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Abstract. Given an essential semilattice congruence ≡ on the left weak order of a
Coxeter group W , we define the Coxeter stack-sorting operator S≡ : W → W by
S≡(w) = w

(
π≡↓ (w)

)−1, where π≡↓ (w) is the unique minimal element of the congruence
class of ≡ containing w. When ≡ is the sylvester congruence on the symmetric group Sn,
the operator S≡ is West’s stack-sorting map. When ≡ is the descent congruence on Sn, the
operator S≡ is the pop-stack-sorting map. We establish several general results about Cox-
eter stack-sorting operators, especially those acting on symmetric groups. For example, we
prove that if≡ is an essential lattice congruence on Sn, then every permutation in the image
of S≡ has at most b2(n−1)/3c right descents; we also show that this bound is tight.

We then introduce analogues of permutree congruences in types B and Ã and use them
to isolate Coxeter stack-sorting operators sB and s̃ that serve as canonical type-B and type-Ã
counterparts of West’s stack-sorting map. We prove analogues of many known results about
West’s stack-sorting map for the new operators sB and s̃. For example, in type Ã, we obtain
an analogue of Zeilberger’s classical formula for the number of 2-stack-sortable permuta-
tions in Sn.
Keywords. Stack-sorting, Coxeter group, weak order, semilattice congruence, descent,
valid hook configuration
Mathematics Subject Classifications. 06A12, 06B10, 37E15, 05A05, 05E16

1. Introduction

1.1. Coxeter Stack-Sorting Operators

A semilattice congruence on a meet-semilattice M is an equivalence relation ≡ on M that re-
spects meets. More precisely, this means that if x1 ≡ x2 and y1 ≡ y2, then (x1∧y1) ≡ (x2∧y2).
If M has a minimal element and is locally finite, then every congruence class of ≡ has a unique
minimal element, and we denote by π≡↓ : M →M the projection map that sends each element of
M to the unique minimal element of its congruence class. We omit the superscript and write π↓
when the congruence≡ is clear from context. IfM is a lattice, then a lattice congruence onM is

https://www.combinatorial-theory.org
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an equivalence relation on M that respects both meets and joins, meaning x1 ≡ x2 and y1 ≡ y2

together imply (x1 ∧ y1) ≡ (x2 ∧ y2) and (x1 ∨ y1) ≡ (x2 ∨ y2).
Let (W,S) be a Coxeter system, and let 6L and 6R denote, respectively, the left and right

weak orders onW . The posets (W,6L) and (W,6R) are isomorphic to each other, and a founda-
tional theorem due to Björner [8] states that they are complete meet-semilattices. We write x∧y
for the meet of two elements x, y ∈ W in the left weak order. If W is finite, then the left and
right weak orders onW are lattices; in this case, we write x∨ y for the join of x and y in the left
weak order.

Semilattice congruences and lattice congruences on weak orders of Coxeter groups have
been studied extensively [2, 17, 45, 47, 44, 39, 34, 37, 49, 51, 52, 54, 55, 56, 57, 58, 59], es-
pecially due to their strong connections with polyhedral geometry, Hopf algebras, and cluster
algebras. One of the quintessential examples of a lattice congruence is provided by the sylvester
congruence ≡syl on the symmetric group Sn [36], which is closely related to Tamari lattices,
associahedra, and the Hopf algebra of binary plane trees [40, 41]; we define this congruence
in Section 6. The sylvester congruence is the prototypical example of a Cambrian congruence
[49, 54, 55, 56, 57, 58, 59]. Other notable lattice congruences on symmetric groups are the per-
mutree congruences [45], the k-twist congruences [44], and the Baxter congruences [39, 34].

Another important semilattice congruence, defined on an arbitrary Coxeter group W , is the
descent congruence, which we denote by≡des. Two elements ofW are equivalent in the descent
congruence if and only if they have the same right descent set. The descent congruence on
the symmetric group Sn provides one of the other primary motivating examples of a permutree
congruence besides the sylvester congruence.

A semilattice congruence ≡ on the left weak order of W is called essential1 if the identity
element e ∈ W belongs to a singleton congruence class.

Definition 1.1. Let (W,S) be a Coxeter system, and let≡ be an essential semilattice congruence
on the left weak order of W . Define the Coxeter stack-sorting operator S≡ : W → W to be the
map given by S≡(w) = w

(
π≡↓ (w)

)−1 for all w ∈ W .

The motivation for the name Coxeter stack-sorting operator comes from two special cases.
First, when W is the symmetric group Sn and ≡syl is the sylvester congruence, the map S≡syl

is
West’s stack-sorting map. Indeed, this is the content of [25, Corollary 16] (where the map π≡syl

↓
goes by the name swd), and it is also a special case of Proposition 6.4 below. This map was
originally defined by West [63] as a deterministic variant of a stack-sorting machine introduced
by Knuth [38]. West’s stack-sorting map, which we will often simply call the stack-sorting
map, has now received vigorous attention and has found connections with several other parts of
combinatorics [10, 12, 11, 13, 28, 22, 21, 25, 23, 29, 35, 42, 60, 64, 33]. The second motivation
for our terminology comes from the fact that when ≡des is the descent congruence on W = Sn,
the map S≡des

is the pop-stack-sorting map. This function, which is a deterministic analogue of
a pop-stack-sorting machine introduced by Avis and Newborn in [5], first appeared in a paper of
Ungar’s about directions determined by points in the plane [62]; it has received a great deal of
attention over the past few years [1, 3, 4, 26, 32, 18, 19, 48].

1As discussed in [2, 37, 47, 51], lattice congruences of symmetric groups give rise to fans called quotient fans.
A lattice congruence on Sn is essential if and only if the corresponding quotient fan is essential.
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Remark 1.2. In order to earn the title of sorting operator, a map f : W → W better have the
property that for every w ∈ W , there is some t > 0 such that f t(w) = f t+1(w) = e. This is
precisely why we require ≡ to be essential in Definition 1.1. Indeed, if we allowed for the case
where x ≡ e for some x ∈ W \ {e}, then x would be a fixed point of S≡.
Remark 1.3. The authors of the recent paper [15] introduced a different generalization of West’s
stack-sorting map that uses pattern-avoiding stacks; this notion has spawned several subsequent
articles in recent years [6, 7, 14, 16, 30]. While these pattern-avoiding stacks are certainly in-
teresting, we believe our Coxeter stack-sorting operators are more natural from an algebraic and
lattice-theoretic point of view.

The recent article [46] also generalizes stack-sorting to the realm of permutrees. However,
the approach and the results in that paper are quite different from ours.
Remark 1.4. The downward projection map π≡↓ is crucial when ≡ is a Cambrian congruence
on a Coxeter group W because its image is the set of sortable elements [54, 58, 59]. Although
Reading originally named these elements sortable because of the connection with West’s stack-
sorting map and Knuth’s stack-sorting machine, he did not study Coxeter stack-sorting operators.
For an arbitrary semilattice congruence ≡ on W , the elements of the image of π≡↓ can still be
called the sortable elements in our setting because they are the elements of W that get sorted
into the identity e after only a single application of S≡.

In [26], the author investigated the Coxeter stack-sorting operators S≡des
corresponding to

descent congruences on Coxeter groups, which were called Coxeter pop-stack-sorting operators.
Our goal in this paper is to initiate the investigation of Coxeter stack-sorting operators more
generally and to consider specific Coxeter stack-sorting operators that are more closely related
to West’s stack-sorting map.

1.2. Outline

In order to motivate many of our results, it is helpful to discuss previous work on West’s stack-
sorting map. We do this in Section 2, where we simultaneously present a more thorough synopsis
of our main theorems from Sections 5, 7, and 8 than what we give here. Section 3 summarizes
some basic facts and terminology related to Coxeter groups that we will need later. In Section 4,
we establish results that hold for arbitrary Coxeter stack-sorting operators. For example, we will
prove that the statistic that keeps track of the number of preimages of an element ofW under S≡
is a decreasing function on the left weak order. Section 5 investigates the maximum number of
right descents that a permutation in Sn in the image of a Coxeter stack-sorting operator can have.
In Section 6, we discuss permutrees and permutree congruences, and we show that Coxeter stack-
sorting operators associated to permutree congruences can be described in terms of postorder
readings of decreasing permutrees. This provides a useful combinatorial model for dealing with
these permutree stack-sorting operators. In Section 7, we introduce analogues of permutrees
and permutree congruences for the hyperoctahedral groups Bn. One specific type-B permutree
congruence onBn, which we call the type-B sylvester congruence, yields a Coxeter stack-sorting
operator sB that can be seen as the canonical type-B analogue of West’s stack-sorting map;
much of Section 7 is devoted to studying this operator. In Section 8, we introduce analogues of
permutrees and permutree congruences for the affine symmetric groups S̃n. One specific choice
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of an affine permutree congruence on S̃n, which we call the affine sylvester congruence, yields
a Coxeter stack-sorting operator s̃ that serves as a canonical type-Ã analogue of West’s stack-
sorting map; a large portion of Section 8 concerns this operator. Finally, Section 9 lists several
suggestions for potential future work.

2. West’s Stack-Sorting Map

In this paper, a permutation of size n is a bijection w : [n]→ X for some n-element setX ⊆ Z.
We write permutations as words in one-line notation. The symmetric group Sn is the set of
permutations of the set [n] = {1, . . . , n}. The standardization of a permutation w of size n
is the permutation in Sn obtained by replacing the ith-smallest entry in w with i for all i. For
example, 7(−6)46 is a permutation of size 4 whose standardization is 4123.

Let s denote West’s stack-sorting map. A simple recursive definition of s is as follows. First,
define s(ε) = ε, where ε is the empty permutation. Given a nonempty permutationwwith largest
entry m, we can write w in one-line notation as LmR. Then define s(w) to be s(L) s(R)m. For
example,

s(4723165) = s(4) s(23165) 7 = 4 s(231) s(5) 67 = 4 s(2) s(1) 3567 = 4213567.

We say a permutation w is t-stack-sortable if st(w) is an increasing permutation. It fol-
lows from Knuth’s analysis [38] that a permutation is 1-stack-sortable if and only if it avoids
the pattern 231; Knuth also showed that the number of 231-avoiding permutations in Sn is the
nth Catalan number Cn = 1

n+1

(
2n
n

)
(see [10, Chapters 4 and 8]). There has been a great deal

of work dedicated to understanding 2-stack-sortable permutations (see [10, 12, 11, 13, 28, 22,
35, 64, 33] and the references therein); the first major result proved about these permutations
was Zeilberger’s theorem, which states that the number of 2-stack-sortable permutations in Sn
is 2

(n+1)(2n+1)

(
3n
n

)
[64]. The elegance of this formula served as a major impetus for further inves-

tigations of the enumerative properties of t-stack-sortable permutations. For example, Úlfarsson
later characterized 3-stack-sortable permutations [61]; only recently were these permutations
enumerated via a complicated recurrence relation [22].

Consider the affine symmetric group S̃n, as defined in Section 8. We will introduce a specific
Coxeter stack-sorting operator s̃ : S̃n → S̃n. Let us say an affine permutation w ∈ S̃n is t-stack-
sortable if s̃t(w) = e. In Section 8, we will see that 1-stack-sortable affine permutations are also
characterized by the property of avoiding the pattern 231. A theorem due to Crites [20] states
that the number of 231-avoiding affine permutations in S̃n is

(
2n−1
n

)
. We will enumerate 2-

stack-sortable affine permutations, thereby obtaining an affine analogue of Zeilberger’s seminal
formula. To be more precise, let us write W̃2(n) for the set of 2-stack-sortable elements of S̃n,
and let I(q) =

∑
n>0

2
(n+1)(2n+1)

(
3n
n

)
qn and Ĩ(q) =

∑
n>1|W̃2(n)|qn. We will prove that

Ĩ(q) =
qI ′(q)

I(q)(I(q)− 1)
− 1.

Given a set X , a function f : X → X , and an element x ∈ X , we define the forward
orbit of x under f to be the set Of (x) = {x, f(x), f 2(x), . . .}. When confronted with such a
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dynamical system, it is natural to consider the sizes of the forward orbits, and it is particularly
natural to ask for sup

x∈X
|Of (x)|. Additional motivation for studying this quantity when f is a

sorting operator comes from the observation that it measures the worst-case complexity of the
sorting procedure. West [63] proved that max

w∈Sn
|Os(w)| is n, which happens to be the Coxeter

number of Sn. In Section 4, we invoke a theorem from [26] to see that if W is an arbitrary finite
irreducible Coxeter group and w ∈ W , then the size of the forward orbit of w under a Coxeter
stack-sorting operator is at most the Coxeter number ofW . It follows that every forward orbit of
the specific map sB : Bn → Bn that we define in Section 7 has size at most the Coxeter number
of Bn, which is 2n. However, we improve this estimate in Section 7, showing that

max
w∈Bn

|OsB(w)| = n+ 1.

If w ∈ Sn, then the number of right descents of s(w) is at most b(n−1)/2c (see [29] and
[10, Chapter 8, Exercise 18]). This result is natural if one thinks of the stack-sorting map as a
genuine sorting procedure and views the number of right descents of a permutation in Sn as a
measure of how “far away” the permutation is from being sorted into the identity. In Section 5,
we prove that a similar result completely fails for arbitrary Coxeter stack-sorting operators on
symmetric groups. Namely, we show that for each n > 2, there exist a permutation w ∈ Sn and
an essential semilattice congruence ≡ on (Sn,6L) such that S≡(w) has n − 2 right descents.
However, we will see that there is a nontrivial upper bound on the number of right descents
when we restrict our attention to lattice congruences. We prove that if ≡ is an essential lattice
congruence on (Sn,6L), then every permutation in the image of S≡ has at most b2(n−1)/3c right
descents. Moreover, we will see that this bound is tight because it is attained when ≡ is the
descent congruence. In Section 7, we find that the maximum number of right descents that an
element of Bn in the image of sB can have is bn/2c. In Section 8, we prove that the maximum
number of right descents that an element of S̃n in the image of s̃ can have is also bn/2c.

The number of preimages of a permutation w ∈ Sn under the stack-sorting map is called
the fertility of w. In [25], the author proved that the fertility of w only depends on the sylvester
class of w. An analogous result fails for arbitrary Coxeter stack-sorting operators, but we will
see that it does hold for s̃, the affine analogue of the stack-sorting map. Define the fertility of
an element w ∈ S̃n to be |s̃−1(w)|. We will see that the fertility of w is finite and only depends
on the affine sylvester class of w. (The affine sylvester congruence is the semilattice congruence
used to define s̃.) In fact, we will prove that for every t > 0, the number of preimages of w
under s̃t is finite and only depends on the affine sylvester class of w.

In [29], Engen, Miller, and the present author defined a permutation to be uniquely sorted if
its fertility is 1. They proved the following characterization of these permutations.

Proposition 2.1 ([29]). Let n > 1. A permutation of size n is uniquely sorted if and only if it
is in the image of the stack-sorting map s and has exactly n−1

2
descents. In particular, there are

no uniquely sorted permutations of size n if n is even.

Quite surprisingly, uniquely sorted permutations are counted by a fascinating sequence called
Lassalle’s sequence (sequence A180874 in [43]), which is the sequence of absolute values of the
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classical cumulants of the standard semicircular distribution [29]. Uniquely sorted permutations
also possess several other remarkable enumerative properties [29, 21, 42, 60].

Let us say an affine permutation w ∈ S̃n is uniquely sorted if its fertility is 1. We prove in
Section 8 that an element of S̃n is uniquely sorted if and only if it is in the image of s̃ and has
exactly n

2
right descents. In particular, there are no uniquely sorted affine permutations in S̃n

when n is odd. When n > 2 is even, there are infinitely many uniquely sorted elements of S̃n.
Because we know (by Theorem 7.3) that the fertility of an element of S̃n only depends on its
affine sylvester class, it is natural to define an affine sylvester class in S̃n to be uniquely sorted
if its elements are uniquely sorted. We prove that the number of uniquely sorted affine sylvester
classes in S̃2k is

3

(
4k

k

)
− 2

k∑
i=0

(
4k

i

)
.

This appears to be the first combinatorial interpretation for these numbers, which form sequence
A107026 in [43].

Much of the author’s work on the stack-sorting map has relied on a certain Decomposition
Lemma, which provides a recursive method for computing the fertility of a permutation, and a
certain Fertility Formula, which gives an explicit expression for the fertility of a permutation as a
sum over combinatorial objects called valid hook configurations. These tools have led to several
new results about the stack-sorting map, including the aforementioned recurrence for counting
3-stack-sortable permutations [22], theorems about uniquely sorted permutations [29, 21, 42,
60], a very surprising and useful connection with cumulants in noncommutative probability
theory [28], and connections with certain polytopes called nestohedra [23]. In Section 8, we
introduce affine valid hook configurations, and we prove analogues of the Decomposition Lemma
and the Fertility Formula for affine permutations. These tools are what allow us to enumerate
uniquely sorted affine sylvester classes.

