:

(a, a)∗η̄Q :(a, a)∗∆∗OX → (a, a)∗γX,X∗(γ
∗
X,Y P ⊗ γ∗Y,X(P∨ ⊗ π∗XωX [dim(X)])).

Since the pullbacks and pushforwards in consideration here are derived, the push-pull com-
parison maps (a, a)∗∆∗(−) ⇒ ∆∗a

∗(−) induced by the following cartesian diagram are iso-
morphisms:

Xs

∆
��

a // X

∆
��

Xs ×k(s) Xs
(a,a) // X ×S X

(2.6)

So, (a, a)∗∆∗OX∼=∆∗a
∗OX =∆∗OZ , hence we may write (a, a)∗η̄Q as

(a, a)∗η̄Q :∆∗OXs → (a, a)∗γX,X∗(γ
∗
X,YQ⊗ γ∗Y,X(Q∨ ⊗ π∗XωX [dim(X)])).

The following cartesian diagram

Xs ×k(s) Ys ×k(s) Xs
(a,b,a)//

γX,X,s

��

X ×S Y ×S X
γX,X

��
Xs ×k(s) Xs

(a,a) // X ×S X

(2.7)

induces an isomorphism on γ∗X,YQ⊗ γ∗Y,X(Q∨ ⊗ π∗XωX [dim(X)]):

(a, a)∗γX,X∗(γ
∗
X,YQ⊗ γ∗Y,X(Q∨ ⊗ π∗XωX [dim(X)]))

→ γX,X,s∗(a, b, a)∗(γ∗X,YQ⊗ γ∗Y,X(Q∨ ⊗ π∗XωX [dim(X)])).

Distributing (a, b, a)∗ across the tensor product and using the equalities γX,Y ◦ (a, b, a) =
(a, b) ◦ γX,Y,s and γY,X ◦ (a, b, a) = (b, a) ◦ γY,X,s, the above isomorphism is equal to the
following:

γX,X,s∗(γ
∗
X,YQs ⊗ γ∗Y,X,s(Q∨s ⊗ π∗XωX [dim(X)]))

→ γX,X,s∗(γ
∗
X,YQs ⊗ γ∗Y,X,s((Qs)

∨ ⊗ (b, a)∗π∗XωX [dim(X)])). (2.8)

If we set R := (Qs)
∨ ⊗ (b, a)∗π∗XωX [dim(X)], then the right-hand side of (2.8) is isomorphic

to the kernel of ΦR ◦ ΦQs .

Claim 2.4.12. Suppose we are in the setting of Assumption 2.4.3. There exists T ∈ Db(Xs×
Ys) such that id ∼= ΦQs ◦ ΦT .

Proof. The proof of this claim is immediate since it is the same as Claim 2.4.11, with X ex-
changed with Y ; the kernel T of the right quasi-inverse of ΦQs is T := (Qs)

∨⊗π∗Y ωY [dim(Y )]).
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Proposition 2.4.13. Let X and Y be smooth projective varieties with semiample (anti-
)canonical bundles and let ΦP : Db(X)→ Db(Y ) a derived equivalence. Let S be their shared
(anti-)canonical variety and s ∈ S a geometric point. Let i : X ×S Y → X × Y be the
inclusion map. If there is Q ∈ Db(X ×S Y ) such that i∗Q ∼= P and Xs and Ys are smooth,
then Xs and Ys are derived equivalent as varieties over k(s).

Proof. The hypothesis of the proposition satisfies Assumption 2.4.3, where the roles of the
map f and g are filled by the canonical maps X → S and Y → S. By Claims 2.4.11
and 2.4.12, ΦQs has both a left and right inverse, making ΦQs fully faithful and essentially
surjective, hence an equivalence of categories.
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Chapter 3

Isomorphism of Mukai–Hodge
structures, and its consequences

In this section, so that we may pursue a method for comparing the zeta functions of derived
equivalent varieties using the Lefschetz fixed-point theorem, we discuss the actions of Fourier–
Mukai transforms on Weil cohomologies. These maps on cohomology do not in general induce
isomorphisms on cohomology groups in each degree, but we do have two Weil-cohomological
invariants of derived equivalent varieties: their even and odd Mukai–Hodge structures. These
structures are the cohomological realization of the isomorphism of Mukai motives (see Section
1.4). These structures were used in [26] to prove that derived equivalent K3 surfaces over
finite fields have equal zeta functions, a result which is extended here.

In the remainder of the chapter, we use these invariants, along with a symmetry among
cohomology groups, to show that derived equivalence between some types of varieties over
finite fields – including surfaces and Calabi–Yau 3–folds – implies equality of zeta functions.

3.1 Fourier–Mukai transforms acting on cohomology

One of the reasons it is so interesting to know whether a functor betwen derived categories
of smooth, projective varieties over a field k is a Fourier–Mukai transform is that one may
use the Fourier–Mukai kernel to induce a map between the K–groups, Chow groups and, for
many types of cohomology, the cohomology groups of the varieties concerned. And, when
the Fourier–Mukai transform is an equivalence, the induced maps are isomorphisms. This
presentation will focus on the maps induced on Chow groups and Weil cohomologies (see
Chapter 1 for an introduction to these theories) since the others are not necessary for our
purposes; the interested reader may wish to consult [22, Section 5.2] for a discussion of the
maps on K–groups and the cohomology of the constant sheaf Q on complex manifolds.

Definition 3.1.1. Given a smooth, proper variety X over a field k, for any E ∈ Db(X), we
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define the Mukai vector of E to be

v(E) := ch(E).
√

td(X) ,

which is an element of the Chow group CH(X). We also use the notation v(E) and the term
“Mukai vector” to refer to the image of the Mukai vector in any Weil cohomology group
H defined over k via the cycle map ((D5) in the definition of Weil cohomology theories in
Section 1.2); whether the Mukai vector vector being referred to is in the Chow group or a
Weil cohomology theory will be clear from context.

Definition 3.1.2. Given smooth, proper varieties X and Y over a field k of dimensions
dX and dY , respectively, and a Fourier–Mukai transform ΦP : Db(X) → Db(Y ) with kernel
P ∈ Db(X × Y ), we induce the following map on Chow groups:

ΨCH
P = pY ∗(v(P ) ∪ p∗X(−)) : CH(X)→ CH(Y ).

For any Weil cohomology theory H defined over k, we induce the following map on coho-
mology:

ΨP := pY ∗(cl(v(P )) ∪ p∗X(−)). (3.1)

In particular, the map induced on the ith cohomology group by the portion of ΨP from vj(P ),
the the degree 2j part of v(P ), where 0 ≤ i ≤ 2dX and 0 ≤ j ≤ dX + dY , is

Ψi,j
P : H i(X/K)

p∗X−→ H i(X×Y/K)
∪vj(P )−−−−→ H i+2j(X×Y/K)(j)

pY ∗−−→ H i+2(j−dX)(Y/K)(j−dX).

The Tate twists present in this map are defined and discussed in Section 1.2.

We note that the maps ΨCH
P and ΨP are of much the same form as the Fourier–Mukai

transform, where tensoring with the kernel has been replaced by taking the cup product with
the Mukai vector of the kernel.