3. Coxeter Groups

We assume basic familiarity with the combinatorics of Coxeter groups; a standard reference for
the subject is [9]. We will often refer to a Coxeter group W with the understanding that we are
really referring to a Coxeter system (W,S) for some specific set S of simple generators. We let e
denote the identity element of W . Thus, W has a presentation of the form 〈S : (ss′)m(s,s′) = e〉
such that m(s, s) = 1 for all s ∈ S and m(s, s′) = m(s′, s) ∈ {2, 3, . . .} ∪ {∞} for all
distinct s, s′ ∈ S. The length of an element w ∈ W , denoted `(w), is the length of a reduced
word for w. The left weak order on W is the partial order 6L on W defined by saying x 6L y
if `(yx−1) = `(y) − `(x). The right weak order on W is the partial order 6R on W defined
by saying x 6R y if `(x−1y) = `(y) − `(x). The map W → W given by w 7→ w−1 is an
isomorphism from the left weak order to the right weak order. WhenW is finite, there is also an
automorphism α of the left (and also the right) weak order given by α(w) = w0ww0, where w0

is the longest element of W . A right descent of an element w ∈ W is a simple generator s ∈ S
such that `(ws) < `(w); the collection of all right descents of w is the right descent set of w,
which we denote by DR(w). Equivalently, DR(w) = {s ∈ S : s 6L w}. A Coxeter element of
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a finite Coxeter groupW is an element obtained by multiplying the simple generators together in
some order; all Coxeter elements have the same order inW , which is called the Coxeter number
of W . A Coxeter group is called irreducible if its Coxeter diagram is a connected graph.

The Coxeter groups of type A are the symmetric groups Sn. The elements of Sn are per-
mutations of [n], which we write as words in one-line notation. The simple generators of Sn
are s1, . . . , sn−1, where si = (i i + 1) is the transposition that swaps i and i + 1. The trans-
position si is a right descent of a permutation w ∈ Sn if and only if w(i) > w(i + 1). A
right inversion (respectively, left inversion) of w is a pair (i, j) such that 1 6 i < j 6 n and
w(i) > w(j) (respectively, w−1(i) > w−1(j)). For v, w ∈ Sn, we have v 6L w (respectively,
v 6R w) if and only if every right (respectively, left) inversion of v is a right (respectively, left)
inversion of w. The number of right (equivalently, left) inversions of w is `(w).

Recall that, in this article, a permutation of size n is a bijection w : [n]→ X , where X ⊆ Z
has cardinality n. The one-line notation of w is the word w(1) · · ·w(n). The plot of w is the
diagram showing the points (i, w(i)) ∈ R2 for all i ∈ [n]. It is often convenient to consider plots
modulo horizontal translation. In other words, moving all points in the plot of w to the right
or left by some fixed distance gives another diagram that we still call the plot of w. We write
Des(w) for the set of indices i ∈ [n− 1] such that w(i) > w(i+ 1); such indices are called the
descents of w. We have i ∈ Des(w) if and only if si ∈ DR(w).

We will often make use of the automorphism α of the group Sn defined by α(w) = w0ww0,
where w0 = n(n− 1) · · · 321 is the longest element of Sn. The one-line notation of α(w) is

(n+ 1− w(n))(n+ 1− w(n− 1)) · · · (n+ 1− w(1)).

The plot of α(w) is obtained by rotating the plot ofw by 180◦. As mentioned above, α is a lattice
automorphism of the left (and also the right) weak order on Sn. Therefore, given a semilattice
congruence≡ on (Sn,6L), we can consider the semilattice congruence α(≡) defined by saying
v α(≡)w if and only if α(v) ≡ α(w). For all w ∈ Sn, we have

π
α(≡)
↓ (α(w)) = α(π≡↓ (w)) and Sα(≡)(α(w)) = α(S≡(w)). (3.1)

4. General Results

In this section, we collect some general facts about arbitrary Coxeter stack-sorting operators.
We first address the problem of determining the maximum size of a forward orbit of a Coxeter

stack-sorting operator S≡ : W → W when W is a finite irreducible Coxeter group. Recall from
Remark 1.2 that our definition of a Coxeter stack-sorting operator guarantees that every forward
orbit of S≡ contains e, which is a fixed point. Thus, we will be concerned with the maximum
number of iterations of S≡ needed to send an element to the identity.

Let W be an arbitrary Coxeter group. In [26], the author defined a map f : W → W
to be compulsive if f(w) 6R w and f(w) 6R ws for all w ∈ W and all s ∈ DR(w). He
proved that if W is finite and irreducible and f is compulsive, then sup

w∈W
|Of (w)| 6 h, where h

is the Coxeter number of W . We will see that Coxeter stack-sorting operators are compulsive.
First, we need a simple lemma that gives an alternative characterization of essential semilattice
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congruences. Recall that an equivalence relation ≡ is said to refine an equivalence relation ≡′
if every equivalence class of ≡ is contained in an equivalence class of ≡′.

Lemma 4.1. A semilattice congruence≡ on the left weak order of a Coxeter groupW is essential
if and only if it refines the descent congruence ≡des on W .

Proof. Every refinement of the descent congruence is certainly essential because e is the only
element of W with an empty right descent set. For the converse, suppose ≡ is an essential
semilattice congruence on the left weak order of W . Let S be the set of simple generators of
W . Consider v, w ∈ W such that v ≡ w. Let s ∈ S. Because ≡ is a semilattice congruence,
we have v ∧ s ≡ w ∧ s. Both v ∧ s and w ∧ s are less than or equal to s in the left weak order,
so they must belong to {e, s}. Since e 6≡ s, we deduce that v ∧ s = w ∧ s. Therefore, v >L s
if and only if w >L s. In other words, s ∈ DR(v) if and only if s ∈ DR(w). As this is true for
all s ∈ S, we conclude that DR(v) = DR(w), meaning v ≡des w.

Proposition 4.2. Let≡ be an essential semilattice congruence on the left weak order of a Coxeter
group W . The Coxeter stack-sorting operator S≡ is compulsive. If W is finite and irreducible
and has Coxeter number h, then

max
w∈W
|OS≡(w)| 6 h.

Proof. To prove that S≡ is compulsive, we must prove that S≡(w) 6R wx for every w ∈ W
and x ∈ DR(w) ∪ {e}. Fix such elements w and x. Let π↓ be the downward projection map
associated to ≡. Because w ≡ π↓(w), it follows from Lemma 4.1 that DR(w) = DR(π↓(w)).
Since x ∈ DR(w) ∪ {e} = DR(π↓(w)) ∪ {e}, we have `(wx) = `(w) − `(x) and
`(π↓(w)x) = `(π↓(w))− `(x). We know that π↓(w) 6L w and S≡(w) = w(π↓(w))−1, so
`(S≡(w)) + `(π↓(w)) = `(w). Hence,

`
(
(S≡(w))−1wx

)
= `(π↓(w)x)

= `(π↓(w))− `(x)

= `(w)− `(x)− `(S≡(w))

= `(wx)− `(S≡(w)).

This shows that S≡(w) 6R wx, completing the proof that S≡ is compulsive. The last statement
in the theorem follows from Theorem 1.4 in [26].

The Coxeter number of Sn is n. Therefore, Proposition 4.2 states that if S≡ is a Coxeter
stack-sorting operator on Sn, then Sn−1

≡ (w) = e for all w ∈ Sn.
In [10, Chapter 8, Exercise 23], Bóna asks the reader to find the permutation in Sn that

has the maximum number of preimages under the stack-sorting map. As one might expect, the
answer is the identity permutation e = 123 · · ·n. The number of preimages of 123 · · ·n under
the stack-sorting map is the nth Catalan number Cn = 1

n+1

(
2n
n

)
, and every other permutation in

Sn has strictly fewer thanCn preimages. This result is a special case of the following proposition
because the number of congruence classes of the sylvester congruence on Sn is the number of
binary plane trees with n vertices, which is Cn.
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Proposition 4.3. Let≡ be an essential semilattice congruence on the left weak order of a Coxeter
group W . Let K be the number of congruence classes of ≡, and assume K is finite. Then
|S−1
≡ (e)| = K, and |S−1

≡ (v)| < K for every v ∈ W \ {e}.

Proof. The elements of S−1
≡ (e) are precisely the minimal elements of the congruence classes,

so |S−1
≡ (e)| = K. Now consider v ∈ W \ {e}. If w ∈ S−1

≡ (v), then v−1w = v−1S≡(w)π↓(w) =
π↓(w) ∈ S−1

≡ (e), and we know that π↓(w) 6= e because e is in a singleton congruence class. It fol-
lows that the mapw 7→ v−1w is an injection fromS−1

≡ (v) intoS−1
≡ (e)\{e}, so |S−1

≡ (v)| 6 K − 1.

One of the main results of [24] states that |s−1(w)| 6 |s−1(s(w))| for all w ∈ Sn, with
equality if and only if w = e. In other words, this theorem says that the action of the stack-
sorting map causes fertilities of permutations to increase monotonically. The analogous re-
sult fails for an arbitrary Coxeter stack-sorting operator, even if we restrict our attention to Sn.
For example, if S≡des

is the pop-stack-sorting map on S5, then S≡des
(24135) = 21435, but

|S−1
≡des

(24135)| = 3 > 2 = |S−1
≡des

(21435)|. Nonetheless, there is still a certain monotonicity re-
sult that holds for all Coxeter stack-sorting operators.

Theorem 4.4. Let W be a Coxeter group, and let S≡ : W → W be a Coxeter stack-sorting
operator. If v, w ∈ W are such that v 6L w, then |S−1

≡ (v)| > |S−1
≡ (w)|.

Proof. It suffices to prove the result when `(w) = `(v)+1. In this case, we can writew = sv for
some simple generator s ∈ S. Choose an arbitrary u ∈ S−1

≡ (w). We can write
u = S≡(u)π↓(u) = wπ↓(u) = svπ↓(u), where `(u) = 1+ `(v)+ `(π↓(u)) because π↓(u) 6L u.
Then π↓(u) 6L vπ↓(u) = su 6L u. Because ≡ is a semilattice congruence and u ≡ π↓(u), we
have su = u ∧ su ≡ π↓(u) ∧ su = π↓(u). Consequently, π↓(su) = π↓(u). If follows that

S≡(su) = su(π↓(su))−1 = su(π↓(u))−1 = sS≡(u) = sw = v.

Hence, we have an injection S−1
≡ (w)→ S−1

≡ (v) given by u 7→ su.

5. Descents After Coxeter Stack-Sorting in Symmetric Groups

Recall that we write s for West’s stack-sorting map, which coincides with the Coxeter stack-
sorting operator S≡syl

defined using the sylvester congruence.
In this section, we analyze Coxeter stack-sorting operators on symmetric groups. It is natural

to use the number of right descents of a permutation w ∈ Sn as a measure of how “far away” w
is from the identity permutation. Given that a Coxeter stack-sorting operator on Sn is called a
sorting operator, we might hope that the permutations in its image would be somewhat “close”
to the identity. For example,

max
w∈Sn
|DR(s(w))| =

⌊
n− 1

2

⌋
(5.1)

for all n > 1 (see [29] and [10, Chapter 8, Exercise 18]). Is something similar true for other
Coxeter stack-sorting operators?
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If we allow≡ to be an arbitrary essential semilattice congruence on the left weak order of Sn,
then max

w∈Sn
|DR(S≡(w))| can be as large as n−2, as we will see below in Theorem 5.2. However, it

turns out that if we require ≡ to be a lattice congruence, then the inequality
max
w∈Sn
|DR(S≡(w))| 6 b2(n−1)/3c holds. We will also see that this bound is tight.

Given a posetQ and elements u, v ∈ Qwith u 6 v, we write [u, v] for {q ∈ Q : u 6 q 6 v},
the closed interval in Q between u and v. A meet-semilattice is called locally finite if every one
of its closed intervals is finite.

Lemma 5.1. LetM be a locally finite meet-semilattice with a minimal element 0̂, and let u, v∈M
be such that u 6 v. There exists a semilattice congruence on M that has [u, v] as a congruence
class.

Proof. Let us say an equivalence relation ∼ on M is cheerful if the following two conditions
hold:

• [u, v] is an equivalence class of ∼;

• if w 66 v, then w is in a singleton equivalence class of ∼.

We are going to construct a sequence ∼1,∼2, . . . of cheerful equivalence relations on W . First,
let∼1 be the equivalence relation whose equivalence classes are [u, v] and the singleton sets {w}
for w ∈M \ [u, v]; it is clear that ∼1 is cheerful.

Now let j > 1, and suppose we have already constructed the cheerful equivalence rela-
tion ∼j . Define the relation ∼′j by saying z1 ∼′j z2 if and only if either z1 ∼j z2 or there exist
x1, x2, y1, y2 ∈ M with x1 ∼j x2, y1 ∼j y2, x1 ∧ y1 = z1, and x2 ∧ y2 = z2. Let ∼j+1 be
the transitive closure of ∼′j . To see that ∼j+1 is cheerful, we first need to show that [u, v] is
an equivalence class of ∼j+1. Notice that [u, v] is certainly contained in an equivalence class
of ∼j+1 because it is an equivalence class of ∼j . Now suppose, by way of contradiction, that
[u, v] is properly contained in an equivalence class of ∼j+1. Then there exist z1 ∈ M \ [u, v]
and z2 ∈ [u, v] such that z1 ∼′j z2. We know that z1 6∼j z2 because ∼j is cheerful, so there must
exist x1, x2, y1, y2 ∈ M with x1 ∼j x2, y1 ∼j y2, x1 ∧ y1 = z1, and x2 ∧ y2 = z2. Observe
that x2, y2 > z2 > u. If x1 6= x2, then x2 6 v because ∼j is cheerful. In this case, x2 ∈ [u, v],
so x1 ∈ [u, v], again because ∼j is cheerful. Similarly, if y1 6= y2, then y1, y2 ∈ [u, v]. Since
x1 ∧ y1 = z1 6∈ [u, v], the elements x1 and y1 cannot both belong to [u, v]. Thus, either x1 = x2

or y1 = y2. Without loss of generality, assume x1 = x2. We know that y1 6= y2 because z1 6= z2.
Consequently, y1, y2 ∈ [u, v]. We find that x1 = x2 > u and y1 > u, so z1 > u. However,
z1 6 y1 6 v, and this contradicts the assumption that z1 6∈ [u, v]. Hence, [u, v] is an equivalence
class of ∼j+1.

Consider w ∈ M with w 66 v. Suppose, by way of contradiction, that {w} is not an equiv-
alence class of ∼j+1. Then w ∼′j z for some z 6= w. We know that w 6∼j z because ∼j is
cheerful. Therefore, there exist x′1, x′2, y′1, y′2 ∈ M with x′1 ∼j x′2, y′1 ∼j y′2, x′1 ∧ y′1 = w, and
x′2 ∧ y′2 = z. Because w 66 v, we have x′1 66 v and y′1 66 v. Since ∼j is cheerful, we must have
x′1 = x′2 and y′1 = y′2, so w = z. This is a contradiction, so we deduce that ∼j+1 is cheerful.

By induction, all of the equivalence relations∼1,∼2, . . . are cheerful. The fact that M is lo-
cally finite (in particular, [0̂, v] is finite) implies that there is someN > 1 such that∼N and∼N+1
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are identical. Thus, ∼N is the same as ∼′N . It follows from our construction of ∼′N from ∼N
that∼N is a semilattice congruence onM . Because∼N is cheerful, it has [u, v] as a congruence
class.

A subset E of a poset is called convex if for all x, y ∈ E, we have [x, y] ⊆ E. A simple
consequence of the definition of a semilattice congruence, which we will need in the proof of
the next proposition, is that every congruence class of a semilattice congruence is convex.

Theorem 5.2. For each n > 2, we have

max
≡

max
w∈Sn
|DR(S≡(w))| = n− 2,

where the first maximum is over all essential semilattice congruences on the left weak order
of Sn.

Proof. It follows from Definition 1.1 that the decreasing permutationn(n−1) · · · 321 is not in the
image of any Coxeter stack-sorting operator on Sn. Therefore, max

≡
max
w∈Sn
|DR(S≡(w))| 6 n− 2.

Let k = dn/2e. Define u ∈ Sn by u(i) = (i + 1)/2 for i odd and u(i) = k + i/2 for i
even. Define v ∈ Sn by v(i) = k − (i − 1)/2 for i odd and v(i) = n + 1 − i/2 for i even. For
example, when n = 7, we have u = 1526374 and v = 4736251. One can readily verify that
every right inversion of u is a right inversion of v, so u 6L v. Moreover, Des(u) = Des(v),
so u ≡des v. The congruence classes of ≡des are convex, so [u, v] is contained in one such
congruence class. The left weak order on a Coxeter group is locally finite and has e as its unique
minimal element. According to Lemma 5.1, there is a semilattice congruence ≡ on (Sn,6L)
that has [u, v] as a congruence class. Let ≡′ be the common refinement of ≡ and ≡des. In
other words, we define ≡′ by declaring x ≡′ y if and only if x ≡ y and x ≡des y. Then
≡′ is an essential semilattice congruence on Sn that has [u, v] as a congruence class. Finally,
S≡′(v) = vu−1 = k(k − 1) · · · 21n(n − 1) · · · (k + 2)(k + 1) is a permutation in the image of
S≡′ with n− 2 right descents.

Our next goal is to prove that permutations in the image of a Coxeter stack-sorting operator
arising from a lattice congruence on Sn must have at most b2(n−1)/3c right descents. To do this,
we will make use of a combinatorial description of the lattice congruences on Sn due to Reading.
These concepts are discussed in more detail in [37, 53] and [50, Section 10-5], where they are
formulated in terms of the right weak order on Sn; it is easy to translate to the left weak order
by taking inverses of permutations.

Fix n > 2. Suppose v lL w is a cover relation in the left weak order on Sn. Then w = siv
for some i ∈ [n− 1]. If we let v−1(i) = a and v−1(i+ 1) = b and let (a b) be the transposition
that swaps a and b, then w = v (a b). Let R = {a+ 1, . . . , b− 1} ∩ v−1([i− 1]) (equivalently,
R = {a+1, . . . , b−1}∩w−1([i−1])). We label the edge (v, w) in the Hasse diagram of (Sn,6L)
with the tuple (a, b;R). The fence associated to the tuple (a, b;R), denoted fen(a, b;R), is the
set of all edges in the Hasse diagram of (Sn,6L) with label (a, b;R). Let

Fenn = {fen(a, b;R) : 1 6 a < b 6 n,R ⊆ {a+ 1, . . . , b− 1}}
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be the set of all such fences. The forcing order is the partial order�f on Fenn given by declaring
fen(a, b;R) �f fen(a′, b′;R′) whenever a 6 a′ < b′ 6 b and R′ = R ∩ {a′ + 1, . . . , b′ − 1}.
Figure 5.1 shows the four fences of the left weak order on S3 and the corresponding forcing
order.

Figure 5.1: On the left is the left weak order on S3 and its fences, which are represented by
different colors. On the right is the forcing order on Fen3.

For each lattice congruence ≡ on (Sn,6L), let η(≡) be the set of edges (v, w) in the Hasse
diagram of (Sn,6L) such that v ≡ w. Let Ψ(≡) be the collection of fences in Fenn that have a
nonempty intersection with η(≡). In other words, fen(a, b;R) is in Ψ(≡) if and only if there is
an edge (v, w) with label (a, b;R) such that v ≡ w.

The following theorem appeared originally as [53, Theorem 4.6]; although, in [37, Theo-
rem 4], it was reformulated in a manner closer to what we have presented.

Theorem 5.3 ([53]). If ≡ is a lattice congruence on (Sn,6L), then η(≡) =
⋃
F∈Ψ(≡) F . Fur-

thermore, the map Ψ is a bijection from the set of lattice congruences on (Sn,6L) to the set of
order ideals of (Fenn,�f).

The following lemma will handle most of the heavy lifting in our proof of Theorem 5.5.

Lemma 5.4. Suppose ≡ is a lattice congruence on (Sn,6L). For w ∈ W and v = π↓(w), let
E≡(w) denote the set of indices i ∈ Des(S≡(w)) such that there exists r ∈ v−1([i−1]) satisfying
v−1(i) < r < v−1(i+ 1). Then |E≡(w)| 6 n− 1− |Des(S≡(w))|.

Proof. For each i ∈ E≡(w), let

Ri = {r ∈ v−1([i−1]) : v−1(i) < r < v−1(i+1)} and R′i = {r′ ∈ v−1([i−1]) : v−1(i) < r′};

these sets are nonempty by the definition of E≡(w). For i ∈ E≡(w), let γ(i)=max{v(r) : r∈Ri}
and γ′(i) = max{v(r′) : r′ ∈ R′i}. We are going to show that γ(i) = γ′(i). We will also prove
that the map γ is an injection from E≡(w) into [n − 1] \ Des(S≡(w)), which will complete the
proof.

Fix i ∈ E≡(w). To ease notation, let a = v−1(i) and b = v−1(i+ 1). Since i ∈ Des(S≡(w))
and S≡(w) = wv−1, we have w(a) > w(b). The definition of E≡(w) implies that a < b, so
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(a, b) is a right inversion of w. The right inversions of siv are the right inversions of v together
with (a, b). Since v 6L w, the right inversions of v are all right inversions of w. Consequently,
siv 6L w. It follows that siv ∈ [v, w], so the congruence class of≡ containing v andwmust also
contain siv (congruence classes are convex). This means that v ≡ siv, so the edge (v, siv) in the
Hasse diagram of (Sn,6L) is in η(≡). This edge has label (a, b;Ri), so fen(a, b;Ri) ∈ Ψ(≡).

Let r1 = v−1(γ′(i)), and note that r1 ∈ R′i by the definition of γ′(i). Let r0 = v−1(γ′(i) + 1).
It follows from the definition of γ′(i) that r0 6 a < r1. Let Q = {q ∈ v−1([γ′(i) − 1]) : r0 <
q < r1}. We want to prove that γ′(i) = γ(i); this is equivalent to showing that r1 ∈ Ri, which
is equivalent to showing that r1 < b. Suppose, by way of contradiction, that r1 > b. Then
every element of Ri is at most γ′(i) − 1, so Q ∩ {a + 1, . . . , b − 1} = Ri. This implies that
fen(r0, r1;Q) �f fen(a, b;Ri). Theorem 5.3 tells us that Ψ(≡) is an order ideal of (Fenn,�f),
so fen(r0, r1;Q) ∈ Ψ(≡). Using Theorem 5.3 again, we find that fen(r0, r1;Q) ⊆ η(≡). Notice
that v(r0 r1) is covered by v in the left weak order because v(r1) = γ′(i) and v(r0) = γ′(i) + 1.
The edge (v(r0 r1), v) in the Hasse diagram has label (r0, r1;Q), so this edge is in the fence
fen(r0, r1;Q). This implies that this edge is in η(≡), so v(r0 r1) ≡ v. However, this contra-
dicts the fact that v is the minimal element of its congruence class (because it is π↓(w)). We
conclude from this contradiction that γ(i) = γ′(i). In particular, v−1(γ(i) + 1) = r0 6 a <
r1 = v−1(γ(i)). As (r0, r1) is a right inversion of v, it must also be a right inversion of w
(since v 6L w). It follows that w(v−1(γ(i))) = w(r1) < w(r0) = w(v−1(γ(i) + 1)), so
γ(i) ∈ [n− 1] \Des(wv−1) = [n− 1] \Des(S≡(w)).

We have shown that γ is a map from E≡(w) to [n− 1] \Des(S≡(w)), so we are left with the
task of proving its injectivity. Suppose i, j ∈ E≡(w) are such that γ(i) = γ(j). Without loss of
generality, we may assume j 6 i. By the definition of γ and the assumption that γ(i) = γ(j),
we have v−1(γ(i)) ∈ Ri ∩ Rj . Therefore, v−1(i) < v−1(γ(i)) < v−1(j + 1). This implies that
j + 1 6= i, so j + 1 ∈ [i− 1] ∪ {i+ 1}. We saw in the previous paragraph that γ′(i) = γ(i). If
j + 1 ∈ [i − 1], then v−1(j + 1) ∈ R′i, so j + 1 6 γ′(i) = γ(i). However, this contradicts the
fact that v−1(γ(i)) ∈ Rj ⊆ v−1([j − 1]). We deduce that j + 1 = i+ 1, so j = i.

In the proof of the following theorem, we use the automorphism α of Sn given by
α(w) = w0ww0, where w0 = n(n − 1) · · · 321. Given a lattice congruence ≡ on (Sn,6L),
recall from Section 3 that we write α(≡) for the lattice congruence defined by saying v α(≡)w

if and only if α(v) ≡ α(w). As stated in (3.1), we have the identities πα(≡)
↓ (α(w)) = α(π≡↓ (w))

and Sα(≡)(α(w)) = α(S≡(w)).

Theorem 5.5. For each n > 1, we have

max
≡

max
w∈Sn
|DR(S≡(w))| =

⌊
2(n− 1)

3

⌋
,

where the first maximum is over all essential lattice congruences on the left weak order of Sn.

Proof. Preserve the notation from Lemma 5.4. Let ≡ be an essential lattice congruence on the
left weak order of Sn, and choose w ∈ Sn. Let v = π≡↓ (w) so that S≡(w) = wv−1.

Because ≡ is essential and v ≡ w, we have Des(v) = Des(w) by Lemma 4.1. Suppose
i ∈ Des(S≡(w)). Then w(v−1(i)) > w(v−1(i + 1)). If we had v−1(i + 1) < v−1(i), then the
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pair (v−1(i + 1), v−1(i)) would be a right inversion of v but not a right inversion of w, contra-
dicting v 6L w. Therefore, v−1(i) < v−1(i + 1). If we had v−1(i + 1) = v−1(i) + 1, then
v−1(i) would be in Des(w) but not not in Des(v), contradicting Des(v) = Des(w). Therefore,
v−1(i+1) > v−1(i)+2. Choose an integer r such that v−1(i) < r < v−1(i+ 1). If v(r) 6 i−1,
then i ∈ E≡(w). Now suppose v(r) > i. We must have v(r) > i + 2 by the choice of r. Ob-
serve that n − i ∈ Des(α(S≡(w))) = Des(Sα(≡)(α(w))). If we let u = π

α(≡)
↓ (α(w)) = α(v),

then u−1(n− i) = n+ 1− v−1(i+ 1) < n+ 1− r < n+ 1− v−1(i) = u−1(n− i+ 1). Fur-
thermore, u(n+ 1− r) = n+ 1− v(r) 6 n− i− 1. This shows that n− i ∈ Eα(≡)(α(w)), so
i ∈ n− Eα(≡)(α(w)).

We have shown that
Des(S≡(w)) ⊆ E≡(w) ∪

(
n− Eα(≡)(α(w))

)
,

so we can invoke Lemma 5.4 to find that
|Des(S≡(w))| 6 |E≡(w)|+ |Eα(≡)(α(w))|

6 n− 1− |Des(S≡(w))|+ n− 1− |Des(Sα(≡)(α(w)))|
= 2n− 2− |Des(S≡(w))| − |Des(α(S≡(w)))|.

The map sj 7→ α(sj) is a bijection from Des(S≡(w)) to Des(α(S≡(w))), so
|Des(S≡(w))| 6 2n− 2− 2|Des(S≡(w))|.

Upon rearranging, we obtain |DR(S≡(w))| = |Des(S≡(w))| 6 2(n−1)
3

.
To prove that equality holds in the theorem, it suffices to exhibit a permutation ζn ∈ Sn

such that |Des(S≡des
(ζn))| =

⌊
2(n−1)

3

⌋
. We begin by recursively constructing the permutations

ζ3, ζ6, ζ9, . . .. Let ζ3 = 231 ∈ S3. For k > 1, we obtain ζ3k+3 from ζ3k by replacing the
entry 3k in ζ3k with the entry 3k + 2 and then appending the entries 3k + 1, 3k + 3, 3k (in this
order) to the end of the resulting permutation. For example, ζ6 = 251463 and ζ9 = 251483796.
Now, suppose n is not divisible by 3, and let m = dn/3e. Let ζn be the standardization of
the permutation formed by the first n entries of ζ3m. For example, if n = 7, then m = 3,
and the permutation formed by the first 7 entries of ζ9 is 2514837. The standardization of this
permutation is ζ7 = 2514736.

A descending run of a permutation w is a maximal consecutive decreasing subsequence of
w. As explained in [26], the map S≡des

is the pop-stack-sorting map, which acts by reversing the
descending runs of a permutation while keeping entries in different descending runs in the same
relative order (this also follows easily from Proposition 6.4 below). For example, the descending
runs of ζ9 are 2, 51, 4, 83, 7, 96, so S≡des

(ζ9) = 215438769. For each k > 1, let
ξ3k−1 = 21543876 · · · (3k − 1)(3k − 2)(3k − 3).

It is straightforward to check by hand that

S≡des
(ζn) =


ξ3k−1(3k) if n = 3k;

ξ3k−1(3k + 1)(3k) if n = 3k + 1;

ξ3k−1(3k + 1)(3k)(3k + 2) if n = 3k + 2

(where juxtaposition represents concatenation). Hence, |Des(S≡des
(ζn))| =

⌊
2(n−1)

3

⌋
.
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6. Permutrees and Postorders

6.1. Permutrees

Pilaud and Pons [45] introduced permutrees as generalizations of permutations, binary plane
trees, Cambrian trees, and binary sequences. These objects provide a rich family of lattice
congruences on (Sn,6L) that contains the equality congruence, the sylvester congruence, the
Cambrian congruences, and the descent congruence. Permutrees also give rise to fascinating
permutree lattices, permutreehedra, and permutree Hopf algebras. We will be interested in
permutrees in this article because they afford Coxeter stack-sorting operators that have useful
combinatorial descriptions in terms of postorder readings. In Sections 7 and 8, we will define
analogues of permutrees for Coxeter groups of type B and type Ã, respectively.

The definition of a permutree makes use of the symbols , , , . A decoration is a
word over the alphabet { , , , }. If v is a vertex in a directed tree T , then a vertex u is
a parent (respectively, child) of v if there is an arrow v → u (respectively, u → v). We say u
is an ancestor (respectively, descendant) of v if there is a directed path with at least one arrow
from v to u (respectively, from u to v).

Definition 6.1. Let δ = δ1 · · · δn ∈ { , , , }n be a decoration. A permutree with decora-
tion δ, also called a δ-permutree, is a directed plane tree T with vertex set V (T ) endowed with
a bijective labeling p : V (T )→ [n] such that

• each vertex v such that δp(v) ∈ { , } has at most 1 parent;

• each vertex v such that δp(v) ∈ { , } has at most 1 child;

• each vertex v such that δp(v) ∈ { , } has at most one parent u satisfying p(u) < p(v);
if such a vertex u exists, then every ancestor u′ of u also satisfies p(u′) < p(v);

• each vertex v such that δp(v) ∈ { , } has at most one parent u satisfying p(u) > p(v);
if such a vertex u exists, then every ancestor u′ of u also satisfies p(u′) > p(v);

• each vertex v such that δp(v) ∈ { , } has at most one child u satisfying p(u) < p(v); if
such a vertex u exists, then every descendant u′ of u also satisfies p(u′) < p(v);

• each vertex v such that δp(v) ∈ { , } has at most one child u satisfying p(u) > p(v); if
such a vertex u exists, then every descendant u′ of u also satisfies p(u′) > p(v).

A parent (respectively, child) u of a vertex v satisfying p(u) < p(v) is called a left parent
(respectively, left child) of v. A parent (respectively, child) u′ of a vertex v satisfying p(u′) >
p(v) is called a right parent (respectively, right child) of v.

Figure 6.1 shows an example of a 7-vertex permutree with decoration .
Following [45], we use the following conventions when drawing a δ-permutree:

• Each edge is directed upward, so we do not need to draw the orientations separately.
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Figure 6.1: A permutree with decoration .

• The vertices are drawn from left to right in the order p−1(1), . . . , p−1(n), so the labeling
p is encoded in the drawing.

• Each vertex p−1(i) is represented by the symbol δi ∈ { , , , }, so the decoration
is encoded in the drawing.

• We draw a vertical red wall emanating up from each vertex v such that δp(v) ∈ { , }.
We draw a vertical red wall emanating down from each vertex v such that δp(v) ∈ { , }.

• We draw extra strands that extend up or down infinitely when a vertex does not have as
many parents or children as its symbol permits it to have.

When v has a red wall emanating up or down from it, we say it emits the red wall. The last
four bulleted items in Definition 6.1 imply that edges in a permutree cannot cross through red
walls.

A linear extension of an n-element poset (Q,6Q) is a bijection σ : Q → [n] such that
σ(x) 6 σ(y) whenever x 6Q y. Associated to a permutree T is a natural partial order � on the
vertex set V (T ) obtained by declaring u � v whenever there is a directed path (possibly with
no edges) from u to v. A decreasing permutree is a pair (T, σ), where T is a permutree with n
vertices and σ : V (T )→ [n] is a linear extension. We think of σ as a labeling of the vertices of
T , and we often write T for the pair (T, σ). When we draw a decreasing permutree, we place
the element with label j at height j.

Consider the following insertion algorithm. Fix δ = δ1 · · · δn ∈ { , , , }n. Consider
a permutation w ∈ Sn. Draw the plot of w with each point (i, w(i)) represented by the symbol
δi. Draw a vertical red wall emanating up from each point represented by or . Draw a
vertical red wall emanating down from each point represented by or . Between any two
downward red walls, and on the far right and the far left, draw an infinite incoming strand. Now
move up the points in the plot from bottom to top. At each step, a point represented by or
attaches to the only incoming strand that it sees, while a point represented by or attaches to
both of the incoming strands that it sees. Furthermore, a point represented by or expels 1
upward strand, while a point represented by or expels two upward strands. This procedure
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Figure 6.2: The insertion algorithm.

finishes with an infinite upward strand between any two consecutive upward red walls and on
the far right and far left.

The end result of the insertion algorithm is a decreasing δ-permutree such that the vertex
p−1(i) is the point (i, w(i)), which has labelw(i). Pilaud and Pons [45] proved that this algorithm
defines a bijection from Sn to the set of decreasing δ-permutrees. The inverse of this bijection is
easier to describe. The permutation w is obtained from the decreasing permutree T by reading
the labels of the vertices p−1(1), . . . , p−1(n) in this order; this is called the in-order reading of
T . We let Iδ(T ) denote the in-order reading of a decreasing δ-permutree T . In other words, if
T = (T, σ), then Iδ(T ) = σ ◦ p−1 = w.

Example 6.2. Suppose w = 1346257 and δ = . The first step of the insertion
algorithm is shown in the top left corner of Figure 6.2. The final result of the algorithm is the
decreasing δ-permutree I−1

δ (w) = (T, σ) shown in the bottom right of the figure. The label
σ(v) of each vertex v (which is also its height) is written next to v.