Note however that in addition to introducing Tate twists as shown in Definition 3.1.2, the
map ΨP does not in general preserve cohomological degrees. For example, given an abelian
variety A and its dual Â, the Fourier–Mukai transform Db(A) → Db(Â) with kernel the
Poincaré bundle PA is an equivalence (see Mukai [30, Theorem 2.2]), and the map ΨPA

it

induces on cohomology sends H i(A) isomorphically to H2d−i(Â). Huybrechts gives a proof of
this in [22, Lemma 9.23] in the process of showing that the map induced on cohomology by
ΨPA

differs from the maps on cohomology by Poincaré duality by a sign. Huybrechts’ proof
refers to varieties over C and cohomology of the constant sheaf Q of the varieties’ associated
complex manifolds, but the proof hinges on the fact that for each n, the degree 2n portion
of the Mukai vector of PA in H2n(A× Â,Q) is supported in H2n(A,Q)⊗H2n(Â,Q), a fact
which holds in each Weil cohomology theory as well.

So, we need to be careful about the domain and codomain of ΨP , which we discuss further
in the next subsection.
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Uniqueness of Mukai vectors

As shown in Section 2.2 in the discussion of question (Q2), an exact functor F : Db(X) →
Db(Y ) between the derived categories of smooth, projective varietiesX and Y is in some cases
isomorphic to a Fourier–Mukai functor with a uniquely determined kernel, for instance when
F is an equivalence (Theorem 2.2.3), or F may be isomorphic to Fourier–Mukai transforms
with non-isomorphic kernels. In the following result we show that in either case it is well-
defined to refer to the Mukai vector of F .

Proposition 3.1.3 (Corollary of Canonaco and Stellari [14, Theorem 1.2]). Let X and Y be
smooth, projective varieties over a field k and F : Db(X)→ Db(Y ) an exact functor isomor-
phic to a Fourier–Mukai functor ΦP . The cohomology sheaves of P are uniquely determined
by F , and consequently, the class of P in the Grothendieck group K(X×Y ),

⊕
i(−1)i[Hi(P )],

is uniquely determined by F , and the Mukai vector v(P ) is uniquely determined by F .

See [14, Theorem 1.2] for a proof and also [13, Section 4] for further discussion.

3.2 Isomorphism of Mukai–Hodge structures. . .

Let H be an arbitrary Weil cohomology with coefficients in a characteristic 0 field K, as
defined in Section 1.2. Recall we denote the ith cohomology group of X with a Tate twist of
n as H i(X)(n).

Definition 3.2.1. We take the even and odd Mukai–Hodge structures of a dimension dX
smooth, projective variety X to be the sums of cohomology groups given by:

H̃even(X/K) :=

dX⊕
i=0

H2i(X/K)(i),

H̃odd(X/K) :=

dX⊕
i=1

H2i−1(X/K)(i).

3.2.2 Weights of Mukai–Hodge structures. Each of the Mukai–Hodge structures is of
pure weight in the sense of Deligne’s theory of weights [17]. In the case where X is defined
over a finite field and H is theory of étale cohomology with Q` coefficients, being of pure
weight means that all the eigenvalues of the action of geometric Frobenius have the same
absolute value. To verify that the even and odd Mukai–Hodge structures are of pure weight,
it suffices to show that the presence of a Tate twist by l multiplies the eigenvalues of a
cohomology group by 1

ql
.

To see this, recall (see Chapter 1.1) that Tate twists can be defined relative to the
cohomology of the projective line: K(−1) ∼= H2(P1). Taking `–adic étale cohomology of
the Kummer sequence yields a surjective map Pic(P1)→ H2(P1,Q`). The image of the line
bundle O(1), which generates Pic(P1), then also generates H2(P1,Q`). The image of O(1)
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under the action of ϕ∗ is O(q) (where q is the cardinality of the field we’re working over).
Thus the eigenvalue of the action of Frobenius on K(−1) is q, so adding a Tate twist of 1 to
a vector space multiplies its eigenvalues under the action of Frobenius by 1

q
.

Definition 3.2.3. Let ΦP : Db(X)→ Db(Y ) be a Fourier–Mukai transform between smooth,
projective varieties X and Y . We induce maps Ψeven

P and Ψodd
P on their even and odd Mukai–

Hodge structures, respectively, as follows:

Ψeven
P :=

dX⊕
i=0

dX+dY∑
j=0

Ψ2i,j
P (i− d) : H̃even(X/K)→ H̃even(Y/K), (3.2)

Ψodd
P :=

dX⊕
i=1

dX+dY∑
j=0

Ψ2i−1,j
P (i− d) : H̃odd(X/K)→ H̃odd(Y/K), (3.3)

We use the notation Ψi,j
P for the map on the ith cohomology group induced by the degree 2j

part of v(P ) as in Definition 3.1.2 and denote the map on the ith cohomology group twisted
by l induced by Ψi,j

P by Ψi,j
P (l) : H i(X/K)(l)→ H i+2j−2dX (Y/K)(l + j − dX).

Note that Ψeven
P and Ψodd

P are well-defined since their domain and codomain have been
chosen appropriately. We can also think of them as being given by applying the map ΨP

(3.1) to the even and odd Mukai–structures of X, respectively.

Lemma 3.2.4. Given smooth, projective varieties X and Y and a Fourier–Mukai equivalence
ΦP : Db(X)→ Db(Y ), the maps Ψeven

P and Ψodd
P are isomorphisms.

Proof. By Proposition 2.4.1, there is a P ′ ∈ Db(X × Y ) such that ΦP ′ is quasi-inverse to
ΦP . Furthermore, ΦP ′ ◦ ΦP

∼= idDb(Y )
∼= ΦO∆Y

and ΦP ◦ ΦP ′
∼= idDb(X)

∼= ΦO∆X
, where

O∆X
∈ Db(X ×X) and O∆Y

∈ Db(Y × Y ) are the pushforwards of the structure sheaves of
the diagonals.

Hence, in order to show that Ψeven
P and Ψodd

P are isomorphisms, it suffices to prove the
following two statements.

(1) For Q ∈ Db(X × Y ), R ∈ Db(Y × Z), S ∈ Db(X × Z) such that ΦR, ΦQ and ΦS are
equivalences and ΦR ◦ΦQ

∼= ΦS, we have Ψeven
R ◦Ψeven

Q
∼= Ψeven

S and Ψodd
R ◦Ψodd

Q
∼= Ψodd

S .

(2) Ψeven
O∆

and Ψodd
O∆

act identically.

(1) By Mukai [30, Proposition 1.3], ΦR◦ΦQ
∼= ΦS′ for S ′ = πXZ∗(πXY ∗R⊗πY Z∗Q), where

πXY , πY Z , and πXZ are the projection maps from X × Y ×Z to X × Y , Y ×Z, and X ×Z.
Since ΦS′ and ΦS are naturally isomorphic and X and Y are smooth and projective, S ∼= S ′

(see Theorem 2.2.3), and so by Proposition 3.1.3 ΨS = ΨS′ .
Mukai’s argument shows directly that ΦR ◦ΦQ and ΦS have isomorphic kernels using the

projection formula and the flat base change theorem. The same arguments can be applied
inside the Chow ring to show that ΨCH

R ◦ΨCH
Q = ΨCH

S , and they still apply after we descend
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to a Weil cohomology theory of our choice by taking cycle classes. We note that Huybrechts’
proof of a result analogous to [30, Proposition 1.3] for realizations of the Fourier–Mukai
functor acting on the cohomology H∗(X,Q) of the constant sheaf Q on complex manifolds
X [22, Lemma 5.32] rests on this same argument – showing Mukai’s proof still works after
descending to this particular cohomology theory.