Define the skeleton of a decreasing permutree T = (T, σ), denoted skel(T ), to be the un-
derlying permutree T . Using the in-order reading bijection Iδ, we can define the δ-skeleton
of a permutation w, denoted skelδ(w), to be the δ-permutree skel(I−1

δ (w)). The δ-permutree
congruence is the equivalence relation ≡δ on Sn defined by saying v ≡δ w if and only if
skelδ(v) = skelδ(w). Pilaud and Pons [45] proved that the δ-permutree congruence is a lattice
congruence on the left weak order of Sn. Therefore, we can consider the Coxeter stack-sorting
operator S≡δ : Sn → Sn defined by S≡δ(w) = w

(
π≡δ↓ (w)

)−1. We call such a map a permutree
stack-sorting operator.
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Example 6.3. Consider the following special choices of the decoration δ:

(I) If δ = n, then the map skelδ is a bijection from Sn to the set of δ-permutrees. In this
case, the δ-permutree congruence is the equality congruence given by v ≡δ w if and only
if v = w. The Coxeter stack-sorting operator S≡δ is the constant map that sends every
permutation in Sn to the identity permutation e.

(II) If δ = n, then δ-permutrees are the same as binary plane trees. In this case, the δ-
permutree congruence is the sylvester congruence≡syl. It follows from [25, Corollary 16]
that the Coxeter stack-sorting operator S≡δ is the same as West’s stack-sorting map s.

(III) If δ ∈ { , }n, then δ-permutrees are called Cambrian trees [17]. The δ-permutree
congruences for δ ∈ { , }n are precisely the Cambrian congruences on Sn, which
were introduced by Reading [49]. The combinatorial properties of a Coxeter stack-sorting
operator associated to a Cambrian congruence≡δ depends on the particular decoration δ.

(IV) If δ = n, then δ-permutrees are essentially the same as binary sequences. In this
case, the δ-permutree congruence is the descent congruence on Sn, and the Coxeter stack-
sorting operator S≡δ is the pop-stack-sorting map (see [26, 45]).

We end this subsection with some terminology that will help when we deal with postorder
readings of decreasing permutrees later. Let δ be a decoration, and let T = (T, σ) be a decreasing
δ-permutree with associated linear ordering p : V (T )→ [n]. Consider two vertices x, y ∈ V (T )
with p(x) < p(y). If z is a vertex represented by either or , then it emits an upward red
wall. We say this wall separates x and y if p(x) < p(z) < p(y) and σ(z) < min{σ(x), σ(y)}.
Similarly, if z′ is a vertex represented by either or , then it emits a downward red wall. We
say this wall separates x and y if p(x) < p(z′) < p(y) and σ(z′) > max{σ(x), σ(y)}. The
vertices x and y are comparable in the poset (V (T ),�) if and only if they are not separated by
any red walls.

6.2. Postorders

Let (Q,6Q) be an n-element poset whose elements are endowed with a linear ordering via a
bijective function p : Q → [n]. Define the postorder of Q to be the unique linear extension
σpost : Q → [n] such that σpost(x) < σpost(y) whenever x, y ∈ Q are incomparable (with
respect to 6Q) and satisfy p(x) < p(y). To visualize this definition, imagine that we draw the
Hasse diagram of Q in the plane so that p(v) is the horizontal coordinate of v for every v ∈ Q.
Then σpost is obtained by listing the elements of Q in a greedy fashion so that at each step,
we write down the leftmost element that has not yet been listed and that is not above (in the
Hasse diagram) any other elements that have not been listed. For example, consider the poset
Q in Figure 6.3. We have named the elements v1, . . . , v7 so that p(vi) = i for all i. The list
σ−1

post(1), . . . , σ−1
post(7) of the elements in postorder is v1, v2, v5, v3, v4, v6, v7.

If σ : Q → [n] is an arbitrary linear extension of Q, then we define the postorder reading
of σ to be the permutation P(σ) = σ ◦ σ−1

post ∈ Sn. In other words, if we think of σ as giving a
labeling of the elements of Q, then the postorder reading of σ is obtained by reading the labels
in the order specified by σpost.
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Figure 6.3: A poset Q together with a labeling p given by p(vi) = i.

Let δ ∈ { , , , }n be a decoration. As mentioned above, associated to each δ-
permutree T is a poset (V (T ),�) endowed with a linear ordering of its elements given by a
bijection p : V (T )→ [n]. Therefore, it makes sense to consider the postorder σpost of V (T ). If
T = (T, σ) is a decreasing δ-permutree, then it makes sense to consider the postorder reading
P(T ), which is simply the postorder reading P(σ) as defined above. For a concrete example,
let T be the decreasing permutree shown in the bottom right corner of Figure 6.2. The poset
(V (T ),�) and its labeling p are the same as the poset and the labeling in Figure 6.3. The pos-
torder reading is P(T ) = 1324657.

We now know how to define the postorder reading of a decreasing permutree. If δ = n,
then a decreasing δ-permutree is the same thing as a decreasing binary plane tree, and the pos-
torder reading defined here agrees with the standard postorder reading (see [10, 25, 28]). One
definition of the stack-sorting map, which is responsible for much of the structure underlying
it (such as its connection with free probability theory [28] and nestohedra [23]), combines the
in-order reading with the postorder reading. More precisely, the stack-sorting map is given by
s = P◦I−1

n (see [10, 25, 28]). The following proposition shows that we can generalize this fact,
providing a useful combinatorial model for working with permutree stack-sorting operators.

Proposition 6.4. Let δ ∈ { , , , }n be a decoration, and let ≡δ be the corresponding
permutree congruence on Sn. The permutree stack-sorting operator S≡δ satisfies the identity

S≡δ = P ◦ I−1
δ .

Proof. Choose w ∈ Sn, and let v = π≡δ↓ (w). Let I−1
δ (w) = T = (T, σ). Then T is a δ-

permutree, so it has an associated linear ordering of its vertices given by a bijection p : V (T )→
[n]. Let σpost : V (T ) → [n] be the postorder of V (T ). The set of permutations of the form
σ′ ◦ p−1 for σ′ a linear extension of V (T ) is precisely the congruence class of ≡δ containing
w. In particular, there are linear extensions σw : V (T ) → [n] and σv : V (T ) → [n] such that
w = σw ◦ p−1 and v = σv ◦ p−1.

We claim that σv = σpost. Suppose otherwise. Let Θ be the set of pairs (x, y) ∈ V (T )×V (T )
such that x and y are incomparable in (V (T ),�), p(x) < p(y), and σv(x) > σv(y). The
assumption that σv 6= σpost says that Θ 6= ∅. If (x, y) ∈ Θ, then x and y are separated by a
red wall. Either x and σ−1

v (σv(x) − 1) are separated by the same red wall or σ−1
v (σv(x) − 1)

and y are separated by the same red wall. It follows that one of the pairs (x, σ−1
v (σv(x)− 1)) or

(σ−1
v (σv(x) − 1), y) is in Θ. By repeating this argument, we eventually find that there exists a

pair (x0, y0) ∈ Θ with σv(x0)− σv(y0) = 1. Letting i = σv(y0), we find that si ◦ σv is a linear
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extension of V (T ), so the permutation siv = si ◦ σv ◦ p−1 is in the same ≡δ-congruence class
as w. However, siv <L v, and this contradicts the definition of v.

We have shown that v = σpost ◦ p−1. Consequently,

S≡δ(w) = w ◦ v−1 = (σw ◦ p−1) ◦ (σpost ◦ p−1)−1 = σw ◦ σ−1
post = P(σw) = P(I−1

δ (w)).

Figure 6.4: Decreasing δ-permutrees with in-order readings w = 1346257 (left) and
v = π≡δ↓ (w) = 1245367 (right).

Example 6.5. Let w = 1346257 and δ = . The decreasing δ-permutree
I−1
δ (w) is shown on the left in Figure 6.4. On the right side of Figure 6.4 is I−1

δ (v), where
v = π≡δ↓ (w) = 1245367. Notice that for each vertex x, the label σv(x) in the tree on the right is
the same as σpost(x). The postorder reading of the decreasing δ-permutree on the left is 1324657,
which is equal to the permutation wv−1 = S≡δ(w).

7. Coxeter Stack-Sorting in Type B

The Coxeter groups of type B are the hyperoctahedral groups Bn, which are defined as follows.
Let α be the automorphism of S2n given by α(w) = w0ww0, where w0 = (2n)(2n− 1) · · · 321.
This automorphism has the effect of rotating the plot of w by 180◦. The subgroup of S2n con-
sisting of the permutations fixed by this automorphism is Bn. If we let si = (i i + 1) be the ith
simple generator of S2n, then the simple generators of Bn are sB1 , . . . , sBn , where sBi = sis2n−i
for i ∈ [n− 1] and sBn = sn. The simple generator sBi is a right descent of an element w ∈ Bn if
and only if w(i) > w(i+ 1) (equivalently, w(2n− i) > w(2n− i+ 1)). The automorphism α is
a lattice automorphism of the left weak order on S2n, so (Bn,6L) is a sublattice of (S2n,6L).
Similarly, (Bn,6R) is a sublattice of (S2n,6R).

Define the flip of a symbol Ω ∈ { , , , } to be the symbol f obtained by turning
Ω upside-down. More precisely, f = Ω if Ω ∈ { , }, and f is the unique element of
{ , }\{Ω} if Ω ∈ { , }. Let us say a decoration δ = δ1 · · · δ2n ∈ { , , , }2n is an-
tisymmetric if for every i ∈ [2n], the symbol δ2n+1−i is the flip of δi. For example,
is antisymmetric. We define a centrally symmetric permutree to be a permutree (with an even
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number of vertices) whose decoration is antisymmetric. A decreasing centrally symmetric per-
mutree is a decreasing δ-permutree T such that δ is antisymmetric and Iδ(T ) ∈ Bn for some
n. Given an antisymmetric decoration δ ∈ { , , , }2n, define the centrally symmetric
δ-permutree congruence on (Bn,6L), denoted≡Bδ , to be the restriction of the δ-permutree con-
gruence ≡δ on S2n to Bn. Since (Bn,6L) is a sublattice of (S2n,6L), the equivalence relation
≡Bδ is a genuine lattice congruence on the left weak order of Bn.

Observe that if δ is antisymmetric, then, in the notation of (3.1), α(≡δ) is equal to≡δ. There-
fore, it follows from (3.1) that π≡δ↓ ◦α = α◦π≡δ↓ . This implies that ifw ∈ Bn, then π≡δ↓ (w) ∈ Bn,
so π≡δ↓ (w) = π

≡Bδ
↓ (w). In other words, the minimal element of the δ-permutree congruence class

in S2n containing w is the same as the minimal element of the centrally symmetric δ-permutree
congruence class in Bn containing w. Hence,

S≡δ(w) = S≡Bδ (w). (7.1)

This fact is useful because it means we will be able to use Proposition 6.4 to compute S≡Bδ (w)
as a postorder reading. In symbols, we have

S≡Bδ (w) = P ◦ I−1
δ (w) (7.2)

for all w ∈ Bn.
Remark 7.1. As mentioned in [45], the Cambrian congruences onSn are the δ-permutree congru-
ences with δ ∈ { , }n. One can show that the type-B Cambrian congruences onBn discussed
in [49] are precisely the centrally symmetric permutree congruences ≡Bδ with δ ∈ { , }2n

(and with δ antisymmetric).
The quotient of the left weak order on Bn by the lattice congruence ≡B n n is one of the

Cambrian lattices that Reading called a type-B Tamari lattice due to its similarities with the
classical nth Tamari lattice [49]. Since the nth Tamari lattice is the quotient of (Sn,6L) by the
sylvester congruence, it is natural to call ≡B n n the type-B sylvester congruence on Bn. We
devote the remainder of this section to studying the Coxeter stack-sorting operator sB = S≡Bn n

associated to the type-B sylvester congruence, which one can view as a canonical type-B ana-
logue of West’s stack-sorting map.

Our first theorem in this section regards the forward orbits of the dynamical system
sB : Bn → Bn. Proposition 4.2 tells us that the size of every such forward orbit is at most the
Coxeter number of Bn, which is 2n. We will improve this result by showing that these forward
orbits actually all have size at most n+ 1, and we will demonstrate that this bound is tight.

Theorem 7.2. For every n > 1, we have

max
w∈Bn

|OsB(w)| = n+ 1.

Proof. Fix w ∈ Bn. To ease notation, let vt = stB(w). Let Zt = {m ∈ [n] : v−1
t (m) ∈ [n]}.

Since vt ∈ Bn, we can describe Zt equivalently as the set of entries m ∈ [n] such that
(m, 2n+ 1−m) is not a left inversion of vt (viewing vt as an element of S2n). Let Z ′t be the
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set of integers m ∈ [n] such that every entry appearing to the left of m in vt is smaller than m.
Equivalently, an entry m ∈ [n] is in Z ′t if and only if vt has no left inversions of the form (m, b)
with m < b; this implies that Z ′t ⊆ Zt. It is immediate from Definition 1.1 (or alternatively,
Proposition 4.2) that vt >R vt+1. This means that every left inversion of vt+1 is a left inversion
of vt, so Zt ⊆ Zt+1 and Z ′t ⊆ Z ′t+1.

Suppose vt 6= e. Let δ = n n, and recall that vt+1 = sB(vt) = S≡Bδ (vt) = P(I−1
δ (w)),

where the last equality comes from (7.2). We are going to prove thatZ ′t+1\Z ′t 6= ∅. We consider
two cases.

Case 1: SupposeZ ′t 6= Zt. Let a = min(Zt\Z ′t). We want to show that a ∈ Z ′t+1. Assume this
is not the case. Then there exists an entry b > a such that (a, b) is a left inversion of vt+1. Since
vt >R vt+1, the pair (a, b) must also be a left inversion of vt. Because a is the smallest element
of Zt \ Z ′t, there cannot be an entry a′ < a appearing between b and a in vt. This implies
that there is no upward red wall separating the vertices with labels b and a in the decreasing
permutree I−1

δ (vt). There is also no downward red wall separating these two vertices because
all vertices appearing horizontally between them are represented by the symbol . It follows
that the vertex with label a is less than the vertex with label b in the partial order �, so (a, b) is
not a left inversion of P(I−1

δ (w)) = vt+1. This is a contradiction, so a ∈ Z ′t+1 \ Z ′t.

Case 2: Suppose Z ′t = Zt. This means that every entry m ∈ [n] such that v−1
t (m) ∈ [n] is

greater than every entry to its left in vt. In particular, this implies that if m ∈ Zt, then every
entry to the left of m in vt is in Zt. Hence, Zt = {vt(1), . . . , vt(k)} for some k. Furthermore,
vt(1) < · · · < vt(k). The assumption that vt 6= e forces k < n, so vt(n) 6∈ Zt. This means that
vt(n) > n+1. Let a = vt(n+1). Because vt ∈ Bn, we have a = vt(n+1) = 2n+1−vt(n) 6 n.
It follows that sBn is a right descent of vt. The map sB is compulsive by Proposition 4.2, so we
must have vt+1 6R vts

B
n . Suppose, by way of contradiction, that a 6∈ Z ′t+1. Then there exists

a left inversion (a, b) of vt+1. Since vt+1 6R vt, the pair (a, b) must also be a left inversion
of vt. Suppose there is an entry a′ < a appearing between b and a in vt. Then a′ < a 6 n
and v−1

t (a′) < v−1
t (a) = n + 1, so a′ ∈ Zt = {vt(1), . . . , vt(k)}. Consequently, b ∈ Zt.

However, this is impossible because v1(1) < · · · < vt(k) and b > a′. This shows that no such
entry a′ exists, so there is no upward red wall separating the vertices with labels b and a in the
decreasing permutree I−1

δ (vt). As in Case 1, there is also no downward red wall separating
these two vertices, so we conclude in the same way as before that (a, b) is not a left inversion of
P(I−1

δ (w)) = vt+1. This is a contradiction, so a ∈ Z ′t+1 \ Z ′t.
We have demonstrated that if t > 0 is such that vt 6= e, then Z ′t ( Z ′t+1. Let j be

the size of the forward orbit of w under sB. Then v0, v1, . . . , vj−2 are all not equal to e, so
Z ′0 ( Z ′1 ( · · · ( Z ′j−1. Hence, j − 1 6 |Z ′j−1| 6 n.

To complete the proof, we must exhibit a permutation u ∈ Bn such that sn−1
B (u) 6= e. Let

u = (2n)23 · · · (2n− 2)(2n− 1)1.

For 1 6 t 6 n−1, it is straightforward to compute that stB(u) is obtained from st−1
B (u) by shift-

ing the entry 2n one space to the right and shifting the entry 1 one space to the left. For example,
if n = 4, then u = 82345671, sB(u) = 28345617, s2

B(u) = 23845167, and s3
B(u) = 23481567.

For general n, we have sn−1
B (u) = 23 · · ·n(2n)1(n+ 1)(n+ 2) · · · (2n− 1) 6= e.
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Recall from (5.1) that if w ∈ Sn is in the image of West’s stack-sorting map s, then it has
at most

⌊
n−1

2

⌋
right descents. Our next goal is to understand the maximum number of right

descents that an element of the image of sB can have. Recall from (7.1) that if δ = n n, then
sB : Bn → Bn, which is defined to be the Coxeter stack-sorting operator onBn associated to≡Bδ ,
is the restriction of the permutree stack-sorting operator S≡δ : S2n → S2n to Bn. Theorem 5.5
tells us that if w ∈ S2n, then S≡δ(w) has at most

⌊
2(2n−1)

3

⌋
right descents in S2n. A permutation

in Bn with k right descents in Bn has either 2k or 2k − 1 right descents in S2n. Therefore, it
follows from Theorem 5.5 that if w ∈ Bn, then sB(w) has at most

⌊
2n
3

⌋
right descents in Bn.