(2) As shown in the proof of [22, Proposition 5.33], as a direct consequence of the
Grothendieck–Riemann–Roch formula, for any smooth, projective variety X,

ΨO∆
= pX∗(p

∗
Y (−) ∪ v(O∆))

acts identically on cohomology groups. Since Ψeven
O∆

and Ψodd
O∆

are given by the action of ΨO∆

on H̃even(X/K) and H̃odd(Y/K), respectively, they each act identically.

Remark 3.2.5. 1. The proof of Lemma 3.2.4 shows that when ΦP is an equivalence, ΨP

is invertible. Although this proof only addresses the case of Weil cohomologies, the
same argument works for Chow groups, to show that ΨCH

P is invertible as well.

2. Statements (1) and (2) in the proof of Lemma 3.2.4 are establishing a notion of functori-
ality, but we refrain from putting the proof in that termnology to avoid the unnecessary
work of establishing which categories the functors are mapping between.

3. The choice of weight for the even and odd Mukai–Hodge structures was an arbitrary
one. We could alter either structure by twisting it by the same amount in each di-
mension (note the structures would remain pure weight), and the maps induced by ΨP

would still be well defined and, if ΦP is an equivalence, invertible.

4. Just as in Proposition 1.4.5, if ΦP is fully faithful and not necessarily an equivalence,
we can use the ideas in the proof of Lemma 3.2.4 to show that the even or odd Mukai–
Hodge structure of X is a summand of the even or odd, respectively, Mukai–Hodge
structure of Y ; we simply use the fact that in this case ΦP has a left adjoint ΦQ such
that ΦQ ◦ ΦP

∼= id and so Ψeven
Q ◦Ψeven

P
∼= id and Ψodd

Q ◦Ψodd
P
∼= id.

3.3 . . . and its consequences

In this section we use the information about cohomology of derived equivalent smooth,
projective varieties to compare their zeta functions using the Lefschetz fixed point theorem.

Although our strategy will show that derived equivalent curves over finite fields have
equal zeta functions, this is a case that is already well understood, and we give a discussion
of it before moving onward.

3.3.1 Derived equivalent curves. In any characteristic, curves of genus 0 (the projective
line) have anti-ample canonical bundle and curves of genus at least 2 have ample canonical
bundle, implying that in those cases, derived equivalent curves are isomorphic (see Theorem
2.3.5). The characterization of derived equivalent genus 1 was completed in [4], which also
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contains a summary of the previous work: it was already known (see [10] for a proof and [22]
for further discussion) that over a separably closed field, derived equivalent curves must be be
isomorphic. It is shown, however, in [4, Corollary 1.2] that derived equivalent nonisomorphic
genus 1 curves exist, and all such examples arise between homogeneous spaces of the same
elliptic curve. That is, all derived equivalent non-isomoprhic curves do not have rational
points over their field of definition and so are specifically genus 1 curves, but not elliptic
curves, though they are elliptic curves after base change. However, as shown in [4, Example
2.8], such an example cannot arise over a finite field Fq since Lang’s theorem implies that
any genus 1 curve must have a rational point.

3.3.2 Lefschetz fixed-point and comparing zeta functions. By the Lefschetz fixed-
point formula for Weil cohomologies (see Section 1.3), to prove smooth, projective varieties
X and Y over a finite field have equal zeta functions it suffices to show that, for some Weil
cohomology H, the traces of the Frobenius map ϕ acting on H i(X/K) and H i(Y/K) are the
same for all i.

In the case where H is `–adic étale cohomology with Q`–coefficients, this condition can
be shown to be necessary as well:

Claim 3.3.3. Let X and Y be smooth, projective varietes over a finite field Fq. ζ(X) = ζ(Y )
if and only if Tr(ϕ∗|H i(X,Q`)) = Tr(ϕ∗|H i(Y,Q`)) for all i.

Proof. The equality of traces suffices to show the equality of zeta functions by the Lefschetz
fixed-point theorem (Theorem 1.3.1).

Given ζ(X) = ζ(Y ), by the Lefschetz fixed-point theorem, we have the equalities∑
i

(−1)i Tr(ϕm∗|H i(X,Q`)) =
∑
i

(−1)i Tr(ϕm∗|H i(Y,Q`))

for all m. These equalities show that the sum of the mth powers of the eigenvalues of⊕
i(−1)iH i(X,Q`) and the sum of the mth powers of the eigenvalues of

⊕
i(−1)iH i(Y,Q`)

are equal for any m. Hence, the characteristic polynomials of ϕ acting on
⊕

i(−1)iH i(X,Q`)
and

⊕
i(−1)iH i(Y,Q`) are equal, implying the sets of eigenvalues of the action of ϕ on⊕

i(−1)iH i(X,Q`) and
⊕

i(−1)iH i(Y,Q`) are equal. Deligne proved the Riemann hypothesis
portion of the Weil Conjectures in [17, Théorème 1.6], which states that the eigenvalues of
the action of Frobenius on the ith cohomology groups of smooth, projective varieties have
absolute value qi/2. Thus, if ζ(X) = ζ(Y ), the eigenvalues of ϕ acting on H i(X,Q`) and
H i(Y,Q`) are equal, for each i.

Comparing zeta functions

Given smooth, projective varieties X and Y , and a Fourier–Mukai equivalence ΦP , Lemma
3.2.4 shows that the maps Ψeven

P and Ψodd
P are isomorphisms between the even and odd

Mukai–Hodge structures of X and Y . In the case when X and Y are defined over a finite
field Fq, in order to use Lemma 3.2.4 to compare the zeta functions, we show that Ψeven

P and
Ψodd
P are compatible with the action of Frobenius in the following lemma.
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Lemma 3.3.4. Given smooth, projective varieties X and Y over a finite field Fq and a
Fourier–Mukai equivalence ΦP : Db(X) → Db(Y ), the map ΨP = pY ∗(cl(v(P )) ∪ p∗X(−)),
and hence the maps Ψeven

P and Ψodd
P , are compatible with the action of geometric Frobenius:

ΨP ◦ ϕ∗X = ϕ∗Y ◦ΨP .

Proof. We prove the lemma by checking separately that the action of Frobenius commutes
with the maps p∗X : H i(X)(l)→ H i(X×Y )(l), cl(v(P ))∪(−) : H i(X×Y )(l)→ H i(X×Y )(l)
and pY ∗ : H i(X × Y )(l)→ H i−2 dim(X)(l − dim(X)) for any integers i, l.