The next theorem improves upon this bound. In the remainder of this section, for w ∈ Bn, we
writeDR(w) for the right descent set of w in Bn and DesA(w) for the set of indices i ∈ [2n− 1]
such that si is a right descent of w in S2n.

Theorem 7.3. For each n > 1, we have

max
w∈Bn

|DR (sB(w))| =
⌊n

2

⌋
.

Proof. Let δ = n n. Fix w ∈ Bn, and let v = sB(w). Our first goal is to prove that
|DR(v)| 6

⌊
n
2

⌋
. Let T be the skeleton of I−1

δ (w). This means that there is an associated
linear ordering p : V (T ) → [n] and a labeling σ : V (T ) → [n] such that w = σ ◦ p−1.
Let σpost : V (T )→ [n] be the postorder of V (T ) so that, we have v = P(I−1

δ (w)) = σ ◦ σ−1
post

by (7.2). We denote each edge in T by (x, y), where x is the lower endpoint of the edge and y
is the upper endpoint. Observe that if (x, y) is a right edge in T , then σpost(y) = σpost(x) + 1.
Since σ is a linear extension, we have v(σpost(x)) = σ(x) < σ(y) = v(σpost(x) + 1), so
σpost(x) ∈ [2n − 1] \ DesA(v). Therefore, |R(T )| 6 2n − 1 − |DesA(v)|, where R(T ) is the
set of right edges in T . We are going to show that

|DesA(v)| 6 |R(T )|. (7.3)

Once we do this, it will follow that |DesA(v)| 6 2n− 1− |DesA(v)|, so 2|DesA(v)| 6 2n− 1.
This will then imply that |DesA(v)| 6

⌊
2n−1

2

⌋
= n − 1, so |DR(v)| =

⌊
|DesA(v)|+1

2

⌋
6
⌊
n
2

⌋
, as

desired.
For each i ∈ DesA(v), let xi and yi be the vertices of T such that σ(xi) = v(i) and

σ(yi) = v(i+ 1). The pair (v(i + 1), v(i)) is a left inversion of v, so it must also be a left
inversion of w (since v 6R w). This implies that p(xi) < p(yi) and σ(xi) > σ(yi). We have

σpost(xi) = v−1(σ(xi)) = i < i+ 1 = v−1(σ(yi)) = σpost(yi).

Because σ and σpost are both affine linear extensions of V (T ), this implies that xi and yi are
incomparable in the poset (V (T ),�). Hence, for every i ∈ DesA(v), the vertices xi and yi are
separated by a red wall. LetG be the set of indices i ∈ DesA(v) such that xi and yi are separated
by an upward red wall.

We are going to define an injection ω : G → R(T ). Suppose i ∈ G, and let zi be the left-
most vertex (i.e., the vertex that minimizes p(zi)) that emits an upward red wall that separates xi
from yi. It follows from the definition of a permutree that there is a right edge (zi, qi) ∈ R(T )
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for some vertex qi. Let ω(i) = (zi, qi). To see that ω : G → R(T ) is injective, suppose
there is some j ∈ G with ω(j) = ω(i). Then zi = zj . The vertices xj and yi are sepa-
rated by the upward red wall emitting by zi, so we must have σpost(xj) < σpost(yi). However,
σpost(xj) = v−1(σ(xj)) = j and σpost(yi) = v−1(σ(yi)) = i + 1, so j < i + 1. Thus, j 6 i.
Reversing the roles of i and j shows that i 6 j, so i = j.

We now want to construct an injection ω′ : DesA(v)\G→ R(T ). Suppose i ∈ DesA(v)\G.
Then xi and yi are separated by a downward red wall. Let q′i be the rightmost vertex (i.e., the
vertex that maximizes p(q′i)) that emits a downward red wall that separates xi from yi. It follows
from the definition of a permutree that there is a right edge (z′i, q

′
i) ∈ R(T ) for some vertex z′i. Let

ω′(i) = (z′i, q
′
i). The proof that ω′ is injective is virtually identical to the proof of the injectivity

of ω that we gave in the previous paragraph.
To prove (7.3), it suffices to show that the image of ω is disjoint from the image of ω′. This

is where we use the fact that T is a δ-permutree, where δ = n n. Suppose (zi, qi) is in the
image of ω. Then zi emits an upward red wall, so it must be represented by the symbol . Since
p(qi) < p(zi), the vertex qi is also represented by . However, this implies that qi cannot emit
a downward red wall, so (zi, qi) is not in the image of ω′.

We have proven that
max
w∈Bn

|DR (sB(w))| 6
⌊n

2

⌋
.

To see that this bound is tight, consider the permutation v = 13254 · · · (2n − 1)(2n − 2)(2n)
of Bn. Let w = vs1s3s5 · · · s2n−1 = 3152 · · · (2n − 1)(2n − 4)(2n)(2n − 2). For example,
if n = 5, then v = 1 3 2 5 4 7 6 9 8 10 and w = 3 1 5 2 7 4 9 6 10 8. Using (7.2), one can readily
check that sB(w) = v (see Figure 7.1). Furthermore, v has

⌊
n
2

⌋
right descents in Bn.

Figure 7.1: The decreasing permutree I−1
δ (w), where w = 31527486 ∈ B4 and δ = 4 4.

The postorder reading of this tree is v = 13254768. Note that v has 2 right descents in B4;
namely, sB2 and sB4 .

8. Coxeter Stack-Sorting in Type Ã

An affine permutation of size n is a bijection w : Z→ Z such that
w(i+ n) = w(i) + n for all i ∈ Z
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and
n∑
i=1

w(i) =

(
n+ 1

2

)
.

The set S̃n of affine permutations of size n forms a group under composition called the nth affine
symmetric group; it is a Coxeter group of type Ãn−1. The simple generators are s̃1, . . . , s̃n,
where s̃i is the affine permutation that swaps i + mn and i + mn + 1 for all m ∈ Z and fixes
all other integers. The simple generator s̃i is a right descent of an affine permutation w if and
only if w(i) > w(i + 1). The plot of w is the collection of points (i, w(i)) ∈ R2 for all i ∈ Z.
We associate w with its one-line notation, which is the infinite word · · ·w(0)w(1)w(2) · · · . The
window notation ofw, which we write in brackets, is [w(1), . . . , w(n)]. Note thatw is determined
by its window notation.

Define an n-periodic decoration to be an n-periodic bi-infinite word δ over { , , , }.
We think of the letters in this word as being indexed by the integers, so it is perhaps more helpful
to think of δ as a function Z → { , , , }, denoted by i 7→ δi, such that δi = δn+i for all
integers i. We define affine permutrees in exactly the same way that we defined permutrees in
Definition 6.1; the only difference is that the set of vertices V (T ) is now countably infinite and
the decoration δ is n-periodic instead of finite (when we use the word affine, we tacitly assume
there is a specific integer n in the background). The linear ordering of the vertices of T is now
a bijection p : V (T ) → Z. Associated to an affine permutree T is a poset (V (T ),�) obtained
by saying u � v whenever there is a directed path (possibly with no edges) from u to v. As in
the symmetric group setting, two vertices x and y are incomparable in (V (T ),�) if and only if
they are separated by a red wall. We say a map σ : V (T ) → Z is an affine linear extension if
σ ◦ p−1 is an affine permutation in S̃n and σ(u) 6 σ(v) whenever u � v. A decreasing affine
permutree is a pair T = (T, σ) such that T is an affine permutree and σ : V (T ) → [n] is an
affine linear extension. We view σ as a labeling of the vertices of T . When we draw a decreasing
affine permutree, we will place the element with label j at height j. We will also omit the infinite
strands in our drawings to avoid clutter. See the left side of Figure 8.3.

Define the in-order reading of the decreasing affine δ-permutree T = (T, σ), denoted Iδ(T ),
to be the affine permutation σ ◦ p−1. In Section 6, we described an insertion algorithm that
creates a decreasing δ-permtree from a permutation, thereby constructing the inverse of the in-
order reading bijection. The same exact insertion algorithm works mutatis mutandis in the affine
setting. The main difference occurs when all of the symbols in the decoration are or . In
this case, the algorithm begins at an arbitrary point (i, w(i)) in the plot of the affine permutation,
which expels 1 (if it is represented by ) or 2 (if it is represented by ) upward stands. Then the
algorithm proceeds as before, and we can construct the part of the decreasing affine permutree
below the point (i, w(i)) by n-periodically extending the part above (i, w(i)). Hence, the in-
order reading defines a bijection from the set of decreasing affine permutrees with n-periodic
decorations to S̃n (the proof of this fact is identical to the proof Pilaud and Pons gave in the
symmetric group setting [45], so we omit it). If Iδ(T ) = w, then the affine permutree is called
the δ-skeleton of w and is denoted by skelδ(w). Define the affine δ-permutree congruence ≡δ
on S̃n by saying v ≡δ w if and only if skelδ(v) = skelδ(w).

The affine δ-permutree congruence is a semilattice congruence on the left weak order of S̃n.
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One can prove this in a manner virtually identical to how Pilaud and Pons proved that permutree
congruences are lattice congruences on symmetric groups (they invoked results of Reading, but
those results can also be adapted immediately to the affine setting).

Suppose T is an affine permutree with an n-periodic decoration δ. The postorder of V (T )
is the unique affine linear extension σpost : V (T ) → Z such that σpost(x) < σpost(y) whenever
x, y ∈ V (T ) are incomparable and satisfy p(x) < p(y). The postorder reading of an affine linear
extension σ : V (T ) → Z is P(σ) = σ ◦ σ−1

post, which is an element of S̃n. Just as in the sym-
metric group setting, we define the postorder reading P(T ) of the decreasing affine permutree
T = (T, σ) to be P(σ). The affine permutree congruence ≡δ gives rise to the affine permutree
stack-sorting operator S≡δ : S̃n → S̃n. The same argument used to prove Proposition 6.4 yields
the fact that

S≡δ = P ◦ I−1
δ . (8.1)

For the rest of this section, we will focus our attention on one specific affine permutree stack-
sorting operator that is very similar to West’s stack-sorting map. Let Z denote the n-periodic
decoration whose symbols are all . We call affine permutrees with decoration Z affine binary
plane trees. We call≡ Z the affine sylvester congruence and denote it by≡s̃yl. The affine stack-
sorting map, denoted s̃, is the Coxeter stack-sorting operator S≡

s̃yl
. We say an affine permutation

w ∈ S̃n is t-stack-sortable if s̃t(w) = e. The only decoration symbol that will appear throughout
the rest of this section is . Therefore, we will write I(T ) with the understanding that this is
I Z(T ) when T has infinitely many vertices and I k(T ) when T has k vertices.
Remark 8.1. The affine sylvester congruence is not new though, to the best of our knowledge,
it has not been given this name before. Motivated by an attempt to model certain geometric
and combinatorial objects arising from cluster algebras, Reading and Speyer [55] considered the
orientation −Ω of the type-Ãn−1 Coxeter diagram given by s̃1 → s̃2 → · · · → s̃n → s̃1 (they
call the reverse orientation Ω). From this orientation, they constructed a map π−Ω

↓ : S̃n → S̃n.
Using the results in their paper, one can show that π−Ω

↓ is the same as our downward projection
map π

≡
s̃yl

↓ . It follows that the fibers of the map π−Ω
↓ are precisely the affine sylvester congruence

classes.
Let w be a permutation or an affine permutation. We say entries b, c, a in w form a 231-

pattern if they appear in the order b, c, a in w and satisfy a < b < c. We say w is 231-avoiding if
no three entries form a 231 pattern inw. Knuth [38] showed that a permutation is 1-stack-sortable
if and only if it is 231-avoiding, and he proved that the number of 231-avoiding permutations
in Sn is the Catalan number 1

n+1

(
2n
n

)
. Crites investigated 231-avoiding affine permutations (as

well as other pattern-avoiding affine permutations) in [20], showing, in particular, that the num-
ber of 231-avoiding elements of S̃n is

(
2n−1
n

)
.

Suppose w ∈ S̃n, and let I−1(w) = T = (T, σ). Let p : V (T )→ Z be the associated linear
ordering of the vertices of the affine binary plane tree T . Fix integers a < b. Saying an integer c
is such that b, c, a form a 231-pattern inw is equivalent to saying that p(σ−1(b)) < p(σ−1(a)) and
that σ−1(c) emits a downward red wall that separates σ−1(b) and σ−1(a). Hence, such an entry c
exists if and only if σpost(σ

−1(b)) < σpost(σ
−1(a)). In other words, such an entry c exists if and

only if b appears before a in P(T ). Using (8.1), we deduce the following simple proposition.
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This is an affine analogue of Knuth’s characterization of 1-stack-sortable permutations. We
stress that the enumeration of 231-avoiding affine permutations in the next proposition is due to
Crites [20].

Proposition 8.2. An affine permutation w ∈ S̃n is 1-stack-sortable if and only if it is 231-
avoiding. The number of 1-stack-sortable elements of S̃n is

(
2n−1
n

)
.

We are going to prove an affine analogue of the fact that permutations of size n in the image
of the stack-sorting map can have at most

⌊
n−1

2

⌋
right descents. The proof of this upper bound

is very similar to the proof of the analogous result for symmetric groups, so we merely sketch it.

Proposition 8.3. For each n > 1, we have

max
w∈S̃n
|DR(s̃(w))| =

⌊n
2

⌋
.

Proof. Choose w ∈ S̃n, and let v = s̃(w). Let Des(v) be the set of indices i ∈ [n] such
that s̃i ∈ DR(v). Let I−1(w) = T = (T, σ). Let σpost : V (T ) → Z be the postorder
of V (T ). Suppose s̃i is a right descent of v. Because v = P(T ) = σ ◦ σ−1

post, this means
that σ(σ−1

post(i)) > σ(σ−1
post(i+ 1)). Since σ and σpost are both linear extensions of (V (T ),�),

this forces σ−1
post(i) and σ−1

post(i + 1) to be incomparable in (V (T ),�). It follows that there is
a vertex xi with two children in T such that σ−1

post(i) is the vertex in the left subtree of xi ap-
pearing last in the postorder. In other words, the maximum of σpost(y) as y ranges over the
vertices in the left subtree of xi is i. Let ji = σpost(x

′
i), where x′i is the right child of xi. Then

v(ji) = σ(x′i) < σ(xi) = v(ji + 1). Let ji be the unique element of [n] that is congruent to ji
modulo n. The map i 7→ ji is an injection from Des(v) into [n] \ Des(v), so |Des(v)| 6

⌊
n
2

⌋
.

This proves that max
w∈S̃n
|DR(s̃(w))| 6

⌊
n
2

⌋
.

One could prove that this upper bound is tight by writing down explicit affine permutations,
but we prefer a more theoretical approach. First, suppose n is odd. Observe that there is a natural
injection ι : Sn → S̃n sending a permutation u to the unique affine permutation with window no-
tation [u(1), . . . , u(n)]. The number of right descents of u inSn is the same as the number of right
descents of ι(u) in S̃n. For u, u′ ∈ Sn, we have u ≡syl u

′ if and only if ι(u) ≡s̃yl ι(u
′). It follows

that s̃◦ι = ι◦s. We know already from [29] that there exists a permutation u ∈ Sn that lies in the
image of s and that has n−1

2
right descents (e.g., the permutation 214365 · · · (n− 1)(n− 2)n).

Then ι(u) is in the image of s̃ and has n−1
2

right descents.
Now suppose n is even. Because S̃2 is infinite, it follows from Proposition 8.2 that there

exists w ∈ S̃2 such that s̃(w) has 1 right descent. There is an affine permutation ŵ ∈ S̃n that
is equal to w as a function from Z to Z. The decreasing affine binary plane trees I−1(w) and
I−1(ŵ) are identical, so their postorder readings are identical. Thus, s̃(ŵ) is equal to s̃(w) as a
function. Since s̃(w) has 1 right descent in S̃2, s̃(ŵ) must have n

2
right descents as an element

of S̃n.

Let Kn be the maximum length of a 1-stack-sortable affine permutation in S̃n; this is finite
by Proposition 8.2. Notice that w ∈ S̃n is 1-stack-sortable if and only if it is in the image of the
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downward projection map π
≡

s̃yl

↓ associated to the affine sylvester congruence. It follows that for
every v ∈ S̃n, we have

`(S≡syl
(v)) = `

(
v
(
π
≡

s̃yl

↓ (v)
)−1
)

= `(v)− `
(
π
≡

s̃yl

↓ (v)
)
> `(v)−Kn.

Because there are only finitely many elements of S̃n of each length, this implies that each affine
permutation has only finitely many preimages under s̃. Hence, it makes sense to define the
fertility of an affine permutation w ∈ S̃n to be |s̃−1(w)|.

The next theorem states that the fertility of an affine permutation only depends on its affine
sylvester class. In fact, it says much more. Define the affine stack-sorting tree on S̃n, denoted
S̃n, to be the infinite rooted tree with vertex set S̃n and with root vertex e such that the parent
of each non-root vertex w is s̃(w). When we refer to the subtree of S̃n with root x, we mean the
rooted subtree of S̃n with root vertex x and vertex set

⋃
t>0 s̃

−t(x).

Theorem 8.4. Suppose v, w ∈ S̃n are such that v ≡s̃yl w. Then the subtree of S̃n with root v
is isomorphic as a rooted tree to the subtree of S̃n with root w. In particular, v and w have the
same fertility.