By the functoriality of geometric Frobenius, the following diagram commutes for any i, l:

H i(X)(l)
p∗X //

ϕ∗X
��

H i(X × Y )(l)

ϕ∗X×Y

��
H i(X)(l)

p∗X // H i(X × Y )(l)

Therefore, the action of Frobenius commutes with the pullback p∗X .
To show the compatibility of cup product with the Mukai vector with pullback by the

geometric Frobenius map, we check that for any i, l the following diagram commutes:

H i(X × Y )(l)

ϕ∗X×Y

��

(−)∪vj(P ) // H i(X × Y )(l)

ϕ∗X×Y

��
H i(X × Y )(l)

(−)∪vj(P ) // H i(X × Y )(l)

The composition of the top and right maps in the diagram map any element w ∈ H i(X×Y )(l)
to ϕ∗(w ∪ vj(P )) = ϕ∗w ∪ ϕ∗vj(P )), and the composition of the left and bottom maps in
the diagram map w to ϕ∗w ∪ vj(P ). We note that vj(P ) is the image of a cycle class in
H2j(X,Q`(j)) (recall (D5) in the definition of a Weil cohomology in Section 1.2). The map
ϕ∗ acts on cycles of codimension r by multiplying them by a factor of qr (for instance, a
given a line bundle L, ϕ∗L = L⊗n). In H2j(X,Q`(j)), any eigenvectors of ϕ have absolute
value 1: the Tate twist of j multiplies the images of the cycles inside the cohomology groups
by 1

qj
. Hence, ϕ∗vj(P ) = vj(P ), and the above diagram commutes.

Finally we check the compatibility of ϕ∗ with pY ∗, recalling its action on Weil cohomology
groups (see Section 1.2) is defined as follows:

Hj(X × Y )
(A5)−−→ H2(dX+dY )−j(X)(dX + dY )∨

(p∗Y )∨

−−−→ H2(dX+dY )−j(Y )(dX + dY )∨

(A5)−−→ H−2dX+j(Y )(−dX)

where dX and dY are the dimensions of X and Y . Since the middle map is simply a dualized
pullback, it only remains to show that ϕ∗ is compatible with the maps induced by (A5) in
our list of Weil cohomology axioms, Poincaré duality: it suffices to show that for any smooth,
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projective variety V and any integer j, the following diagram commutes:

Hj(V )
(A5) //

ϕ∗

��

H2 dimV−j(V )(dimV )∨

Hj(V )
(A5) // H2 dimV−j(V )(dimV )∨

ϕ∗

OO

Let u be an arbitrary element of Hj(V ). Following the top and bottom and sides of the
above diagram, it gets sent to the functionals u ∪ (−) and ϕ∗u ∪ ϕ∗(−). To see that these
are the same, consider the action of ϕ∗ on the Poincaré daulity map

Hj(V )×H2 dimV−j(V )(dimV )
∪−→ H2 dimV (V )(dimV ).

Since the action of ϕ∗ on H2 dimV (V )(dimV ) is trivial, for any u ∈ Hj(V ) and w ∈
H2 dimV−j(V )(dimV ), ϕ∗v ∪ ϕ∗w = u ∪ w. If we are considering the map (A5) acting
on a cohomology group with Tate twists present, it is still compatible with Frobenius;
we can adjust the argument by altering the Poincaré duality mapping as necessary, eg,

Hj(V )(l)×H2 dimV−j(V )(dimV − l) ∪−→ H2 dimV (V )(dimV ).

3.3.5. It would be tempting to look at the isomorphism in (3.2) and hope that the eigenvalues
of Frobenius acting on each degree of cohomology could be matched up by using their weights
to distinguish them: in Deligne’s [17, Théorème 1.6], it is shown that the eigenvalues of the
action of ϕ∗ on H i(X,Q`) have absolute value qi/2. However, as mentioned in the previous
section, the even and odd Mukai–Hodge structres are of pure weight: the twists present in
the equations in (3.2) affect the eigenvalues of the action of Frobenius on the cohomology
groups in such a way that all the eigenvalues have the same absolute values.

What (3.2) does tell us is that if varieties X and Y are Fourier–Mukai equivalent, the
sets of eigenvalues of Frobenius acting on all their even (respectively, odd) cohomology
groups, multiplied by factors of 1

q
until they all have the same absolute value, are equal.

This observation is simply a consequence of the fact that the characteristic polynomials of
Frobenius acting on their Mukai–Hodge structures are equal.

This information is, on its own, enough to decide that the zeta functions of some derived
equivalent varieties are equal, when there are few enough cohomology groups to compare,
especially once we use the fact that the traces of Frobenius acting on top and bottom
cohomology are always the same (1 and qd for a dimension d variety, respectively). For
instance, we can now prove that derived equivalent K3 suraces have equal zeta functions,
since they have vanishing odd cohomology (this is the method used to prove [26, Theorem
4.1]). This information also gives an alternate argument to that discussed in 3.3.1 that
derived equivalent curves over a finite field Fq have equal zeta functions.

Theorem 3.3.6. Let X and Y be smooth, projective varieties of dimension d over a finite
field F such that Db(X) is equivalent to Db(Y ). Let ϕ be the geometric Frobenius endomor-
phism. If we have that Tr(ϕ∗|H i(X,Q`)) = Tr(ϕ∗|H i(Y,Q`)) for bd

2
c − 1 even values and

dd
2
e − 1 odd values of 1 ≤ i ≤ d, then ζ(X) = ζ(Y ).
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Proof. The isomorphisms H̃(X,Q`)
even ∼= H̃(Y,Q`)

even and H̃(X,Q`)
odd ∼= H̃(Y,Q`)

odd of
Lemma 3.2.4 imply that

d∑
i=0

Tr(ϕ∗|H2i(X,Q`)(i)) =
d∑
i=0

Tr(ϕ∗|H2i(Y,Q`)(i)), (3.4)

d∑
i=1

Tr(ϕ∗|H2i−1(X,Q`)(i)) =
d∑
i=1

Tr(ϕ∗|H2i−1(Y,Q`)(i)), (3.5)

where d is the dimension of X (and of Y ; derived equivalent varieties have equal dimension).
Recall from 3.2.2 that the presence of Tate twists affects the eigenvalues of the action of

Frobenius as follows:

Tr(ϕ∗|H i(X,Q`)(l)) =
1

ql
Tr(ϕ∗|H i(X,Q`)).

We can make further progress in comparing zeta functions by using the symmetry among
cohomology groups given to us by Hard Lefschetz (Lemma 3.3.7 can also be achieved using
Poincaré duality instead of Hard Lefschetz). We will now switch, for the remainder of this
proof, from working over an arbitrary Weil cohomology theory to working with `–adic étale
cohomology since we will need some facts that have been proven for this cohomology theory
in particular.

Lemma 3.3.7. Let V be a smooth, projective variety of dimension d over the field Fq and H
be étale cohomology with Q`–coefficients for (`, q) = 1. If the eigenvalues (with multiplicity)
of ϕ∗ acting on H i(V/Q`), 0 ≤ i < d

2
, are {α1, . . . , αn}, then the eigenvalues of ϕ∗ acting on

H2d−i(V/Q`) are {qd−iα1, . . . , q
d−iαn}.

Proof of lemma. The Hard Lefschetz Theorem for `–adic étale cohomology (Deligne [16,
Théorème 4.1.1]) states that the map Ld−i : H i(V/Q`)(i− d)

∼→ H2d−i(V/Q`) is an isomor-
phism, where Ld−i is the (d − i)th iteration of the Lefschetz operator L, which is given by
intersecting with the hyperplane class. Since L commutes with the action of the Frobenius
map on cohomology, the Hard Lefschetz Theorem shows that if the eigenvalues of the action
of ϕ∗ on H i(V/Q`) are {α1, . . . , αn}, then the eigenvalues of the action of ϕ∗ on H2d−i(V/Q`)
are {qd−iα1, . . . , q

d−iαn}.

In particular, this result tells us that for any variety X of dimension d, the eigenvalues
of the action of ϕ∗ on H i(X,Q`)(i) and H2d−i(X,Q`)(2d − i) are equal. With the addition
of Lemma 3.3.7, we can now finish proving our theorem.

As discussed in 3.3.2, ζ(X) = ζ(Y ) if and only if Tr(ϕ∗|H i(X,Q`)) = Tr(ϕ∗|H i(Y,Q`))
for all 0 ≤ i ≤ 2d. By Lemma 3.3.7, to prove the latter it suffices to the equalities for all 0 ≤
i ≤ d. The action of ϕ on the 0th cohomology group is trivial, implying Tr(ϕ∗|H0(X,Q`)) =
Tr(ϕ∗|H0(Y,Q`)) = 1, so we may further reduce the needed values of i to those from 1 to d.

The equations (3.4) and (3.5) give a linear relation among the set of values

{Tr(ϕ∗|H i(X,Q`))− Tr(ϕ∗|H i(Y,Q`)) | i odd, 1 ≤ i ≤ d},
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as well as a linear relation among the set of values

{Tr(ϕ∗|H i(X,Q`))− Tr(ϕ∗|H i(Y,Q`)) | i even, 1 ≤ i ≤ d}.

Hence, it is sufficient to show that Tr(ϕ∗|H i(X,Q`)) = Tr(ϕ∗|H i(Y,Q`)) for all but one
of the even values of 1 ≤ i ≤ d (that is, bd

2
c − 1 of them) and all but one of the odd values

of 1 ≤ i ≤ d (that is, dd
2
e − 1 of them).

Note that the hypotheses of this theorem are met in some cases where we know the
varieties in question have vanishing cohomology groups. We give a few of the most prominent
examples of the above theorem as corollaries:

Corollary 3.3.8. Let X and Y be surfaces (i.e., smooth, projective varieties of dimension
2) over a finite field F such that Db(X) is equivalent to Db(Y ). Then X and Y have the
same zeta-function.

Proof. We go ahead and show explicitly how the proof of Theorem 3.3.6 works in the case
of the even cohomology groups of surfaces. In the case where X is a surface, it has the
following even Mukai–Hodge structure:

H̃(X,Q`)
even = H0(X,Q`)) +H2(X,Q`)(1)) +H4(X,Q`)(2)

Hence, (3.4) implies that Tr(ϕ∗|H2(X,Q`)) = Tr(ϕ∗|H2(Y,Q`)) in this case, and we have
the equality of the traces of Frobenius acting on the even-degree cohomology groups of X
and Y .

In the case of surfaces, the hypothesis of Theorem 3.3.6 does not ask for the equality
of any traces of cohomology groups of odd degree because the odd Mukai–Hodge structure
gives the following equality:

Tr(ϕ∗|H1(X,Q`)(1)) + Tr(ϕ∗|H3(X,Q`)(2)) = Tr(ϕ∗|H1(Y,Q`)(1)) + Tr(ϕ∗|H3(Y,Q`)(2))

Lemma 3.3.7 implies that Tr(ϕ∗|H1(X,Q`)(1)) = Tr(ϕ∗|H3(X,Q`)(2)) (and likewise for Y ),
and so we have the equality of the traces of Frobenius acting on the odd-degree cohomology
groups as well.

The following is another special case of Theorem 3.3.6.

Corollary 3.3.9. Let X and Y be smooth, projective varieties of dimension 3 over a finite
field F such that Db(X) is equivalent to Db(Y ). Then X and Y have the same zeta-functions
if and only if

Tr(ϕ∗|H1(X,Q`)) = Tr(ϕ∗|H1(Y,Q`)),

where ϕ is the Frobenius endomorphism.

Note that the above corollary holds for any smooth, projective varieties of dimension 3
with vanishing first cohomology group, which in particular includes Calabi–Yau 3–folds.
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Chapter 4

Abelian Varieties

In this chapter, we will treat the special case of derived equivalent abelian varieties. In
Section 4.1, we will prove that derived equivalent varieties over finite fields have equal zeta
functions, strongly using a result of Orlov. In the Section 4.2, we will explore some results
of comparing the Mukai–Hodge structures in the case of abelian varieties.

4.1 Derived equivalent abelian varieties have equal

zeta functions

We first recall the following general result on derived equivalent abelian varieties:

Theorem 4.1.1 (Orlov [34, Theorem 2.19]). Let A, B be abelian varieties over a field k. If

they are derived equivalent, then there is an isometric isomorphism A× Â ∼= B × B̂.

Definition 4.1.2. Let A, B be abelian varieties. A morphism f : A × Â → B × B̂ can be
expressed as a matrix

(
α β
γ δ

)
where α : A → B, β : Â → B, γ : A → B̂ and δ : Â → B̂

are morphisms of varieties. An isomorphism f : A × Â → B × B̂ is called isometric if(
δ̂ −β̂
−γ̂ α̂

)
: B × B̂ → A× Â is its inverse.

Corollary 4.1.3. Let A and B be abelian varieties defined over a field. If A and B are
derived equivalent, then A and B are isogenous.

Proof. By Poincaré’s complete reducibility theorem, abelian varieties decompose uniquely
up to isogeny into products of simple abelian varieties (see Corollary 1, page 174 of [32]).

Then, since any abelian variety is isogenous to its dual, A × Â ∼= B × B̂ implies that A is
isogenous to B.

Corollary 4.1.3 holds over any field. We will be interested in the case of varieties over
over finite fields.
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Theorem 4.1.4 (Tate [43, Theorem 1, Section 3]). Let A and B be abelian varieties over a
finite field Fq. A and B are isogenous if and only if they have equal zeta functions.

The following theorem is then a direct consequence of Corollary 4.1.3 and Theorem 4.1.4:

Theorem 4.1.5. Let A and B be abelian varieties defined over a finite field Fq. If A and B
are derived equivalent, then A and B have equal zeta functions.

To prove Theorem 4.1.5, we only need the simpler direction of Theorem 4.1.4: that
isogenous varieties must have equal zeta functions, which we give a proof of below. First,
recall the following definition:

Definition 4.1.6. Given an abelian variety A over an algebraically closed field and a prime
p, the p–adic Tate module of A is

Tp(A) := lim
←
A[pn]

where A[pn] is the pn–torsion points of A and the inverse limit is taken over maps A[pn+1]→
A[pn] given by multiplication by p.

Proof of the “only if” direction of Theorem 4.1.4. Since A and B are isogenous, there is a
surjection A→ B whose kernel K is of finite order, so we have short exact sequence

0→ K → A→ B → 0.