Proof. Each affine sylvester class is convex (as defined in Section 5) and contains a unique
minimal element, so it suffices to prove the theorem when `(w) = `(v) + 1. We are going
to prove that if z ∈ S̃n and i ∈ [n] are such that z ≡s̃yl s̃iz, then the map u 7→ s̃iu is a bijection
from s̃−1(z) to s̃−1(s̃iz) such that u ≡s̃yl s̃iu for all u ∈ s̃−1(z). It will then follow from repeated
applications of this fact that the map u 7→ s̃iu is an isomorphism from the subtree of S̃n with
root z to the subtree of S̃n with root s̃iz. As this is true for all i ∈ [n], this will prove the theorem
in the case when `(w) = `(v) + 1.

Suppose z ∈ S̃n and i ∈ [n] are such that z ≡s̃yl s̃iz. By switching the roles of z and s̃iz
if necessary, we may assume z 6L s̃iz. By specializing the proof of Theorem 4.4 to the setting
of the affine stack-sorting map, we find that the map u 7→ s̃iu is an injection from s̃−1(s̃iz)
into s̃−1(z). To prove that it is also surjective, choose ẑ ∈ s̃−1(z). Let I−1(z) = T = (T, σ).
Let I−1(ẑ) = T̂ = (T̂ , σ̂). Then z = P(T̂ ) by (8.1). Because `(s̃iz) > `(z), the entry i
must appear before i + 1 in z. Since s̃iz ≡s̃yl z, the vertices σ−1(i) and σ−1(i + 1) must be
incomparable in the poset (V (T ),�). This means that there is an integer j > i such that σ−1(i)
and σ−1(i+ 1) are separated by a downward red wall emitted by σ−1(j) (see Figure 8.1). Now,
j appears between i and i+ 1 in z, so (i+ 1, j) is a left inversion of z. As s̃ is a Coxeter stack-
sorting operator, we have ẑ >R s̃(ẑ) = z. It follows that (i+ 1, j) is a left inversion of ẑ. Since
j appears before i+ 1 in z, the vertices σ̂−1(i+ 1) and σ̂−1(j) are incomparable in (V (T̂ ),�).
Consequently, there is an integer k > j such that σ̂−1(j) and σ̂−1(i + 1) are separated by the
downward red wall emitted by σ̂−1(k) (see Figure 8.1). If i appeared to the right of k in ẑ, then
σ̂−1(j) and σ̂−1(i) would be separated by the downward red wall emitted by σ̂−1(k). However,
this would force j to appear before i in z, which would be a contradiction. Hence, imust appear
to the left of k in ẑ. This means that σ̂−1(i) and σ̂−1(i + 1) are separated by the downward red
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wall emitting by σ̂−1(k) in T̂ . Since T̂ is a decreasing affine binary plane tree, it follows that for
every integerm, the vertices σ̂−1(i+mn) and σ̂−1(i+mn+ 1) are incomparable in (V (T̂ ),�).
Hence, s̃iẑ ≡s̃yl ẑ. We deduce that π

≡
s̃yl

↓ (s̃iẑ) = π
≡

s̃yl

↓ (ẑ), so

s̃(s̃iẑ) = s̃iẑ
(
π
≡

s̃yl

↓ (s̃iẑ)
)−1

= s̃iẑ
(
π
≡

s̃yl

↓ (ẑ)
)−1

= s̃is̃(ẑ) = s̃iz.

This proves that the map u 7→ s̃iu is a bijection from s̃−1(s̃iz) to s̃−1(z). Because s̃i is an
involution, the map u 7→ s̃iu is a bijection from s̃−1(z) to s̃−1(s̃iz).

Figure 8.1: A schematic illustration of the proof of Theorem 8.4. On the left are some of the
vertices in I−1(z). On the right are some of the vertices in I−1(ẑ).

The vertices of depth at most 1 in S̃n are just the 1-stack-sortable affine permutations (equiv-
alently, the 231-avoiding affine permutations) in S̃n. Since each affine sylvester class contains a
unique 1-stack-sortable affine permutation (i.e., its minimal element in the left weak order), we
have the following corollary of Theorem 8.4.

Corollary 8.5. Every subtree of S̃n is isomorphic as a rooted tree to a subtree of S̃n whose
root has depth at most 1.

Remark 8.6. The natural analogue of Theorem 8.4 is false for arbitrary Coxeter stack-sorting
operators. For example, in S3, we have 132 ≡des 231, but

∣∣S−1
≡des

(132)
∣∣ = 1 > 0 =

∣∣S−1
≡des

(231)
∣∣.

Our next goal in this section is to develop a method for computing the fertility of an arbi-
trary affine permutation. To do this, we first need to recall some basic facts about valid hook
configurations, as discussed, for example, in [29, 28]. It will be convenient to consider permu-
tations of arbitrary finite sets of integers. Thus, as discussed in Sections 2 and 3, a permutation
of an n-element set X is a bijection w : [n] → X , which we represent in one-line notation
as the word w(1) · · ·w(n). Recall that we defined the stack-sorting map s at the beginning of
Section 2 so that it operates on permutations in this more general setting. This means that it
makes sense to consider the fertility |s−1(w)| of a permutation w : [n] → X . It is immediate
from the definition of s in Section 2 that permutations with the same standardization have the
same fertility. Furthermore, the insertion algorithm described in Section 6 works just as well for
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permutations of X . Thus, for each permutation w : [n]→ X , there is a decreasing binary plane
tree I−1(w) = (T, σ), where now σ is a bijection from V (T ) to X . We can also define the pos-
torder reading of I−1(w) to be the permutation σ ◦ σ−1

post : [n]→ X , where σpost : V (T )→ [n]
is the postorder of V (T ). As before, P(I−1(w)) = s(w) (this approach with non-standardized
permutations is discussed in more detail in [28]).

Let v be a permutation. When i is a descent of v, we call the point (i, v(i)) a descent top of
the plot of v and call (i+1, v(i+1)) a descent bottom of the plot of v. A hook of v is a rotated L
shape connecting two points (i, v(i)) and (j, v(j)) with i < j and v(i) < v(j) (see Figure 8.2).
The point (i, v(i)) is the southwest endpoint of the hook, and (j, v(j)) is the northeast endpoint
of the hook.

Definition 8.7. Let v be a permutation with descents d1 < · · · < dk. A valid hook configuration
of v is a tupleH = (H1, . . . , Hk) of hooks of v that satisfy the following properties:

1. For each i ∈ [k], the southwest endpoint of Hi is (di, v(di)).

2. No point in the plot of v lies directly above a hook inH.

3. No two hooks intersect or overlap each other unless the northeast endpoint of one is the
southwest endpoint of the other.

Let VHC(v) denote the set of valid hook configurations of v.

SupposeH = (H1, . . . , Hk) is a valid hook configuration of a permutation v of size n. Draw
a blue sky over the diagram depicting this valid hook configuration, and assign arbitrary distinct
non-blue colors to all of the hooks. We are going to color all of the points in the plot of v that are
not northeast endpoints of hooks of H. Imagine that each point that is not a northeast endpoint
looks upward. If the point sees a hook, then it receives the same color as that hook. If it does
not see a hook, then it must see the sky, so it receives the color blue. Note that if the point is
the southwest endpoint of a hook, then it must look around (on the left side of) that hook when
looking upward. Let qi be the number of points given the same color as Hi, and let q0 be the
number of points colored blue. Let qH = (q0, . . . , qk). The plot of v has n points, k of which
did not get colored because they are northeast endpoints of hooks. Thus, qH is a composition of
the integer n− k into k + 1 parts.

Example 8.8. Figure 8.2 shows a valid hook configurationH = (H1, H2, H3) of a permutation
in S16, along with its induced coloring. In this example, there are 3 blue points, 4 green points,
3 red points, and 3 purple points, so qH = (3, 4, 3, 3).

The following theorem provides a very useful tool for computing fertilities of permutations.
It was originally proved in [27], though a clearer and more conceptual proof (which also applies
in a much more general setting) appears in [28]. Let Cr denote the rth Catalan number 1

r+1

(
2r
r

)
.

Given an integer composition q = (q0, . . . , qk), we write Cq for the product
∏k

i=0Cqi .

Theorem 8.9 (Fertility Formula). The fertility of a permutation v is given by

|s−1(v)| =
∑

H∈VHC(v)

CqH .
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Figure 8.2: A valid hook configuration and its induced coloring.

A simple consequence of the Fertility Formula that will be helpful to keep in mind is that a
uniquely sorted permutation (i.e., a permutation with fertility 1) must have a unique valid hook
configuration.

Let us now turn our attention back to affine permutations. Let us say a set Y ⊆ Z is n-
periodic if for every integer j, we have j ∈ Y if and only if j + n ∈ Y . Suppose w ∈ S̃n,
and consider the decreasing affine binary plane tree I−1(w) = T = (T, σ). A left-to-right
maximum of w is an integer that is larger than every integer appearing to its left in w. Let
· · · < m0 < m1 < m2 < · · · be the left-to-right maxima of w. Note that the set of left-to-right
maxima of w is n-periodic. It follows directly from the insertion algorithm that constructs T
fromw that σ−1(mi) is a left child of σ−1(mi+1) for every integer i. Define the infinite left branch
of T to be the collection of all the vertices σ−1(mi) together with all the left edges between these
vertices. Now let v = s̃(w). By (8.1), we have v = P(T ). Every left-to-right maximum of w
is a left-to-right maximum of v. Indeed, the numbers appearing before mi in v are the labels
(given by σ) of the vertices in the left and right subtrees of σ−1(mi) in T , and all of these
labels are necessarily smaller than mi. Furthermore, if TR(mi+1) denotes the (possibly empty)
right subtree of σ−1(mi+1), then P(TR(mi+1)) is the (finite and possibly empty) permutation
zi appearing between mi and mi+1 in the affine permutation P(T ) = v. In other words, if
ui = I(TR(mi+1)), then zi = s(ui).

The previous paragraph hints at how to construct each preimage w of an affine permutation
v ∈ S̃n under s̃. Start with v. Choose a nonempty n-periodic subset M = {· · ·m0 < m1 <
m2 < · · · } of the set of left-to-right maxima of v. This means that there is an integer r such that
mj+r = mj +n for all j. For each index i, draw a hook Hi connecting the points (v−1(mi),mi)
and (v−1(mi+1),mi+1) in the plot of v. This produces an infinite periodic chain of hooks on the
plot of v that we call a skyline. Now turn the skyline into an infinite left branch by “unbending”
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each hook. More precisely, form an infinite tree T whose edges are all left edges, and label the
vertices of T with the elements of M so that the vertex with label mi is the left child of the
vertex with label mi+1 for all i. Let zi be the (finite) permutation whose plot lies underneath
Hi (not including the endpoints of Hi). Because v ∈ S̃n, the permutations zj and zj+r must
have the same relative order (i.e., their standardizations are equal) for all j. More precisely,
zj+r is obtained by increasing each of the entries in zj by n. This implies that we can choose
permutations ui ∈ s−1(zi) for all i in such a way that, for each integer j, the permutation uj+r is
obtained by increasing each of the entries in uj by n. Finally, for each i, construct the decreasing
binary plane tree I−1(ui), and attach it as the right subtree of the vertex of T with label mi+1.
After doing this for all i, we obtain a decreasing affine binary plane tree T . Let w = I(T ). Our
construction guarantees that s̃(w) = P(T ) = v. It follows from the preceding paragraph that
every preimage of v under s̃ arises uniquely in this way.

Figure 8.3: On the left is the decreasing affine binary plane tree I−1(w), where w ∈ S̃6 has
window notation [3,−1, 2,−2, 7, 12]. On the right is the plot of the affine permutation v = s̃(w),
which has window notation [−2, 2, 3, 6, 7, 5], along with the skyline obtained by bending the
edges in the infinite left branch of I−1(w).

Example 8.10. Let v be the affine permutation in S̃6 with window notation [−2, 2, 3, 6, 7, 5].
The plot of v is shown on the right in Figure 8.3. Let M = {· · · < m0 < m1 < m2 < · · · }
be the 6-periodic subset of the set of left-to-right maxima of v given by m1 = 1, m2 = 6, and
mj+2 = mj + 6 for all j ∈ Z. We have drawn the corresponding hooks Hi on the right side of
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Figure 8.3. For example, H1 has southwest endpoint (−1, 1) and northeast endpoint (4, 6), and
H2 has southwest endpoint (4, 6) and northeast endpoint (5, 7). Then z1 = (−1)(−2)23, and
z2 is the empty permutation. For each integer j, the permutation zj+2 is obtained by increasing
each of the entries in zj by 6. Let us choose u1 to be the permutation 3(−1)2(−2) ∈ s−1(z1).
We are forced to choose u2 to be empty. Our choices of ui for all i ∈ Z are then determined by
the condition that uj+2 is obtained by increasing each of the entries in uj by 6. The decreasing
affine binary plane tree T constructed from these choices is shown on the left in Figure 8.3.
The affine permutation w = I(T ) ∈ S̃6 has window notation [3,−1, 2,−2, 7, 12]. Finally,
s̃(w) = P(T ) = v.

The discussion above yields an affine analogue of the Decomposition Lemma from [22, 28].
In order to state it precisely, we fix some notation. Suppose v ∈ S̃n. Let Sky(v) denote the
collection of all nonemptyn-periodic subsets of the set of left-to-right maxima of v. The notation
comes from the fact that each set M = {· · ·m0 < m1 < m2 < · · · } in Sky(v) corresponds to
a skyline of v; this is the infinite connected chain of hooks . . . , H0, H1, H2, . . ., where Hi has
southwest endpoint (v−1(mi),mi) and northeast endpoint (v−1(mi+1),mi+1). Let us make the
convention that the indices of the elements of M are chosen so that v−1(m1) 6 1 < v−1(m2).
For such a set M , we let r(M ) be the index such that mj+r(M ) = mj + n for all integers j.
Also, let zM

i be the permutation whose plot lies underneath Hi (not including the endpoints of
Hi). Note that zM

i could be the empty permutation ε, in which case s−1(ε) = {ε}.

Theorem 8.11 (Affine Decomposition Lemma). For every v ∈ S̃n, we have

|s̃−1(v)| =
∑

M∈Sky(v)

r(M )∏
i=1

∣∣s−1
(
zM
i

)∣∣ .
If we want to use the Affine Decomposition Lemma to compute the fertility of an affine per-

mutation v ∈ S̃n, then we need to be able to compute the fertilities of the finite permutations
zM
i appearing in the formula. We can do this using valid hook configurations via the Fertil-

ity Formula (Theorem 8.9). We first choose a valid hook configuration Hi for each zM
i with

1 6 i 6 r(M ). Since each permutation zM
j always has the same relative order as zM

j+r(M ), we
can copy the hooks fromHi onto the permutations zM

i+βr(M ) for all β ∈ Z and all 1 6 i 6 r(M )
to produce a periodic configuration of hooks. Together with the hooks in the skyline, this pro-
duces a diagramH that we call an affine valid hook configuration. When we refer to the skyline
of H, we mean the skyline of v used to construct H. Let qH be the concatenation of the com-
positions qH1 , . . . ,qHr(M) . Let AVHC(v) denote the set of affine valid hook configurations of
v. By combining the Fertility Formula (Theorem 8.9) with the Affine Decomposition Lemma
(Theorem 8.11), we obtain the following Affine Fertility Formula.

Theorem 8.12 (Affine Fertility Formula). For every v ∈ S̃n, we have

|s̃−1(v)| =
∑

H∈AVHC(v)

CqH .
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Figure 8.4: An affine valid hook configuration and its induced coloring.

Example 8.13. Preserve the notation from Example 8.10. We have z1 =(−1)(−2)23 and z2 =ε.
Consider the valid hook configuration H1 of z1 that consists of a single hook whose southwest
endpoint has height −1 and whose northeast endpoint has height 2. If we add this valid hook
configuration to the image shown on the right of Figure 8.3, and then repeat it 6-periodically, we
obtain the affine valid hook configuration of v shown in Figure 8.4. Note that H2 is the empty
valid hook configuration of the empty permutation. The composition induced by the valid hook
configuration qH1 is (2, 1). The composition induced by H2 is the empty composition. The
concatenation of qH1 = (2, 1) and the empty composition qH2 is qH = (2, 1). This corresponds
to the fact that, among the points (1, v(1)), . . . , (6, v(6)), there are 2 colored green and 1 col-
ored purple in Figure 8.4. Hence, the affine valid hook configuration of v shown in that figure
contributes the term C(2,1) = C2C1 = 2 to the sum in the Affine Fertility Formula.

Before we proceed, let us pause to collect some observations. Consider an affine valid hook
configuration H of an affine permutation v. The hooks in the skyline of H are precisely the
hooks that do not lie underneath any other hooks. Also, just as for ordinary valid hook configu-
rations, no hook inH passes underneath a point in the plot of v. No two hooks inH intersect or
overlap each other, except when the southwest endpoint of one hook coincides with the north-
east endpoint of the other. Every descent top of the plot of v must be a southwest endpoint of a
hook in H. The main difference between ordinary and affine valid hook configurations is that,
in the affine setting, not all southwest endpoints of hooks need to be descent tops. Namely, it
is possible to have a southwest endpoint of a hook in the skyline of H that is not a descent top
of the plot of v. However, southwest endpoints of hooks that are not in the skyline are required
to be descent tops. For our final observation, let M ∈ Sky(v) be the set corresponding to the
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skyline of H. Suppose that each of the permutations zM
i defined above is uniquely sorted. By

the Fertility Formula (Theorem 8.9), this implies that each of the compositions qHi has all its
parts equal to 1, so the composition qH has all its parts equal to 1.