Let ` be relatively prime to q. The functor T`(−) from abelian varieties over Fq to modules
over Z` given by taking the Tate module of the abelian varieties is left exact. Hence, applying
the left exact functor T`(−)⊗Z`

Q` gives an exact sequence

0→ T`K ⊗Z`
Q` → T`A⊗Z`

Q` → T`B ⊗Z`
Q`.

The elements of T`K are all torsion of order the order of K, so T`K ⊗Z`
Q`, a vector

space, must be 0, Hence, the map T`A ⊗Z`
Q` → T`B ⊗Z`

Q` is an inclusion. The Tate
modules tensored with Q` are dual to the first `–adic étale cohomology groups, so we have
an inclusion H1(A,Q`)→ H1(B,Q`), meaning that the characteristic polynomial fA of the
action of Frobenius ϕ on H1(A,Q`) divides the characteristic polynomial fB of the action of
Frobenius on H1(B,Q`).

Since A and B are isogenous, there is also a surjection B → A whose kernel is finite
order, and the same argument as shown above implies that fB also divides fA, hence these
polynomials are equal, and Tr(ϕ∗|H1(A,Q`)) = Tr(ϕ∗|H1(B,Q`)).

Once the first cohomology group of an abelian variety is known, all of its `–adic étale
cohomology is known: H i(A,Q`) =

∧iH1(A,Q`)) (see for instance Milne [28, Theorem
12.1(b)]), and so the eigenvalues of the action of Frobenius on the ith cohomology are all
products of the eigenvalues i distinct eigenvectors in H1(A,Q`). Thus, by the Lefschetz
Fixed Point Theorem (see Section 1.3), ζ(A) = ζ(B).
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4.2 Mukai–Hodge structures and abelian varieties

In this section, we explore comparing the zeta functions of derived equivalent abelian varieties
by using the isomorphism of their even and odd Mukai–Hodge structures. Theorem 3.3.6
in the previous chapter implies that all derived equivalent smooth, projective varieties of
dimension 1 or 2 over a finite field are isogenous, without using Theorem 4.1.1. Using
the method of comparing Mukai–Hodge structures, we extend the proof of Theorem 3.3.6
to the special case of 3–dimensional abelian varieties, which gives an alternate proof of
Theorem 4.1.5 in the 3–dimensional case that does not rely on Theorem 4.1.1. Applying
Theorem 4.1.4 then gives a proof that derived equivalent abelian varieties of dimension 3 or
less are isogenous, without having used Theorem 4.1.1.

Proposition 4.2.1. Let A and B be 3–dimensional abelian varieties over a finite field Fq.
If A and B have isomorphic even and odd Mukai–Hodge structures, then ζ(A) = ζ(B).

Proof. For any ` relatively prime to q, recall that the `–adic étale cohomology for any abelian
variety A has the following properties: H i(A,Q`) =

∧iH1(A,Q`), and H1(A,Q`) is a 2d–
dimensional Q` vector space, where d is the dimension of A (see Theorem 12.1 and its proof in
Milne [28]). Let {α1, . . . , α2d} be the set of eigenvalues of the action of Frobenius on H1(A).
Then the set of eigenvalues of the action of Frobenius on H i(A,Q`) is {αn1 , . . . , αnl

}n1<···<nl

(there are
(

2d
i

)
of them).

We also show the following helpful claim:

Claim 4.2.2. For any abelian variety A/Fq, the eigenvalues {α1, . . . , α2d} of the action of
Frobenius on its degree-1 `–adic étale cohomology group, for any ` relatively prime to q,
H1(A,Q`), can be partitioned into complex-conjugate pairs.

Proof of Claim. First, note that if an eigenvalue is complex (that is, in C\R), then its conju-
gate is also an eigenvalue since the coefficients of the characteristic polynomial of Frobenius
acting on `–adic étale cohomology (so long as ` 6= q, which we assume it is) are rational
(Deligne [17, Théorème 1.6]).

Since complex eigenvalues come in pairs and H1(A,l) has an even total number of eigen-
values, there must be an even number of real eigenvalues. Any real eigenvalues of H1(A)

must be ±q 1
2 (Deligne [17, Théorème 1.6]), and so we can group all of them into pairs (q

1
2 , q

1
2 )

and (−q 1
2 ,−q 1

2 ), with at most one mismatched pair left over. Since A is abelian, the eigen-
value of the action of Frobenius on H2d(A) is qd = α1 · · ·α2d, and so all the eigenvalues can
be matched into pairs with product q, that is, conjugate pairs.

Let A and B be derived equivalent varieties as in the hypothesis. Call the eigenvalues
of the action of Frobenius on H1(A,Q`) and H1(B,Q`) {α1, . . . , α6} and {β1, . . . , β6}, re-
spectively. By Claim 4.2.2, we may assume, without loss of generality, that α1α2 = α3α4 =
α5α6 = β1β2 = β3β4 = β5β6 = q.
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The isomorphism between the odd Mukai–Hodge structures of A and B (see Lemma 3.2.4)
implies that the following sets of eigenvalues are equal; these values are the roots of the
characteristic polynomials of the action of Frobenius on the odd Mukai–Hodge structures.⋃2
j=1{α1, . . . , α6}∪

{αn1αn2αn3

q

}
1≤n1<n2<n3≤6

=
⋃2
j=1{β1, . . . , β6}∪

{βn1βn2βn3

q

}
1≤n1<n2<n3≤6

As a consequence of the above claim, we observe that {αn1αn2αn3

q
}1≤n1<n2<n3≤6 contains 2

copies of αi for each i and so

2⋃
j=1

{α1, . . . , α6} ∪
{αn1αn2αn3

q

}
1≤n1<n2<n3≤6

=
4⋃
j=1

{α1, . . . , α6} ∪
{αn1αn2αn3

q

}
n1∈{1,2},n2∈{3,4},n3∈{5,6}

and likewise for the βi, hence:

4⋃
j=1

{α1, . . . , α6} ∪
{αn1αn2αn3

q

}
n1∈{1,2},n2∈{3,4},n3∈{5,6}

=
4⋃
j=1

{β1, . . . , β6} ∪
{βn1βn2βn3

q

}
n1∈{1,2},n2∈{3,4},n3∈{5,6}

(4.1)

Now, suppose that {α1, . . . , α6} 6= {β1, . . . , β6}. Note that since{αn1αn2αn3

q

}
n1∈{1,2},n2∈{3,4},n3∈{5,6}

contains 8 elements and the left-hand side of (4.1) contains 4 copies of each αi (and likewise
for β), (4.1) implies that the intersection of {αi}1≤i≤6 and {βi}1≤i≤6 has at least four elements.
Without loss of generality then, α1 = β1, α2 = β2, α3 = β3 and α4 = β4, hence we may
simplify (4.1) again to

4⋃
j=1

{α5, α6} ∪
{αn1αn2αn3

q

}
n1∈{1,2},n2∈{3,4},n3∈{5,6}

=
4⋃
j=1

{β5, β6} ∪
{βn1βn2βn3

q

}
n1∈{1,2},n2∈{3,4},n3∈{5,6}

Summing all terms on each side in the above equality yields:

4α5 + 4α6 +
∑

n1∈{1,2}
n2∈{3,4}
n3∈{5,6}

αn1αn2αn3

q
= 4β5 + 4β6 +

∑
n1∈{1,2}
n2∈{3,4}
n3∈{5,6}

βn1βn2βn3

q

= 4β5 + 4β6 +
∑

n1∈{1,2}
n2∈{3,4}
n3∈{5,6}

αn1αn2βn3

q
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If we divide each side of the above equation by 4 +
∑

n1∈{1,2},n2∈{3,4}
αn1αn2

q
, we are left with

α5 + α6 = β5 + β6. Since α5, α6 and β5, β6 are conjugate pairs, we then have {α5, α6} =
{β5, β6}.