We now apply the Affine Decomposition Lemma and Affine Fertility Formula to characterize
(for even n) which affine permutations attain the maximum in Theorem 8.3. Let us say an affine
permutation in S̃n is uniquely sorted if its fertility is 1.

Theorem 8.14. An affine permutation in S̃n is uniquely sorted if and only if it is in the image
of s̃ and has exactly n

2
descents. In particular, there are no uniquely sorted affine permutations

in S̃n when n is odd.

Proof. First, suppose v ∈ S̃n is uniquely sorted. It follows from the Affine Fertility Formula
(Theorem 8.12) that v has a unique affine valid hook configuration H. Let M = {· · · < m0 <
m1 < m2 < · · · } ∈ Sky(v) be the set of left-to-right maxima of v corresponding to the skyline
of H. Let Hi be the hook of H with endpoints (v−1(mi),mi) and (v−1(mi+1),mi+1), and let
zi = zM

i be the permutation whose plot lies underneath Hi. Let r = r(M ) be the integer such
that mj+r = mj + n for all integers j. Suppose, by way of contradiction, that there is an integer
i such that zi is empty. By periodicity, zi+βr is empty for all integers β. For each integer β,
delete the hooks Hi+βr−1 and Hi+βr, and replace them with a single hook that has southwest
endpoint (v−1(mi+βr−1),mi+βr−1) (the former southwest endpoint of Hi+βr−1) and northeast
endpoint (v−1(mi+βr+1),mi+βr+1) (the former northeast endpoint ofHi+βr+1). This results in a
new affine valid hook configuration of v, contradicting the uniqueness ofH. Hence, none of the
permutations zi are empty. It follows that each of the points (v−1(mi),mi) in the skyline ofH is
a descent top of the plot of v. Now let ni be the number of entries of zi. The sum

∑r
i=1(ni + 1)

counts the entries in z1, . . . , zr and the entries m1, . . . ,mr, so it is equal to n. It follows from
the Affine Decomposition Lemma (Theorem 8.11) that

1 = |s̃−1(v)| =
r∏
i=1

∣∣s−1(zi)
∣∣ ,

so each permutation zi is uniquely sorted. We have shown that each zi is nonempty, so each ni is
positive. According to Proposition 2.1, each permutation zi has exactly ni−1

2
descents (in partic-

ular, ni is odd). Therefore, the total number of right descents of v is |{v−1(m1), . . . , v−1(mr)}|+∑r
i=1

ni−1
2

= r +
∑r

i=1
ni−1

2
= 1

2

∑r
i=1(ni + 1) = n

2
.

To prove the converse, assume that v ∈ S̃n is in the image of s̃ and has exactly n
2

right
descents. Because v is in the image of s̃, the Affine Fertility Formula (Theorem 8.12) tells us that
it has an affine valid hook configurationH. Let M = {· · · < m0 < m1 < m2 < · · · } ∈ Sky(v),
Hi, zi, r, and ni have the same meanings as in the previous paragraph. Let Y be the set of indices
i ∈ [r] such that the southwest endpoint ofHi is a descent top. Let Y ′ be the set of indices i ∈ [r]
such that zi is nonempty. Note that Y ⊆ Y ′. The hooks inH that lie underneathHi form a valid
hook configuration of zi, so it follows from the Fertility Formula (Theorem 8.9) that zi is in the
image of s. If i ∈ Y ′, then since zi is a nonempty permutation of size ni in the image of s, we
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have |Des(zi)| 6 ni−1
2

by (5.1). The number of right descents of v is

|Y |+
∑
i∈Y ′
|Des(zi)| 6 r +

∑
i∈Y ′

ni − 1

2
6 r +

r∑
i=1

ni − 1

2
=

1

2

r∑
i=1

(ni + 1) =
n

2
. (8.2)

However, our assumption is that v has exactly n
2

right descents, so the inequalities in (8.2) must
be equalities. It follows that Y = Y ′ = [r] and |Des(zi)| = ni−1

2
for all i ∈ [r]. By periodicity,

we conclude that every southwest endpoint of a hook in H is a descent top of the plot of v
(this is always true of southwest endpoints not in the skyline) and that every permutation zi for
i ∈ Z has ni−1

2
descents. According to Proposition 2.1, each of the permutations zi for i ∈ Z

is uniquely sorted. It follows from the last observation stated immediately before this theorem
that the composition qH has all its parts equal to 1. Therefore, if we can prove thatH is the only
affine valid hook configuration of v, then it will follow from the Affine Fertility Formula that
|s̃−1(v)| = CqH = 1, as desired.

Let G be the set of points (i, v(i)) such that i ∈ [n]. Let DB denote the set of descent
bottoms of the plot of v. Let N be the set of northeast endpoints of hooks in H. If there were a
point (i, v(i)) ∈ DB∩N, then the hook with northeast endpoint (i, v(i)) would pass underneath
the point (i − 1, v(i − 1)), contradicting the properties of an affine valid hook configuration.
Therefore, DB and N are disjoint. The assumption that v has n

2
right descents implies that

|DB∩G| = n
2
. Furthermore, every descent top of the plot of v is a southwest endpoint of a

hook in H, so we must have |N ∩ G| > n
2
. Since (DB∩G) ∪ (N ∩ G) ⊆ G and |G| = n, we

must have |N∩G| = n
2
. Thus, DB∩G and N∩G form a partition of the set G. By periodicity,

we find that DB and N form a partition of the set of all points in the plot of v.
Recall that our goal is to prove that H is the unique affine valid hook configuration of v.

Suppose instead that there is some otherH′ ∈ AVHC(v). LetN′ be the set of northeast endpoints
of hooks inH′. We have seen that the southwest endpoints of hooks inH are precisely the descent
tops of the plot of v and that N = {(i, v(i)) : i ∈ Z} \DB. Applying the same arguments toH′
instead ofH shows that the set of southwest endpoints of hooks inH′ is also equal to the set of
descent tops of the plot of v and that N′ = {(i, v(i)) : i ∈ Z} \ DB = N. Since H 6= H′, there
must be a descent top (d, v(d)) such that the hook H of H with southwest endpoint (d, v(d)) is
not equal to the hook H ′ of H′ with southwest endpoint (d, v(d)). By switching the roles of H
and H′ if necessary, we may assume that H lies underneath H ′ (i.e., the northeast endpoint of
H ′ is higher than that of H). Let (j, v(j)) be the northeast endpoint of H . Let Z be the set of
points lying underneath H (not including the endpoints of H), and let Z∗ = Z ∪ {(j, v(j))}.
Observe that the leftmost point in Z∗ is (d + 1, v(d + 1)), which is immediately to the right of
the southwest endpoint of H ′. This implies that every hook ofH′ whose northeast endpoint lies
in Z∗ has its southwest endpoint in Z. Therefore, |N′∩Z∗| is at most the number of descent tops
in Z. The number of descent tops in Z is the number of hooks of H whose endpoints are in Z,
which is also equal to |N∩Z|. Since N = N′, this implies that |N∩Z∗| = |N′∩Z∗| 6 |N∩Z|.
This is our desired contradiction because N ∩ Z∗ = (N ∩ Z) ∪ {(j, v(j))}.

It is not difficult to prove that every affine sylvester class in S̃n is infinite when n > 2.
Therefore, it follows from Theorems 8.4 and 8.14 that the number of uniquely sorted affine
permutations in S̃n is either 0 or∞, depending on the parity of n. This means that the naı̈ve affine
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analogue of the fact that uniquely sorted permutations are enumerated by Lassalle’s sequence
[29] is not so interesting from an enumerative point of view. However, we can still obtain an
interesting enumerative result by considering affine sylvester classes as objects in their own right.
Theorem 8.4 tells us that if an affine sylvester class contains a uniquely sorted affine permutation,
then all of the affine permutations in that class are uniquely sorted. Hence, we define an affine
sylvester class to be uniquely sorted if its elements are uniquely sorted.

Every affine sylvester class contains a unique 231-avoiding affine permutation, so enumer-
ating uniquely sorted affine sylvester classes is the same as enumerating uniquely sorted 231-
avoiding affine permutations. In the symmetric group setting, 231-avoiding uniquely sorted
permutations were enumerated in [21], where it was shown that they are in bijection with inter-
vals in Tamari lattices. In order to obtain an analogous result in the affine setting, we first need
to understand the structure of 231-avoiding affine permutations.

Given v ∈ S̃n, define shift(v) to be the affine permutation in S̃n given by shift(v)(i) =

v(i + 1) − 1 for all integers i. We are going to make use of the injection ι : Sn → S̃n sending
each permutation u to the unique affine permutation in S̃n that agrees with u on [n] (i.e., the affine
permutation with window notation [u(1), . . . , u(n)]). The direct sum of permutations u ∈ Sm
and v ∈ Sn is the permutation u⊕ v ∈ Sm+n defined by

(u⊕ v)(i) =

{
u(i) if 1 6 i 6 m;

v(i−m) +m if m+ 1 6 i 6 m+ n.

Suppose κ > 1 is an integer. It follows from the definition of a valid hook configuration that if
x ∈ Sκ+1 is a permutation that has a valid hook configuration, then x(κ+ 1) = κ+ 1. Let Υκ+1

be the set of 231-avoiding uniquely sorted permutations x ∈ Sκ+1 such that the unique valid
hook configuration of x has a hook with southwest endpoint (1, x(1)) and northeast endpoint
(κ+ 1, κ+ 1). Let Υ∗κ be the set of permutations in Sκ that can be obtained from a permutation
x ∈ Υκ+1 by deleting the last entry κ+ 1. It will be convenient to define Υ∗0 to be the empty set.

Now suppose v is a 231-avoiding affine permutation in S̃n. LetH be the unique affine valid
hook configuration of v, and let M = {· · · < m0 < m1 < m2 < · · · } ∈ Sky(v) be the set of
left-to-right maxima of v corresponding to the skyline of H. Let Hi, zi = zM

i , and r = r(M )
be as described above. Assume the indices are chosen so that m1 6 1 < m2. Let yi be the
permutation whose plot consists of the points lying underneath Hi together with the southwest
endpoint of Hi. Let xi be the permutation whose plot consists of the points lying underneath
Hi together with both endpoints of Hi. Let ẑi, ŷi, and x̂i be the standardizations of zi, yi, and
xi, respectively. Let κi be the size of yi (so κi − 1 is the size of zi, and κi + 1 is the size of
xi). We saw in the proof of Theorem 8.14 that zi is nonempty and uniquely sorted and that
the southwest endpoint of Hi is a descent top. It follows from Proposition 2.1 that zi has κi−2

2

descents. Therefore, xi has κi
2

descents. The hooks inH that lie on points in the plot of xi form a
valid hook configuration of xi, so xi is in the image of s by the Fertility Formula (Theorem 8.9).
It follows from Proposition 2.1 that xi is uniquely sorted. Consequently, x̂i ∈ Υκi+1. Also, ŷi is
obtained by deleting the entry κi + 1 from x̂i, so ŷi ∈ Υ∗κi . BecauseHi is in the skyline ofH, its
southwest endpoint is higher up than all points to its left. Since v is 231-avoiding, every point
in the plot of v appearing to the left of the points in the plot of yi must also be below all of the



38 Colin Defant

points in the plot of yi. Similarly, every point in the plot of v appearing to the right of the points
in the plot of yi must also be above all of the points in the plot of yi. We deduce that v can be
written as shiftβ(ι(u)), where u = ŷ1⊕ · · · ⊕ ŷr ∈ Sn and each ŷi is in Υ∗κi . Furthermore, there
is a unique choice of β such that 0 6 β 6 κ1 − 1.

Figure 8.5: The unique affine valid hook configuration of a 231-avoiding uniquely sorted affine
permutation in S̃6.

Example 8.15. Consider the 231-avoiding uniquely sorted affine permutation v ∈ S̃6 with win-
dow notation [1, 3, 2, 6, 5, 4]. The unique affine valid hook configurationH of v appears in Fig-
ure 8.5. The hook H1 has endpoints (−2, 0) and (2, 3). The hook H2 has endpoints (2, 3)
and (4, 6). Also, r = 2. We have z1 = (−1)(−2)1, y1 = 0(−1)(−2)1, and x1 = 0(−1)(−2)13,
so ẑ1 = 213, ŷ1 = 3214, and x̂1 = 32145. Also, κ1 = 4. Similarly, we have z2 = 2, y2 = 32,
x2 = 326, ẑ2 = 1, ŷ2 = 21, x̂2 = 213, and κ2 = 2. Then x̂1 ∈ Υ5 and x̂2 ∈ Υ3, so ŷ1 ∈ Υ∗4
and ŷ2 ∈ Υ∗2. The decomposition described above takes the form v = shift3(ι(u)), where
u = ŷ1 ⊕ ŷ2 = 3214⊕ 21 = 321465.

The decomposition described above is unique. On the other hand, if we are given positive
integers κ1, . . . , κr summing to n, an integer β satisfying 0 6 β 6 κ1 − 1, and permutations
ŷ1, . . . , ŷr with ŷi ∈ Υκi for all i, then shiftβ(ι(ŷ1⊕ · · ·⊕ ŷr)) is a uniquely sorted 231-avoiding
affine permutation in S̃n. Indeed, each ŷi is obtained by deleting the largest entry from a per-
mutation x̂i ∈ Υκi+1. The unique affine valid hook configuration of shiftβ(ι(ŷ1 ⊕ · · · ⊕ ŷr))
is obtained by gluing together the valid hook configurations of x1, . . . , xr, which are essen-
tially the same as the valid hook configurations of x̂1, . . . , x̂r, and repeating modulo r. It then
follows from the Affine Fertility Formula (Theorem 8.12) that the resulting affine permutation
shiftβ(ι(ŷ1 ⊕ · · · ⊕ ŷr)) is indeed uniquely sorted. Thus, we have the following lemma.

Lemma 8.16. Every 231-avoiding uniquely sorted affine permutation in S̃n can be written
uniquely as shiftβ(ŷ1⊕· · ·⊕ŷr), where ŷi ∈ Υ∗κi for all i, κ1+· · ·+κr = n, and 0 6 β 6 κ1−1.
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An argument similar to the one used to prove Lemma 8.16 yields the next lemma.

Lemma 8.17. Every 231-avoiding uniquely sorted permutation in Sn can be written uniquely
as ŷ1 ⊕ · · · ⊕ ŷr ⊕ 1, where ŷi ∈ Υ∗κi for all i and κ1 + · · ·+ κr + 1 = n.

Figure 8.6: The unique valid hook configuration of a 231-avoiding uniquely sorted permutation
in S7.

Example 8.18. The 231-avoiding uniquely sorted permutation 3214657, whose unique valid
hook configuration is presented in Figure 8.6, can be written as 3214⊕21⊕1. We have 3214 ∈ Υ∗4
and 21 ∈ Υ∗2.

Theorem 8.19. For each k > 1, the number of uniquely sorted affine sylvester classes of S̃2k,
which is also the number of 231-avoiding uniquely sorted affine permutations in S̃2k, is

3

(
4k

k

)
− 2

k∑
i=0

(
4k

i

)
.

Proof. Let Un(231) denote the set of 231-avoiding uniquely sorted permutations in Sn. Let
Ũn(231) denote the set of 231-avoiding uniquely sorted affine permutations in S̃n. Each uniquely
sorted affine sylvester class of S̃2k contains a unique element of Ũ2k(231), so we just need to count
the elements of Ũ2k(231). Let

F (q) =
∑
κ>1

|Υ∗κ|qκ, J(q) =
∑
κ>1

κ|Υ∗κ|qκ,

G(q) =
∑
n>1

|Un(231)|qn, G̃(q) =
∑
n>1

|Ũn(231)|qn.

Observe that J(q) = qF ′(q). It follows immediately from Lemma 8.17 that G(q) =
q

1− F (q)
.

This means thatF (q) = 1− q

G(q)
. Similarly, it follows from Lemma 8.16 that G̃(q) =

J(q)

1− F (q)
.

Combining these facts, we find that

G̃(q) =
qF ′(q)

1− F (q)
= G(q)F ′(q) = G(q)

d

dq

(
1− q

G(q)

)
= G(q)

qG′(q)−G(q)

G(q)2
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= q
G′(q)

G(q)
− 1. (8.3)

We know by Proposition 2.1 that |Un(231)| = 0 when n is even. On the other hand, [21, Corol-
lary 6.1] states that

|U2k+1(231)| = 2

(3k + 1)(3k + 2)

(
4k + 1

k + 1

)
.

LetE(q) =
∑

k>0
2

(3k+1)(3k+2)

(
4k+1
k+1

)
qk = G(

√
q)/
√
q. The coefficients ofE(q) appear as OEIS

sequence A000260 [43]; it is stated there that E(q) = (2− g(q))g(q)2, where g(q) satisfies the
equation g(q) = 1 + qg(q)4. Thus, G(q) = q(2 − g(q2))g(q2)2. Using Mathematica, one can
solve this equation explicitly for G(q) and then use that explicit expression to verify that(

2q
G′(q)

G(q)

)4

q2 −
(
q
G′(q)

G(q)
+ 1

)3(
q
G′(q)

G(q)
− 1

)
= 0.