Remark 4.2.3. The argument used in the proof of Proposition 4.2.1 is not sufficient to
prove the same statement for 4–dimensional abelian varieties. It is not known whether
Proposition 4.2.1 holds for abelian varieties of dimension greater than 3. However, if the
isomorphism of the even and odd Mukai–Hodge structures of two abelian varieties does not
imply that they have equal zeta functions, it would be interesting to know what information
is necessary to add to the hypothesis to reach that conclusion.
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Chapter 5

Isomorphism of relative Mukai–Hodge
structures, and its consequences

In this chapter, we present a relative version of the work in Chapter 3.

5.1 Relative Mukai–Hodge structures

Definition 5.1.1. Let W , Z be varieties over Fq. Given a morphism a : W → Z, we define
the even and odd `–adic étale Mukai–Hodge structures of a to be:

R̃even(a) =
⊕
i

R2ia∗Q`(i),

R̃odd(a) =
⊕
i

R2i−1a∗Q`(i).

Definition 5.1.2. Let a : W → Z be a map of varieties and F a coherent sheaf on W .
We denote by cha(F) the Chern character relative to a. See also [42, Exposé 7] for some
discussion of this object, but we will give a construction here.

The filtration from Leray spectral sequence for a,

RpΓ(Rqa∗Q`)⇒ Hp+q(W,Q`),

induces maps H i(W,Q`(l))→ H0(Ria∗Q`(l)) for any choice of i and l. cha(F) is the image
of ch(F) in

⊕
i

H0(R2ia∗Q`(i)) under these maps.

We define the relative todd class similarly:

Definition 5.1.3. Let a : W → Z be a map of varieties and F a coherent sheaf on W .
The relative todd class tda(F) is the image of td(F) in

⊕
iH

0(R2ia∗Q`(i)) under the maps
induced by the filtration from the Leray spectral sequence RpΓ(Rqa∗Q`)⇒ Hp+q(W,Q`).
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Weibel proves the following result as a consequence of [51, Chapter II, Theorem 6.3]:

Claim 5.1.4 ([51, Chapter II, Example 6.3.4]). Let X be a noetherian scheme, and i :
Z ↪→ X the inclusion of a closed subscheme. Let Coh(Z) be the category of coherent OZ–
modules and CohZ(X) the category of coherent OX–modules supported on Z. There is an
isomorphism of Grothendieck groups

K(Coh(Z)) ∼= K(CohZ(X))

induced by the pushforward i∗.

Definition 5.1.5. Let X, Y, S be smooth, projective varieties and f : X → S, g : Y → S
morphisms. Let ΦP : Db(X) → Db(Y ) be a Fourier–Mukai transform with Supp(P ) ⊆
X×S Y . Let ι be the inclusion X×S Y → X×Y . By Claim 5.1.4, there is a Q ∈ Db(X×S Y )
such that ι∗ ch(Q) = ch(P ). We define chS(P ) := chf×g(Q), where f × g : X ×S Y → S.

Let TX×SY/S be the relative tangent bundle of f × g, which is a sheaf on X ×S Y . Then,
define tdS(TX×SY/S) := tdf×g(TX×SY/S).

We define vS(P ) to be the Mukai vector of P relative to S:

vS(P ) := chS(P )
√

tdS(TX×SY/S) ∈ H0
(
S,
⊕
i

R2i(f × g)∗Q`(i)
)
.

Definition 5.1.6. Suppose we are in the same setting as Definition 5.1.5. Then, we induce
the following map from the higher direct image sheaves of f∗Q` to those of g∗Q`:

ΨP,S := πY ∗(π
∗
X(−) ∪ vS(P )), (5.1)

where πX and πY are the projection maps X ×S Y → X and X ×S Y → Y .

Notation 5.1.7. We provide the following commutative diagram as a reference for the
notation introduced in this section. Its front and back faces are pullback squares:

X ×S Y
ι

%%
πX

��

πY // Y
=

""
g

��

X × Y

p1

��

p2

// Y

��

X

=
%%

f // S

""
X // Spec(k)

(5.2)

We denote f × g := g ◦ πY = f ◦ πX : X ×S Y → S.
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Remark 5.1.8. The map ΨP,S, like ΨP , can introduce Tate twists. The map induced on
the ith cohomology group by the portion of (5.1) contributed by vjS(P ), the degree 2j part
of vS(P ) is as follows: Observe that, more specifically, the map in acts in the following way

Ψi,j
P,S : Rif∗Q`

π∗X−→ Ri(f × g)∗Q`

∪vjS(P )
−−−−→ Ri+2j(f × g)∗Q`(j)

πY ∗−−→ Ri+2(j−dX)g∗Q`(j − dX), (5.3)

where dX is the dimension of X and dY is the dimension of Y . Denote the map on the ith

cohomology group twisted by l induced by Ψi,j
P,S by

Ψi,j
P,S(l) : Rif∗Q`(l)→ Ri+2(j−dX)g∗Q`(l + j − dX).

Observe that the following maps are well-defined:

Ψeven
P,S :=

dX⊕
i=0

dX+dY∑
j=0

Ψ2i,j
P,S(i− d) : R̃even(f)→ R̃even(g)

Ψodd
P,S :=

dX⊕
i=0

dX+dY∑
j=0

Ψ2i−1,j
P,S (i− d) : R̃odd(f)→ R̃odd(g)

Lemma 5.1.9. Let ΦP : Db(X)→ Db(Y ) be a Fourier–Mukai equivalence smooth, projective
varieties X and Y and suppose there are proper maps f and g into a third variety S such
that Supp(P ) is contained in X ×S Y . Then, the maps Ψeven

P,S and Ψodd
P,S are isomorphisms.

Proof. This proof follows a very similar argument to that in Lemma 3.2.4.
By Proposition 2.4.1, there is a P ′ ∈ Db(X × Y ) such that ΦP ′ is quasi-inverse to ΦP .

Furthermore, ΦP ′ ◦ ΦP
∼= idDb(Y )

∼= ΦO∆Y
and ΦP ◦ ΦP ′

∼= idDb(X)
∼= ΦO∆X

, where O∆X
and

O∆Y
are the pushforwards of the structure sheaves of the diagonals to X ×X and Y × Y .

In order to show that Ψeven
P,S and Ψodd

P,S are isomorphisms, it suffices to prove the following
two statements:

(1) Let X, Y and Z all be varieties over S. Let Q ∈ Db(X × Y ), R ∈ Db(Y × Z),
T ∈ Db(X × Z) be such that ΦR ◦ ΦQ

∼= ΦT and their set-theoretic supports are
contained in X ×S Y , Y ×S Z and X ×S Z. Then, we have Ψeven

R,S ◦ Ψeven
Q,S
∼= Ψeven

T,S and
Ψodd
R,S ◦Ψodd

Q,S
∼= Ψodd

T,S .