Therefore, we can use (8.3) to see that

(2(G̃(q) + 1))4q2 − (G̃(q) + 2)3G̃(q) = 0.

Now let

Q(q) =
∑
k>1

(
3

(
4k

k

)
− 2

k∑
i=0

(
4k

i

))
q2k.

According to OEIS entry A107026 [43], the generating function Q(q) satisfies the equation

(2(Q(q) + 1))4q2 − (Q(q) + 2)3Q(q) = 0.

In fact, Q(q) is uniquely determined by the fact that it satisfies this equation and satisfies
Q(q) = 2q2 +O(q3). Since G̃(q) is another series satisfying this equation and satisfying
G̃(q) = 2q2 +O(q3), we must have Q(q) = G̃(q). This completes the proof.

Remark 8.20. Although the numbers in Theorem 8.19 already appeared as sequence A107026
in [43], it seems that there was no known combinatorial interpretation for them until now.

As mentioned in Section 2, much of the early work on West’s stack-sorting map developed
around the notion of a 2-stack-sortable permutation and arose from Zeilberger’s [64] theorem
that the number of 2-stack-sortable permutations in Sn is 2

(n+1)(2n+1)

(
3n
n

)
. Our final theorem

provides an affine analogue of Zeilberger’s result.
In the next lemma, recall that a left-to-right maximum of a permutation z is an entry in z that

is larger than all entries appearing to its left in z.

Lemma 8.21. Letmz be a permutation of a set {a, a+1, . . . , b} of consecutive integers obtained
by concatenating a number m with a 231-avoiding permutation z. Then mz is 231-avoiding if
and only if m = a or m− 1 is a left-to-right maximum of z.
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Proof. If m = a, then certainly mz is 231-avoiding. Suppose m− 1 is a left-to-right maximum
of z. If there were entries c and d such that m, d, c formed a 231-pattern in mz, then m− 1, d, c
would form a 231-pattern in z. This cannot happen, so mz is 231-avoiding.

Conversely, supposem 6= a andm−1 is not a left-to-right maximum of z. There is an entry
c > m− 1 that appears to the left of m− 1 in z, so m, c,m− 1 form a 231-pattern in mz.

Consider w ∈ S̃n, and let v = s̃(w). Suppose w is 2-stack-sortable. Equivalently, v is
1-stack-sortable. Equivalently (by Proposition 8.2), v is 231-avoiding. Let M = {· · · <
m0 < m1 < m2 < · · · } be the left-to-right maxima of w. Then M ∈ Sky(v). Let us as-
sume the indices are chosen so that w−1(m1) 6 1 < w−1(m2). Let I−1(w) = T = (T, σ).
Then v = P(T ) by (8.1). Let TR(mi+1) be the (possibly empty) right subtree of σ−1(mi+1)
in T , and let zi = P(TR(mi+1)). The one-line notation of v is · · ·m0z0m1z1m2 · · · . Let
ui = I(TR(mi+1)). Then each permutation zi = s(ui) is 231-avoiding, so each permutation
ui is 2-stack-sortable (recall that Knuth showed that 1-stack-sortable permutations are the same
as 231-avoiding permutations). All of the entries inmizi are smaller thanmi+1 because they are
labels of vertices lying below σ−1(mi+1) in T . Furthermore, every entry a inmizi is smaller than
every entry b in zi+1 since, otherwise, a,mi+1, b would form a 231-pattern in v. It follows from
these observations that for every integer i, the entries in mizi form a set of consecutive integers.
By Lemma 8.21, the entrymi is either the smallest entry inmizi or is 1 more than a left-to-right
maximum of zi. Let r be the unique integer such that mj+r = mj + n for all j ∈ Z, and let
κi be the size of mizi. Finally, let β = −w−1(m1) + 1. Since κ1 = w−1(m2) − w−1(m1), the
assumption that w−1(m1) 6 1 < w−1(m2) guarantees that 0 6 β 6 κ1− 1. See Example 8.22.

The decomposition of a 2-stack-sortable affine permutation just described is reversible. That
is to say,w is uniquely determined once we choose the integers κ1, . . . , κr that sum to n, the stan-
dardizations of the permutationsmiui for 1 6 i 6 r, and the integer β satisfying 06β6κ1 − 1.
To describe the restrictions on miui, let m̂iûi be its standardization. Let ẑi = s(ûi). Then ûi
must be 2-stack-sortable, and either m̂i = 1 or m̂i − 1 is a left-to-right maximum of ẑi. If we
write τi for the standardization of ui, then τi is a 2-stack-sortable permutation in Sκi−1.

Example 8.22. Let n = 7, and let w ∈ S̃7 be the 2-stack-sortable affine permutation with
window notation [0, 3, 2,−1, 8, 4, 12]. The decreasing affine binary plane tree T = I−1(w)
is depicted in Figure 8.7. In the above notation, we have m1 = 5, m2 = 8, and r = 2.
The subtrees TR(mi+1) are marked in the figure. We have u1 = 4 and u2 = 7 10 9 6. Also,
z1 = s(u1) = P(TR(m2)) = 4 and z2 = s(u2) = P(TR(m3)) = 7 6 9 10. Notice that for each i,
the entries inmizi form a set of consecutive integers. We havem1z1 = 54 andm2z2 = 8 7 6 9 10.
Also, m̂1û1 = 21, m̂2û2 = 32541, ẑ1 = s(û1) = s(1) = 1 and ẑ2 = s(û2) = s(2541) = 2145.
Observe that m̂1 − 1 = 2− 1 = 1 is a left-to-right maximum of ẑ1, while m̂2 − 1 = 3− 1 = 2
is a left-to-right maximum of ẑ2. The permutations û1 = 1 and û2 = 2541 are 2-stack-
sortable, so their standardizations τ1 = 1 and τ2 = 2431 are also 2-stack-sortable. Finally,
β = −w−1(5) + 1 = 1.

Suppose we were given that n = 7 and r = 2 and that we were handed the standardizations
m̂1û1 = 21 and m̂2û2 = 32541 along with the integer β = 1. The standardizations tell us the
relative order of miui for all i ∈ Z, and we can begin to reconstruct the set of entries of miui
by using the fact that each such set of entries is a set of consecutive integers (and · · · < m0 <
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Figure 8.7: The decomposition of I−1(w), where w ∈ S̃7 is the 2-stack-sortable affine permu-
tation with window notation [0, 3, 2,−1, 8, 4, 12].

m1 < m2 < · · · ). In fact, since w = · · ·m1u0m2u1m3u2 · · · and w−1(m1) = 1 − β = 0, this
determines the entire one-line notation of w up to a global shift of the entries. However, there is
a unique choice of this global shift that makes the identity

∑n
i=1w(i) =

(
n+1

2

)
hold. Hence, we

can reconstruct w.
In what follows, we let W2(n) and W̃2(n) denote, respectively, the set of 2-stack-sortable

permutations in Sn and the set of 2-stack-sortable affine permutations in S̃n. For each permuta-
tion u, let slmax(u) denote the number of left-to-right maxima of s(u). In the above notation,
slmax(τi) + 1 = slmax(ûi) + 1 is the number of ways to choose the value of m̂i relative to the
values of the entries of ûi so that either m̂i = 1 or m̂i − 1 is a left-to-right maximum of ẑi. The
preceding discussion yields the following lemma.
Lemma 8.23. For n > 1, we have

|W̃2(n)| =
∑

κ1,...,κr>1
κ1+···+κr=n

κ1

r∏
i=1

 ∑
τi∈W2(κi−1)

(slmax(τi) + 1)

 .

We can now enumerate 2-stack-sortable affine permutations.
Theorem 8.24. Let

I(q) =
∑
n>0

2

(n+ 1)(2n+ 1)

(
3n

n

)
qn and Ĩ(q) =

∑
n>1

|W̃2(n)|qn.
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We have
Ĩ(q) =

qI ′(q)

I(q)(I(q)− 1)
− 1.

Proof. It follows from Lemma 8.23 that

Ĩ(q) =

∑
κ1>1

κ1

∑
τ1∈W2(κ1−1)

(slmax(τ1) + 1)qκ1

∑
j>0

∑
κ>1

∑
τ∈W2(κ−1)

(slmax(τ) + 1)qκ

j

=
qF ′(q)

1− F (q)
, (8.4)

where F (q) =
∑

κ>1

∑
τ∈W2(κ−1)(slmax(τ) + 1)qκ. If we let

G(q, x) =
∑
κ>1

∑
τ∈W2(κ)

xslmax(τ)qκ,

then
F (q) = q + q

[
∂

∂x
(xG(q, x))

]
x=1

. (8.5)

As we mentioned before, 2-stack-sortable permutations have been studied extensively, and luck-
ily for us, Fang [33] has already investigated the generating functionG(q, x). In fact, [33, Equa-
tion (5)] provides an equation for a refinement2 of G(q, x) that keeps track of several additional
statistics. By setting most of the variables in that equation equal to 1, we arrive at the equation

(x− 1)G(q, x) = qx(x− 1)(1 +G(q, x))2 + qxG(q, x)G(q, x)− qxG(q, x)G(q, 1). (8.6)

Let us write Gx(q, x) for ∂
∂x
G(q, x). Differentiating each side of (8.6) with respect to x yields

(x− 1)Gx(q, x) +G(q, x) = 2qx(x− 1)(1 +G(q, x))Gx(q, x) + q(2x− 1)(1 +G(q, x))2

+2qxG(q, x)Gx(q, x) + qG(q, x)2 − qG(q, 1)(xGx(q, x) +G(q, x)).

Now put Q(q) = [Gx(q, x)]x=1, and set x = 1 in the previous equation to obtain

G(q, 1) = q(1 +G(q, 1))2 + 2qG(q, 1)Q(q) + qG(q, 1)2 − qG(q, 1)(Q(q) +G(q, 1))

= q(1 +G(q, 1))2 + qG(q, 1)Q(q).

Hence,

Q(q) =
G(q, 1)− q(1 +G(q, 1))2

qG(q, 1)
.

By (8.5), we have

F (q) = q(1 +G(q, 1) +Q(q))

= q

(
1 +G(q, 1) +

G(q, 1)− q(1 +G(q, 1))2

qG(q, 1)

)
= 1 + q

(
1 +G(q, 1)− (1 +G(q, 1))2

G(q, 1)

)
.

2In Fang’s notation, G(q, x) is T (q, x, 1, 1; 1, 1, 1).
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Zeilberger’s enumeration of 2-stack-sortable permutations [64] tells us that

G(q, 1) =
∑
n>1

|W2(n)|qn =
∑
n>1

2

(n+ 1)(2n+ 1)

(
3n

n

)
qn = I(q)− 1,

so
F (q) = 1 + q

(
I(q)− I(q)2

I(q)− 1

)
= 1 + q

I(q)

1− I(q)
.

Finally, by (8.4), we have

Ĩ(q) =
qF ′(q)

1− F (q)
=
q qI

′(q)+I(q)(1−I(q))
(1−I(q))2

−q I(q)
1−I(q)

=
qI ′(q)

I(q)(I(q)− 1)
− 1.

9. Future Directions

We have initiated the combinatorial and dynamical analysis of Coxeter stack-sorting operators,
but it seems we have only grazed the surface. Here, we collect suggestions for future work.

9.1. Other Special Lattice Congruences

There are many special lattice congruences on symmetric groups whose associated Coxeter
stack-sorting operators have not been explored. For example, it could be fruitful to investi-
gate more thoroughly the Coxeter stack-sorting operators on Sn arising from Reading’s Cam-
brian congruences [49]. Recall that these are the same as the δ-permutree congruences ≡δ for
δ ∈ { , }n. One particularly interesting Cambrian congruence from [49] is the bipartite
Cambrian congruence, which is obtained by setting δ = δ1 · · · δn, where δi = when i is odd
and δi = when i is even.

Some other lattice congruences on Sn whose Coxeter stack-sorting operators could be worth
investigating are the k-twist congruences from [44] and the Baxter congruence from [39, 34].

9.2. Upward Projection Maps

Suppose ≡ is a lattice congruence on the left weak order of a finite Coxeter group W . Ev-
ery congruence class of ≡ has a unique maximal element, and we denote by π↑≡ the upward
projection map that sends each w ∈ W to the maximal element of the congruence class con-
taining w. In analogy with Definition 1.1, we consider the map R≡ : W → W defined by
R≡(w) = π↑≡(w)w−1. The long-term dynamical behavior of R≡ can be more complicated than
that of S≡ because there can be multiple periodic points. It would be interesting to gain an un-
derstanding of these new operators, even for specific lattice congruences on symmetric groups.

As an example, consider the sylvester congruence≡syl on Sn. Forw ∈ Sn, let rev(w) = ww0

be the reverse of w. Dukes [31] introduced the map revstack = s ◦ rev. One can show that
R≡syl

(w) = revstack(w)−1 for all w ∈ Sn. In addition, one can show that the identity permuta-
tion e is the only periodic point of R≡syl

in Sn. Experimental data (checked for n 6 9) suggests
that the maximum size of a forward orbit of R≡syl

: Sn → Sn could be
⌈
n
2

⌉
+ 2 for all n > 4.
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By contrast, the maximum size of the forward orbit of an element of Sn under revstack is n
(see [31]).

Similarly, one can show that R≡des
(w) = S≡des

(rev(w))−1 for allw ∈ Sn (recall that S≡des
is

the pop-stack-sorting map). The dynamics of R≡des
seem interesting. For instance, when n = 4,

R≡des
has one fixed point, one periodic orbit of period 4, one periodic orbit of period 6, and 13

non-periodic points.
Perhaps one could prove general results, along the same lines as in [26], for the map

R≡des
: W → W when W is an arbitrary finite irreducible Coxeter group.

9.3. Descents After Coxeter Stack-Sorting

In Section 5, we proved Theorems 5.2 and 5.5, which tell us about the maximum number of
right descents a permutation in the image of a Coxeter stack-sorting operator on Sn can have. It
would be interesting to have analogues of these theorems for Coxeter groups of other types.

9.4. Stack-Sorting in Type B

We believe there is more hidden structure in the type-B stack-sorting map sB. For example, we
have the following conjecture.

Conjecture 9.1. If n > 1 is odd and v ∈ Bn, then |s−1
B (v)| is even.

In particular, Conjecture 9.1 implies the following weaker conjecture.

Conjecture 9.2. If n > 1 is odd and v ∈ Bn, then |s−1
B (v)| 6= 1.

Recall from Proposition 2.1 that a permutation in Sn is uniquely sorted if and only if it is
in the image of s and has exactly n−1

2
right descents. In light of Theorem 7.3, one might ask if

the elements of Bn with exactly 1 preimage under sB are the elements in the image of sB with
exactly n

2
right descents. This turns out to be false. For example, 25136847 ∈ B4 has exactly 1

preimage under sB, but it has only 1 right descent.

Question 9.3. Let n > 2 be even. Suppose v ∈ Bn is in the image of sB and has exactly n
2

right
descents. Is it necessarily true that |s−1

B (v)| = 1?

Question 9.4. Let n > 2 be even. How many elements of Bn in the image of sB have exactly n
2

right descents?

Theorem 7.2 tells us that snB(w) = e for all w ∈ Bn and that there exists v ∈ Bn such that
sn−1
B (v) 6= e.

Question 9.5. How many elements v of Bn are such that sn−1
B (v) 6= e?

The sequence of numbers requested in the previous question appears to be new; it begins
with the numbers 1, 2, 6, 32, 200, 1566.

In [24], the author gave asymptotic lower and upper bounds for Dn, the average number of
iterations of s needed to send a permutation in Sn to the identity permutation e. Let us similarly
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define DBn to be the average number of iterations of sB needed to send an element of Bn to the
identity element e. We believe the major factors controlling the number of iterations of s needed
to send permutations to the identity should also be present in type B, so we have the following
conjecture.

Conjecture 9.6. We have

lim
n→∞

(
Dn
n
− D

B
n

n

)
= 0.

9.5. Affine Stack-Sorting

We saw in Section 8 that the affine stack-sorting map s̃ shares several of the stack-sorting map’s
nice properties. In [24], the author proved a theorem about fertility monotonicity; it states that
|s−1(w)| 6 |s−1(s(w))| for all w ∈ Sn.

Question 9.7. Is it true that |s̃−1(w)| 6 |s̃−1(s̃(w))| for all w ∈ S̃n?

In Section 8, we proved affine analogues of the Decomposition Lemma and the Fertility
Formula. These are special cases of the results used in [28] to develop a theory of troupes,
which are families of binary plane trees that are closely related to the link between the stack-
sorting map and free probability theory. It would be very interesting to have a parallel theory of
affine troupes, especially if such a theory could connect s̃ with free probability theory (or some
variant thereof).
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[46] V. Pilaud, V. Pons, and D. Tamayo Jiménez. Permutree sorting. arXiv:2007.07802.
[47] V. Pilaud and F. Santos. Quotientopes. Bull. Lond. Math. Soc., 51 (2019), 406–420.
[48] L. Pudwell and R. Smith, Two-stack-sorting with pop stacks. Australas. J. Combin., 74

(2019), 179–195.
[49] N. Reading, Cambrian lattices. Adv. Math., 205 (2006), 313–353.



combinatorial theory 2 (1) (2022), #18 49

[50] N. Reading. Finite Coxeter groups and the weak order. In Lattice theory: special topics
and applications. vol. 2, pages 489–561. Birkhäuser/Springer, 2016.
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