(2) Let O∆ ∈ Db(X ×X) be the pushforward of the structure sheaf of the diagonal map.
Then Ψeven

O∆,S
and Ψodd

O∆,S
act identically.

Notation 5.1.10. In addition to the notation from Notation 5.1.7, we will also use the
folowing: Let γX,Y , γY,Z and γX,Z be the projection maps, respectively, from X ×S Y ×S Z
to X ×S Y , Y ×S Z and X ×S Z. Let γX , γY and γZ be the projection maps, respectively,
from X ×S Y ×S Z to X, Y and Z. Let αY and αZ be the projection maps from Y ×S Z to
Y and Z, respectively. Let βX and βZ be the projection maps from X ×S Z to X and Z,
respectively.
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Proof of (1): We can prove (1) in a way that is very similar to the proof that the
composition of two Fourier–Mukai transforms is a Fourier–Mukai transform (compare [22,
Proposition 5.10]):

ΨT,s(−) = βZ∗(β
∗
Z(−) ∪ vS(R)

∼= βZ∗(β
∗
Z(−) ∪ γX,Z∗(γ∗X,Y vS(Q) ∪ γ∗Y,ZvS(R)))

∼= βZ∗(γXZ∗(γ
∗
X(−) ∪ γ∗X,Y vS(Q) ∪ γ∗Y,ZvS(R))) (projection formula)

∼= γZ∗(γ
∗
X,Y (π∗X(−) ∪ vS(P )) ∪ γ∗Y,ZvS(R))

∼= αZ∗γY,Z∗(γ
∗
X,Y (π∗X(−) ∪ vS(Q)) ∪ γ∗Y,ZvS(R))

∼= αZ∗(γY,Z∗γ
∗
X,Y (π∗X(−) ∪ vS(Q)) ∪ vS(R)) (projection formula)

∼= αZ∗(α
∗
Y πX∗(π

∗
Y (−) ∪ vS(Q)) ∪ vS(R))

∼= ΨR,s(−) ◦ΨQ,s(−)

In order to prove (2), we establish the following notation:

X
id

&&

id

  

∆

$$
X×SX

π2 //

π1

��

h

$$

X

f
��

X
f

// S

Let τ(∆∗OX) := ch(∆∗OX) td(X×SX) and τ(OX) := ch(OX) td(X). Let τ i(∆∗OX) denote
the portion of τ(∆∗OX) contained in R2ih∗Q`(i), and analogously for τ i(OX).

The following diagram commutes:

Rjh∗∆∗Q`
τ i(OX) // Rj+2ih∗∆∗∆

!π!
XQ`(i)(−dX)[−2dX ]

∆∗∆!→id
��

Rjf∗Q`

π∗X //Rjh∗Q`

OO

τ i(∆∗OX)// Rj+2ih∗Q`(i)
∼ // Rj+2iπ!

XQ`(i)(−dX)[−2dX ]

∼
��

Rj+2if∗πX∗π
!
XQ`(i)(−dX)[−2dX ]

πX∗π
!
X→id

��
Rj+2(i−dX)f∗Q`(i− dX)

Here we use the natural isomorphism Q` → π!
XQ`(−dX)[−2dX ], defined in [1, Expose XVIII,

3.2.5], and the identification ∆!π!
X ' (πX ◦ ∆X)! = id. This commutative diagram, along

with the fact that ∆∗
√

td(X ×S X) = td(X) and Grothendieck–Riemann–Roch (compare
[22, Proposition 5.33]) implies that Ψeven

O∆,S
and Ψodd

O∆,S
act identically.
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Theorem 5.1.11 (Application of Lemma 5.1.9). Let X and Y be varieties over a finite
field Fq such that Db(X) is equivalent to Db(Y ). Suppose that X, and hence also Y (see
Corollary 2.3.13(c)), has a semiample canonical (or anti-canonical) bundle. Let S be the
(anti-)canonical variety of X and of Y (see Proposition 2.3.3). Let f : X → S and g : Y → S
be the canonical maps. Then, the maps Ψeven

P,S and Ψodd
P,S are isomorphisms.

Proof. The canonical morphisms are proper, and by Proposition 2.3.14, Supp(P ) ⊆ X×S Y ,
and so this situation satisfies the hypothesis of Lemma 5.1.9.

5.2 Relative Mukai–Hodge structures and zeta

functions

Theorem 5.2.1. Let X and Y be smooth, projective varieties of dimension d over a finite
field Fq such that Db(X) is equivalent to Db(Y ). Suppose that X, and hence also Y (see
Corollary 2.3.13(c)), has a semiample canonical (or anti-canonical) bundle. Let S be the
(anti-)canonical variety of X and of Y (see Proposition 2.3.3). If, for each geometric point
s ∈ S, the fibers Xs and Ys fulfill at least one of the following hypotheses, then ζ(X) = ζ(Y ):

(i) Xs and Ys are smooth, projective varieties such that

Tr(ϕ∗|H i(Xs,Q`)) = Tr(ϕ∗|H i(Ys,Q`))

for bd
2
c − 1 even values and dd

2
e − 1 odd values of 1 ≤ i ≤ d, where ϕ is the geometric

Frobenius endomorphism and d = dimXs = dimYs.

(ii) Xs and Ys are abelian varieties of dimension 3 or lower.

Remark 5.2.2. Note that condition (i) includes the case where Xs and Ys are surfaces or
Calabi–Yau 3–folds.

Proof. By Theorem 2.2.4, the derived equivalence Db(X) ∼= Db(Y ) is isomorphic to a
Fourier–Mukai functor ΦP for some P ∈ Db(X × Y ).

Let f : X → S and g : Y → S be the canonical maps.
By Theorem 5.1.11, the maps Ψeven

P,S and Ψodd
P,S give isomorphisms between the even and

odd `–adic étale Mukai–Hodge structures of f and g:

R̃even(f) ∼= R̃even(g) and R̃odd(f) ∼= R̃odd(g). (5.4)

Let s ∈ S be a gometric point. Since f and g are proper, by the proper base change
theorem (Theorem 1.3.7), given any geometric point s ∈ S, (Rif∗(Q`))s = H i(Xs,Q`) and
(Rig∗(Q`))s = H i(Ys,Q`), and so localizing the isomorphism (5.4) at s yields:⊕

i

H2i(Xs,Q`(i)) ∼=
⊕
i

H2i(Ys,Q`(i))⊕
i

H2i−1(Xs,Q`(i)) ∼=
⊕
i

H2i−1(Ys,Q`(i)).
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Hence the fibers Xs and Ys have isomorphic even and odd Mukai–Hodge structures. If Xs and
Ys satisfy condition (i) or (ii), then by Theorems 3.3.6 and Proposition 4.2.1, ζ(Xs) = ζ(Ys).
In order to show that ζ(X) = ζ(Y ), it suffices to prove equality of zeta functions on all fibers
over geometric points of s.

Remark 5.2.3. The hypothesis of Theorem 5.2.1 only holds when, in the notation of the
theorem, all fibers of X and Y over S are smooth, which is rare.
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